WO2016076471A1 - 방향성 전기강판용 절연피막 조성물, 이를 이용하여 표면에 절연피막이 형성된 방향성 전기강판 및 이의 제조방법 - Google Patents

방향성 전기강판용 절연피막 조성물, 이를 이용하여 표면에 절연피막이 형성된 방향성 전기강판 및 이의 제조방법 Download PDF

Info

Publication number
WO2016076471A1
WO2016076471A1 PCT/KR2014/011839 KR2014011839W WO2016076471A1 WO 2016076471 A1 WO2016076471 A1 WO 2016076471A1 KR 2014011839 W KR2014011839 W KR 2014011839W WO 2016076471 A1 WO2016076471 A1 WO 2016076471A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
electrical steel
oriented electrical
grain
nanoparticles
Prior art date
Application number
PCT/KR2014/011839
Other languages
English (en)
French (fr)
Inventor
권민석
심호경
최헌조
최병섭
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to JP2017525983A priority Critical patent/JP6383495B2/ja
Priority to US15/526,718 priority patent/US10385218B2/en
Priority to EP14905835.6A priority patent/EP3219825B1/en
Priority to CN201480083458.6A priority patent/CN106922155B/zh
Publication of WO2016076471A1 publication Critical patent/WO2016076471A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/14Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to metal, e.g. car bodies
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D1/00Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/70Additives characterised by shape, e.g. fibres, flakes or microspheres
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1255Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest with diffusion of elements, e.g. decarburising, nitriding
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • C21D8/1283Application of a separating or insulating coating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/07Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/82After-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/02Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances

Definitions

  • Insulating coating composition for oriented electrical steel sheet oriented electrical steel sheet having an insulating coating formed on the surface using the same and a method of manufacturing the same
  • the present invention relates to an insulating coating composition for a grain-oriented electrical steel sheet, a grain-oriented electrical steel sheet having an insulating coating formed on the surface thereof, and a method of manufacturing the same.
  • a grain-oriented electrical steel sheet contains about 3.1% of Si component in a steel sheet and has an aggregate structure in which the grain orientation is aligned in the direction of 100 ⁇ ⁇ 001>, and thus has very excellent magnetic properties in the rolling direction.
  • Si component in a steel sheet
  • aggregate structure in which the grain orientation is aligned in the direction of 100 ⁇ ⁇ 001>, and thus has very excellent magnetic properties in the rolling direction.
  • the grain-oriented electrical steel sheet suppresses the growth of primary recrystallized grains, and exhibits excellent magnetic properties by the secondary recrystallized structure obtained by selectively growing grains of ⁇ 100 ⁇ ⁇ 001> orientation among the grains whose growth is suppressed. As I do it,
  • Growth inhibitors of primary recrystallized grains are more important.
  • it is a grain-oriented electrical steel sheet that allows the grains having the aggregate structure of ⁇ 100 ⁇ ⁇ 001> orientation to preferentially grow among the grains whose growth is suppressed.
  • growth inhibitors of primary grains that can satisfy the above mentioned conditions and are currently widely used industrially include MnS, A1N, and MnSe. Specifically, MnS, AIN, MnSe and the like contained in the steel slab are reheated for a long time at high temperature to be dissolved and hot rolled, and the components having an appropriate size and distribution in the subsequent cooling process are used as the growth inhibitor as the precipitate. It can be.
  • the insulating film is basically high electrical insulation, excellent adhesion to the material, uniform appearance without defects It must have one color.
  • the magnetostrictive phenomenon due to the recent strengthening of international standards on transformer noise and intensifying competition in related industries, it is necessary to study the magnetostrictive phenomenon in order to reduce the noise of insulating film of directional electrical steel sheet.
  • the shaking phenomenon is repeated by contracting and expanding, and the shaking causes vibration and noise in the transformer.
  • An insulating film is formed on the forstedte base film.
  • the wet coating method is known as a method of reducing the 90 ° domain of the grain-oriented electrical steel sheet.
  • the 90 ° magnetic domain refers to a region having magnetization that is perpendicular to the magnetic field application direction, and the smaller the amount of such 90 ° magnetic domain, the smaller the magnetic strain.
  • the general wet coating method lacks the noise improvement effect due to the tensile force applied, there is a disadvantage that the coating thickness is coated with a thick film, there is a problem that the transformer spot ratio and efficiency worsens.
  • PVD Physical Vapor Deposition
  • chemical vapor are applied to give high tensile properties to the surface of oriented electrical steel sheets.
  • the present inventors improve the problems of the above-mentioned magnetic properties and magnetic deformation by annealing a grain-oriented electrical steel sheet containing boron (B) or barn (V) alone or including all of them at high temperature. I would like to.
  • the insulating film composition for a grain-oriented electrical steel sheet including hollow nanoparticles and mesoporous nanoparticles, it is intended to further improve the problem of the above-described magnetic deformation.
  • 0.1 to 7% by weight of the hollow nanoparticles 0.1 to 5% by weight 0 /.
  • Ceramic nanofibers 0.1 to 5% by weight of mesoporous (Mesoporous) nano It is possible to provide an insulating coating composition for a grain-oriented electrical steel sheet comprising particles, 30 to 6 wt% colloidal silica nanoparticles, and 30 to 60 wt% metal phosphate.
  • 0.1 to 7% by weight hollow nanoparticles Of 0.1 to 5 parts by weight 0/0 ceramic nanofibers (Nano fiber); Mesoporous (Mesoporous) nano-particles of 0.1 to 5 parts by weight 0/0; Colloidal silica nanoparticles of 30 to 60 weight 0/0; And 30 to 60 parts by weight of phosphate 0 /; provides the, grain-oriented electrical steel sheet insulating coating composition comprising.
  • the description of the hollow nanoparticles is as follows.
  • the hollow nanoparticles include Si0 2 , Ti0 2 , A1 2 0 3 , and MgO It may be composed of at least one oxide selected from the group.
  • the particle diameter of the hollow nanoparticles may be 50 to 300 nm.
  • the inner diameter of the hollow nanoparticles may be 30 to 280 ⁇ .
  • the description of the ceramic nanofiber is as follows.
  • the ceramic nanofiber may be made of at least one oxide selected from the group consisting of Ti0 2 , Si0 2 , Al 2 0 3 , Zr0 2 , MgO, and 1 0 5 0 12 .
  • the ceramic nanofibers may have a diameter of 5 to 100 nm.
  • the mesoporous nanoparticles may be composed of at least one oxide selected from the group comprising Si0 2 , Al 2 O 3 , MgO, and Ti0 2 .
  • the mesoporous nanoparticles may have a particle diameter of 1 to 800 nm.
  • Porosity of the mesoporous nanoparticles may be included a pore volume of from 7 to 35 0/0 relative to the mesoporous nanoparticles.
  • the mesoporous nanoparticles may be in the form of any one or more selected from the group including spherical, plate-shaped, and needle-shaped.
  • the metal phosphate may be composed of a compound by chemical reaction of metal hydroxide and phosphoric acid (H 3 P0 4 ).
  • the metal phosphate is composed of a compound by chemical reaction of metal hydroxide and phosphoric acid (H 3 P0 4 ), and the metal hydroxide is Sr (OH) 2 , Al (OH) 3 , Mg (OH) 2 , Zn ( OH) 2 , Fe (OH) 3 , and Ca (OH) 2 It may be at least one selected from the group containing.
  • the compound consists of a compound by a chemical reaction of the metal hydroxide and phosphoric acid (H 3 P0 4 ), the metal atom of the metal hydroxide is phosphorus and
  • Substitution may be made by forming a single bond, a double bond, or a triple bond, and may be composed of a compound having an amount of unbanung free phosphoric acid (3 ⁇ 4PO 4 ) of 30% or less.
  • the metal phosphate is composed of a compound by a chemical reaction of a metal hydroxide and phosphoric acid (H 3 P0 4 ), the weight ratio of the metal hydroxide to the phosphoric acid may be represented by 1: 100 to 30: 100. .
  • the insulating film includes, the insulating film, 0.1 to 7% by weight hollow nanoparticles; Ceramic nanofibers from 0.1 to 5 increments 0 / .; 0.1 to 5 increments of 0 /.
  • Mesoporous nanoparticles Colloidal silica nanoparticles of 30 to 60 increased 0/0; And 30 to 60% by weight of phosphate; it comprises, a grain-oriented electrical steel sheet formed with an insulating coating on the surface.
  • the film tension (A, MPA) of the grain-oriented electrical steel sheet having an insulating film formed on the surface as a ratio to the weight (B, g / m 2 ) of the insulating film per one area of the grain-oriented electrical steel sheet, 0.20 ⁇ 8 ⁇ 2.50 (2 ⁇ 8 ⁇ 5), specifically, 0.63 ⁇ A / B ⁇ 1.17 (2 ⁇ B ⁇ 5).
  • the hollow nanoparticles include Si0 2 , Ti0 2 , A1 2 0 3 , and MgO
  • It may be composed of at least one oxide selected from the group.
  • the particle diameter of the hollow nanoparticles may be 50 to 300 nm.
  • the inner diameter of the hollow nanoparticles may be 30 to 280 nm.
  • the diameter of the ceramic nanofiber may be 5 to 100 nm.
  • the mesoporous nanoparticles may be composed of at least one oxide selected from the group consisting of Si0 2 , Al 2 O 3 , MgO, and Ti0 2 .
  • the mesoporous nanoparticles may have a particle diameter of 1 to 800 nm.
  • the metal phosphate may be composed of a compound by chemical reaction of metal hydroxide and phosphoric acid (H 3 P0 4 ).
  • the metal hydroxide and phosphoric acid (H 3 P0 4 ) of the compound by the chemical reaction of the reaction the metal atom of the metal hydroxide is phosphorus and
  • It is formed by forming a single bond, a double bond, or a triple bond by substitution reaction, and may be composed of a compound having an amount of unreacted free phosphoric acid (H 3 P0 4 ) of 30% or less.
  • mesoporous (mesoporous) metal phosphate nanoparticles 30 to 60 parts by weight 0/0 of the colloidal silica nanoparticles, and 30 to 60 parts by weight 0 /. It provides a method for producing a grain-oriented electrical steel sheet having an insulating coating on its surface.
  • the average grain size of the prepared grain-oriented electrical steel sheet the size may be 15 to 35 kPa.
  • boron (B), vanadium (V), or it comprises one selected from a combination of one of a 0.005 to 0.05 parts by weight 0 / elements, silicon (Si) and: 2.6 to 4.3 increased 0/0, and aluminum (A1) : 0.01 to 0.20 comprising a weight 0/0, and the balance Fe and other portions will be the, grain-oriented electrical steel sheet consisting of unavoidable impurities: 0.020 to 0.040 wt. 0/0, manganese (Mn)
  • Preparing the preparing of the steel slab; Hot rolling the steel slab to produce hot rolled sheet; Cold rolling the hot rolled sheet to produce a cold rolled sheet; Decarburizing annealing the malleable lead plate to obtain a decarburizing annealing steel sheet; And applying an annealing separator to the decarburized annealing steel sheet, and finally annealing.
  • nanofiber hollow nanoparticles, ceramic nanofibers (Nanofiber),
  • the mesoporous nanoparticles, a pore forming agent and a mesoporous nanoparticle precursor is added to the ethanol solvent, the step of mixing; in the mixed solution Adding ammonia water to adjust the pH to 10-12; Heating the pH adjusted solution; And obtaining nanoparticles having nano-sized pores formed therein.
  • the pore former is at least one member selected from the group consisting of poly (methylmethacrylate), polystyrene (polystyrene), polyethylene oxide (poly (ethylene oxide) and polypropylene oxide). It may be.
  • the mesoporous nanoparticle precursor is the mesoporous nanoparticle precursor
  • Tetraethylorthosilicate (tetraethly orthosilicate)
  • It may be at least one selected from the group consisting of aluminum trialkoxide (aluminum tri alkoxide), magnesium alkoxide (magnesium alkoxide), and titanium tetraalkoxide (titanium tetraalkoxide).
  • aluminum trialkoxide aluminum tri alkoxide
  • magnesium alkoxide magnesium alkoxide
  • titanium tetraalkoxide titanium tetraalkoxide
  • the step of heating the pH-adjusted solution is, by heating to a temperature range of 50 to 70 ° C, may be performed for 4 to 6 hours.
  • the metal phosphate preparing a metal hydroxide aqueous solution; Adding phosphoric acid to the prepared metal hydroxide aqueous solution, followed by mixing; Stirring the mixed solution; And obtaining a compound by chemical reaction of metal hydroxide and phosphoric acid (H 3 P0 4 ).
  • the step of heat-treating the grain-oriented electrical steel sheet coated with the grain-oriented electrical steel coating composition may be performed in a temperature range of 250 to 950 ° C.
  • Heat-treating the grain-oriented electrical steel sheet coated with the grain-oriented electrical steel coating composition may be performed for 30 seconds to 70 seconds.
  • an insulating coating composition for a grain-oriented electrical steel sheet excellent in reducing noise due to magnetostriction.
  • the insulating film having a surface having the above characteristics It is possible to provide the formed grain-oriented electrical steel sheet.
  • Fig. 1 is a result of a comparison of the noise characteristics of 1500kVA transformer according to the invention of the present invention example and comparative example.
  • 0.1 to 7% by weight hollow nanoparticles 0.1-5 weight 0 /.
  • Mesoporous nanoparticles Colloidal silica nanoparticles of 30 to 60 weight 0/0; And 30 to 60 parts by weight of a metal phosphate, 0/0; provides, grain-oriented electrical steel sheet insulating coating composition comprising a.
  • the composition by including hollow nanoparticles 1) in the case of the conventional wet coating method, the lack of noise improvement effect by the tensile stress applied, the transformer spot ratio and efficiency due to the thick film coating is poor, 2) Commercial production according to the conventional vacuum deposition coating method can solve all the difficulties and the insulation properties are deteriorated.
  • the hollow nanoparticles refer to nanoparticles having a hollow interior and a shell surrounding such empty spaces.
  • a shell is formed on the surface.
  • nanoparticles present inside the shell By removal.
  • the hollow nanoparticles have a large empty space therein as described above, when the magnetostriction occurs, it is possible to convert vibration energy into heat-energy to suppress vibration amplification, which is effective in improving transformer noise. to be.
  • it is an inorganic oxide is excellent in heat resistance, suitable for transformer production, there is an advantage that the mass production is easy.
  • the vaporized nanoparticles it is possible to solve the problem of noise generation and coating compatibility caused by magnetic deformation at the same time.
  • mesoporous (Mesoporous) nanoparticles refers to the nanoparticles in the form of nano-pores are distributed on the surface.
  • nanoporous materials generally have a microporous (if pore size of 2 or less), mesoporous (for pore size of 2 to 50 nra), and macroporous (more than 50 nm) depending on the pore size. Pore size).
  • the mesoporous nanoparticles form a nanoparticle by mixing a material such as a polymer, and then removing only the carbon component in the nanoparticle by heat treatment, thereby forming nano ( nano pores
  • the hollow nanoparticles and mesoporous nanoparticles are chemically bonded to each other, the size of the particles may be non-uniform, and when lumped into agglomerate, there is a possibility of causing surface defects and poor film adhesion appearing as a mottled There may be.
  • the metal phosphate it is possible to prevent side effects that may be caused.
  • the colloidal nano silica has a large specific surface area and excellent chemical reaction properties. It is excellent in compatibility with other additives, and it is possible to obtain a product having a beautiful surface and excellent surface roughness in the heat treatment process after coating.
  • the hollow nanoparticles include Si0 2 , Ti0 2 , A1 2 0 3 , and MgO
  • It may be composed of at least one oxide selected from the group.
  • the hollow nanoparticles may have a particle diameter of 50 to 300 rati. If the particle size of the hollow nanoparticles is less than 50 nm, the specific surface area is increased, and the stability of the composition is unsuitable for mass production, and if it is more than 300 nm, the surface roughness may be roughened, resulting in surface defects. It is limited to a range.
  • the inner diameter of the hollow nanoparticles may be 30 to 280 nm.
  • the inner diameter of the hollow nanoparticles is less than 30 nm, there is a problem that the vibration damping function due to magnetostriction is reduced.
  • the hollow nanoparticles may be easily broken when processing the same by applying to the grain-oriented electrical steel sheet, it is limited to the above range.
  • the description of the ceramic nanofiber is as follows.
  • the ceramic nanofibers, kk ⁇ 2, ⁇ 2, 2 3 0, 3 ⁇ 40 may be made of at least one kind of oxide selected from the second, ⁇ 0, and a group including 50 12: 1.
  • the ceramic nanofibers may have a diameter of 5 to 100 nm.
  • the diameter of the ceramic nanofibers is less than 5 nm, there is a problem that the tension imparting ability of the insulating film formed by the composition is poor, and when the diameter of the ceramic nanofiber is greater than 100 nm, uniform dispersion in the composition may be difficult. It is limited to a range.
  • the mesoporous nanoparticles may be composed of at least one oxide selected from the group comprising Si0 2 , A1 2 0 3 , MgO, and Ti0 2 .
  • the mesoporous nanoparticles may have a particle diameter of 1 to 800 nm.
  • the manufacturing cost increases rapidly, which is not suitable for mass production, and when it exceeds 800 nm, the surface roughness becomes rough. Since the problem that the transformer spot ratio is lowered may occur, it is limited to the above range.
  • the porosity of the mesoporous nanoparticles may be a pore of 7 to 35 volume 0 / ° with respect to the mesoporous nanoparticles.
  • the mesoporous nanoparticles may be in the form of any one or more selected from the group consisting of spherical, plate-shaped, and needle-shaped.
  • the metal phosphate may be formed of a compound by chemical reaction of metal hydroxide and phosphoric acid (H 3 P0 4 ).
  • the metal phosphate is composed of a compound by chemical reaction of metal hydroxide and phosphoric acid (H 3 P0 4 ), and the metal hydroxide is Sr (OH) 2 , Al (OH) 3 , Mg (OH) 2 , Zn ( OH) 2 , Fe (OH) 3 , and Ca (OH) 2 may be at least one or more selected from the group containing.
  • the metal atom of the metal hydroxide is substituted with phosphorus of phosphoric acid
  • It is made by reacting to form a single bond, double bond, or triple bond, and may be composed of a compound having an amount of unbanung free phosphoric acid (H 3 P0 4 ) of 30% or less.
  • the metal phosphate is composed of a compound by chemical reaction of metal hydroxide and phosphoric acid (H 3 P0 4 ), and the weight ratio of the metal hydroxide to the phosphoric acid may be represented by 1: 100 to 30: 100. .
  • the metal hydroxide is included in excess of the weight ratio of 30: 100, the chemical reaction may not be completed, resulting in a problem of sedimentation. If the metal hydroxide is included in the weight ratio of less than 1: 100, corrosion resistance may be caused. Since this problem may arise, the range is limited as described above.
  • Mesoporous nanoparticles Colloidal silica nanoparticles of 30 to 60 weight 0/0; And 30 to 60 weight 0 /.
  • Phosphate comprising, provides a grain-oriented electrical steel sheet formed with an insulating coating on the surface.
  • composition of the grain-oriented electrical steel sheet in particular, by containing boron (B) or vanadium (V) alone, or both of them to provide excellent magnetic properties
  • the insulating film corresponds to a grain-oriented electrical steel sheet having an insulating film formed on its surface, which can simultaneously solve the noise-inducing problem and the coating compatibility deterioration problem due to magnetic deformation.
  • the present invention provides a more detailed description of a grain-oriented electrical steel sheet having an insulating coating formed on its surface, and the features and advantages of each component included in the insulating coating for the grain-oriented electrical steel sheet are omitted as described above. Let's do it.
  • the boron (B) and the bar (V) are both grain boundary segregation elements and correspond to elements that hinder the movement of grain boundaries. These properties promote the formation of grains in the ⁇ 1 10 ⁇ ⁇ 001> orientation as growth inhibitors for grains and induce secondary recrystallization to develop, so that these elements play an important role in controlling grain size. can do.
  • the silicon (Si) serves to reduce the iron loss by increasing the specific resistance of the steel sheet, when the content is less than 2.6% by weight, the specific resistance of the steel is small, the iron loss If the characteristics are not only to be deteriorated during high-temperature annealing phase change section is present, and the problem that the secondary recrystallization is unstable, weight 4.3 0/0 exceeded, the cold rolling is difficult increased brittleness. This is the reason for limiting a range as mentioned above.
  • Aluminum (A1) 0.020 to 0.040 Weight 0 /.
  • the aluminum (Al) is finally AIN, (Al, Si) N, (Al, Si, Mn) a component which can function in the nitride inhibitors of the N type, the content is excessively less than 0.020 parts by weight 0/0 less In this case, the effect of the above-described inhibitors cannot be expected, and in the case of more than 0.040% by weight, the nitride precipitates and grows so coarsely that the effect as an inhibitor cannot be expected. This is the reason for limiting the range as described above.
  • the manganese (Mn) is an element having a role similar to that of the silicon (Si), and has an effect of reducing the iron loss by increasing the specific resistance, and reacted with nitrogen together with the silicon (Si) (Al, Si, Mn) Formation of precipitates of N inhibits the growth of primary recrystallized grains and plays an important role in causing secondary recrystallization therefrom.
  • the content of manganese (Mn) needs to be limited to 0.20 weight 0 /.
  • the manganese (Mn) is an element forming austenite, increase the austenite fraction during hot rolling to increase the high capacity of the precipitates, to fine-precipitate the precipitate during re-precipitation, too much primary recrystallization through MnS formation There is an effect to prevent deterioration. Therefore, it is necessary to include an appropriate content of 0.01% by weight or more.
  • the film of the grain-oriented electrical steel sheet with an insulating film formed on the surface Tension (A, MPA) is a ratio with respect to the weight (B, g / m 2 ) of the insulating film per one area of the grain-oriented electrical steel sheet, () .20 ⁇ A / B ⁇ 2.50 (2 ⁇ B ⁇ 5 ), Specifically, may be represented by 0.63 ⁇ A / B ⁇ 1.17 (2 ⁇ B ⁇ 5).
  • the film tension represented by A is applied to the surface of the insulating electrical coating composition and dried to prepare a specimen, and after pressing the anti-corrosion coated paper on one side of the specimen, the sodium hydroxide and water
  • the resulting elution solution was immersed in the elution solution at a temperature of 90 I: for 20 seconds to remove the insulating coating on one side of the specimen, and dried to the degree of whip of the specimen. It is measured according to the unit of MPa and when it meets the above range in relation to the increase (B, g / m 2 ) of the single-base insulating film per area of the grain-oriented electrical steel sheet, the noise, the dripping rate, and the insulating properties The optimal condition of can be derived. This effect is supported by the embodiments to be described later.
  • the range of A / B is limited as described above.
  • the hollow nanoparticles include Si0 2 , Ti0 2 , A1 2 0 3 , and MgO
  • It may be composed of at least one oxide selected from the group.
  • the particle size of the evaporated nanoparticles may be 50 to 300 nm.
  • the inner diameter of the hollow nanoparticles may be 30 to 280 nm.
  • the diameter of the ceramic nanofibers may be, 5 to 100 nm.
  • the mesoporous nanoparticles may be composed of at least one oxide selected from the group comprising Si0 2 , Al 2 O 3 , MgO, and Ti0 2 .
  • the mesoporous nanoparticles may have a particle diameter of 1 to 800 nm.
  • the metal phosphate may be composed of a compound by chemical reaction of metal hydroxide and phosphoric acid (3 ⁇ 4PO 4 ).
  • the metal phosphate, the metal atom of the metal hydroxide is phosphorus of phosphoric acid
  • Substitution may be performed to form a single bond, a double bond, or a triple bond, and may be composed of a compound having an amount of unreacted free phosphoric acid (H 3 P 04) of 30% or less.
  • manganese (Mn) includes 0.01 to 0.20 wt%, and the balance part comprising: preparing a phosphorus, grain-oriented electrical steel sheet will be made of Fe and other unavoidable impurities ; Mixing hollow nanoparticles, ceramic nanofibers (Nanofiber), mesoporous (Mesoporous) nanoparticles, colloidal silica nanoparticles, and metal phosphate, to prepare an insulating coating composition for a grain-oriented electrical steel sheet; Applying the composition to the surface of the grain-oriented electrical steel sheet; Heat-treating the grain-oriented electrical steel sheet coated with the insulation coating composition for grain-oriented electrical steel sheet; And obtaining a grain-oriented electrical steel sheet having an insulating coating formed on a surface thereof, wherein the insulation coating composition for grain-oriented electrical steel sheet comprises 0.1 to 7 weight 0 / .hollow nanoparticles and 0.1 to 5 weight 0 /.
  • a fiber which comprises a fiber (Nanofiber), 0.1 to 5 parts by weight 0 /. of mesoporous (mesoporous) of nanoparticles, 30 to colloidal silica nanoparticles 60 increase%, and 30 to 60 parts by weight 0/0 metal phosphate, Provided is a method of manufacturing a grain-oriented electrical steel sheet having an insulating coating on its surface.
  • the insulating coating composition for the grain-oriented electrical steel sheet the features and advantages of the insulating coating will be omitted as described above, and other details will be described.
  • the average grain size of the prepared grain-oriented electrical steel sheet may be 15 to 35 kPa.
  • the grain-oriented electrical steel sheet includes boron (B) or vanadium (V) alone or includes all of them, and the grain size of the grain-oriented electrical steel sheet is smaller than that of the conventionally commercialized grain-oriented electrical steel sheet. Excellent magnetic properties of the grain-oriented electrical steel sheet can be achieved.
  • the grain size is less than 15 ⁇ , the magnetic flux density is inferior. This is because the product is not enough to produce. And, when the size of the average grain size is more than 35 GPa, the problem that the magnetostriction is rather severe occurs.
  • any element or elements selected from boron (B), vanadium (V), or a combination thereof comprises 0.005 to 0.05 weight 0 /., Silicon (Si): 2.6 to 4.3 weight 0 /., Aluminum (Al ): 0.020 to 0.040 weight 0 /., Manganese (Mn): 0.01 to 0.20 weight./., The remainder of which prepares a steel slab composed of Fe and other unavoidable impurities.
  • hot rolling the steel slab to produce a hot rolled sheet Cold rolling the thin-based hot rolled sheet to produce a cold rolled sheet; Decarburizing annealing the cold rolled plate to obtain a decarburizing annealing steel sheet; And applying an annealing separator to the decarburized annealing steel sheet, and finally annealing.
  • the heating is first performed at 1200 ° C or lower.
  • the hot rolled sheet produced after hot rolling can be annealed, and the nitriding treatment can be carried out after decarburization annealing or at the same time as decarburization annealing. do.
  • the average grain size after the final annealing satisfies the range of 15 to 35 mm 3. It is desirable to control the process conditions so as to control the process conditions.
  • the cold rolled steel slab was put into a furnace maintained at 800 to 900 ° C., and then the dew point temperature and the oxidizing capacity were adjusted, and decarburization was carried out in a mixed gas atmosphere of hydrogen, nitrogen, and ammonia. The next recrystallization annealing can be performed simultaneously.
  • a slurry is prepared by mixing distilled water with an annealing separator containing MgO as a main component, and applying the slurry to the decarburized annealing steel slab using a roll or the like, followed by final annealing.
  • the first cracking temperature at the final annealing was 600 to 800 ° C
  • the second cracking temperature is 1 100 to 1300 ° C
  • the speed of the temperature increase section may be 10 to 20 ° C / hr.
  • up to the second cracking temperature of a combined gas of 25% by volume nitrogen and 75% by volume hydrogen After the atmosphere, and reaches the secondary soaking temperature is maintained in a hydrogen gas atmosphere of 100 vol. 0/0 15 hours may then furnace cooling (cooling fiirnace).
  • the surface is coated with the insulation coating composition for grain-oriented electrical steel sheet.
  • the mesoporous nanoparticles are mixed by adding a pore former and a mesoporous nanoparticle precursor to an ethanol solvent; In the mixed solution
  • the pore former is at least one member selected from the group consisting of poly (methylmethacrylate), polystyrene (polystyrene), polyethylene oxide (poly (ethylene oxide) and polypropylene oxide). It may be.
  • the mesoporous nanoparticle precursor is the mesoporous nanoparticle precursor
  • Tetraethylorthosilicate (tetraethly orthosilicate)
  • It may be at least one selected from the group consisting of magnesium alkoxide, and titanium tetraalkoxide.
  • the step of heating the pH-controlled solution is, by heating to a temperature range of 50 to 70 ° C, may be performed for 4 to 6 hours.
  • nanoparticles with nano-sized pores may be formed.
  • metal phosphate preparing a metal hydroxide aqueous solution; Adding phosphoric acid to the prepared aqueous metal hydroxide solution and mixing the same; Stirring the mixed solution; And obtaining a compound by chemical reaction of metal hydroxide and phosphoric acid (H 3 P0 4 ).
  • the grain-oriented electrical steel sheet coated with the grain-oriented electrical steel coating composition Heat treatment step may be performed at a temperature range of 250 to 950 ° C. If it exceeds 950 I: cracks may occur in the formed insulating film, and if it is less than 250 ° C, the formed insulating film may not be dried sufficiently, which may cause problems in corrosion resistance and weather resistance. It is limited.
  • Heat-treating the grain-oriented electrical steel sheet coated with the grain-oriented electrical steel coating composition may be performed for 30 seconds to 70 seconds. If more than 70 seconds may cause a problem that the productivity is lowered, if less than 30 seconds may cause problems in the corrosion resistance and weather resistance, it limits the range as described above.
  • silicon (Si) 3.2 weight 0 /.
  • Aluminum (A1) 0.03% by weight
  • the steel slab was heated at 1150 ° C. for 220 minutes and then hot rolled to a thickness of 2.3 mm to prepare a hot rolled sheet.
  • the temperature was again maintained at 920 ° C. for 90 seconds, and then immersed in water and pickled, cold rolled to a thickness of 0.23 mm to prepare a > cold rolled sheet.
  • the cold rolled sheet was placed in a furnace maintained at 860 ° C., followed by adjusting dew point temperature and oxidation capacity, and simultaneously performing decarburization and primary recrystallization annealing in a mixed gas atmosphere of hydrogen, nitrogen, and ammonia, Decarburized annealing steel sheet was prepared.
  • distilled water was mixed with an annealing separator containing MgO as a main component to prepare a slurry, and the slurry was applied to the decarburized annealing steel sheet using a roll etc. After the final annealing.
  • the primary cracking temperature was 700 ° C.
  • the secondary cracking temperature was 1200 ° C.
  • the rate of temperature increase was 15 ° C / hr.
  • hydrogen 75 vol. 0 /. Of one were to heunhap gas atmosphere, after reaching the 1200 ° C is maintained in a hydrogen gas atmosphere of 100 vol. 0 /. 15 hours and then furnace cooling (furnace cooling).
  • Nanoparticles and 51.3 weight% of aluminum phosphate and strontium phosphate 1: 1 mixed insulating coating composition was applied so that the coating amount (weight of the insulating coating per one area of the grain-oriented electrical steel sheet) was 3.3 g / m 2. , And heat-treated for 55 seconds at 870 ° C temperature conditions.
  • Example 1 it was intended to evaluate the magnetic properties and noise characteristics according to the presence and absence of the additional element and its specific content.
  • each of the grain-oriented electrical steel sheet according to Example 1 was prepared and represented by Inventive Examples 1 to 4, and the magnetic properties and the characteristic characteristics were evaluated for each, and the results are shown in Table 1.
  • the electrical steel sheet was prepared, and the magnetic and noise characteristics were evaluated under the above conditions, and the results are also shown in Table 1 together.
  • the magnetic properties of electrical steel are usually W17 / 50 and B8.
  • W17 / 50 is the power loss that occurs when the magnetic field of frequency 5 () Hz is magnetized by alternating current up to 1.7Tesla.
  • Tesla is a unit of magnetic flux density which means magnetic flux per unit area (fl ux ).
  • B8 represents the magnetic flux density value flowing in the electrical steel sheet when a current amount of 800 A / m is applied to the winding wound around the electrical steel sheet.
  • the general noise is obtained by acquiring sound pressure (air pressure) in the intersectoral area according to the international standard IEC 61672-1, converting it into frequency response data, and then responsiveness of the audible band (A-weighted decibels). Reflecting this, the noise in the audible band [dBA] is evaluated.
  • the noise evaluation method selected in the embodiment of the present invention is evaluated in the same manner as the international standard IEC 61672-1, but instead of sound pressure, vibration (vibration) data of electrical steel is obtained and evaluated as a noise conversion value [dBA].
  • the vibration of the electrical steel plate measures the vibration pattern with time by non-contact method using the laser Doppler method when the magnetic field of frequency 50Hz is magnetized by alternating current to l .TTesIa.
  • the grain-oriented electrical steel sheet containing the additive element when the grain size is controlled in the above range after high temperature annealing, it can be seen that the magnetic characteristics and the noise characteristics are excellent.
  • hollow nanoparticles are hollow silica nanoparticles
  • ceramic nanofibers are alumina (A1 2 0 3 nanofibers
  • mesoporous nanoparticles are mesoporous Porous silica
  • aluminum phosphate and magnesium phosphate were mixed in a weight ratio of 1: 1 by metal phosphate
  • colloidal silica nanoparticles were also prepared.
  • each insulating film composition according to the invention examples A1 to A10 (the weight of the oriented electrical steel sheet and the insulating film per one area) was applied to 2.7 g / m 2 , and then heat-treated for 45 seconds at 920 ° C temperature conditions. . Thereby, each oriented electrical steel sheet with an insulating film was obtained.
  • Example 2 we tried to evaluate the surface quality, insulation and noise characteristics according to the insulating film composition.
  • the surface quality is 5%, 35 ° C, and it is evaluated if the specimen is rusted for 8 hours in NaCl solution. It is excellent when the rust area is less than 5%, and good when it is less than 20% : 20-50% Slightly poor, 50% In the above, it marked as bad.
  • Insulation was measured on the top of the coating using a Franklin meter according to ASTM A717 International Standard.
  • the noise characteristics are the same as in the test example for Example 1 above.
  • the effect achieved by the insulating film composition further comprises mesoporous (Mesoporous) nanoparticles.
  • mesoporous (Mesoporous) nanoparticles it is necessary to appropriately control the content of the substances. This is related to the role of the materials, according to the invention examples A1 to A10, 0.1 to 7% by weight of the hollow nanoparticles : 0.1 to 5% by weight of ceramic nanofibers (Nanofiber), 0.1 to 5% by weight %of
  • mesoporous nanoparticles 30 to 60 weight percent colloidal silica nanoparticles, and 30 to 60 weight percent phosphate.
  • Silicon (Si) (forming an insulating film of grain-oriented electrical steel sheet) containing 3.4% by weight, aluminum (A1): 0.04 increase 0/0, and manganese (Mn): to contain, and the additional element a 0.20 increase% 0.05 0 / 0 , 0.22 ⁇ thick directional with final annealing with primary coating
  • each insulating film composition according to the invention examples B1 to B5 (the weight of the insulating film per one area of the grain-oriented electrical steel sheet) is applied to 2.0 g / m 2 , and then each heat treatment for 60 seconds at 870 ° C temperature conditions It was. Thereby, each oriented electrical steel sheet with an insulating film was obtained.
  • Example 3 Noise, Drop Ratio, and Insulation Evaluation of Optimum Conditions
  • Example 3 it was intended to evaluate the composition of the insulating film exhibiting noise, drop ratio, and insulation under optimum conditions.
  • Insulation, drip rate, and noise characteristics of the grain-oriented electrical steel sheet according to Example 3 were evaluated under 1.7 T and 50 Hz, and the results are shown in Table 3.
  • each oriented electrical steel sheet was subjected to laser magnetization in the direction perpendicular to the rolling, and the insulation properties, the droplet ratio, and the noise characteristics (1.7T 50HZ conditions) were measured, respectively.
  • the film tension (A) and the coating amount (B) of the insulating coating composition were controlled to 63 ⁇ A / B ⁇ 1.17 (2 ⁇ B ⁇ 5). It is evaluated that further excellent effect can be obtained by doing this.
  • the area ratio and noise characteristics of the l OOO kVA transformer were evaluated.
  • the insulating coating composition is according to Inventive Examples A2 and A3. Select and produce the film tension (A, MPa) and the coating amount (B, g / m 2 ) in the range of 0.63 ⁇ A / B ⁇ 1.17 (2 ⁇ B ⁇ 5), respectively,
  • the 100 kVA transformer to which the insulating film composition according to Inventive Example A2 is applied is 1000 kVA transformer to which the insulating film composition according to Inventive Example C1 and Inventive Example A3 is indicated as Inventive Example C2.
  • Test Example Evaluation of Droplet Ratio and Noise Characteristics of a 1500 kVA Transformer
  • the area ratio and noise characteristics of the 100 kVA transformer were evaluated.
  • the insulating film composition was selected according to Inventive Example A3, which was selected as the film tension (A, MPa).
  • the coating amount (B, g / m 2 ) are produced in the range of 0.63 ⁇ A / B ⁇ L17 (2 ⁇ B ⁇ 5), and after performing laser magnetization, a 1500 kVA transformer is manufactured to design flux.
  • the results of evaluation at 60 Hz according to the density are shown in FIGS. 1 and 5.
  • Comparative Example D having an A / B of 2.65, and the results were recorded in FIGS. 1 and 5.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Soft Magnetic Materials (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

