WO2016077967A1 - 一种制备甲酸甲酯的方法 - Google Patents

一种制备甲酸甲酯的方法 Download PDF

Info

Publication number
WO2016077967A1
WO2016077967A1 PCT/CN2014/091289 CN2014091289W WO2016077967A1 WO 2016077967 A1 WO2016077967 A1 WO 2016077967A1 CN 2014091289 W CN2014091289 W CN 2014091289W WO 2016077967 A1 WO2016077967 A1 WO 2016077967A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction zone
dimethyl ether
methanol
raw material
catalyst
Prior art date
Application number
PCT/CN2014/091289
Other languages
English (en)
French (fr)
Inventor
倪友明
朱文良
刘勇
刘红超
刘中民
李利娜
刘世平
周慧
Original Assignee
中国科学院大连化学物理研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院大连化学物理研究所 filed Critical 中国科学院大连化学物理研究所
Priority to PCT/CN2014/091289 priority Critical patent/WO2016077967A1/zh
Priority to EA201790993A priority patent/EA032799B1/ru
Priority to SG11201704004YA priority patent/SG11201704004YA/en
Priority to JP2017526630A priority patent/JP6407428B2/ja
Priority to KR1020177015565A priority patent/KR101977784B1/ko
Priority to EP14906314.1A priority patent/EP3222608B1/en
Priority to BR112017010148A priority patent/BR112017010148A2/pt
Priority to US15/526,780 priority patent/US9944588B2/en
Priority to AU2014411966A priority patent/AU2014411966B2/en
Publication of WO2016077967A1 publication Critical patent/WO2016077967A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/475Preparation of carboxylic acid esters by splitting of carbon-to-carbon bonds and redistribution, e.g. disproportionation or migration of groups between different molecules
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/39Preparation of carboxylic acid esters by oxidation of groups which are precursors for the acid moiety of the ester
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/14Fractional distillation or use of a fractionation or rectification column
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/7038MWW-type, e.g. MCM-22, ERB-1, ITQ-1, PSH-3 or SSZ-25
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/06Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing polymers
    • B01J31/08Ion-exchange resins
    • B01J31/10Ion-exchange resins sulfonated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C41/00Preparation of ethers; Preparation of compounds having groups, groups or groups
    • C07C41/01Preparation of ethers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C41/00Preparation of ethers; Preparation of compounds having groups, groups or groups
    • C07C41/48Preparation of compounds having groups
    • C07C41/50Preparation of compounds having groups by reactions producing groups
    • C07C41/56Preparation of compounds having groups by reactions producing groups by condensation of aldehydes, paraformaldehyde, or ketones
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C43/00Ethers; Compounds having groups, groups or groups
    • C07C43/02Ethers
    • C07C43/03Ethers having all ether-oxygen atoms bound to acyclic carbon atoms
    • C07C43/04Saturated ethers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/44Preparation of carboxylic acid esters by oxidation-reduction of aldehydes, e.g. Tishchenko reaction
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/02Esters of acyclic saturated monocarboxylic acids having the carboxyl group bound to an acyclic carbon atom or to hydrogen
    • C07C69/04Formic acid esters
    • C07C69/06Formic acid esters of monohydroxylic compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C43/00Ethers; Compounds having groups, groups or groups
    • C07C43/02Ethers
    • C07C43/03Ethers having all ether-oxygen atoms bound to acyclic carbon atoms
    • C07C43/04Saturated ethers
    • C07C43/043Dimethyl ether
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C43/00Ethers; Compounds having groups, groups or groups
    • C07C43/02Ethers
    • C07C43/03Ethers having all ether-oxygen atoms bound to acyclic carbon atoms
    • C07C43/04Saturated ethers
    • C07C43/10Saturated ethers of polyhydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C53/00Saturated compounds having only one carboxyl group bound to an acyclic carbon atom or hydrogen
    • C07C53/02Formic acid
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/06Hydrocarbons
    • C08F212/08Styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/34Monomers containing two or more unsaturated aliphatic radicals
    • C08F212/36Divinylbenzene

Definitions

  • the present application relates to the field of chemistry and chemical industry, and in particular to a method for preparing methyl formate.
  • methyl formate In C 1 chemistry, after methane chemistry, syngas chemistry and methanol chemistry, methyl formate has evolved into a new C 1 chemical in recent years due to its cost-effective mass production and downstream products. Starting materials and structural units. Starting from methyl formate, formic acid, acetic acid, ethylene glycol, methyl propionate, methyl acrylate, methyl glycolate, N-formylmorpholine, N-methylformamide, N,N-dimethyl Many C 1 chemical and chemical products such as carbamide.
  • the technology for synthesizing methyl formate is sensitive to impurities, demanding raw material purity, complicated process route, high energy consumption and high investment.
  • the scale of a single set of production is generally 100,000 tons / year, it is difficult to form a scale effect.
  • a method of preparing methyl formate characterized in that it comprises at least the following steps:
  • step b) after the component I separated in step a) is brought into contact with the catalyst B in the second reaction zone, Separating methyl formate product, dimethyl ether, component II;
  • the temperature in the second reaction zone in step b) is 50 ⁇ 200 ° C; the pressure is 0.1 ⁇ 10Mpa;
  • the components of the first reaction zone and the second reaction zone are independently a gas phase and/or a liquid phase.
  • the starting material in the step a) consists of formaldehyde, methanol and/or dimethyl ether.
  • Component I mainly contains methylal formed by the reaction in the first reaction zone and an excess of dimethyl ether; component II mainly contains unacetal in the second reaction zone.
  • Formaldehyde CH 2 O, dimethyl ether CH 3 OCH 3 and methanol CH 3 OH are reacted to prepare methylal, and methylal CH 3 O-CH 2 -OCH 3 disproportionation reaction to prepare methyl formate HCOOCH 3 and dimethyl ether CH 3 OCH 3 can be combined with the above two-step reaction to prepare methyl formate using formaldehyde and methanol as raw materials.
  • the reaction occurring in the first reaction zone includes a condensation reaction of formaldehyde with methanol as shown in formula (1), and a condensation reaction of formaldehyde with dimethyl ether as shown in formula (2), wherein component I contains the above The product of the condensation reaction, methylal CH 3 O-CH 2 -OCH 3 .
  • the reaction in the second reaction zone comprises the reaction of preparing methyl formate HCOOCH 3 and dimethyl ether by disproportionation reaction of methyl acetal as shown in formula (3):
  • the dimethyl ether produced in the second reaction zone is returned to the first reaction zone, and the condensation reaction with formaldehyde is continued to make full use of the raw materials to obtain more methyl formate.
  • the raw material containing formaldehyde, methanol and/or dimethyl ether means that the raw material contains formaldehyde and further contains methanol and/or dimethyl ether. Since the dimethyl ether separated in the second reaction zone is returned to the first reaction zone, the raw material of the first reaction zone contains dimethyl ether, and when the returned dimethyl ether is insufficient to maintain the normal reaction, additional methanol and/or methanol is required. Dimethyl ether.
  • Dimethyl ether is returned to the first reaction zone, and the total reaction of the first reaction zone and the second reaction zone is formaldehyde-coupled to methyl formate represented by formula (4), regardless of other side reactions and processes In the case of loss, the total reaction raw material is formaldehyde. Considering a small amount of process loss and other side reactions, it is only necessary to add a small amount of methanol and/or dimethyl ether to the raw material to prepare methyl formate using formaldehyde and methanol and/or dimethyl ether as raw materials.
  • the disproportionation reaction of methylal is an endothermic reaction and there is no risk of flying temperature. If the product after the reaction does not react with other impurities (such as water) in the raw material, the molar ratio of the produced dimethyl ether to methyl formate is 2:1 of the reaction equation. This reaction does not produce other by-products, and the methyl formate is easily separated, and methyl formate having a higher purity can be obtained.
  • the raw material enters the first reaction zone to contact and separate the catalyst A, and the raw material may be contacted with the catalyst A in the reactor before entering the separation system for separation; It can be carried out in the same apparatus for the reaction and separation, that is, the catalytic distillation process.
  • the catalyst bed is one or more stages in the rectification column, and at the same time functions as a fixed bed reactor and a rectification column tray/filler, thereby achieving the effect of saving equipment input;
  • the heat required for the separation is reduced, the heat load of the reboiler is reduced, and the energy consumption is reduced; after the reaction, the material is directly separated in the rectification column, the product leaves the rectification system, and the unreacted raw material after separation continues to contact the catalyst bed for reaction. Therefore, the purpose of the reaction, the separation, and the unreacted raw materials to be returned to the first reaction zone can be simultaneously achieved.
  • methyl acetal of different purity can obtain methyl acetal of different purity by adjusting the process conditions of the catalytic rectification apparatus, such as temperature, pressure, raw material ratio, reflux ratio, and feed position.
  • the catalyst A is charged in the reactive rectification device; the reflux ratio of the reactive rectification device is 0.5 to 10; the upper limit of the temperature range is selected from 90 ° C and 100 ° C, and the lower limit of the temperature range is selected from 50 °C, 60 °C; WHSV upper limit selected from the feedstock formaldehyde 3.0h -1, 15h -1, the lower limit is selected from 0.01h -1, 0.5h -1, the first reaction zone by one or more A catalytic distillation unit is composed.
  • the catalyst A in the step a) is charged in the reactive rectification device; the reflux ratio of the reactive rectification device is 0.5-10, the temperature is 60-90 ° C; the mass space velocity of formaldehyde in the raw material It is 0.5 to 3.0 h -1 .
  • the molar percentage of methanol in methanol and/or dimethyl ether in the raw material of step a) is from 0 to 50%, based on the moles of carbon atoms contained in each component. Further preferably, the molar percentage of methanol in methanol and/or dimethyl ether in the raw material of step a) ranges from the number of moles of carbon atoms contained in each component, and the upper limit is selected from 45%, 40%, 35%, The lower limit is selected from 0%, 5%, 10%, 15%, and 20%.
  • the dimethyl ether in methanol and/or dimethyl ether in the raw material of step a) is partially or completely separated from the second reaction zone.
  • the dimethyl ether in methanol and/or dimethyl ether in the raw material may be isolated from the second reaction zone or may be added from outside the system. If the second reaction zone separation of the resulting dimethyl ether is returned to the first reaction zone to meet the need for formaldehyde condensation to produce methylal, no additional methanol and/or dimethyl ether is required. Considering the possible side reactions and losses in actual production, the second reaction zone separates the dimethyl ether back into the first reaction zone, and additional fresh methanol and/or dimethyl ether is required.
  • the raw materials of the first reaction zone are separated from fresh formaldehyde, fresh methanol, and the second reaction zone.
  • the resulting dimethyl ether composition Since the reaction performance of methanol and dimethyl ether is close, and the cost of methanol is lower than that of dimethyl ether, as a more preferable scheme, the raw materials of the first reaction zone are separated from fresh formaldehyde, fresh methanol, and the second reaction zone. The resulting dimethyl ether composition.
  • the catalyst A in step a) is selected from one or more of the strongly acidic cation exchange resins.
  • the catalyst A in the step a) is a macroporous strongly acidic sulfonated styrene-divinylbenzene copolymer resin obtained by sulfonating a copolymer of styrene and divinylbenzene by sulfuric acid.
  • the upper limit of the temperature range in the second reaction zone in the step b) is selected from 150 ° C and 200 ° C, and the lower limit is selected from 50 ° C and 60 ° C; the upper limit of the pressure range is selected from 2 Mpa, 10 Mpa, and the lower limit is 0.1. Mpa.
  • the temperature in the second reaction zone in the step b) is 60 to 150 ° C, and the pressure is 0.1 to 2 MPa.
  • the catalyst B in the step b) is one or more of an acidic molecular sieve and a strongly acidic cation exchange resin.
  • the acidic molecular sieve catalyst has a structural type of MWW, FER, MFI, MOR, FAU or BEA. Further preferably, the acidic molecular sieve catalyst has a silicon to aluminum ratio of Si/Al of from 3:1 to 150:1.
  • the catalyst B in the step b) is selected from the group consisting of hydrogen type MCM-22 molecular sieves, One or more of a hydrogen type ZSM-5 molecular sieve, a hydrogen type Y zeolite, a hydrogen type Beta molecular sieve, a hydrogen type ferrierite, a hydrogen type mordenite, and a perfluorosulfonic acid resin (abbreviated as Nafion-H).
  • a hydrogen type molecular sieve or zeolite is usually obtained by subjecting a molecular sieve or a zeolite to ammonium ion exchange and calcination.
  • the second reaction zone is applicable to a plurality of reactor forms, and those skilled in the art can select different reactors, and the objects and technical effects of the present application can be achieved.
  • the second reaction zone contains one or more of a fixed bed reactor, a tank reactor, a moving bed reactor or a fluidized bed reactor. Since the catalyst B in the second reaction zone of the present application has a prominent long life advantage, the fixed bed reactor has great advantages in investment cost, engineering design and production operation, and therefore, the fixed bed reactor is preferred. Program.
  • the second reaction zone consists of a fixed bed reactor; or the second reaction zone consists of a plurality of fixed bed reactors connected in parallel and/or in series.
  • the method described in the present application has the advantages of low cost, environmental friendliness, and high safety of the production process.
  • the raw material is an inexpensive aqueous formaldehyde solution, an aqueous methanol solution and/or dimethyl ether, and a high-purity methyl formate can be obtained by a two-step process.
  • the methyl acetal disproportionation reaction process is simple, the reaction conditions are mild, and excellent reaction results can be obtained at a lower reaction temperature and reaction pressure.
  • the disproportionation of methylal is an endothermic reaction, there is no risk of flying temperature, and the process safety is high.
  • the catalyst is stable, suitable for large-scale continuous production, product separation investment and low energy consumption, and it is easy to obtain high-purity methyl formate and dimethyl ether.
  • the use of carbon monoxide feedstocks is avoided relative to the methanol carbonylation process, eliminating the need for expensive gas generation equipment, shifting, and gas separation equipment.
  • the catalyst B used in the second reaction zone in the method described in the present application has a long life and reactivity Excellent features.
  • the method described in the present application is not only suitable for large-scale integrated production, but also suitable for small-scale production of small and medium-sized enterprises for small-scale production, flexible application, and limited by geographical and supporting facilities.
  • 1 is a schematic view showing the process flow of synthesizing methyl formate according to the present application.
  • Example 2 is a flow chart showing the process of synthesizing methyl formate in Example 1.
  • FIG. 1 a schematic diagram of the process flow is shown in FIG. 1.
  • the raw material formaldehyde, the raw material methanol and/or dimethyl ether enter the first reaction zone and are separated, and the unreacted raw materials continue to react in the first reaction zone.
  • the separated component I (mainly methylal) enters the second reaction zone, and the product of the second reaction zone is separated to obtain dimethyl ether to be returned to the first reaction zone, and the separated component II (mainly methyloid)
  • the aldehyde is returned to the second reaction zone and the isolated methyl formate is stored as a product.
  • the raw materials and catalysts in the examples were purchased commercially, and Amberlyst-15 resin was purchased from Rohm and Haas Company's macroporous strong acid sulfonated styrene-diethyl
  • the olefinic copolymer resin, DNW resin and D005 resin are the macroporous strong acid sulfonated styrene-divinylbenzene copolymer resin purchased from Dandong Mingzhu Special Resin Co., Ltd., D006 resin and D007 resin are purchased from Kerry Chemical Co., Ltd. Co., Ltd. is a macroporous strongly acidic sulfonated styrene-divinylbenzene copolymer resin.
  • the single pass conversion of the disproportionation reaction methyl acetal and the single pass selectivity of methyl formate are calculated based on the number of moles of carbon:
  • Methylal conversion [(molar carbon in the second reaction zone feed) - (molar carbon in the second reaction zone)] ⁇ (reduction in the second reaction zone feed) Aldehyde carbon mole number) ⁇ (100%)
  • Methyl formate selectivity (molar number of methyl formate in the second reaction zone) ⁇ [(mole of moles carbon in the second reaction zone feed) - (methyl acetal carbon in the second reaction zone discharge) Molar number)] ⁇ (100%)
  • the number of moles of carbon in the present application means the number of moles of carbon atoms contained in the component.
  • the reaction process of the method for producing methyl formate of the present application is as shown in FIG. 2, wherein the first reaction zone adopts a catalytic rectification tower to perform condensation reaction of formaldehyde, methanol and dimethyl ether to prepare a contraction.
  • the secondary separation unit is used for the separation of methyl formate and the unreacted starting material of the methylal disproportionation reaction product.
  • the raw materials include: an aqueous formaldehyde solution, methanol, and a recycled dimethyl ether separated from the product, the three streams enter the catalytic distillation column of the first reaction zone, and the unreacted formaldehyde, methanol, and dimethyl ether are rectified.
  • the reaction in the column is returned to the catalyst bed to continue the reaction.
  • the component I obtained at the top of the column is mainly the condensation reaction product methylal, and the bottom of the column is obtained as condensation reaction product water.
  • Component I enters the second reaction zone for disproportionation of methylal, and the disproportionation reaction product stream III enters the first separation unit, and the resulting recycled dimethyl ether and stream IV are separated, wherein the recycled dimethyl ether is returned to the first reaction zone, and the stream IV
  • the methyl formate product and the component II are separated, the component II is mainly a cyclic methylal, and the component II is returned to the second reaction zone to continue the reaction.
  • a stainless steel catalytic distillation column with an inner diameter of 30 mm and a height of 1800 mm
  • 500 g of Amberlyst-15 resin catalytic packing wrapped with stainless steel wire mesh with a height of 1200 mm is used as a reaction section, and a stainless steel wire of ⁇ 4 mm ⁇ 4 mm with a height of 600 mm is mounted on the upper end.
  • the top of the tower is a condenser with a controlled reflux ratio
  • the bottom of the tower is a reboiler with a volume of 3000 ml
  • the outer wall of the reaction section is wound with a heating wire to raise the temperature from top to bottom and from 60 ° C to 90 ° C.
  • the second reaction zone methyl aldehyde disproportionation reaction to form methyl formate is carried out as follows:
  • 200 g of the hydrogen type MCM-22 molecular sieve catalyst sample was weighed, placed in a stainless steel reaction tube with an inner diameter of 30 mm, activated with nitrogen at normal pressure, 550 ° C for 4 hours, and then lowered to a reaction temperature of 90 ° C, and passed into the first reaction zone. The methylal obtained was separated, and the reaction pressure was 0.1 MPa.
  • the product was analyzed by gas chromatography.
  • aqueous formaldehyde solution and 96% aqueous methanol solution can be used as raw materials to form 99.99% or more of methyl formate.
  • the first reaction zone catalyst A, the second reaction zone catalyst B, the first zone feed ratio, the formaldehyde mass space velocity in the first zone feed, the second reaction zone temperature, and the second reaction zone pressure are respectively shown in Table 1.
  • the other operation steps were the same as in Example 1, and the reaction results are shown in Table 1.
  • the second reaction zone catalyst B As shown in Table 1, 200 g of a catalyst of 20 to 40 mesh was weighed and placed in a stainless steel reaction tube having an inner diameter of 30 mm, and activated by nitrogen gas at normal pressure and 100 ° C for 1 hour, and then reacted. Catalyst A in the first reaction zone, feed ratio in the first zone, and formaldehyde mass in the first zone feed The space velocity, the second reaction zone temperature, and the second reaction zone pressure were respectively shown in Table 1, and the other operation steps were the same as in Example 1, and the reaction results are shown in Table 1.
  • the second reaction zone was in the form of two fixed bed reactors in series, each reactor was loaded with 100 g of catalyst, the other reaction conditions are shown in Table 1, and the rest of the operations were the same as in Example 7, and the reaction results are shown in Table 1.
  • the second reaction zone was in the form of two fixed bed reactors in parallel, each reactor was loaded with 100 g of catalyst, the other reaction conditions are shown in Table 1, and the rest of the operations were the same as in Example 7, and the reaction results are shown in Table 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)

Abstract

本申请涉及一种制备甲酸甲酯的方法。含有甲醛、甲醇和/或二甲醚的原料进入第一反应区与催化剂A接触并分离,得到组分I进入第二反应区与催化剂B接触后,经分离得到甲酸甲酯作为产品、二甲醚返回第一反应区、组分II返回第二反应区;原料中甲醛、甲醇和/或二甲醚的比例以各组分所含碳原子的摩尔数计,为甲醛:甲醇和/或二甲醚=1:2~4;原料中甲醛的质量空速为0.01~15.0h-1;第一反应区内温度为50~100℃;第二反应区内的温度为50~200℃;压力为0.1~10Mpa;各组分独立地为气相和/或液相。本申请中催化剂寿命长,反应条件温和,原料利用率高,能够连续生产,具备大规模工业化应用潜力。

Description

一种制备甲酸甲酯的方法 技术领域
本申请涉及化学化工领域,具体而言,涉及一种制备甲酸甲酯的方法。
背景技术
在C1化学中,继甲烷化学、合成气化学和甲醇化学之后,甲酸甲酯由于可以经济有效地大规模生产、下游产品多等原因,近年来已逐渐发展成为一个新的C1化学品的起始原料和结构单元。从甲酸甲酯出发,可以制备甲酸、醋酸、乙二醇、丙酸甲酯、丙烯酸甲酯、乙醇酸甲酯、N-甲酰吗啉、N-甲基甲酰胺、N,N-二甲基甲酰胺等众多C1化学化工产品。
目前合成甲酸甲酯的技术对杂质敏感、原料纯度要求苛刻、工艺路线复杂、能耗高、投资高。鉴于上述原因,单套生产规模一般都在10万吨/年内,较难形成规模效应。能够以甲醛和甲醇等廉价易得的大宗化学品、条件温和、工艺简单地制备甲酸甲酯将产生重要的经济价值。
发明内容
根据本申请的一个方面,提供了一种制备甲酸甲酯的方法,其特征在于,至少包括以下步骤:
a)含有甲醛、甲醇和/或二甲醚的原料进入第一反应区与催化剂A接触并分离,得到组分I;
b)将步骤a)分离得到的组分I进入第二反应区与催化剂B接触后,经 分离得到甲酸甲酯产品、二甲醚、组分II;
c)将步骤b)中分离所得到的二甲醚返回所述第一反应区,所述II返回所述第二反应区;
步骤a)中所述第一反应区内的温度为50~100℃;所述原料中甲醛、甲醇和/或二甲醚的比例以各组分所含碳原子的摩尔数计,为甲醛:甲醇和/或二甲醚=1:2~4;所述原料中甲醛的质量空速为0.01~15.0h-1
步骤b)中所述第二反应区内的温度为50~200℃;压力为0.1~10Mpa;
所述第一反应区和所述第二反应区内的各组分独立地为气相和/或液相。
优选地,所述步骤a)中所述原料由甲醛、甲醇和/或二甲醚组成。
组分I中主要含有第一反应区中反应生成的甲缩醛以及过量的二甲醚;组分II中主要含有在第二反应区未反应的甲缩醛。
甲醛CH2O、二甲醚CH3OCH3与甲醇CH3OH经过反应制备甲缩醛,甲缩醛CH3O-CH2-OCH3歧化反应制备甲酸甲酯HCOOCH3和二甲醚CH3OCH3,联合以上二步反应可以实现以甲醛和甲醇为原料制备甲酸甲酯。
所述第一反应区内发生的反应,包括如式(1)所示的甲醛与甲醇缩合反应,以及如式(2)所示的甲醛与二甲醚缩合反应,所述组分I含有上述缩合反应的产物甲缩醛CH3O-CH2-OCH3
CH2O+2CH3OH=CH3O-CH2-OCH3+H2O   式(1)
CH2O+CH3OCH3=CH3O-CH2-OCH3         式(2)
所述第二反应区内的反应,包括如式(3)所示的甲缩醛歧化反应制备甲酸甲酯HCOOCH3和二甲醚的反应:
2CH3O-CH2-OCH3=2CH3OCH3+HCOOCH3   式(3)
按照式(3),甲酸甲酯理论最高单程碳摩尔选择性为33.33%。
第二反应区产生的二甲醚返回所述第一反应区,与甲醛继续进行缩合反应,以充分利用原料,得到更多的甲酸甲酯。所述含有甲醛、甲醇和/或二甲醚的原料,是指原料含有甲醛,还含有甲醇和/或二甲醚。由于第二反应区分离得到的二甲醚返回第一反应区,因此第一反应区的原料含有二甲醚,当返回的二甲醚不足以维持反应正常进行时,需要额外加入甲醇和/或二甲醚。二甲醚返回所述第一反应区,所述第一反应区和所述第二反应区的总反应为式(4)所示的甲醛偶联制甲酸甲酯,不考虑其他副反应和过程损耗的情况下,总反应原料为甲醛。考虑到少量的过程损耗和其他副反应,原料中仅需加入少量的甲醇和/或二甲醚即可实现以甲醛与甲醇和/或二甲醚为原料制备甲酸甲酯。
2CH2O=HCOOCH3         式(4)
甲缩醛歧化反应为吸热反应,没有飞温的风险。如果反应后的产物不与原料中的杂质(如水)发生其它反应,则生产的二甲醚与甲酸甲酯的摩尔比即为反应方程式计量比的2:1。该反应不产生其它的副产物,甲酸甲酯分离容易,可以得到纯度较高的甲酸甲酯。
优选地,所述原料中甲醛、甲醇和/或二甲醚的比例以各组分所含碳原子的摩尔数计,为甲醛:甲醇和/或二甲醚=1:2~2.2;进一步优选地,所述原料中甲醛、甲醇和/或二甲醚的比例以各组分所含碳原子的摩尔数计,为甲醛:甲醇和/或二甲醚=1:2。
步骤a)中,所述原料进入第一反应区与催化剂A接触并分离的过程,可以为原料先与反应器中的催化剂A接触后再进入分离系统进行分离;也 可以为反应和分离在同一个装置中进行,即催化精馏过程。催化精馏装置中,催化剂床层为精馏塔中的一段或多段,同时起到固定床反应器和精馏塔塔板/填料的作用,达到节省设备投入的效果;可以利用反应热供给精馏分离所需的热量,减少再沸器的热负荷,降低能耗;反应后物料直接在精馏塔内分离,产品离开精馏体系,分离后的未反应原料继续接触催化剂床层进行反应。因此,可以同时实现反应、分离及未反应原料返回第一反应区的目的。
本领域技术人员可以通过调节所述催化精馏装置的工艺条件,如温度、压力、原料配比、回流比、进料位置来得到不同纯度的甲缩醛。
优选地,所述步骤a)中催化剂A装填于反应精馏装置中;所述反应精馏装置的回流比为0.5~10;温度范围上限选自90℃、100℃,温度范围下限选自50℃、60℃;所述原料中甲醛的质量空速范围上限选自3.0h-1、15h-1,下限选自0.01h-1、0.5h-1,所述第一反应区由一个或多个催化精馏装置组成。进一步优选地,步骤a)中所述催化剂A装填于反应精馏装置中;所述反应精馏装置的回流比为0.5~10,温度为60~90℃;所述原料中甲醛的质量空速为0.5~3.0h-1
优选地,步骤a)所述原料中甲醇和/或二甲醚中甲醇的摩尔百分比以各组分所含碳原子的摩尔数计,为0~50%。进一步优选地,步骤a)所述原料中甲醇和/或二甲醚中甲醇的摩尔百分比范围以各组分所含碳原子的摩尔数计,上限任选自45%、40%、35%,下限任选自0%、5%、10%、15%、20%。
优选地,步骤a)所述原料中甲醇和/或二甲醚中的二甲醚,部分或者全部来自第二反应区的分离所得。
原料中甲醇和/或二甲醚中的二甲醚,可以来自于第二反应区分离所得,也可以来自于体系外加入。如果第二反应区分离所得二甲醚返回第一反应区能够满足甲醛缩合反应制备甲缩醛的需要,则不需要再额外添加甲醇和/或二甲醚。考虑到实际生产中可能的副反应和损耗,第二反应区分离得到二甲醚返回第一反应区,需要再额外补充新鲜的甲醇和/或二甲醚。由于甲醇与二甲醚的反应性能接近,而甲醇较二甲醚成本较低,因此作为一个较为优选的方案,第一反应区的原料由新鲜的甲醛、新鲜的甲醇,以及第二反应区分离得到的二甲醚组成。
优选地,步骤a)中所述催化剂A任选自强酸性阳离子交换树脂中的一种或多种。
优选地,步骤a)中所述催化剂A为大孔强酸性的磺化苯乙烯-二乙烯苯共聚物树脂,由苯乙烯与二乙烯苯的共聚物经过硫酸磺化得到的。
优选地,所述步骤b)中第二反应区内的温度范围上限任选自150℃、200℃,下限任选自50℃、60℃;压力范围上限任选自2Mpa、10Mpa,下限为0.1Mpa。进一步优选地,所述步骤b)中第二反应区内的温度为60~150℃,压力为0.1~2MPa。
优选地,所述步骤b)中所述催化剂B为酸性分子筛、强酸性阳离子交换树脂中的一种或多种。
优选地,所述酸性分子筛催化剂的结构类型为MWW、FER、MFI、MOR、FAU或BEA。进一步优选地,所述酸性分子筛催化剂硅铝比Si/Al为3:1~150:1。
进一步优选地,所述步骤b)中所述催化剂B选自氢型MCM-22分子筛、 氢型ZSM-5分子筛、氢型Y沸石、氢型Beta分子筛、氢型镁碱沸石、氢型丝光沸石、全氟磺酸树脂(简写为Nafion-H)中的一种或多种。
根据本领域公知常识,氢型分子筛或沸石通常为分子筛或沸石经过铵离子交换、焙烧得到。
本申请中,所述第二反应区适用于多种反应器形式,本领域技术人员可以选择不同的反应器,均可以实现本申请的目的和技术效果。优选地,所述第二反应区含有固定床反应器、釜式反应器、移动床反应器或流化床反应器中的一种或多种。由于本申请第二反应区的催化剂B具有较为突出的长寿命优势,采用固定床反应器在投资成本、工程设计、生产操作中均具备较大的优势,因此,固定床反应器是较为优选的方案。进一步优选地,所述第二反应区由一个固定床反应器组成;或者所述第二反应区由多个并联和/或串联的固定床反应器组成。
本申请的有益效果包括但不限于:
1)本申请所述方法具备成本低廉、环境友好以及生产工艺安全性高的优势。原料为价格低廉的甲醛水溶液、甲醇水溶液和/或二甲醚,通过二步法可以得到高纯度甲酸甲酯。甲缩醛歧化反应过程简单,反应条件温和、在较低的反应温度和反应压力下也能得到优异的反应结果。甲缩醛歧化是吸热反应,不存在飞温的风险,工艺安全性高。催化剂稳定,适合大规模连续生产,产物分离投资和能耗低,容易得到高纯度的甲酸甲酯与二甲醚。相对于甲醇羰化工艺,避免使用一氧化碳原料,无需昂贵的造气设备、变换以及气体分离设备。
2)本申请所述方法中第二反应区所用催化剂B具有寿命长,反应性能 优异的特点。
3)本申请所述方法原料利用率高。
4)本申请所述方法不仅适用于大规模集成化生产,也适用于中小企业小投资小规模生产,应用灵活,受地域和配套限制少。
以上已对本发明进行了详细描述,但本发明并不局限于本文所描述具体实施方式。本领域技术人员理解,在不背离本发明范围的情况下,可以作出其他更改和变形。
附图说明
图1为本申请合成甲酸甲酯的工艺流程示意图。
图2为实施例1合成甲酸甲酯的工艺流程图。
具体实施方式
根据本申请的一种实施方式,其工艺流程示意图如图1所示,原料甲醛、原料甲醇和/或二甲醚进入第一反应区并分离,未反应的原料在第一反应区内继续反应,分离得到的组分I(主要为甲缩醛)进入第二反应区,第二反应区的产物经分离得到二甲醚返回第一反应区,经分离得到的组分II(主要为甲缩醛)返回第二反应区,经分离得到的甲酸甲酯作为产品储存。
下面结合具体的实施例,进一步阐述本申请。应理解,这些实施例仅用于说明本申请而不用于限制本申请的范围。
如无特别说明,实施例中的原料和催化剂均通过商业途径购买,其中Amberlyst-15树脂为购买自罗门哈斯公司的大孔强酸性的磺化苯乙烯-二乙 烯苯共聚物树脂,DNW树脂和D005树脂为购买自丹东明珠特种树脂有限公司的大孔强酸性的磺化苯乙烯-二乙烯苯共聚物树脂,D006树脂和D007树脂为购买自凯瑞化工股份有限公司的大孔强酸性的磺化苯乙烯-二乙烯苯共聚物树脂。
实施例中分析方法以及转化率、选择性计算如下:
利用带有气体自动进样器、FID检测器以及PLOT-Q毛细管柱的Agilent7890气相色谱仪进行气/液相组分的成分自动分析。
本申请的实施例中,歧化反应甲缩醛单程转化率以及甲酸甲酯单程选择性都基于碳摩尔数进行计算:
甲缩醛转化率=[(第二反应区进料中甲缩醛碳摩尔数)-(第二反应区出料中甲缩醛碳摩尔数)]÷(第二反应区进料中甲缩醛碳摩尔数)×(100%)
甲酸甲酯选择性=(第二反应区出料中甲酸甲酯摩尔数)÷[(第二反应区进料中甲缩醛碳摩尔数)-(第二反应区出料中甲缩醛碳摩尔数)]×(100%)
本申请中碳摩尔数,是指组分中所含碳原子的摩尔数。
下面通过实施例详述本发明,但本发明并不局限于这些实施例。
实施例1
生产甲酸甲酯反应工艺流程:
作为一个典型的方案,本申请的生产甲酸甲酯的方法的反应工艺流程如图2所示,其中,第一反应区采用催化精馏塔,进行甲醛、甲醇、二甲醚缩合反应制备甲缩醛的过程;第二反应区采用固定床反应器,进行甲缩醛歧化反应;第一级分离装置用于甲缩醛歧化反应产物中二甲醚的分离;第 二级分离装置用于甲缩醛歧化反应产物甲酸甲酯与未反应原料的分离。
具体而言,原料包括:甲醛水溶液、甲醇、产物中分离得到的循环二甲醚,上述三股物流进入第一反应区的催化精馏塔,未反应的含有甲醛、甲醇、二甲醚在精馏塔内返回催化剂床层继续反应,塔顶得到的组分I主要为缩合反应产物甲缩醛,塔底得到缩合反应产物水。组分I进入第二反应区进行甲缩醛歧化反应,歧化反应产物物流III进入第一分离装置,分离得到的循环二甲醚和物流IV,其中循环二甲醚返回第一反应区,物流IV进入第二分离装置,分离得到甲酸甲酯产品和组分II,组分II主要为循环甲缩醛,组分II返回第二反应区继续反应。通过上述过程,可以实现以甲醛、甲醇为原料,生成甲酸甲酯产品。
第一反应区甲醛、甲醇、二甲醚通过缩合反应制甲缩醛的过程按如下步骤进行:
在内径为30mm,高度为1800mm的不锈钢催化精馏塔中,下端装高度1200mm的用不锈钢丝网包裹的500g Amberlyst-15树脂催化填料作为反应段,上端装有高度600mm的Ф4mm×4mm的不锈钢丝作为精馏段填料,塔顶为可控回流比的冷凝器,塔底为容积为3000ml的再沸器,反应段外壁缠绕加热丝,使温度从上而下,依次从60℃均匀升高到90℃。在催化精馏塔从上到下三个进料口中依次通入37%甲醛水溶液,96%甲醇水溶液以及二甲醚,三者配料比如表1所示,逐步调节再沸器功率和回流比,直到从塔顶可以得到高于99.5%的甲缩醛(在后续的实施例中,当甲醛:甲醇和/或二甲醚小于1:2,即甲醇和/或二甲醚按照计量比过量时,组分I中有可能含有过量的二甲醚,此时的甲缩醛浓度不计算过量的二甲醚)。
第二反应区甲缩醛歧化反应制甲酸甲酯按如下步骤进行:
将300g硅铝比(Si:Al)=40:1的氢型MCM-22分子筛催化剂在马弗炉的空气气氛下550℃焙烧5小时,压片、粉碎、筛分成20~40目。称取该氢型MCM-22分子筛催化剂样品200g,装入内径为30mm的不锈钢反应管内,在常压、550℃下用氮气活化4小时,然后降到反应温度90℃,通入第一反应区分离得到的甲缩醛,反应压力0.1MPa,用气相色谱分析产物,反应稳定后,计算甲缩醛的单程转化率和甲酸甲酯单程的选择性,反应结果见表1。将第二步反应得到产物经过两级精馏分离,得到甲酸甲酯、二甲醚、以及未反应完的甲缩醛。其中甲酸甲酯组分作为产品储存;二甲醚返回第一反应区,未反应完的甲缩醛返回第二反应区。
联合第一、二步反应就可以将37%的甲醛水溶液和96%甲醇水溶液作为原料,生成99.99%以上的甲酸甲酯。
实施例2~6
第一反应区催化剂A、第二反应区催化剂B、第一区进料配比、第一区进料中甲醛质量空速、第二反应区温度、第二反应区压力分别按照表1所示,其他操作步骤均与实施例1相同,其反应结果见表1所示。
实施例7~8
第二反应区催化剂B见表1所示,称取200g、20~40目催化剂,装入内径为30mm的不锈钢反应管内,在常压、100℃下用氮气活化1小时,再进行反应。第一反应区催化剂A、第一区进料配比、第一区进料中甲醛质量 空速、第二反应区温度、第二反应区压力分别按照表1所示,其他操作步骤均与实施例1相同,其反应结果见表1所示。
实施例9
第二反应区采用两个固定床反应器串联的形式,每个反应器装载100g催化剂,其他反应条件见表1所示,其余操作与实施例7相同,其反应结果见表1所示。
实施例10
第二反应区采用两个固定床反应器并联的形式,每个反应器装载100g催化剂,其他反应条件见表1所示,其余操作与实施例7相同,其反应结果见表1所示。
表1实施例1~10的反应条件及反应结果
Figure PCTCN2014091289-appb-000001
Figure PCTCN2014091289-appb-000002
注1:Amberlyst-15购自于罗门哈斯(ROHM HRRS)公司,DNW和D005购自于丹东明珠特种树脂有限公司,D006和D007购自于凯瑞化工股份有限公司,Nafion-H购自于美国杜邦公司
注2:表1中各条件参数为稳态时数据
以上所述,仅是本申请的几个实施例,并非对本申请做任何形式的限制,虽然本申请以较佳实施例揭示如上,然而并非用以限制本申请,任何熟悉本专业的技术人员,在不脱离本申请技术方案的范围内,利用上述揭示的技术内容做出些许的变动或修饰均等同于等效实施案例,均属于技术方案范围内。

Claims (10)

  1. 一种制备甲酸甲酯的方法,其特征在于,至少包括以下步骤:
    a)含有甲醛、甲醇和/或二甲醚的原料进入第一反应区与催化剂A接触并分离,得到组分I;
    b)将步骤a)分离得到的组分I进入第二反应区与催化剂B接触后,经分离得到甲酸甲酯产品、二甲醚、组分II;
    c)将步骤b)中分离所得到的二甲醚返回所述第一反应区,所述组分II返回所述第二反应区;
    步骤a)中所述第一反应区内的温度为50~100℃;所述原料中甲醛、甲醇和/或二甲醚的比例以各组分所含碳原子的摩尔数计,为甲醛:甲醇和/或二甲醚=1:2~4;所述原料中甲醛的质量空速为0.01~15.0h-1
    步骤b)中所述第二反应区内的温度为50~200℃;压力为0.1~10Mpa;所述第一反应区和所述第二反应区内的各组分独立地为气相和/或液相。
  2. 根据权利要求1所述的方法,其特征在于,步骤a)中所述催化剂A装填于反应精馏装置中;所述反应精馏装置的回流比为0.5~10,温度为60~90℃;所述原料中甲醛的质量空速为0.5~3.0h-1
  3. 根据权利要求1所述的方法,其特征在于,步骤a)所述原料中甲醇和/或二甲醚中甲醇的摩尔百分比以各组分所含碳原子的摩尔数计,为0~50%。
  4. 根据权利要求1所述的方法,其特征在于,步骤a)所述原料中甲醇和/或二甲醚中的二甲醚,部分或者全部来自所述第二反应区的分离所得。
  5. 根据权利要求1所述的方法,其特征在于,步骤a)中所述催化剂A为 强酸性阳离子交换树脂。
  6. 根据权利要求1所述的方法,其特征在于,步骤a)中所述催化剂A为大孔强酸性的磺化苯乙烯-二乙烯苯共聚物树脂。
  7. 根据权利要求1所述的方法,其特征在于,所述步骤b)中第二反应区内的温度为60~150℃,压力为0.1~2MPa。
  8. 根据权利要求1所述的方法,其特征在于,所述步骤b)中所述催化剂B为酸性分子筛、强酸性阳离子交换树脂中的一种或多种。
  9. 根据权利要求1所述的方法,其特征在于,所述步骤b)中所述催化剂B选自氢型MCM-22分子筛、氢型ZSM-5分子筛、氢型Y沸石、氢型Beta分子筛、氢型镁碱沸石、氢型丝光沸石、全氟磺酸树脂中的一种或多种。
  10. 根据权利要求1所述的方法,其特征在于,所述第二反应区由一个固定床反应器组成;或者所述第二反应区由多个并联和/或串联的固定床反应器组成。
PCT/CN2014/091289 2014-11-17 2014-11-17 一种制备甲酸甲酯的方法 WO2016077967A1 (zh)

Priority Applications (9)

Application Number Priority Date Filing Date Title
PCT/CN2014/091289 WO2016077967A1 (zh) 2014-11-17 2014-11-17 一种制备甲酸甲酯的方法
EA201790993A EA032799B1 (ru) 2014-11-17 2014-11-17 Способ получения метилформиата
SG11201704004YA SG11201704004YA (en) 2014-11-17 2014-11-17 Method for preparing methyl formate
JP2017526630A JP6407428B2 (ja) 2014-11-17 2014-11-17 ぎ酸メチルの製造方法
KR1020177015565A KR101977784B1 (ko) 2014-11-17 2014-11-17 메틸 포르메이트의 제조 방법
EP14906314.1A EP3222608B1 (en) 2014-11-17 2014-11-17 Method for preparing methyl formate
BR112017010148A BR112017010148A2 (pt) 2014-11-17 2014-11-17 método para preparação de formato de metila.
US15/526,780 US9944588B2 (en) 2014-11-17 2014-11-17 Method for preparing methyl formate
AU2014411966A AU2014411966B2 (en) 2014-11-17 2014-11-17 Method for preparing methyl formate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/091289 WO2016077967A1 (zh) 2014-11-17 2014-11-17 一种制备甲酸甲酯的方法

Publications (1)

Publication Number Publication Date
WO2016077967A1 true WO2016077967A1 (zh) 2016-05-26

Family

ID=56013026

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/091289 WO2016077967A1 (zh) 2014-11-17 2014-11-17 一种制备甲酸甲酯的方法

Country Status (9)

Country Link
US (1) US9944588B2 (zh)
EP (1) EP3222608B1 (zh)
JP (1) JP6407428B2 (zh)
KR (1) KR101977784B1 (zh)
AU (1) AU2014411966B2 (zh)
BR (1) BR112017010148A2 (zh)
EA (1) EA032799B1 (zh)
SG (1) SG11201704004YA (zh)
WO (1) WO2016077967A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3222609B1 (en) * 2014-11-17 2020-05-06 Dalian Institute Of Chemical Physics Chinese Academy of Sciences Method for preparing methyl formate and coproducing dimethyl ether

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100105947A1 (en) * 2008-10-23 2010-04-29 Celik Fuat E Process for the production of alkyl alkoxyacetates
CN103254084A (zh) * 2012-02-20 2013-08-21 李坚 Na2CO3或甲酸钠或CO2或CO制备DMC、DPC、原碳酸酯、原甲酸酯、二甲醚等的方法
CN104016857A (zh) * 2014-05-26 2014-09-03 北京大学 制备甲酸甲酯的方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1642689A (en) * 1925-01-22 1927-09-20 Consortium Elektrochem Ind Method of preparation of methyl formate
DE3715035A1 (de) * 1987-05-06 1988-11-17 Basf Ag Verfahren zur gewinnung von trialkylaminen und methylformiat bei der herstellung von trimethylolalkanen
DK173416B1 (da) * 1995-07-21 2000-10-02 Topsoe Haldor As Fremgangsmåde til fremstilling af hydrogenrig gas
JP2662649B2 (ja) * 1996-04-26 1997-10-15 旭化成工業株式会社 Zsm−5を用いる脱水反応方法
JP4281856B2 (ja) * 1998-08-03 2009-06-17 旭化成ケミカルズ株式会社 メチラールの製造方法
US6015875A (en) * 1998-08-11 2000-01-18 Catalytic Distillation Technologies Process for making acetals
US6160186A (en) * 1998-11-12 2000-12-12 Bp Amoco Corporation Preparation of polyoxymethylene dimethyl ethers by catalytic conversion of dimethyl ether with formaldehyde formed by dehydrogenation of dimethyl ether
JP3795272B2 (ja) * 1999-09-29 2006-07-12 ダイハツ工業株式会社 ジメチルエーテル改質触媒および燃料電池装置
DE102004059334A1 (de) * 2004-12-09 2006-06-22 Ticona Gmbh Verfahren zur Herstellung von Acetalen
EP1871731B1 (en) * 2005-04-15 2012-12-26 University Of Southern California Efficient and selective conversion of carbon dioxide to methanol, dimethyl ether and derived products
US7705059B2 (en) * 2005-04-15 2010-04-27 University Of Southern California Selective oxidative conversion of methane to methanol, dimethyl ether and derived products
CN101327444B (zh) * 2008-05-19 2010-09-01 中国科学院山西煤炭化学研究所 合成甲缩醛和甲酸甲酯的金属催化剂及其制法和应用
EP2450336A1 (en) * 2010-11-09 2012-05-09 INEOS Paraform GmbH Process for the production of pure methylal
EP3222609B1 (en) * 2014-11-17 2020-05-06 Dalian Institute Of Chemical Physics Chinese Academy of Sciences Method for preparing methyl formate and coproducing dimethyl ether

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100105947A1 (en) * 2008-10-23 2010-04-29 Celik Fuat E Process for the production of alkyl alkoxyacetates
CN103254084A (zh) * 2012-02-20 2013-08-21 李坚 Na2CO3或甲酸钠或CO2或CO制备DMC、DPC、原碳酸酯、原甲酸酯、二甲醚等的方法
CN104016857A (zh) * 2014-05-26 2014-09-03 北京大学 制备甲酸甲酯的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YAN, KANG;: "Research Progress in Methylal Synthesis", CHEMICAL INDUSTRY AND ENGINEERING PROGRESS, vol. 29, no. 6, 31 December 2010 (2010-12-31), pages 1129 - 1132, XP008184876 *

Also Published As

Publication number Publication date
SG11201704004YA (en) 2017-06-29
KR101977784B1 (ko) 2019-05-13
EP3222608A4 (en) 2018-05-09
JP2017534659A (ja) 2017-11-24
EA201790993A1 (ru) 2017-09-29
JP6407428B2 (ja) 2018-10-17
EA032799B1 (ru) 2019-07-31
AU2014411966A1 (en) 2017-06-15
KR20170084175A (ko) 2017-07-19
AU2014411966B2 (en) 2018-05-31
BR112017010148A2 (pt) 2018-02-14
US9944588B2 (en) 2018-04-17
EP3222608B1 (en) 2019-06-12
US20170320808A1 (en) 2017-11-09
EP3222608A1 (en) 2017-09-27

Similar Documents

Publication Publication Date Title
TWI383968B (zh) 用於將混合醇類脫水之反應蒸餾
US20140275619A1 (en) Process for Producing Acetic Acid and/or Ethanol By Methane Oxidation
RU2673668C2 (ru) Способ совместного получения уксусной кислоты и диметилового эфира
RU2638922C2 (ru) Объединенный способ получения уксусной кислоты
RU2687234C2 (ru) Объединенный способ получения метилацетата и метанола из синтез-газа и диметилового эфира
CN105669452B (zh) 一种制备甲酸甲酯联产二甲醚的方法
US9546123B2 (en) Process for preparing acrylic acid from formaldehyde and acetic acid
TW201429942A (zh) 用於製造甲醇及乙酸甲酯之整合方法(三)
WO2016077968A1 (zh) 一种制备甲酸甲酯联产二甲醚的方法
RU2686734C2 (ru) Объединенный способ получения метилацетата и метанола из синтез-газа и диметилового эфира
WO2016077967A1 (zh) 一种制备甲酸甲酯的方法
CN112601733B (zh) 用于从乙醇醛生产单乙醇胺的方法和催化剂体系
CN105669454B (zh) 一种制备甲酸甲酯的方法
CN105622335B (zh) 制备甲酸甲酯并联产二甲醚的方法
Reactious Fiorel
CN104478661A (zh) 一种由2-戊烯制备2-戊醇和3-戊醇混合物的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14906314

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2014906314

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15526780

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2017526630

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 11201704004Y

Country of ref document: SG

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112017010148

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 201790993

Country of ref document: EA

ENP Entry into the national phase

Ref document number: 20177015565

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2014411966

Country of ref document: AU

Date of ref document: 20141117

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112017010148

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20170515