WO2020158658A1 - 真空ポンプ及び真空ポンプの制御装置 - Google Patents

真空ポンプ及び真空ポンプの制御装置 Download PDF

Info

Publication number
WO2020158658A1
WO2020158658A1 PCT/JP2020/002745 JP2020002745W WO2020158658A1 WO 2020158658 A1 WO2020158658 A1 WO 2020158658A1 JP 2020002745 W JP2020002745 W JP 2020002745W WO 2020158658 A1 WO2020158658 A1 WO 2020158658A1
Authority
WO
WIPO (PCT)
Prior art keywords
vacuum pump
total time
time
physical quantity
stage
Prior art date
Application number
PCT/JP2020/002745
Other languages
English (en)
French (fr)
Inventor
深美 英夫
Original Assignee
エドワーズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エドワーズ株式会社 filed Critical エドワーズ株式会社
Priority to US17/423,397 priority Critical patent/US11971042B2/en
Priority to CN202080009751.3A priority patent/CN113348305A/zh
Priority to EP20748915.4A priority patent/EP3919748B1/en
Publication of WO2020158658A1 publication Critical patent/WO2020158658A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/001Testing thereof; Determination or simulation of flow characteristics; Stall or surge detection, e.g. condition monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
    • F04D19/042Turbomolecular vacuum pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
    • F04D19/048Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps comprising magnetic bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/06Units comprising pumps and their driving means the pump being electrically driven
    • F04D25/0606Units comprising pumps and their driving means the pump being electrically driven the electric motor being specially adapted for integration in the pump
    • F04D25/0613Units comprising pumps and their driving means the pump being electrically driven the electric motor being specially adapted for integration in the pump the electric motor being of the inside-out type, i.e. the rotor is arranged radially outside a central stator
    • F04D25/0633Details of the magnetic circuit
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K13/00Thermometers specially adapted for specific purposes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/165Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values
    • G01R19/16533Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0218Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults
    • G05B23/0224Process history based detection method, e.g. whereby history implies the availability of large amounts of data
    • G05B23/0227Qualitative history assessment, whereby the type of data acted upon, e.g. waveforms, images or patterns, is not relevant, e.g. rule based assessment; if-then decisions
    • G05B23/0235Qualitative history assessment, whereby the type of data acted upon, e.g. waveforms, images or patterns, is not relevant, e.g. rule based assessment; if-then decisions based on a comparison with predetermined threshold or range, e.g. "classical methods", carried out during normal operation; threshold adaptation or choice; when or how to compare with the threshold
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B21/00Alarms responsive to a single specified undesired or abnormal condition and not otherwise provided for
    • G08B21/18Status alarms
    • G08B21/182Level alarms, e.g. alarms responsive to variables exceeding a threshold
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/30Control parameters, e.g. input parameters
    • F05D2270/303Temperature
    • F05D2270/3032Temperature excessive temperatures, e.g. caused by overheating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/30Control parameters, e.g. input parameters
    • F05D2270/335Output power or torque
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0259Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterized by the response to fault detection
    • G05B23/0283Predictive maintenance, e.g. involving the monitoring of a system and, based on the monitoring results, taking decisions on the maintenance schedule of the monitored system; Estimating remaining useful life [RUL]

Definitions

  • the present invention relates to a vacuum pump and a control device for a vacuum pump, and in particular, a vacuum pump and a vacuum pump that can accurately determine the timing of rotor blade replacement by creating an index that can quantitatively and easily determine the degree of fatigue of a rotor blade. Control device.
  • a vacuum pump is generally used to evacuate the chamber, but a turbo molecular pump, which is one of the vacuum pumps, is often used from the viewpoints of particularly small residual gas and easy maintenance. Also, in the semiconductor manufacturing process, there are many processes in which various process gases are applied to the semiconductor substrate, and the turbo molecular pump not only evacuates the chamber but also exhausts these process gases from the chamber. Also used.
  • the process gas may be introduced into the chamber at a high temperature in order to increase the reactivity. Then, these process gases may be cooled at the time of being exhausted and become solid at a certain temperature to precipitate a product in the exhaust system. Then, this type of process gas may become a solid state at a low temperature in the turbo molecular pump, and may adhere and deposit inside the turbo molecular pump.
  • a heater or an annular water cooling pipe is wound around the outer periphery of the base portion of the turbo molecular pump, and a temperature sensor is embedded in the base portion, for example, and the base is based on the signal of this temperature sensor.
  • the heating of the heater and the cooling by the water cooling pipe are controlled so as to keep the temperature of the part at a high temperature within a certain range (see Patent Document 1, Patent Document 2, and Patent Document 3).
  • this control temperature is, the more difficult it is for the product to deposit, so it is desirable to set this temperature as high as possible.
  • the rotary blade may exceed the limit temperature when the exhaust load changes or the ambient temperature changes to a high temperature.
  • a radioactive thermometer is installed in the base unit to constantly measure the temperature of the rotating blade, and the temperature is kept operating for a certain period of time in a state where it exceeds a predetermined threshold value. In this case, a warning is given, or the pump is stopped when the temperature is further exceeded and the operation is continued for, for example, 30 seconds.
  • JP 2002-257079 A Japanese Patent No. 5782378 WO2010/021307A1
  • the information on the cumulative operating time of the pump recorded in the control circuit alone does not include the information on the gas load and the temperature, it is possible to determine the necessity of the rotor blade replacement with a certain degree of accuracy. As a result, the manufacturer recommends early replacement based on the safety judgment, but it is not easy for the customer to be satisfied.
  • the above-mentioned judgment items alone may not be sufficient to properly judge the degree of fatigue of the rotor blade. For example, if there is a situation in which the temperature exceeds or falls below the threshold temperature within 30 seconds repeatedly, a considerable amount of fatigue is accumulated in the rotor even if it cannot be detected as a pump abnormality. It is estimated that
  • the present invention has been made in view of such a conventional problem, and a vacuum pump capable of accurately determining the timing of rotor blade replacement by creating an index that can quantitatively and easily determine the degree of fatigue of a rotor blade, and
  • An object is to provide a control device for a vacuum pump.
  • the present invention is a vacuum pump capable of determining the timing of rotor blade replacement, wherein the vacuum pump is provided in a rotor incorporated in the vacuum pump body and in the vacuum pump body.
  • a physical quantity extracting means for extracting the physical quantity measured by the sensor while the vacuum pump is operating, and a physical quantity extracted by the physical quantity extracting means.
  • Setting means for setting the variation range of a plurality of stages in advance, time acquisition means for acquiring the total time when the physical quantity belongs to each of the stages during the operation of the vacuum pump and the total time of all the stages, Saving means for saving the total time of each step and the total time of all the steps acquired by the time acquisition means, and displaying the total time of each step saved by the saving means, or the total time of all the steps And a display unit for displaying the ratio of the total time for each of the above steps.
  • the physical quantity related to the rotor blade measured by the sensor is extracted.
  • the setting means sets the variation range of the physical quantity in a plurality of stages in advance. Then, the total time that the physical quantity belongs to each stage and the total time of all stages are acquired. It displays the total time for each acquired step and the ratio of the total time for each step to the total time for all steps. As a result, it is possible to objectively and accurately judge the necessity of replacing the rotor blade with only a small numerical value such as the cumulative time or ratio of the physical quantity for each stage. In addition, this value can also be used as a guideline for the amount of deposits of process gas inside the vacuum pump.
  • the present invention (claim 2) provides a warning based on the comparison means for comparing the total time for each stage acquired by the time acquisition means with a predetermined threshold value, and the comparison result by the comparison means. And a warning generating means for issuing the warning.
  • the senor measures the amount of current flowing in a temperature measuring unit which is built in the vacuum pump body and measures the temperature of the rotary blade, or a motor which drives the rotary blade. It is a current amount measuring means.
  • the temperature measuring means and the current amount measuring means are used for protection function processing of the pump. It can also be used in conjunction with this protection function to judge the overhaul time of rotor blades.
  • the present invention is a controller for a vacuum pump having a rotary blade built in a vacuum pump main body, and a sensor arranged in the vacuum pump main body for measuring a physical quantity related to the rotary blade.
  • a physical quantity extracting means for extracting the physical quantity measured by the sensor while the vacuum pump is in operation, and a setting means for setting a variation range of the physical quantity extracted by the physical quantity extracting means in a plurality of stages in advance.
  • a time acquisition means for acquiring the total time when the physical quantity belongs to each of the stages during the operation of the vacuum pump and the total time of all the stages, and the total time for each of the stages acquired by the time acquisition means.
  • a storage means for storing the total time of all the steps, and a total time for each step saved by the storage means, or a display for displaying the ratio of the total time of each step to the total time of all the steps And a means for deciding the replacement time of the rotary blade based on the total time or the ratio for each stage displayed by the display means.
  • time acquisition means for acquiring the total time when the physical quantity belongs to each stage during the operation of the vacuum pump and the total time of all stages, and each stage. It is configured to display the total time of each step or the ratio of the total time of each step to the total time of all steps. The need for can be determined objectively and accurately. In addition, this value can also be used as a guideline for the amount of deposits of process gas inside the vacuum pump.
  • FIG. 1 shows a system configuration diagram relating to the determination of the necessity of rotor blade replacement, which is an embodiment of the present invention
  • FIG. 2 shows a configuration diagram of a turbo molecular pump.
  • the control device 200 is shown separately from the pump body 100, but the turbo molecular pump can be applied to this embodiment even if the pump body 100 and the control device 200 are integrated. ..
  • the control device 200 is provided with a magnetic bearing control unit 3 for controlling the levitation of the magnetic bearings (104, 105, 106) provided in the pump body 100 and a motor drive control unit 5 for controlling the rotation of the motor 121.
  • the rotor blade temperature measuring unit 7 receives a signal obtained by contactlessly measuring the temperature of the rotor 103 by the rotor blade temperature sensor 9.
  • the magnetic bearing control unit 3 outputs the floating position of the rotating body 103 and the like, and inputs it to the protection function processing unit 11. Then, in the protection function processing unit 11, when there is an abnormality in the floating position of the rotating body 103, a warning or a pump stop is performed.
  • the motor drive control unit 5 outputs the rotation speed value and the motor current value of the rotating body 103 and inputs them to the protection function processing unit 11. Then, in the protection function processing unit 11, when there is an abnormality in the rotation speed value or the motor current value of the rotating body 103, a warning or a pump stop is performed. Further, the motor current value output from the motor drive control unit 5 is input to the time count processing unit 13, and in this time count processing unit 13, the current value of the rotating body 103 is within the range of the current value for each step of the current value. The time that has stayed is added up.
  • the rotor blade temperature measurement unit 7 outputs a rotor blade temperature value, which is input to the protection function processing unit 11. Then, in the protection function processing unit 11, when there is an abnormality in the temperature value of the rotor blade, a warning and a pump stop are performed. Further, the rotor blade temperature value output from the rotor blade temperature measuring unit 7 is input to the time counting processing unit 13. Then, the rotor blade temperature values sampled and acquired are averaged for one minute. After that, the average value is integrated for each stage of the rotor blade temperature value, while the time spent in the range is integrated. Then, in the memory 15, each time value accumulated by the time count processing unit 13 is stored. In the storage processing unit 17, for example, when the pump is decelerated and stopped, or every two hours, data is read from the memory 15 and stored in the nonvolatile memory 19.
  • an intake port 101 is formed at the upper end of a cylindrical outer cylinder 127 of the pump body 100.
  • a rotating body 103 Inside the outer cylinder 127, there is provided a rotating body 103 in which a plurality of rotor blades 102a, 102b, 102c,...
  • a rotor shaft 113 is attached to the center of the rotating body 103, and the rotor shaft 113 is levitationally supported in the air and position-controlled by, for example, a so-called five-axis control magnetic bearing.
  • the upper radial electromagnet 104 In the upper radial electromagnet 104, four electromagnets are arranged in pairs in a radial coordinate axis of the rotor shaft 113, the X axis and the Y axis being orthogonal to each other.
  • An upper radial sensor 107 composed of four electromagnets is provided in proximity to and corresponding to the upper radial electromagnet 104. The upper radial sensor 107 is configured to detect the radial displacement of the rotor shaft 113 and send it to the control device 200.
  • the excitation of the upper radial electromagnet 104 is controlled via the compensating circuit having the PID adjustment function, and the rotor shaft 113 of the rotor shaft 113 is controlled. Adjust the upper radial position.
  • the rotor shaft 113 is made of a material having a high magnetic permeability (such as iron) and is attracted by the magnetic force of the upper radial electromagnet 104. Such adjustment is performed independently in the X-axis direction and the Y-axis direction.
  • the lower radial electromagnet 105 and the lower radial sensor 108 are arranged in the same manner as the upper radial electromagnet 104 and the upper radial sensor 107, and the magnetic bearing control unit 3 controls the lower radial position of the rotor shaft 113. Is adjusted in the same manner as the upper radial position.
  • the axial electromagnets 106A and 106B are arranged so as to sandwich a disc-shaped metal disk 111 provided below the rotor shaft 113 in the vertical direction.
  • the metal disk 111 is made of a high magnetic permeability material such as iron.
  • An axial sensor (not shown) is provided to detect the axial displacement of the rotor shaft 113, and the axial displacement signal is sent to the magnetic bearing control unit 3 of the control device 200.
  • the axial electromagnets 106A and 106B are excitation-controlled through a compensating circuit having a PID adjusting function of the magnetic bearing control unit 3 based on the axial displacement signal.
  • the axial electromagnet 106A and the axial electromagnet 106B attract the metal disk 111 upward and downward by magnetic force.
  • the magnetic force exerted by the axial electromagnets 106A and 106B on the metal disk 111 is appropriately adjusted to magnetically levitate the rotor shaft 113 in the axial direction so that the rotor shaft 113 is not exposed to space. It is designed to be held by contact.
  • the motor 121 has a plurality of magnetic poles arranged in a circumferential shape so as to surround the rotor shaft 113. Each magnetic pole is controlled by the motor drive control unit 5 so as to rotationally drive the rotor shaft 113 via an electromagnetic force acting between the magnetic pole and the rotor shaft 113.
  • a plurality of fixed blades 123a, 123b, 123c,... are arranged with a slight gap from the rotary blades 102a, 102b, 102c,.
  • the rotor blades 102a, 102b, 102c, etc. are formed to be inclined at a predetermined angle from a plane perpendicular to the axis of the rotor shaft 113 in order to transfer the molecules of the exhaust gas downward by collision.
  • the fixed blades 123 are also formed so as to be inclined at a predetermined angle from the plane perpendicular to the axis of the rotor shaft 113, and are arranged inwardly of the outer cylinder 127 so as to alternate with the stages of the rotary blades 102. ing. Then, one end of the fixed blade 123 is supported in a state of being fitted and inserted between the plurality of stacked fixed blade spacers 125a, 125b, 125c,....
  • the fixed blade spacer 125 is a ring-shaped member, and is made of, for example, a metal such as aluminum, iron, stainless steel, or copper, or a metal such as an alloy containing these metals as a component.
  • An outer cylinder 127 is fixed to the outer periphery of the fixed blade spacer 125 with a slight gap.
  • a base portion 129 is arranged at the bottom of the outer cylinder 127, and a threaded spacer 131 is arranged between the lower portion of the fixed blade spacer 125 and the base portion 129.
  • An exhaust port 133 is formed in the lower portion of the threaded spacer 131 in the base portion 129 and communicates with the outside.
  • the threaded spacer 131 is a cylindrical member made of a metal such as aluminum, copper, stainless steel, iron, or an alloy containing these metals as a component, and has a plurality of spiral thread grooves 131a on its inner peripheral surface. It is engraved.
  • the spiral direction of the thread groove 131a is a direction in which, when the exhaust gas molecules move in the rotation direction of the rotating body 103, the molecules are transferred to the exhaust port 133.
  • a cylindrical portion 102d is hung at the lowermost part of the rotor 103, which is continuous with the rotary blades 102a, 102b, 102c,....
  • the outer peripheral surface of the cylindrical portion 102d is cylindrical and protrudes toward the inner peripheral surface of the threaded spacer 131, and is close to the inner peripheral surface of the threaded spacer 131 with a predetermined gap. There is.
  • the base portion 129 is a disk-shaped member that constitutes the base portion of the pump body 100 of the turbo molecular pump, and is generally made of metal such as iron, aluminum, and stainless. Since the base portion 129 physically holds the pump body 100 and also has a function of a heat conduction path, a metal having rigidity such as iron, aluminum or copper and having high heat conductivity is used. desirable.
  • the fixed blade spacers 125 are joined to each other at the outer peripheral portion thereof, and the fixed blade 123 receives heat received by the fixed blade 123 from the rotary blades 102 and frictional heat generated when exhaust gas comes into contact with or collides with the fixed blade 123.
  • the exhaust gas transferred to the threaded spacer 131 is sent to the exhaust port 133 while being guided by the thread groove 131a. Further, the gas sucked from the intake port 101 enters the electric component side including the motor 121, the lower radial electromagnet 105, the lower radial sensor 108, the upper radial electromagnet 104, the upper radial sensor 107, and the like.
  • the electric component is surrounded by a stator column 122, and the inside of the electric component is kept at a predetermined pressure by purge gas.
  • a rotor blade temperature sensor 9 is installed on the outer diameter portion of the stator column 122 and near the exhaust port 133.
  • the cumulative operating time information is provided to create the index for determining the replacement of the rotor blades. Then, a time that satisfies a specific condition is defined as the cumulative operating time information, and the cumulative time is recorded.
  • the conditions are set in the following two items. (1) Regarding the current value supplied to the motor 121 capable of judging the tendency of the gas load, the cumulative time during which this current value exceeds a certain specified value is recorded. (2) Regarding the temperature value of the rotary blade 102 used for abnormality detection, the cumulative time during which this temperature value exceeds a certain specified value is recorded.
  • turbo molecular pumps are used with complicated recipes, so the above-mentioned specified values are set in multiple stages to show the tendency of the usage conditions, and they remain at each stage. Record the cumulative value of time. For example, as the level of the current value supplied to the motor 121, three levels of high/medium/low are set in descending order of current value.
  • the reason that the number of stages is three/multi/medium/few is for the sake of easy understanding of the explanation, and it is desirable to use more stages. This also applies to the setting of the rotor blade temperature value described later.
  • High is a range of current values that have large current values and are not expected for normal operation, including alarm levels and abnormal levels.
  • the state in which the specified current value is exceeded continues for, for example, 30 seconds.
  • the time remaining at the alarm level or the abnormal level is short, such as several seconds, the alarm or pump will not stop, but this will be caused by the abnormally large load.
  • the rotor blades 102 become fatigued when repeatedly accumulated. The degree of fatigue of the rotary blade 102 can be used as an index by accumulating the time spent in "a lot”.
  • “Medium” is the range of current values at which the pump is operating normally and is expected to operate. The range of current values expected for this operation is determined for each pump. “Small” means that the load is light, or that the rotor 103 is magnetically levitated but the motor 121 is not rotating.
  • the cumulative operating time is set to 100%, and for example, a pump with a record of [10% in the middle/70% in the middle/20% in the small] shows the fluctuation of the gas load. Can be judged to have been used in an operating situation where the load is not so heavy. On the other hand, it can be judged that the pump having a record of [high 50%/medium 40%/low 10%] was used in an operating condition where the gas load fluctuates a lot and the load is large.
  • the cumulative operating time is the same, it can be determined that the latter is a pump in which the degree of fatigue of the rotary blade 102 is greater. Even if the cumulative operating time is different, it is possible to judge the degree of fatigue from the value that the cumulative time used at the supply current level "high" is recorded. Similarly, for the rotor blade temperature value, the temperature range that does not lead to abnormality detection is set to three levels of high/medium/low, and the accumulated value of the time staying in each stage is recorded. The degree of fatigue of the wing 102 can be determined.
  • FIG. 3 shows a flowchart for determining the necessity degree of rotor blade replacement according to the present embodiment.
  • This flowchart operates in the time count processing unit 13.
  • the time count processing unit 13 corresponds to time acquisition means.
  • step 3 it is determined whether or not the pump is rotating. When it is determined that the pump is rotating, the process proceeds to step 4 and the cumulative operating time counter is incremented. On the other hand, when it is determined in step 3 that the pump is not rotating, the process proceeds to the motor drive current time subroutine of step 10 and the integrated time of the motor drive current for each stage is measured. Then, in step 20, the process proceeds to a blade temperature time sub-routine, and the integrated time of the blade temperature for each stage is measured. The integrated time of the motor drive current for each stage and the integrated time of the blade temperature for each stage correspond to the total time when the physical quantity belongs to each stage.
  • step 11 it is determined whether or not the motor current value output from the motor drive control unit 5 is larger than a preset level.
  • the process proceeds to step 12, the current "many" counter is counted up, and then the process proceeds to step 20.
  • step 13 it is determined whether the motor current value is larger than the preset level. If it is larger than the middle level, the process proceeds to step 14, the current "medium” counter is counted up, and then the process proceeds to step 20.
  • the motor current value is equal to or lower than the preset level in step 13 the process proceeds to step 20.
  • the current "small” is not counted, but this is because it can be obtained by subtracting the count value of the current “high” counter and the count value of the current “medium” counter from the count value of the cumulative energization time counter. With this, it is determined every minute whether the measured motor current value is in the current “high”, current “medium”, or current “low” level, and the value is incremented and integrated. It
  • the integrated time can be calculated by multiplying the count value by 1 minute. This time data is displayed step by step. Further, the ratio of the times accumulated for each stage may be calculated and displayed with the total time of all stages being 100%. As a result, it is possible to objectively and accurately determine the necessity of replacing the rotor blades 102 only by the three numerical values of the integrated time or the ratio for each of the current “high”, the current “medium”, and the current “small”. .. In addition, this value can also be used as a guideline for the amount of deposits of process gas inside the turbo molecular pump.
  • step 21 it is determined whether or not the rotor blade temperature value output from the rotor blade temperature measuring unit 7 is higher than a preset level high temperature value.
  • the process proceeds to step 22 and the blade temperature "high" counter is counted up.
  • the routine proceeds to step 30, and this timer interrupt processing is ended.
  • the routine proceeds to step 23, where it is determined whether or not the rotor blade temperature value is higher than the preset level temperature value.
  • step 24 the process proceeds to step 24, and the blade temperature "medium" counter is counted up. After that, the routine proceeds to step 30, and this timer interrupt processing is ended. On the other hand, when the rotor blade temperature value is equal to or lower than the temperature value in the preset level in step 23, the process proceeds to step 30 to end the timer interrupt process.
  • the blade temperature "low” is not counted, but this is because it can be obtained by subtracting the count value of the blade temperature "high” counter and the count value of the blade temperature "medium” counter from the count value of the cumulative energization time counter. From this, it is judged every minute whether the measured blade temperature value is in the blade temperature "high”, the blade temperature "medium”, or the blade temperature "low”, and Accumulated by increment.
  • the temperature of the high temperature overheat warning detection is set to 135° C. for the rotor blade temperature value. A warning is issued when this temperature is reached. This warning is set to 130° C. to have hysteresis. Further, it is assumed that the temperature of the high temperature overheat abnormality detection is set to 145° C., for example. When this temperature is reached, for example, this state is continued for 30 seconds, and then a pump stop command is issued. This abnormality release is set to 140° C. to have hysteresis.
  • the level of the blade temperature counter is prepared in five stages in accordance with the temperature value set in the safety management of the rotary blade 102 in this way. That is, the level from the high temperature overheat warning detection temperature of 135° C. to the high temperature overheat abnormality detection temperature of 145° C. is set to level 4, and the high temperature overheat abnormality detection temperature of 145° C. or higher is set to level 5.
  • the rotor blade temperature value of 90°C or higher and lower than 135°C is set to level 3 because this temperature range is an operating range expected in pump operation. Further, the reason why the temperature value of the rotor blade is 40° C. or more and less than 90° C.
  • this temperature range is a range of the operating condition in which there is a margin in which the load is not applied in operation. Further, the reason why the rotor blade temperature value of less than 40° C. is set to level 1 is that in this temperature range, the rotor blades 102 do not rotate and are floating by magnetic levitation.
  • step 15 it is determined whether or not the count value of the current "high” counter exceeds a predetermined warning threshold value. If the warning threshold is exceeded, a rotating body fatigue large warning notification is issued in step 16.
  • Non-volatile memory 100 pump body 102 rotor 103 rotating body 104 upper radial electromagnet 105 Lower radial electromagnet 106A, 106B axial electromagnet 121 motor 200 control device

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Non-Positive Displacement Air Blowers (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

【課題】回転翼の疲労具合を定量的かつ容易に判断できる指標を作成することで、回転翼交換の時期を的確に判断できる真空ポンプ及び真空ポンプの制御装置を提供する。 【解決手段】モータ駆動制御部5から出力されたモータ電流値は時間カウント処理部13に入力され、この時間カウント処理部13において電流値の段階毎に回転体103の電流値がその段階の範囲内に留まっていた時間が積算されるようになっている。また、回転翼温度計測部7から出力された回転翼温度値は時間カウント処理部13に入力される。そして、サンプリング取得された回転翼温度値は1分間の平均値が取られる。その後、その平均値が回転翼温度値の段階毎に、その範囲内に留まっていた時間が積算されるようになっている。メモリ15では時間カウント処理部13で積算された各時間値が保存されるようになっている。記憶処理部17ではメモリ15からデータが読まれ、不揮発メモリ19に保存されるようになっている。

Description

真空ポンプ及び真空ポンプの制御装置

 本発明は真空ポンプ及び真空ポンプの制御装置に係わり、特に回転翼の疲労具合を定量的かつ容易に判断できる指標を作成することで、回転翼交換の時期を的確に判断できる真空ポンプ及び真空ポンプの制御装置に関する。

 近年のエレクトロニクスの発展に伴い、メモリや集積回路といった半導体の需要が急激に増大している。

 これらの半導体は、きわめて純度の高い半導体基板に不純物をドープして電気的性質を与えたり、エッチングにより半導体基板上に微細な回路を形成したりなどして製造される。

 そして、これらの作業は空気中の塵等による影響を避けるため高真空状態のチャンバ内で行われる必要がある。このチャンバの排気には、一般に真空ポンプが用いられているが、特に残留ガスが少なく、保守が容易等の点から真空ポンプの中の一つであるターボ分子ポンプが多用されている。

 また、半導体の製造工程では、さまざまなプロセスガスを半導体の基板に作用させる工程が数多くあり、ターボ分子ポンプはチャンバ内を真空にするのみならず、これらのプロセスガスをチャンバ内から排気するのにも使用される。

 ところで、プロセスガスは、反応性を高めるため高温の状態でチャンバに導入される場合がある。

 そして、これらのプロセスガスは、排気される際に冷却されてある温度になると固体となり排気系に生成物を析出する場合がある。そして、この種のプロセスガスがターボ分子ポンプ内で低温となって固体状となり、ターボ分子ポンプ内部に付着して堆積する場合がある。

 ターボ分子ポンプ内部にプロセスガスの析出物が堆積すると、この堆積物がポンプ流路を狭め、ターボ分子ポンプの性能を低下させる原因となる。

 この問題を解決するために、従来はターボ分子ポンプのベース部等の外周にヒータや環状の水冷管を巻着させ、かつ例えばベース部等に温度センサを埋め込み、この温度センサの信号に基づきベース部の温度を一定の範囲の高温に保つようにヒータの加熱や水冷管による冷却の制御が行われている(特許文献1、特許文献2、特許文献3を参照)。

 この制御温度は高い方が生成物が堆積し難いため、この温度は可能な限り高くすることが望ましい。

 一方、このようにベース部を高温にした際には、回転翼は、排気負荷の変動や周囲温度が高温に変化した場合等には限界温度を超えるおそれがある。

 このような弊害を防止するためベース部内には例えば放射性の温度計が設置され常時回転翼の温度を測定し、その温度が一定時間予め定められたしきい値を超えた状態で運転している場合には警告が行われたり、その温度を更に超えた状態で例えば30秒間継続して運転がされたような状況のときにはポンプの停止がされる。

 そして、これらの作業下ではポンプは一旦運転されると例えば1-5年間運転が継続される等、ポンプのオーバーホールメンテナンス時以外は停止される機会は少ない。

 このため、通常はターボ分子ポンプのオーバーホールメンテナンスの機会に、回転翼交換の必要性を判断している。その際、目視で判断できる損傷や変色以外に、制御回路に記録されたポンプの累積稼働時間を判断項目として利用している。

特開2002-257079号公報 特許第5782378号公報 WO2010/021307A1

 しかしながら、同じ累積稼動時間の回転翼でも、実際には、稼働中のガス負荷により、回転翼に作用する応力が異なるため、回転翼の疲労度合いが大きく異なる場合がある。また、稼働中の温度も無視できず、高温で稼動しているほど、回転翼の疲労度合いは大きい。

 制御回路に記録されたポンプの累積稼動時間の情報だけでは、これらガス負荷や温度の情報は含まれていないため、それなりの精度でしか、回転翼交換の必要性を判断できない。

 その結果、メーカとしては、安全側に判断して早期交換を推奨するが、顧客に納得してもらうことは容易ではない。

 また、上述した判断項目だけでは回転翼の疲労具合を適正に判断するのには不十分な可能性がある。例えば、しきい値の温度を超えたり、下がったりを30秒以内に繰り返し行っているような状況が仮にあったとすると、ポンプ異常としては検出できないまでも回転翼には相当の疲労度が蓄積されているという状況が推定される。

 更に、温度センサからのサンプリングが例えば0.5秒に1回行われたとすると、1-5年間運転中にこの温度データをずっと蓄積し続けることは膨大なデータ量となる。このデータ量について解析を行うことは解析に要する負荷も大変である。このため、制御回路に搭載のCPUに対し余り負荷のかからない状態で回転翼の疲労具合の解析を行うことが望まれる。

 そこで、累積稼働時間以外にも回転翼の疲労具合を定量的かつ容易に判断できる指標を作成することが望まれる。

 本発明はこのような従来の課題に鑑みてなされたもので、回転翼の疲労具合を定量的かつ容易に判断できる指標を作成することで、回転翼交換の時期を的確に判断できる真空ポンプ及び真空ポンプの制御装置を提供することを目的とする。

 このため本発明(請求項1)は、回転翼交換の時期を判断可能な真空ポンプであって、前記真空ポンプは、真空ポンプ本体に内蔵された回転翼と、前記真空ポンプ本体に配設され、前記回転翼に関連した物理量を計測するセンサとを有し、前記真空ポンプの稼働中に前記センサで計測された前記物理量を抽出する物理量抽出手段と、該物理量抽出手段で抽出される前記物理量の変動範囲を予め複数の段階に設定する設定手段と、前記真空ポンプの稼働中に前記段階毎に前記物理量が属していたときの合計時間と全段階の合計時間を取得する時間取得手段と、該時間取得手段で取得した前記段階毎の合計時間と前記全段階の合計時間を保存する保存手段と、該保存手段で保存した前記段階毎の合計時間を表示、若しくは、前記全段階の合計時間に対する前記段階毎の合計時間の比率を表示する表示手段とを備えて構成した。

 センサで計測された回転翼に関連した物理量を抽出する。設定手段では物理量の変動範囲を予め複数の段階に設定する。そして、それぞれの段階に物理量が属している合計時間と全段階の合計時間を取得する。取得した段階毎の合計時間や、全段階の合計時間に対する段階毎の合計時間の比率を表示する。

 このことにより、物理量の段階毎の積算時間若しくは比率という少ない数値だけで、回転翼の交換の必要性を客観的かつ正確に判断することができる。また、この数値により、真空ポンプ内部にプロセスガスの析出物が堆積する量についても指針にできる。

 また、本発明(請求項2)は、前記時間取得手段で取得された前記段階毎の合計時間を所定のしきい値と比較する比較手段と、該比較手段での比較の結果に基づき警告を発する警告発生手段とを備えて構成した。

 カウントされた時間の積算値からオーバーホールが必要か否かを判断し、回転翼のオーバーホールを促す旨を通知することができる。このようにオーバーホールを促す警告を通知することで、回転体破損事故の予防が期待できる。

 更に、本発明(請求項3)は、前記センサが、前記真空ポンプ本体に内蔵された前記回転翼の温度を計測する温度計測手段、又は前記回転翼を駆動するモータに流れる電流量を計測する電流量計測手段であることを特徴とする。

 温度計測手段と電流量計測手段とはポンプの保護機能処理に使用される。この保護機能としての利用と併用して回転翼のオーバーホール時期の判断にも使える。

 更に、本発明(請求項4)は、真空ポンプ本体に内蔵された回転翼と、前記真空ポンプ本体に配設され、前記回転翼に関連した物理量を計測するセンサとを有する真空ポンプの制御装置であって、前記真空ポンプの稼働中に前記センサで計測された前記物理量を抽出する物理量抽出手段と、該物理量抽出手段で抽出される前記物理量の変動範囲を予め複数の段階に設定する設定手段と、前記真空ポンプの稼働中に前記段階毎に前記物理量が属していたときの合計時間と全段階の合計時間を取得する時間取得手段と、該時間取得手段で取得した前記段階毎の合計時間と前記全段階の合計時間を保存する保存手段と、該保存手段で保存した前記段階毎の合計時間を表示、若しくは、前記全段階の合計時間に対する前記段階毎の合計時間の比率を表示する表示手段とを備え、該表示手段で表示された前記段階毎の合計時間若しくは前記比率に基づき前記回転翼の交換の時期が判断可能なことを特徴とする。

 以上説明したように本発明(請求項1)によれば、真空ポンプの稼働中に段階毎に物理量が属していたときの合計時間と全段階の合計時間を取得する時間取得手段と、段階毎の合計時間を表示、若しくは、全段階の合計時間に対する段階毎の合計時間の比率を表示するように構成したので、物理量の各段階毎の積算時間若しくは比率という少ない数値だけで、回転翼の交換の必要性を客観的かつ正確に判断することができる。また、この数値により、真空ポンプ内部にプロセスガスの析出物が堆積する量についても指針にできる。

本発明の実施形態の回転翼交換の必要度判定に関するシステム構成図 ターボ分子ポンプの構成図 本実施形態である回転翼交換の必要度判定のフローチャート モータ駆動電流時間サブルーチン 翼温度時間サブルーチン 回転翼温度値を5段階とする例 オーバーホールを促す警告を通知する方法を示すフローチャート

 以下、本発明の実施形態について説明する。本発明の実施形態である回転翼交換の必要度判定に関するシステム構成図を図1に、また、図2に、ターボ分子ポンプの構成図を示す。

 図1において、制御装置200はポンプ本体100と別体で記載されているが、ターボ分子ポンプは、ポンプ本体100と制御装置200とが一体化されていても本実施形態の適用は可能である。

 制御装置200には、ポンプ本体100に備えられた磁気軸受(104、105、106)の浮上制御を行う磁気軸受制御部3とモータ121の回転制御を行うモータ駆動制御部5が配設されている。回転翼温度計測部7は回転翼温度センサ9で回転体103の温度を非接触に測定した信号を受信するようになっている。磁気軸受制御部3からは回転体103の浮上位置等が出力され、保護機能処理部11に入力されるようになっている。そして、この保護機能処理部11では回転体103の浮上位置等に異常があったときに警告やポンプ停止が行われるようになっている。

 モータ駆動制御部5からは回転体103の回転速度値やモータ電流値が出力され、保護機能処理部11に入力されるようになっている。そして、保護機能処理部11では回転体103の回転速度値やモータ電流値に異常があったときに警告やポンプ停止が行われるようになっている。また、モータ駆動制御部5から出力されたモータ電流値は時間カウント処理部13に入力され、この時間カウント処理部13において電流値の段階毎に回転体103の電流値がその段階の範囲内に留まっていた時間が積算されるようになっている。

 回転翼温度計測部7からは回転翼温度値が出力され、保護機能処理部11に入力されるようになっている。そして、この保護機能処理部11では回転翼温度値に異常があったときに警告やポンプ停止が行われるようになっている。また、回転翼温度計測部7から出力された回転翼温度値は時間カウント処理部13に入力される。そして、サンプリング取得された回転翼温度値は1分間の平均値が取られる。その後、その平均値が回転翼温度値の段階毎に、その範囲内に留まっていた時間が積算されるようになっている。

 そして、メモリ15では時間カウント処理部13で積算された各時間値が保存されるようになっている。記憶処理部17では例えば、ポンプの減速停止時、若しくは2時間毎にメモリ15からデータが読まれ、不揮発メモリ19に保存されるようになっている。

 図2において、ポンプ本体100の円筒状の外筒127の上端には吸気口101が形成されている。外筒127の内方には、ガスを吸引排気するためのタービンブレードによる複数の回転翼102a、102b、102c・・・を周部に放射状かつ多段に形成した回転体103を備える。

 この回転体103の中心にはロータ軸113が取り付けられており、このロータ軸113は、例えば、いわゆる5軸制御の磁気軸受により空中に浮上支持かつ位置制御されている。

 上側径方向電磁石104は、4個の電磁石が、ロータ軸113の径方向の座標軸であって互いに直交するX軸とY軸とに対をなして配置されている。この上側径方向電磁石104に近接かつ対応されて4個の電磁石からなる上側径方向センサ107が備えられている。この上側径方向センサ107はロータ軸113の径方向変位を検出し、制御装置200に送るように構成されている。

 制御装置200の磁気軸受制御部3においては、上側径方向センサ107が検出した変位信号に基づき、PID調節機能を有する補償回路を介して上側径方向電磁石104の励磁を制御し、ロータ軸113の上側の径方向位置を調整する。

 ロータ軸113は、高透磁率材(鉄など)などにより形成され、上側径方向電磁石104の磁力により吸引されるようになっている。かかる調整は、X軸方向とY軸方向とにそれぞれ独立して行われる。

 また、下側径方向電磁石105及び下側径方向センサ108が、上側径方向電磁石104及び上側径方向センサ107と同様に配置され、磁気軸受制御部3によりロータ軸113の下側の径方向位置を上側の径方向位置と同様に調整している。

 更に、軸方向電磁石106A、106Bが、ロータ軸113の下部に備えた円板状の金属ディスク111を上下に挟んで配置されている。金属ディスク111は、鉄などの高透磁率材で構成されている。ロータ軸113の軸方向変位を検出するために図示しない軸方向センサが備えられ、その軸方向変位信号が制御装置200の磁気軸受制御部3に送られるように構成されている。

 そして、軸方向電磁石106A、106Bは、この軸方向変位信号に基づき磁気軸受制御部3のPID調節機能を有する補償回路を介して励磁制御されるようになっている。軸方向電磁石106Aと軸方向電磁石106Bは、磁力により金属ディスク111をそれぞれ上方と下方とに吸引する。

 このように、制御装置200の磁気軸受制御部3においては、この軸方向電磁石106A、106Bが金属ディスク111に及ぼす磁力を適当に調節し、ロータ軸113を軸方向に磁気浮上させ、空間に非接触で保持するようになっている。

 モータ121は、ロータ軸113を取り囲むように周状に配置された複数の磁極を備えている。各磁極は、ロータ軸113との間に作用する電磁力を介してロータ軸113を回転駆動するように、モータ駆動制御部5によって制御されている。

 回転翼102a、102b、102c・・・とわずかの空隙を隔てて複数枚の固定翼123a、123b、123c・・・が配設されている。回転翼102a、102b、102c・・・は、それぞれ排気ガスの分子を衝突により下方向に移送するため、ロータ軸113の軸線に垂直な平面から所定の角度だけ傾斜して形成されている。

 また、固定翼123も、同様にロータ軸113の軸線に垂直な平面から所定の角度だけ傾斜して形成され、かつ外筒127の内方に向けて回転翼102の段と互い違いに配設されている。

 そして、固定翼123の一端は、複数の段積みされた固定翼スペーサ125a、125b、125c・・・の間に嵌挿された状態で支持されている。

 固定翼スペーサ125はリング状の部材であり、例えばアルミニウム、鉄、ステンレス、銅などの金属、又はこれらの金属を成分として含む合金などの金属によって構成されている。

 固定翼スペーサ125の外周には、わずかの空隙を隔てて外筒127が固定されている。外筒127の底部にはベース部129が配設され、固定翼スペーサ125の下部とベース部129の間にはネジ付きスペーサ131が配設されている。そして、ベース部129中のネジ付きスペーサ131の下部には排気口133が形成され、外部に連通されている。

 ネジ付きスペーサ131は、アルミニウム、銅、ステンレス、鉄、又はこれらの金属を成分とする合金などの金属によって構成された円筒状の部材であり、その内周面に螺旋状のネジ溝131aが複数条刻設されている。

 ネジ溝131aの螺旋の方向は、回転体103の回転方向に排気ガスの分子が移動したときに、この分子が排気口133の方へ移送される方向である。

 回転体103の回転翼102a、102b、102c・・・に続く最下部には円筒部102dが垂下されている。この円筒部102dの外周面は、円筒状で、かつネジ付きスペーサ131の内周面に向かって張り出されており、このネジ付きスペーサ131の内周面と所定の隙間を隔てて近接されている。

 ベース部129は、ターボ分子ポンプのポンプ本体100の基底部を構成する円盤状の部材であり、一般には鉄、アルミニウム、ステンレスなどの金属によって構成されている。

 ベース部129はポンプ本体100を物理的に保持すると共に、熱の伝導路の機能も兼ね備えているので、鉄、アルミニウムや銅などの剛性があり、熱伝導率も高い金属が使用されるのが望ましい。

 かかる構成において、回転翼102がモータ121により駆動されてロータ軸113と共に回転すると、回転翼102と固定翼123の作用により、吸気口101を通じてチャンバからの排気ガスが吸気される。

 吸気口101から吸気された排気ガスは、回転翼102と固定翼123の間を通り、ベース部129へ移送される。このとき、排気ガスが回転翼102に接触又は衝突する際に生ずる摩擦熱や、モータ121で発生した熱の伝導や輻射などにより、回転翼102の温度は上昇するが、この熱は、輻射又は排気ガスの気体分子等による伝導により固定翼123側に伝達される。

 固定翼スペーサ125は、外周部で互いに接合しており、固定翼123が回転翼102から受け取った熱や排気ガスが固定翼123に接触又は衝突する際に生ずる摩擦熱などを外筒127やネジ付きスペーサ131へと伝達する。

 ネジ付きスペーサ131に移送されてきた排気ガスは、ネジ溝131aに案内されつつ排気口133へと送られる。

 また、吸気口101から吸引されたガスがモータ121、下側径方向電磁石105、下側径方向センサ108、上側径方向電磁石104、上側径方向センサ107などで構成される電装部側に侵入することのないよう、電装部は周囲をステータコラム122で覆われ、この電装部内はパージガスにて所定圧に保たれている。

 このステータコラム122の外径部で、かつ排気口133の近傍には回転翼温度センサ9が設置されている。

 次に、本実施形態の作用について説明する。

 本実施形態では、回転翼交換の判定の指標を作成するため累積稼動時間情報を備える。

そして、この累積稼動時間情報として特定の条件を満足する時間を定義し、その累積時間を記録するものである。具体的には、次の2項目に条件を設定する。 

(1)ガス負荷の傾向を判断できるモータ121へ供給している電流値に関し、この電流値がある規定値を超えている累積時間を記録する。 

(2)異常検知に利用している回転翼102の温度値に関し、この温度値がある規定値を超えている累積時間を記録する。 

 なお、近年の半導体プロセス装置では、複雑なレシピでターボ分子ポンプが利用されるので、その利用状況の傾向を示すために、前述の規定値を複数段階的に設定し、各段階に留まっていた時間の累積値を記録する。 

 例えば、モータ121へ供給している電流値のレベルとして、電流値の多い順に多/中/少の3段階を設定する。ここに、多/中/少の3段階としたのは説明を分かりやすくするためであり、より多段階とするのが望ましい。この点は、後述する回転翼温度値の設定についても同様である。

 「多」は電流値が大きく、警報のレベルや異常のレベルを含む通常の運転としては期待されていない電流値の範囲である。警報やポンプの運転停止となるには規定の電流値を超えた状態が例えば30秒間継続することが条件になっている。このため、警報のレベルや異常のレベルに留まっていた時間が数秒等短時間である場合には警報やポンプの停止に迄は至らないが、負荷が異常に多くかかることでこのような状況が繰り返し累積されると回転翼102は疲労することが想定される。この回転翼102の疲労具合は「多」にいた時間の累積をもって指標とすることができる。

 「中」はポンプとして通常の稼働状況であり運転が期待されている電流値の範囲である。この運転が期待されている電流値の範囲はポンプ毎に決められる。「少」は負荷が軽いか、回転体103が磁気浮上しているがモータ121の回転がされていない状況である。 それぞれの段階に留まっていた時間の累積値を記録した場合、累積稼動時間を100%として、例えば、[多 10%/中 70%/少 20%]の記録を持つポンプは、ガス負荷の変動が少なく、さほど負荷が大きくない稼動状況で利用されていたと判断できる。一方、[多 50%/中 40%/少 10%]の記録を持つポンプは、ガス負荷変動が多く、かつ、負荷も大きい稼動状況で利用されていたと判断できる。

 もし、累積稼動時間が同じならば、後者の方が、回転翼102の疲労度合いが大きいポンプと判断できる。累積稼動時間が異なっている場合でも、供給電流レベル「多」で利用されていた累積時間が記録されていることが、その値からも疲労度合いを判断できる。 

 なお、回転翼温度値も同様に、異常検出には至らない温度範囲を、高/中/低の3段階のレベルを設定し、それぞれの段階に留まっていた時間の累積値の記録より、回転翼102の疲労度合いを判断できる。 

 次に、本実施形態の作用をフローチャートに基づき説明する。

 図3に本実施形態である回転翼交換の必要度判定のフローチャートを示す。このフローチャートは時間カウント処理部13において動作する。時間カウント処理部13は時間取得手段に相当する。

 図3において、ステップ1(図中S1と略す。以下、同様)では、例えば1分毎にタイマの割り込みがされステップ2以降の処理が行われる。ステップ2では累積通電時間カウンタをカウントアップする。このカウントアップは累積通電時間カウンタの数値を一つ増加(以下、インクリメントと言う)することで行う(以下、同旨)。累積通電時間カウンタは、制御電源がオンされている状態での通電時間のカウントであって、回転翼102が回転されずに磁気軸受制御部3で浮上支持されている状態でもカウントされる。この通電時間のカウント数に対しタイマの割り込み時間を掛けた値が全段階の合計時間に相当する。ステップ3ではポンプが回転中か否かを判断し、回転中と判断したときにはステップ4に進み、累積稼働時間カウンタをカウントアップする。

 一方、ステップ3でポンプが回転中でないと判断されたときにはステップ10のモータ駆動電流時間サブルーチンに進み、段階毎のモータ駆動電流の積算時間が計測される。その後、続けてステップ20では翼温度時間サブルーチンに進み、段階毎の翼温度の積算時間が計測される。この段階毎のモータ駆動電流の積算時間と段階毎の翼温度の積算時間とは、段階毎に物理量が属していたときの合計時間に相当する。

 図4のモータ駆動電流時間サブルーチンについて説明する。

 ステップ11では、モータ駆動制御部5から出力されたモータ電流値が予め設定されたレベル大よりも大きいか否かが判断される。そして、レベル大よりも大きい場合にはステップ12に進み、電流「多」カウンタをカウントアップした後ステップ20に進む。一方、ステップ11でモータ電流値が予め設定されたレベル大以下のときにはステップ13に進み、モータ電流値が予め設定されたレベル中よりも大きいか否かが判断される。そして、レベル中よりも大きい場合にはステップ14に進み、電流「中」カウンタをカウントアップした後ステップ20に進む。一方、ステップ13でモータ電流値が予め設定されたレベル中以下のときにはステップ20に進む。

 電流「少」のカウントは行わないが、これは累積通電時間カウンタのカウント値から電流「多」カウンタのカウント値と電流「中」カウンタのカウント値を引けば得られるためである。

 このことにより、1分毎に、計測されたモータ電流値が電流「多」、電流「中」、電流「少」のいずれの段階にいるのかが判断され、該当する段階に対しインクリメントにより積算される。

 カウント値に1分を掛ければ積算された時間が算出できる。この時間データを段階毎に表示する。また、この段階毎に積算された時間同士の比率をそれら全段階の合計時間を100%として算出し表示するようにしてもよい。

 このことにより、電流「多」、電流「中」、電流「少」毎の積算時間若しくは比率という3つの数値だけで、回転翼102の交換の必要性を客観的かつ正確に判断することができる。また、この数値により、ターボ分子ポンプ内部にプロセスガスの析出物が堆積する量についても指針にできる。

 次に、図5の翼温度時間サブルーチンについて説明する。

 ステップ21では、回転翼温度計測部7から出力された回転翼温度値が予め設定されたレベル高の温度値よりも高いか否かが判断される。そして、レベル高の温度値よりも高い場合にはステップ22に進み、翼温度「高」カウンタをカウントアップする。その後ステップ30に進みこのタイマ割り込み処理を終了する。一方、ステップ21で回転翼温度値が予め設定されたレベル高の温度値以下のときにはステップ23に進み、回転翼温度値が予め設定されたレベル中の温度値よりも高いか否かが判断される。そして、レベル中の温度値よりも高い場合にはステップ24に進み、翼温度「中」カウンタをカウントアップする。その後ステップ30に進みこのタイマ割り込み処理を終了する。一方、ステップ23で回転翼温度値が予め設定されたレベル中の温度値以下のときにはステップ30に進みタイマ割り込み処理を終了する。

 翼温度「低」のカウントは行わないが、これは累積通電時間カウンタのカウント値から翼温度「高」カウンタのカウント値と翼温度「中」カウンタのカウント値を引けば得られるためである。

 このことにより、1分毎に、計測された回転翼温度値が翼温度「高」、翼温度「中」、翼温度「低」のいずれの段階にいるのかが判断され、該当する段階に対しインクリメントにより積算される。

 従って、モータ電流値のときと同様に、翼温度「高」、翼温度「中」、翼温度「低」毎の積算時間若しくは比率という3つの数値だけで、回転翼102の交換の必要性を客観的かつ正確に判断することができる。また、これらのデータは、顧客を説得する情報としても利用できる。 

 図5の翼温度時間サブルーチンは3段階の回転翼温度値で説明をしたが、図6に回転翼温度値を5段階とする例を示す。

 図6において、回転翼温度値に関し、高温過熱警告検知の温度を例えば135℃に設定したとする。この温度に達したときには警告が発せられる。この警告解除はヒステリシスを持たせるため130℃に設定がされる。また、高温過熱異常検知の温度を例えば145℃に設定したとする。この温度に達したときには例えば30秒間この状態が継続された後にポンプの停止指令が発せられる。この異常解除はヒステリシスを持たせるため140℃に設定がされる。

 ここに、翼温度カウンタのレベルは、このように回転翼102の安全管理上設定された温度値に合わせる形で5段階を用意する。即ち、高温過熱警告検知の温度135℃から高温過熱異常検知の温度145℃までをレベル4とし、高温過熱異常検知の温度145℃以上をレベル5とする。なお、回転翼温度値が90℃以上135℃未満をレベル3としたのは、この温度範囲がポンプ運用上期待している稼働範囲だからである。また、回転翼温度値が40℃以上90℃未満をレベル2としたのは、この温度範囲が運用上負荷が余りかかっていない余裕のある運転状況の範囲だからである。更に、回転翼温度値が40℃未満をレベル1としたのは、この温度範囲では、回転翼102が回転せずに磁気浮上で浮いている状態だからである。

 このように回転翼温度値を5段階に設定することで回転翼102の交換の必要性をより客観的かつ正確に判断することができる。この点は、段階を更に増やすことでより一層客観的かつ正確な判断を行うことができる。

 次に、オーバーホールを促す警告を通知する方法を図7に基づき説明する。なお、図4と同一要素については、同一の符号を付して説明を省略する。図7では、ステップ12において電流「多」カウンタをカウントアップした後ステップ15に進む。ステップ15では、電流「多」カウンタのカウント値が予め定めた警告しきい値を超えているか否かが判断される。そして、警告しきい値を超えている場合には、ステップ16で回転体疲労大警告通知が発せられる。

 このことにより、1分毎に電流「多」カウンタのカウント値からオーバーホールが必要か否かを判断し、オーバーホールを促す旨を通知することができる。このようにオーバーホールを促す警告を通知することで、回転体破損事故の予防が期待できる。 

 なお、本発明は、本発明の精神を逸脱しない限り種々の改変をなすことができ、そして、本発明が当該改変されたものにも及ぶことは当然である。

 3 磁気軸受制御部

 5 モータ駆動制御部

 7 回転翼温度計測部

 9 回転翼温度センサ

 11 保護機能処理部

 13 時間カウント処理部(時間取得手段)

 15 メモリ

 17 記憶処理部

 19 不揮発メモリ

100 ポンプ本体

102 回転翼

103 回転体

104 上側径方向電磁石

105 下側径方向電磁石

106A、106B 軸方向電磁石

121 モータ

200 制御装置

Claims (4)


  1.  回転翼交換の時期を判断可能な真空ポンプであって、

    前記真空ポンプは、

    真空ポンプ本体に内蔵された回転翼と、

    前記真空ポンプ本体に配設され、前記回転翼に関連した物理量を計測するセンサとを有し、

    前記真空ポンプの稼働中に前記センサで計測された前記物理量を抽出する物理量抽出手段と、

    該物理量抽出手段で抽出される前記物理量の変動範囲を予め複数の段階に設定する設定手段と、

    前記真空ポンプの稼働中に前記段階毎に前記物理量が属していたときの合計時間と全段階の合計時間を取得する時間取得手段と、

    該時間取得手段で取得した前記段階毎の合計時間と前記全段階の合計時間を保存する保存手段と、

    該保存手段で保存した前記段階毎の合計時間を表示、若しくは、前記全段階の合計時間に対する前記段階毎の合計時間の比率を表示する表示手段とを備えたことを特徴とする真空ポンプ。

  2.  前記時間取得手段で取得された前記段階毎の合計時間を所定のしきい値と比較する比較手段と、

    該比較手段での比較の結果に基づき警告を発する警告発生手段とを備えたことを特徴とする請求項1記載の真空ポンプ。

  3.  前記センサが、前記真空ポンプ本体に内蔵された前記回転翼の温度を計測する温度計測手段、又は前記回転翼を駆動するモータに流れる電流量を計測する電流量計測手段であることを特徴とする請求項1又は請求項2記載の真空ポンプ。

  4.  真空ポンプ本体に内蔵された回転翼と、

    前記真空ポンプ本体に配設され、前記回転翼に関連した物理量を計測するセンサとを有する真空ポンプの制御装置であって、

    前記真空ポンプの稼働中に前記センサで計測された前記物理量を抽出する物理量抽出手段と、

    該物理量抽出手段で抽出される前記物理量の変動範囲を予め複数の段階に設定する設定手段と、

    前記真空ポンプの稼働中に前記段階毎に前記物理量が属していたときの合計時間と全段階の合計時間を取得する時間取得手段と、

    該時間取得手段で取得した前記段階毎の合計時間と前記全段階の合計時間を保存する保存手段と、

    該保存手段で保存した前記段階毎の合計時間を表示、若しくは、前記全段階の合計時間に対する前記段階毎の合計時間の比率を表示する表示手段とを備え、該表示手段で表示された前記段階毎の合計時間若しくは前記比率に基づき前記回転翼の交換の時期が判断可能なことを特徴とする制御装置。
PCT/JP2020/002745 2019-02-01 2020-01-27 真空ポンプ及び真空ポンプの制御装置 WO2020158658A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/423,397 US11971042B2 (en) 2019-02-01 2020-01-27 Vacuum pump and control device for vacuum pump
CN202080009751.3A CN113348305A (zh) 2019-02-01 2020-01-27 真空泵以及真空泵的控制装置
EP20748915.4A EP3919748B1 (en) 2019-02-01 2020-01-27 Vacuum pump and vacuum pump control device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-017117 2019-02-01
JP2019017117A JP7242321B2 (ja) 2019-02-01 2019-02-01 真空ポンプ及び真空ポンプの制御装置

Publications (1)

Publication Number Publication Date
WO2020158658A1 true WO2020158658A1 (ja) 2020-08-06

Family

ID=71840054

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/002745 WO2020158658A1 (ja) 2019-02-01 2020-01-27 真空ポンプ及び真空ポンプの制御装置

Country Status (5)

Country Link
US (1) US11971042B2 (ja)
EP (1) EP3919748B1 (ja)
JP (1) JP7242321B2 (ja)
CN (1) CN113348305A (ja)
WO (1) WO2020158658A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022021844A (ja) 2020-07-22 2022-02-03 キヤノン株式会社 通信装置、制御方法、及び、プログラム

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11211622A (ja) * 1997-11-17 1999-08-06 Komatsu Ltd エンジン並びに熱源を有する機械の寿命予測装置
JP2002257079A (ja) 2001-02-27 2002-09-11 Koyo Seiko Co Ltd ターボ分子ポンプ
JP2009074512A (ja) * 2007-09-25 2009-04-09 Shimadzu Corp ターボ分子ポンプ
WO2010021307A1 (ja) 2008-08-19 2010-02-25 エドワーズ株式会社 真空ポンプ
JP5782378B2 (ja) 2009-08-21 2015-09-24 エドワーズ株式会社 真空ポンプ
JP2018003615A (ja) * 2016-06-28 2018-01-11 株式会社島津製作所 ロータ寿命推定装置および真空ポンプ

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3874993B2 (ja) * 2000-05-18 2007-01-31 アルプス電気株式会社 ターボ分子ポンプ
JP2002048088A (ja) * 2000-07-31 2002-02-15 Seiko Instruments Inc 真空ポンプ
US6793466B2 (en) * 2000-10-03 2004-09-21 Ebara Corporation Vacuum pump
JP2002155891A (ja) * 2000-11-22 2002-05-31 Seiko Instruments Inc 真空ポンプ
JP4657463B2 (ja) * 2001-02-01 2011-03-23 エドワーズ株式会社 真空ポンプ
JP4184638B2 (ja) * 2001-08-31 2008-11-19 株式会社東芝 半導体製造装置の寿命診断方法
US20030175112A1 (en) * 2002-03-13 2003-09-18 Hirotaka Namiki Vacuum pump system and vacuum pump RPM control method
FI125797B (fi) * 2009-01-09 2016-02-29 Metso Flow Control Oy Menetelmä ja laitteisto venttiilin kunnonvalvontaan
US9677990B2 (en) * 2014-04-30 2017-06-13 Particles Plus, Inc. Particle counter with advanced features
JP6583122B2 (ja) * 2016-04-22 2019-10-02 株式会社島津製作所 監視装置および真空ポンプ

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11211622A (ja) * 1997-11-17 1999-08-06 Komatsu Ltd エンジン並びに熱源を有する機械の寿命予測装置
JP2002257079A (ja) 2001-02-27 2002-09-11 Koyo Seiko Co Ltd ターボ分子ポンプ
JP2009074512A (ja) * 2007-09-25 2009-04-09 Shimadzu Corp ターボ分子ポンプ
WO2010021307A1 (ja) 2008-08-19 2010-02-25 エドワーズ株式会社 真空ポンプ
JP5782378B2 (ja) 2009-08-21 2015-09-24 エドワーズ株式会社 真空ポンプ
JP2018003615A (ja) * 2016-06-28 2018-01-11 株式会社島津製作所 ロータ寿命推定装置および真空ポンプ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3919748A4

Also Published As

Publication number Publication date
EP3919748A1 (en) 2021-12-08
JP7242321B2 (ja) 2023-03-20
US20220074421A1 (en) 2022-03-10
US11971042B2 (en) 2024-04-30
CN113348305A (zh) 2021-09-03
JP2020125693A (ja) 2020-08-20
EP3919748A4 (en) 2022-11-02
EP3919748B1 (en) 2024-09-11

Similar Documents

Publication Publication Date Title
JP5782378B2 (ja) 真空ポンプ
CN112219034B (zh) 真空泵及温度控制装置
WO2020158658A1 (ja) 真空ポンプ及び真空ポンプの制御装置
JP6436731B2 (ja) 真空ポンプ及び該真空ポンプの異常原因推定方法
US20230151826A1 (en) Vacuum pump and controller
EP4108929A1 (en) Vacuum pump and controller
EP4450819A1 (en) Vacuum pump and control device
WO2023095851A1 (ja) 真空ポンプ及び制御装置
US20240117816A1 (en) Vacuum pump

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20748915

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020748915

Country of ref document: EP

Effective date: 20210901