방향성 전기강판용 절연피막 조성물, 이를 이용하여 표면에 절연피막이 형성된 방향성 전기강판 및 이의 제조방법에 관한 것으로서, 구체적으로는, 0.1 내지 7 중량%의 중공형 나노입자, 0.1 내지 5 중량%의 세라믹 나노파이버(Nanofiber), 0.1 내지 5 중량%의 메조포러스(Mesoporous) 나노입자, 30 내지 60 중량%의 콜로이달 실리카 나노입자, 및 30 내지 60 중량%의 인산염을 포함하는, 방향성 전기강판용 절연피막 조성물을 제공할 수 있고, 보론(B), 바나듐(V), 또는 이들의 조합에서 선택된 어느 하나의 원소를 0.005 내지 0.05 중량% 포함하고,실리콘(Si): 2.6 내지 4.3 중량%, 알루미늄(Al): 0.020 내지 0.040 중량%, 망간(Mn): 0.01 내지 0.20 중량%를 포함하며, 잔부는 Fe 및 기타 불가피한 불순물로 이루어진 방향성 전기강판의 표면에 상기 조성물에 의해 성성되는 절연피막을 포함하는 방향성 전기강판 및 이의 제조방법을 제공할 수 있다.

Description

【명세서】
【발명의 명칭】
방향성 전기강판용 절연피막 조성물, 이를 이용하여 표면에 절연피막이 형성된 방향성 전기강판 및 이의 제조방법
【기술분야】
방향성 전기강판용 절연피막 조성물, 이를 이용하여 표면에 절연피막이 형성된 방향성 전기강판 및 이의 제조방법에 관한 것이다.
【배경기술】
일반적으로, 방향성 전기강판이란 강판에 3.1% 전후의 Si성분을 함유한 것으로서, 결정립의 방위가 100}<001> 방향으로 정렬된 집합 조직을 가지고 있어, 압연방향으로 극히 우수한 자기적 특성을 가진 전기강판을 말한다.
이러한 { 100}<001> 집합조직을 얻는 것은 여러 제조 공정의 조합에 의해서 가능하며, 특히 강 슬라브의 성분을 비롯하여, 이를 가열, 열간 압연, 열연판 소둔, 1차 재결정 소둔, 및 최종 소둔하는 일련의 과정이 매우 엄밀하게 제어되어야 한다.
구체적으로, 방향성 전기강판은 1차 재결정립의 성장을 억제시키고, 성장이 억제된 결정립 중에서 { 100}<001> 방위의 결정립을 선택적으로 성장시켜 얻어진 2차 재결정 조직에 의해 우수한 자기특성을 나타내도록 하는 것이므로,
1차 재결정립의 성장 억제제가 보다 중요하다. 그리고 최종 소둔 공정에서는, 성장이 억제된 결정립 중에서 안정적으로 { 100}<001> 방위의 집합 조직을 갖는 결정립들이 우선적으로 성장할 수 있도록 하는 것이 방향성 전기강판
제조기술에서 주요한 사항 중에 하나이다.
위에서 언급한 조건이 충족할 수 있고 현재 공업적으로 널리 이용되고 있는 1차 개결정립의 성장 억제제로는, MnS, A1N, 및 MnSe 등이 있다. 구체적으로, 강 슬라브에 함유된 MnS, AIN, 및 MnSe 등을 고온에서 장시간 재가열하여 고용시킨 뒤 열간 압연하고, 이후의 냉각 과정에서 적정한 크기와 분포를 가지는 상기 성분이 석출물로 만들어져 상기 성장 억제제로 이용될 수 있는 것이다.
그러나, 이는 반드시 강 슬라브를 고온으로 가열해야 되는 문제점이 있다.
이와 관련하여, 최근에는 강 슬라브를 저온에서 가열하는 방법으로 방향성 전기강판의 자기적 특성을 개선하기 위한 노력이 있었다. 이를 위해, 방향성 전기강판에 안티몬 (Sb) 원소를 첨가하는 방법이 제시되었으나, 최종 고온 소둔 후 결정립 크기가 불균일하고 조대하여 변압기 소음 품질이 열위해지는 문제점이 지적되었다.
한편, 방향성 전기강판의 전력 손실올 최소화하기 위하여, 그 표면에 절연피막을 형성하는 것이 일반적이며, 이때 절연피막은 기본적으로 전기 절연성이 높고 소재와의 접착성이 우수하며 , 외관에 결함이 없는 균일한 색상을 가져야 한다. 이와 더블어, 최근 변압기 소음에 대한 국제규격 강화 및 관련 업계의 경쟁 심화로 인하여, 방향성 전기강판의 절연피막올 소음을 저감하기 위해 자기 변형 (자왜) 현상에 대한 연구가 필요한 실정이다ᅳ
구체적으로, 변압기 철심으로 사용되는 전기강판에 자기장이 인가되면 수축과 팽창을 반복하여 떨림 현상이 유발되며, 이러한 떨림으로 인해 변압기에서 진동과 소음이 야기된다.
일반적으로 알려진 방향성 전기강판의 경우, 강판 및
폴스테라이트 (Forstedte)계 바탕 피막 위에 절연피막을 형성하고 이러한
절연피막의 열팽창계수 차이를 이용하여 강판에 인장 응력을 부여함으로써, 철손을 개선하고 자기 변형에 기인한 소음 감소 효과를 도모하고 있지만, 최근 요구되고 있는 고급 방향성 전기강판에서의 소음 수준을 만족시키기에는 한계가 있다.
한편, 방향성 전기강판의 90°자구를 감소시키는 방법으로 습식코팅 방식이 알려져 있다. 여기서 90°자구란, 자계 인가 방향에 대하여 직각으로 향하고 있는 자화를 가지는 영역을 말하며, 이러한 90°자구의 양이 적을수록 자기 변형이 작아진다. 그러나, 일반적인 습식코팅 방식으로는 인장웅력 부여에 의한 소음 개선 효과가 부족하고, 코팅 두께가 두꺼운 후막으로 코팅해야 되는 단점이 있어, 변압기 점적율과 효율이 나빠지는 문제점이 있다.
이 밖에, 방향성 전기강판의 표면에 고장력 특성을 부여하는 방법으로 물리적 증기 증착법 (Physical Vapor Deposition, PVD) 및 화학적 증기
증착법 (Chemical Vapor Deposition, CVD) 등의 진공 증착을 통한 코팅 방식이 알려져 있다. 그러나 이러한 코팅방식은 상업적 생산이 어렵고, 이 방법에 의해 제조된 방향성 전기강판은 절연특성이 열위한 문제점이 있다. 【발명의 상세한 설명】
【기술적 과제】 이에, 본 발명자들은 보론 (B) 또는 바나듬 (V)을 단독으로 포함하거나, 이들을 모두 포함하는 방향성 전기강판을 고온 소둔함으로써, 상기 지적된 자기적 특성 및 자기 변형의 문제점을 개선하고자 한다.
아울러, 중공형 나노입자 및 메조포러스 (Mesoporous) 나노입자를 포함하는 방향성 전기강판용 절연피막 조성물에 의하여, 상기 지적된 자기 변형의 문제점을 더욱 개선하고자 한다.
구체적으로, 본 발명의 일 구현 예에서는, 0.1 내지 7 중량%의 중공형 나노입자, 0.1 내지 5 중량0 /。의 세라믹 나노파이버 (Nano fiber), 0.1 내지 5 중량 %의 메조포러스 (Mesoporous) 나노입자, 30 내지 6이중량 %의 콜로이달 실리카 나노입자, 및 30 내지 60 중량 %의 금속 인산염을 포함하는, 방향성 전기강판용 절연피막 조성물을 제공할 수 있다.
본 발명의 다른 일 구현 예에서는, 보론 (B), 바나듐 (V), 또는 이들의 조합에서 선택된 어느 하나의 원소를 0.005 내지 0.05 중량 % 포함하고,실리콘 (Si): 2.6 내지 4.3 중량0 /。, 알루미늄 (A1): 0.020 내지 0.040 중량0 /0, 망간 (Mn): 0.01 내지 0.20 중량 %를 포함하며, 잔부는 Fe 및 기타 불가피한 불순물로 이루어진 것인,방향성 전기강판, 및 그 표면에 상기 조성물에 의한 절연피막이 형성된 전기강판을 제공할 수 있다.
본 발명의 다른 일 구현예에서는, 상기와 같이 표면에 절연피막이 형성된 방향성 전기강판을 제조하는 방법을 제공할 수 있다.
【기술적 해결방법】 본 발명의 일 구현예에서는, 0.1 내지 7 중량 %의 중공형 나노입자; 0.1 내지 5 중량0 /0의 세라믹 나노파이버 (Nano fiber); 0.1 내지 5 중량0 /0의 메조포러스 (Mesoporous) 나노입자; 30 내지 60 중량0 /0의 콜로이달 실리카 나노입자; 및 30 내지 60 중량0 /。의 인산염;을 포함하는, 방향성 전기강판용 절연피막 조성물을 제공한다.
구체적으로, 상기 중공형 나노입자에 관한설명은 다음과 같다.
상기 중공형 나노입자는, Si02, Ti02, A1203, 및 MgO를 포함하는 군으로부터 선택된 적어도 1종 이상의 산화물로 이루어진 것일 수 있다.
상기 중공형 나노입자의 입경은, 50 내지 300 nm인 것일 수 있다.
상기 중공형 나노입자 의 내부 직경은 , 30내지 280 ηπι인 것일 수 있다. 한편, 상기 세라믹 나노파이버에 관한 설명은 다음과 같다.
상기 세라믹 나노파이버는, Ti02, Si02, Al203, Zr02, MgO, 및 1시 5012 를 포함하는 군으로부터 선택된 적어도 1종 이상의 산화물로 이루어진 것일 수 있다.
상기 세라믹 나노파이버의 지름은 , 5 내지 100 nm인 것일 수 있다.
다른 한편, 상기 메조포러스 나노입자에 관한 설명은 다음과 같다.
상기 메조포러스 나노입자는, Si02, Al203, MgO, 및 Ti02를 포함하는 군으로부터 선택된 적어도 1종 이상의 산화물로 이루어진 것일 수 있다.
상기 메조포러스 나노입자의 입경은 , 1 내지 800 nm인 것일 수 있다.
상기 메조포러스 나노입자의 기공도는, 상기 메조포러스 나노입자에 대하여 7 내지 35부피0 /0의 기공이 포함된 것일 수 있다.
상기 메조포러스 나노입자의 형태는, 구형, 판상형, 및 침상형을 포함하는 군에서 선택된 어느 하나 이상의 형태인 것일 수 있다.
또 다른 한편, 상기 금속 인산염에 관한 설명은 다음과 같다.
상기 금속 인산염은, 금속 수산화물 및 인산 (H3P04)의 화학적인 반웅에 의한 화합물로 이루어진 것일 수 있다.
상기 금속 인산염은, 금속 수산화물 및 인산 (H3P04)의 화학적인 반응에 의한 화합물로 이루어진 것이고, 상기 금속 수산화물은 Sr(OH)2, Al(OH)3, Mg(OH)2, Zn(OH)2, Fe(OH)3, 및 Ca(OH)2를 포함하는 군으로부터 선택된 적어도 1종인 것일 수 있다.
구체적으로, 상기 금속 수산화물 및 인산 (H3P04)의 화학적인 반응에 의한 화합물로 이루어진 것이고, 금속 수산화물의 금속원자는 인산의 인과
치환반웅하여 단일결합, 이중결합, 또는 삼중 결합을 형성하여 이루어진 것이고, 미반웅 자유인산 (¾P04)의 양이 30%이하인 화합물로 이루어진 것일 수 있다.
상기 금속 인산염은, 금속 수산화물 및 인산 (H3P04)의 화학적인 반응에 의한 화합물로 이루어진 것이고, 상기 인산에 대한 상기 금속 수산화물의 중량 비율은 1 :100 내지 30:100으로 표시되는 것일 수 있다.
본 발명의 다른 일 구현예에서는, 보론 (B), 바나듐 (V), 또는 이들의 조합에서 선택된 어느 하나의 원소를 0.005 내지 0.05 중량0 /。 포함하고, 실리콘 (Si): 2.6 내지 4.3 중량0 /。, 알루미늄 (Al): 0.020 내지 0.040 중량0 /。, 망간 (Mn):으01 내지 0.20 중량%를 포함하며, 잔부는 Fe 및 기타불가피한 불순물로 이루어진 것인, 방향성 전기강판; 및 상기 방향성 전기강판의 표면에 형성된 절연피막;을
포함하며, 상기 절연피막은, 0.1 내지 7 중량 %의 중공형 나노입자; 0.1 내지 5 증량 0/。의 세라믹 나노파이버 (Nanofiber); 0.1 내지 5 증량0 /。의
메조포러스 (Mesoporous) 나노입자; 30 내지 60 증량0 /0의 콜로이달 실리카 나노입자; 및 30 내지 60 중량%의 인산염;올 포함하는 것인, 표면에 절연피막이 형성된 방향성 전기강판을 제공한다.
이때, 상기 표면에 절연피막이 형성된 방향성 전기강판의 피막 장력 (A, MPA)은, 상기 방향성 전기강판의 일 면적 당 상기 절연피막의 중량 (B, g/m2)에 대한 비율로서, 0.20≤ 8≤ 2.50 (2≤8≤5), 구체적으로는 0.63≤ A/B≤ 1.17 (2≤B≤5)로 표시되는 것일 수 있다.
아울러, 상기 절연피막 내 각 성분에 관한 설명은 다음과 같다.
상기 중공형 나노입자는, Si02, Ti02, A1203, 및 MgO를 포함하는
군으로부터 선택된 적어도 1종 이상의 산화물로 이루어진 것일 수 있다.
상기 중공형 나노입자의 입경은, 50 내지 300 nm인 것일 수 있다.
상기 중공형 나노입자 의 내부 직경은 , 30 내지 280 nm인 것일 수 있다. 상기 세라믹 나노파이버의 지름은, 5 내지 100 nm인 것일 수 있다.
상기 메조포러스 나노입자는, Si02, Al203, MgO, 및 Ti02를 포함하는 군으로부터 선택된 적어도 1종 이상의 산화물로 이루어진 것일 수 있다.
상기 메조포러스 나노입자의 입경은, 1 내지 800 nm인 것일 수 있다.
상기 금속 인산염은, 금속 수산화물 및 인산 (H3P04)의 화학적인 반웅에 의한 화합물로 이루어진 것일 수 있다.
구체적으로, 상기 금속 수산화물 및 인산 (H3P04)의 화학적인 반웅에 의한 화합물로 이루어진 것이고, 금속 수산화물의 금속원자는 인산의 인과
치환반응하여 단일결합, 이증결합, 또는 삼중 결합을 형성하여 이루어진 것이고, 미반응 자유인산 (H3P04)의 양이 30%이하인 화합물로 이루어진 것일 수 있다.
본 발명의 또 다른 일 구현예에서는, 보론 (B), 바나듬 (V), 또는 이들의 조합에서 선택된 어느 하나의 원소를 0.005 내지 0.05 증량0 /0 포함하고, 실리콘 (Si): 2.6 내지 4.3 중량0 /0, 알루미늄 (AI): 0.020 내지 0.040 증량0 /。, 망간 (Mn): 0.01 내지 0.20 중량%를 포함하며, 잔부는 Fe 및 기타 불가피한 불순물로 이루어진 것인, 방향성 전기강판을 준비하는 단계; 중공형 나노입자, 세라믹 나노파이버 (Nanofiber): 메조포러스 (Mesoporous) 나노입자, 콜로이달실리카 나노입자, 및 금속 인산염을 흔합하여, 방향성 전기강판용 절연피막 조성물을 제조하는 단계;상기 방향성 전기강판용 절연피막 조성물을 상기 방향성 전기강판의 표면에 도포하는 단계; 상기 방향성 전기강판용 절연피막 조성물이 표면에 도포된 방향성 전기강판을 열처리하는 단계; 및 표면에 절연피막이 형성된 방향성 전기강판을 수득하는 단계;를 포함하며, 상기 방향성 전기강판용 절연피막 조성물은 , 0.1 내지 7 중량 %의 중공형 나노입자, ().1 내지 5 중량 0/。의 세라믹 나노파이버 (Nanofiber), 0.1 내지 5 중량 0/。의 메조포러스 (Mesoporous) 나노입자, 30 내지 60 중량0 /0의 콜로이달 실리카 나노입자, 및 30 내지 60 중량0 /。의 금속 인산염을 포함하는 것인, 표면에 절연피막이 형성된 방향성 전기강판의 제조방법을 제공한다.
이때, 상기 준비된 방향성 전기 강판의 평균 결정립.의 크기는, 15 내지 35 瞧인 것일 수 있다.
또한, 보론 (B), 바나듐 (V), 또는 이들의 조합에서 선택된 어느 하나의 원소를 0.005 내지 0.05 중량0 /。 포함하고, 실리콘 (Si): 2.6 내지 4.3 증량0 /0, 알루미늄 (A1): 0.020 내지 0.040 중량0 /0, 망간 (Mn): 0.01 내지 0.20 중량0 /0를 포함하며, 잔부는 Fe 및 기타 불가피한 불순물로 이루어진 것인, 방향성 전기강판을
준비하는 단계;는, 강 슬라브를 준비하는 단계; 상기 강 슬라브를 열간 압연하여, 열연판올 제조하는 단계; 상기 열연판을 냉간 압연하여, 냉연판을 제조하는 단계; 상가 넁연판을 탈탄 소둔하여, 탈탄 소둔된 강판을 수득하는 단계; 및 상기 탈탄 소둔된 강판에 소둔 분리제를 도포하고, 최종 소둔하는 단계;를 포함하는 것일 수 있다.
한편, 중공형 나노입자, 세라믹 나노파이버 (Nanofiber),
메조포러스 (Mesoporous) 나노입자, 콜로이달실리카 나노입자, 및 금속 인산염을 흔합하여, 방향성 전기강판용 절연피막 조성물을 제조하는 단계;에 관한 설명은 음과 같다.
상기 메조포러스 나노입자는, 기공 형성제 및 메조포러스 나노입자 전구체를 에탄올 용매에 투입하여, 흔합하는 단계;상기 혼합된 용액에 암모니아수를 첨가하여, pH를 10 내지 12로 조절하는 단계; 상기 pH가 조절된 용액을 가열하는 단계; 및 나노 크기의 기공이 형성된 나노입자를 수득하는 단계;를 포함하여 제조된 것일 수 있다.
상기 기공 형성제는, 폴리메틸메타크릴레이트 (poly(methylmethacrylate), PMMA), 폴리스티렌 (polystyrene), 폴리에틸렌옥사이드 (poly(ethylene oxide) 및 폴리프로필렌옥사이드 (polypropylene oxide)를 포함하는 군으로부터 선택된 적어도 1종인 것일 수 있다.
상기:메조포러스 나노입자 전구체는,
테트라에틸오르소실리케이트 (tetraethly orthosilicate),
테트라메틸오르소실리케이트 (tetramethyl orthosilicate),
알루미늄트리알콕사이드 (aluminium tri alkoxide), 마그네슘알콕사이드 (magnesium alkoxide), 및 티타늄테트라알콕사이드 (titanium tetraalkoxide)를 포함하는 군으로부터 선택된 적어도 1종인 것일 수 있다.
상기 pH가 조절된 용액을 가열하는 단계;는, 50 내지 70 °C의 온도 범위로 가열하여, 4 내지 6시간 동안 수행하는 것일,수 있다.
또한, 상기 금속 인산염은, 금속 수산화물 수용액을 제조하는 단계; 상기 제조된 금속 수산화물 수용액에 인산을 투입하여, 혼합하는 단계; 상기 흔합 용액을 교반하는 단계; 및 금속 수산화물 및 인산 (H3P04)의 화학적인 반웅에 의한 화합물을 수득하는 단계;를 포함하여 제조된 것일 수 있다.
한편, 상기 방향성 전기 강판 코팅 조성물이 도포된 방향성 전기강판을 열처리하는 단계;는, 250 내지 950 °C의 온도 범위에서 수행하는 것일 수 있다.
상기 방향성 전기 강판 코팅 조성물이 도포된 방향성 전기강판을 열처리하는 단계;는, 30초 내지 70초 동안수행하는 것일 수 있다.
【유리한 효과】
본 발명의 일 구현예에서는, 자기변형에 기인한 소음을 저감시키는 데 우수한 방향성 전기강판용 절연피막 조성물을 제공할 수 있다.
본 발명의 또 다른 일 구현 예에서는, 방향성 전기강판 내 B 또는 V에 의하여 우수한 자기 특성을 확보하면서도, 절연피막에 의하여 소음 저감 효과가 우수한, 표면에 절연피막이 형성된 방향성 전기강판을 제공할 수 있다.
본 발명의 다른 일 구현 예에서는, 상기 특성을 지닌, 표면에 절연피막이 형성된 방향성 전기강판을 제공할 수 있다.
【도면의 간단한 설명】
' 도 1은, 본 발명의 발명예들 및 비교예들에 따른 1500kVA 변압기의 소음 특성을 비교한 결과이다.
【발명의 실시를 위한 최선의 형태】 이하, 본 발명의 구현예를 상세히 설명하기로 한다. 다만, 이는 예시로서 제시되는 것으로, 이에 의해 본 발명이 제한되지는 않으며 본 발명은 후술할 청구범위의 범주에 의해 정의될 뿐이다.
본 발명의 일 구현예에서는, 0.1 내지 7 중량 %의 중공형 나노입자; 0.1 내지 5 중량 0/。의 세라믹 나노파이버 (Nanofiber); 0.1 내지 5 증량0 /0
메조포러스 (Mesoporous) 나노입자; : 30 내지 60 중량0 /0의 콜로이달 실리카 나노입자; 및 30 내지 60 중량0 /0의 금속 인산염;을 포함하는, 방향성 전기강판용 절연피막 조성물을 제공한다.
이는, 자기 변형에 기인한 진동을 효과적으로 감쇄하는 코팅제로서, 방향성 전기강판의 표면 상에 절연피막을 형성하는 용도로 사용될 수 있는 조성물에 해당된다.
방향성 전기강판의 소음은 자기 변형에 기인한 진동에서 유발되므로, 소음 특성을 개선하기 위해서는 강판에 인장 웅력을 부여함으로써 90°자구를 감소시키는 방법이 있다.
본 발명의 일 구현예에서 제공되는 방향성 전기강판용 절연피막
조성물의 경우, 중공형 나노입자를 포함함으로써 1) 종래 습식 코팅 방식의 경우, 인장 응력 부여에 의한 소음 개선 효과의 부족함과, 후막 두께로 코팅함으로 인한 변압기 점적율 및 효율이 나빠지는 문제점 , 2) 종래 진공 증착 코팅방식에 따른 상업적인 생산이 어려움과 절연 특성이 저하되는 문제점들을 모두 해소할 수 있다.
구체적으로, 상기 중공형 나노입자는 내부가 비어있고 (hollow), 이러한 빈 공간을 둘러싼 껍질이 존재하는 형태의 나노입자를 의미한다. 이러한 형태는, 고분자 (polymer) 또는 무기물을 원료 물질로 사용하여 나노입자를 합성한 뒤, 표면에 쉘 (shell)을 형성한 뒤. 선택적으로 상기 쉘 내부에 존재하는 나노입자만 제거함으로써 합성될 수 있다.
상기 중공형 나노입자는, 전술한 바와 같이 내부에 큰 빈 공간이 존재하므로, 자기 변형이 발생되면 진동 에너지를 열- 에너지로 변환하여 진동 증폭을 억제할 수 있기 때문에, 변압기 소음을 개선하는 데 효과적이다. 또한, 이는 무기 산화물로서 내열성이 우수하여 변압기 제조에 적합하고, 대량 생산이 용이한 장점이 있다.
따라서, 상기 증공형 나노입자에 의하여, 자기 변형에 기인한 소음 유발 및 코팅 상용성 저하 문제를 동시에 해소할 수 있다.
이때, 상기 중공형 나노입자만을 사용할 경우 피막 장력이 다소 열화되는 문제점이 유발될 가능성이 있을 수 있으나, 상기 세라믹 나노파이버에 의하여 이러한 점을 보완할 수 있다.
아울러, 상기 메조포러스 (Mesoporous) 나노입자는, 나노 (nano) 크기의 기공들이 표면에 분포되어 있는 형태의 나노입자를 의미한다. 이와 관련하여, 일반적으로 나노 다공성 물질은 그 기공의 크기에 따라 마이크로포러스 (2 Ά 이하의 기공 크기인 경우), 메조포러스 (2 내지 50 nra의 기공 크기인 경우), 그리고 매크로포러스 (50 nm 이상와 기공 크기인 경우)로 분류된다.
상기 메조포러스 (Mesoporous) 나노입자의 형태는, 고분자 (polymer) 등의 물질을 흔합하여 나노입자를 제조한 뒤, 열처리에 의해 상기 나노입자 내 탄소 성분만 제거하여, 상기 나노입자의 표면에 나노 (nano) 크기의 기공들을
형성시킴으로써 합성될 수 있다.
상기 메조포러스 (Mesoporous) 나노입자는, 비표면적이 크고, '미세한 기공이 있어 절연피막의 절연 특성을 개선할 수 있고, 이로 인하여 조성물 도포량의 저감되어 절연피막의 두께를 감소시킬 수 있을 뿐만 아니라 제조 단가를 절약할 수 있고, 변압기 점적율을 향상시키는 장점이 있다.
한편, 상기 중공형 나노입자 및 메조포러스 (Mesoporous) 나노입자들은 서로 화학적으로 결합하여 입자의 크기가 불균일해질 수 있고, 덩어리로 웅집될 경우에는 얼룩 무늬로 나타나는 표면 결함 및 불량한 피막 밀착성을 유발할 가능성이 있을 수 있다. 이 점에 대해서는, 상기 금속 인산염을 포함함으로써, 이러한 유발 가능성이 있을 수 있는 부반웅을 미연에 방지할 수 있다.
상기 콜로이달 나노실리카는 비표면적이 크고 화학반웅성이 우수하여 다른 첨가물들과 흔용성이 탁월하고, 코팅 후 열처리 공정에서 표면이 미려하고 표면조도가 우수한 제품을 얻을 수 있다.
이하, 본 발명의 일 구현예에서 제공되는 방향성 전기강판용 절연피막 조성물에 관하여 자세히 살펴보기로 한다.
우선, 상기 중공형 나노입자에 관한 설명은 다음과 같다.
상기 중공형 나노입자는, Si02, Ti02, A1203, 및 MgO를 포함하는
군으로부터 선택된 적어도 1종 이상의 산화물로 이루어진 것일 수 있다.
상기 중공형 나노입자의 입경은 , 50 내지 300 rati인 것일 수 있다. 상기 중공형 나노입자의 입경이 50 nm 미만일 경우에는 비표면적이 증가하게 되고, 조성물의 안정성이 떨어져 대량 생산에 부적합하며, 300 nm 초과인 경우에는 표면 조도가 거칠어져 표면 결함이 발생할 수 있기에, 상기 범위로 한정한다.
상기 중공형 나노입자 의 내부 직경은 , 30 내지 280 nm인 것일 수 있다. 상기 중공형 나노입자의 내부 직경이 30 nm 미만일 경우에는 자기변형에 기인한 진동 감쇄 기능이 저하되는 문제점이 있다. 280 nm 초과인 경우에는, 이를 방향성 전기강판에 적용하여 가공할 때 상기 중공형 나노입자가 쉽게 파괴되는 문제점이 발생할수 있기에, 상기 범위로 한정한다.
한편, 상기 세라믹 나노파이버에 관한 설명은 다음과 같다.
상기 세라믹 나노파이버는,ᄁᄋ2, ᄋ2203, ¾02, \ 0, 및 1시 5012 를 포함하는 군으로부터 선택된 적어도 1종 이상의 산화물로 이루어진 것일 수 있다.
상기 세라믹 나노파이버의 지름은 , 5 내지 100 nm인 것일 수 있다. 상기 세라믹 나노파이버의 지름이 5 nm 미만일 경우에는 상기 조성물에 의해 형성된 절연 피막의 장력 부여능이 열위한 문제점이 있고, 100 nm 초과인 경우에는 상기 조성물 내 균일한 분산이 어려운 문제점이 발생할 수 있기에, 상기 범위로 한정한다.
다른 한편, 상기 메조포러스 나노입자에 관한 설명은 다음과 같다.
상기 메조포러스 나노입자는, Si02, A1203, MgO, 및 Ti02를 포함하는 군으로부터 선택된 적어도 1종 이상의 산화물로 이루어진 것일 수 있다.
상기 메조포러스 나노입자의 입경은 , 1 내지 800 nm인 것일 수 있다. 상기 메조포러스 나노입자와 입경이 1 nm 미만일 경우에는 제조단가가 급격하게 증가하여 대량 생산에 부적합하며 , 800 nm 초과인 경우에는 표면 조도가 거칠어져 변압기 점적율이 저하되는 문제점이 발생할 수 있기에, 상기 범위로 한정한다. 상기 메조포러스 나노입자의 기공도는, 상기 메조포러스 나노입자에 대하여 7 내지 35 부피0 /。의 기공이 포함된 것일 수 있다. 만약 7 부피0 /0 미만일 경우에는 절연특성을 개선하는 효과가 미미한 문제가 발생할 수 있고, 35 부피 % 초과인 경우에는 상기 2:성물 내 균일한 분산이 어려운 문제가 발생할 수 있기에, 상기 범위로 한정한다.
상기 메조포러스 나노입자의 형태는, 구형 , 판상형, 및 침상형을 포함하는 군에서 선택된 어느 하나 이상의 형태인 것일 수 있다.
또 다른 한편, 상기 금속 인산염에 관한 설명은 다음과 같다.
상기 금속 인산염은, 금속 수산화물 및 인산 (H3P04)의 화학적인 반응에 의한 화합물로 이루어진 것일 수 있다.
상기 금속 인산염은, 금속 수산화물 및 인산 (H3P04)의 화학적인 반웅에 의한 화합물로 이루어진 것이고, 상기 금속 수산화물은 Sr(OH)2, Al(OH)3, Mg(OH)2, Zn(OH)2, Fe(OH)3, 및 Ca(OH)2를 포함하는 군으로부터 선택된 적어도 1종 이상인 것일 수 있다.
구체적으로, 상기 금속 수산화물의 금속원자는 인산의 인과 치환
반웅하여 단일결합, 이중결합, 또는 삼중 결합을 형성하여 이루어진 것이고, 미반웅 자유인산 (H3P04)의 양이 30%이하인 화합물로 이루어진 것일 수 있다.
상기 금속 인산염은, 금속 수산화물 및 인산 (H3P04)의 화학적인 반웅에 의한 화합물로 이루어진 것이고, 상기 인산에 대한 상기 금속 수산화물의 중량 비율은 1 :100 내지 30:100으로 표시되는 것일 수 있다.
만약 30: 100의 중량 비율을 초과하여 상기 금속 수산화물이 포함될 경우에는 상기 화학적인 반웅이 완결되지 않아 침전물이 생기는 문제가 발생할 수 있고, 1 :100의 중량 비율 미만으로 상기 금속 수산화물이 포함될 경우에는 내식성이 열위한 문제가 발생할 수 있기에, 상기와 같이 범위를 한정한다.
본 발명의 다른 일 구현예에서는, 보른 (B), 바나듐 (V), 또는 이들의 조합에서 선택된 어느 하나의 원소를 0.005 내지 으05 증량0 /0 포함하고, 실리콘 (Si): 2.6 내지 4.3 중량0 /0, 알루미늄 (A1): 0.020 내지 0.040 증량0 /0, 망간 (Mn): 0.01 내지 0.20 중량%를 포함하며, 잔부는 Fe 및 기타 블가피한 불순물로 이루어진
것인,방향성 전기강판; 및 상기 방향성 전기강판의 표면에 형성된 절연피막;을 포함하며, 상기 절연피막은, ( 내지 7 중량%의 중공형 나노입자 ; 0.1 내지 5 중량%의 세라믹 나노파이버 (Nanofiber); 0.1 내지 5 중량0 /。의
메조포러스 (Mesoporous) 나노입자; 30 내지 60 중량0 /0의 콜로이달 실리카 나노입자; 및 30 내지 60 중량0 /。의 인산염;을 포함하는 것인, 표면에 절연피막이 형성된 방향성 전기강판을 제공한다.
이는, 상기 방향성 전기강판의 조성 중 특히 보론 (B) 또는 바나듐 (V)을 단독으로 포함하거나, 이들을 모두 포함함으로써 우수한 자기적 특성을
보유하면서도, 상기 절연피막에 의하여, 자기 변형에 기인한 소음 유발 문제 및 코팅 상용성 저하 문제를 동시에 해소할 수 있는, 표면에 절연피막이 형성된 방향성 전기강판에 해당된다.
이하, 본 발명의 일 구현예에서 제공하는, 표면에 절연피막이 형성된 방향성 전기강판에 관하여 보다 자세히 살펴보기로 하며, 상기 방향성 전기강판용 절연피막에 포함된 각 성분의 특징 및 장점은 전술한 바와 같아 생략하기로 한다.
보다 구체적으로, 상기 준비된 방향성 전기강판에 포함된 각 원소의 함량을 한정하는 이유를 다음과 같이 설명한다.
보론 (B), 바나듬 (V), 또는 이들의 조합에서 선택된 어느 하나의 원소 또는 원소들 : 0.005 내지 0.05 중량0 /0
상기 보론 (B) 및 상기 바나듬 (V)은 모두 결정립계 편석 원소로서, 결정립계의 이동을 방해하는 원소에 해당된다. 이러한 특성에 의하여, 결정립에 대한 성장 억제제로서 { 1 10}<001>방위의 결정립 생성을 촉진하며, 2차 재결정이 잘 발달하도록 유도하므로, 결국 이들 원소는 결정립 크기를 제어하는 데 중요한 역할을 수행할 수 있다.
만약, 상기 보론 (B), 바나듐 (V), 또는 이들의 조합에서 선택된 어느 하나의 원소 또는 원소들의 함량이 0.005 중량0 /0 미만일 경우에는 억제제로서의 역할을 수행하기 어렵고 , 0.05 중량 %를 초과할 경우에는 결정립계 편석이 심하게 일어나 강판의 취성이 커짐에 따라 압연 시 판파단이 발생하게 된다. 이는, 상기와 같이 범위를 한정하는 이유가 된다.
실리콘 (Si): 2.6 내지 4.3 중량%
상기 실리콘 (Si)은 강판의 비저항을 증가시켜 철손을 감소시키는 역할을 하는데, 그 함량이 2.6 중량% 미만인 경우에는 강의 비저항이 작아져 철손 특성이 열화될 뿐만 아니라 고온 소둔 시 상변태 구간이 존재하여 2차 재결정이 불안정해지는 문제가 있고, 4.3 중량0 /0초과인 경우에는 취성이 커져 냉간 압연이 어려워진다. 이는, 상기와 같이 범위를 한정하는 이유가 된다.
알루미늄 (A1): 0.020 내지 0.040 중량0 /。
상기 알루미늄 (Al)은 최종적으로 AIN, (Al,Si)N, (Al,Si,Mn)N 형태의 질화물로 되어 억제제로 작용할 수 있는 성분이며, 그 함량이 0.020 중량0 /0 미만으로 지나치게 적은 경우에는 상기와 같은 억제제로서의 층분한 효과를 기대할 수 없고, 0.040 중량 % 초과인 경우에는 상기 질화물이 너무 조대하게 석출 및 성장되어 억제제로서의 효과를 기대할 수 없게 된다. 이는, 상기와 같이 범위를 한정하는 이유가 된다스
망간 (Mn): 0.01 내지. 0.20 중량0 /0
상기 망간 (Mn)은 상기 실리콘 (Si)과 유사한 역할을 수행하는 원소로서, 비저항을 증가시켜 철손을 감소시키는 효과가 있으며, 상기 실리콘 (Si)과 함께 질소와 반웅하여 (Al,Si,Mn)N의 석출물을 형성함으로써 1차 재결정립의 성장을 억제하며, 이로부터 2차 재결정을 일으키는데 중요한 역할을 담당한다.
그러나, 그 함량이 0.20 중량 %를 초과하는 경우에는 열간 압연 도중 오스테나이트 상변태를 촉진하므로, 1차 재결정립의 크기를 감소시키며, 이로부터 2차 재결정을 불안정하게 하는 문제가 발생한다. 이에, 상기 망간 (Mn)의 함량은 0.20중량0 /。 이하로 한정할 필요가 있다.
또한, 상기 망간 (Mn)은 오스테나이트를 형성하는 원소로서, 열간 압연 시 오스테나이트 분율을 높여 석출물들의 고용량을 많게 하며, 재석출 시 석출물을 미세화하며, MnS 형성을 통한 1차 재결정립이 너무 과대해지는 것을 방지하는 효과가 있다. 따라서 , 0.01 중량 % 이상의 적절한 함량을 포함할 필요가 있다.
한편, 방향성 전기강판의 소음은 자기 변형에 기인한 진동에서
유발되므로 소음 특성을 개선하기 위해서는 강판에 고온 소둔 후 결정립의 크기를 미세화하여 90。자구를 감소시키는 방법이 있다. 그러나, 종래 알려진 방향성 전기강판의 제조방법에 의할 경우 결정립 크기가 크고 불균일하여, 소음을 개선 효과가 불층분하다. 이에, 상기 조성의 절연피막을 상기 방향성 전기강판의 표면에 도입하였다.
구체적으로, 상기 표면에 절연피막이 형성된 방향성 전기강판의 피막 장력 (A, MPA)은, 상기 방향성 전기강판의 일 면적 당 상기 절연피막의 중량 (B, g/m2)에 대한 비율로서, ().20≤A/B≤2.50 (2≤B≤5), 구체적으로는 0.63≤ A/B≤ 1.17 (2≤B≤5)로 표시되는 것일 수 있다.
구체적으로, 상기 A로 표시되는 피막 장력은, 절연피막 조성물을 방향성 전기강판의 표면에 도포 및 건조하여 시편을 제조하고, 상기 시편의 일면에 부식 방지 코팅지를 압착시킨 뒤, 수산화나트륨과 물을 흔합하여 제조된 용출 용액에 90 I:의 온도 조건에서 20 초간 침지시켜 상기 시편의 일면의 절연 코팅올 제거하고, 건조한 뒤 시편의 휩 정도에. 따라 측정된 것으로서 그 단위는 MPa이며 상기 방향성 전기강판의 일 면적 당 싱-기 절연피막의 증량 (B, g/m2)과의 관계에서 상기 범위를 만족할 때, 소음, 점적율, 및 절연 특성의 최적 조건을 도출할 수 있다. 이러한 효과는, 후술할 실시예에 의하여 뒷받침된다.
상기와 같이 피막장력 (A) 및 절연피막의 중량 (B)을 제어함으로써 방향성 전기강판의 소음, 점적율, 및 절연 특성의 최적 조건을 도출할 수 있으며 , 이는 후술할 실시에를 통하여 층분히 뒷받침된다.
다만, 상기 A/B의 값이 0.20 미만일 경우, 방향성 전기강판의 절연 및 소음 특성이 열위해져 변압기 등의 제품으로 생산하기에 불층분하다. 아을러, 상기 A/B의 값이 2.50 초과일 경우에는 점적율이 낮아져 효율적인 변압기 제작이 어렵게 된다. 이에, 상기와 같이 A/B의 범위를 한정하는 바이다.
아울러, 상기 절연피막 내 각 성분에 관한 설명은 다음과 같고, 그 자세한 설명은 앞서 기술한 것과 같아 생략하기로 한다.
상기 중공형 나노입자는, Si02, Ti02, A1203, 및 MgO를 포함하는
군으로부터 선택된 적어도 1종 이상의 산화물로 이루어진 것일 수 있다.
상기 증공형 나노입자의 입경은 , 50 내지 300 nm인 것일 수 있다.
상기 중공형 나노입자 의 내부.직경은 , 30 내지 280 nm인 것일 수 있다. 상기 세라믹 나노파이버의 지름은 ,5 내지 100 nm인 것일 수 있다.
상기 메조포러스 나노입자는, Si02, Al203, MgO, 및 Ti02를 포함하는 군으로부터 선택된 적어도 1종 이상의 산화물로 이루어진 것일 수 있다.
상기 메조포러스 나노입자의 입경은, 1 내지 800 nm인 것일 수 있다. 상기 금속 인산염은, 금속 수산화물 및 인산 (¾P04)의 화학적인 반응에 의한 화합물로 이루어진 것일 수 있다. 상기 금속 인산염은, 금속 수산화물의 금속원자는 인산의 인과
치환반웅하여 단일결합, 이중결합, 또는 삼중 결합을 형성하여 이루어진 것이고, 미반응 자유인산 (H3P04)의 양이 30%이하인 화합물로 이루어진 것일 수 있다.
본 발명의 또 다른 일 구현예에서는, 보론 (B), 바나듬 (V), 또는 이들의 조합에서 선택된 어느 하나의 원소를 0.005 내지 0.05 중량% 포함하고, 실리콘 (Si): 2.6 내지 4.3 증량0 /。, 알루미늄 (A1):으020 내지 0.040 중량0 /0, 망간 (Mn): 0.01 내지 0.20 중량%를 포함하며, 잔부는 Fe 및 기타 불가피한 불순물로 이루어진 것인, 방향성 전기강판을 준비하는 단계; 중공형 나노입자, 세라믹 나노파이버 (Nanofiber), 메조포러스 (Mesoporous) 나노입자, 콜로이달실리카 나노입자, 및 금속 인산염을 흔합하여, 방향성 전기강판용 절연피막 조성물을 제조하는 단계;상기 방향성 전기강판용 절연피막 조성물을 상기 방향성 전기강판의 표면에 도포하는 단계; 상기 방향성 전기강판용 절연피막 조성물이 표면에 도포된 방향성 전기강판을 열처리하는 단계; 및 표면에 절연피막이 형성된 방향성 전기강판을 수득하는 단계;를 포함하며, 상기 방향성 전기강판용 절연피막 조성물은, 0.1 내지 7 중량 0/。의 중공형 나노입자, 0.1 내지 5 중량0 /。의 세라믹 나노파이버 (Nanofiber), 0.1 내지 5 중량 0/。의 메조포러스 (Mesoporous) 나노입자, 30 내지 60 증량 %의 콜로이달 실리카 나노입자, 및 30 내지 60 중량0 /0의 금속 인산염을 포함하는 것인, 표면에 절연피막이 형상된 방향성 전기강판의 제조방법을 제공한다.
이는, 앞서 설명한 우수한 특성을 가진, 표면에 절연피막이 형성된 방향성 전기강판의 제조방법에 해당된다.
상기 방향성 전기강판용 절연피막 조성물,상기 절연피막의 특징 및 장점은 전술한 바와 같아 생략하기로 하며, 이외의 사항에 대해 자세히 설명한다.
구체적으로, 상기 준비된 방향성 전기 강판의 평균 결정립의 크기는 , 15 내지 35 誦인 것일 수 있다.
이는 상기 방향성 전기강판이 보른 (B) 또는 바나듐 (V)을 단독으로 포함하거나, 이들을 모두 포함하는 것이기 때문이며, 종래 상용화된 방향성 전기강판에 비하여 그 결정립의 크기가 미세화된 범위에 해당되고, 이를 통해 방향성 전기강판의 우수한 자기적 특성올 달성할 수 있는 것이다.
여기서 고온 소둔 후 평균 결정립의 크기를 한정한 이유는, 평균
결정립의 크기가 15 醒 미만일 경우에는 자속 밀도가 열위하므로 변압기 등의 제품으로 생산하기에 충분하지 않기 때문이다. 그리고, 평균 결정립의 크기가 35 画을 초과하는 경우에는 오히려 자기 변형이 심해지는 문제가 발생한다.
이하에서는 본 발명의 일 실시예에 따른 조성물의 절연피막이 형성된 방향성 전기강판의 제조 방법에 대하여 설명한다.
먼저 보론 (B), 바나듐 (V), 또는 이들의 조합에서 선택된 어느 하나의 원소 또는 원소들을 0.005 내지 0.05 중량0 /。 포함하고, 실리콘 (Si): 2.6 내지 4.3 중량0 /。, 알루미늄 (Al): 0.020 내지 0.040 중량0 /。, 망간 (Mn): 0.01 내지 0.20 중량。/。를 포함하며, 잔부는 Fe 및 기타 불가피한 불순물로 이루어진 강 슬라브를 준비한다. 그 다음, 상기 강 슬라브를 열간 압연하여, 열연판을 제조하는 단계; 싱-기 열연판을 냉간 압연하여, 냉연판을 제조하는 단계; 상기 냉연판을 탈탄 소둔하여, 탈탄 소둔된 강판을 수득하는 단계; 및 상기 탈탄 소둔된 강판에 소둔 분리제를 도포하고, 최종 소둔하는 단계;를 포함하여 재결정이 완료된 방향성 전기강판을 준비한다.. 이 때, 슬라브를 열간압연 하기 이전에 먼저 1200 °C 이하로 가열할 수 있고, 열간 압연 이후에 제조된 열연판을 소둔할 수 있으며, 탈탄 소둔 이후 또는 탈탄 소둔과 동시에 질화처리를 할 수 있으며, 이러한 공정은 통상의 공정에 따르므로 자세한 제조 조건은 그 설명을 생략한다.
이와 같이 본 발명의 일 실시예에 따른 조성올 갖는 슬라브를 열간 압연- 냉간 압연- 탈탄 소둔- 최종 고온 소둔하는 일련의 공정에서, 상기 최종 소둔 후 평균 결정립의 크기는 15 내지 35 麵의 범위를 충족하도록 공정 조건을 제어하는 것이 바람직하다.
상기 탈탄 소둔시 냉간 압연된 강 슬라브를 800 내지 900 °C로 유지된 노 (Furnace) 속에 투입한 뒤, 이슬점 온도 및 산화능을 조절하고, 수소, 질소, 및 암모니아의 흔합 기체 분위기에서 탈탄 침질 및 1차 재결정 소둔을 동시에 수행할 수 있다.
이후, MgO가주성분인 소둔분리제에 증류수를 흔합하여 슬러리를 제조하고, 롤 (Roll) 등을 이용하여 상기 슬러리를 상기 탈탄 소둔된 강 슬라브에 도포한 후, 최종 소둔할 수 있다.
상기 최종 소둔시 1차 균열온도는 600 내지 800 °C , 2차 균열온도는 1 100 내지 1300 °C로 하였고, 승온 구간의 속도는 10 내지 20 °C/hr로 할 수 있다. 또한, 상기 2차균열온도까지는 질소 25 부피 % 및 수소 75 부피 %의 흔합 기체 분위기로 하고, 상기 2차 균열 온도에 도달한 후에는 100 부피0 /0의 수소 기체 분위기에서 15시간 유지한 다음 노냉 (fiirnace cooling)할 수 있다.
이상과 같이 평균 결정립의 크기가 제어된 방향성 전기강판에 대하여 절연피막을 형성하기 위해, 그 표면을 상기 방향성 전기강판용 절연 피막 조성물로 코팅한다. 이와 관련하여, 상기 방향성 전기강판용 절연피막조성물을 제조하는 단계;에 관한 설명은 다음과 같다.
상기 메조포러스 나노입자는, 기공 형성제 및 메조포러스 나노입자 전구체를 에탄올 용매에 투입하여, 혼합하는 단계; 상기 흔합된 용액에
암모니아수를 첨가하여 , ρΗ를 10 내지 12로 조절하는 단계; 상기 ρΗ가조절된 용액을 가열하는 단계; 및 증공 크기의 기공이 형성된 나노입자를 수득하는 단계;를 포함하여 제조된 것일 수 있다.
상기 기공 형성제는, 폴리메틸메타크릴레이트 (poly(methylmethacrylate), PMMA), 폴리스티렌 (polystyrene), 폴리에틸렌옥사이드 (poly(ethylene oxide) 및 폴리프로필렌옥사이드 (polypropylene oxide)를 포함하는 군으로부터 선택된 적어도 1종인 것일 수 있다.
상기 메조포러스 나노입자 전구체는,
테트라에틸오르소실리케이트 (tetraethly orthosilicate),
테트라메틸오르소실리케이트 (tetramethyl
orthosilicate),알루미늄트리알콕사이드 (aluminium tri alkoxide),
마그네슘알콕사이드 (magnesium alkoxide), 및 티타늄테트라알콕사이드 (titanium tetraalkoxide)를 포함하는 군으로부터 선택된 적어도 1종인 것일 수 있다.
상기 pH가조절된 용액을 가열하는 단계;는, 50 내지 70 °C의 온도 범위로 가열하여, 4 내지 6시간 동안 수행하는 것일 수 있다. 상기 은도 및 시간 범위에서 가열할 경우, 상기 메조포러스 나노입자 전구체로부터, 나노 크기의 기공이 형성된 나노입자가 생성될 수 있다.
또한, 상기 금속 인산염은, 금속 수산화물 수용액을 제조하는 단계; 상기 제조된 금속 수산화물 수용액에 인산을 투입하여, 흔합하는 단계; 상기 흔합 용액을 교반하는 단계; 및 금속 수산화물 및 인산 (H3P04)의 화학적인 반웅에 의한 화합물을 수득하는 단계;를 포함하여 제조된 것일 수 있다.
한편, 상기 방향성 전기 강판 코팅 조성물이 도포된 방향성 전기강판을 열처리하는 단계;는, 250 내지 950 °C의 온도 범위에서 수행하는 것일 수 있다. 만약 950 I:를 초과하는 경우에는 생성된 절연피막에 균열이 발생할 수 있고, 250 °C 미만인 경우에는 생성된 절연피막이 층분히 건조되지 않아 내식성 및 내후성에 문제가 발생할 수 있기에, 상기와 같이 범위를 한정한다.
상기 방향성 전기 강판 코팅 조성물이 도포된 방향성 전기강판을 열처리하는 단계;는, 30초 내지 70초 동안 수행하는 것일 수 있다. 만약 70초를 초과하는 경우에는 생산성이 저하되는 문제가 발생할 수 있고, 30초 미만인 경우에는 내식성 및 내후성에 문제가 발생할 수 있기에, 상기와 같이 범위를 한정한다.
【발명의 실시를 위한 형태】 이하, 본 발명의 바람직한 실시예 및 시험예를 기재한다. 그러나 하기 실시예는 본 발명의 바람직한 일 실시예일뿐 본 발명이 하기 실시예에 한정되는 것은 아니다.
실시예 1
우선, 실리콘 (Si)을 3.2 중량0 /。, 알루미늄 (A1): 0.03 증량 %, 및 망간 (Mn):
0.08 중량0 /。를 함유하고, 보론 (B), 바나듐 (V), 또는 이들의 조합에서 선택된 어느 하나의 원소 (이하, 첨가 원소랏 한다)를 0.005 내지 0.05 증량0 /0 함유하는 강 슬라브를 준비하였다. 이때, 상기 첨가 원소의 구체적인 함량은, 하기 표 1의 제조예 1 내지 4에 따른다.
상기 강 슬라브를 1150 °C 에서 220 분간가열한 뒤 2.3mm 두께로 열간 압연하여, 열연판을 제조하였다.
상기 열연판을 1 120 °C까지 가열한 뒤, 다시 온도를 920 °C로 하여 90 초간 유지한 후, 물에 급넁하여 산세한 다음, 0.23mm두께로 냉간 압연하여> 냉연판을 제조하였다.
상기 냉연판을 860 °C로 유지된 노 (Furnace) 속에 투입한 뒤, 이슬점 온도 및 산화능을 조절하고, 수소, 질소, 및 암모니아의 흔합 기체 분위기에서 탈탄 침질 및 1차 재결정 소둔을 동시에 수행하여, 탈탄 소둔된 강판올 제조하였다.
이후, MgO가 주성분인 소둔분리제에 증류수를 혼합하여 슬러리를 제조하고, 롤 (Roll) 등올 이용하여 상기 슬러리를 상기 탈탄 소둔된 강판에 도포한 후, 최종 소둔하였다.
상기 최종 소둔시 1차 균열온도는 700 °C , 2차 균열온도는 1200 °C로 ' 하였고, 승온 구간의 속도는 15 °C/hr로 하였다. 또한, 1200 °C까지는 질소 25 부피0 /。 및 수소 75 부피0 /。의 흔합 기체 분위기로 하였고, 1200 °C를 도달한 후에는 100 부피0 /。의 수소 기체 분위기에서 15시간 유지한 다음 노냉 (furnace cooling)하였다.
이로써, 최종 소둔 공정까지 마친 방향성 전기강 ¾을 수득할 수 있었다. 그 뒤, 3 중량0 /0의 중공형 실리카입자, 0.7 중량0 /0의 실리카 나노파이버, 5 중량0 /0의 메조포러스 구형 실리카 나노입자, 40 중량0 /0의 콜로이달 실리카
나노입자, 및 51.3 중량 %의 인산알루미늄과 인산스트론튬이 1 :1 흔합된 절연피막 조성물을 도포량 (상기 방향성 전기강판의 일 면적 당 상기 절연피막의 중량)이 3.3g/m2이 되도록 도포한 다음, 870 °C 온도 조건에서 55 초간 각각 열처리하였다.
이로써, 절연피막이 형성된 각 방향성 전기강판을 수득할 수 있었다.
실시예 1의 시험예: 자기 특성 및 소음특성 평가
실시예 1에 대하여, 상기 첨가 원소의 유무 및 그 구체적인 함량에 따른 자기 특성 및 소음 특성을 평가하고자 하였다.
1.7T, 50Hz조건에서, 실시예 1에 따른 각 방향성 전기강판을 제조하여 발명예 1 내지 4로 표시하고, 각각에 대해 자기 특성 및 특성 특성을 평가하고, 그 결과를 표 1에 나타내었다.
이와 대비되도록, 표 1의 비교예 1 내지 5에 따라 별도의 방향성
전기강판을 제조하고, 상기 조건으로 자기 특성 및 소음 특성올 평가하여, 그 결과 역시 표 1에 함께 나타내었다.
전기강판의 자기 특성은 통상 W17/50과 B8을 대표치로 사용한다.
W17/50은 주파수 5()Hz의 자기장을 1.7Tesla까지 교류로 자화시켰을 때 나타나는 전력 손실을 의미한다. 여기서, Tesla는 단위면적당 자속 (flux)를 의미하는 자속 밀도의 단위이다. B8은 전기강판 주위를 감은 권선에 800 A/m크기의 전류량을 홀렸을때, 전기강판에 흐르는 자속 밀도 값을 나타낸다.
일반적인 소음은 국제규정 IEC 61672-1에 의거하여 음압 (공기의 압력)을 사간영역에서 취득하고, 주파수 웅답 데이터로 변환한 후, 이를 가청 대역의 응답성 (A-가증 데시벨 , A-weighted decibels)을 반영하여 가청 대역의 소음 [dBA]으로 평가한다. 본 발명의 실시예에서 선택한 소음 평가 방법은, 국제규정 IEC 61672-1와 동일하게 평가하되, 음압 대신 전기강판의 떨림 (진동) 데이터를 취득하여 소음환산값 [dBA]으로 평가한다. 전기강판의 떨림은 주파수 50Hz의 자기장을 l .TTesIa까지 교류로 자화시켰을 때, 레이저도플러 방식을 활용하여 비접촉식으로 시간에 따라 진동 패턴을 측정한다.
【표 1】
Figure imgf000022_0001
표 1에 따르면, 비교예 1보다 발명예 1 내지 4의 자기 특성 및 소음 특성이 매우 우수한 것을 확인할 수 있다. 이는, 상기 첨가 원소를 포함하는 강 슬라브를 열간 압연- 냉간 압연- 탈탄 소둔- 최종 소둔하는 일련의 공정을 거쳐, 상기 최종 소둔 후 평균 결정립의 크기가 15 내지 35 隱 범위로 미세화 됨으로써 나타나는 효과임을 추론할 수 있다.
다만, 상기 첨가 원소의 함량이 지나치게 적은 비교예 2는 상기 범위를 초과하는 크기의 결정립이 생성되었고, 상기 첨가 원소의 함량이 지나치게 많은 비교예 3 내지 5의 경우에는 상기 범위에 미치지 못하는 크기의 결정립이 생성되어, 자기 특 및 소음 특성을 개선할수 없는 것을 확인할 수 있다.
이로써, 상기 첨가 원소를 함유하는 방향성 전기강판에 대하여, 고온 소둔 후 결정립 크기를 상기 범위로 제어할 경우, 자기 특성 및 소음 특성이 우수함을 알 수 있다.
실시예 2
(절연피막 조성물와 제조) 원료 물질로서, 중공형 나노입자로는 중공형 실리카 나노입자를, 세라믹 나노파이버 (Nanofiber)로는 알루미나 (A1203 나노파이버를, 메조포러스 (Mesoporous) 나노입자로는 메조포러스 실리카를, 금속 인산염으로는 인산알루미늄 및 인산마그네슘이 1 : 1의 중량 비율로 흔합된 용액올 준비하였고, 콜로이달 실리카 나노입자 또한준비하였다.
이때, 표 2에 기록된 발명예 A1 내지 A10에 따른 조성으로 상기 원료 물잘을 흔합하여, 각 절연피막조성물을 제조하였다.
(방향성 전기강판의 절연피막 형성)실리콘 (Si) 3.2 중량0 /0, 알루미늄 (A1): 0.02 중량0 /。, 및 망간 (Μη): 0·7 중량0 /0를 함유하고, 첨가 원소를 으 04 중량0 /0 함유하며, 최종 소둔되어 1차 피막을 가진, 0.27 mm 두께의 방향성
전기강판 (300x60mm)을 공시재로 준비하였다. 발명예 A1 내지 A10에 따른 각 절연피막 조성물의 도포량 (상기 방향성 전기강판와 일 면적 당 상기 절연피막의 중량)이 2.7 g/m2이 되도록 도포한 다음, 920 °C 온도 조건에서 45 초간각각 열처리하였다. 이로써, 절연피막이 형성된 각 방향성 전기강판을 수득할 수 있었다.
실시예 2에 대한시험예: 절연성 및 소음특성 평가
실시예 2에 대하여, 절연피막 조성에 따른 표면 품질, 절연성, 및 소음 특성을 평가하고자 하였다ᅳ
1.7T, 50Hz조건에서 상기 실시예 2에 따른 방향성 전기강판의 절연성 및 소음 특성을 평가하고, 그 결과를 표 2에 나타내었다.
이와 대비되도록, 표 2의 비교예 AO, 및 비교예 A1 내지 A7에 따라 별도의 방향성 전기강판을 제조하고, 상기 조건으로 절연성 및 소음 특성을 평가하여, 그 결과 역시 표 2에 함께 나타내었다.
표면품질은 5%, 35 °C, NaCl용액에 8시간 동안 시편의 녹 발생 유무를 평가하는 것으로서 녹 발생 면적이 5% 이하일 경우 우수, 20% 이하일 경우 양호 : 20 - 50% 약간 불량, 50% 이상에서는 불량으로 표시하였다.
절연성은 ASTM A717 국제규격에 따라 Franklin 측정기를 활용하여 코팅상부를 측정하였다.
소음 특성은 상기 실시예 1에 대한 시험예와 동일한 방식으로
평가하였다.
【표 2】
구분 절연피막 조성 (중량 %) XL τή 절연성 、으 품질 (mA) (dBA) 메조 알루미 이사 콜로이
형 실리 나
실리 카 파이버 (Α1:Μ 실리카
카 g)
비교예 50 50 Δ 350 66.5
AO
발명예 0.1 2.9 3 40 54 © 110 64.1 A1
발명예 5. 3 1 52 39 Δ 1 15 52.3 A2
발명예 4 0.1 2.9 35 58 ο 154 53.6 A3
발명예 3 0.5 2.5 42 52 ο 166 57.5 A4
발명예. 1.5 2.5 0.1 48 47.9 © 75 61.2 A5 발명예 4.2 2.1 0.5 35 58.2 ᅀ 214 51.1
A6
발명예 5 2 3 30 60 o 97 53.3 A7
발명예 2 4 4 60 30 Δ 85 56.5 A8
발명예 5 4 3 57 30 ο 35 54.2 A9
발명예 1.5 1.5 1 36 60 © 91 59 A10
비교예 0.05 6 3.55 32.9 57.5 V 310 66.6 A 1
비교예 6 2.05 0.05 36.9 55 X
A2
비교예 3 0.01 6 35.9 55 V 450 66.5 A3
비교예 3.5 5.5 4 29 58 X
A4
비교예 2.2 3 2.2 61 31 .6 V 345 65.8 A5
비교예 2 3.5 1 32.5 61 X
A6
비교예 4 5 3 59 29 V 470 62.9 A7
주) 물성판정 / 우수: ©, 양호 :◦, 보통: Δ, 약간불량: ▽, 불량 :X 표 2에 따르면, 비교예 AO보다 발명예 A1 내지 A10의 표면 품질이 대체로 우수하고, 절연성 및 소음 특성이 매우 개선된 것을 확인할 수 있다. 이는, 비교예 AO에 비하여 중공형 나노입자, 세라믹 나노파이버 (Nanofiber), 및
메조포러스 (Mesoporous) 나노입자를 더 포함하는 절연피막 조성물에 의하여 달성된 효과임을 추론할 수 있다. 다만, 비교예 AI 내지 A7의 결과를 고려할 때, 상기 물질들의 함량을 적절히 제어할 필요가 있다. 이는, 상기 물질들이 수행하는 역할과 관련되는 것이며, 상기 발명예 A1 내지 A10에 따르면 , 0.1 내지 7 증량 %의 중공형 나노입자: 0.1 내지 5 중량 %의 세라믹 나노파이버 (Nanofiber), 0.1 내지 5 중량 %의
메조포러스 (Mesoporous) 나노입자, 30 내지 60 중량 %의 콜로이달 실리카 나노입자, 및 30 내지 60 중량 %의 인산염,을 포함하는 것이 적절하다고 평가된다.
이로써, 상기 첨가 원소를 함유하는 방향성 전기강판에 대하여, 절연피막 성분 및 조성을 상기와 같이 제어할 경우, 절연성 및 소음 특성이 우수함을 알 수 있다.
실시예 3
(절연피막 조성물의 제조) 세라믹 나노파이버 (Nanofiber)로는 Ti02 나노파이버를, 금속 인산염으로는 인산알루미늄을 준비한 점을 제외하고, 발명예 A6 과 동일한 원료 물질을 준비하였다. 조성으로 상기 원료 물질을 흔합하여, 각 절연피막 초성물을 제조하였다.
(방향성 전기강판의 절연피막 형성) 실리콘 (Si) 3.4 중량 %를 함유하고, 알루미늄 (A1): 0.04 증량0 /0, 및 망간 (Mn): 0.20 증량 %를 함유하고, 첨가 원소를 0.05 중량0 /0 함유하며, 최종 소둔되어 1차 피막을 가진, 0.22 隱 두께의 방향성
전기강판 (600x100mm)을 공시재로 준비하였다. 발명예 B1 내지 B5에 따른 각 절연피막 조성물의 도포량 (상기 방향성 전기강판의 일 면적 당 상기 절연피막의 중량)이 2.0 g/m2이 되도록 도포한 다음, 870 °C 온도 조건에서 60 초간 각각 열처리하였다. 이로써, 절연피막이 형성된 각 방향성 전기강판을 수득할 수 있었다.
실시예 3에 대한 시험예: 최적 조건의 소음, 점적율, 및 절연성 평가 실시예 3에 대하여, 최적 조건의 소음, 점적율, 및 절연성을 나타내는 절연피막의 조성을 평가하고자 하였다.
1.7T, 50Hz조건에서 상기 실시예 3에 따른 방향성 전기강판의 절연성 , 점적율, 및 소음 특성을 평가하고, 그 결과를 표 3에 나타내었다.
이와 대비되도록, 표 3의 비교예 B1 내지 B4에 따라 별도의 방향성 전기강판을 제조하고, 상기 조건으로 절연성, 점적율, 및 소음 특성을 평가하여, 그 결과 역시 표 3에 함께 나타내었다. 구체적으로, 각 방향성 전기강판을 920 °C에서 45초 동안 건조하면, 각 코팅된 면은 코팅제에 의하여 인장 웅력이 부가되어 한 쪽 방향으로 휘고, 이러한 휨의 정도를 측정하여 피막 장력을 평가하였다.
또한, 각 방향성 전기강판의 표면에 압연 직각 방향으로 레이저 자구미세화 처리를 하여, 절연성, 점적율, 및 소음 특성 (1.7T 50HZ 조건)을 각각 측정하였다.
【표 3】
구분 여 ij口— 트서 점적율 ^으 (%) (dBA) 피막 도포량 A/B 절연
장력 (B, g/m2) (mA)
(Α,
MPa)
발명예 1 5 0.20 67 95.7 49.1
B 1
발명예 5 2 2.50 243 98.1 47
B2
발명예 2.5 4 0.63 92 96.9 44.7
B3
발명예 3.5 3 1 .17 1 15 97.5 43
B4
발명예 3 3.5 0.86 1 17 98.0 42.5
B5
비교예 0. 1 5 0.02 365 95.6 54
B 1
비교예 6 2 3.00 775 97.9 51.5
B2
비교예 0.1 0.2 0.05 954 99.0 57
B3
비교예 8.0 2.0 4.0 695 98.2 50.4 B4
표 2에 따르면, 비교예 B 1 내지 B4에 비하여 절연성 및 소음 특성이 매우 개선되고, 점적율 또한 대체로 우수한 것을 확인할 수 있다. 이는, 절연피막 조성물의 피막 장력 (A) 및 도포량 (B)을 0.20≤ A/B≤ 2.50 (2≤B≤5)로 제어함에 따라 달성된 효과임을 추른할 수 있다.
나아가, 발명예 B3 및 B4에서 소음 특성이 특히 우수한 점을 고려할 때, 절연피막 조성물의 피막 장력 (A) 및 도포량 (B)을 으63 < A/B < 1.17 (2≤B≤5)로 제어함으로써, 더욱 우수한 효과를 얻을 수 있다고 평가된다.
이로써, 상기 방향성 전기강판의 피막 장력 및 절연피막 조성물의 도포량을 제어하여, 방향성 전기강판의 소음, 점적율, 및 절연 특성의 최적 조건을 도출할 수 있음을 알 수 있다.
시험예 : 1000 kVA변압기의 점적율 및 소음특성 평가
본 발명의 일 구현예에 따른 조성물을 이용하여 표면에 절연 피막이 형성된 방향성 전기강판과 관련하여, l OOO kVA 변압기의 제조 시 점적율 및 소음 특성을 평가하였다.
실리콘 (Si) 3.2중량 %를 함유하고, 알루미늄 (Al): 0.03 중량0 /0, 및 망간 (Mn):
0.12) 중량0 /。를 함유하고, 첨가 원소를 0.03 증량 % 함유하며, 마무리 소둔된 1차 피막을 가진 판두께 0.22 腿의 방향성 전기강판에 대하여, 절연피막 조성물은 발명예 A2 및 A3에 따른 것을 선택하고, 각각 피막 장력 (A, MPa) 및 피막 도포량 (B, g/m2)을 0.63≤A/B≤1.17 (2≤B≤5) 범위가 되도록 생산하여, 레이저
자구미세화 처리를 실행한후, lOOO kVA 변압기를 제작하여 1.7T 60HZ조건에서 평가한 결과를 표 4에 나타내었다.
이때, 발명예 A2에 따른 절연피막 조성물을 적용한 lOOO kVA 변압기는 발명예 C1, 발명예 A3에 따른 절연피막 조성물을 적용한 1000 kVA 변압기는 발명예 C2로 표시하였다.
이와 대비되도록 , Α/Β가 2.75인 비교예 C에 대해서도, 동일한 평가를 수행한 후 표 4에 기록하였다.
【표 4】
卞J.ᄇ
ΙΓ 자기특성 人으
α s 口 (%) (dBA)
W17/50(W/k B8(T)
g)
비교예 0.75 1.91 97.0 56.2
c
발명예 0.73 1.92 97.7 49.5
CI
발명예 0.77 1.91 97.6 51.1
C2 표 4에 따르면, 0.63≤A/B≤1.17 (2≤B≤5)로 제어할 경우, 1000 kVA 변압기의 점적율 및 소음 특성이 모두 우수함을 알 수 있다.
시험예 : 1500 kVA 변압기의 점적율 및 소음특성 평가
. 본 발명의 일 구현예에 따른 조성물을 이용하여 표면에 절연 피막이 형성된 방향성 전기강판과 관련하여, lOOO kVA 변압기의 제조 시 점적율 및 소음 특성을 평가하였다.
실리콘 (Si) 3.18중량 %를 함유하고, 마무리 소둔된 1차 피막을 가진 판두께 0.22 誦의 방향성 전기강판에 대하여, 절연피막 조성물은 발명예 A3에 따른 것올 선택하고, 이를 피막장력 (A, MPa) 및 피막도포량 (B, g/m2)을 0.63≤A/B≤L17 (2≤B<5) 범위가 되도록 생산하여, 레이저 자구미세화 처리를 실행한 후, 1500 kVA 변압기를 제작하여 설계 자속밀도에 따라 60Hz조건에서 평가한 결과를 도 1 및 표 5에 나타내었다.
이때, 발명예 A3에 따른 절연피막 조성물을 적용한 1500 kVA 변압기는 발명예 D1로 표시하였다.
이와 대비되도록, A/B가 2.65인 비교예 D에 대해서도, 동일한 평가를 수행한 후 도 1 및 표 5에 기록하였다.
【표 5]
구분 자기 특성 소음 (60Hz, dBA)
W17/50(W/k B8( 1.3T 1.4T 1.5T 1.6T 1.7T 1.8T g) T) 비교예 0.75 1.92 53.59 57.06 59.74 62.35 66.21 70.82
D
발명예 0.72 1.93 50.71 53.1 1 55.67 57.75 60.19 63.99
Dl 도 1 및 표 5에 따르면, 0.63<A/B<1.17 (2≤B≤5)로 제어할 경우, 1500 kVA 변압기 또한 점적율 및 소음 특성이 모두 우수함을 알 수 있다.
본 발명은 상기 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 제조될 수 있으며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.

Claims

【청구의 범위】
【청구항 1】
0.1 내지 7 중량0 /。의 중공형 나노입자;
0.1 내지 5 중량0 /。의 세라믹 나노파이버 (Nanofiber);
0.1 내지 5 중량 %의 메조포러스 (Mesoporous) 나노입자;
30 내지 60 중량0 /0의 콜로이달 실리카 나노입자; 및
30 내지 60 중량0 /0의 금속 인산염;을 포함하는,
방향성 전기강판용 절연피막 조성물.
【청구항 2 ]
제 1항에 있어서,
상기 중공형 나노입자는,
Si02, Ti02, A1203, 및 MgO를 포함하는 군으로부터 선택된 적어도 1종 이상의 산화물로 이루어진 것인,
방향성 전기강판용 절연피막 조성물.
【청구항 3】
제 1항에 있어서,
상기 증공형 나노입자의 입경은,
50 내지 300 nm인 것인,
방향성 전기강판용 절연피막 조성물.
【청구항 4】
제 1항에 있어서,
상기 중공형 나노입자의 내부 직경은,
30 내지 280 nm인 것인,
방향성 전기강판용 절연피막 조성물.
【청구항 5】
제 1항에 있어서,
상기 세라믹 나노파이버는,
Ti02, Si02, A1203, Zr02, MgO, 및 L Ti5012를 포함하는 군으로부터 선택된 적어도 1종 이상의 산화물로 이루어진 것인,
방향성 전기.강판용 절연피막 조성물.
【청구항 6】
제 1항에 있어서,
상기 세라믹 나노파이버의 지름은,
5 내지 100 nm인 것인,
방향성 전기강판용 절연피막 조성물.
【청구항 7】
제 1항에 있어서,
상기 메조포러스 나노입자는,
Si02, A1203, MgO, 및 Ti02를 포함하는 군으로부터 선택된 적어도 1종 이상의 산화물로 이루어진 것인,
방향성 전기강판용 절연피막 조성물.
【청구항 8]
제 1항에 있어서,
상기 메조포러스 나노입자의 입경은,
1 내지 800 隱인 것인,
방향성 전기강판용 절연피막 조성물.
【청구항 9]
제 1항에 있어서,
상기 메조포러스 나노입자의 기공도는,
싱-기 메조포러스 나노입자에 대하여 7 내지 35 부피0 /。의 기공이 포함된 것인,
방향성 전기강판용 절연피막 조성물.
【청구항 10]
저 1 1항에 있어서,
상기 메조포러스 나노입자의 형태는,
구형, 판상형, 및 침상형을 포함하는 군에서 선택된 어느 하나 이상의 형태인 것인,
방향성 전기강판용 절연피막 조성물ᅳ
【청구항 1 1 ]
저 U항에 있어서, 상기 금속 인산염은,
금속 수산화물 및 인산 (H3P04)의 화학적인 반웅에 의한 단일결합, 이중결합, 또는 삼중결합올 형성한 화합물로 이루어진 것인,
방향성 전기강판용 절연피막조성물.
【청구항 12】
제 1항에 있어서,
상기 금속 인산염은, .
금속 수산화물 및 인산 (H3P04)의 화학적인 반웅에 의한 화합물로 이루어진 것이고,
상기 금속 수산화물은 Sr(OH)2, Al(OH)3, Mg(OH)2, Zn(OH)2, Fe(OH)3, 및
Ca(OH)2를 포함하는 군으로부터 선택된 적어도 1종인 것인,
방향성 전기강판용 절연피막 조성물.
【청구항 13]
제 1항에 있어서,
상기 금속 인산염은,
금속 수산화물 및 인산 (H3P04)의 화학적인 반웅에 의한 화합물로 이루어진 것이고,
상기 인산에 대한 상기 금속 수산화물의 중량 비율은 1 : 100 내지
30:100으로 표시되는 것인,
방향성 전기강판용 절연피막 조성물.
【청구항 14]
보론 (B), 바나듬 (V), 또는 이들의 조합에서 선택된 어느 하나의 원소를 0.005 내지 0.05 증량0 /0 포함하고,실리콘 (Si): 2.6 내지 4.3 중량0 /0, 알루미늄 (A1): 0.020 내지 0.040 중량0 /。, 망간 (Mn): 0.01 내지 0.20 중량0 /0를 포함하며, 잔부는 Fe 및 기타 불가피한 불순물로 이루어진 것인,방향성 전기강판; 및
상기 방향성 전기강판의 표면에 형성된 절연피막;을 포함하며,
상기 절연피막은 , 0.1 내지 7 중량0 /。의 중공형 나노입자; (U 내지 5 증량 %의 세라믹 나노파이버 (Nanofiber); ( 내지 5 중량0 /0
메조포러스 (Mesoporous) 나노입자; 30 내지 60 중량0 /。의 콜로이달 실리카 나노입자; 및 30 내지 60 중량%의 인산염;올 포함하는 것인, 표면에 절연피막이 형성된 방향성 전기강판.
【청구항 15】
제 14항에 있어서,
상기 표면에 절연피막이 형성된 방향성 전기강판의 피막 장력 (A, MPA)은 상기 방향성 전기강판의 일 면적 당 상기 절연피막의 중량 (B, g/m2)에 대한 비율로서, 0.20≤ 8≤2.50 (2≤8≤5)로 표시되는 것인,
표면에 절연피막이 형성된 방향성 전기강판.
【청구항 16】
제 14항에 있어서,
상기 표면에 절연피막이 형성된 방향성 전기강판의 피막 장력 (A, MPA)^ 상기 방향성 전기강판의 면적 당 상기 절연피막의 증량 (B, g/m2)에 대한 비율로서 , 0.63≤A/B≤ 1.17 (2≤8≤≤)로 표시되는 것인,
표면에 절연피막이 형성된 방향성 전기강판.
【청구항 .17】
제 14항에 있어서,
상기 중공형 나노입자는,
Si02, Ti02, A1203, 및 MgO를 포함하는 군으로부터 선택된 적어도 1종 이상의 산화물로 이루어진 것인,
표면에 절연피막이 형성된 방향성 전기강판.
【청구항 18】
제 14항에 있어서,
상기 중공형 나노입자의 입경은,
50 내지 300 nm인 것인,
표면에 절연피막이 형성된 방향성 전기강판.
【청구항 19】
제 14항에 있어서,
상기 중공형 나노입자의 내부 직경은,
30 내지 280 ran인 것인,
표면에 절연피막이 형성된 방향성 전기강판.
【청구항 20】 제 14항에 있어서,
상기 세라믹 나노파이버의 지름은,
5 내지 100 ran인 것인,
표면에 절연피막이 형성된 방향성 전기강판.
【청구항 21 ]
제 14항에 있어서,
상기 메조포러스 나노입자는,
Si02, A1203, MgO, 및 Ti02를 포함하는 군으로부터 선택된 적어도 1종 이상의 산화물로 이루어진 것인,
표면에 절연피막이 형성된 방향성 전기강판.
【청구항 22】
제 14항에 있어서,
상기 메조포러스 나노입자의 입경은,
1 내지 800 ran인 것인,
표면에 절연피막이 형성된 방향성 전기강판.
【청구항 23]
제 14항에 있어서,
상기 금속 인산염은,
금속 수산화물 및 인산 (H3P04)의 화학적인 반웅에 의한 단일결합, 이중결합, 또는 삼중결합올 형성한 화합물로 이루어진 것인,
표면에 절연피막이 형성된 방향성 전기강판.
【청구항 24]
보론 (B), 바나듐 (V), 또는 이들의 조합에서 선택된 어느 하나의 원소를 0.005 내지 0.05 중량0 /0 포함하고, 실리콘 (Si): 2.6 내지 4.3 중량0 /。, 알루미늄 (A1): 0.020 내지 0.040 중량0 /0, 망간 (Mn): 0.01 내지 0.20 중량0 /0를 포함하며, 잔부는 Fe 및 기타 불가피한 불순물로 이루어진 것인, 방향성 전기강판을 준비하는 단계;
중공형 나노입자, 세라믹 나노파이버 (Nanofiber), 메조포러스 (Mesoporous) 나노입자, 콜로이달 실리카 나노입자, 및 금속 인산염을 혼합하여, 방향성 전기강판용 절연피막 조성물을 제조하는 단계;
상기 방향성 전기강판용 절연피막 조성물을 상기 방향성 전기강판의 표면에 도포하는 단계;
상기 방향성 전기강판용 절연피막 조성물이 표면에 도포된 방향성 전기강판을 열처리하는 단계; 및
표면에 절연피막이 형성된 방향성 전기강판을 수득하는 단계;를 포함하며 상기 방향성 전기강판용 절연피막조성물은, 0.1 내지 7 중량0 /0의 증공형 나노입자, 0.1 내지 5 중량 0/。의 세라믹 나노파이버 (Nano fiber), 0.1 내지 5 증량0 /。의 메조포러스 (Mesoporous) 나노입자, 30 내지 60 증량0 /0의 콜로이달 실리카 나노입자, 및 30 내지 60 중량 %의 금속 인산염을 포함하는 것인,
표면에 절연피막이 형성된 방향성 전기강판의 제조방법.
【청구항 25】
제 24항에 있어서,
상기 준비된 방향성 전기 강판의 평균 결정립의 크기는, 15 내지 35 醒인 것인,
표면에 절연피막이 형성된 방향성 전기강판의 제조방법.
【청구항 26】
제 24항에 있어서,
보론 (B), 바나듐 (V), 또는 이들의 조합에서 선택된 어느 하나의 원소를 0.005 내지 0.05 중량0 /0 포함하고, 실리콘 (Si): 2.6 내지 4.3 증량0 /0, 알루미늄 (A1): 0.020 내지 0.040 중량 %, 망간 (Mn): 0.01 내지 0.20 중량 0/。를 포함하며, 잔부는 Fe 및 기타 블가피한 불순물로 이루어진 것인, 방향성 전기강판을 준비하는 단계;는, 강슬라브를 준비하는 단계;
상기 강 슬라브를 열간 압연하여, 열연판을 제조하는 단계;
상기 열연판을 냉간 압연하여, 넁연판을 제조하는 단계;
상기 냉연판을 탈탄 소둔하여, 탈탄 소둔된 강판을 수득하는 단계; 및 상기 탈탄 소둔된 강판에 소둔 분리제를 도포하고, 최종 소둔하는 단계;를 포함하는 것인,
표면에 절연피막이 형성된 방향성 전기강판의 제조방법.
[청구항 27】
제 24항에 있어서,
증공형 나노입자, 세라믹 나노파이버 (Nanofiber), 메조포러스 (Mesoporous) 나노입자, 콜로이달 실리카 나노입자, 및 금속 인산염을 혼합하여, 방향성 전기강판용 절연피막조성물을 제조하는 단계;에서,
상기 메조포러스 나노입자는,
기공 형성제 및 메조포러스 나노입자 전구체를 에탄올 용매에 투입하여, 흔합하는 단계;
상기 흔합된 용액에 암모니아수를 첨가하여 , ρΗ를 10 내지 12로 조절하는 단계;
상기 ρΗ가 조절된 용액올 가열하는 단계; 및
나노 크기의 기공이 형성된 나노입자를 수득하는 단계;를 포함하여 제조된 것인,
표면에 절연피막이 형성된 방향성 전기강판의 제조방법 .
【청구항 28】
제 27항에 있어서,
상기 기공 형성제는,
폴리메틸메타크릴레이트 (poly(methylmethacrylate), PMMA),
폴리스티렌 (polystyrene), 폴리에틸렌옥사이드 (poly(ethylene oxide) 및
폴리프로필렌옥사이드 (poly(propylene oxide)를 포함하는 군으로부터 선택된 적어도 1종인 것인,
표면에 절연피막이 형성된 방향성 전기강판의 제조방법 .
【청구항 29】
제 27항에 있어서,
상기 메조포러스 나노입자 전구체는,
테트라에틸오르소실리케이트 (tetraethly orthosilicate),
테트라메틸오르소실리케이트 (tetramethyl orthosilicate),
알루미늄트리알콕사이드 (aluminium tri alkoxide), 마그네슘알콕사이드 (magnesium alkoxide), 및 티타늄테트라알콕사이드 (titanium tetraalkoxide)를 포함하는 군으로부터 선택된 적어도 1종인 것인,
표면에 절연피막이 형성된 방향성 전기강판의 제조방법.
【청구항 30】
제 27항에 있어서, 상기 pH가 조절된 용액을 가열하는 단계;는,
50 내지 70 °C의 온도 범위로 가열하여, 4 내지 6시간 동안 수행하는 것인,
표면에 절연피막이 형성된 방향성 전기강판의 제조방법.
【청구항 31】
제 24항에 있어서,
중공형 나노입자, 세라믹 나노파이버 (Nanofiber), 메조포러스 (Mesoporous) 나노입자, 콜로이달 실리카 나노입자, 및 금속 인산염을 흔합하여, 방향성 전기강판용 절연피막조성물을 제조하는 단계;에서,
상기 금속 인산염은,
금속 수산화물 수용액을 제조하는 단계;
상기 제조된 금속 수산화물 수용액에 인산을 투입하여, 흔합하는 단계; 상기 흔합 용액을 교반하는 단계; 및
금속 수산화물 및 인산 (H3P04)의 화학적인 반응에 의한 화합물을 수득하는 단계;를 포함하여 제조된 것인,
표면에 절연피막이 형성된 방향성 전기강판의 제조방법.
【청구항 32】
제 24항에 있어서,
상기 방향성 전기 강판 코팅 조성물이 도포된 방향성 전기강판을 열처리하는 단계;는,
250 내지 950 °C의 온도 범위에서 수행하는 것인,
표면에 절연피막이 형성된 방향성 전기강판의 제조방법 .
【청구항 33]
제 24항에 있어서,
상기 방향성 전기 강판 코팅 조성물이 도포된 방향성 전기강판을 열처리하는 단계;는,
30초 내지 70초 동안 수행하는 것인,
표면에 절연피막이 형성된 방향성 전기강판의 제조방법 .
PCT/KR2014/011839 2014-11-14 2014-12-04 방향성 전기강판용 절연피막 조성물, 이를 이용하여 표면에 절연피막이 형성된 방향성 전기강판 및 이의 제조방법 WO2016076471A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017525983A JP6383495B2 (ja) 2014-11-14 2014-12-04 方向性電磁鋼板用絶縁被膜組成物およびこれを用いて表面に絶縁被膜が形成された方向性電磁鋼板ならびにその製造方法
US15/526,718 US10385218B2 (en) 2014-11-14 2014-12-04 Insulating coating composition for oriented electrical steel sheet, oriented electrical steel sheet having insulating coating formed on surface thereof by using same, and preparation method therefor
EP14905835.6A EP3219825B1 (en) 2014-11-14 2014-12-04 Oriented electrical steel sheet having insulating coating formed on surface thereof, and preparation method therefor
CN201480083458.6A CN106922155B (zh) 2014-11-14 2014-12-04 取向电工钢板用绝缘覆膜组合物、利用它在表面形成绝缘覆膜的取向电工钢板及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020140158758A KR102177038B1 (ko) 2014-11-14 2014-11-14 방향성 전기강판용 절연피막 조성물, 이를 이용하여 표면에 절연피막이 형성된 방향성 전기강판 및 이의 제조방법
KR10-2014-0158758 2014-11-14

Publications (1)

Publication Number Publication Date
WO2016076471A1 true WO2016076471A1 (ko) 2016-05-19

Family

ID=55954541

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/011839 WO2016076471A1 (ko) 2014-11-14 2014-12-04 방향성 전기강판용 절연피막 조성물, 이를 이용하여 표면에 절연피막이 형성된 방향성 전기강판 및 이의 제조방법

Country Status (6)

Country Link
US (1) US10385218B2 (ko)
EP (1) EP3219825B1 (ko)
JP (1) JP6383495B2 (ko)
KR (1) KR102177038B1 (ko)
CN (1) CN106922155B (ko)
WO (1) WO2016076471A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018028140A (ja) * 2016-08-19 2018-02-22 Jfeスチール株式会社 クロムフリー張力被膜形成用処理液、クロムフリー張力被膜付方向性電磁鋼板、クロムフリー張力被膜付方向性電磁鋼板の製造方法およびトランス用コア
CN115851004A (zh) * 2021-09-24 2023-03-28 宝山钢铁股份有限公司 一种耐热刻痕型取向硅钢涂层用涂液、取向硅钢板及其制造方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101906962B1 (ko) 2016-12-22 2018-10-11 주식회사 포스코 방향성 전기강판용 소둔 분리제 조성물, 방향성 전기강판 및 방향성 전기강판의 제조방법
WO2018117670A2 (ko) * 2016-12-23 2018-06-28 주식회사 포스코 전기강판 접착 코팅 조성물, 전기강판 제품, 및 이의 제조 방법
JP6432713B1 (ja) * 2017-02-28 2018-12-05 Jfeスチール株式会社 方向性電磁鋼板およびその製造方法
EP3495430A1 (de) * 2017-12-07 2019-06-12 Henkel AG & Co. KGaA Chrom- und phosphatfreie beschichtung zur elektrischen isolierung von elektroband
WO2019230466A1 (ja) * 2018-05-30 2019-12-05 Jfeスチール株式会社 絶縁被膜付き電磁鋼板およびその製造方法、前記電磁鋼板を用いてなる変圧器の鉄心、変圧器ならびに変圧器の誘電損失の低減方法
RU2753539C1 (ru) 2018-08-17 2021-08-17 ДжФЕ СТИЛ КОРПОРЕЙШН Способ производства раствора для обработки для формирования изоляционного покрытия, способ производства стального листа с нанесенным изолирующим покрытием и устройство для производства раствора для обработки для формирования изоляционного покрытия
KR102175065B1 (ko) * 2018-11-30 2020-11-05 주식회사 포스코 무방향성 전기강판 및 그 제조방법
KR102176351B1 (ko) * 2018-11-30 2020-11-09 주식회사 포스코 무방향성 전기강판 및 그 제조방법
CN114555246B (zh) * 2019-10-31 2023-08-22 杰富意钢铁株式会社 覆膜形成方法和带有绝缘覆膜的电磁钢板的制造方法
CN111304652B (zh) * 2020-03-22 2022-07-05 浙江宇达新材料有限公司 一种用涂覆陶瓷膜替代磷化的工艺方法
KR20230095561A (ko) * 2021-12-22 2023-06-29 주식회사 포스코 전기강판 절연 피막 조성물, 전기강판, 및 이의 제조 방법
CN116496647B (zh) * 2022-11-11 2024-01-16 无锡普天铁心股份有限公司 一种用于取向硅钢表面改性的绝缘涂液及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08225900A (ja) * 1995-02-20 1996-09-03 Nippon Steel Corp 絶縁被膜特性の優れるグラス被膜を有しない厚手方向性電磁鋼板及びその製造方法
KR20100053610A (ko) * 2007-08-09 2010-05-20 제이에프이 스틸 가부시키가이샤 방향성 전기 강판용 절연 피막 처리액, 및 절연 피막을 갖는 방향성 전기 강판의 제조 방법
KR20120073655A (ko) * 2010-12-27 2012-07-05 주식회사 포스코 방향성 전기강판의 절연피막 조성물, 이를 이용한 방향성 전기강판의 절연피막 형성방법 및 이로부터 제조된 방향성 전기강판
JP2014095129A (ja) * 2012-11-09 2014-05-22 Jfe Steel Corp 方向性電磁鋼板およびその製造方法
KR20140088131A (ko) * 2011-11-04 2014-07-09 타타 스틸 유케이 리미티드 코팅된 결정 방향성 강

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4713123A (en) 1985-02-22 1987-12-15 Kawasaki Steel Corporation Method of producing extra-low iron loss grain oriented silicon steel sheets
EP0193324B1 (en) 1985-02-22 1989-10-11 Kawasaki Steel Corporation Extra-low iron loss grain oriented silicon steel sheets
KR950015006B1 (ko) 1989-10-23 1995-12-21 가부시끼가이샤 도시바 변압기 코어
JP3023242B2 (ja) 1992-05-29 2000-03-21 川崎製鉄株式会社 騒音特性の優れた低鉄損一方向性珪素鋼板の製造方法
JPH08333640A (ja) * 1995-06-07 1996-12-17 Nippon Steel Corp 耐熱性と密着性の極めて優れる方向性電磁鋼板とその絶縁被膜形成方法
JP3884528B2 (ja) 1997-06-10 2007-02-21 株式会社プライムポリマー 成形装置および成形方法
KR20010010424A (ko) 1999-07-20 2001-02-15 이형도 플라이 백 트랜스포머의 포커스유니트 커버 결합장치
KR100314959B1 (ko) 1999-07-23 2001-11-26 이중호 정수용 필터 조립체의 활성탄 필터
JP3500103B2 (ja) 1999-12-24 2004-02-23 新日本製鐵株式会社 トランス用一方向性電磁鋼板
KR100442099B1 (ko) 2000-05-12 2004-07-30 신닛뽄세이테쯔 카부시키카이샤 저철손 및 저소음 방향성 전기 강판 및 그의 제조 방법
JP2002057019A (ja) 2000-05-30 2002-02-22 Nippon Steel Corp 低騒音トランス用一方向性電磁鋼板
JP3485540B2 (ja) 2000-12-28 2004-01-13 新日本製鐵株式会社 低騒音トランス
CN1247455C (zh) * 2002-12-30 2006-03-29 新加坡纳米材料科技有限公司 一种二氧化硅介孔材料及其制备方法
CN2696828Y (zh) 2004-03-09 2005-05-04 东周化学工业股份有限公司 具有膜层的金属板改良结构
TWI305548B (en) 2005-05-09 2009-01-21 Nippon Steel Corp Low core loss grain-oriented electrical steel sheet and method for producing the same
BRPI0520381B1 (pt) 2005-07-14 2016-03-08 Nippon Steel & Sumitomo Metal Corp agente de película isolante para chapa de aço elétrico com grãos orientados que não contém cromo.
JP5000182B2 (ja) 2006-04-07 2012-08-15 新日本製鐵株式会社 磁気特性の優れた方向性電磁鋼板の製造方法
BRPI0712594B1 (pt) * 2006-05-19 2018-07-10 Nippon Steel & Sumitomo Metal Corporation Chapa de aço elétrica com grão orientado tendo uma película de isolamento de alta resistência à tração e método de tratamento de tal película de isolamento.
JP4835326B2 (ja) 2006-08-28 2011-12-14 Jfeスチール株式会社 方向性電磁鋼板の製造方法
KR20100091493A (ko) 2009-02-10 2010-08-19 안승일 저철손 저소음 방향성전기강판 성형장치
JP5691886B2 (ja) 2010-06-30 2015-04-01 Jfeスチール株式会社 方向性電磁鋼板および方向性電磁鋼板の絶縁被膜形成方法
JP5923882B2 (ja) 2010-06-30 2016-05-25 Jfeスチール株式会社 方向性電磁鋼板およびその製造方法
JP5998424B2 (ja) 2010-08-06 2016-09-28 Jfeスチール株式会社 方向性電磁鋼板
CN103069038B (zh) 2010-08-06 2014-02-19 杰富意钢铁株式会社 方向性电磁钢板
KR101286248B1 (ko) 2011-07-18 2013-07-15 주식회사 포스코 방향성 전기강판의 절연피막 조성물 및 그 제조방법, 절연피막 조성물을 이용한 방향성 전기강판의 절연피막 형성방법 및 이에 의해 절연피막이 형성된 방향성 전기강판
KR101309724B1 (ko) 2011-09-29 2013-09-17 주식회사 포스코 절연 피막의 밀착성이 우수한 방향성 전기강판과 그 제조 방법
KR101308732B1 (ko) 2011-11-21 2013-09-13 주식회사 포스코 광택과 절연성이 우수한 방향성 전기강판용 장력코팅제 조성물 및 이를 이용한 절연피막 형성방법, 그 방법에 의해 형성된 절연피막을 갖는 방향성 전기강판
KR101283702B1 (ko) 2011-11-21 2013-07-05 주식회사 포스코 건조속도 및 절연성이 우수한 비크롬계 방향성 전기강판용 장력코팅제 조성물 및 이를 이용한 절연피막 형성방법, 이 방법에 의해 형성된 절연피막을 갖는 방향성 전기강판
KR101324260B1 (ko) * 2011-12-28 2013-11-01 주식회사 포스코 무방향성 전기강판의 절연 피막 조성물, 그 제조방법 및 절연 피막조성물이 적용된 무방향성 전기강판
KR101632876B1 (ko) * 2013-12-23 2016-06-23 주식회사 포스코 전기강판용 코팅제, 이의 제조방법 및 이를 사용한 전기강판 코팅방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08225900A (ja) * 1995-02-20 1996-09-03 Nippon Steel Corp 絶縁被膜特性の優れるグラス被膜を有しない厚手方向性電磁鋼板及びその製造方法
KR20100053610A (ko) * 2007-08-09 2010-05-20 제이에프이 스틸 가부시키가이샤 방향성 전기 강판용 절연 피막 처리액, 및 절연 피막을 갖는 방향성 전기 강판의 제조 방법
KR20120073655A (ko) * 2010-12-27 2012-07-05 주식회사 포스코 방향성 전기강판의 절연피막 조성물, 이를 이용한 방향성 전기강판의 절연피막 형성방법 및 이로부터 제조된 방향성 전기강판
KR20140088131A (ko) * 2011-11-04 2014-07-09 타타 스틸 유케이 리미티드 코팅된 결정 방향성 강
JP2014095129A (ja) * 2012-11-09 2014-05-22 Jfe Steel Corp 方向性電磁鋼板およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3219825A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018028140A (ja) * 2016-08-19 2018-02-22 Jfeスチール株式会社 クロムフリー張力被膜形成用処理液、クロムフリー張力被膜付方向性電磁鋼板、クロムフリー張力被膜付方向性電磁鋼板の製造方法およびトランス用コア
CN115851004A (zh) * 2021-09-24 2023-03-28 宝山钢铁股份有限公司 一种耐热刻痕型取向硅钢涂层用涂液、取向硅钢板及其制造方法
CN115851004B (zh) * 2021-09-24 2023-12-12 宝山钢铁股份有限公司 一种耐热刻痕型取向硅钢涂层用涂液、取向硅钢板及其制造方法

Also Published As

Publication number Publication date
EP3219825A4 (en) 2017-10-25
CN106922155A (zh) 2017-07-04
US10385218B2 (en) 2019-08-20
EP3219825B1 (en) 2019-08-28
KR20160057753A (ko) 2016-05-24
US20170313887A1 (en) 2017-11-02
CN106922155B (zh) 2019-11-05
EP3219825A1 (en) 2017-09-20
JP2018504516A (ja) 2018-02-15
KR102177038B1 (ko) 2020-11-10
JP6383495B2 (ja) 2018-08-29

Similar Documents

Publication Publication Date Title
WO2016076471A1 (ko) 방향성 전기강판용 절연피막 조성물, 이를 이용하여 표면에 절연피막이 형성된 방향성 전기강판 및 이의 제조방법
JP6686146B2 (ja) 方向性電磁鋼板の絶縁被膜形成方法、及び絶縁被膜が形成された方向性電磁鋼板
US20230407432A1 (en) Annealing separator composition for grain-oriented electrical steel sheet, grain-oriented electrical steel sheet, and method for producing grain-oriented electrical steel sheet
US10648083B2 (en) Pre-coating agent composition for grain-oriented electrical steel sheet, grain-oriented electrical steel sheet comprising same, and manufacturing method therefor
WO2017111507A1 (ko) 방향성 전기강판용 절연피막 조성물, 이를 이용한 방향성 전기강판의 절연피막 형성방법, 및 방향성 전기강판
JP3539028B2 (ja) 高磁束密度一方向性けい素鋼板のフォルステライト被膜とその形成方法
JP6146098B2 (ja) 方向性電磁鋼板及びその製造方法
KR101651431B1 (ko) 방향성 전기강판의 제조방법
JP5862582B2 (ja) 方向性電磁鋼板の製造方法および方向性電磁鋼板並びに方向性電磁鋼板用表面ガラスコーティング
KR101623874B1 (ko) 방향성 전기강판용 절연피막 조성물, 이를 이용한 방향성 전기강판의 절연피막 형성방법, 및 방향성 전기강판
KR101410474B1 (ko) 방향성 전기강판 및 그 제조방법
JP2019137874A (ja) 方向性電磁鋼板とその製造方法
JP7018169B2 (ja) 方向性電磁鋼板の製造方法、および方向性電磁鋼板
CA3151419C (en) Electrical steel sheet with insulating film
WO2023134740A1 (zh) 一种用于取向硅钢涂层的涂料、取向硅钢板及其制造方法
JP6841296B2 (ja) 絶縁被膜形成用処理液及び絶縁被膜付き電磁鋼板の製造方法並びに絶縁被膜付き電磁鋼板
KR20180041652A (ko) 방향성 전기강판용 절연피막 조성물, 방향성 전기강판의 절연피막 형성 방법, 및 절연피막이 형성된 방향성 전기강판
KR20230095020A (ko) 방향성 전기강판용 소둔 분리제 조성물 및 방향성 전기강판의 제조방법
JPH09291313A (ja) 磁気特性・被膜特性に優れる方向性けい素鋼板の製造方法
KR101060913B1 (ko) 철손특성이 우수한 고규소 방향성 전기강판의 제조방법
JP2001192737A (ja) グラス被膜特性及び磁気特性の優れる方向性電磁鋼板の製造方法
JPH11302742A (ja) 方向性電磁鋼板の焼鈍分離剤およびこれを用いたグラス被膜と磁気特性の優れる方向性電磁鋼板の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14905835

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017525983

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2014905835

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15526718

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE