WO2016076081A1 - 静電噴霧装置、検査方法、検査プログラム、及びコンピュータ読み取り可能な情報記録媒体 - Google Patents

静電噴霧装置、検査方法、検査プログラム、及びコンピュータ読み取り可能な情報記録媒体 Download PDF

Info

Publication number
WO2016076081A1
WO2016076081A1 PCT/JP2015/079544 JP2015079544W WO2016076081A1 WO 2016076081 A1 WO2016076081 A1 WO 2016076081A1 JP 2015079544 W JP2015079544 W JP 2015079544W WO 2016076081 A1 WO2016076081 A1 WO 2016076081A1
Authority
WO
WIPO (PCT)
Prior art keywords
high voltage
electrode
pwm signal
time
electrostatic spraying
Prior art date
Application number
PCT/JP2015/079544
Other languages
English (en)
French (fr)
Inventor
バン タン ダウ
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to US15/523,328 priority Critical patent/US20170248651A1/en
Priority to CN201580059579.1A priority patent/CN107073493A/zh
Priority to JP2016558946A priority patent/JPWO2016076081A1/ja
Priority to EP15859112.3A priority patent/EP3219393A4/en
Publication of WO2016076081A1 publication Critical patent/WO2016076081A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2832Specific tests of electronic circuits not provided for elsewhere
    • G01R31/2836Fault-finding or characterising
    • G01R31/2837Characterising or performance testing, e.g. of frequency response
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B5/00Electrostatic spraying apparatus; Spraying apparatus with means for charging the spray electrically; Apparatus for spraying liquids or other fluent materials by other electric means
    • B05B5/025Discharge apparatus, e.g. electrostatic spray guns
    • B05B5/053Arrangements for supplying power, e.g. charging power
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B5/00Electrostatic spraying apparatus; Spraying apparatus with means for charging the spray electrically; Apparatus for spraying liquids or other fluent materials by other electric means
    • B05B5/007Electrostatic spraying apparatus; Spraying apparatus with means for charging the spray electrically; Apparatus for spraying liquids or other fluent materials by other electric means the high voltage supplied to an electrostatic spraying apparatus during spraying operation being periodical or in time, e.g. sinusoidal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B5/00Electrostatic spraying apparatus; Spraying apparatus with means for charging the spray electrically; Apparatus for spraying liquids or other fluent materials by other electric means
    • B05B5/025Discharge apparatus, e.g. electrostatic spray guns
    • B05B5/053Arrangements for supplying power, e.g. charging power
    • B05B5/0533Electrodes specially adapted therefor; Arrangements of electrodes

Definitions

  • the present invention relates to an electrostatic spraying device including a high voltage generating unit that applies a high voltage between electrodes, an inspection method for the electrostatic spraying device, an inspection program, and a computer-readable information recording medium.
  • a spraying apparatus that ejects liquid in a container from a nozzle has been applied to a wide range of fields.
  • an electrostatic spraying device that atomizes and sprays a liquid by electrohydrodynamics (EHD) is known.
  • EHD electrohydrodynamics
  • This electrostatic spraying device forms an electric field in the vicinity of the tip of the nozzle, and uses the electric field to atomize and spray the liquid at the tip of the nozzle.
  • Patent Document 1 is known as a document disclosing such an electrostatic spraying device.
  • a high voltage generation device that boosts a voltage generated from a DC power source and applies the voltage between the electrodes is used. If a defect such as a solder failure exists in the high voltage generation device, The current consumption of the electrospray device is increased and the battery is consumed quickly. Therefore, in the manufacturing (inspection) process, an inspection is performed in which the current consumption in the high voltage generation device is measured by an ammeter, and the high voltage generation device having a current consumption equal to or greater than a predetermined value is determined as a defective product.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide an electrostatic spray apparatus capable of performing inspection at a low cost, an inspection method for an electrostatic spray apparatus, an inspection program, and a computer readable medium. Is to provide a simple information recording medium.
  • the electrostatic spraying device of the present invention is: An electrostatic spraying device that sprays liquid from the tip of the first electrode by applying a high voltage between the first electrode and the second electrode, A high voltage generator for applying a high voltage between the first electrode and the second electrode; A signal generator that generates a PWM signal (Pulse Width Modulation signal) for controlling the high voltage generator so that the current value in the second electrode is maintained within a predetermined range; A detection unit for detecting the on-time of the PWM signal at a fixed time; And a notifying unit for notifying the outside of the device when the ON time of the PWM signal detected by the detecting unit is larger than a predetermined value.
  • PWM signal Pulse Width Modulation signal
  • an inspection method for an electrostatic spraying device of the present invention includes: An inspection method for inspecting an electrostatic spraying device that sprays liquid from the tip of the first electrode by applying a high voltage between the first electrode and the second electrode,
  • the electrostatic spraying device includes a high voltage generation unit that applies a high voltage between the first electrode and the second electrode, A signal generation step of generating a PWM signal (Pulse Width Modulation signal) for controlling the high voltage generation unit so that the current value in the second electrode is maintained within a predetermined range;
  • the signal generation unit (signal generation step) generates a PWM signal for controlling the high voltage generation unit.
  • the detection unit detects the ON time of the PWM signal at a predetermined time
  • the notification unit detects that the ON time is greater than a predetermined value
  • the inventors have a constant relationship between the current consumption in the high voltage generator and the on time of the PWM signal, and the electrostatic spray apparatus is inspected based on the on time of the PWM signal. Found that it is possible to do. Therefore, for example, when the on-time is larger than a predetermined value, the electrostatic spraying device is defined in advance as a defective product. Thereby, in the inspection process of the electrostatic spraying device, it is possible to easily select the non-defective product and the defective product of the electrostatic spraying device, based on whether or not the notification unit is notified.
  • the inspection is performed by the signal generation unit (signal generation step), the detection unit (detection step), and the notification unit (notification step). Does not require a meter. Therefore, the electrostatic spraying device and the inspection method thereof according to the present invention can suppress the man-hours and manufacturing costs for the inspection.
  • the electrostatic spraying device of the present invention is: An electrostatic spraying device that sprays liquid from the tip of the first electrode by applying a high voltage between the first electrode and the second electrode, A high voltage generator for applying a high voltage between the first electrode and the second electrode; A signal generator that generates a PWM signal (Pulse Width Modulation signal) for controlling the high voltage generator so that the current value in the second electrode is maintained within a predetermined range; A detecting unit that detects current consumption in the high voltage generation unit from the on time based on a relational expression that associates a relationship between the on time of the PWM signal in a certain time and the current consumption in the high voltage generation unit. When, And a notifying unit for notifying the outside of the device when the current consumption in the high voltage generating unit detected by the detecting unit is larger than a predetermined value.
  • PWM signal Pulse Width Modulation signal
  • the current consumption in the high voltage generation unit is detected by the detection unit. That is, in the electrostatic spraying device of the present invention, the consumption current in the high voltage generation unit is detected by the signal generation unit and the detection unit, and does not require an ammeter.
  • the electrostatic spraying device of the present invention can reduce the man-hours and manufacturing costs for inspection.
  • the detection unit detects the current consumption in the high voltage generation unit, and the relational expression that associates the relationship between the on-time of the PWM signal and the current consumption in the high voltage generation unit. Therefore, current consumption can be easily detected.
  • the high voltage generation unit is not a defective product, and if the current consumption exceeds the predetermined value, the high voltage generation unit is defined as a defective product. Keep it. Thereby, for example, in the inspection process of the high voltage generation unit, it is possible to easily select the non-defective product and the defective product of the high voltage generation unit, using the notification unit as a determination material, and to suppress the inspection cost. be able to.
  • the electrostatic spraying device may be realized by a computer.
  • an inspection program for realizing the electrostatic spraying device by the computer by operating the computer as the respective units, and the program recorded therein are recorded.
  • Computer-readable information recording media are also within the scope of the present invention.
  • a high voltage generation unit that applies a high voltage between the first electrode and the second electrode, and a current value in the second electrode are maintained within a predetermined range.
  • a signal generation unit that generates a PWM signal (Pulse Width Modulation signal) for controlling the high voltage generation unit, a detection unit that detects an ON time of the PWM signal at a predetermined time, and the PWM detected by the detection unit And a notification unit that notifies the outside of the device when the ON time of the signal is larger than a predetermined value.
  • PWM signal Pulse Width Modulation signal
  • the electrostatic spraying device includes a high voltage generation unit that applies a high voltage between the first electrode and the second electrode, and a current value in the second electrode is maintained within a predetermined range.
  • the relationship between the signal generator that generates a PWM signal (Pulse Width Modulation signal) for controlling the high voltage generator, the ON time of the PWM signal, and the current consumption in the high voltage generator is as follows. Based on the associated relational expression, the current consumption in the high voltage generation unit detected by the detection unit that detects the current consumption in the high voltage generation unit from the ON time of the PWM signal in a certain time, and the detection unit And a notifying unit for notifying the outside of the device when the value is larger than a predetermined value.
  • the inspection method for the electrostatic spraying device includes a PWM signal (Pulse Width Modulation signal) for controlling the high voltage generator so that the current value in the second electrode is maintained within a predetermined range.
  • the electrostatic spraying apparatus 100 sprays liquid from the tip of the spray electrode 1 by applying a high voltage between the spray electrode 1 (first electrode) and the reference electrode 2 (second electrode). It is a device to do.
  • the electrostatic spraying device 100 has a high voltage generation device 22 (high voltage generation unit) that applies a high voltage between the spray electrode 1 and the reference electrode 2, and a current value in the reference electrode 2 is held within a predetermined range.
  • a PWM signal generation unit 27 (signal generation unit) that generates a PWM signal (Pulse Width Modulation signal) for controlling the high voltage generation device 22 and a detection unit that detects the on-time of the PWM signal at a predetermined time. 28, and a notification unit 33 that notifies the outside of the device when the ON time of the PWM signal detected by the detection unit 28 is larger than a predetermined value.
  • the electrostatic spraying device 100 is a device used for spraying aromatic oil, agricultural chemicals, pharmaceuticals, agricultural chemicals, insecticides, air cleaning agents, and the like, and includes a spray electrode 1, a reference electrode 2, and a power supply device 3. And.
  • FIG. 1 is a diagram for explaining the external appearance of the electrostatic spraying device 100.
  • the electrostatic spraying device 100 has a rectangular shape.
  • a spray electrode 1 and a reference electrode 2 are disposed on one surface of the apparatus.
  • the spray electrode 1 is located in the vicinity of the reference electrode 2.
  • An annular opening 11 is formed so as to surround the spray electrode 1, and an annular opening 12 is formed so as to surround the reference electrode 2.
  • a voltage is applied between the spray electrode 1 and the reference electrode 2, whereby an electric field is formed between the spray electrode 1 and the reference electrode 2.
  • a positively charged droplet is sprayed from the spray electrode 1.
  • the reference electrode 2 is negatively charged by ionizing air in the vicinity of the electrode.
  • the negatively charged air moves away from the reference electrode 2 due to the electric field formed between the spray electrode 1 and the reference electrode 2 and the repulsive force between the negatively charged air particles. This movement generates a flow of air (hereinafter also referred to as an ion flow), and positively charged droplets are sprayed in a direction away from the electrostatic spraying device 100 by the ion flow.
  • the electrostatic spraying device 100 may have other shapes instead of a rectangular shape. Moreover, the opening 11 and the opening 12 may have a shape different from the annular shape, and the opening dimensions thereof may be adjusted as appropriate.
  • FIG. 2 is a view for explaining the spray electrode 1 and the reference electrode 2.
  • the spray electrode 1 has a conductive conduit such as a metallic capillary (for example, 304 type stainless steel) and a tip 5 that is a tip.
  • the spray electrode 1 is electrically connected to the reference electrode 2 via the power supply device 3.
  • a spray material (hereinafter referred to as “liquid”) is sprayed from the tip portion 5.
  • the spray electrode 1 has an inclined surface 9 that is inclined with respect to the axial center of the spray electrode 1, and the tip is narrower and sharper toward the tip 5.
  • the reference electrode 2 is made of a conductive rod such as a metal pin (for example, a 304 type steel pin).
  • the spray electrode 1 and the reference electrode 2 are spaced apart from each other at a predetermined interval and are arranged in parallel to each other.
  • the spray electrode 1 and the reference electrode 2 are arranged, for example, at an interval of 8 mm from each other.
  • the power supply device 3 applies a high voltage between the spray electrode 1 and the reference electrode 2.
  • the power supply device 3 applies a high voltage (for example, 5 kV-6 kV) between 1 kV-30 kV between the spray electrode 1 and the reference electrode 2.
  • a high voltage for example, 5 kV-6 kV
  • an electric field is formed between the spray electrode 1 and the reference electrode 2, and an electric dipole is generated inside the dielectric 10.
  • the spray electrode 1 is positively charged and the reference electrode 2 is negatively charged (or vice versa).
  • negative dipoles are generated on the surface of the dielectric 10 closest to the positive spray electrode 1, and positive dipoles are generated on the surface of the dielectric 10 closest to the negative reference electrode 2.
  • the charge generated in the reference electrode 2 is a charge having a polarity opposite to the polarity of the liquid.
  • the liquid charge is balanced by the charge generated at the reference electrode 2. Therefore, the electrostatic spraying device 100 can achieve spray stability based on the principle of charge balance.
  • a voltage of 1500 V or more is defined as a high voltage for a direct current
  • a voltage of 1000 V or more is defined as a high voltage for an alternating current.
  • the dielectric 10 is made of a dielectric material such as nylon 6, nylon 11, nylon 12, polypropylene, nylon 66, or a polyacetyl-polytetrafluoroethylene mixture.
  • the dielectric 10 supports the spray electrode 1 at the spray electrode mounting portion 6 and supports the reference electrode 2 at the reference electrode mounting portion 7.
  • FIG. 3 is a block diagram illustrating a configuration of the electrostatic spraying apparatus 100.
  • the electrostatic spraying device 100 includes a power supply 21, a high voltage generation device 22, a current feedback circuit 231, and a control circuit 24 as the power supply device 3.
  • the power source 21 supplies power necessary for the operation of the electrostatic spraying apparatus 100.
  • the power source 21 may be a known power source, and may be any one of a DC power source and an AC power source.
  • the power source 21 is preferably a low voltage power source or a direct current (DC) power source.
  • one battery battery
  • Suitable batteries include alkaline dry batteries, lithium batteries and the like.
  • the power supply 21 supplies a DC voltage to the oscillator 221 of the high voltage generation device 22.
  • the high voltage generation device 22 generates a high voltage by boosting the voltage supplied from the power source 21 and applies the high voltage between the spray electrode 1 and the reference electrode 2.
  • the high voltage generation device 22 includes an oscillator 221, a transformer 222, and a converter circuit 223.
  • the oscillator 221 converts a direct current into an alternating current.
  • a transformer 222 is connected to the oscillator 221.
  • the oscillator 221 is supplied with a PWM signal generated by the control circuit 24 (typically a PWM signal having a duty ratio of about 2%).
  • the transformer 222 converts the voltage of the alternating current.
  • a converter circuit 223 is connected to the transformer 222.
  • Converter circuit 223 generates a desired voltage and converts an alternating current into a direct current.
  • the converter circuit 223 includes a charge pump and a rectifier circuit.
  • a typical converter circuit is a Cockcroft-Walton circuit.
  • the current feedback circuit 231 measures the current value of the reference electrode 2. Since the electrostatic spraying device 100 is charge-balanced, the current value at the spray electrode 1 can be accurately monitored by measuring and referring to the current value of the reference electrode 2.
  • the current feedback circuit 231 supplies a voltage value corresponding to the current value of the reference electrode 2 to the comparator 26 of the control circuit 24 as feedback information.
  • the control circuit 24 controls the operation state of the high voltage generation device 22 by supplying a PWM signal (pulse width modulation signal) to the oscillator 221.
  • the PWM signal is a pulse signal obtained by periodically repeating an on-voltage state and an off-voltage state.
  • PWM signal on-time the integrated value of the time during which the PWM signal is in the on-voltage state within a predetermined period (fixed time) is referred to as “PWM signal on-time”.
  • the ratio of the period of the on-voltage state in one period (or a constant period) of the PWM signal is called “duty ratio” of the PWM signal.
  • the ON time of the PWM signal is approximately proportional to the duty ratio of the PWM signal.
  • An error depending on the timing of the start point and end point of the predetermined period with respect to the period of the PWM signal may occur. For example, when the duty ratio is 0.01 (1%), the ON time of the PWM signal in one second is about 0. When the duty ratio is 0.02 (2%), the ON time of the PWM signal in 1 second is about 0.02 seconds.
  • the control circuit 24 includes a microprocessor 25 in order to cope with various applications.
  • a microprocessor 25 As the microprocessor 25, a PIC16F1825 manufactured by Microchip can be used.
  • the microprocessor 25 includes a comparator 26, a PWM signal generation unit 27, and a detection unit 28.
  • the comparator 26 includes a minus terminal, a plus terminal, and an output terminal.
  • a low voltage voltage
  • a high voltage voltage (voltage V2, V1 ⁇ V2) is output from the output terminal.
  • a voltage value corresponding to the current value of the reference electrode 2 is input to the negative terminal of the comparator 26, and a first reference voltage that is a predetermined constant voltage is input to the positive terminal of the comparator 26. .
  • the output terminal of the comparator 26 is connected to the PWM signal generator 27, and the output of the comparator 26 is supplied to the PWM signal generator 27.
  • the low voltage (V1) is output from the comparator 26 to the PWM signal generation unit 27.
  • the high voltage (V2) is output from the comparator 26 to the PWM signal generation unit 27.
  • the PWM signal generation unit 27 adjusts the duty ratio of the PWM signal based on the output of the comparator 26 and supplies the PWM signal to the oscillator 221 and the detection unit 28.
  • the PWM signal generation unit 27 supplies a PWM signal having a duty ratio smaller than the duty ratio of the currently output PWM signal to the oscillator 221 and the detection unit 28.
  • the PWM signal generation unit 27 supplies a PWM signal having a duty ratio larger than the duty ratio of the currently output PWM signal to the oscillator 221 and the detection unit 28.
  • the PWM signal generation unit 27 adjusts the duty ratio of the PWM signal based on the output of the comparator 26 and supplies the PWM signal to the oscillator 221 and the detection unit 28.
  • the operating state of the high voltage generation device 22 the oscillator 221, the transformer 222, and the converter circuit 223 and the on-time of the PWM signal within a predetermined time are related to each other.
  • the detection unit 28 detects the integrated value of the ON time of the PWM signal within a predetermined time based on the PWM signal supplied from the PWM signal generation unit 27.
  • the detection unit 28 detects the current consumption of the high voltage generation device 22 based on the integrated value of the ON time of the PWM signal within a certain time. Details thereof will be described later.
  • the frequency and timing at which the comparator 26 outputs a low voltage or a high voltage according to the comparison result when the voltage value corresponding to the current value of the reference electrode 2 is compared with the first reference voltage is preset. Alternatively, it may be set appropriately by the microprocessor 25.
  • the increase / decrease width of the duty ratio when the PWM signal generation unit 27 adjusts the duty ratio based on the output of the comparator 26 may be set in advance or may be set as appropriate by the microprocessor 25.
  • a subtracter may be used instead of the comparator 26, and the PWM signal generation unit 27 may adjust the duty ratio with an increase / decrease width according to the output of the subtractor.
  • the microprocessor 25 monitors the voltage value corresponding to the current value of the reference electrode 2 at a preset frequency.
  • the output of the comparator 26 is output.
  • the voltage is switched from the low voltage to the high voltage, and the PWM signal generation unit 27 increases the duty ratio of the PWM signal by a preset width.
  • the PWM signal generator 27 increases the duty ratio of the PWM signal, the high voltage generated by the high voltage generator 22 increases and the voltage applied between the spray electrode 1 and the reference electrode 2 increases.
  • the first reference voltage input to the comparator 26 is set so that the voltage applied between the spray electrode 1 and the reference electrode 2 is within an appropriate range (for example, 5-6 kV), and It is set in advance so that the current value of the electrode 2 is maintained at 0.87 ⁇ A.
  • control circuit 24 generates a PWM signal with the duty ratio adjusted so that the current flowing through the reference electrode 2 becomes 0.87 ⁇ A based on the voltage value corresponding to the current value of the reference electrode 2. .
  • the high voltage generator 22 adjusts the voltage between the spray electrode 1 and the reference electrode 2 based on the PWM signal.
  • the current value of the reference electrode 2 is not a predetermined value such as 0.87 ⁇ A, but a PWM signal is generated so as to be maintained within a predetermined range (for example, 0.85 ⁇ A or more and 0.90 ⁇ A or less). There may be.
  • the microprocessor 25 includes the comparator 26 and the PWM signal generation unit 27 has been described above, but the present invention is not limited to this.
  • the microprocessor 25 may not include the comparator 26, and the PWM signal generation unit 27 may have a function of comparing the voltage value corresponding to the current value of the reference electrode 2 with the first reference voltage.
  • the configuration in which the lower limit value of the voltage value is set and controlled by using the comparator 26 that compares the voltage value corresponding to the current value of the reference electrode 2 and the first reference voltage is exemplified.
  • the configuration may be such that the upper limit value of the voltage value is set and controlled by further using a comparator that compares the voltage value corresponding to the current value of the reference electrode 2 and the third reference voltage.
  • FIG. 4 is a graph showing the relationship between the current consumption and the on-time of the PWM signal within a certain time (1.024 seconds).
  • the ON time of the PWM signal and the current consumption are generally proportional. This is because when the current consumption in the high voltage generation device 22 is large due to solder failure (cold solder) or the like, the impedance of the high voltage generation device 22 is increased, and the current value in the reference electrode 2 is set to a predetermined value (within a predetermined range). Therefore, it is necessary to increase the voltage applied between the spray electrode 1 and the reference electrode 2. As a result, the duty ratio of the PWM signal generated by the PWM signal generation unit 27 increases, and the duty of the PWM signal is increased. This is because the on-time of the PWM signal within a certain time increases in proportion to the increase in the ratio.
  • control circuit 24 has the detection part 28, and based on the ON time of the PWM signal produced
  • the electrostatic spraying device 100 includes the current feedback circuit 231 and the control circuit 24.
  • the PWM signal generation unit 27 generates a PWM signal in which the duty ratio is adjusted so that the current value of the reference electrode 2 is maintained at a predetermined value (within a predetermined range) (signal generation step), and is detected.
  • the unit 28 it is possible to realize a consumption current detection method in which the consumption current in the high voltage generator 22 is detected (detection step) based on the ON time of the PWM signal.
  • the high voltage generation device 22 can be inspected at low cost, and it is also affected by the measurement accuracy of other devices (such as an ammeter) for detecting current consumption. And a highly reliable inspection can be performed.
  • the electrostatic spraying device 100 of the present embodiment can inspect the current consumption of the high-voltage generating device 22 without storing the liquid to be sprayed inside as in actual use. Therefore, even the electrostatic spraying device 100 that has been subjected to the current consumption inspection of the high-voltage generating device 22 can be shipped as an unused product.
  • the consumption current detection method and the inspection method as described above are particularly effective in an electrostatic spraying apparatus that sprays liquid.
  • the electrostatic spraying device 100 of the present embodiment can also check the current consumption of the high voltage generating device 22 in a state where the liquid to be sprayed is stored inside as in actual use. Therefore, even after the start of use by the user, the current consumption of the high voltage generator 22 can be inspected.
  • FIG. 5 is a reference diagram for explaining another method of measuring the current consumption of the high voltage generator.
  • an ammeter is connected between the power source and the power source device, and the current value is measured, thereby consuming the power source device. It is also conceivable to measure the current.
  • the measurement principle of the consumption current of the electrostatic spray device 100 of the present embodiment is to measure the ON time of the PWM signal and detect the consumption current of the high voltage generator 22 from the ON time of the PWM signal. It is.
  • a more specific configuration of the control circuit 24 of the present embodiment will be described based on Examples 1 to 3.
  • FIG. 6 is a block diagram illustrating the configuration of the electrostatic spraying apparatus 101 according to the first embodiment.
  • the detection unit 28 includes a measurement unit 29 and a calculation unit 30.
  • the measurement unit 29 measures the ON time of the PWM signal and supplies information on the ON time to the calculation unit 30.
  • the calculation unit 30 calculates the current consumption in the high voltage generation device 22 from the on-time information supplied from the measurement unit 29.
  • the current consumption of the high voltage generator 22 and the ON time of the PWM signal are in a proportional relationship.
  • the arithmetic unit 30 stores a relational expression that associates the relationship between the current consumption of the high voltage generation device 22 and the on time of the PWM signal.
  • the computing unit 30 computes the current consumption of the high voltage generation device 22 from the ON time of the PWM signal based on the relational expression. According to said structure, the consumption current of the power supply device 3 can be calculated easily.
  • the detection unit 28 may include a data recording unit that records on-time information obtained by the measurement unit 29.
  • FIG. 7 is a block diagram illustrating a configuration of the electrostatic spraying apparatus 102 according to the second embodiment.
  • the measurement unit 29 includes a comparator 31 and a timer 32.
  • the comparator 31 includes a minus terminal, a plus terminal, and an output terminal.
  • the comparator 31 outputs a low voltage (voltage V3) from the output terminal when the voltage input to the negative terminal is greater than the voltage input to the positive terminal (comparison result).
  • the comparator 31 outputs a high voltage (voltage V4, V3 ⁇ V4) from the output terminal when the voltage input to the minus terminal is equal to or lower than the voltage input to the plus terminal.
  • the second reference voltage is input to the plus terminal (first input terminal) of the comparator 31, and the PWM signal generated by the PWM signal generation unit 27 is input to the minus terminal (second input terminal) of the comparator 31.
  • the second reference voltage only needs to be a potential between the on potential and the off potential of the PWM signal, and is appropriately determined according to the waveform of the PWM signal. That is, the second reference voltage is a predetermined voltage value corresponding to a threshold value indicating whether the PWM signal is on.
  • the output terminal of the comparator 31 is connected to the timer 32, and the output of the comparator 31 is supplied to the timer 32.
  • the timer 32 measures the ON time of the PWM signal in a certain time (monitoring period) based on the output of the comparator 31. Specifically, the timer 32 monitors whether the output voltage of the comparator 31 is a low voltage or a high voltage at a predetermined time interval (clock cycle). Then, it is determined that the period during which the output voltage of the comparator 31 is a low voltage is a period during which the PWM signal is on (on time), and the period during which the output voltage from the comparator is a high voltage is off. It is determined that this is a potential period.
  • the measurement resolution of the on time depends on the clock cycle of the timer 32 and the monitoring period.
  • the measurement resolution improves as the clock period is shorter and the monitor period is longer.
  • the clock cycle is 8 ⁇ s and the monitoring period is 1.024 seconds.
  • the on-time of the PWM signal can be measured with a simple configuration of the timer 32 and the comparator 31.
  • FIG. 8 is a block diagram illustrating a configuration of the electrostatic spraying apparatus 103 according to the third embodiment. As shown in FIG. 8, in the electrostatic spraying device 103, the control circuit 24 includes a notification unit 33.
  • the notification unit 33 When the current consumption of the high voltage generation device 22 is greater than a predetermined value, the notification unit 33 notifies that to at least one of voice, display on a display member, lighting of light, and flashing of light.
  • the structure which notifies to the inspection worker outside the own apparatus via one may be sufficient.
  • the notification unit 33 is connected to illumination such as a speaker and LED, or a display unit (monitor), and causes the illumination such as the speaker and LED, or the display unit to notify the inspection result.
  • the calculation unit 30 supplies information on the current consumption of the high voltage generation device 22 to the notification unit 33.
  • the notification unit 33 gives the inspection worker illumination such as a speaker or LED, or This is notified via a display unit or the like. Thereby, the inspection worker can position the notification by the notification unit 33 as an opportunity to replace the transformer 222. Note that, when notified by the notification unit 33, the inspection operator may determine that the oscillator 221 or the converter circuit 223 is defective and replace it.
  • the notification unit 33 informs that fact by at least any of voice, display on a display member, lighting of light, and blinking of light.
  • reports to the inspection worker outside the own apparatus via one may be sufficient.
  • the detection unit 28 that is a circuit (sensor unit for detecting consumption current) constituting the microprocessor 25, the PWM signal generation unit 27, etc. May have failed. Therefore, in the inspection process of the electrostatic spraying device 103, when the consumption current of the high voltage generation device 22 is smaller than a predetermined value, the notification unit 33 provides the inspection worker with illumination such as a speaker or LED, or This is notified via a display unit or the like. Thereby, the inspection worker can position the notification by the notification unit 33 as an opportunity to replace the microprocessor 25.
  • FIG. 9 is a block diagram illustrating the configuration of the electrostatic spraying device 104 according to the fourth embodiment. As shown in FIG. 9, in the electrostatic spray device 104, the detection unit 28 does not include the calculation unit 30.
  • the notification unit 33 informs that fact by at least any one of voice, display on a display member, lighting of light, and flashing of light. The inspection worker outside the own apparatus is notified via the one (notification step).
  • the notification unit 33 is connected to illumination such as a speaker and LED, or a display unit (monitor), and causes the illumination such as the speaker and LED, or the display unit to notify the inspection result.
  • the detection unit 28 does not include a calculation unit, it is possible to inspect current consumption.
  • the high voltage generation device 22 determines that the current consumption value does not exceed the above-specified current consumption value.
  • the high voltage generating device 22 defines that the current consumption is a defective product that exceeds the pre-specified current consumption value.
  • the predetermined value here is a relational expression showing the relationship between the ON time of the PWM signal and the current consumption in the high voltage generation device 22, and the PWM signal corresponding to the current consumption value designated in advance in the inspection process. It means on time.
  • the non-defective product and the defective product of the high voltage generating device 22 can be easily selected using the notification unit 33 as a judgment material to determine whether or not to notify, and the inspection cost can be reduced. Can be suppressed.
  • control block (especially the detection unit 28) of the control circuit 24 may be realized by a logic circuit (hardware) formed in an integrated circuit (IC chip) or the like, or by software using a CPU (Central Processing Unit). It may be realized.
  • the control circuit 24 includes a CPU that executes instructions of a program (inspection program) that is software that implements each function, and a ROM (Read that records the above program and various data so that the computer (or CPU) can read them. Only Memory) or a storage device (these are referred to as “information recording media”), a RAM (Random Access Memory) for expanding the program, and the like.
  • the computer (or CPU) reads the program from the information recording medium and executes the program, thereby achieving the object of the present invention.
  • the information recording medium a “non-temporary tangible medium”, for example, a tape, a disk, a card, a semiconductor memory, a programmable logic circuit, or the like can be used.
  • the program may be supplied to the computer via an arbitrary transmission medium (such as a communication network or a broadcast wave) that can transmit the program.
  • a transmission medium such as a communication network or a broadcast wave
  • the present invention can also be realized in the form of a data signal embedded in a carrier wave in which the program is embodied by electronic transmission.
  • a current consumption detection device includes: A consumption current detection device for detecting consumption current in a high voltage generation unit that applies a high voltage between electrodes, A signal generator that generates a PWM signal (Pulse Width Modulation signal) for controlling the high voltage generator so that the current value in one electrode is maintained within a predetermined range; A detection unit that detects current consumption in the high voltage generation unit based on an ON time of the PWM signal generated by the signal generation unit.
  • PWM signal Pulse Width Modulation signal
  • a current consumption detection method includes: A consumption current detection method for detecting consumption current in a high voltage generation unit that applies a high voltage between electrodes, A signal generation step of generating a PWM signal (Pulse Width Modulation signal) for controlling the high voltage generation unit so that a current value in one electrode is maintained within a predetermined range; And a detection step of detecting current consumption in the high voltage generation unit based on the ON time of the PWM signal.
  • PWM signal Pulse Width Modulation signal
  • the signal generation unit (signal generation step) generates a PWM signal for controlling the high voltage generation unit. Further, the current consumption in the high voltage generation unit is detected by the detection unit (detection step). That is, in the consumption current detection device and the consumption current detection method of the present invention, the consumption current in the high voltage generation unit is detected by the signal generation unit (signal generation step) and the detection unit (detection step). Does not require a meter.
  • the consumption current detection device and the consumption current detection method of the present invention can reduce the man-hours and manufacturing costs for inspection. Moreover, the current consumption detection apparatus and current consumption detection method of the present invention can detect the current consumption in the high voltage generator without being affected by the measurement accuracy of the ammeter, and provide a highly reliable detection result. be able to.
  • the detection unit consumes power in the high voltage generation unit based on a relationship between an ON time of the PWM signal associated in advance and current consumption in the high voltage generation unit.
  • the structure which detects an electric current may be sufficient.
  • the consumption current detection device includes a notification unit that notifies the outside that the consumption current in the high voltage generation unit calculated by the calculation unit is greater than a predetermined value. Also good.
  • the high voltage generation unit is not a defective product, and if the current consumption exceeds the predetermined value, the high voltage generation unit is defined as a defective product. Keep it. Thereby, for example, in the inspection process of the high voltage generation unit, it is possible to easily select the non-defective product and the defective product of the high voltage generation unit, using the notification unit as a determination material, and to suppress the inspection cost. be able to.
  • the consumption current detection device may be realized by a computer.
  • a consumption current detection program for realizing the consumption current detection device by a computer by causing the computer to operate as each unit, and A recorded computer-readable information recording medium also falls within the scope of the present invention.
  • the predetermined value is the high value specified in advance in relation to the ON time of the PWM signal associated in advance and the current consumption in the high voltage generation unit.
  • the on-time of the PWM signal corresponding to the current consumption value in the voltage generator may be used.
  • the predetermined time of the on time of the PWM signal is associated with a current consumption value designated in advance.
  • the high voltage generator when the on time of the PWM signal is less than the predetermined value, the high voltage generator is a non-defective product whose current consumption value does not exceed the pre-specified current consumption value, and the PWM signal on time is When the predetermined value is exceeded, the high voltage generator prescribes that the current consumption is a defective product whose current consumption exceeds the predetermined current consumption value.
  • the detection unit includes a comparator and a timer, and the comparator determines whether the voltage value of the PWM signal and the PWM signal are on. It may be configured to compare a predetermined voltage value corresponding to the threshold value and output the comparison result to the timer, and the timer measures the ON time of the PWM signal from the output of the comparator.
  • the on-time of the PWM signal can be measured with a very simple configuration.
  • the predetermined voltage value corresponds to a threshold value indicating whether the PWM signal is on, and is not limited to a specific value.
  • the detection unit includes a measurement unit that measures the on-time of the PWM signal at a fixed time, and the on-time that is measured by the measurement unit based on the relational expression. And a calculation unit that calculates current consumption in the high voltage generation unit.
  • a calculating part uses the relational expression which matched the relationship between the ON time of the said PWM signal, and the consumption current in the said high voltage generation part, when calculating the consumption current in a high voltage generation part. Therefore, current consumption can be easily calculated. Moreover, since the calculating part uses the said relational expression, it can also suppress a calculation load.
  • the notification to the outside of the device is performed through at least one of voice, display on a display member, lighting of light, and flashing of light.
  • the structure performed may be sufficient.
  • the ON time of the PWM signal is larger than a predetermined value or that the current consumption in the high voltage generation unit is larger than a predetermined value. be able to.
  • the inspection process of the electrostatic spraying apparatus it is possible to easily select the non-defective product and the defective product of the high voltage generation unit using the notification as a determination material, and the inspection cost can be suppressed.
  • the high voltage generation unit is connected to an oscillator that converts a direct current supplied from a power source into an alternating current, and the voltage of the alternating current. And a converter circuit that is connected to the transformer and converts an alternating current into a direct current, and in response to a notification to the outside in the notification step, the oscillator and the transformer And a step of determining that at least one of the converter circuits is defective.
  • the present invention can be suitably applied to an electrostatic spraying apparatus that sprays aromatic oil, agricultural chemicals, pharmaceuticals, agricultural chemicals, insecticides, air cleaning chemicals, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electrostatic Spraying Apparatus (AREA)

Abstract

 低コストで検査を行うことが可能な静電噴霧装置を提供する。高電圧生成装置(22)を制御するためのPWM信号を生成するPWM信号生成部(27)と、一定時間におけるPWM信号のオン時間を検出する検出部(28)と、検出部(28)が検出したPWM信号のオン時間が所定の値よりも大きいときに、その旨を自装置の外部へ報知させる報知部(33)と、を備える。

Description

静電噴霧装置、検査方法、検査プログラム、及びコンピュータ読み取り可能な情報記録媒体
 本発明は、高電圧を電極間に印加する高電圧生成部を備えた静電噴霧装置、静電噴霧装置の検査方法、検査プログラム、及びコンピュータ読み取り可能な情報記録媒体に関する。
 従来から、容器内の液体をノズルから噴射する噴霧装置が幅広い分野に適用されている。この種の噴霧装置として、電気流体力学(EHD:Electro Hydrodynamics)により液体を霧化して噴霧する静電噴霧装置が知られている。この静電噴霧装置は、ノズルの先端近傍に電場を形成し、その電場を利用してノズルの先端の液体を霧化して噴射するものである。そのような静電噴霧装置を開示する文献として、特許文献1が知られている。
 上記のような静電噴霧装置において、直流電源から生成した電圧を昇圧して電極間に印加する高電圧生成装置が用いられており、高電圧生成装置に半田不良等の欠陥が存在すると、静電噴霧装置の消費電流が大きくなり、電池の消耗が早くなる。そのため、製造(検査)工程において、高電圧生成装置における消費電流を電流計により測定し、消費電流が所定値以上である高電圧生成装置は不良品と判定する検査が行われている。
国際公開公報「WO2013/018477A1(2013年2月7日公開)」
 しかしながら、上述のような検査では、高電圧生成装置における消費電流を測定するために、電流計を用いる必要がある。電流計を用いて消費電流を測定する検査方法では、検査のための工数及び製造コストが増大する。
 本発明は、上記の課題に鑑みなされたものであって、その目的は、低コストで検査を行うことが可能な静電噴霧装置、静電噴霧装置の検査方法、検査プログラム、及びコンピュータ読み取り可能な情報記録媒体を提供することにある。
 上記の課題を解決するために、本発明の静電噴霧装置は、
 高電圧を第1電極と第2電極との間に印加することにより、当該第1電極の先端から液体を噴霧する静電噴霧装置であって、
 上記第1電極と上記第2電極との間に高電圧を印加する高電圧生成部と、
 上記第2電極における電流値が所定の範囲内に保持されるように上記高電圧生成部を制御するためのPWM信号(Pulse Width Modulation信号)を生成する信号生成部と、
 一定時間における上記PWM信号のオン時間を検出する検出部と、
 上記検出部が検出した上記PWM信号の上記オン時間が所定の値よりも大きいときに、その旨を自装置の外部へ報知させる報知部と、を備えることを特徴とする。
 上記の課題を解決するために、本発明の静電噴霧装置の検査方法は、
 高電圧を第1電極と第2電極との間に印加することにより、当該第1電極の先端から液体を噴霧する静電噴霧装置を検査する検査方法であって、
 上記静電噴霧装置は、上記第1電極と上記第2電極との間に高電圧を印加する高電圧生成部を備えており、
 上記第2電極における電流値が所定の範囲内に保持されるように上記高電圧生成部を制御するためのPWM信号(Pulse Width Modulation信号)を生成する信号生成ステップと、
 一定時間における上記PWM信号のオン時間を検出する検出ステップと、
 上記検出ステップにて検出された上記PWM信号の上記オン時間が所定の値よりも大きいときに、その旨を外部へ報知させる報知ステップと、を含むことを特徴とする。
 上記の構成によれば、信号生成部(信号生成ステップ)によって、高電圧生成部を制御するためのPWM信号が生成される。また、検出部(検出ステップ)によって、一定時間におけるPWM信号のオン時間が検出され、報知部(報知ステップ)によって、オン時間が所定の値よりも大きいときに、その旨を自装置の外部へ報知させる。
 発明者らは、高電圧生成部における消費電流の大きさは、PWM信号のオン時間との間に一定の関係を有しており、PWM信号のオン時間に基づいて静電噴霧装置の検査を行うことが可能であることを見出した。そこで、例えば、オン時間が所定の値よりも大きい場合には、静電噴霧装置は不良品であると予め規定しておく。これにより、静電噴霧装置の検査工程において、報知部が報知をさせるか否かを判断材料として、静電噴霧装置の良品、不良品を簡易に選別することができる。
 つまり、本発明の静電噴霧装置及びその検査方法では、信号生成部(信号生成ステップ)、検出部(検出ステップ)、及び報知部(報知ステップ)により検査が行われるのであって、検査において電流計を必要としない。したがって、本発明の静電噴霧装置及びその検査方法は、検査のための工数及び製造コストを抑えることができる。
 上記の課題を解決するために、本発明の静電噴霧装置は、
 高電圧を第1電極と第2電極との間に印加することにより、当該第1電極の先端から液体を噴霧する静電噴霧装置であって、
 上記第1電極と上記第2電極との間に高電圧を印加する高電圧生成部と、
 上記第2電極における電流値が所定の範囲内に保持されるように上記高電圧生成部を制御するためのPWM信号(Pulse Width Modulation信号)を生成する信号生成部と、
 一定時間における上記PWM信号のオン時間と、上記高電圧生成部における消費電流との関係を対応付けた関係式に基づいて、上記オン時間から、上記高電圧生成部における消費電流を検出する検出部と、
 上記検出部が検出した上記高電圧生成部における消費電流が予め規定された値よりも大きいときに、その旨を自装置の外部へ報知させる報知部と、を備えることを特徴とする。
 上記の構成によれば、検出部によって、高電圧生成部における消費電流が検出される。つまり、本発明の静電噴霧装置では、上記高電圧生成部における消費電流は、信号生成部および検出部により検出されるのであって、電流計を必要としない。
 したがって、本発明の静電噴霧装置は、検査のための工数及び製造コストを抑えることができる。
 また、上記の構成によれば、検出部は、高電圧生成部における消費電流を検出するうえで、上記PWM信号のオン時間と上記高電圧生成部における消費電流との関係を対応付けた関係式を用いるため、消費電流を容易に検出することができる。
 例えば、所定の値を、上記消費電流が上記所定の値を下回れば高電圧生成部は不良品ではなく、上記消費電流が上記所定の値を上回れば高電圧生成部は不良品であると規定しておく。これにより、例えば、高電圧生成部の検査工程において、報知部が報知をさせるか否かを判断材料として、高電圧生成部の良品、不良品を簡易に選別することができ、検査コストを抑えることができる。
 なお、上記静電噴霧装置は、コンピュータによって実現してもよく、この場合には、コンピュータを前記各部として動作させることにより上記静電噴霧装置をコンピュータにて実現させる検査プログラム、およびそれを記録したコンピュータ読取可能な情報記録媒体も、本発明の範疇に入る。
 本発明に係る静電噴霧装置は、第1電極と第2電極との間に高電圧を印加する高電圧生成部と、上記第2電極における電流値が所定の範囲内に保持されるように上記高電圧生成部を制御するためのPWM信号(Pulse Width Modulation信号)を生成する信号生成部と、一定時間における上記PWM信号のオン時間を検出する検出部と、上記検出部が検出した上記PWM信号の上記オン時間が所定の値よりも大きいときに、その旨を自装置の外部へ報知させる報知部と、を備える構成である。
 また、本発明に係る静電噴霧装置は、上記第1電極と上記第2電極との間に高電圧を印加する高電圧生成部と、上記第2電極における電流値が所定の範囲内に保持されるように上記高電圧生成部を制御するためのPWM信号(Pulse Width Modulation信号)を生成する信号生成部と、上記PWM信号のオン時間と、上記高電圧生成部における消費電流との関係を対応付けた関係式に基づいて、一定時間における上記PWM信号のオン時間から、上記高電圧生成部における消費電流を検出する検出部と、上記検出部が検出した上記高電圧生成部における消費電流が予め規定された値よりも大きいときに、その旨を自装置の外部へ報知させる報知部と、を備える構成である。
 また、本発明に係る静電噴霧装置の検査方法は、第2電極における電流値が所定の範囲内に保持されるように上記高電圧生成部を制御するためのPWM信号(Pulse Width Modulation信号)を生成する信号生成ステップと、一定時間における上記PWM信号のオン時間を検出する検出ステップと、上記検出ステップにて検出された上記PWM信号の上記オン時間が所定の値よりも大きいときに、その旨を外部へ報知させる報知ステップと、を含む構成である。
 それゆえ、本発明に係る静電噴霧装置および検査方法によれば、低コストで高電圧生成部の検査を行うことが可能になる、という効果を奏する。
本発明の一実施形態に係る静電噴霧装置の外観を説明するための図である。 スプレー電極、および基準電極を説明するための図である。 本発明の一実施形態に係る静電噴霧装置の構成を示すブロック図である。 消費電流と一定時間内におけるPWM信号のオン時間との関係を示すグラフである。 静電噴霧装置の消費電流の他の測定方法を説明するための参考図である。 本発明の実施例1に係る静電噴霧装置の構成を示すブロック図である。 本発明の実施例2に係る静電噴霧装置の構成を示すブロック図である。 本発明の実施例3に係る静電噴霧装置の構成を示すブロック図である。 本発明の実施例4に係る静電噴霧装置の構成を示すブロック図である。
 本発明に係る静電噴霧装置100は、高電圧をスプレー電極1(第1電極)と基準電極2(第2電極)との間に印加することにより、当該スプレー電極1の先端から液体を噴霧する装置である。
 静電噴霧装置100は、スプレー電極1と基準電極2との間に高電圧を印加する高電圧生成装置22(高電圧生成部)と、基準電極2における電流値が所定の範囲内に保持されるように高電圧生成装置22を制御するためのPWM信号(Pulse Width Modulation信号)を生成するPWM信号生成部27(信号生成部)と、一定時間における上記PWM信号のオン時間を検出する検出部28と、検出部28が検出した上記PWM信号の上記オン時間が所定の値よりも大きいときに、その旨を自装置の外部へ報知させる報知部33と、を備える。
 以下、本発明に係る静電噴霧装置100について説明する。
 〔静電噴霧装置100〕
 以下、図面を参照して、実施形態に係る静電噴霧装置100について説明する。以下の説明では、同一の部品および構成要素には同一の符号を付している。それらの名称および機能も同じである。したがって、それらについての詳細な説明は繰り返さない。
 静電噴霧装置100は、芳香油、農産物用化学物質、医薬品、農薬、殺虫剤、空気清浄化薬剤等の噴霧等に用いられる装置であり、スプレー電極1と、基準電極2と、電源装置3とを備えている。
 まず、静電噴霧装置100の外観を図1により説明する。図1は、静電噴霧装置100の外観を説明するための図である。
 図示するように、静電噴霧装置100は、直方形状である。その装置の一面に、スプレー電極1および基準電極2が配設されている。スプレー電極1は、基準電極2の近傍に位置する。また、スプレー電極1を取り囲むように環状の開口11が、基準電極2を取り囲むように環状の開口12が、それぞれ形成されている。
 スプレー電極1と基準電極2との間には電圧が印加され、それによりスプレー電極1と基準電極2との間に電場が形成される。スプレー電極1からは正帯電した液滴が噴霧される。基準電極2は、電極近傍の空気をイオン化して負帯電させる。そして、負帯電した空気は、スプレー電極1と基準電極2との間に形成された電場と負帯電された空気粒子間の反発力とによって基準電極2から遠ざかる動きをする。この動きが空気の流れ(以下、イオン流と称する場合もある)を生み、このイオン流によって正帯電した液滴が静電噴霧装置100から離れる方向へと噴霧される。
 静電噴霧装置100は、直方形状ではなく、他の形状であってもよい。また、開口11、開口12は、環状とは異なる形状であってよく、その開口寸法も適宜調整されうる。
 〔スプレー電極1および基準電極2〕
 スプレー電極1、および基準電極2を図2により説明する。図2は、スプレー電極1、および基準電極2を説明するための図である。
 スプレー電極1は、金属性キャピラリ(例えば、304型ステンレス鋼など)等の導電性導管と、先端部である先端部5とを有する。スプレー電極1は、電源装置3を介して基準電極2と電気的に接続される。先端部5からは噴霧物質(以下、「液体」と称する)が噴霧される。スプレー電極1は、スプレー電極1の軸心に対して傾斜する傾斜面9を有し、先端部5に向かうほど先端が細く、尖った形状である。
 基準電極2は、金属ピン(例えば、304型スチールピンなど)等の導電性ロッドからなる。スプレー電極1および基準電極2は、一定の間隔をあけて離間し、互いに平行に配置されている。スプレー電極1および基準電極2は、例えば、互いに8mmの間隔をあけて配置される。
 電源装置3は、スプレー電極1と基準電極2との間に高電圧を印加する。例えば、電源装置3は、スプレー電極1と基準電極2との間に1kV-30kVの間の高電圧(例えば、5kV-6kV)を印加する。高電圧が印加されるとスプレー電極1と基準電極2との間に電場が形成され、誘電体10の内部に電気双極子が生じる。このとき、スプレー電極1は正に帯電し、基準電極2は負に帯電する(その逆でもよい)。そして、負の双極子が正のスプレー電極1に最も近い誘電体10の表面に生じ、正の双極子が負の基準電極2に最も近い誘電体10の表面に生じ、帯電したガスおよび物質種が、スプレー電極1および基準電極2によって放出される。
 ここで、上述したように、基準電極2において生成される電荷は、液体の極性とは逆の極性の電荷である。したがって、液体の電荷は、基準電極2において生成される電荷によって平衡化される。それゆえ、静電噴霧装置100は、電荷平衡の原理に基づき、噴霧の安定性を図ることができる。
 なお、国際電気標準会議(IEC)による国際規格では、直流にあっては1500V以上、交流にあっては1000V以上の電圧を高電圧として規定している。
 誘電体10は、例えばナイロン6、ナイロン11、ナイロン12、ポリプロピレン、ナイロン66またはポリアセチル-ポリテトラフルオロエチレン混合物などの誘電体材料からなる。誘電体10は、スプレー電極1をスプレー電極取付部6において支持し、基準電極2を基準電極取付部7において支持する。
 〔電源装置3〕
 図3は、静電噴霧装置100の構成を示すブロック図である。
 図3に示すように、静電噴霧装置100は、電源装置3として、電源21と、高電圧生成装置22と、電流フィードバック回路231と、制御回路24と、を備えている。
  〔電源21〕
 電源21は、静電噴霧装置100の運転に必要な電源を供給する。電源21は、周知の電源であってよく、直流電源および交流電源のうちの何れであってもよい。電源21は、低電圧電源、直流(DC)電源が好ましく、例えば、1つ以上のボルタ電池を組み合わせて1つの電池(バッテリー)を構成する。好適な電池にはアルカリ乾電池、リチウム電池等が含まれる。電源21は、高電圧生成装置22の発振器221に直流電圧を供給する。
  〔高電圧生成装置22〕
 高電圧生成装置22は、電源21から供給される電圧を昇圧することによって高電圧を生成し、その高電圧をスプレー電極1と基準電極2との間に印加する。高電圧生成装置22は、発振器221と、変圧器222と、コンバータ回路223とを備えている。
 発振器221は、直流電流を交流電流に変換する。発振器221には変圧器222が接続される。発振器221には、制御回路24が生成したPWM信号(典型的には約2%のデューティー比を有するPWM信号)が供給される。
 変圧器222は、交流電流の電圧を変換する。変圧器222にはコンバータ回路223が接続される。コンバータ回路223は、所望の電圧を生成し、交流電流を直流電流に変換する。通常、コンバータ回路223は、チャージポンプと整流回路とを備えている。典型的なコンバータ回路は、コッククロフト・ウォルトン回路である。
  〔電流フィードバック回路231〕
 電流フィードバック回路231は、基準電極2の電流値を測定する。静電噴霧装置100は電荷平衡されるため、基準電極2の電流値を測定し、参照することにより、スプレー電極1での電流値を正確に監視することができる。
 電流フィードバック回路231は、基準電極2の電流値に対応する電圧値を、フィードバック情報として制御回路24の比較器26に供給する。
  〔制御回路24〕
 制御回路24は、PWM信号(パルス幅変調信号)を発振器221に供給することによって、高電圧生成装置22の運転状態を制御する。PWM信号とは、オン電圧の状態とオフ電圧の状態とが周期的に繰り返してなるパルス信号である。本明細書では、所定期間(一定時間)内における、PWM信号がオン電圧の状態である時間の積算値を、「PWM信号のオン時間」という。
 また、PWM信号の1周期(または一定周期)の期間のうち、オン電圧の状態である期間が占める比率のことを、PWM信号の「デューティー比」という。
 そのため、PWM信号の1周期に対して上記所定時間が十分長い時間である場合、PWM信号のオン時間は、PWM信号のデューティー比に概ね比例する。PWM信号の周期に対する上記所定期間の始点および終点のタイミングに依存した誤差は生じ得るが、例えば、デューティー比が0.01(1%)である場合、1秒間におけるPWM信号のオン時間は約0.01秒間となり、デューティー比が0.02(2%)である場合、1秒間におけるPWM信号のオン時間は約0.02秒間となる。
 制御回路24は、様々な用途に対応するために、マイクロプロセッサ25を備えている。マイクロプロセッサ25として、Microchip社製のPIC16F1825を用いることができる。
 マイクロプロセッサ25は、比較器26と、PWM信号生成部27と、検出部28とを備えている。
 比較器26は、マイナス端子とプラス端子と出力端子とを備えている。マイナス端子に入力される電圧がプラス端子に入力される電圧よりも大きい場合には、出力端子からロー電圧(電圧V1)が出力される。一方、マイナス端子に入力される電圧がプラス端子に入力される電圧以下である場合には、出力端子からハイ電圧(電圧V2、V1<V2)が出力される。
 比較器26のマイナス端子には、基準電極2の電流値に対応する電圧値が入力され、比較器26のプラス端子には、予め定められた一定の電圧である第1基準電圧が入力される。また、比較器26の出力端子は、PWM信号生成部27に接続されており、比較器26の出力はPWM信号生成部27に供給される。
 従って、基準電極2の電流値に対応する電圧値が第1基準電圧よりも大きい場合には、ロー電圧(V1)が比較器26からPWM信号生成部27に出力される。また、基準電極2の電流値に対応する電圧値が第1基準電圧以下である場合には、ハイ電圧(V2)が比較器26からPWM信号生成部27に出力される。
 PWM信号生成部27は、比較器26の出力に基づいてPWM信号のデューティー比を調整し、PWM信号を発振器221および検出部28に供給する。
 具体的に、基準電極2の電流値に対応する電圧値が第1基準電圧よりも大きい場合には、ロー電圧が比較器26からPWM信号生成部27に出力される。この場合、PWM信号生成部27は、現在出力しているPWM信号のデューティー比よりも小さなデューティー比のPWM信号を発振器221および検出部28に供給する。一方、基準電極2の電流値に対応する電圧値が第1基準電圧以下である場合には、ハイ電圧が比較器26からPWM信号生成部27に出力される。この場合、PWM信号生成部27は、現在出力しているPWM信号のデューティー比よりも大きなデューティー比のPWM信号を発振器221および検出部28に供給する。
 このように、PWM信号生成部27は、比較器26の出力に基づいてPWM信号のデューティー比を調整し、PWM信号を発振器221および検出部28に供給する。これにより、高電圧生成装置22(発振器221、変圧器222、およびコンバータ回路223)の運転状態と、一定時間内におけるPWM信号のオン時間とは、互いに関係付けられる。
 また、検出部28は、PWM信号生成部27から供給されたPWM信号に基づいて、一定時間内におけるPWM信号のオン時間の積算値を検出する。検出部28は、一定時間内におけるPWM信号のオン時間の積算値に基づいて、高電圧生成装置22の消費電流を検出する。その詳細は後述する。
 なお、比較器26が、基準電極2の電流値に対応する電圧値と第1基準電圧とを比較したときの比較結果に応じてロー電圧またはハイ電圧を出力する頻度およびタイミングは予め設定されていてもよく、マイクロプロセッサ25によって適宜設定されてもよい。
 また、PWM信号生成部27が、比較器26の出力に基づいてデューティー比を調整する際のデューティー比の増減幅は予め設定されていてもよく、マイクロプロセッサ25によって適宜設定されてもよい。また、制御回路24では、比較器26に代えて減算器を用い、PWM信号生成部27は、減算器の出力に応じた増減幅でデューティー比を調整してもよい。
 このように、マイクロプロセッサ25は、予め設定された頻度で基準電極2の電流値に対応する電圧値を監視する。そして、スプレー電極1と基準電極2との間に印加される電圧が低下することによって、基準電極2の電流値に対応する電圧値が第1基準電圧以下になったとき、比較器26の出力電圧がロー電圧からハイ電圧に切り替わり、PWM信号生成部27はPWM信号のデューティー比を予め設定された幅で増大させる。PWM信号生成部27がPWM信号のデューティー比を増大させることによって、高電圧生成装置22は生成する高電圧は増大し、スプレー電極1と基準電極2との間に印加される電圧は増大する。
 なお、比較器26に入力される第1基準電圧は、スプレー電極1と基準電極2との間に印加される電圧が適切な範囲内(例えば、5-6kV)に収まるように、また、基準電極2の電流値が0.87μAに保持されるように、予め設定される。
 具体的には、制御回路24は、基準電極2の電流値に対応する電圧値に基づいて、基準電極2を流れる電流が0.87μAとなるようにデューティー比が調整されたPWM信号を生成する。そして、高電圧生成装置22は、当該PWM信号に基づいてスプレー電極1と基準電極2との間の電圧を調整する。
 なお、基準電極2の電流値は、0.87μAといった所定の値ではなく、所定の範囲内(例えば、0.85μA以上0.90μA以下)に保持されるよう、PWM信号が生成される構成であってもよい。
 ここで、上記では、マイクロプロセッサ25が比較器26とPWM信号生成部27とを備えている構成を説明したが、これに限ることはない。マイクロプロセッサ25が比較器26を備えておらず、PWM信号生成部27が、基準電極2の電流値に対応する電圧値と第1基準電圧とを比較するという機能を備えていてもよい。
 また、上記では、基準電極2の電流値に対応する電圧値と、第1基準電圧とを比較する比較器26を用いることによって、上記電圧値の下限値を設定して制御する構成を例示したが、これに限られない。基準電極2の電流値に対応する電圧値と、第3基準電圧とを比較する比較器をさらに用いることによって、上記電圧値の上限値を設定して制御する構成であってもよい。
 <高電圧生成装置22における消費電流>
 本願発明者らは、高電圧生成装置22における消費電流の大きさは、電流フィードバック制御に基づいて生成されたPWM信号のオン時間との間に一定の関係を有していることを見出した。
 図4は、消費電流と一定時間(1.024秒間)内におけるPWM信号のオン時間との関係を示すグラフである。
 図4に示すように、PWM信号のオン時間と消費電流とは、概ね比例関係にある。これは、半田不良(コールド半田)等によって高電圧生成装置22における消費電流が大きい場合、高電圧生成装置22のインピーダンスが高くなり、基準電極2における電流値を所定の値(所定の範囲内)に保持するためにスプレー電極1と基準電極2との間に印加する電圧を高くする必要があり、その結果、PWM信号生成部27が生成するPWM信号のデューティー比が増大し、PWM信号のデューティー比の増大に比例して一定時間内におけるPWM信号のオン時間が増大するためである。
 そこで、PWM信号のオン時間および高電圧生成装置22における消費電流の両方を予め測定しておき、PWM信号のオン時間と消費電流とを対応付けておくことによって、PWM信号のオン時間から消費電流を検出(推定)することができる。なお、PWM信号のオン時間をxとし、高電圧生成装置22における消費電流yとすると、xとyとは、一次関数y=ax+bの関係式で表現される(a,bは任意の定数)。
 そして、静電噴霧装置100では、制御回路24が検出部28を有することにより、電流フィードバック制御により生成されたPWM信号のオン時間に基づいて、高電圧生成装置22における消費電流を検出することができる。
 上述のとおり、静電噴霧装置100は、電流フィードバック回路231と、制御回路24とを備える。これにより、PWM信号生成部27において、基準電極2の電流値が所定の値(所定の範囲内)に保持されるようにデューティー比が調整されたPWM信号を生成し(信号生成ステップ)、検出部28において、PWM信号のオン時間に基づいて高電圧生成装置22における消費電流を検出する(検出ステップ)、という消費電流検出方法を実現することができる。
 上記構成によれば、低コストで高電圧生成装置22の検査を実施することができ、かつ、消費電流を検出するための他の装置(電流計等)の測定精度の影響を受けるということもなく、信頼性の高い検査を行うことができる。
 また、本実施形態の静電噴霧装置100は、実際の使用時のように噴霧する液体を内部に貯留することなく、高電圧生成装置22の消費電流の検査を行うことができる。そのため、高電圧生成装置22の消費電流の検査を行った静電噴霧装置100であっても、未使用の製品として出荷することができる。上記のような消費電流の検出方法及び検査方法は、液体を噴霧する静電噴霧装置において特に有効である。
 また、本実施形態の静電噴霧装置100は、実際の使用時のように噴霧する液体を内部に貯留した状態で、高電圧生成装置22の消費電流の検査を行うこともできる。そのため、ユーザによる使用開始後であっても、高電圧生成装置22の消費電流の検査を行うことができる。
 <参考例>
 図5は、高電圧生成装置の消費電流の他の測定方法を説明するための参考図である。
 図5に示すように、電極間に抵抗(例えば、典型的な6GΩ)を有する装置において、電源と電源装置との間に電流計を接続し、電流値を測定することによって、電源装置の消費電流を測定することも考えられる。
 しかしながら、電流計を用いて消費電流を測定する場合、電流計を回路内に接続する必要があり、検査を実施に伴って工数及びコストが増大する。また、検査結果は、電流計の測定精度の影響を受けるため、使用する電流計の製品品質に左右され、その信頼性は十分に高いとは言えない。
 これに対して、本実施形態の静電噴霧装置100の消費電流の測定原理は、PWM信号のオン時間を測定し、PWM信号のオン時間から高電圧生成装置22の消費電流を検出するというものである。以下、本実施形態の制御回路24のより具体的な構成について、実施例1~3に基づいて説明する。
 <実施例1>
 図6は、実施例1に係る静電噴霧装置101の構成を示すブロック図である。図6に示すように、静電噴霧装置101において、検出部28は、測定部29と演算部30とを備えている。測定部29は、PWM信号のオン時間を測定し、オン時間の情報を演算部30に供給する。演算部30は、測定部29から供給されるオン時間の情報から高電圧生成装置22における消費電流を演算する。
 図4を参照して説明したように、高電圧生成装置22の消費電流とPWM信号のオン時間とは、互いに比例関係にある。演算部30には、高電圧生成装置22の消費電流とPWM信号のオン時間との関係を対応付けた関係式が格納されている。演算部30は、当該関係式に基づいて、PWM信号のオン時間から高電圧生成装置22の消費電流を演算する。上記の構成によれば、電源装置3の消費電流を容易に演算することができる。
 また、必要に応じて、検出部28は、測定部29によって得られたオン時間の情報を記録するデータ記録部を備えていてもよい。
 <実施例2>
 図7は、実施例2に係る静電噴霧装置102の構成を示すブロック図である。図7に示すように、静電噴霧装置102において、測定部29は、比較器31とタイマー32とを備えている。比較器31は、マイナス端子とプラス端子と出力端子とを備えている。比較器31は、マイナス端子に入力される電圧がプラス端子に入力される電圧よりも大きいという結果(比較結果)である場合には、出力端子からロー電圧(電圧V3)を出力する。また、比較器31は、マイナス端子に入力される電圧がプラス端子に入力される電圧以下の場合には、出力端子からハイ電圧(電圧V4、V3<V4)を出力する。
 比較器31のプラス端子(第1入力端子)には第2基準電圧が入力され、比較器31のマイナス端子(第2入力端子)にはPWM信号生成部27により生成されたPWM信号が入力される。第2基準電圧は、PWM信号のオン電位とオフ電位との間の電位であればよく、PWM信号の波形に応じて適宜決められる。すなわち、第2基準電圧は、PWM信号がオンであるかどうかの閾値に対応する所定の電圧値である。
 比較器31の出力端子は、タイマー32に接続されており、比較器31の出力はタイマー32に供給される。
 タイマー32は、比較器31の出力に基づいて、一定時間(モニター期間)におけるPWM信号のオン時間を測定する。具体的に、タイマー32は、比較器31の出力電圧がロー電圧であるかハイ電圧であるかを所定の時間間隔(クロック周期)でモニターする。そして、比較器31の出力電圧がロー電圧である期間は、PWM信号がオン電位の期間(オン時間)であると判断し、比較器の出力電圧がハイ電圧である期間は、PWM信号がオフ電位の期間であると判断する。
 オン時間の測定分解能は、タイマー32のクロック周期およびモニター期間に依存する。クロック周期が短くモニター期間が長いほど測定分解能は向上する。本実施例では、クロック周期を8μ秒とし、モニター期間を1.024秒とした。
 上記の構成によれば、タイマー32と比較器31という簡易な構成によって、PWM信号のオン時間を測定することができる。
 <実施例3>
 図8は、実施例3に係る静電噴霧装置103の構成を示すブロック図である。図8に示すように、静電噴霧装置103において、制御回路24は、報知部33を備えている。
 報知部33は、高電圧生成装置22の消費電流が所定の値よりも大きい場合に、その旨を、音声、表示部材への表示、光の点灯、および、光の点滅のうち少なくとも何れか1つを介して自装置の外部の検査作業者に報知する構成であってもよい。
 具体的には、報知部33は、スピーカ、LEDなどの照明、または表示部(モニター)などに接続されており、スピーカ、LEDなどの照明、または表示部などに検査結果を報知させる。演算部30は、高電圧生成装置22の消費電流の情報を報知部33に供給する。
 静電噴霧装置103の検査工程において、報知部33による報知があった場合に、発振器221、変圧器222、及びコンバータ回路223からなる群より選択される少なくとも何れか一つを不良であると判定してもよい。
 高電圧生成装置22の消費電流は、特に、変圧器222による影響が大きいことが経験的に知られている。そのため、静電噴霧装置103の検査工程において、高電圧生成装置22の消費電流が所定の値よりも大きい場合に、報知部33は、検査作業者に対して、スピーカ、LEDなどの照明、または表示部などを介して、その旨を報知する。これにより、検査作業者は、報知部33による報知を、変圧器222を交換する契機として位置づけることができる。なお、報知部33による報知があった場合に、検査作業者は、発振器221またはコンバータ回路223を不良であると判定し、交換してもよい。
 また、報知部33は、高電圧生成装置22の消費電流が所定の値よりも小さい場合に、その旨を、音声、表示部材への表示、光の点灯、および、光の点滅のうち少なくとも何れか1つを介して自装置の外部の検査作業者に報知する構成であってもよい。
 高電圧生成装置22の消費電流が通常の範囲を越えて小さい場合、例えば、マイクロプロセッサ25を構成する回路(消費電流を検出するためのセンサ部)である検出部28、PWM信号生成部27等が故障していることが考えられる。そのため、静電噴霧装置103の検査工程において、高電圧生成装置22の消費電流が所定の値よりも小さい場合に、報知部33は、検査作業者に対して、スピーカ、LEDなどの照明、または表示部などを介して、その旨を報知する。これにより、検査作業者は、報知部33による報知を、マイクロプロセッサ25を交換する契機として位置づけることができる。
 <実施例4>
 図9は、実施例4に係る静電噴霧装置104の構成を示すブロック図である。図9に示すように、静電噴霧装置104において、検出部28は、演算部30を備えていない。
 報知部33は、タイマー32が測定したPWM信号のオン時間が所定の値よりも大きい場合に、その旨を、音声、表示部材への表示、光の点灯、および、光の点滅のうち少なくとも何れか1つを介して自装置の外部の検査作業者に報知する(報知ステップ)。
 具体的には、報知部33は、スピーカ、LEDなどの照明、または表示部(モニター)などに接続されており、スピーカ、LEDなどの照明、または表示部などに検査結果を報知させる。
 静電噴霧装置103の検査工程において、報知部33による報知があった場合に、発振器221、変圧器222、及びコンバータ回路223からなる群より選択される少なくとも何れか一つを不良であると判定してもよい。
 本実施例の静電噴霧装置104のように、検出部28が演算部を備えていない場合であっても、消費電流の検査を行うことができる。
 すなわち、検出部28(タイマー32)が検出したPWM信号のオン時間が所定の値を下回った場合に、高電圧生成装置22は、消費電流値が上記予め指定された消費電流値を超えない良品であり、PWM信号のオン時間が上記所定の値を上回った場合には、高電圧生成装置22は、消費電流が上記予め指定された消費電流値を超える不良品であると規定しておく。
 なお、ここでいう所定の値とは、PWM信号のオン時間と高電圧生成装置22における消費電流との関係を示す関係式において、検査工程において予め指定された消費電流値に対応するPWM信号のオン時間をいう。
 これにより、静電噴霧装置104の検査工程において、報知部33が報知をさせるか否かを判断材料として、高電圧生成装置22の良品、不良品を簡易に選別することができ、検査コストを抑えることができる。
 〔ソフトウェアによる実現例〕
 制御回路24の制御ブロック(特に検出部28)は、集積回路(ICチップ)等に形成された論理回路(ハードウェア)によって実現してもよいし、CPU(Central Processing Unit)を用いてソフトウェアによって実現してもよい。
 後者の場合、制御回路24は、各機能を実現するソフトウェアであるプログラム(検査プログラム)の命令を実行するCPU、上記プログラムおよび各種データがコンピュータ(またはCPU)で読み取り可能に記録されたROM(Read Only Memory)または記憶装置(これらを「情報記録媒体」と称する)、上記プログラムを展開するRAM(Random Access Memory)などを備えている。そして、コンピュータ(またはCPU)が上記プログラムを上記情報記録媒体から読み取って実行することにより、本発明の目的が達成される。上記情報記録媒体としては、「一時的でない有形の媒体」、例えば、テープ、ディスク、カード、半導体メモリ、プログラマブルな論理回路などを用いることができる。また、上記プログラムは、該プログラムを伝送可能な任意の伝送媒体(通信ネットワークや放送波等)を介して上記コンピュータに供給されてもよい。なお、本発明は、上記プログラムが電子的な伝送によって具現化された、搬送波に埋め込まれたデータ信号の形態でも実現され得る。
 〔その他〕
 以下、本願発明に含まれるその他の構成を説明する。
 上記の課題を解決するために、本発明の一態様に係る消費電流検出装置は、
 高電圧を電極間に印加する高電圧生成部における消費電流を検出する消費電流検出装置であって、
 一方の電極における電流値が所定の範囲内に保持されるように上記高電圧生成部を制御するためのPWM信号(Pulse Width Modulation信号)を生成する信号生成部と、
 上記信号生成部が生成した上記PWM信号のオン時間に基づいて、上記高電圧生成部における消費電流を検出する検出部と、を備える。
 上記の課題を解決するために、本発明の一態様に係る消費電流検出方法は、
 高電圧を電極間に印加する高電圧生成部における消費電流を検出する消費電流検出方法であって、
 一方の電極における電流値が所定の範囲内に保持されるように上記高電圧生成部を制御するためのPWM信号(Pulse Width Modulation信号)を生成する信号生成ステップと、
 上記PWM信号のオン時間に基づいて、上記高電圧生成部における消費電流を検出する検出ステップと、を含む。
 上記の構成によれば、信号生成部(信号生成ステップ)によって、高電圧生成部を制御するためのPWM信号が生成される。また、検出部(検出ステップ)によって、高電圧生成部における消費電流が検出される。つまり、本発明の消費電流検出装置および消費電流検出方法では、上記高電圧生成部における消費電流は、信号生成部(信号生成ステップ)および検出部(検出ステップ)により検出されるのであって、電流計を必要としない。
 したがって、本発明の消費電流検出装置および消費電流検出方法は、検査のための工数及び製造コストを抑えることができる。しかも、本発明の消費電流検出装置および消費電流検出方法は、電流計の測定精度の影響を受けることなく高電圧生成部における消費電流を検出することができ、信頼性の高い検出結果を提供することができる。
 本発明の一態様に係る消費電流検出装置では、上記検出部は、予め対応付けられた上記PWM信号のオン時間と上記高電圧生成部における消費電流との関係から、上記高電圧生成部における消費電流を検出する構成であってもよい。
 上記の構成によれば、上記PWM信号のオン時間と上記高電圧生成部における消費電流との関係が予め対応付けられているため、PWM信号のオン時間を測定することによって、高電圧生成部における消費電流を容易に検出することができる。
 本発明の一態様に係る消費電流検出装置では、上記演算部により演算された上記高電圧生成部における上記消費電流が所定の値よりも大きいことを外部へ報知させる報知部を備える構成であってもよい。
 例えば、所定の値を、上記消費電流が上記所定の値を下回れば高電圧生成部は不良品ではなく、上記消費電流が上記所定の値を上回れば高電圧生成部は不良品であると規定しておく。これにより、例えば、高電圧生成部の検査工程において、報知部が報知をさせるか否かを判断材料として、高電圧生成部の良品、不良品を簡易に選別することができ、検査コストを抑えることができる。
 なお、上記消費電流検出装置は、コンピュータによって実現してもよく、この場合には、コンピュータを前記各部として動作させることにより上記消費電流検出装置をコンピュータにて実現させる消費電流検出プログラム、およびそれを記録したコンピュータ読取可能な情報記録媒体も、本発明の範疇に入る。
 〔補足〕
 本発明の一態様に係る静電噴霧装置では、上記所定の値は、予め対応付けられた上記PWM信号のオン時間と上記高電圧生成部における消費電流との関係において、予め指定された上記高電圧生成部における消費電流値に対応する上記PWM信号の上記オン時間であってもよい。
 上記の構成によれば、PWM信号のオン時間の上記所定の時間は、予め指定された消費電流値に対応付けられている。
 例えば、PWM信号のオン時間が上記所定の値を下回った場合には、高電圧生成部は、消費電流値が上記予め指定された消費電流値を超えない良品であり、PWM信号のオン時間が上記所定の値を上回った場合には、高電圧生成部は、消費電流が上記予め指定された消費電流値を超える不良品であると規定しておく。これにより、例えば、静電噴霧装置の検査工程において、報知部が報知をさせるか否かを判断材料として、高電圧生成部の良品、不良品を簡易に選別することができ、検査コストを抑えることができる。
 本発明の一態様に係る静電噴霧装置では、上記検出部は、比較器とタイマーとを備えており、上記比較器は、上記PWM信号の電圧値と当該PWM信号がオンであるかどうかの閾値に対応する所定の電圧値とを比較し、その比較結果を上記タイマーに出力し、上記タイマーは、上記比較器の出力から、上記PWM信号のオン時間を測定する構成であってもよい。
 上記の構成によれば、極めて簡易な構成によって、PWM信号のオン時間を測定することができる。なお、所定の電圧値とは、PWM信号がオンであるかどうかの閾値に対応するものであり、特定の値に限られない。
 本発明の一態様に係る静電噴霧装置では、上記検出部は、一定時間における上記PWM信号のオン時間を測定する測定部と、上記関係式に基づいて、上記測定部が測定した上記オン時間から、上記高電圧生成部における消費電流を演算する演算部と、を備える構成であってもよい。
 上記の構成によれば、演算部は、高電圧生成部における消費電流を演算するうえで、上記PWM信号のオン時間と上記高電圧生成部における消費電流との関係を対応付けた関係式を用いるため、消費電流を容易に演算できる。また、演算部は、上記関係式を用いるため、演算負荷を抑えることもできる。
 本発明の一態様に係る静電噴霧装置では、自装置の外部への上記報知は、音声、表示部材への表示、光の点灯、および、光の点滅のうち少なくとも何れか1つを介して行われる構成であってもよい。
 上記の構成によれば、上記PWM信号の上記オン時間が所定の値よりも大きいこと、又は、高電圧生成部における消費電流が予め規定された値よりも大きいことを、明確に外部に報知させることができる。これにより、例えば、静電噴霧装置の検査工程において、上記報知を判断材料として、高電圧生成部の良品、不良品を簡易に選別することができ、検査コストを抑えることができる。
 本発明の一態様に係る静電噴霧装置の検査方法では、上記高電圧生成部は、電源から供給される直流電流を交流電流に変換する発振器と、上記発振器に接続され、上記交流電流の電圧の大きさを変換する変圧器と、上記変圧器に接続され、交流電流を直流電流に変換するコンバータ回路と、を備え、上記報知ステップにおける外部への報知に応じて、上記発振器、上記変圧器、および上記コンバータ回路のうちの少なくとも何れか1つが不良であると判定する工程を含んでいてもよい。
 静電噴霧装置の消費電流は、高電圧生成部、特に変圧器による影響を受けやすいことが経験的に知られている。そのため、上記の方法とすることにより、報知部による報知があった場合に、不良箇所を絞り込むことができる。
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
 本発明は、芳香油、農産物用化学物質、医薬品、農薬、殺虫剤、空気清浄化薬剤等を噴霧する静電噴霧装置に好適に適用することができる。
1 スプレー電極(第1電極)
2 基準電極(第2電極)
3 電源装置
5 先端部
6 スプレー電極取付部
7 基準電極取付部
9 傾斜面
10 誘電体
11 開口
12 開口
21 電源
22 高電圧生成装置
24 制御回路(消費電流検出装置)
25 マイクロプロセッサ
26 比較器
27 PWM信号生成部(信号生成部)
28 検出部
29 測定部
30 演算部
31 比較器
32 タイマー
33 報知部
100、101、102、103 静電噴霧装置
221 発振器
222 変圧器
223 コンバータ回路
231 電流フィードバック回路

Claims (11)

  1.  高電圧を第1電極と第2電極との間に印加することにより、当該第1電極の先端から液体を噴霧する静電噴霧装置であって、
     上記第1電極と上記第2電極との間に高電圧を印加する高電圧生成部と、
     上記第2電極における電流値が所定の範囲内に保持されるように上記高電圧生成部を制御するためのPWM信号(Pulse Width Modulation信号)を生成する信号生成部と、
     一定時間における上記PWM信号のオン時間を検出する検出部と、
     上記検出部が検出した上記PWM信号の上記オン時間が所定の値よりも大きいときに、その旨を自装置の外部へ報知させる報知部と、を備えることを特徴とする静電噴霧装置。
  2.  上記所定の値は、予め対応付けられた上記PWM信号のオン時間と上記高電圧生成部における消費電流との関係において、予め指定された上記高電圧生成部における消費電流値に対応する上記PWM信号の上記オン時間であることを特徴とする請求項1に記載の静電噴霧装置。
  3.  上記検出部は、比較器とタイマーとを備えており、
     上記比較器は、上記PWM信号の電圧値と当該PWM信号がオンであるかどうかの閾値に対応する所定の電圧値とを比較し、その比較結果を上記タイマーに出力し、
     上記タイマーは、上記比較器の出力から、上記PWM信号のオン時間を測定することを特徴とする請求項1または2に記載の静電噴霧装置。
  4.  自装置の外部への上記報知は、音声、表示部材への表示、光の点灯、および、光の点滅のうち少なくとも何れか1つを介して行われることを特徴とする請求項1から3の何れか1項に記載の静電噴霧装置。
  5.  高電圧を第1電極と第2電極との間に印加することにより、当該第1電極の先端から液体を噴霧する静電噴霧装置であって、
     上記第1電極と上記第2電極との間に高電圧を印加する高電圧生成部と、
     上記第2電極における電流値が所定の範囲内に保持されるように上記高電圧生成部を制御するためのPWM信号(Pulse Width Modulation信号)を生成する信号生成部と、
     一定時間における上記PWM信号のオン時間と、上記高電圧生成部における消費電流との関係を対応付けた関係式に基づいて、上記オン時間から、上記高電圧生成部における消費電流を検出する検出部と、
     上記検出部が検出した上記高電圧生成部における消費電流が予め規定された値よりも大きいときに、その旨を自装置の外部へ報知させる報知部と、を備えることを特徴とする静電噴霧装置。
  6.  上記検出部は、
      一定時間における上記PWM信号のオン時間を測定する測定部と、
      上記関係式に基づいて、上記測定部が測定した上記オン時間から、上記高電圧生成部における消費電流を演算する演算部と、を備えることを特徴とする請求項5に記載の静電噴霧装置。
  7.  自装置の外部への上記報知は、音声、表示部材への表示、光の点灯、および、光の点滅のうち少なくとも何れか1つを介して行われることを特徴とする請求項5または6に記載の静電噴霧装置。
  8.  高電圧を第1電極と第2電極との間に印加することにより、当該第1電極の先端から液体を噴霧する静電噴霧装置を検査する検査方法であって、
     上記静電噴霧装置は、上記第1電極と上記第2電極との間に高電圧を印加する高電圧生成部を備えており、
     上記第2電極における電流値が所定の範囲内に保持されるように上記高電圧生成部を制御するためのPWM信号(Pulse Width Modulation信号)を生成する信号生成ステップと、
     一定時間における上記PWM信号のオン時間を検出する検出ステップと、
     上記検出ステップにて検出された上記PWM信号の上記オン時間が所定の値よりも大きいときに、その旨を外部へ報知させる報知ステップと、を含むことを特徴とする検査方法。
  9.  上記高電圧生成部は、
      電源から供給される直流電流を交流電流に変換する発振器と、
      上記発振器に接続され、上記交流電流の電圧の大きさを変換する変圧器と、
      上記変圧器に接続され、交流電流を直流電流に変換するコンバータ回路と、を備え、
     上記報知ステップにおける外部への報知に応じて、上記発振器、上記変圧器、および上記コンバータ回路のうちの少なくとも何れか1つが不良であると判定することを特徴とする請求項8に記載に記載の検査方法。
  10.  高電圧を第1電極と第2電極との間に印加することにより、当該第1電極の先端から液体を噴霧する静電噴霧装置を検査する検査プログラムであって、
     上記静電噴霧装置は、上記第1電極と上記第2電極との間に高電圧を印加する高電圧生成部を備えており、
     上記第2電極における電流値が所定の範囲内に保持されるように上記高電圧生成部を制御するためのPWM信号(Pulse Width Modulation信号)を生成する信号生成ステップと、
     一定時間における上記PWM信号のオン時間を検出する検出ステップと、
     上記検出ステップにて検出された上記PWM信号の上記オン時間が所定の値よりも大きいときに、その旨を外部へ報知させる報知ステップと、をコンピュータに実行させるための検査プログラム。
  11.  請求項10に記載の検査プログラムを記録したコンピュータ読み取り可能な情報記録媒体。
PCT/JP2015/079544 2014-11-10 2015-10-20 静電噴霧装置、検査方法、検査プログラム、及びコンピュータ読み取り可能な情報記録媒体 WO2016076081A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/523,328 US20170248651A1 (en) 2014-11-10 2015-10-20 ELECTROSTATIC ATOMIZER, INSPECTION METHOD, AND COMPUTER READABLE INFORMATION RECORDING MEDIUM (as amended)
CN201580059579.1A CN107073493A (zh) 2014-11-10 2015-10-20 静电喷雾装置、检查方法、检查程序以及计算机可读的信息记录介质
JP2016558946A JPWO2016076081A1 (ja) 2014-11-10 2015-10-20 静電噴霧装置、検査方法、検査プログラム、及びコンピュータ読み取り可能な情報記録媒体
EP15859112.3A EP3219393A4 (en) 2014-11-10 2015-10-20 Electrostatic spray device, inspection method, inspection program, and computer readable information recording medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-228454 2014-11-10
JP2014228454 2014-11-10

Publications (1)

Publication Number Publication Date
WO2016076081A1 true WO2016076081A1 (ja) 2016-05-19

Family

ID=55954173

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/079544 WO2016076081A1 (ja) 2014-11-10 2015-10-20 静電噴霧装置、検査方法、検査プログラム、及びコンピュータ読み取り可能な情報記録媒体

Country Status (5)

Country Link
US (1) US20170248651A1 (ja)
EP (1) EP3219393A4 (ja)
JP (1) JPWO2016076081A1 (ja)
CN (1) CN107073493A (ja)
WO (1) WO2016076081A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018139091A1 (ja) * 2017-01-30 2018-08-02 住友化学株式会社 静電噴霧装置、情報処理端末、電圧調整方法、および制御プログラム
WO2018139089A1 (ja) * 2017-01-30 2018-08-02 住友化学株式会社 静電噴霧装置、情報処理端末、異常報知方法、および制御プログラム

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX2020006319A (es) * 2017-12-29 2020-11-24 Sanotech 360 Llc Pulverizador electrostatico.

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62198563A (ja) * 1986-02-25 1987-09-02 Honda Motor Co Ltd 電動式パワ−ステアリング装置
WO2010137327A1 (ja) * 2009-05-29 2010-12-02 パナソニック株式会社 Pwm負荷機器の駆動電流検出装置、駆動電流検出方法、故障検知装置及び故障検知方法
JP2013027832A (ja) * 2011-07-29 2013-02-07 Sumitomo Chemical Co Ltd 静電噴霧装置、および当該静電噴霧装置を用いて静電噴霧を行う方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5726901A (en) * 1996-01-25 1998-03-10 Dell Usa, L.P. System for reporting computer energy consumption
US8025786B2 (en) * 2006-02-10 2011-09-27 Tennant Company Method of generating sparged, electrochemically activated liquid
US8861228B2 (en) * 2009-12-07 2014-10-14 Durr Systems Gmbh High voltage controller with improved monitoring and diagnostics
AU2011265562A1 (en) * 2011-01-12 2012-07-26 Sumitomo Chemical Company, Limited Method of controlling harmful arthropod, composition, and electrostatic spray device
JP6104640B2 (ja) * 2013-03-01 2017-03-29 住友化学株式会社 静電噴霧装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62198563A (ja) * 1986-02-25 1987-09-02 Honda Motor Co Ltd 電動式パワ−ステアリング装置
WO2010137327A1 (ja) * 2009-05-29 2010-12-02 パナソニック株式会社 Pwm負荷機器の駆動電流検出装置、駆動電流検出方法、故障検知装置及び故障検知方法
JP2013027832A (ja) * 2011-07-29 2013-02-07 Sumitomo Chemical Co Ltd 静電噴霧装置、および当該静電噴霧装置を用いて静電噴霧を行う方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3219393A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018139091A1 (ja) * 2017-01-30 2018-08-02 住友化学株式会社 静電噴霧装置、情報処理端末、電圧調整方法、および制御プログラム
WO2018139089A1 (ja) * 2017-01-30 2018-08-02 住友化学株式会社 静電噴霧装置、情報処理端末、異常報知方法、および制御プログラム

Also Published As

Publication number Publication date
EP3219393A1 (en) 2017-09-20
JPWO2016076081A1 (ja) 2017-08-24
CN107073493A (zh) 2017-08-18
US20170248651A1 (en) 2017-08-31
EP3219393A4 (en) 2018-06-27

Similar Documents

Publication Publication Date Title
JP6104640B2 (ja) 静電噴霧装置
JP5046390B2 (ja) 除電装置
WO2016076081A1 (ja) 静電噴霧装置、検査方法、検査プログラム、及びコンピュータ読み取り可能な情報記録媒体
WO2005097339A1 (ja) 静電霧化装置
JP5990118B2 (ja) 静電噴霧装置、および静電噴霧装置の制御方法
JP2011067746A (ja) 静電霧化装置
WO2018139090A1 (ja) 静電噴霧装置、情報処理端末、制御方法、および制御プログラム
JP2011054579A (ja) 除電装置
JP2008016274A (ja) 除電装置
WO2014112447A1 (ja) 静電噴霧装置、および静電噴霧装置の制御方法
JPWO2018043735A1 (ja) 静電噴霧装置
EP2623207A1 (en) Static spraying appratus
WO2018139089A1 (ja) 静電噴霧装置、情報処理端末、異常報知方法、および制御プログラム
WO2018139091A1 (ja) 静電噴霧装置、情報処理端末、電圧調整方法、および制御プログラム
JP6212504B2 (ja) 静電噴霧装置
JP2014233667A (ja) 静電噴霧装置、および静電噴霧装置の制御方法
JP2013184131A (ja) 静電塗装装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15859112

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016558946

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15523328

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015859112

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE