WO2016080151A1 - 高圧水素に触れる成形品用のポリアミド樹脂組成物およびそれを用いた成形品 - Google Patents

高圧水素に触れる成形品用のポリアミド樹脂組成物およびそれを用いた成形品 Download PDF

Info

Publication number
WO2016080151A1
WO2016080151A1 PCT/JP2015/080094 JP2015080094W WO2016080151A1 WO 2016080151 A1 WO2016080151 A1 WO 2016080151A1 JP 2015080094 W JP2015080094 W JP 2015080094W WO 2016080151 A1 WO2016080151 A1 WO 2016080151A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyamide resin
pressure hydrogen
acid
resin composition
molded product
Prior art date
Application number
PCT/JP2015/080094
Other languages
English (en)
French (fr)
Inventor
落合伸一郎
佐藤大輔
小林定之
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to CN201580060780.1A priority Critical patent/CN107075251B/zh
Priority to EP15860931.3A priority patent/EP3222668B1/en
Priority to US15/526,822 priority patent/US20170335999A1/en
Priority to KR1020177010457A priority patent/KR102292165B1/ko
Priority to JP2015553705A priority patent/JP5928668B1/ja
Publication of WO2016080151A1 publication Critical patent/WO2016080151A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L11/00Hoses, i.e. flexible pipes
    • F16L11/04Hoses, i.e. flexible pipes made of rubber or flexible plastics
    • F16L11/10Hoses, i.e. flexible pipes made of rubber or flexible plastics with reinforcements not embedded in the wall
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/06Polyamides derived from polyamines and polycarboxylic acids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B1/00Layered products having a non-planar shape
    • B32B1/08Tubular products
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/26Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/26Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/06Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to homopolymers or copolymers of aliphatic hydrocarbons containing only one carbon-to-carbon double bond
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L57/00Protection of pipes or objects of similar shape against external or internal damage or wear
    • F16L57/06Protection of pipes or objects of similar shape against external or internal damage or wear against wear
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/18Applications used for pipes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/06Polymer mixtures characterised by other features having improved processability or containing aids for moulding methods
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a polyamide resin composition for molded articles that are exposed to high-pressure hydrogen and a molded article formed by molding the same.
  • a tank used for storage of hydrogen gas of a fuel cell electric vehicle for example, a metal end part, a polyamide resin liner surrounding the end part, and a fiber impregnated with a thermosetting resin surrounding the liner
  • a tank including a structural layer has been studied (for example, see Patent Document 1).
  • a hydrogen tank liner having excellent gas barrier properties and excellent impact resistance even at low temperatures for example, a hydrogen tank liner material made of a polyamide resin composition containing polyamide 6, copolymer polyamide, and an impact resistant material is molded.
  • a hydrogen tank liner is being studied (for example, see Patent Document 2).
  • the gas permeability coefficient of dry hydrogen gas at a temperature of 90 ° C. is 1 ⁇ 10 ⁇ 8 cc ⁇ cm / cm 2 ⁇ sec.
  • a nylon resin having a cmHg or less is used, there is no detailed description of what kind of nylon resin is concrete.
  • general nylon resins are not sufficiently flexible and heat cycle resistant to be used for hydrogen filling hoses.
  • the present invention provides a polyamide resin that is excellent in flexibility and heat cycle resistance, and can obtain a molded product in which generation of defect points is suppressed even when high-pressure hydrogen filling and releasing are repeated. It is an object to provide a composition.
  • the present invention has the following configuration.
  • the present invention includes a molded article formed by molding the above polyamide resin composition and in contact with high-pressure hydrogen.
  • the present invention includes a high-pressure hydrogen hose that is formed by molding the polyamide resin composition and is in contact with high-pressure hydrogen.
  • the present invention includes a high-pressure hydrogen hose provided with a reinforcing layer on the outer side of an inner surface layer formed by molding the polyamide resin composition.
  • the molded article has excellent flexibility and heat cycle resistance, and generation of defect points is suppressed even after repeated filling and releasing of high-pressure hydrogen.
  • the molded product of the present invention is excellent in flexibility and heat cycle resistance, and is used as a molded product that is used for applications that come into contact with high-pressure hydrogen, taking advantage of the fact that defects do not easily occur even after repeated filling and releasing of high-pressure hydrogen. It becomes possible to develop usefully.
  • polyamide resin composition for molded articles that is exposed to high-pressure hydrogen of the present invention
  • polyamide resin composition includes at least a unit derived from hexamethylenediamine and an aliphatic dicarboxylic acid having 8 to 12 carbon atoms.
  • Polyamide resin (A) containing an acid-derived unit hereinafter sometimes simply referred to as “polyamide resin (A)”
  • a blend (B) hereinafter sometimes simply referred to as “ethylene / ⁇ -olefin copolymer (B)” is blended.
  • the polyamide resin (A) containing a unit derived from hexamethylenediamine and a unit derived from an aliphatic dicarboxylic acid having 8 to 12 carbon atoms is excellent in moldability and gas barrier properties. Moreover, since it is excellent in a softness
  • the polyamide resin (A) used in the present invention is a polyamide resin mainly composed of a unit derived from hexamethylenediamine and a unit derived from an aliphatic dicarboxylic acid having 8 to 12 carbon atoms. Other monomers may be copolymerized as long as the object of the present invention is not impaired.
  • the term “main structural unit” refers to a unit derived from hexamethylenediamine and a unit derived from an aliphatic dicarboxylic acid having 8 to 12 carbon atoms in a total of 100 mol% of monomer units constituting the polyamide resin. It means that it contains 50 mol% or more in total.
  • the unit derived from hexamethylenediamine and the unit derived from an aliphatic dicarboxylic acid having 8 to 12 carbon atoms are contained in an amount of 70 mol% or more, and more preferably 90 mol% or more.
  • Examples of the aliphatic dicarboxylic acid having 8 to 12 carbon atoms include sebacic acid, suberic acid, azelaic acid, undecanedioic acid, and dodecanedioic acid. Two or more of these may be used. Of these, sebacic acid or dodecanedioic acid, which is excellent in the balance of crystallinity and strength of the obtained polyamide resin composition, is preferable, and sebacic acid is particularly preferable.
  • Examples of other monomers to be copolymerized include amino acids such as 6-aminocaproic acid, 11-aminoundecanoic acid, 12-aminododecanoic acid and paraaminomethylbenzoic acid; and lactams such as ⁇ -caprolactam and ⁇ -laurolactam. ; Tetramethylenediamine, pentamethylenediamine, 2-methylpentamethylenediamine, undecamethylenediamine, dodecamethylenediamine, 2,2,4- / 2,4,4-trimethylhexamethylenediamine, 5-methylnonamethylenediamine, etc.
  • amino acids such as 6-aminocaproic acid, 11-aminoundecanoic acid, 12-aminododecanoic acid and paraaminomethylbenzoic acid
  • lactams such as ⁇ -caprolactam and ⁇ -laurolactam.
  • Tetramethylenediamine pentamethylenediamine, 2-methylpentamethylenediamine
  • Aliphatic diamines aromatic diamines such as metaxylenediamine and paraxylylenediamine; 1,3-bis (aminomethyl) cyclohexane, 1,4-bis (aminomethyl) cyclohexane, 1-amino-3-aminomethyl- 3,5,5-trimethylcyclohex Fats such as sun, bis (4-aminocyclohexyl) methane, bis (3-methyl-4-aminocyclohexyl) methane, 2,2-bis (4-aminocyclohexyl) propane, bis (aminopropyl) piperazine, aminoethylpiperazine Cyclic diamines; aliphatic dicarboxylic acids such as adipic acid, malonic acid, succinic acid, glutaric acid, pimelic acid, tetradecanedioic acid, pentadecanedioic acid, octadecanedioic acid; terephthalic
  • the degree of polymerization of the polyamide resin (A) is not particularly limited, but the relative viscosity measured at 25 ° C. in a 98% concentrated sulfuric acid solution having a resin concentration of 0.01 g / ml is in the range of 1.5 to 7.0. Preferably there is.
  • the relative viscosity is 1.5 or more, the viscosity of the polyamide resin composition becomes moderately high, air entrainment during molding can be suppressed, and moldability can be further improved.
  • the relative viscosity is more preferably 1.8 or more.
  • the relative viscosity is 7.0 or less, the viscosity of the polyamide resin composition is appropriately lowered, and the moldability can be further improved.
  • the amount of amino terminal groups of the polyamide resin (A) is not particularly limited, but is preferably in the range of 1.0 to 10.0 ⁇ 10 ⁇ 5 mol / g.
  • the amino terminal group amount is in the range of 1.0 to 10.0 ⁇ 10 ⁇ 5 mol / g, a sufficient degree of polymerization can be obtained, and the mechanical strength of the molded product can be improved.
  • the amino terminal group of the polyamide resin (A) is prepared by dissolving the polyamide resin (A) in a phenol / ethanol mixed solvent (83.5: 16.5 (volume ratio)) and using a 0.02N aqueous hydrochloric acid solution. Can be obtained by titration.
  • the ethylene / ⁇ -olefin copolymer (B) used in the present invention is an ethylene / ⁇ -olefin copolymer modified with an unsaturated carboxylic acid and / or a derivative thereof.
  • the derivative of unsaturated carboxylic acid is a compound obtained by substituting the hydroxy group portion of the carboxyl group of unsaturated carboxylic acid with another substituent, and includes a metal salt, an acid halide, an ester, an acid of unsaturated carboxylic acid. Anhydrides, amides and imides.
  • unsaturated carboxylic acids and / or derivatives thereof include acrylic acid, methacrylic acid, maleic acid, fumaric acid, itaconic acid, crotonic acid, methylmaleic acid, methylfumaric acid, mesaconic acid, citraconic acid, glutaconic acid, and the like.
  • Metal salt of carboxylic acid methyl hydrogen maleate, hydrogen itaconic acid methyl, methyl acrylate, ethyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, hydroxyethyl acrylate, methyl methacrylate, 2-ethylhexyl methacrylate
  • Unsaturated carboxylic acid esters such as hydroxyethyl methacrylate, aminoethyl methacrylate, dimethyl maleate, dimethyl itaconate; maleic anhydride, itaconic anhydride, citraconic anhydride, endobicyclo- (2,2,1) -5 Acid anhydrides such as butene-2,3-dicarboxylic acid, endobicyclo- (2,2,1) -5-heptene-2,3-dicarboxylic anhydride; maleimide, N-ethylmaleimide, N-butylmaleimide, N-phenylmaleimide, glycidyl
  • an ethylene / ⁇ -olefin copolymer and an unsaturated carboxylic acid and / or derivative thereof are co-polymerized.
  • examples thereof include a polymerization method and a method of grafting an unsaturated carboxylic acid and / or a derivative thereof into an unmodified ethylene / ⁇ -olefin copolymer using a radical initiator.
  • the ethylene / ⁇ -olefin copolymer is preferably a copolymer of ethylene and an ⁇ -olefin having 3 to 20 carbon atoms.
  • Specific examples of the ⁇ -olefin having 3 to 20 carbon atoms include propylene, 1-butene, 1-pentene, 1-hexene, 1-heptene, 1-octene, 1-nonene, 1-decene and 1-undecene.
  • ⁇ -olefins having 3 to 12 carbon atoms are preferable from the viewpoint of improving mechanical strength.
  • non-conjugated dienes such as 1,4-hexadiene, dicyclopentadiene, 2,5-norbornadiene, 5-ethylidene norbornene, 5-ethyl-2,5-norbornadiene, 5- (1′-propenyl) -2-norbornene At least one of these may be copolymerized.
  • the ⁇ -olefin content of the ethylene / ⁇ -olefin copolymer is preferably 1 to 30 mol%, more preferably 2 to 25 mol%, still more preferably 3 to 20 mol%.
  • the ethylene / ⁇ -olefin copolymer (B) is not particularly limited, but from the viewpoint of further improving the heat cycle resistance of the molded product obtained from the polyamide resin composition, the Shore of the molded product measured according to ASTM D2240-05. A hardness of 90 A or less is preferable, and 80 A or less is more preferable.
  • the blending amount of the polyamide resin (A) and the ethylene / ⁇ -olefin copolymer (B) in the polyamide resin composition of the present invention is not particularly limited, but ethylene / A with respect to 100 parts by weight of the polyamide resin (A). It is preferable to blend 5 to 100 parts by weight of the ⁇ -olefin copolymer (B).
  • the blending amount of the ethylene / ⁇ -olefin copolymer (B) By setting the blending amount of the ethylene / ⁇ -olefin copolymer (B) to 5 parts by weight or more, the flexibility and heat cycle resistance of the molded product can be further improved.
  • the blending amount of the ethylene / ⁇ -olefin copolymer (B) is more preferably 80 parts by weight or less, further preferably 70 parts by weight or less, and most preferably 50 parts by weight or less.
  • other components other than the component (A) and the component (B) may be blended as necessary within a range not impairing the characteristics.
  • other components include fillers, thermoplastic resins other than the component (A), impact resistant materials other than the component (B), and various additives.
  • the shape of the filler may be fibrous or non-fibrous, or a combination of fibrous filler and non-fibrous filler may be used.
  • the fibrous filler include glass fiber, glass milled fiber, carbon fiber, potassium titanate whisker, zinc oxide whisker, aluminum borate whisker, aramid fiber, alumina fiber, silicon carbide fiber, ceramic fiber, asbestos fiber, and stone powder. Examples thereof include fibers and metal fibers.
  • Non-fibrous fillers include, for example, silicates such as wollastonite, zeolite, sericite, kaolin, mica, clay, pyrophyllite, bentonite, asbestos, talc, alumina silicate; alumina, silicon oxide, magnesium oxide, oxidation Metal oxides such as zirconium, titanium oxide and iron oxide; metal carbonates such as calcium carbonate, magnesium carbonate and dolomite; metal sulfates such as calcium sulfate and barium sulfate; magnesium hydroxide, calcium hydroxide and aluminum hydroxide Metal hydroxide; glass beads, ceramic beads, boron nitride, silicon carbide and the like. These may be hollow.
  • silicates such as wollastonite, zeolite, sericite, kaolin, mica, clay, pyrophyllite, bentonite, asbestos, talc, alumina silicate
  • alumina silicon oxide, magnesium oxide, oxidation Metal oxides such as zircon
  • these fibrous and / or non-fibrous fillers after pretreatment with a coupling agent from the viewpoint of obtaining more excellent mechanical properties.
  • a coupling agent include isocyanate compounds, organic silane compounds, organic titanate compounds, organic borane compounds, and epoxy compounds.
  • thermoplastic resins examples include polyamide resins other than the component (A), polyester resins, polyphenylene sulfide resins, polyphenylene oxide resins, polycarbonate resins, polylactic acid resins, polyacetal resins, polysulfone resins, tetrafluoropolyethylene resins, poly Examples include etherimide resins, polyamideimide resins, polyimide resins, polyethersulfone resins, polyetherketone resins, polythioetherketone resins, polyetheretherketone resins, styrene resins such as polystyrene resins and ABS resins, and polyalkylene oxide resins. It is done. It is also possible to blend two or more of such thermoplastic resins. In addition, when mix
  • the impact resistant material examples include olefin resins other than the component (B), acrylic rubber, silicone rubber, fluorine rubber, styrene rubber, nitrile rubber, vinyl rubber, urethane rubber, polyamide elastomer, Examples include polyester elastomers and ionomers. Two or more of these may be blended.
  • the structure of the impact-resistant material is not particularly limited.
  • it may be a so-called core-shell type multilayer structure including at least one layer made of rubber and one or more layers made of different polymers.
  • the number of layers constituting the multilayer structure may be two or more, and may be three or more or four or more, but preferably has one or more rubber layers (core layers) inside.
  • the type of rubber constituting the rubber layer of the multilayer structure is not particularly limited.
  • acrylic component, silicone component, styrene component, nitrile component, conjugated diene component, urethane component, ethylene component, propylene component, isobutene examples thereof include rubber obtained by polymerizing components.
  • the kind of the different polymer constituting the layer other than the rubber layer of the multilayer structure is not particularly limited as long as it is a polymer having thermoplasticity, but there is a polymer having a glass transition temperature higher than that of the rubber layer. preferable.
  • the polymer having thermoplasticity for example, an unsaturated carboxylic acid alkyl ester unit, an unsaturated carboxylic acid unit, an unsaturated glycidyl group-containing unit, an unsaturated dicarboxylic acid anhydride unit, an aliphatic vinyl unit, an aromatic vinyl unit, Examples thereof include polymers containing vinyl cyanide units, maleimide units, unsaturated dicarboxylic acid units and other vinyl units.
  • additives include, for example, anti-coloring agents, antioxidants such as hindered phenols and hindered amines, mold release agents such as ethylene bisstearyl amide and higher fatty acid esters, plasticizers, heat stabilizers, lubricants, and UV inhibitors. , Colorants, flame retardants, foaming agents and the like.
  • the copper compound include cuprous chloride, cupric chloride, cuprous bromide, cupric bromide, cuprous iodide, cupric iodide, cupric sulfate, cupric nitrate. , Copper phosphate, cuprous acetate, cupric acetate, cupric salicylate, cupric stearate, cupric benzoate and inorganic copper halides and xylylenediamine, 2-mercaptobenzimidazole, benzimidazole And complex compounds. Two or more of these may be blended.
  • the compounding amount of the copper compound is preferably 0.01 parts by weight or more, more preferably 0.015 parts by weight or more with respect to 100 parts by weight of the polyamide resin (A).
  • the amount of the copper compound is preferably 2 parts by weight or less, and more preferably 1 part by weight or less, from the viewpoint of suppressing coloration due to liberation of metallic copper during molding.
  • alkali halide examples include lithium chloride, lithium bromide, lithium iodide, potassium chloride, potassium bromide, potassium iodide, sodium bromide and sodium iodide. Two or more of these may be blended. Potassium iodide and sodium iodide are particularly preferred.
  • the method for producing the thermoplastic polyamide resin composition of the present invention is not particularly limited.
  • the polyamide resin (A), the ethylene / ⁇ -olefin copolymer (B) and other components as necessary are kneaded together.
  • the method etc. are mentioned.
  • a kneading apparatus for example, a known kneading apparatus such as a Banbury mixer, a roll, or an extruder can be employed.
  • a kneading apparatus for example, a known kneading apparatus such as a Banbury mixer, a roll, or an extruder can be employed.
  • blending other components such as various additives into the polyamide resin composition of the present invention, these can be blended at any stage.
  • the polyamide resin composition of the present invention is produced by a twin-screw extruder
  • the polyamide resin (A) and the ethylene / ⁇ -olefin copolymer (B) are compounded
  • a method of blending the polyamide resin (A) and the ethylene / ⁇ -olefin copolymer (B) with other components by a method such as side feed during the melt-kneading, or the polyamide resin (A) and the ethylene / ⁇ -olefin in advance is a twin-screw extruder
  • the polyamide resin composition of the present invention is preferably used for molded articles that come into contact with high-pressure hydrogen.
  • the molded product that is in contact with high-pressure hydrogen here is a molded product that is in contact with hydrogen at a pressure higher than normal pressure. Since it has the effect of suppressing the generation of defect points when repeated filling and releasing of high-pressure hydrogen, it is preferably used for molded products that come into contact with hydrogen at 20 MPa or more, and more preferably used for molded products that come into contact with hydrogen at 30 MPa or more. Used.
  • a molded product application that comes into contact with hydrogen of 200 MPa or less is preferably used for a molded product application that comes into contact with hydrogen of 150 MPa or less, and is more preferably used for a molded product application that comes into contact with hydrogen of 100 MPa or less.
  • the polyamide resin composition of the present invention can be molded by any method to obtain a molded product, and the molded shape can be any shape.
  • the molding method include extrusion molding, injection molding, hollow molding, calendar molding, compression molding, vacuum molding, foam molding, blow molding, and rotational molding.
  • the molded shape include shapes such as a pellet shape, a plate shape, a fiber shape, a strand shape, a film or sheet shape, a pipe shape, a hollow shape, and a box shape.
  • the molded article of the present invention is superior in heat cycle resistance and takes advantage of the excellent feature that the occurrence of defects is suppressed even after repeated filling and releasing of high-pressure hydrogen.
  • Stop valve High pressure hydrogen pressure reducing valve, High pressure hydrogen pressure regulating valve, High pressure hydrogen seal, High pressure hydrogen hose, High pressure hydrogen tank, High pressure hydrogen liner, High pressure hydrogen pipe, High pressure hydrogen packing, High pressure hydrogen pressure It can be suitably used for sensors, high-pressure hydrogen pumps, high-pressure hydrogen tubes, high-pressure hydrogen regulators, high-pressure hydrogen films, high-pressure hydrogen sheets, high-pressure hydrogen fibers, high-pressure hydrogen joints, and the like.
  • the molded product of the present invention is excellent in both flexibility and heat cycle resistance, it can be suitably used as a high-pressure hydrogen hose.
  • the high-pressure hydrogen hose is used as a hose for filling hydrogen gas from a hydrogen station to a fuel cell vehicle.
  • High-pressure hydrogen hoses are required to be flexible, and are repeatedly subjected to temperature changes (heat cycle) from -40 ° C or lower to 90 ° C or higher due to repeated filling and releasing of high-pressure hydrogen. Is required.
  • a hose provided with a reinforcing layer on the outer side of the inner surface layer formed by molding the polyamide resin composition of the present invention into a tube shape is preferable.
  • the reinforcing layer on the outer side pressure resistance is improved while keeping the flexibility of the hose.
  • what provided the weathering layer in the outermost layer is more preferable. Since the hydrogen station is often installed outdoors, deterioration of the high-pressure hydrogen hose can be prevented by having a weather resistant layer as the outermost layer.
  • a cross-sectional view of such a hose is shown in FIG.
  • a reinforcing layer 2 is provided outside the tubular inner layer 1 made of the polyamide resin composition of the present invention, and a weathering layer 3 is provided as the outermost layer.
  • the material of the reinforcing layer is preferably an aramid fiber or polyparaphenylene benzbisoxazole fiber from the viewpoint of high pressure resistance and flexibility, and more preferably polyparaphenylene benzbisoxazole fiber from the viewpoint of higher pressure resistance.
  • the reinforcing layer is preferably provided by concentrically covering the inner surface layer with these fibers.
  • the material of the weather resistant layer examples include aramid fibers, polyester fibers, polyamide fibers, aramid resins, polyester resins, polyamide resins and the like.
  • the weathering layer is preferably provided by concentrically covering the periphery of the reinforcing layer with these resins.
  • the bending elastic modulus of the obtained molded product was evaluated at a temperature of 23 ° C. according to ASTM D790: 95. The average value of the three measured values was taken as the flexural modulus.
  • the three obtained metal / resin composite molded products were allowed to stand at a temperature of ⁇ 45 ° C. for 1 hour, then allowed to stand at a temperature of 90 ° C. for 1 hour, and the composite molded product was visually observed to determine the presence or absence of cracks. This operation was repeated, and the number of cycles in which all three composite molded products were broken was set to A for 1500 times or more, B for 1200 to 1499 times, and C for 1199 times or less.
  • the obtained 63.5 mm ⁇ 12.6 mm ⁇ 12.6 mm prismatic test piece was processed into a 5 mm ⁇ 5 mm ⁇ 5 mm cube by milling.
  • the processed specimen was subjected to X-ray CT analysis using TDM1000-IS manufactured by Yamato Scientific Co., Ltd., and the presence or absence of defect points was observed.
  • hydrogen gas was injected into the autoclave to 20 MPa over 5 minutes, held for 1 hour, and then decompressed to normal pressure over 5 minutes. This was repeated as 100 cycles for 100 cycles.
  • test piece after 100 cycles was subjected to X-ray CT analysis using TDM1000-IS manufactured by Yamato Scientific Co., Ltd., and the presence or absence of a defect point of 1 ⁇ m or more was observed. Those with defect points were defined as “present”.
  • the reaction product was discharged into a water bath and pelletized with a strand cutter to obtain polyamide 610 resin pellets.
  • the obtained pellet was 3.5.
  • dissolving the obtained pellet in a phenol-ethanol mixed solvent (83.5: 16.5 (volume ratio)) and titrating using 0.02N hydrochloric acid aqueous solution amino terminal group amount is 3.5x. It was 10 ⁇ 5 mol / g.
  • PA6 Polyamide 6 resin (melting point 224 ° C., temperature drop crystallization temperature 175 ° C., relative viscosity 2.70 at 25 ° C.
  • PA11 Polyamide 11 resin “Rilsan (registered trademark) BESN TL” (manufactured by ARKEMA)
  • PA 6/66 Polyamide 6/66 resin ““ UBE nylon ”(registered trademark) 5034B” (manufactured by Ube Industries, Ltd.)
  • Impact-resistant material 1 ethylene / ⁇ -olefin copolymer (B) modified with unsaturated carboxylic acid and / or derivative thereof): maleic anhydride modified ethylene / 1-butene copolymer “Toughmer” (registered trademark) ) MH7020 "(Mitsui Chemicals, Inc.) (Shore A hardness 70A)
  • Impact-resistant material 2 Glycidyl methacrylate-modified polyethylene copolymer ““ Bond First ”(registered trademark) 7L” (manufactured by Sumitomo Chemical Co., Ltd.) (
  • L is the length from the raw material supply port to the discharge port, D is the screw diameter
  • the gut discharged from the die is heated to 5 ° C.
  • the sample was quenched by passing it through a cooling bath filled with prepared water over 20 seconds, and pelletized with a strand cutter to obtain pellets.
  • Table 1 shows the results of evaluation by the above method using pellets of polyamide 11 resin “Rilsan” (registered trademark) BESN TL (manufactured by ARKEMA).
  • the polyamide resin (A) containing a unit derived from hexamethylenediamine and a unit derived from an aliphatic dicarboxylic acid having 8 to 12 carbon atoms and ethylene / ⁇ -modified with an unsaturated carboxylic acid and / or a derivative thereof are used.
  • the molded product obtained by molding the polyamide resin composition obtained by blending the olefin copolymer (B) is excellent in flexibility and heat cycle resistance, and is defective even after repeated filling and releasing of high-pressure hydrogen. It was found that the generation of dots was suppressed.
  • the polyamide resin composition of the present invention it is possible to obtain a molded article that is excellent in flexibility and heat cycle resistance and in which the occurrence of defect points is suppressed even when high-pressure hydrogen filling and releasing are repeated. Molded articles formed by molding the polyamide resin composition of the present invention can be widely used for molded articles that come into contact with high-pressure hydrogen utilizing these characteristics.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electrochemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

 ヘキサメチレンジアミン由来の単位と炭素数8~12の脂肪族ジカルボン酸由来の単位を含むポリアミド樹脂(A)および不飽和カルボン酸および/またはその誘導体で変性されたエチレン/α-オレフィン共重合体(B)を配合してなる、高圧水素に触れる成形品用のポリアミド樹脂組成物。柔軟性、耐ヒートサイクル性に優れ、高圧水素の充填、放圧を繰り返しても欠陥点の発生が抑制された成形品を得ることのできるポリアミド樹脂組成物を提供する。

Description

高圧水素に触れる成形品用のポリアミド樹脂組成物およびそれを用いた成形品
 本発明は、高圧水素に触れる成形品用のポリアミド樹脂組成物およびそれを成形してなる成形品に関するものである。
 近年、石油燃料の枯渇や、有害ガス排出量の削減の要請に対応するために、水素と空気中の酸素を電気化学的に反応させて発電する燃料電池を自動車に搭載し、燃料電池が発電した電気をモータに供給して駆動力とする燃料電池電気自動車が注目されてきている。水素は分子サイズが小さいため、比較的分子サイズの大きい天然ガスなどに比べ、樹脂中を透過し易いこと、高圧水素は常圧の水素に比べ、樹脂中に蓄積される量が多くなることなどから、これまでの樹脂製タンクやホースでは、高圧水素の充填および放圧を繰り返すと、変形や破壊が起こる課題があった。
 燃料電池電気自動車の水素ガスなどの貯蔵に用いられるタンクとして、例えば、金属製端部品、該端部品を包囲したポリアミド樹脂製のライナーおよび該ライナーを包囲する熱硬化性樹脂を含浸させた繊維の構造用層とを備えるタンクが検討されている(例えば、特許文献1参照)。また、ガスバリア性に優れ、低温でも優れた耐衝撃性を有する水素タンクライナーとして、例えば、ポリアミド6、共重合ポリアミド、および耐衝撃材を含むポリアミド樹脂組成物からなる水素タンクライナー用材料を成形してなる水素タンクライナーが検討されている(例えば、特許文献2参照)。
 また、水素ステーションから燃料電池自動車等に水素ガスを充填するホースとして、内面層にナイロン、ポリアセタール、エチレンビニルアルコール共重合体等を使用した水素充填用ホースが検討されている(例えば、特許文献3参照)
特表2011-505523号公報 特開2009-191871号公報 特開2010-031993号公報
 しかしながら、特許文献1に記載されたタンクは、高圧水素の充填および放圧の繰り返しにより、-40℃以下から90℃以上の温度変化(ヒートサイクル)を繰り返し受けると、樹脂部と金属部との結合部において割れが発生し、耐ヒートサイクル性が充分ではなかった。一方、特許文献2に記載された水素タンクライナーは、耐ヒートサイクル性を多少改善するものの、未だ不十分であった。また、ポリアミド樹脂の結晶性が低いことから、水素ガスの透過や、水素の樹脂中への溶解が生じやすく、高圧水素の充填および放圧を繰り返すと、水素タンクライナーに欠陥点が生じる問題があった。
 また、特許文献3に記載された水素充填用ホースでは、内面層に温度90℃における乾燥水素ガスのガス透過係数が1×10-8cc・cm/cm・sec.・cmHg以下であるナイロン樹脂を使用すると記載されているが、具体的にどのようなナイロン樹脂であるかについて詳細な説明が一切ない。さらに、一般的なナイロン樹脂は、水素充填用ホースに用いるには、柔軟性および耐ヒートサイクル性が充分ではないと考えられていた。
 本発明は、上記従来技術の課題に鑑み、柔軟性および耐ヒートサイクル性に優れ、高圧水素の充填および放圧を繰り返しても欠陥点の発生が抑制された成形品を得ることのできるポリアミド樹脂組成物を提供することを課題とする。
 上記目的を達成するために、本発明は以下の構成を有するものである。
ヘキサメチレンジアミン由来の単位と炭素数8~12の脂肪族ジカルボン酸由来の単位を含むポリアミド樹脂(A)および不飽和カルボン酸および/またはその誘導体で変性されたエチレン/α-オレフィン共重合体(B)を配合してなる、高圧水素に触れる成形品用のポリアミド樹脂組成物。
 本発明は、上記のポリアミド樹脂組成物を成形してなる、高圧水素に触れる成形品を含む。
 本発明は、上記のポリアミド樹脂組成物を成形してなる、高圧水素に触れる高圧水素用ホースを含む。
 本発明は、上記のポリアミド樹脂組成物を成形してなる内面層の外側に補強層を備える高圧水素用ホースを含む。
 本発明の高圧水素に触れる成形品用のポリアミド樹脂組成物によれば、柔軟性および耐ヒートサイクル性に優れ、高圧水素の充填および放圧を繰り返しても欠陥点の発生が抑制された成形品を提供することができる。本発明の成形品は、柔軟性および耐ヒートサイクル性に優れ、高圧水素の充填および放圧を繰り返しても欠陥点が発生しにくい特徴を活かして、高圧水素に触れる用途に用いられる成形品として有用に展開することが可能となる。
本発明の高圧水素用ホースの好ましい一態様の断面図である。
 以下、本発明をさらに詳細に説明する。
 本発明の高圧水素に触れる成形品用のポリアミド樹脂組成物(以下、「ポリアミド樹脂組成物」と記載する場合がある)は、少なくともヘキサメチレンジアミン由来の単位と炭素数8~12の脂肪族ジカルボン酸由来の単位を含むポリアミド樹脂(A)(以下、単に「ポリアミド樹脂(A)」と記載する場合がある)および不飽和カルボン酸および/またはその誘導体で変性されたエチレン/α-オレフィン共重合体(B)(以下、単に「エチレン/α-オレフィン共重合体(B)」と記載する場合がある)を配合してなる。ヘキサメチレンジアミン由来の単位と炭素数8~12の脂肪族ジカルボン酸由来の単位を含むポリアミド樹脂(A)は、成形性およびガスバリア性に優れる。また、柔軟性に優れることから、温度変化による成形品の歪みを緩和することができるため、耐ヒートサイクル性に優れる。さらに、結晶化度が高く、水素ガスの透過や、水素の樹脂中への溶解を抑制することができるため、高圧水素の充填および放圧を繰り返しても欠陥点が発生しにくい成形品を得ることができる。また、かかるポリアミド樹脂(A)を不飽和カルボン酸および/またはその誘導体で変性されたエチレン/α-オレフィン共重合体(B)と組み合わせることにより、柔軟性および耐ヒートサイクル性を向上させることができる。高圧水素に触れる用途に用いられる成形品は、高圧水素の充填および放圧により、-40℃以下から90℃以上の温度変化(ヒートサイクル)を繰り返し受ける。そのため、成形品が例えば、樹脂部と金属部とを有する複合品である場合、樹脂部と金属部との結合部において割れが発生しやすい。不飽和カルボン酸および/またはその誘導体で変性されたエチレン/α-オレフィン共重合体(B)を配合することにより、このようなヒートサイクルの繰り返しにより生じる樹脂部と金属部との結合部における割れを抑制することができる。
 本発明に用いられるポリアミド樹脂(A)とは、ヘキサメチレンジアミン由来の単位および炭素数8~12の脂肪族ジカルボン酸由来の単位を主たる構成単位とするポリアミド樹脂である。本発明の目的を損なわない範囲で、他の単量体が共重合されたものでもよい。ここで、「主たる構成単位とする」とは、ポリアミド樹脂を構成する単量体単位の合計100モル%中、ヘキサメチレンジアミン由来の単位および炭素数8~12の脂肪族ジカルボン酸由来の単位を合計50モル%以上含むことを意味する。ヘキサメチレンジアミン由来の単位および炭素数8~12の脂肪族ジカルボン酸由来の単位を70モル%以上含むことより好ましく、90モル%以上含むことがさらに好ましい。
 炭素数8~12の脂肪族ジカルボン酸としては、例えば、セバシン酸、スベリン酸、アゼライン酸、ウンデカン二酸、ドデカン二酸などが挙げられる。これらを二種以上用いてもよい。これらのうち、得られるポリアミド樹脂組成物の結晶性、強度のバランスに優れるセバシン酸またはドデカン二酸が好ましく、特にセバシン酸が好ましい。
 共重合される他の単量体としては、例えば、6-アミノカプロン酸、11-アミノウンデカン酸、12-アミノドデカン酸、パラアミノメチル安息香酸などのアミノ酸;ε-カプロラクタム、ω-ラウロラクタムなどのラクタム;テトラメチレンジアミン、ペンタメチレンジアミン、2-メチルペンタメチレンジアミン、ウンデカメチレンジアミン、ドデカメチレンジアミン、2,2,4-/2,4,4-トリメチルヘキサメチレンジアミン、5-メチルノナメチレンジアミンなどの脂肪族ジアミン;メタキシレンジアミン、パラキシリレンジアミンなどの芳香族ジアミン;1,3-ビス(アミノメチル)シクロヘキサン、1,4-ビス(アミノメチル)シクロヘキサン、1-アミノ-3-アミノメチル-3,5,5-トリメチルシクロヘキサン、ビス(4-アミノシクロヘキシル)メタン、ビス(3-メチル-4-アミノシクロヘキシル)メタン、2,2-ビス(4-アミノシクロヘキシル)プロパン、ビス(アミノプロピル)ピペラジン、アミノエチルピペラジンなどの脂環族ジアミン;アジピン酸、マロン酸、コハク酸、グルタル酸、ピメリン酸、テトラデカン二酸、ペンタデカン二酸、オクタデカン二酸などの脂肪族ジカルボン酸;テレフタル酸、イソフタル酸、2-クロロテレフタル酸、2-メチルテレフタル酸、5-メチルイソフタル酸、5-ナトリウムスルホイソフタル酸、ヘキサヒドロテレフタル酸、ヘキサヒドロイソフタル酸などの芳香族ジカルボン酸;1,4-シクロヘキサンジカルボン酸、1,3-シクロヘキサンジカルボン酸、1,2-シクロヘキサンジカルボン酸、1,3-シクロペンタンジカルボン酸などの脂環族ジカルボン酸が挙げられる。これらを2種以上共重合してもよい。
 ポリアミド樹脂(A)の重合度には特に制限がないが、樹脂濃度0.01g/mlの98%濃硫酸溶液中、25℃で測定した相対粘度が、1.5~7.0の範囲であることが好ましい。相対粘度が1.5以上であれば、ポリアミド樹脂組成物の粘度が適度に高くなり、成形時の空気の巻き込みを抑制し、成形性をより向上させることができる。相対粘度は1.8以上がより好ましい。一方、相対粘度が7.0以下であれば、ポリアミド樹脂組成物の粘度が適度に低くなり、成形性をより向上させることができる。
 ポリアミド樹脂(A)のアミノ末端基量には特に制限がないが、1.0~10.0×10-5mol/gの範囲であることが好ましい。アミノ末端基量が1.0~10.0×10-5mol/gの範囲であれば、十分な重合度が得られ、成形品の機械強度を向上させることができる。ここで、ポリアミド樹脂(A)のアミノ末端基は、ポリアミド樹脂(A)を、フェノール・エタノール混合溶媒(83.5:16.5(体積比))に溶解し、0.02N塩酸水溶液を用いて滴定することにより求めることができる。
 本発明に用いられるエチレン/α-オレフィン共重合体(B)とは、不飽和カルボン酸および/またはその誘導体で変性されたエチレン/α-オレフィン共重合体である。ここで、不飽和カルボン酸の誘導体とは、不飽和カルボン酸のカルボキシル基のヒドロキシ基部分を他の置換基で置換した化合物であり、不飽和カルボン酸の金属塩、酸ハロゲン化物、エステル、酸無水物、アミドおよびイミドなどである。
 不飽和カルボン酸および/またはその誘導体としては、例えば、アクリル酸、メタアクリル酸、マレイン酸、フマル酸、イタコン酸、クロトン酸、メチルマレイン酸、メチルフマル酸、メサコン酸、シトラコン酸、グルタコン酸およびこれらカルボン酸の金属塩;マレイン酸水素メチル、イタコン酸水素メチル、アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、アクリル酸2-エチルヘキシル、アクリル酸ヒドロキシエチル、メタアクリル酸メチル、メタアクリル酸2-エチルヘキシル、メタアクリル酸ヒドロキシエチル、メタアクリル酸アミノエチル、マレイン酸ジメチル、イタコン酸ジメチルなどの不飽和カルボン酸エステル;無水マレイン酸、無水イタコン酸、無水シトラコン酸、エンドビシクロ-(2,2,1)-5-ヘプテン-2,3-ジカルボン酸、エンドビシクロ-(2,2,1)-5-ヘプテン-2,3-ジカルボン酸無水物などの酸無水物;マレイミド、N-エチルマレイミド、N-ブチルマレイミド、N-フェニルマレイミド、アクリル酸グリシジル、メタクリル酸グリシジル、エタクリル酸グリシジル、イタコン酸グリシジル、シトラコン酸グリシジル、5-ノルボルネン-2,3-ジカルボン酸などが挙げられる。これらの中でも、不飽和ジカルボン酸およびその酸無水物が好ましく、マレイン酸または無水マレイン酸が特に好ましい。
 これらの不飽和カルボン酸またはその誘導体を用いてエチレン/α-オレフィン共重合体を変性する方法としては、例えば、エチレン/α-オレフィン共重合体と、不飽和カルボン酸および/またはその誘導体を共重合する方法、ラジカル開始剤を用いて、未変性エチレン/α-オレフィン共重合体に、不飽和カルボン酸および/またはその誘導体をグラフト導入する方法などを挙げることができる。
 エチレン/α-オレフィン共重合体としては、エチレンと炭素原子数3~20のα-オレフィンとの共重合体が好ましい。炭素数3~20のα-オレフィンとしては、具体的には、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、1-ヘプテン、1-オクテン、1-ノネン、1-デセン、1-ウンデセン、1-ドデセン、1-トリデセン、1-テトラデセン、1-ペンタデセン、1-ヘキサデセン、1-ヘプタデセン、1-オクタデセン、1-ノナデセン、1-エイコセン、3-メチル-1-ブテン、3-メチル-1-ペンテン、3-エチル-1-ペンテン、4-メチル-1-ペンテン、4-メチル-1-ヘキセン、4,4-ジメチル-1-ヘキセン、4,4-ジメチル-1-ペンテン、4-エチル-1-ヘキセン、3-エチル-1-ヘキセン、9-メチル-1-デセン、11-メチル-1-ドデセン、12-エチル-1-テトラデセンなどが挙げられる。これらを2種以上用いてもよい。これらα-オレフィンの中でも、炭素数3~12のα-オレフィンが、機械強度の向上の観点から好ましい。さらに、1,4-ヘキサジエン、ジシクロペンタジエン、2,5-ノルボルナジエン、5-エチリデンノルボルネン、5-エチル-2,5-ノルボルナジエン、5-(1’-プロペニル)-2-ノルボルネンなどの非共役ジエンの少なくとも1種が共重合されていてもよい。
 エチレン/α-オレフィン共重合体のα-オレフィン含量は、好ましくは1~30モル%、より好ましくは2~25モル%、さらに好ましくは3~20モル%である。
 エチレン/α-オレフィン共重合体(B)は、特に限定されないが、ポリアミド樹脂組成物から得られる成形品の耐ヒートサイクル性をより向上させる観点から、ASTM D2240-05に従って測定した成形品のショアA硬度が90A以下であるものが好ましく、80A以下がより好ましい。
 本発明のポリアミド樹脂組成物におけるポリアミド樹脂(A)およびエチレン/α-オレフィン共重合体(B)の配合量には特に制限はないが、ポリアミド樹脂(A)100重量部に対して、エチレン/α-オレフィン共重合体(B)を5~100重量部配合してなることが好ましい。エチレン/α-オレフィン共重合体(B)の配合量を5重量部以上とすることにより、成形品の柔軟性および耐ヒートサイクル性をより向上させることができる。一方、エチレン/α-オレフィン共重合体(B)の配合量を100重量部以下とすることにより、より高圧の水素で充填および放圧を繰り返しても、欠陥点の発生を抑制することができる。エチレン/α-オレフィン共重合体(B)の配合量は、80重量部以下がより好ましく、70重量部以下がさらに好ましく、50重量部以下が最も好ましい。
 本発明のポリアミド樹脂組成物には、その特性を損なわない範囲で、必要に応じて、前記成分(A)および成分(B)以外のその他の成分を配合しても構わない。その他の成分としては、例えば、充填材、前記成分(A)以外の熱可塑性樹脂類、前記成分(B)以外の耐衝撃材、各種添加剤類を挙げることができる。
 例えば、充填材を配合することにより、成形品の強度および寸法安定性等を向上させることができる。充填材の形状は、繊維状であっても非繊維状であってもよく、繊維状充填材と非繊維状充填材を組み合わせて用いてもよい。繊維状充填材としては、例えば、ガラス繊維、ガラスミルドファイバー、炭素繊維、チタン酸カリウムウィスカ、酸化亜鉛ウィスカ、硼酸アルミニウムウィスカ、アラミド繊維、アルミナ繊維、炭化珪素繊維、セラミック繊維、アスベスト繊維、石コウ繊維、金属繊維などが挙げられる。非繊維状充填材としては、例えば、ワラステナイト、ゼオライト、セリサイト、カオリン、マイカ、クレー、パイロフィライト、ベントナイト、アスベスト、タルク、アルミナシリケートなどの珪酸塩;アルミナ、酸化珪素、酸化マグネシウム、酸化ジルコニウム、酸化チタン、酸化鉄などの金属酸化物;炭酸カルシウム、炭酸マグネシウム、ドロマイトなどの金属炭酸塩;硫酸カルシウム、硫酸バリウムなどの金属硫酸塩;水酸化マグネシウム、水酸化カルシウム、水酸化アルミニウムなどの金属水酸化物;ガラスビーズ、セラミックビーズ、窒化ホウ素および炭化珪素などが挙げられる。これらは中空であってもよい。また、これら繊維状および/または非繊維状充填材を、カップリング剤で予備処理して使用することは、より優れた機械特性を得る観点において好ましい。カップリング剤としては、例えば、イソシアネート系化合物、有機シラン系化合物、有機チタネート系化合物、有機ボラン系化合物、エポキシ化合物などが挙げられる。
 熱可塑性樹脂類としては、例えば、前記成分(A)以外のポリアミド樹脂、ポリエステル樹脂、ポリフェニレンスルフィド樹脂、ポリフェニレンオキシド樹脂、ポリカーボネート樹脂、ポリ乳酸樹脂、ポリアセタール樹脂、ポリスルホン樹脂、四フッ化ポリエチレン樹脂、ポリエーテルイミド樹脂、ポリアミドイミド樹脂、ポリイミド樹脂、ポリエーテルスルホン樹脂、ポリエーテルケトン樹脂、ポリチオエーテルケトン樹脂、ポリエーテルエーテルケトン樹脂、ポリスチレン樹脂やABS樹脂等のスチレン系樹脂、ポリアルキレンオキサイド樹脂等が挙げられる。かかる熱可塑性樹脂類を2種以上配合することも可能である。なお、前記成分(A)以外のポリアミド樹脂を配合する場合、ポリアミド樹脂(A)100重量部に対し、4重量部以下が好ましい。
 耐衝撃材としては、例えば、前記成分(B)以外のオレフィン系樹脂、アクリル系ゴム、シリコーン系ゴム、フッ素系ゴム、スチレン系ゴム、ニトリル系ゴム、ビニル系ゴム、ウレタン系ゴム、ポリアミドエラストマー、ポリエステルエラストマー、アイオノマーなどが挙げられる。これらを2種以上配合してもよい。
 耐衝撃材の構造は特に限定されず、例えば、ゴムからなる少なくとも1つの層と、それとは異種の重合体からなる1つ以上の層からなる、いわゆるコアシェル型と呼ばれる多層構造体であってもよい。多層構造体を構成する層の数は、2層以上であればよく、3層以上または4層以上であってもよいが、内部に1層以上のゴム層(コア層)を有することが好ましい。多層構造体のゴム層を構成するゴムの種類は、特に限定されるものではなく、例えば、アクリル成分、シリコーン成分、スチレン成分、ニトリル成分、共役ジエン成分、ウレタン成分、エチレン成分、プロピレン成分、イソブテン成分などを重合させて得られるゴムが挙げられる。多層構造体のゴム層以外の層を構成する異種の重合体の種類は、熱可塑性を有する重合体であれば特に限定されるものではないが、ゴム層よりもガラス転移温度が高い重合体が好ましい。熱可塑性を有する重合体としては、例えば、不飽和カルボン酸アルキルエステル単位、不飽和カルボン酸単位、不飽和グリシジル基含有単位、不飽和ジカルボン酸無水物単位、脂肪族ビニル単位、芳香族ビニル単位、シアン化ビニル単位、マレイミド単位、不飽和ジカルボン酸単位およびその他のビニル単位などを含有する重合体が挙げられる。
 各種添加剤類としては、例えば、着色防止剤、ヒンダードフェノール、ヒンダードアミンなどの酸化防止剤、エチレンビスステアリルアミドや高級脂肪酸エステルなどの離型剤、可塑剤、熱安定剤、滑剤、紫外線防止剤、着色剤、難燃剤、発泡剤などが挙げられる。
 本発明のポリアミド樹脂組成物には、ポリアミド樹脂(A)とともに銅化合物を配合することが、長期耐熱性を向上させることができるので好ましい。銅化合物としては、例えば、塩化第一銅、塩化第二銅、臭化第一銅、臭化第二銅、ヨウ化第一銅、ヨウ化第二銅、硫酸第二銅、硝酸第二銅、リン酸銅、酢酸第一銅、酢酸第二銅、サリチル酸第二銅、ステアリン酸第二銅、安息香酸第二銅および前記無機ハロゲン化銅とキシリレンジアミン、2-メルカプトベンズイミダゾール、ベンズイミダゾールなどの錯化合物などが挙げられる。これらを2種以上配合してもよい。なかでも1価の銅化合物、とりわけ1価のハロゲン化銅化合物が好ましく、酢酸第1銅、ヨウ化第1銅などが好ましい。銅化合物の配合量は、ポリアミド樹脂(A)100重量部に対して0.01重量部以上が好ましく、0.015重量部以上がより好ましい。一方、成形時の金属銅の遊離に起因する着色を抑制する観点から、銅化合物の配合量は、2重量部以下が好ましく、1重量部以下がより好ましい。
 また、銅化合物とともにハロゲン化アルカリを配合してもよい。ハロゲン化アルカリ化合物としては、例えば、塩化リチウム、臭化リチウム、ヨウ化リチウム、塩化カリウム、臭化カリウム、ヨウ化カリウム、臭化ナトリウムおよびヨウ化ナトリウムを挙げることができる。これらを2種以上配合してもよい。ヨウ化カリウム、ヨウ化ナトリウムが特に好ましい。
 次に、本発明のポリアミド樹脂組成物の製造方法について説明する。本発明の熱可塑性ポリアミド樹脂組成物の製造方法には特に制限はなく、例えば、ポリアミド樹脂(A)、エチレン/α-オレフィン共重合体(B)および必要に応じてその他の成分を一括混練する方法などが挙げられる。混練装置としては、例えば、バンバリーミキサー、ロール、押出機等の公知の混練装置を採用することができる。本発明のポリアミド樹脂組成物に各種添加剤類などのその他の成分を配合する場合、これらを任意の段階で配合することができる。例えば、二軸押出機により本発明のポリアミド樹脂組成物を製造する場合、ポリアミド樹脂(A)およびエチレン/α-オレフィン共重合体(B)を配合する際にその他の成分を同時に配合する方法や、ポリアミド樹脂(A)およびエチレン/α-オレフィン共重合体(B)を溶融混練中にサイドフィード等の手法によりその他の成分を配合する方法や、予めポリアミド樹脂(A)およびエチレン/α-オレフィン共重合体(B)を溶融混練した後にその他の成分を配合する方法や、予め、ポリアミド樹脂(A)にその他の成分を配合して溶融混練後、エチレン/α-オレフィン共重合体(B)を配合する方法などが挙げられる。
 本発明のポリアミド樹脂組成物は、高圧水素に触れる成形品用に好ましく用いられる。ここでいう高圧水素に触れる成形品とは、常圧以上の圧力の水素に触れる成形品である。高圧水素の充填および放圧を繰り返したときの欠陥点の発生を抑制する効果を奏することから、20MPa以上の水素に触れる成形品用途に好ましく用いられ、30MPa以上の水素に触れる成形品用途により好ましく用いられる。一方、200MPa以下の水素に触れる成形品用途に好ましく用いられ、150MPa以下の水素に触れる成形品用途により好ましく用いられ、100MPa以下の水素に触れる成形品用途にさらに好ましく用いられる。
 本発明のポリアミド樹脂組成物は、任意の方法により成形して成形品を得ることが可能であり、成形形状は、任意の形状が可能である。成形方法としては、例えば、押出成形、射出成形、中空成形、カレンダ成形、圧縮成形、真空成形、発泡成形、ブロー成形、回転成形等が挙げられる。成形形状としては、例えば、ペレット状、板状、繊維状、ストランド状、フィルムまたはシート状、パイプ状、中空状、箱状等の形状が挙げられる。
 本発明の成形品は、耐ヒートサイクル性に優れ、高圧水素の充填および放圧を繰り返しても欠陥点の発生が抑制される優れた特徴を活かして、高圧水素用開閉バルブ、高圧水素用逆止弁、高圧水素用減圧弁、高圧水素用圧力調整弁、高圧水素用シール、高圧水素用ホース、高圧水素用タンク、高圧水素用ライナー、高圧水素用パイプ、高圧水素用パッキン、高圧水素用圧力センサ、高圧水素用ポンプ、高圧水素用チューブ、高圧水素用レギュレーター、高圧水素用フィルム、高圧水素用シート、高圧水素用繊維、高圧水素用継ぎ手等に好適に用いることができる。
 本発明の成形品は、柔軟性および耐ヒートサイクル性の両方に優れることから、なかでも高圧水素用ホースに好適に用いることができる。高圧水素用ホースは、水素ステーションから燃料電池自動車等に水素ガスを充填するホースとして使用される。高圧水素用ホースは、柔軟性が要求されると共に、高圧水素の充填および放圧の繰り返しにより、-40℃以下から90℃以上の温度変化(ヒートサイクル)を繰り返し受けるので、高い耐ヒートサイクル性が要求される。
 高圧水素用ホースとしては、本発明のポリアミド樹脂組成物をチューブ状に成形してなる内面層の外側に、補強層が設けられたものが好ましい。外側に補強層を設けることにより、ホースの柔軟性を保ちつつ、耐圧性が向上する。さらに、最外層に耐候層が設けられたものがより好ましい。水素ステーションは、屋外に設置されることが多いので、最外層に耐候層を有することによって、高圧水素用ホースの劣化を防ぐことができる。このようなホースの断面図を図1に示した。本発明のポリアミド樹脂組成物からなるチューブ状の内面層1の外側に補強層2が設けられ、さらに最外層に耐候層3が設けられている。
 補強層の材質としては、高耐圧および柔軟性の観点から、アラミド繊維またはポリパラフェニレンベンズビスオキサゾール繊維が好ましく、より高耐圧の観点からポリパラフェニレンベンズビスオキサゾール繊維がより好ましい。補強層は、これらの繊維で内面層の周囲を同心状に被覆することにより設けることが好ましい。
 耐候層の材質としては、例えば、アラミド繊維、ポリエステル繊維、ポリアミド繊維、アラミド樹脂、ポリエステル樹脂、ポリアミド樹脂等を挙げることができる。耐候層は、これらの樹脂で補強層の周囲を同心状に被覆することにより設けることが好ましい。
 以下、実施例を挙げて本発明の効果をさらに具体的に説明する。なお、本発明は、下記実施例に限定されるものではない。各実施例および比較例における評価は、次の方法で行った。
 (1)柔軟性:曲げ弾性率
 各実施例および比較例により得られたペレットを、住友重機械工業(株)製射出成形機(SE-75DUZ-C250)を用いて、金型温度80℃、射出速度100mm/秒、冷却時間20秒の成形条件で、厚さ1/8インチASTM D-790準拠の曲げ試験片を成形した。なお、射出成形機の温度は、ホッパ下から先端に向かって、230℃-235℃-240℃-240℃に設定した。
 得られた成形品をASTM D790:95に従い温度23℃にて曲げ弾性率を評価した。3本測定した平均の値を曲げ弾性率とした。
 (2)耐ヒートサイクル性
 各実施例および比較例により得られたペレットを、住友重機械工業(株)製射出成形機(SE-75DUZ-C250)を用いて、金型温度80℃、射出速度100mm/秒、冷却時間20秒の成形条件で、48.6mm×48.6mm×28.6mmの金属コアに厚み0.7mmでオーバーモールドした。なお、射出成形機の温度は、ホッパ下から先端に向かって、250℃-255℃-260℃-260℃に設定した。
 得られた金属/樹脂複合成形品3個を、温度-45℃で1時間静置した後、温度90℃で1時間静置し、複合成形品を目視観察して割れの有無を判断した。この操作を繰り返し、3個の複合成形品が全て割れるサイクル数が1500回以上のものをA、1200~1499回のものをB、1199回以下のものをCとした。
 (3)高圧水素の充填および放圧繰り返し特性
 各実施例および比較例により得られたペレットから、住友重機械工業(株)製射出成形機(SG-75H-MIV)を用いて、金型温度80℃、射出速度10mm/秒、保圧10MPa、保圧時間10秒、冷却時間20秒の成形条件で、63.5mm×12.6mm×12.6mmの角柱試験片を射出成形した。なお、射出成形機の温度は、ホッパ下から先端に向かって、220℃-225℃-230℃-230℃に設定した。
 得られた63.5mm×12.6mm×12.6mmの角柱試験片をフライス加工により5mm×5mm×5mmの立方体に加工した。加工した試験片について、ヤマト科学(株)製TDM1000-ISを用いてX線CT解析を行い、欠陥点の有無を観察した。欠陥点のない試験片をオートクレーブに入れた後、オートクレーブ中に水素ガスを20MPaまで5分間かけて注入し、1時間保持した後、5分間かけて常圧になるまで減圧した。これを1サイクルとして100サイクル繰り返した。100サイクル繰り返し後の試験片について、ヤマト科学(株)製TDM1000-ISを用いてX線CT解析を行い、1μm以上の欠陥点の有無を観察し、欠陥点が存在しないものを「無し」、欠陥点が存在するものを「有り」とした。
 (参考例1)ポリアミド610樹脂(ヘキサメチレンジアミン由来の単位と炭素数8~12の脂肪族ジカルボン酸由来の単位を含むポリアミド樹脂(A))の調製
 ヘキサメチレンジアミンとセバシン酸の当モル塩を重合缶に投入し、投入した等モル塩と同量の純水を加え、重合缶内をNで置換した。その後、撹拌しながら重合缶を加熱し、缶内圧力を最大1.96MPaに調整しながら、最終到達温度を280℃として反応させた。反応物を水浴中に吐出し、ストランドカッターでペレタイズしてポリアミド610樹脂のペレットを得た。得られたペレットについて、樹脂濃度0.01g/mlの98%濃硫酸溶液中25℃における相対粘度を測定した結果、3.5であった。また、得られたペレットをフェノール・エタノール混合溶媒(83.5:16.5(体積比))に溶解し、0.02N塩酸水溶液を用いて滴定した結果、アミノ末端基量は3.5×10-5mol/gであった。
 各実施例および比較例に用いた原料と略号を以下に示す。
PA6:ポリアミド6樹脂(融点224℃、降温結晶化温度175℃、樹脂濃度0.01g/mlの98%濃硫酸溶液中25℃における相対粘度2.70)
PA11:ポリアミド11樹脂「“Rilsan” (登録商標)BESN TL」(ARKEMA社製)
PA6/66:ポリアミド6/66樹脂「“UBEナイロン”(登録商標)5034B」(宇部興産(株)製)
耐衝撃材1(不飽和カルボン酸および/またはその誘導体で変性されたエチレン/α-オレフィン共重合体(B)):無水マレイン酸変性エチレン/1-ブテン共重合体「“タフマー”(登録商標)MH7020」(三井化学(株)製)(ショアA硬度70A)
耐衝撃材2:グリシジルメタクリレート変性ポリエチレン共重合体「“ボンドファースト”(登録商標)7L」(住友化学(株)製)(ショアA硬度60A)。
 [実施例1~2、比較例1~3、5、6]
 表1記載の各原料を、シリンダー温度を240℃に設定し、ニーディングゾーンを2つ設けたスクリューアレンジとし、スクリュー回転数を200rpmとした2軸スクリュー押出機(JSW社製TEX30XSSST)(L/D=45.5(なお、ここでのLは原料供給口から吐出口までの長さ、Dはスクリュー径である)に供給して溶融混練した。ダイから吐出されたガットを5℃に温調した水を満たした冷却バス中を20秒間かけて通過させることで急冷した後、ストランドカッターでペレタイズし、ペレットを得た。得られたペレットを用いて、前述の方法により評価した結果を表1に記載した。
[比較例4]
 ポリアミド11樹脂「“Rilsan” (登録商標)BESN TL」(ARKEMA社製)のペレットを用いて、前述の方法により評価した結果を表1に記載した。
Figure JPOXMLDOC01-appb-T000001
 以上の結果から、ヘキサメチレンジアミン由来の単位と炭素数8~12の脂肪族ジカルボン酸由来の単位を含むポリアミド樹脂(A)および不飽和カルボン酸および/またはその誘導体で変性されたエチレン/α-オレフィン共重合体(B)を配合して得られたポリアミド樹脂組成物を成形して得られる成形品は、柔軟性および耐ヒートサイクル性に優れ、高圧水素の充填および放圧を繰り返しても欠陥点の発生が抑制されていることがわかった。
 本発明のポリアミド樹脂組成物によれば、柔軟性および耐ヒートサイクル性に優れ、高圧水素の充填および放圧を繰り返しても欠陥点の発生が抑制された成形品を得ることができる。本発明のポリアミド樹脂組成物を成形してなる成形品は、これらの特性を活かして高圧水素に触れる成形品に広く用いることができる。
1 内面層
2 補強層
3 耐候層

Claims (6)

  1. ヘキサメチレンジアミン由来の単位と炭素数8~12の脂肪族ジカルボン酸由来の単位を含むポリアミド樹脂(A)および不飽和カルボン酸および/またはその誘導体で変性されたエチレン/α-オレフィン共重合体(B)を配合してなる、高圧水素に触れる成形品用のポリアミド樹脂組成物。
  2. ヘキサメチレンジアミン由来の単位と炭素数8~12の脂肪族ジカルボン酸由来の単位を含むポリアミド樹脂(A)100重量部に対して、不飽和カルボン酸および/またはその誘導体で変性されたエチレン/α-オレフィン共重合体(B)を5~100重量部配合してなる、請求項1記載のポリアミド樹脂組成物。
  3. 請求項1または2に記載のポリアミド樹脂組成物を成形してなる、高圧水素に触れる成形品。
  4. 請求項1または2に記載のポリアミド樹脂組成物を成形してなる、高圧水素に触れる高圧水素用ホース。
  5. 請求項1または2に記載のポリアミド樹脂組成物を成形してなる内面層の外側に補強層を備える高圧水素用ホース。
  6. さらに、最外層に耐候層を備える請求項5に記載の高圧水素用ホース。
PCT/JP2015/080094 2014-11-20 2015-10-26 高圧水素に触れる成形品用のポリアミド樹脂組成物およびそれを用いた成形品 WO2016080151A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201580060780.1A CN107075251B (zh) 2014-11-20 2015-10-26 用于与高压氢接触的成型品的聚酰胺树脂组合物及使用了其的成型品
EP15860931.3A EP3222668B1 (en) 2014-11-20 2015-10-26 Use of a hose and use of a polyamide composition for preparing an inner layer of the hose coming into contact with high-pressure hydrogen
US15/526,822 US20170335999A1 (en) 2014-11-20 2015-10-26 Polyamide resin composition for molded article exposed to high-pressure hydrogen and molded article made of the same
KR1020177010457A KR102292165B1 (ko) 2014-11-20 2015-10-26 고압 수소에 접하는 성형품용 폴리아미드 수지 조성물 및 이를 이용한 성형품
JP2015553705A JP5928668B1 (ja) 2014-11-20 2015-10-26 高圧水素に触れる成形品用のポリアミド樹脂組成物およびそれを用いた成形品

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014235139 2014-11-20
JP2014-235139 2014-11-20

Publications (1)

Publication Number Publication Date
WO2016080151A1 true WO2016080151A1 (ja) 2016-05-26

Family

ID=56013708

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/080094 WO2016080151A1 (ja) 2014-11-20 2015-10-26 高圧水素に触れる成形品用のポリアミド樹脂組成物およびそれを用いた成形品

Country Status (6)

Country Link
US (1) US20170335999A1 (ja)
EP (1) EP3222668B1 (ja)
JP (1) JP5928668B1 (ja)
KR (1) KR102292165B1 (ja)
CN (1) CN107075251B (ja)
WO (1) WO2016080151A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018155491A1 (ja) * 2017-02-24 2018-08-30 株式会社ブリヂストン 水素輸送部品
WO2020027032A1 (ja) * 2018-07-31 2020-02-06 東レ株式会社 高圧水素に触れる押出成形品用のポリアミド樹脂組成物およびそれを用いた押出成形品
CN111207248A (zh) * 2019-12-19 2020-05-29 中裕软管科技股份有限公司 一种轻质保温软管及其制造方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT201700071472A1 (it) * 2017-06-27 2018-12-27 Fitt Spa Tubo flessibile rinforzato ultraleggero
CN107940054B (zh) * 2017-12-22 2024-03-08 上海河图工程股份有限公司 一种用于渣油加工的抗磨多级降压机构应用方法
CA3101967A1 (en) * 2018-07-31 2020-02-06 Toray Industries, Inc. Polyamide resin composition for blow-molded products exposed to high-pressure hydrogen, and blow-molded product
EP3914649A1 (en) 2019-10-24 2021-12-01 INVISTA Textiles (U.K.) Limited Polyamide compositions and articles made therefrom
FR3106646B1 (fr) * 2020-01-28 2022-06-24 Arkema France Structure multicouche pour le transport ou le stockage de l’hydrogene
JPWO2021157605A1 (ja) * 2020-02-05 2021-08-12
CN111645370B (zh) * 2020-05-26 2021-07-27 武汉理工大学 一种纤维全缠绕储氢瓶塑料内胆及其成型方法
CN114105660B (zh) * 2020-08-28 2023-11-24 上海市洁能科技有限公司 储氢结构用材料组合物、储氢结构用材料及储氢单体管
FR3124428A1 (fr) 2021-06-28 2022-12-30 Arkema France Structure multicouche pour le transport ou le stockage de l’hydrogene
WO2023100065A1 (en) * 2021-12-01 2023-06-08 Inv Nylon Polymers Americas, Llc Polyamide compositions and articles made therefrom

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007204674A (ja) * 2006-02-03 2007-08-16 Toray Ind Inc ブロー成形用組成物
JP2009191871A (ja) * 2008-02-12 2009-08-27 Ube Ind Ltd 水素タンクライナー用材料及び水素タンクライナー
WO2013114689A1 (ja) * 2012-01-30 2013-08-08 東海ゴム工業株式会社 樹脂ホースおよびその製法
WO2013136596A1 (ja) * 2012-03-13 2013-09-19 横浜ゴム株式会社 熱可塑性エラストマー組成物

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2815306B2 (ja) * 1993-08-31 1998-10-27 株式会社ニチリン 複合フレキシブルホース
EP1741549B1 (en) * 2004-04-27 2016-09-07 Ube Industries, Ltd. Multilayer hose for transporting high-temperature chemical and/or gas
DE102005061530A1 (de) * 2005-12-22 2007-07-12 Ems-Chemie Ag Thermoplastischer Mehrschichtverbund in Form eines Hohlkörpers
JP2008031233A (ja) * 2006-07-27 2008-02-14 Toray Ind Inc ポリフェニレンスルフィド樹脂管状体
JP4807175B2 (ja) * 2006-07-28 2011-11-02 東レ株式会社 ポリフェニレンスルフィド樹脂製中空成形体
JP2008173881A (ja) * 2007-01-19 2008-07-31 Toray Ind Inc 多層中空成形体
RU2504709C2 (ru) * 2007-03-07 2014-01-20 Аркема Франс Гибкая труба, предназначенная для транспортировки нефти или газа
FR2923575A1 (fr) 2007-11-13 2009-05-15 Michelin Soc Tech Reservoir de fluide sous pression, methode et appareil pour la fabrication d'un tel reservoir.
JP5647392B2 (ja) 2008-07-30 2014-12-24 横浜ゴム株式会社 水素充填用ホース
US20110139258A1 (en) * 2009-12-16 2011-06-16 E.I. Du Pont De Nemours And Company Multilayer structures comprising a barrier layer and their use to convey fluids
EP2573130A4 (en) * 2010-05-21 2017-09-06 Asahi Kasei Chemicals Corporation Masterbatch pellets, process for producing same, and polyamide resin composition containing the masterbatch pellets
US8691911B2 (en) * 2011-01-31 2014-04-08 E I Du Pont De Nemours And Company Melt-blended thermoplastic composition
JP2014513250A (ja) * 2011-04-01 2014-05-29 ラクスファー カナダ リミテッド 高圧ガスシリンダ用多層ライナー
US20130048136A1 (en) * 2011-08-29 2013-02-28 E I Du Pont De Nemours And Company Copolyamide compositions derived from triacylglycerides
US20140065338A1 (en) * 2012-08-28 2014-03-06 E I Du Pont De Nemours And Company Monolayer tubes comprising thermoplastic polyamide
JP6421756B2 (ja) * 2013-09-04 2018-11-14 宇部興産株式会社 積層チューブ
EP3069871B1 (de) * 2015-03-17 2017-07-19 Evonik Degussa GmbH Mehrschichtverbund mit einer evoh-schicht
EP3069873B1 (de) * 2015-03-17 2017-09-06 Evonik Degussa GmbH Mehrschichtverbund mit schichten aus teilaromatischen polyamiden

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007204674A (ja) * 2006-02-03 2007-08-16 Toray Ind Inc ブロー成形用組成物
JP2009191871A (ja) * 2008-02-12 2009-08-27 Ube Ind Ltd 水素タンクライナー用材料及び水素タンクライナー
WO2013114689A1 (ja) * 2012-01-30 2013-08-08 東海ゴム工業株式会社 樹脂ホースおよびその製法
WO2013136596A1 (ja) * 2012-03-13 2013-09-19 横浜ゴム株式会社 熱可塑性エラストマー組成物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3222668A4 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018155491A1 (ja) * 2017-02-24 2018-08-30 株式会社ブリヂストン 水素輸送部品
CN110325777A (zh) * 2017-02-24 2019-10-11 株式会社普利司通 氢气输送部件
JPWO2018155491A1 (ja) * 2017-02-24 2020-01-09 株式会社ブリヂストン 水素輸送部品
JP7041663B2 (ja) 2017-02-24 2022-03-24 株式会社ブリヂストン 水素輸送部品
WO2020027032A1 (ja) * 2018-07-31 2020-02-06 東レ株式会社 高圧水素に触れる押出成形品用のポリアミド樹脂組成物およびそれを用いた押出成形品
JP6690785B1 (ja) * 2018-07-31 2020-04-28 東レ株式会社 高圧水素に触れる押出成形品用のポリアミド樹脂組成物およびそれを用いた押出成形品
US11261326B2 (en) 2018-07-31 2022-03-01 Toray Industries, Inc. Polyamide resin composition for extrusion molded products exposed to high-pressure hydrogen, and extrusion molded product
CN111207248A (zh) * 2019-12-19 2020-05-29 中裕软管科技股份有限公司 一种轻质保温软管及其制造方法

Also Published As

Publication number Publication date
EP3222668A4 (en) 2018-07-25
CN107075251B (zh) 2020-07-14
EP3222668B1 (en) 2023-07-19
KR20170085486A (ko) 2017-07-24
JP5928668B1 (ja) 2016-06-01
CN107075251A (zh) 2017-08-18
US20170335999A1 (en) 2017-11-23
JPWO2016080151A1 (ja) 2017-04-27
KR102292165B1 (ko) 2021-08-24
EP3222668A1 (en) 2017-09-27

Similar Documents

Publication Publication Date Title
JP5928668B1 (ja) 高圧水素に触れる成形品用のポリアミド樹脂組成物およびそれを用いた成形品
KR102292160B1 (ko) 고압 수소에 접하는 성형품용 폴리아미드 수지 조성물 및 그것을 이용한 성형품
EP3816231B1 (en) Polyamide resin composition for blow-molded products exposed to high-pressure hydrogen, and blow-molded product
JP2020117637A (ja) 高圧水素に触れる成形品用のポリアミド樹脂組成物およびそれを用いた成形品
JP6838428B2 (ja) 高圧水素に触れる成形品用のポリアミド樹脂組成物およびそれを用いた成形品
JP5935956B1 (ja) 高圧水素に触れる成形品用のポリアミド樹脂組成物およびそれを用いた成形品
JP2015212342A (ja) 高圧水素に触れる成形品用のポリアミド樹脂組成物およびそれを用いた成形品
JP6596893B2 (ja) 高圧水素に触れる成形品用のポリアミド樹脂組成物およびそれを用いた成形品
JP7542933B2 (ja) 溶着用ポリアミド樹脂組成物およびそれを用いた成形品
JP7517031B2 (ja) 高圧水素に触れる中空成形品および高圧水素に触れる中空成形品の製造方法
JP6330459B2 (ja) 高圧水素に触れる成形品用のポリアミド樹脂組成物およびそれを用いた成形品
US20230076659A1 (en) Polyamide resin composition
JP6690785B1 (ja) 高圧水素に触れる押出成形品用のポリアミド樹脂組成物およびそれを用いた押出成形品
JP2023012422A (ja) 高圧水素に触れる射出成形品用のポリアミド樹脂組成物、ならびにそれを用いた射出成形品、高圧水素用タンクライナー、および高圧水素用タンク
JP2022007369A (ja) ポリアミド樹脂組成物

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015553705

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15860931

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015860931

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015860931

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20177010457

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE