WO2016076191A1 - 真空ポンプ及び該真空ポンプの異常原因推定方法 - Google Patents

真空ポンプ及び該真空ポンプの異常原因推定方法 Download PDF

Info

Publication number
WO2016076191A1
WO2016076191A1 PCT/JP2015/081147 JP2015081147W WO2016076191A1 WO 2016076191 A1 WO2016076191 A1 WO 2016076191A1 JP 2015081147 W JP2015081147 W JP 2015081147W WO 2016076191 A1 WO2016076191 A1 WO 2016076191A1
Authority
WO
WIPO (PCT)
Prior art keywords
contact
displacement
rotating body
signal
estimated
Prior art date
Application number
PCT/JP2015/081147
Other languages
English (en)
French (fr)
Inventor
好伸 大立
靖 前島
勉 高阿田
野中 学
Original Assignee
エドワーズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エドワーズ株式会社 filed Critical エドワーズ株式会社
Priority to CN201580059301.4A priority Critical patent/CN107110167B/zh
Priority to KR1020177011463A priority patent/KR102440091B1/ko
Priority to US15/521,793 priority patent/US10578158B2/en
Publication of WO2016076191A1 publication Critical patent/WO2016076191A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0444Details of devices to control the actuation of the electromagnets
    • F16C32/0446Determination of the actual position of the moving member, e.g. details of sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D17/00Regulating or controlling by varying flow
    • F01D17/10Final actuators
    • F01D17/12Final actuators arranged in stator parts
    • F01D17/14Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits
    • F01D17/16Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits by means of nozzle vanes
    • F01D17/167Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits by means of nozzle vanes of vanes moving in translation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
    • F04D19/042Turbomolecular vacuum pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/001Testing thereof; Determination or simulation of flow characteristics; Stall or surge detection, e.g. condition monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/008Stop safety or alarm devices, e.g. stop-and-go control; Disposition of check-valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/02Surge control
    • F04D27/0292Stop safety or alarm devices, e.g. stop-and-go control; Disposition of check-valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0474Active magnetic bearings for rotary movement
    • F16C32/0489Active magnetic bearings for rotary movement with active support of five degrees of freedom, e.g. two radial magnetic bearings combined with an axial bearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D17/00Regulating or controlling by varying flow
    • F01D17/02Arrangement of sensing elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D21/00Shutting-down of machines or engines, e.g. in emergency; Regulating, controlling, or safety means not otherwise provided for
    • F01D21/003Arrangements for testing or measuring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/05Shafts or bearings, or assemblies thereof, specially adapted for elastic fluid pumps
    • F04D29/056Bearings
    • F04D29/058Bearings magnetic; electromagnetic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/80Diagnostics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/60Fluid transfer
    • F05D2260/607Preventing clogging or obstruction of flow paths by dirt, dust, or foreign particles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/80Diagnostics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2360/00Engines or pumps
    • F16C2360/44Centrifugal pumps
    • F16C2360/45Turbo-molecular pumps

Definitions

  • the present invention relates to a vacuum pump and a method for estimating an abnormality cause of the vacuum pump, and a vacuum pump capable of analyzing the cause of contact when detecting contact between a rotating body and a stator and taking appropriate measures, and the vacuum pump
  • the present invention relates to an abnormal cause estimation method.
  • a vacuum pump is generally used for evacuating the chamber.
  • a turbo molecular pump which is one of the vacuum pumps, is used frequently from the viewpoints of particularly low residual gas and easy maintenance.
  • the turbo molecular pump not only evacuates the chamber, but also exhausts these process gases from the chamber. Also used.
  • This turbo molecular pump has a very small clearance between the rotating body such as a rotating blade rotating at high speed and the stator. For this reason, when a solid product such as a solidified component of exhaust gas accumulates inside the vacuum pump, when the rotating body deforms due to a creep phenomenon, or when wear of the protective bearing progresses, the rotating body and the stator are separated. There is a risk of contact.
  • the vibration amplitude increases due to mechanical vibration accompanying opening and closing of the vacuum valve to which the pump is connected, and external impact (disturbance) applied to the device such as the vacuum vessel to which the pump and pump are connected. It was indistinguishable from the increase in vibration amplitude due to physical contact between the body and the stator.
  • Patent Document 2 in order to accurately and accurately detect that the accumulated amount of the solid product has reached the clearance between the rotating body and the stator, vibration of an acceleration pickup or the like in which the contact between the rotating body and the stator is attached to the stator. Judgment is made using a sensor. Thus, the physical contact between the rotating body and the stator is detected with high accuracy.
  • the method according to Patent Document 2 has a problem that a fixing method using a band-pass filter or an elastic member must be taken in order to increase the reliability of the vibration signal from the stator.
  • the present invention has been made in view of such conventional problems, and a vacuum pump capable of analyzing the cause of contact when detecting contact between a rotating body and a stator and taking appropriate measures, and the vacuum pump
  • An object of the present invention is to provide a method for estimating the cause of abnormality.
  • the present invention is an invention of a vacuum pump, in which a rotating body displacement detecting means for detecting a displacement of a rotating body as a signal, and a rotating body displacement threshold set for the displacement signal Contact determining means for determining the contact estimated time when the displacement signal exceeds the rotating body displacement threshold; storage means for storing the displacement signal; and the storage stored in the storage means
  • the rotating body storage displacement threshold set for the displacement signal before the estimated contact time and the displacement signal stored in the storage means before the estimated contact time are stored in the rotating body stored displacement.
  • an abnormal cause estimating means for estimating the cause of contact based on whether or not the threshold value is exceeded.
  • contact is determined only by the displacement signal without installing a vibration sensor. That is, if the value of the displacement signal exceeds the rotating body storage displacement threshold within a predetermined time before the estimated contact time, the contact is caused by an increase in the unbalance amount of the rotating body or an external impact, and the product It is determined that the contact is not caused by increased deposition.
  • the physical contact state between the rotating body and the stator can be grasped without adding a vibration sensor or an elastic member. In addition, it can be seen which cause caused the contact. Appropriate measures can be taken by understanding the cause.
  • the present invention is an invention of a vacuum pump, wherein a fixed part physical quantity detecting means for detecting a physical quantity of a fixed part as a signal, and a fixed part physical quantity threshold value set for the physical quantity signal Contact determining means for determining when the physical quantity signal exceeds the fixed part physical quantity threshold value as a contact estimation time, rotating body displacement detecting means for detecting the displacement of the rotating body as a signal, and A storage means for storing a signal; a rotating body storage displacement threshold set for the displacement signal before the estimated contact time stored in the storage means; and the contact stored in the storage means And an abnormality cause estimating means for estimating the cause of contact based on whether or not the displacement signal before the estimated time exceeds the rotating body storage displacement threshold.
  • the time when the signal of the physical quantity of the fixed part exceeds the fixed part physical quantity threshold is determined as the contact estimation time.
  • the signal of the physical quantity of the fixed part is, for example, the displacement, speed, acceleration, etc. of the fixed part.
  • the acceleration of the fixed portion is detected by the vibration sensor, the physical contact state between the rotating body and the stator can be grasped with high accuracy using the acceleration signal and the displacement signal from the displacement sensor. Therefore, an appropriate overhaul time due to product accumulation can be grasped. Appropriate measures can be taken by understanding the cause.
  • the present invention is an invention of a vacuum pump, characterized in that the physical quantity of the fixed part is an acceleration of the fixed part or a force acting on the fixed part.
  • the present invention is an invention of a vacuum pump, wherein the physical quantity of the fixed part is a physical quantity corresponding to a result obtained by differentiating or integrating the acceleration of the fixed part a predetermined number of times. To do.
  • the present invention is an invention of a vacuum pump, wherein the abnormality cause estimating means uses the displacement signal before the estimated contact time stored in the storage means for the rotating body storage displacement. When the threshold value is not exceeded, it is estimated that the contact is caused by external impact or product accumulation.
  • the present invention is an invention of a vacuum pump, and is set for a storage means for storing the physical quantity and a signal of the physical quantity before the estimated contact time stored in the storage means.
  • a fixed portion storage physical quantity threshold wherein the abnormality cause estimation means has a signal of the physical quantity before the estimated contact time stored in the storage means that exceeds the fixed section storage physical quantity threshold. If not, it is estimated that the contact is due to external impact or product deposition.
  • the present invention is an invention of a vacuum pump, and is determined based on a gap amount between the rotating body and a fixed portion facing the rotating body or the gap amount after the contact estimation time.
  • the cause of the contact is estimated to be product deposition based on the difference between the predetermined value obtained and the maximum displacement of the rotating body.
  • the present invention is an invention of a vacuum pump, wherein the displacement signal before the estimated contact time stored in the storage means exceeds the rotating body storage displacement threshold.
  • the cause of the contact is estimated from the number of times.
  • the present invention is an invention of a vacuum pump abnormality cause estimation method, wherein the displacement of the rotating body is detected as a signal, the displacement signal is stored in a storage means, and the displacement signal is rotated. The time when the body displacement threshold is exceeded is determined as the contact estimated time, and whether the displacement signal before the contact estimated time stored in the storage means exceeds the rotating body stored displacement threshold or not And estimating the cause of the contact.
  • the present invention is an invention of a vacuum pump abnormality cause estimation method, wherein a physical quantity of a fixed part is detected as a signal, the physical quantity signal is stored in a storage means, and the physical quantity signal is fixed. It is determined that the estimated contact time exceeds the threshold value for physical quantity, and whether the signal of the physical quantity before the estimated contact time stored in the storage means exceeds the fixed value threshold for physical quantity And estimating the cause of the contact.
  • the contact determination means for determining the contact estimated time when the displacement signal exceeds the rotating body displacement threshold, and the displacement signal before the contact estimated time is stored in the rotating body. Since it is configured with an abnormal cause estimation means that estimates the cause of contact based on whether or not the displacement threshold is exceeded, the physical contact state between the rotating body and the stator can be determined without adding a vibration sensor or elastic member. I can grasp. In addition, it can be seen which cause caused the contact. Appropriate measures can be taken by understanding the cause.
  • FIG. 1 shows a configuration diagram of an embodiment of the present invention.
  • an intake port 101 is formed at the upper end of a cylindrical outer cylinder 127 of the turbo molecular pump 100.
  • the outer cylinder 127 is made of, for example, a metal such as aluminum, iron, stainless steel, or copper, or a metal such as an alloy containing these metals as components.
  • On the inner side of the outer cylinder 127 there is provided a rotating body 103 in which a plurality of rotating blades 102a, 102b, 102c,... By turbine blades for sucking and exhausting gas are formed radially and in multiple stages.
  • the rotating body 103 is made of, for example, a metal such as aluminum, iron, stainless steel, or copper, or a metal such as an alloy containing these metals as components.
  • a rotor shaft 113 is attached to the center of the rotating body 103, and the rotor shaft 113 is levitated and supported in the air by a so-called 5-axis control magnetic bearing, for example.
  • the upper radial electromagnet 104 In the upper radial electromagnet 104, four electromagnets are arranged in pairs with the X-axis and Y-axis that are the radial coordinate axes of the rotor shaft 113 and are orthogonal to each other.
  • An upper radial sensor 107 composed of four electromagnets is provided adjacent to and corresponding to the upper radial electromagnet 104.
  • the upper radial direction sensor 107 is configured to detect a radial displacement of the rotating body 103 and send the detected displacement signal to a control device (not shown).
  • the excitation of the upper radial electromagnet 104 is controlled through a compensation circuit having a PID adjustment function, and the upper radial position of the rotor shaft 113 is adjusted. To do.
  • the rotor shaft 113 is formed of a high permeability material (such as iron) and is attracted by the magnetic force of the upper radial electromagnet 104. Such adjustment is performed independently in the X-axis direction and the Y-axis direction.
  • the lower radial electromagnet 105 and the lower radial sensor 108 are arranged in the same manner as the upper radial electromagnet 104 and the upper radial sensor 107, and the lower radial position of the rotor shaft 113 is set to the upper radial position. It is adjusted in the same way.
  • axial electromagnets 106A and 106B are arranged with a disk-shaped metal disk 111 provided at the lower part of the rotor shaft 113 interposed therebetween.
  • the metal disk 111 is made of a high permeability material such as iron.
  • An axial sensor 109 is provided to detect the axial displacement of the rotor shaft 113, and the axial displacement signal is sent to a control device (not shown).
  • the axial electromagnets 106A and 106B are subjected to excitation control through a compensation circuit having a PID adjustment function of the control device based on the axial displacement signal.
  • the axial electromagnet 106A and the axial electromagnet 106B attract the metal disk 111 upward and downward by magnetic force.
  • control device appropriately adjusts the magnetic force exerted on the metal disk 111 by the axial electromagnets 106A and 106B, causes the rotor shaft 113 to magnetically float in the axial direction, and holds the space in a non-contact manner. Yes.
  • the motor 121 includes a plurality of magnetic poles arranged circumferentially so as to surround the rotor shaft 113. Each magnetic pole is controlled by a control device (not shown) so as to rotationally drive the rotor shaft 113 through electromagnetic force acting between the rotor shaft 113 and the magnetic pole.
  • a plurality of fixed blades 123a, 123b, 123c,... are arranged with a small gap from the rotor blades 102a, 102b, 102c,.
  • the fixed wing 123 is made of a metal such as aluminum, iron, stainless steel, copper, or an alloy containing these metals as components.
  • the rotor blades 102a, 102b, 102c,... are each inclined at a predetermined angle from a plane perpendicular to the axis of the rotor shaft 113 in order to transfer exhaust gas molecules downward by collision.
  • the fixed blades 123 are also formed to be inclined at a predetermined angle from a plane perpendicular to the axis of the rotor shaft 113, and are arranged alternately with the stages of the rotary blades 102 toward the inside of the outer cylinder 127. ing. And one end of the fixed wing
  • the fixed blade spacer 125 is a ring-shaped member, and is made of, for example, a metal such as aluminum, iron, stainless steel, or copper, or an alloy containing these metals as components.
  • An outer cylinder 127 is fixed to the outer periphery of the fixed blade spacer 125 with a slight gap.
  • a base portion 129 is disposed at the bottom of the outer cylinder 127, and a threaded spacer 131 is disposed between the lower portion of the fixed blade spacer 125 and the base portion 129.
  • An exhaust port 133 is formed below the threaded spacer 131 in the base portion 129 and communicates with the outside.
  • the threaded spacer 131 is a cylindrical member made of metal such as aluminum, copper, stainless steel, iron, or an alloy containing these metals as a component, and a plurality of spiral thread grooves 131a are formed on the inner peripheral surface thereof. It is marked.
  • the direction of the spiral of the thread groove 131 a is a direction in which molecules of the exhaust gas move toward the exhaust port 133 when the molecules of the exhaust gas move in the rotation direction of the rotating body 103.
  • a rotating cylinder 102d is suspended from the lowermost part of the rotating body 103 following the rotor blades 102a, 102b, 102c.
  • the outer peripheral surface of the rotating cylinder 102d is cylindrical and protrudes toward the inner peripheral surface of the threaded spacer 131, and is adjacent to the inner peripheral surface of the threaded spacer 131 with a predetermined gap. Yes.
  • the base portion 129 is a disk-like member that constitutes the base portion of the turbo molecular pump 100, and is generally made of a metal such as iron, aluminum, stainless steel, or copper.
  • the base part 129 physically holds the turbo molecular pump and also has a function of a heat conduction path, a metal having rigidity such as iron, aluminum and copper and high thermal conductivity is used. desirable.
  • the fixed blade spacers 125 are joined to each other at the outer peripheral portion, and heat received by the fixed blade 123 from the rotor blade 102, frictional heat generated when exhaust gas contacts or collides with the fixed blade 123, and the like are used for the outer cylinder 127 and the screw. This is transmitted to the attached spacer 131.
  • the exhaust gas transferred to the threaded spacer 131 is sent to the exhaust port 133 while being guided by the screw groove 131a.
  • the gas sucked from the intake port 101 enters the electrical component side including the motor 121, the lower radial electromagnet 105, the lower radial sensor 108, the upper radial electromagnet 104, the upper radial sensor 107, and the like.
  • the electrical component is covered with a stator column 122, and the interior of the electrical component is maintained at a predetermined pressure with a purge gas.
  • the solid product such as the above-mentioned solidified component of the exhaust gas is solidified in a portion where the temperature near the exhaust port 133 is low, particularly in the vicinity of the rotating cylinder 102d and the threaded spacer 131 whose range is indicated by a round dotted line frame in FIG. , Easy to adhere.
  • a vibration sensor 201 such as an acceleration pickup is embedded in a threaded spacer 131 or a base portion 129. However, as will be described later, the vibration sensor 201 may be omitted.
  • first aspect contact caused by external impact
  • the external impact is transmitted to the rotating body 103 side through the magnetic support of the outer cylinder 127, the base portion 129, the stator column 122, and the magnetic bearings 104, 105, and 106.
  • the vibration is transmitted to the rotating body 103 in this way because the upper radial sensor 107, the lower radial sensor 108, and the axial sensor 109 detect relative displacement between the rotor shaft 113 and the stator. This is because it is considered to follow external impact.
  • the displacement signal is a rotation body contact determination threshold value B1 (rotation) where the vibration starts to be transmitted to the rotation body 103 side. It suddenly increases around the point of time (b) exceeding the threshold for body displacement.
  • the rotating body contact determination threshold value B ⁇ b> 1 is a threshold value provided for determining the estimated contact time of the rotating body 103.
  • the estimated contact time means a time at which contact may have actually occurred.
  • the unbalance amount increase determination threshold A1 (corresponding to the rotating body storage displacement threshold) is a threshold provided for determining the unbalance amount of the rotating body 103.
  • the displacement signal is detected by the upper radial sensor 107, the lower radial sensor 108, and the axial sensor 109.
  • the acceleration signal (b) in the signal flow diagram of FIG. 2 is detected by the vibration sensor 201, and the contact estimation is that the vibration causing the contact has exceeded the rotation signal contact determination threshold B1 on the displacement signal side. It is extracted as vibration on the stator side earlier than time (A) (near time (B)). The magnitude of the vibration exceeds the unbalance amount increase determination threshold A2. Further, even when the signal detected by the vibration sensor 201 exceeds the rotating body contact determination threshold B2 (corresponding to the fixed portion physical quantity threshold), it can be determined that the rotating body 103 has contacted the stator side (time). (I) Near).
  • the rotating body contact determination threshold B2 is a threshold provided for determining the estimated contact time of the rotating body 103 from the signal from the vibration sensor 201
  • the unbalance amount increase determination threshold A2 is the vibration sensor 201. Is a threshold value provided for determining whether or not the contact of the rotating body 103 is due to an increase in the unbalance amount.
  • the displacement signal is used for determining contact with the rotating body as shown in the signal flow diagram (a) of FIG. It continuously fluctuates greatly from the estimated contact time (A) exceeding the threshold value B1. Then, it further increases near the estimated contact time (A). The magnitude of this vibration also exceeds the unbalance amount increase determination threshold A1.
  • the acceleration signal (b) in the signal flow diagram of FIG. 3 exceeds the threshold value A2 for determining the unbalance amount increase. Not.
  • a method for determining physical contact between the rotor blade and the stator will be described. First, the case where the vibration sensor 201 is installed in the stator and contact is determined using both the displacement signal and the acceleration signal will be described.
  • the displacement signal and the acceleration signal data up to about 100 ms before the estimated contact time (A) is stored.
  • the data storage time is a value set from the number of revolutions (for example, 20,000 to 60,000 rpm), and is preferably set to a time during which signal data for at least 10 cycles before contact determination can be acquired.
  • the contact determination is performed with a rotating body contact determination threshold B1 for the displacement signal and a rotating body contact determination threshold B2 for the acceleration signal. Further, the determination regarding the unbalance amount of the rotating body 103 is performed using the unbalance amount increase determination threshold A1 for the displacement signal and the unbalance amount increase determination threshold A2 for the acceleration signal.
  • the unbalance amount increase determination threshold A1 or the unbalance amount increase determination threshold A2 is set within a predetermined time (for example, 100 ms) before the estimated contact time (A) is determined in either the displacement signal or the acceleration signal. If so, it is determined that the contact is not due to an increase in product accumulation.
  • Example 1-1 Contact determination by external impact
  • the case where the acceleration signal exceeds the unbalance amount increase determination threshold A2 is determined as vibration caused by an external impact shown in FIG. You can also
  • Example 1-2 Contact determination by increasing unbalance amount
  • Example 1-3 Contact determination due to increased product accumulation
  • the physical contact state between the rotating body 103 and the stator is highly accurate using the acceleration signal from the vibration sensor 201 and the displacement signals from the upper radial sensor 107, the lower radial sensor 108, and the axial sensor 109. I can grasp. In addition, it can be seen which cause caused the contact.
  • the contact estimated time is determined only by the rotating body contact determination threshold B1 for the displacement signal.
  • Example 2-1 Contact judgment due to external impact or unbalance increase
  • the value of the displacement signal exceeds the unbalance amount increase determination threshold value A1 within a predetermined time (for example, 100 ms) before the estimated contact time (A)
  • the external impact in the first mode or the second mode It is determined that the contact is due to an increase in the unbalance amount of a certain rotating body, and is not due to an increase in product accumulation.
  • Example 2-2 (a): Contact determination 1 due to increased product accumulation)
  • the unbalance amount increase determination threshold A1 is not exceeded within a predetermined time (for example, 100 ms) before the estimated contact time (A)
  • a predetermined time for example, 100 ms
  • the determination as to whether the contact is caused by an external impact or an increase in the unbalance amount of the rotating body can be made by distinguishing the unbalance amount increase determination threshold A1 from the external impact and the increase in the unbalance amount of the rotating body. It can be determined by making it a value.
  • the unbalance amount increase determination threshold A1 for determining the unbalance amount increase For example, by setting the unbalance amount increase determination threshold A1 for determining the unbalance amount increase to a large value (near the rotating body contact determination threshold B1), it is determined that the contact is due to an increase in the unbalance amount. It is possible to determine whether or not it is a rotating body displacement that continuously repeats a large amplitude.
  • FIG. 5 shows the relationship between the clearance on the mechanical design and the displacement of the rotating body when the product is accumulated.
  • the vicinity of the rotating cylinder 102d and the threaded spacer 131 whose range is indicated by a round dotted line frame is the portion where the product is most likely to accumulate. The following description will be made assuming that the clearance is set.
  • the displacement X of the rotating body 103 should be able to swing until the clearance is full as shown in FIG. That is, if the clearance is Xd (corresponding to the gap amount), the maximum displacement X of the rotating body 103 is equal to the clearance Xd.
  • the displacement X does not reach Xd and contact may actually occur at X1 (smaller than the clearance Xd). This is a state in which contact has occurred in spite of a state where there is a clearance in mechanical design, and it is considered that the clearance is reduced due to product adhesion. In this way, it is possible to determine whether or not it is in contact with the product by comparing the mechanical design clearance with the actual shake amount.
  • the comparison with the actual runout amount is not limited to the mechanical design clearance but also to a predetermined value set based on the mechanical design clearance (for example, about 90% of the mechanical design clearance) and the product A predetermined value set by estimating the deposition amount may be used.
  • the displacement sensor of the magnetic bearing detects the relative displacement between the rotating body 103 and the stator in real time even when there is external vibration, the mechanical design clearance and the actual Judgment is possible by comparison with the shake amount.
  • the rigidity is not related to the magnetic bearing rigidity. It can be judged whether it is high or low.
  • the description which made the example of a threaded spacer was described as a fixed part to contact, about a fixed part, it is not limited to it, For example, it may be a protection bearing used for the backup of a magnetic bearing .
  • the rotor 103 is analyzed by analyzing the displacement signals from the upper radial sensor 107, the lower radial sensor 108, and the axial sensor 109 that are originally provided in the magnetic bearing without installing the vibration sensor 201. It is possible to grasp the physical contact state between the stator and the stator. In addition, it can be seen which cause caused the contact.
  • turbo molecular pump 102 rotor blade 103 rotor 104 upper radial electromagnet 105 lower radial electromagnet 106A, B axial electromagnet 107 upper radial sensor 108 lower radial sensor 109 axial sensor 113 rotor shaft 121 motor 122 stator column 123 Fixed Wing 125 Fixed Wing Spacer 201 Vibration Sensor

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Non-Positive Displacement Air Blowers (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

【課題】回転体とステータとの接触を検知した際の接触の原因を解析し適切な対処を取ることが可能な真空ポンプ及び該真空ポンプの異常原因推定方法を提供する。 【解決手段】接触判定は、変位信号についての回転体接触判定用閾値B1と加速度信号についての回転体接触判定用閾値B2をもって行う。また、回転体103のアンバランス量についての判定は変位信号についてのアンバランス量増加判定用閾値A1と加速度信号についてのアンバランス量増加判定用閾値A2をもって行う。そして、変位信号と加速度信号のどちらか一方において接触推定時刻が判定される前の所定時間内にアンバランス量増加判定用閾値A1若しくはアンバランス量増加判定用閾値A2を超えていたら、生成物の堆積増加に起因する接触ではないと判断する。一方、この所定時間内にいずれも超えていなかったら、生成物の堆積増加に起因する接触と判断する。

Description

真空ポンプ及び該真空ポンプの異常原因推定方法
  本発明は真空ポンプ及び該真空ポンプの異常原因推定方法に係わり、回転体とステータとの接触を検知した際の接触の原因を解析し適切な対処を取ることが可能な真空ポンプ及び該真空ポンプの異常原因推定方法に関する。
  近年のエレクトロニクスの発展に伴い、メモリや集積回路といった半導体の需要が急激に増大している。
  これらの半導体は、極めて純度の高い半導体基板に不純物をドープして電気的性質を与えたり、エッチングにより半導体基板上に微細な回路を形成したりなどして製造される。
  そして、これらの作業は空気中の塵等による影響を避けるため高真空状態のチャンバ内で行われる必要がある。このチャンバの排気には、一般に真空ポンプが用いられているが、特に残留ガスが少なく、保守が容易等の点から真空ポンプの中の一つであるターボ分子ポンプが多用されている。
  また、半導体の製造工程では、さまざまなプロセスガスを半導体の基板に作用させる工程が数多くあり、ターボ分子ポンプはチャンバ内を真空にするのみならず、これらのプロセスガスをチャンバ内から排気するのにも使用される。
  このターボ分子ポンプは、高速で回転する回転翼等の回転体とステータとのクリアランスが極めて小さい。そのため、排気ガスの凝固成分などの固体生成物が真空ポンプの内部に堆積した場合や、クリープ現象により回転体が変形した場合、また、保護ベアリングの摩耗が進行した場合などに回転体とステータが接触するおそれがある。
  このような回転体とステータが接触した状態をメンテナンス(オーバーホール)を行わずに放置しておくと、重大な不具合が生じるおそれがある。
  そこで、従来は、特許文献1に記載されている技術を用いてメンテナンスの時期を予測していた。そして、適切な時期にメンテナンスの実行を促すことによって、未然にターボ分子ポンプが再利用不可能な状態に至ることを防止していた。
特許第3457353号公報 WO2010/007975号公報
  しかしながら、特許文献1に記載の技術では、回転体の経時的なアンバランス増大に起因する振動振幅の増加と、回転体とステータとの物理的な接触に起因する振動振幅の増加との違いを判別することができなかった。
  また、ポンプが接続される真空バルブの開閉等に伴う機械的振動や、ポンプやポンプが接続される真空容器等の装置に加えられた外部衝撃(外乱)に起因する振動振幅の増加を、回転体とステータとの物理的な接触に起因する振動振幅の増加と区別することができなかった。
  そこで、特許文献2では、固体生成物の堆積量が回転体とステータとのクリアランスに達したことを正確に精度良く検知するために、回転体とステータの接触をステータにつけた加速度ピックアップ等の振動センサを使用して判定をしている。そして、このことにより、回転体とステータとの物理的な接触を精度よく検出している。
  しかしながら、特許文献2による方法では、ステータからの振動信号の信頼性を上げるために、バンドパスフィルタや、弾性部材を用いた固定方法を取らなければならないといった課題も存在している。
  本発明はこのような従来の課題に鑑みてなされたもので、回転体とステータとの接触を検知した際の接触の原因を解析し適切な対処を取ることが可能な真空ポンプ及び該真空ポンプの異常原因推定方法を提供することを目的とする。
  このため本発明(請求項1)は真空ポンプの発明であって、回転体の変位を信号として検出する回転体変位検出手段と、前記変位の信号に対し設定された回転体変位用しきい値と、前記変位の信号が前記回転体変位用しきい値を超えたときを接触推定時刻と判定する接触判定手段と、前記変位の信号を保存する保存手段と、該保存手段に保存された前記接触推定時刻より以前の前記変位の信号に対し設定された回転体保存変位用しきい値と、前記保存手段に保存された前記接触推定時刻より以前の前記変位の信号が、前記回転体保存変位用しきい値を超えたか否かで接触の原因を推定する異常原因推定手段とを備えて構成した。
  接触推定時刻より以前の変位信号が回転体保存変位用しきい値を超えたか否か判断することで、振動センサを設置せずに変位信号だけで接触を判別する。即ち、変位信号の値が接触推定時刻より以前の所定時間内に回転体保存変位用しきい値を超えていたら、回転体のアンバランス量増加若しくは外部衝撃に起因した接触であり、生成物の堆積増加に起因する接触ではないと判断する。
  以上により、振動センサや弾性部材を追加することなく回転体とステータとの物理的な接触状況を把握できる。また、いずれの原因に起因してその接触が生じたのかが分かる。原因が分かることで適切な対処が可能である。
  また、本発明(請求項2)は真空ポンプの発明であって、固定部の物理量を信号として検出する固定部物理量検出手段と、前記物理量の信号に対し設定された固定部物理量用しきい値と、前記物理量の信号が前記固定部物理量用しきい値を超えたときを接触推定時刻と判定する接触判定手段と、回転体の変位を信号として検出する回転体変位検出手段と、前記変位の信号を保存する保存手段と、該保存手段に保存された前記接触推定時刻より以前の前記変位の信号に対し設定された回転体保存変位用しきい値と、前記保存手段に保存された前記接触推定時刻より以前の前記変位の信号が、前記回転体保存変位用しきい値を超えたか否かで接触の原因を推定する異常原因推定手段とを備えて構成した。
  固定部の物理量の信号が固定部物理量用しきい値を超えたときを接触推定時刻と判定する。固定部の物理量の信号は、例えば、固定部の変位、速度、加速度等である。
  固定部の加速度を振動センサにより検出した場合には、この加速度信号と変位センサによる変位信号を利用して回転体とステータとの物理的な接触状況を高精度に把握できる。従って、生成物堆積による適切なオーバーホール時期を把握することができる。原因が分かることで適切な対処が可能である。
  更に、本発明(請求項3)は真空ポンプの発明であって、前記固定部の物理量が、前記固定部の加速度もしくは前記固定部に作用する力であることを特徴とする。
  更に、本発明(請求項4)は真空ポンプの発明であって、前記固定部の物理量が、前記固定部の加速度を所定の回数だけ微分または積分した結果に相当する物理量であることを特徴とする。
  更に、本発明(請求項5)は真空ポンプの発明であって、前記異常原因推定手段が、前記保存手段に保存された前記接触推定時刻より以前の前記変位の信号が前記回転体保存変位用しきい値を超えていなかった場合に、外部衝撃もしくは生成物堆積に起因する接触であると推定することを特徴とする。
  更に、本発明(請求項6)は真空ポンプの発明であって、前記物理量を保存する保存手段と、該保存手段に保存された前記接触推定時刻より以前の前記物理量の信号に対し設定された固定部保存物理量用しきい値とを備え、前記異常原因推定手段が、前記保存手段に保存された前記接触推定時刻より以前の前記物理量の信号が前記固定部保存物理量用しきい値を超えていなかった場合に、外部衝撃もしくは生成物堆積に起因する接触であると推定することを特徴とする。
  更に、本発明(請求項7)は真空ポンプの発明であって、前記接触推定時刻より以後において、前記回転体と該回転体に対向する固定部との隙間量もしくは該隙間量を基に定められた所定値と、前記回転体の変位の最大値との差を基に前記接触の原因を生成物堆積であると推定することを特徴とする。
  以上により、接触の原因を生成物堆積であると推定することができる。従って、生成物堆積による適切なオーバーホール時期を把握することができる。原因が分かることで適切な対処が可能である。
  更に、本発明(請求項8)は真空ポンプの発明であって、前記保存手段に保存された前記接触推定時刻より以前の前記変位の信号が、前記回転体保存変位用しきい値を超えた回数により前記接触の原因を推定することを特徴とする。
  更に、本発明(請求項9)は真空ポンプの異常原因推定方法の発明であって、回転体の変位を信号として検出し、該変位の信号を保存手段に保存し、前記変位の信号が回転体変位用しきい値を超えたときを接触推定時刻と判定し、前記保存手段に保存された該接触推定時刻より以前の前記変位の信号が回転体保存変位用しきい値を超えたか否かで前記接触の原因を推定することを特徴とする。
  更に、本発明(請求項10)は真空ポンプの異常原因推定方法の発明であって、固定部の物理量を信号として検出し、該物理量の信号を保存手段に保存し、前記物理量の信号が固定部物理量用しきい値を超えたときを接触推定時刻と判定し、前記保存手段に保存された該接触推定時刻より以前の前記物理量の信号が固定部保存物理量用しきい値を超えたか否かで前記接触の原因を推定することを特徴とする。
  以上説明したように本発明によれば、変位の信号が回転体変位用しきい値を超えたときを接触推定時刻と判定する接触判定手段と、接触推定時刻より以前の変位信号が回転体保存変位用しきい値を超えたか否かで接触の原因を推定する異常原因推定手段を備えて構成したので、振動センサや弾性部材を追加することなく回転体とステータとの物理的な接触状況を把握できる。また、いずれの原因に起因してその接触が生じたのかが分かる。原因が分かることで適切な対処が可能である。
ターボ分子ポンプの構成図 信号フロー図(外部衝撃に起因して接触が生じた場合) 信号フロー図(回転体のアンバランス量増加に起因して接触が生じた場合) 信号フロー図(生成物堆積に起因して接触が生じた場合) 生成物が堆積しているときのメカ設計上のクリアランスと回転体の変位の関係を示す図 生成物が堆積していないときのクリアランスと回転体の変位の関係を示す図 生成物が堆積しているときのクリアランスと回転体の変位の関係を示す図
  以下、本発明の実施形態について説明する。本発明の実施形態の構成図を図1に示す。図1において、ターボ分子ポンプ100の円筒状の外筒127の上端には吸気口101が形成されている。外筒127は、例えばアルミニウム、鉄、ステンレス、銅などの金属、又はこれらの金属を成分として含む合金などの金属によって構成されている。外筒127の内方には、ガスを吸引排気するためのタービンブレードによる複数の回転翼102a、102b、102c・・・を周部に放射状かつ多段に形成した回転体103を備える。回転体103は、例えばアルミニウム、鉄、ステンレス、銅などの金属、又はこれらの金属を成分として含む合金などの金属によって構成されている。
  この回転体103の中心にはロータ軸113が取り付けられており、このロータ軸113は、例えば、いわゆる5軸制御の磁気軸受により空中に浮上支持かつ位置制御されている。
  上側径方向電磁石104は、4個の電磁石が、ロータ軸113の径方向の座標軸であって互いに直交するX軸とY軸とに対をなして配置されている。この上側径方向電磁石104に近接かつ対応されて4個の電磁石からなる上側径方向センサ107が備えられている。この上側径方向センサ107は回転体103の径方向変位を検出し、検出した変位信号を図示しない制御装置に送るように構成されている。
  制御装置においては、上側径方向センサ107が検出した変位信号に基づき、PID調節機能を有する補償回路を介して上側径方向電磁石104の励磁を制御し、ロータ軸113の上側の径方向位置を調整する。
  ロータ軸113は、高透磁率材(鉄など)などにより形成され、上側径方向電磁石104の磁力により吸引されるようになっている。かかる調整は、X軸方向とY軸方向とにそれぞれ独立して行われる。
  また、下側径方向電磁石105及び下側径方向センサ108が、上側径方向電磁石104及び上側径方向センサ107と同様に配置され、ロータ軸113の下側の径方向位置を上側の径方向位置と同様に調整している。
  更に、軸方向電磁石106A、106Bが、ロータ軸113の下部に備えた円板状の金属ディスク111を上下に挟んで配置されている。金属ディスク111は、鉄などの高透磁率材で構成されている。ロータ軸113の軸方向変位を検出するために軸方向センサ109が備えられ、その軸方向変位信号が図示しない制御装置に送られるように構成されている。
  そして、軸方向電磁石106A、106Bは、この軸方向変位信号に基づき制御装置のPID調節機能を有する補償回路を介して励磁制御されるようになっている。軸方向電磁石106Aと軸方向電磁石106Bは、磁力により金属ディスク111をそれぞれ上方と下方とに吸引する。
  このように、制御装置は、この軸方向電磁石106A、106Bが金属ディスク111に及ぼす磁力を適当に調節し、ロータ軸113を軸方向に磁気浮上させ、空間に非接触で保持するようになっている。
  モータ121は、ロータ軸113を取り囲むように周状に配置された複数の磁極を備えている。各磁極は、ロータ軸113との間に作用する電磁力を介してロータ軸113を回転駆動するように、図示しない制御装置によって制御されている。
  回転翼102a、102b、102c・・・とわずかの空隙を隔てて複数枚の固定翼123a、123b、123c・・・が配設されている。固定翼123は、例えばアルミニウム、鉄、ステンレス、銅などの金属、又はこれらの金属を成分として含む合金などの金属によって構成されている。回転翼102a、102b、102c・・・は、それぞれ排気ガスの分子を衝突により下方向に移送するため、ロータ軸113の軸線に垂直な平面から所定の角度だけ傾斜して形成されている。
  また、固定翼123も、同様にロータ軸113の軸線に垂直な平面から所定の角度だけ傾斜して形成され、かつ外筒127の内方に向けて回転翼102の段と互い違いに配設されている。
  そして、固定翼123の一端は、複数の段積みされた固定翼スペーサ125a、125b、125c・・・の間に嵌挿された状態で支持されている。
  固定翼スペーサ125はリング状の部材であり、例えばアルミニウム、鉄、ステンレス、銅などの金属、又はこれらの金属を成分として含む合金などの金属によって構成されている。
  固定翼スペーサ125の外周には、わずかの空隙を隔てて外筒127が固定されている。外筒127の底部にはベース部129が配設され、固定翼スペーサ125の下部とベース部129の間にはネジ付きスペーサ131が配設されている。そして、ベース部129中のネジ付きスペーサ131の下部には排気口133が形成され、外部に連通されている。
  ネジ付きスペーサ131は、アルミニウム、銅、ステンレス、鉄、又はこれらの金属を成分とする合金などの金属によって構成された円筒状の部材であり、その内周面に螺旋状のネジ溝131aが複数条刻設されている。
  ネジ溝131aの螺旋の方向は、回転体103の回転方向に排気ガスの分子が移動したときに、この分子が排気口133の方へ移送される方向である。
  回転体103の回転翼102a、102b、102c・・・に続く最下部には回転円筒102dが垂下されている。この回転円筒102dの外周面は、円筒状で、かつネジ付きスペーサ131の内周面に向かって張り出されており、このネジ付きスペーサ131の内周面と所定の隙間を隔てて近接されている。
  ベース部129は、ターボ分子ポンプ100の基底部を構成する円盤状の部材であり、一般には鉄、アルミニウム、ステンレス、銅などの金属によって構成されている。
  ベース部129はターボ分子ポンプを物理的に保持すると共に、熱の伝導路の機能も兼ね備えているので、鉄、アルミニウムや銅などの剛性があり、熱伝導率も高い金属が使用されるのが望ましい。
  かかる構成において、回転体103がモータ121により駆動されてロータ軸113と共に回転すると、回転翼102と固定翼123の作用により、吸気口101を通じてチャンバからの排気ガスが吸気される。
  吸気口101から吸気された排気ガスは、回転翼102と固定翼123の間を通り、ベース部129へ移送される。このとき、排気ガスが回転翼102に接触又は衝突する際に生ずる摩擦熱や、モータ121で発生した熱の伝導や輻射などにより、回転翼102の温度は上昇するが、この熱は、輻射又は排気ガスの気体分子等による伝導により固定翼123側に伝達される。
  固定翼スペーサ125は、外周部で互いに接合しており、固定翼123が回転翼102から受け取った熱や排気ガスが固定翼123に接触又は衝突する際に生ずる摩擦熱などを外筒127やネジ付きスペーサ131へと伝達する。
  ネジ付きスペーサ131に移送されてきた排気ガスは、ネジ溝131aに案内されつつ排気口133へと送られる。
  また、吸気口101から吸引されたガスがモータ121、下側径方向電磁石105、下側径方向センサ108、上側径方向電磁石104、上側径方向センサ107などで構成される電装部側に侵入することのないよう、電装部は周囲をステータコラム122で覆われ、この電装部内はパージガスにて所定圧に保たれている。
  ここに、前述した排気ガスの凝固成分などの固体生成物は排気口133付近の温度が低い部分、特に図1中に丸点線枠で範囲を示した回転円筒102d及びネジ付きスペーサ131付近で凝固、付着し易い状況にある。
  なお、図1において、加速度ピックアップ等の振動センサ201がネジ付きスペーサ131又はベース部129中に埋設されている。但し、後述するようにこの振動センサ201は省略されてもよい。
  次に、回転翼とステータとの物理的な接触の態様について説明する。
  先述したように、回転翼102とネジ付きスペーサ131や固定翼123を含むステータ部分とが物理的に接触する場合には、主として3つの態様がある。
 (第1の態様:外部衝撃に起因する接触)
  第1の態様は外部衝撃に起因して接触が生ずるものである。外部衝撃は、外筒127、ベース部129、ステータコラム122、磁気軸受104、105、106の磁気支持を介して回転体103側に伝わる。このように振動が回転体103側に伝わるのは、上側径方向センサ107、下側径方向センサ108、軸方向センサ109がロータ軸113とステータ間の相対変位を検出しており、ステータの振動は外部衝撃に追従すると考えられるためである。
  そして、外部衝撃による振動がポンプに伝わった場合には、図2の信号フロー図(a)に示すように変位信号はこの振動が回転体103側に伝わり始める回転体接触判定用閾値B1(回転体変位用しきい値に相当する)を超えた時点(イ)辺りで急激に増大する。ここに、回転体接触判定用閾値B1は回転体103の接触推定時刻を判定するために設けられたしきい値である。ここに、接触推定時刻は実際に接触した可能性のある時刻を意味する。また、アンバランス量増加判定用閾値A1(回転体保存変位用しきい値に相当する)は回転体103のアンバランス量を判定するために設けられたしきい値である。変位信号は上側径方向センサ107、下側径方向センサ108、軸方向センサ109で検出されたものである。
  一方、図2の信号フロー図の加速度信号(b)は振動センサ201で検出されたものであり、接触の原因となった振動が変位信号側の回転体接触判定用閾値B1を超えた接触推定時刻(イ)よりも早くからステータ側の振動として抽出されている(時刻(ロ)付近)。そして、この振動の大きさはアンバランス量増加判定用閾値A2を超えている。また、振動センサ201で検出された信号が回転体接触判定用閾値B2(固定部物理量用しきい値に相当する)を超えたことでも回転体103がステータ側と接触したことが判断できる(時刻(イ)付近)。
  ここに、回転体接触判定用閾値B2は振動センサ201による信号から回転体103の接触推定時刻を判定するために設けられたしきい値であり、アンバランス量増加判定用閾値A2は振動センサ201による信号から回転体103の接触がアンバランス量増加によるものか否かを判定するために設けられたしきい値である。
 (第2の態様:アンバランス量増加に起因する接触)
  第2の態様は回転体のアンバランス量増加に起因して接触が生ずるものである。例えば、回転体103側で回転体の経時変化等が原因により回転体103にアンバランス量増加が生じた場合、図3の信号フロー図(a)に示すように変位信号は回転体接触判定用閾値B1を超えた接触推定時刻(イ)より前から連続的に大きく変動している。そして、接触推定時刻(イ)付近で更に増加している。そして、この振動の大きさはアンバランス量増加判定用閾値A1をも超えている。
  一方、アンバランス量増加による変位量増加は、接触前までは、ステータへ与える振動にほとんど影響しないため、図3の信号フロー図の加速度信号(b)はアンバランス量増加判定用閾値A2を超えていない。
 (第3の態様:生成物堆積に起因する接触)
  第3の態様は生成物堆積に起因して接触が生ずるものである。
  ステータ側に生成物が堆積した場合、図4の信号フロー図(a)に示すように変位信号は急変し回転体接触判定用閾値B1を超える。一方、生成物堆積による接触は、接触前までは、ステータへ与える振動にほとんど影響しないため、図4の信号フロー図の加速度信号(b)はアンバランス量増加判定用閾値A2を超えていない。
  回転翼とステータとの物理的な接触を判別する方法について説明する。まず、ステータに振動センサ201を設置し変位信号と加速度信号の両方を利用して接触を判別する場合について説明する。
  変位信号と加速度信号については接触推定時刻(イ)よりも例えば100ms程度以前までのデータを保存しておく。
  データ保存時間は、回転数(例えば、20,000~60,000rpm)から設定した値であり、接触判定前の少なくとも10周期分の信号データを取得できる時間に設定することが望ましい。
  接触判定は、変位信号についての回転体接触判定用閾値B1と加速度信号についての回転体接触判定用閾値B2をもって行う。また、回転体103のアンバランス量についての判定は変位信号についてのアンバランス量増加判定用閾値A1と加速度信号についてのアンバランス量増加判定用閾値A2をもって行う。
  そして、変位信号と加速度信号のどちらか一方において接触推定時刻(イ)が判定される前の所定時間(例えば100ms)内にアンバランス量増加判定用閾値A1若しくはアンバランス量増加判定用閾値A2を超えていたら、生成物の堆積増加に起因する接触ではないと判断する。
 (実施例1-1:外部衝撃による接触判定)
  この場合に更に、変位信号がアンバランス量増加判定用閾値A1を超えた状況で加速度信号がアンバランス量増加判定用閾値A2を超えている場合を図2に示す外部衝撃に起因する振動と判定することもできる。
 (実施例1-2:アンバランス量増加による接触判定)
  また、変位信号がアンバランス量増加判定用閾値A1を超えた状況で加速度信号がアンバランス量増加判定用閾値A2を超えていない場合を図3に示すアンバランス量増加に起因する振動と判定することもできる。
 (実施例1-3:生成物の堆積増加による接触判定)
  一方、この所定時間内にいずれもアンバランス量増加判定用閾値A1若しくはアンバランス量増加判定用閾値A2を超えていなかったら、生成物の堆積増加に起因する接触と判断する。
  以上により、振動センサ201による加速度信号と上側径方向センサ107、下側径方向センサ108、軸方向センサ109による変位信号を利用して回転体103とステータとの物理的な接触状況を高精度に把握できる。また、いずれの原因に起因してその接触が生じたのかが分かる。
  次に、振動センサ201を設置せずに変位信号だけで接触を判別する方法について説明する。
  この場合に、接触推定時刻の判定は変位信号についての回転体接触判定用閾値B1だけで行う。
 (実施例2-1:外部衝撃もしくはアンバランス量増加による接触判定)
  変位信号の値が、接触推定時刻(イ)より以前の所定時間(例えば100ms)内にアンバランス量増加判定用閾値A1を超えていたら、第1の態様である外部衝撃または第2の態様である回転体のアンバランス量増加に起因した接触であり、生成物の堆積増加に起因する接触ではないと判断する。
 (実施例2-2(a):生成物の堆積増加による接触判定1)
  一方、接触推定時刻(イ)より以前の所定時間(例えば100ms)内にアンバランス量増加判定用閾値A1を超えていなかったら第3の態様である生成物堆積に起因するものと判断する。
  更に、接触が外部衝撃と回転体のアンバランス量増加のどちらに起因した接触かの判定は、アンバランス量増加判定用閾値A1を、外部衝撃と回転体のアンバランス量増加を区別できるような値にすることで判定可能である。
  例えば、アンバランス量増加の判定の為のアンバランス量増加判定用閾値A1を大きな値(回転体接触判定用閾値B1の近く)に設定したりすることによって、アンバランス量の増加による接触と判定できるような、連続的に大きな振幅を繰り返す回転体変位であるかどうか判定可能である。
  また、外部衝撃の場合は、図2に示したように接触判定前に急激に振幅が増加していくと考えられるので、接触判定前の所定期間におけるアンバランス量増加判定用閾値A1を超えた回数を比較したりすることで特定可能である。
  具体的には、アンバランス量増加が起きている場合は、接触推定時刻(イ)より以前の所定時間内において、ほぼ全ての変位信号のピーク値がアンバランス量増加判定用閾値A1を超えていると考えられるので、外部衝撃の場合の変位信号がアンバランス量増加判定用閾値A1を超える回数に比べ、著しく多いと考えられる。
 (実施例2-2(b):生成物の堆積増加による接触判定2)
  次に、別な方法での第1の態様である外部衝撃もしくは第2の態様であるアンバランス量増加に起因する接触と第3の態様である生成物堆積に起因する接触とを振動センサ201を設置せずに区別する方法について説明する。
  図5に生成物が堆積しているときのメカ設計上のクリアランスと回転体の変位の関係を示す。図1中に丸点線枠で範囲を示した回転円筒102d及びネジ付きスペーサ131付近が最も生成物が堆積しやすいと思われる部分なので、例えば、この箇所について回転体が可動可能なメカ設計上のクリアランスを設定したとして以下説明する。
  本来、生成物がネジ付きスペーサ131に付着していなければ図6に示すようにクリアランス一杯まで回転体103の変位Xは振れることが可能なはずである。即ち、上記クリアランスの大きさをXd(隙間量に相当する)とすると回転体103の最大変位X=クリアランスXdとなる。
  しかしながら、接触推定時刻(イ)より以降において図5及び図7に示すように、変位XがXdまで届かずX1(クリアランスXdより小さい)で実際に接触が起こる場合がある。これは、メカ設計上ではクリアランスがある状態にも係わらず、接触が起こった状態であり、生成物付着によるクリアランス減が原因と考えられる。このように、メカ設計上のクリアンスと実際の振れ量との比較によって、生成物との接触かどうか判断可能となる。この時、実際の振れ量との比較は、メカ設計上のクリアランスだけでなく、メカ設計上のクリアランスを基に設定した所定値(例えば、メカ設計上のクリアランスの90%程度)や生成物の堆積量を推定して設定した所定値を用いてもよい。
  また、このときの生成物の堆積量ΔXは、堆積量ΔX=Xd-X1で推定可能である。
  なお、回転体103側に生成物が付着したことによってアンバランス量が増えた場合であっても、生成物による接触かどうかはメカ設計上のクリアランスと実際の振れ量との比較で同様に判断が可能である。
  また、実施例2で説明した通り、外部からの振動があった場合でも磁気軸受の変位センサがリアルタイムで回転体103とステータの相対変位を検出しているので、メカ設計上のクリアランスと実際の振れ量との比較により判断が可能である。
  そして、外部衝撃とアンバランス量の増加に起因する接触推定時刻の判別においては、回転体103とステータとの間で起こる相対変位によっておこる振幅によって判断する為、磁気軸受剛性は関係なく、剛性が高くても低くても判断可能である。
  また、接触する固定部として、ネジ付きスペーサを例にした説明を記載したが、固定部についてはそれに限定されるものではなく、例えば、磁気軸受のバックアップ用として使用される保護ベアリングの場合もある。
  以上により、振動センサ201を設置しなくても磁気軸受にもともと配設されている上側径方向センサ107、下側径方向センサ108、軸方向センサ109による変位信号を解析することで、回転体103とステータとの物理的な接触状況を把握できる。また、いずれの原因に起因してその接触が生じたのかが分かる。
100 ターボ分子ポンプ
102 回転翼
103 回転体
104 上側径方向電磁石
105 下側径方向電磁石
106A、B 軸方向電磁石
107 上側径方向センサ
108 下側径方向センサ
109 軸方向センサ
113 ロータ軸
121 モータ
122 ステータコラム
123 固定翼
125 固定翼スペーサ
201 振動センサ

Claims (10)

  1.   回転体の変位を信号として検出する回転体変位検出手段と、
     前記変位の信号に対し設定された回転体変位用しきい値と、
     前記変位の信号が前記回転体変位用しきい値を超えたときを接触推定時刻と判定する接触判定手段と、
     前記変位の信号を保存する保存手段と、
     該保存手段に保存された前記接触推定時刻より以前の前記変位の信号に対し設定された回転体保存変位用しきい値と、
     前記保存手段に保存された前記接触推定時刻より以前の前記変位の信号が、前記回転体保存変位用しきい値を超えたか否かで接触の原因を推定する異常原因推定手段とを備えたことを特徴とする真空ポンプ。
  2.   固定部の物理量を信号として検出する固定部物理量検出手段と、
     前記物理量の信号に対し設定された固定部物理量用しきい値と、
     前記物理量の信号が前記固定部物理量用しきい値を超えたときを接触推定時刻と判定する接触判定手段と、
     回転体の変位を信号として検出する回転体変位検出手段と、
     前記変位の信号を保存する保存手段と、
     該保存手段に保存された前記接触推定時刻より以前の前記変位の信号に対し設定された回転体保存変位用しきい値と、
     前記保存手段に保存された前記接触推定時刻より以前の前記変位の信号が、前記回転体保存変位用しきい値を超えたか否かで接触の原因を推定する異常原因推定手段とを備えたことを特徴とする真空ポンプ。
  3.   前記固定部の物理量が、前記固定部の加速度もしくは前記固定部に作用する力であることを特徴とする請求項2記載の真空ポンプ。
  4.   前記固定部の物理量が、前記固定部の加速度を所定の回数だけ微分または積分した結果に相当する物理量であることを特徴とする請求項2記載の真空ポンプ。
  5.   前記異常原因推定手段が、前記保存手段に保存された前記接触推定時刻より以前の前記変位の信号が前記回転体保存変位用しきい値を超えていなかった場合に、外部衝撃もしくは生成物堆積に起因する接触であると推定することを特徴とする請求項1乃至請求項4のいずれか一項に記載の真空ポンプ。
  6.   前記物理量を保存する保存手段と、
     該保存手段に保存された前記接触推定時刻より以前の前記物理量の信号に対し設定された固定部保存物理量用しきい値とを備え、
      前記異常原因推定手段が、前記保存手段に保存された前記接触推定時刻より以前の前記物理量の信号が前記固定部保存物理量用しきい値を超えていなかった場合に、外部衝撃もしくは生成物堆積に起因する接触であると推定することを特徴とする請求項2乃至請求項5のいずれか一項に記載の真空ポンプ。
  7.   前記接触推定時刻より以後において、
     前記回転体と該回転体に対向する固定部との隙間量もしくは該隙間量を基に定められた所定値と、前記回転体の変位の最大値との差を基に前記接触の原因を生成物堆積であると推定することを特徴とする請求項1乃至請求項6のいずれか一項に記載の真空ポンプ。
  8.   前記保存手段に保存された前記接触推定時刻より以前の前記変位の信号が、前記回転体保存変位用しきい値を超えた回数により前記接触の原因を推定することを特徴とする請求項1乃至請求項4のいずれか一項に記載の真空ポンプ。
  9.   回転体の変位を信号として検出し、
     該変位の信号を保存手段に保存し、
     前記変位の信号が回転体変位用しきい値を超えたときを接触推定時刻と判定し、
     前記保存手段に保存された該接触推定時刻より以前の前記変位の信号が回転体保存変位用しきい値を超えたか否かで前記接触の原因を推定することを特徴とする真空ポンプの異常原因推定方法。
  10.   固定部の物理量を信号として検出し、
     該物理量の信号を保存手段に保存し、
     前記物理量の信号が固定部物理量用しきい値を超えたときを接触推定時刻と判定し、
     前記保存手段に保存された該接触推定時刻より以前の前記物理量の信号が固定部保存物理量用しきい値を超えたか否かで前記接触の原因を推定することを特徴とする真空ポンプの異常原因推定方法。
PCT/JP2015/081147 2014-11-12 2015-11-05 真空ポンプ及び該真空ポンプの異常原因推定方法 WO2016076191A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201580059301.4A CN107110167B (zh) 2014-11-12 2015-11-05 真空泵以及该真空泵的异常原因推定方法
KR1020177011463A KR102440091B1 (ko) 2014-11-12 2015-11-05 진공 펌프 및 이 진공 펌프의 이상 원인 추정 방법
US15/521,793 US10578158B2 (en) 2014-11-12 2015-11-05 Vacuum pump and abnormality cause estimating method for vacuum pump

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-230163 2014-11-12
JP2014230163A JP6436731B2 (ja) 2014-11-12 2014-11-12 真空ポンプ及び該真空ポンプの異常原因推定方法

Publications (1)

Publication Number Publication Date
WO2016076191A1 true WO2016076191A1 (ja) 2016-05-19

Family

ID=55954280

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/081147 WO2016076191A1 (ja) 2014-11-12 2015-11-05 真空ポンプ及び該真空ポンプの異常原因推定方法

Country Status (5)

Country Link
US (1) US10578158B2 (ja)
JP (1) JP6436731B2 (ja)
KR (1) KR102440091B1 (ja)
CN (1) CN107110167B (ja)
WO (1) WO2016076191A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019120157A (ja) * 2017-12-28 2019-07-22 エドワーズ株式会社 真空ポンプ及び真空ポンプの堆積物検知装置並びに真空ポンプの堆積物検知方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6586275B2 (ja) * 2015-01-30 2019-10-02 エドワーズ株式会社 真空ポンプ
JPWO2018198288A1 (ja) * 2017-04-27 2020-05-14 株式会社島津製作所 ポンプ監視装置、真空処理装置および真空ポンプ

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000074063A (ja) * 1998-09-02 2000-03-07 Ntn Corp 磁気軸受の制御装置
WO2010007975A1 (ja) * 2008-07-14 2010-01-21 エドワーズ株式会社 真空ポンプ

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3457353B2 (ja) 1993-05-25 2003-10-14 ビーオーシーエドワーズテクノロジーズ株式会社 磁気軸受装置
JP2003097554A (ja) * 2001-09-25 2003-04-03 Ebara Corp 磁気軸受制御装置
JP4483431B2 (ja) * 2004-06-29 2010-06-16 株式会社ジェイテクト ターボ分子ポンプ装置
FR2947309A1 (fr) * 2009-06-26 2010-12-31 Alcatel Lucent Procede de prediction d'une defaillance de la rotation du rotor d'une pompe a vide et dispositif de pompage associe
CN102425560B (zh) * 2011-12-05 2014-04-30 北京中科科仪股份有限公司 一种磁悬浮分子泵动平衡方法
JP2013185578A (ja) * 2012-03-12 2013-09-19 Shimadzu Corp 真空ポンプ
JP6766533B2 (ja) * 2016-09-06 2020-10-14 株式会社島津製作所 堆積物監視装置および真空ポンプ

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000074063A (ja) * 1998-09-02 2000-03-07 Ntn Corp 磁気軸受の制御装置
WO2010007975A1 (ja) * 2008-07-14 2010-01-21 エドワーズ株式会社 真空ポンプ

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019120157A (ja) * 2017-12-28 2019-07-22 エドワーズ株式会社 真空ポンプ及び真空ポンプの堆積物検知装置並びに真空ポンプの堆積物検知方法
JP7057128B2 (ja) 2017-12-28 2022-04-19 エドワーズ株式会社 真空ポンプ及び真空ポンプの堆積物検知装置並びに真空ポンプの堆積物検知方法

Also Published As

Publication number Publication date
US10578158B2 (en) 2020-03-03
KR102440091B1 (ko) 2022-09-05
JP2016094849A (ja) 2016-05-26
JP6436731B2 (ja) 2018-12-12
CN107110167A (zh) 2017-08-29
CN107110167B (zh) 2020-02-21
US20170248166A1 (en) 2017-08-31
KR20170085039A (ko) 2017-07-21

Similar Documents

Publication Publication Date Title
EP2314877B1 (en) Vacuum pump
JP5782378B2 (ja) 真空ポンプ
US9077214B2 (en) Magnetic bearing control device and exhaust pump having magnetic bearing control device
CN112219034B (zh) 真空泵及温度控制装置
WO2016076191A1 (ja) 真空ポンプ及び該真空ポンプの異常原因推定方法
JP2002295398A (ja) ターボ分子ポンプの保護装置、及びターボ分子ポンプの保護方法
JP2006194083A (ja) ロータ軸と回転体との固定構造及び該固定構造を有するターボ分子ポンプ
JP7057128B2 (ja) 真空ポンプ及び真空ポンプの堆積物検知装置並びに真空ポンプの堆積物検知方法
JP5255752B2 (ja) ターボ分子ポンプ
WO2020158658A1 (ja) 真空ポンプ及び真空ポンプの制御装置
JP7489245B2 (ja) 真空ポンプおよび制御装置
JPH116774A (ja) ロータ温度検出装置及び温度検出方法
JP7408618B2 (ja) 真空ポンプ及び制御装置
WO2023095851A1 (ja) 真空ポンプ及び制御装置
JP2000291586A (ja) 真空ポンプ
EP4397875A1 (en) Magnetic bearing device and vacuum pump
JP2006083924A (ja) 磁気軸受制御装置
JP2004060486A (ja) 真空ポンプ
CN117795213A (zh) 磁轴承装置及真空泵

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15859615

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15521793

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20177011463

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15859615

Country of ref document: EP

Kind code of ref document: A1