WO2018139091A1 - 静電噴霧装置、情報処理端末、電圧調整方法、および制御プログラム - Google Patents

静電噴霧装置、情報処理端末、電圧調整方法、および制御プログラム Download PDF

Info

Publication number
WO2018139091A1
WO2018139091A1 PCT/JP2017/044768 JP2017044768W WO2018139091A1 WO 2018139091 A1 WO2018139091 A1 WO 2018139091A1 JP 2017044768 W JP2017044768 W JP 2017044768W WO 2018139091 A1 WO2018139091 A1 WO 2018139091A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
electrostatic spraying
electrode
adjustment
spraying device
Prior art date
Application number
PCT/JP2017/044768
Other languages
English (en)
French (fr)
Inventor
バン タン ダウ
剛 折田
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Publication of WO2018139091A1 publication Critical patent/WO2018139091A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B5/00Electrostatic spraying apparatus; Spraying apparatus with means for charging the spray electrically; Apparatus for spraying liquids or other fluent materials by other electric means
    • B05B5/025Discharge apparatus, e.g. electrostatic spray guns
    • B05B5/053Arrangements for supplying power, e.g. charging power
    • B05B5/0533Electrodes specially adapted therefor; Arrangements of electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B12/00Arrangements for controlling delivery; Arrangements for controlling the spray area
    • B05B12/004Arrangements for controlling delivery; Arrangements for controlling the spray area comprising sensors for monitoring the delivery, e.g. by displaying the sensed value or generating an alarm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B15/00Details of spraying plant or spraying apparatus not otherwise provided for; Accessories
    • B05B15/50Arrangements for cleaning; Arrangements for preventing deposits, drying-out or blockage; Arrangements for detecting improper discharge caused by the presence of foreign matter
    • B05B15/52Arrangements for cleaning; Arrangements for preventing deposits, drying-out or blockage; Arrangements for detecting improper discharge caused by the presence of foreign matter for removal of clogging particles
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units

Definitions

  • the present invention relates to an electrostatic spraying device and the like.
  • the electrostatic spraying device of Patent Document 1 includes a current feedback circuit, and the current feedback circuit measures the current value of the reference electrode. Since the electrostatic spraying device of Patent Document 1 is charge-balanced, the current value is measured and referenced to accurately grasp the current at the spray electrode. And the electrostatic spraying apparatus of patent document 1 is improving the stability of spraying using the feedback control which maintains the electric current value in a spray electrode at a constant value.
  • a voltage applied between a spray electrode (first electrode) and a reference electrode (second electrode) is adjusted at an assembly factory.
  • the conventional electrostatic spraying device is not provided with a configuration for arbitrarily adjusting the voltage in an actual use environment. Therefore, for example, in the following cases (1) to (3), there is a concern that the voltage deviates from a suitable value and the liquid spray state becomes unstable.
  • (1) When the usage environment of the conventional electrostatic spraying device changes.
  • (2) When the characteristics of one or more parts included in the conventional electrostatic spraying device have changed due to aging.
  • the assembly accuracy of the conventional electrostatic spraying device is not high, and there is a difference between the result of adjusting the voltage using the substrate alone at the assembly plant and the result of checking the voltage after the device is assembled. .
  • the present invention has been made to solve the above problems, and an object of the present invention is to provide an electrostatic spraying device capable of adjusting a voltage applied between a first electrode and a second electrode. It is in.
  • an electrostatic spraying apparatus sprays liquid from the tip of the first electrode by applying a voltage between the first electrode and the second electrode.
  • An electrostatic spraying device that switches between an operation mode for operating the electrostatic spraying device and an adjustment mode for adjusting a voltage applied between the first electrode and the second electrode.
  • a command unit that applies the adjustment voltage set by the setting unit in the operation mode.
  • an information processing terminal applies a voltage between the first electrode and the second electrode, thereby supplying liquid from the tip of the first electrode.
  • An information processing terminal communicably connected to an electrostatic spraying device for spraying, wherein the electrostatic spraying device includes an operation mode for operating the electrostatic spraying device, the first electrode, and the second electrode.
  • An adjustment mode for adjusting a voltage to be applied between the switching mode and the switching mode for switching between the operation mode and the adjustment mode, and in the adjustment mode, the electrostatic spraying device is connected to the first electrode.
  • a command unit for applying to the is connected to the first electrode.
  • a voltage adjustment method applies a voltage between a first electrode and a second electrode, thereby supplying a liquid from the tip of the first electrode.
  • a voltage adjustment method applied to an electrostatic spraying device for spraying wherein the electrostatic spraying device includes an operation mode for operating the electrostatic spraying device, and the first electrode and the second electrode.
  • An adjustment mode for adjusting a voltage to be applied between the switching mode for switching between the operation mode and the adjustment mode, and in the adjustment mode, the electrostatic spraying device is connected to the first electrode.
  • the voltage applied between the first electrode and the second electrode can be adjusted.
  • the information processing terminal and the voltage adjustment method according to one aspect of the present invention also have the same effect.
  • FIG. It is a functional block diagram which shows the structure of the principal part of the electrostatic spraying apparatus which concerns on Embodiment 1.
  • FIG. It is a figure for demonstrating the external appearance of the electrostatic spraying apparatus of FIG. It is a figure for demonstrating a spray electrode and a reference electrode.
  • (A)-(c) is a figure for demonstrating the relationship between the surrounding environment of the electrostatic spraying apparatus of FIG. 1, and the electric current in a reference electrode, respectively.
  • (A) And (b) is a figure for demonstrating the relationship between the voltage before adjustment and an adjustment voltage, respectively.
  • (A) And (b) is a figure for demonstrating the adjustment timing of the voltage in an electrostatic spraying device, respectively.
  • Embodiment 1 the electrostatic spraying apparatus 100 according to the first embodiment will be described with reference to FIGS.
  • the same parts and components are denoted by the same reference numerals. Their names and functions are also the same. Therefore, detailed description thereof will not be repeated.
  • the electrostatic spraying device 100 is a device used for spraying aromatic oil, agricultural chemicals, pharmaceuticals, agricultural chemicals, insecticides, air cleaning chemicals, and the like.
  • the electrostatic spraying device 100 includes a spray electrode (first electrode) 1, a reference electrode (second electrode) 2, a power supply device 3, a light emitting element (notification unit) 26, and an input unit 27.
  • FIG. 2 is a view for explaining the external appearance of the electrostatic spraying device 100.
  • the electrostatic spraying device 100 has a rectangular shape.
  • a spray electrode 1 and a reference electrode 2 are disposed on one surface of the apparatus.
  • the spray electrode 1 is located in the vicinity of the reference electrode 2.
  • An annular opening 11 is formed so as to surround the spray electrode 1, and an annular opening 12 is formed so as to surround the reference electrode 2.
  • a voltage is applied between the spray electrode 1 and the reference electrode 2, whereby an electric field is formed between the spray electrode 1 and the reference electrode 2.
  • a positively charged droplet is sprayed from the spray electrode 1.
  • the reference electrode 2 is negatively charged by ionizing air in the vicinity of the electrode.
  • the negatively charged air moves away from the reference electrode 2 due to the electric field formed between the electrodes and the repulsive force between the negatively charged air particles. This movement generates a flow of air (hereinafter also referred to as an ion flow), and positively charged droplets are sprayed in a direction away from the electrostatic spraying device 100 by the ion flow.
  • the electrostatic spraying device 100 may have other shapes instead of a rectangular shape. Moreover, the opening 11 and the opening 12 may have a shape different from the annular shape, and the opening dimensions thereof may be adjusted as appropriate.
  • the light emitting element 26 may be provided on the surface of the casing of the electrostatic spraying device 100.
  • the light emitting element 26 may be a multi-color LED (Light Emitting Diode, light emitting diode) that can selectively emit light of a plurality of predetermined colors. An example of the operation of the light emitting element 26 will be described later.
  • the input unit 27 is a member that receives user input operations (hereinafter, user operations).
  • the input unit 27 may be a push button, for example.
  • the input unit 27 may also be provided on the surface of the casing of the electrostatic spraying device 100. An example of the operation of the electrostatic spraying device 100 according to the user operation will be described later.
  • FIG. 3 is a view for explaining the spray electrode 1 and the reference electrode 2.
  • the spray electrode 1 has a conductive conduit such as a metallic capillary (for example, 304 type stainless steel) and a tip 5 that is a tip.
  • the spray electrode 1 is electrically connected to the reference electrode 2 via the power supply device 3.
  • a spray material (hereinafter referred to as “liquid”) is sprayed from the tip portion 5.
  • the spray electrode 1 has an inclined surface 9 that is inclined with respect to the axial center of the spray electrode 1, and the tip is narrower and sharper toward the tip 5.
  • the reference electrode 2 is made of a conductive rod such as a metal pin (for example, a 304 type steel pin).
  • the spray electrode 1 and the reference electrode 2 are spaced apart from each other at a predetermined interval and are arranged in parallel to each other.
  • the spray electrode 1 and the reference electrode 2 are arranged, for example, at an interval of 8 mm from each other.
  • the power supply device 3 applies a high voltage between the spray electrode 1 and the reference electrode 2.
  • the power supply device 3 applies a high voltage (for example, 3 to 7 kV) between 1 to 30 kV between the spray electrode 1 and the reference electrode 2.
  • a high voltage for example, 3 to 7 kV
  • an electric field is formed between the electrodes, and an electric dipole is generated inside the dielectric 10.
  • the spray electrode 1 is positively charged and the reference electrode 2 is negatively charged (or vice versa).
  • negative dipoles are generated on the surface of the dielectric 10 closest to the positive spray electrode 1
  • positive dipoles are generated on the surface of the dielectric 10 closest to the negative reference electrode 2. Are emitted by the spray electrode 1 and the reference electrode 2.
  • the charge generated in the reference electrode 2 is a charge having a polarity opposite to the polarity of the liquid. Accordingly, the charge of the liquid is balanced by the charge generated at the reference electrode 2. Therefore, the electrostatic spraying device 100 can achieve spray stability based on the principle of charge balance.
  • the electrostatic spraying device 100 is configured to spray the liquid from the tip (tip portion 5) of the spray electrode 1 by applying a voltage between the spray electrode 1 and the reference electrode 2. .
  • the dielectric 10 is made of a dielectric material such as nylon 6, nylon 11, nylon 12, polypropylene, nylon 66, or a polyacetyl-polytetrafluoroethylene mixture.
  • the dielectric 10 supports the spray electrode 1 at the spray electrode mounting portion 6 and supports the reference electrode 2 at the reference electrode mounting portion 7.
  • FIG. 1 is a functional block diagram illustrating a configuration of a main part of the electrostatic spraying apparatus 100.
  • the power supply device 3 includes a power supply 21, a high voltage generation device 22, a control circuit (control unit) 24, and a storage unit 29a.
  • the power source 21 supplies power necessary for the operation of the electrostatic spraying device 100.
  • the power source 21 may be a well-known power source and may include a main power source or one or more batteries.
  • the power source 21 is preferably a low voltage power source or a direct current (DC) power source, and may be configured by combining one or more dry batteries, for example. The number of batteries depends on the required voltage level and the power consumption of the power source.
  • the power source 21 supplies DC power (in other words, DC current and DC voltage) to the oscillator 221 of the high voltage generator 22.
  • the power source 21 may be a test power source used in an assembly factory that manufactures the electrostatic spraying device 100.
  • the high voltage generator 22 includes an oscillator 221, a transformer 222, and a converter circuit 223.
  • the oscillator 221 converts DC power (in other words, DC current and DC voltage) into AC power (in other words, AC current and AC voltage).
  • a transformer 222 is connected to the oscillator 221.
  • the transformer 222 converts the magnitude of the alternating current voltage (or the magnitude of the alternating current).
  • a converter circuit 223 is connected to the transformer 222.
  • Converter circuit 223 generates a desired voltage and converts AC power (in other words, AC current and AC voltage) into DC power (in other words, DC current and DC voltage).
  • the converter circuit 223 includes a charge pump and a rectifier circuit.
  • a typical converter circuit is a Cockloft-Walton circuit.
  • the control circuit 24 controls each part of the electrostatic spraying apparatus 100 in an integrated manner.
  • the function of the control circuit 24 may be realized by a CPU (Central Processing Unit) executing a program stored in the storage unit 29a.
  • the storage unit 29a stores various programs executed by the control circuit 24 and data used by the programs.
  • the control circuit 24 outputs a PWM (Pulse Width Modulation) signal set to a constant value to the oscillator 221.
  • PWM is a method of controlling current and voltage by changing the time (pulse width) for outputting a pulse signal.
  • a pulse signal is an electrical signal that repeats ON and OFF, and is represented by, for example, a rectangular wave, and a pulse width that is a voltage output time is represented by a horizontal axis of the rectangular wave.
  • a timer that operates at a fixed period is used.
  • the position at which the pulse signal is turned on is set in this timer to control the pulse width.
  • the ratio that is ON in a certain period is called “duty cycle” (also called “duty ratio”).
  • the control circuit 24 includes a microprocessor 241 to cope with various applications.
  • the microprocessor 241 may be designed to further adjust the duty cycle of the PWM signal based on the feedback information (operating environment information) 25.
  • the feedback information 25 includes environmental conditions (temperature, humidity, and / or atmospheric pressure), liquid amount, arbitrary settings by the user, and the like.
  • the information is given as analog information or digital information and is processed by the microprocessor 241.
  • the microprocessor 241 is designed to be able to compensate to improve the quality and stability of the spray by changing either the spray interval, the time to turn on the spray, or the applied voltage based on the input information. May be.
  • the feedback information 25 is obtained by a temperature detection element such as a thermistor used for temperature compensation.
  • the microprocessor 241 changes the spray interval according to the change in temperature detected by the temperature detection element.
  • the spray interval is a spray interval in which the time during which the electrostatic spraying apparatus 100 sprays liquid and the time during which spraying is stopped is one cycle. For example, spraying (on) for 35 seconds (while the power source applies a high voltage between the first electrode and the second electrode), and spraying is stopped (off) for 145 seconds (while the power source is connected to the first electrode)
  • the spray interval can be changed by software built in the power source microprocessor 241 and may be controlled to increase from the set point when the temperature rises and to decrease from the set point when the temperature falls.
  • the increase and decrease of the spray interval preferably follow a predetermined index determined by the characteristics of the liquid to be sprayed.
  • the compensation change amount of the spray interval may be limited so that the spray interval changes only between 0 to 60 ° C. (for example, 10 to 45 ° C.). For this reason, extreme temperatures recorded by the temperature sensing element are considered erroneous and are not considered, and for high and low temperatures, an acceptable but not optimal spray interval is set.
  • the information 254 related to the contents of the liquid may be information indicating the result of measuring the liquid storage amount with a level meter, for example. Further, the information 254 related to the contents of the liquid may include information indicating the viscosity of the liquid (for example, information indicating the result of measuring the viscosity of the liquid with a viscosity sensor (not shown)).
  • driving environment information information indicating at least one of (i) the ambient environment of the electrostatic spraying device 100 and (ii) the operating state of the power source 21 that supplies power to the electrostatic spraying device 100 is referred to as driving environment information.
  • Feedback information 25 may be used as the driving environment information.
  • information indicating the surrounding environment of the electrostatic spraying apparatus 100 is referred to as ambient environment information.
  • Information indicating the operating state of the power supply 21 that supplies power to the electrostatic spraying apparatus 100 is referred to as power supply operation information.
  • the first embodiment exemplifies a case where the driving environment information includes both ambient environment information and power supply operation information.
  • the ambient environment information may include information on at least one of the ambient temperature (temperature), humidity, and atmospheric pressure around the electrostatic spraying device 100.
  • the ambient environment information includes (i) information (temperature information) indicating the temperature around the electrostatic spraying device 100, and (ii) information (humidity) indicating the humidity around the electrostatic spraying device 100. Information) is included.
  • the power supply operation information may include information indicating at least one of the voltage and current supplied from the power supply 21 to the high voltage generator 22.
  • the power supply operation information includes information (power supply voltage information) indicating the magnitude of the voltage (power supply voltage) supplied from the power supply 21 to the electrostatic spraying device 100 (more specifically, the high voltage generating device 22). ) Is included as an example.
  • the power supply voltage may be measured by the voltage / current sensor 255.
  • control circuit 24 is an output port of the microprocessor 241 and outputs a PWM signal to the oscillator 221.
  • the spray duty cycle and spray interval may also be controlled via the same PWM output port. While the electrostatic spraying device 100 sprays liquid, a PWM signal is output to the oscillator 221.
  • the control circuit 24 controls the output voltage of the high voltage generator 22 by controlling the amplitude, frequency, or duty cycle of the alternating current in the oscillator 221, and the voltage on-off time (or a combination thereof). It may be possible to control.
  • the microprocessor 241 includes a measurement unit 242, a switching unit 243, a setting unit 244, and a command unit 245.
  • a measurement unit 242 As shown in FIG. 1, the microprocessor 241 includes a measurement unit 242, a switching unit 243, a setting unit 244, and a command unit 245.
  • a command unit 245. As shown in FIG. 1, each part of the microprocessor 241 will be described.
  • the measuring unit 242 measures a voltage (hereinafter, voltage E) applied between the spray electrode 1 and the reference electrode 2 by the power supply device 3.
  • the measurement unit 242 may include an arbitrary voltage measurement device (eg, a transformer).
  • the measuring unit 242 may further measure the current in the spray electrode 1 or the current in the reference electrode 2 (hereinafter, current I).
  • current I current in the reference electrode 2
  • the measurement unit 242 may include an arbitrary current measurement device (for example, a current transformer).
  • the measurement unit 242 is provided in the microprocessor 241 .
  • the measurement unit 242 may be provided outside the microprocessor 241.
  • the switching unit 243 switches between two modes of the electrostatic spraying device 100. Specifically, the switching unit 243 switches between the operation mode and the adjustment mode.
  • the operation mode is a mode for operating the electrostatic spray device 100 (a mode for performing a normal spray operation).
  • the adjustment mode is a mode for adjusting (setting or changing) the voltage E described above to an adjustment voltage (hereinafter also referred to as “adjustment voltage Es”).
  • the voltage E applied in the operation mode before the adjustment mode is started is also referred to as “pre-adjustment voltage Em”.
  • pre-adjustment voltage Em The voltage E applied in the operation mode before the adjustment mode is started.
  • the adjustment voltage Es is a voltage different from the pre-adjustment voltage Em.
  • the adjustment voltage Es and the pre-adjustment voltage Em may be equal.
  • the adjustment mode may be understood as a test mode for setting (changing) the pre-adjustment voltage Em to the adjustment voltage Es.
  • the adjustment mode may be executed before the electrostatic spraying device 100 manufactured in the assembly factory is shipped from the assembly factory. Specific operation of the electrostatic spraying apparatus 100 in the adjustment mode will be described later.
  • one pulsed voltage E is applied between the spray electrode 1 and the reference electrode 2.
  • the setting unit 244 sets the voltage E.
  • the setting unit 244 sets (changes) the magnitude (crest value) of the voltage E (voltage pulse) in the adjustment mode.
  • the setting unit 244 may change the magnitude of the voltage E by adjusting the duty cycle of the PWM signal.
  • the setting unit 244 sets the adjustment voltage Es by changing the magnitude of the pre-adjustment voltage Em described above.
  • the command unit 245 outputs a command to apply the adjustment voltage Es set by the setting unit 244 in the operation mode (hereinafter, application command).
  • application command a command to apply the adjustment voltage Es set by the setting unit 244 in the operation mode
  • the command unit 245 may give an application command to the setting unit 244.
  • the setting unit 244 receives the application command from the command unit 245 and causes the power supply device 3 to apply the adjustment voltage Es in the operation mode.
  • the command unit 245 may give an application command to a functional unit other than the setting unit 244 and cause the power supply device 3 to apply the adjustment voltage Es.
  • the mode may be switched between the operation mode and the adjustment mode by allowing the user to perform a predetermined input operation (user operation) on the input unit 27 described above.
  • the input unit 27 may receive the user operation (eg, button press) and cause the switching unit 243 to switch the mode from the operation mode to the adjustment mode. Thereby, the user can arbitrarily switch from the operation mode to the adjustment mode.
  • the electrostatic spraying device 100 may further be provided with a notification instruction unit that notifies the mode of the electrostatic spraying device 100 to the outside.
  • a notification instruction unit that notifies the mode of the electrostatic spraying device 100 to the outside.
  • the notification instruction unit may be provided as a function unit separate from the switching unit 243.
  • the switching unit 243 may control the operation of the light emitting element 26 depending on whether the electrostatic spraying device 100 is in the operation mode or the adjustment mode. As an example, the switching unit 243 may turn off the light emitting element 26 (non-light emitting state) when the electrostatic spraying apparatus 100 is in the operation mode.
  • the switching unit 243 may cause the light emitting element 26 to emit light of a predetermined color (eg, red light) when the electrostatic spray device 100 is in the adjustment mode. Depending on the light emission state of the light emitting element 26, the outside of the electrostatic spraying device 100 is notified of whether the mode of the electrostatic spraying device 100 is the operation mode or the adjustment mode.
  • a predetermined color eg, red light
  • the light emitting element 26 serves as a “notification unit” for notifying whether the mode of the electrostatic spraying device 100 is the operation mode or the adjustment mode.
  • the notification unit is the light emitting element 26
  • the light emitting element 26 performs visual notification with light to the user.
  • the switching unit 243 may notify the light emitting element 26 (notification unit) that the adjustment mode has ended. For example, the switching unit 243 may blink the light emitting element 26 when the mode switching from the adjustment mode to the operation mode is completed.
  • the above-described notification method (notification mode) is not limited to a method using light.
  • the electrostatic spraying apparatus 100 may be provided with a speaker (audio output unit), and the speaker may function as a notification unit.
  • the switching unit 243 may notify the speaker that the adjustment mode has ended by causing a speaker to output a predetermined sound (eg, alarm sound).
  • a predetermined sound eg, alarm sound.
  • a vibrator (vibration unit) may be provided in the electrostatic spraying apparatus 100, and the vibrator may function as a notification unit.
  • the switching unit 243 may notify the end of the adjustment mode by vibrating the vibrator.
  • the electrostatic spraying apparatus 100 can be provided with a display unit (for example, touch panel 28 described later), and the display unit can function as a notification unit.
  • the said display part may alert
  • notification modes light, voice, vibration, text message
  • the notification mode only needs to include at least one of voice, light, vibration, and text message.
  • FIGS. 4A to 4C are diagrams for explaining the relationship between the ambient environment of the electrostatic spraying device 100 and the current I, respectively.
  • FIGS. 4A to 4C are graphs each showing a measurement result of the current I when the electrostatic spraying apparatus 100 is sprayed in different surrounding environments (air temperature and humidity). It is.
  • the vertical axis represents current I (unit: ⁇ A)
  • the horizontal axis represents time (arbitrary unit).
  • 4 (a) to 4 (c) are respectively (i) “temperature 25 ° C., relative humidity (RH) 55%”, (ii) “temperature 35 ° C., relative humidity 75%”, and (iii). )
  • the measurement result of the current I in the case of “temperature 15 ° C. and relative humidity 35%” is shown.
  • the characteristics of one or more parts included in the electrostatic spraying device 100 change due to aging.
  • the value of the voltage E also changes due to the change in characteristics due to the use over time.
  • the voltage E is adjusted in advance to an optimal value when the electrostatic spraying device 100 is manufactured, the voltage E is an optimal value when the electrostatic spraying device 100 is used for a long time. Deviate from. As a result, the spray stability of the electrostatic spray apparatus 100 is reduced. Therefore, when the electrostatic spraying apparatus 100 is used for a long time, in order to maintain the spray stability of the electrostatic spraying apparatus 100, it is preferable that the voltage E can be arbitrarily adjusted.
  • the humidity increases as the temperature rises.
  • the moisture in the air affects the charge charged around the spray electrode 1.
  • a leakage current is likely to occur between the spray electrode 1 and the reference electrode 2.
  • the resistance of the spray electrode 1 decreases, and it is difficult to form an electric field suitable for electrostatic spraying between the spray electrode 1 and the reference electrode 2. Thereby, the spray performance of the electrostatic spray apparatus 100 falls.
  • FIG. 4B is a measurement result of the current I when the temperature and humidity are higher than in the case of FIG. The tendency for the current I to increase was also confirmed from the graph of FIG.
  • FIG. 4C is a measurement result of the current I when the temperature and humidity are lower than in the case of FIG. Also from the graph of FIG. 4C, the tendency of the current I to decrease was confirmed.
  • the value of the voltage E optimum for the spraying operation also changes according to the change of the current I.
  • the voltage E can be adjusted arbitrarily.
  • the value of the voltage E optimum for the spraying operation changes.
  • the voltage E can be arbitrarily adjusted.
  • adjustment mode a new mode provided to adjust the voltage E of the electrostatic spray device 100 to an optimum value.
  • FIGS. 5A and 5B are diagrams for explaining the relationship between the pre-adjustment voltage Em and the adjustment voltage Es, respectively. Specifically, FIGS. 5A and 5B are graphs illustrating the relationship between the pre-adjustment voltage Em and the adjustment voltage Es at various temperatures. In the graph, the vertical axis represents voltage (unit: kV), and the horizontal axis represents temperature (unit: ° C.).
  • the setting unit 244 sets the adjustment voltage Es as 6 kV (a value equal to a target value Es0 described below) at any temperature (15 ° C., 25 ° C., 35 ° C.) in the adjustment mode. The case is shown.
  • the target value Es0 of the adjustment voltage Es may be set in advance in the setting unit 244.
  • the target value Es0 may be stored in advance in the storage unit 29a.
  • the setting unit 244 may acquire the target value Es0 from the storage unit 29a.
  • the numerical value of the target value Es0 of 6 kV is merely an example.
  • the target value Es0 only needs to be set with reference to a voltage suitable for the spraying operation of the electrostatic spraying apparatus 100 (the optimum voltage Eopt described later).
  • FIG. 5 (a) shows two types of pre-adjustment voltages Em for each air temperature (15 ° C., 25 ° C., 35 ° C.).
  • a pre-adjustment voltage Em lower than the adjustment voltage Es (6 kV) is represented by a symbol Em1.
  • a pre-adjustment voltage Em higher than the adjustment voltage Es (6 kV) is represented by a symbol Em2.
  • the setting unit 244 may write the calculated value of the differential voltage ⁇ E into the storage unit 29a.
  • the setting unit 244 sets a value obtained by adding the differential voltage ⁇ E to the pre-adjustment voltage Em as the adjustment voltage Es. That is, the setting unit 244 sets the adjustment voltage Es by offsetting the pre-adjustment voltage Em by the difference voltage ⁇ E.
  • the setting unit 244 may acquire the value of the differential voltage ⁇ E written in the storage unit 29a and perform the calculation of Expression (2). According to Equation (2), the adjustment voltage Es that is equal to the target value Es0 can be set.
  • the pre-adjustment voltage Em1 was 5.7 kV.
  • the setting unit 244 calculates the difference voltage ⁇ E as 0.3 kV.
  • the setting unit 244 adds the absolute value (0.3 kV) of the differential voltage ⁇ E to the pre-adjustment voltage Em1 (5.7 kV), and sets the adjustment voltage Es equal to the target value Es0 (6 kV).
  • the pre-adjustment voltage Em2 was 6.1 kV.
  • the setting unit 244 calculates the difference voltage ⁇ E as ⁇ 0.1 kV.
  • the setting unit 244 subtracts the absolute value (0.1 kV) of the differential voltage ⁇ E from the pre-adjustment voltage Em2 (6.1 kV), and sets the adjustment voltage Es equal to the target value Es0.
  • the pre-adjustment voltage Em1 was 5.8 kV.
  • the setting unit 244 calculates the differential voltage ⁇ E as 0.2 kV.
  • the setting unit 244 adds the absolute value (0.2 kV) of the differential voltage ⁇ E to the pre-adjustment voltage Em1 (5.8 kV), and sets the adjustment voltage Es equal to the target value Es0.
  • the pre-adjustment voltage Em2 was 6.2 kV.
  • the setting unit 244 calculates the difference voltage ⁇ E as ⁇ 0.2 kV.
  • the setting unit 244 subtracts the absolute value (0.2 kV) of the differential voltage ⁇ E from the pre-adjustment voltage Em2 (6.2 kV), and sets the adjustment voltage Es equal to the target value Es0.
  • the pre-adjustment voltage Em1 was 5.9 kV.
  • the setting unit 244 calculates the differential voltage ⁇ E as 0.1 kV.
  • the setting unit 244 adds the absolute value (0.1 kV) of the differential voltage ⁇ E to the pre-adjustment voltage Em1 (5.9 kV), and sets the adjustment voltage Es equal to the target value Es0.
  • the pre-adjustment voltage Em2 was 6.3 kV.
  • the setting unit 244 calculates the difference voltage ⁇ E as ⁇ 0.3 kV.
  • the setting unit 244 subtracts the absolute value (0.3 kV) of the differential voltage ⁇ E from the pre-adjustment voltage Em2 (6.3 kV) to set the adjustment voltage Es equal to the target value Es0.
  • the pre-adjustment voltage Em shows a tendency to change in the same manner as the current I according to a change in the surrounding environment (eg, temperature) of the electrostatic spraying device 100. Specifically, as shown in FIG. 5A, the pre-adjustment voltage Em tends to increase as the temperature rises. Further, the pre-adjustment voltage Em tends to decrease as the temperature decreases.
  • the change in the pre-adjustment voltage Em corresponding to the change in the surrounding environment can be canceled by setting the adjustment voltage Es equal to the target value Es0 in the adjustment mode. .
  • the pre-adjustment voltage Em can change. Even if the pre-adjustment voltage Em changes as described above, the change can be canceled by setting the adjustment voltage Es equal to the target value Es0. According to the adjustment mode, when the electrostatic spraying device 100 is used for a long time, the spray stability of the electrostatic spraying device 100 can be maintained.
  • the adjustment voltage Es according to the first example may be set.
  • the adjustment voltage Es according to the second example described below may be set. More preferred.
  • FIG. 5B The example in FIG. 5B is referred to as a second example.
  • the setting unit 244 shows a case where the adjustment voltage Es is set to a different value according to the temperature in the adjustment mode.
  • the pre-adjustment voltage Em shows a tendency to change according to a change in the surrounding environment (eg, temperature) of the electrostatic spraying device 100. For this reason, the voltage suitable for the spraying operation of the electrostatic spraying apparatus 100 can also change according to the change of the surrounding environment.
  • the setting unit 244 sets the adjustment voltage Es based on the above-described ambient environment information (that is, according to the ambient environment of the electrostatic spraying device 100).
  • the setting unit 244 sets the adjustment voltage Es using temperature information included in the ambient environment information.
  • the adjustment voltage Es at the temperature T (unit: ° C.) is expressed as Es (T).
  • the target value Es0 at the temperature T is expressed as Es0 (T).
  • the setting unit 244 may increase the adjustment voltage Es as the temperature T increases. As described above, when the temperature T is high, the voltage suitable for the spraying operation of the electrostatic spraying device 100 tends to increase.
  • the setting unit 244 may decrease the adjustment voltage Es as the temperature T decreases. This is because when the temperature T is low, the voltage suitable for the spraying operation of the electrostatic spraying device 100 tends to decrease.
  • the adjustment voltage Es can be increased / decreased according to the increase / decrease in the temperature T, so that a voltage suitable for the spraying operation of the electrostatic spraying device 100 (adjustment voltage Es) can be changed in the surrounding environment of the electrostatic spraying device 100 It becomes possible to change according to (especially change of temperature T).
  • Equation (3) indicates that the setting unit 244 calculates the target value Es0 (T) at the temperature T with reference to the target value Es0 (25 ° C) at 25 ° C. That is, the setting unit 244 calculates the target value Es0 (T) at the temperature T by correcting the target value Es0 (25 ° C) at 25 ° C with the temperature T.
  • Es0 (25 ° C.) is 6 kV is shown.
  • the setting unit 244 sets the adjustment voltage Es (T) equal to the target value Es0 (T).
  • Es the adjustment voltage
  • T the target value
  • Em1 and Em2 the values of the pre-adjustment voltages Em1 and Em2 at each air temperature are the same as those in the first example.
  • the setting unit 244 sets Es0 (15 ° C.) to 5.9 kV using Expression (3).
  • the setting unit 244 calculates the differential voltage ⁇ E as 0.2 kV with respect to the pre-adjustment voltage Em1 (5.7 kV).
  • the setting unit 244 adds the absolute value (0.2 kV) of the differential voltage ⁇ E to the pre-adjustment voltage Em1 (5.7 kV), and sets the adjustment voltage Es (15 ° C.) to the target value Es0 (15 ° C.) (5.9 kV). ) Is set equal to.
  • the setting unit 244 calculates the differential voltage ⁇ E as -0.2 kV with respect to the pre-adjustment voltage Em2 (6.1 kV).
  • the setting unit 244 subtracts the absolute value (0.2 kV) of the differential voltage ⁇ E from the pre-adjustment voltage Em2 (6.1 kV), and sets the adjustment voltage Es (15 ° C.) to the target value Es0 (15 ° C.) (5.9 kV). ) Is set equal to.
  • the target value Es0 (25 ° C.) is 6 kV, which is equal to the target value Es0 in the first example described above.
  • the adjustment voltage Es (25 ° C.) obtained by the setting unit 244 is the same as that at the temperature of 25 ° C. in the first example. For this reason, detailed description is omitted.
  • the setting part 244 sets Es0 (35 degreeC) to 6.1 kV using Formula (3).
  • the setting unit 244 calculates the differential voltage ⁇ E as 0.2 kV with respect to the pre-adjustment voltage Em1 (5.9 kV).
  • the setting unit 244 adds the absolute value (0.2 kV) of the differential voltage ⁇ E to the pre-adjustment voltage Em1 (5.9 kV), and sets the adjustment voltage Es (35 ° C.) to the target value Es0 (35 ° C.) (6.1 kV). ) Is set equal to.
  • the setting unit 244 calculates the differential voltage ⁇ E as ⁇ 0.2 kV with respect to the pre-adjustment voltage Em2 (6.3 kV).
  • the setting unit 244 subtracts the absolute value (0.2 kV) of the differential voltage ⁇ E from the pre-adjustment voltage Em2 (6.3 kV), and sets the adjustment voltage Es (35 ° C.) to the target value Es0 (35 ° C.) (6.1 kV). ) Is set equal to.
  • a voltage (adjustment voltage Es) suitable for the spraying operation of the electrostatic spraying device 100 can be set. It can be changed according to changes in the surrounding environment.
  • the above-mentioned formula (3) is an example of a conversion formula indicating a correspondence relationship between the temperature T and the target value Es0 (T) (or the adjustment voltage Es (T)).
  • the said conversion formula is not limited to the above-mentioned formula (3), Arbitrary things may be used.
  • the setting unit 244 refers to a table indicating a correspondence relationship between the temperature T and the target value Es0 (T) (or the adjustment voltage Es (T)), thereby obtaining the adjustment voltage Es (T) corresponding to the temperature T. It may be set.
  • the predetermined table or conversion formula indicating the above-described correspondence relationship may be stored in advance in the storage unit 29a by the manufacturer of the electrostatic spraying device 100.
  • the setting unit 244 may set the adjustment voltage Es using the humidity (humidity information) instead of the temperature (temperature information) in the same manner as described above.
  • the setting unit 244 may set the adjustment voltage Es using both the temperature and the humidity.
  • the ambient environment information may include information (atmospheric pressure information) indicating the atmospheric pressure around the electrostatic spraying device 100.
  • the setting unit 244 may set the adjustment voltage Es using the atmospheric pressure information.
  • FIG. 6A and 6B are diagrams for explaining the adjustment timing of the voltage E, respectively. Specifically, each of (a) and (b) of FIG. 6 shows a variation in voltage E between the plurality of electrostatic spraying apparatuses when the plurality of electrostatic spraying apparatuses are manufactured in an assembly factory. Has been.
  • the maximum value in the variation of the voltage E is expressed as the voltage Emax
  • the minimum value is expressed as the voltage Emin.
  • FIG. 6 (In the case of conventional electrostatic spraying equipment) (A) of FIG. 6 is a figure for demonstrating the adjustment timing of the voltage E in the conventional electrostatic spraying apparatus.
  • the legend “initial” indicates a state before the parts of the plurality of electrostatic spraying apparatuses are assembled. Since the voltage E is not adjusted at the “initial” time point, the voltage Emax and the voltage Emin are greatly different. That is, the variation in the voltage E among the plurality of electrostatic spraying devices is large.
  • the variation in the voltage E at the “initial” time point is caused by, for example, a variation in the characteristics of the electrical components provided in each of the plurality of electrostatic spraying devices.
  • Board mounting + voltage adjustment indicates the state after “initial”. Specifically, “board mounting + voltage adjustment” indicates a state in which the electrical components of the plurality of electrostatic spraying devices are mounted on the board and the voltage E is adjusted immediately thereafter.
  • the degree of deviation between the voltage Emax and the voltage Emin is reduced by adjusting the voltage E. That is, the voltage E is adjusted in each of the plurality of electrostatic spraying devices so that the variation in the voltage E between the plurality of electrostatic spraying devices becomes small (the variation in the voltage E falls within a predetermined tolerance).
  • “Case assembly” indicates the state after "Board mounting + voltage adjustment”. Specifically, “housing assembly” indicates a state after the housing of the electrostatic spraying apparatus is assembled. As shown in FIG. 6A, the degree of divergence between the voltage Emax and the voltage Emin is greater at the time of “case assembly” than at the time of “board mounting + voltage adjustment”. That is, at the time of “board mounting + voltage adjustment”, the variation in the voltage E among the plurality of electrostatic spraying devices becomes large again even though the voltage E is adjusted.
  • the increase in the variation in the voltage E at the time of “casing assembly” is due to the assembly accuracy in the process of assembling each part of the plurality of electrostatic spraying devices (assembly process).
  • the assembly accuracy of the electrostatic spraying device is not high, the position where the conductive electrical component (eg, spray electrode) is attached to the case of the electrostatic spraying device may be different for each electrostatic spraying device. is there.
  • the strength of the force applied to the said electrical component may also differ for every electrostatic spraying apparatus.
  • each of the electrical components and the housing is caused by at least one of a difference in position of the electrical components and a difference in strength of the force applied to the electrical components.
  • the impedance between can vary.
  • the change in impedance is one factor that causes an increase in the variation in voltage E at the time of “casing assembly”.
  • the plurality of electrostatic spraying devices are adjusted by the subsequent assembly process even though the voltage E is adjusted in the plurality of electrostatic spraying devices.
  • the variation in the voltage E between the electrospraying devices again increases.
  • FIG. 6B is a diagram for explaining the adjustment timing of the voltage E in the electrostatic spraying apparatus 100.
  • the legend “initial” is the same as that in FIG.
  • Board mounting indicates the state after “Initial”. Specifically, “board mounting” indicates a state after each electric component of the electrostatic spraying apparatus 100 is mounted on the board. That is, in the electrostatic spraying apparatus 100, the voltage E is not adjusted immediately after the substrate mounting process.
  • the voltage Emax and the voltage Emin remain largely deviated in the “board mounting” as in the “initial stage”. That is, the variation in the voltage E among the plurality of electrostatic spraying devices 100 remains large. In this respect, the electrostatic spraying device 100 is different from the conventional electrostatic spraying device.
  • variations in the voltage E among the plurality of electrostatic spraying devices 100 may occur due to factors different from the above-mentioned “initial” time.
  • the variation is caused by assembly accuracy in a process (board mounting process) of mounting electrical components provided in each of the plurality of electrostatic spray apparatuses 100 on the substrates of the plurality of electrostatic spray apparatuses.
  • the positions of the terminals for connecting a plurality of electrical components on the substrate may be different for each electrostatic spraying device.
  • the strength of the force applied to the said terminal may also differ for every electrostatic spraying apparatus.
  • the impedance between the terminals can change in each of the plurality of electrostatic spraying devices due to at least one of the difference in the position of the terminal and the difference in the strength of the force applied to the terminal. .
  • This change in impedance is one factor that causes an increase in the variation in voltage E at the time of “board mounting”.
  • “Case assembly + Voltage adjustment” indicates the state after “Board mounting”. Specifically, “housing assembly + voltage adjustment” indicates a state in which the housing of the electrostatic spraying apparatus 100 is assembled, and immediately after that, the voltage E is adjusted by the above-described adjustment mode. At the time of “casing assembly + voltage adjustment”, the degree of deviation between the voltage Emax and the voltage Emin is reduced by adjusting the voltage E. That is, the voltage E in each of the plurality of electrostatic spraying devices 100 is reduced so that the variation in the voltage E between the plurality of electrostatic spraying devices 100 becomes small (the variation in the voltage E falls within a predetermined tolerance). Adjusted.
  • the voltage E can be adjusted after the assembly process. According to this configuration, even if the variation in the voltage E increases due to the assembly process, the voltage E can be adjusted so as to offset the increase in the variation.
  • the adjustment mode described above even when the assembly accuracy of the electrostatic spraying device 100 is not high, the variation in the voltage E can be kept within a predetermined tolerance. As a result, the electrostatic spraying apparatus 100 excellent in spray stability can be provided.
  • the number of man-hours for manufacturing the electrostatic spraying device 100 can be reduced.
  • the adjustment mode may be executed after the assembly process.
  • the adjustment mode may be executed before the electrostatic spraying device 100 manufactured in the assembly factory is shipped from the assembly factory.
  • a battery can be used as the power source 21.
  • a test power source having a voltage higher than that of the battery can be used as the power source 21.
  • the switching unit 243 may switch the mode between the operation mode and the adjustment mode based on the power supply operation information described above.
  • the switching unit 243 may switch the mode between the operation mode and the adjustment mode based on the power supply voltage information (information indicating the magnitude of the power supply voltage) included in the power supply operation information.
  • the power supply voltage is represented by the symbol VS.
  • the power source 21 is a battery.
  • the power source 21 is constituted by two AA alkaline batteries connected in series.
  • the power supply voltage VS is about 3.2 V or less.
  • the power supply voltage VS is about 4.0 V or higher. This is because the power supply voltage VS of the test power supply is generally set using the operating voltage (about 4.0 V) of the microprocessor 241 as a guide.
  • the switching unit 243 may compare the magnitude relationship between the power supply voltage VS and the predetermined threshold value TH.
  • the threshold value TH is a threshold value for the power supply voltage VS.
  • the threshold value TH may be set in advance in the electrostatic spraying device 100. A function of setting the threshold value TH may be added to the switching unit 243 based on the ambient environment information described above.
  • the threshold value TH may be set as 3.5V.
  • the threshold value TH is a threshold value for the power supply voltage VS.
  • the value of 3.5V is merely an example.
  • the threshold TH need only be set so that it can be distinguished whether the power supply voltage VS is supplied by a battery or a test power supply.
  • the switching unit 243 may switch the operation mode to the adjustment mode. This is because it is considered that a test power supply is used as the power supply 21 when the power supply voltage VS is equal to or higher than the threshold value TH.
  • the electrostatic spraying device 100 when the electrostatic spraying device 100 is connected to the test power supply (power supply 21) in the assembly factory, the electrostatic spraying device 100 can be operated in the adjustment mode. Therefore, the convenience of the test of the electrostatic spraying apparatus 100 in the assembly factory can be improved.
  • the switching unit 243 may select the operation mode when the power supply voltage VS is smaller than the threshold value TH (when VS ⁇ TH). This is because when the power supply voltage VS is smaller than the threshold value TH, it can be considered that a power supply (for example, a battery) other than the test power supply is used as the power supply 21.
  • a power supply for example, a battery
  • the switching unit 243 may operate the electrostatic spraying apparatus 100 while remaining in the operation mode.
  • the switching unit 243 may switch the adjustment mode to the operation mode.
  • FIG. 7 is a flowchart illustrating the flow of processing from the start of operation to the application of the adjustment voltage Es of the voltage E in the electrostatic spraying apparatus 100. Hereinafter, the flow of the processing will be described.
  • the electrostatic spraying device 100 starts operation (S1).
  • the power supply device 3 applies the voltage E (more specifically, the pre-adjustment voltage Em) between the spray electrode 1 and the reference electrode 2 (S2)
  • the electrostatic spraying device 100 operates in the operation mode. Start.
  • the switching unit 243 acquires the value of the power supply voltage VS indicated by the power supply voltage information (S3), and compares the magnitude relationship between the power supply voltage VS and the above-described threshold value TH (S4). When the power supply voltage VS is equal to or higher than the threshold value TH (when VS ⁇ TH) (YES in S4), the switching unit 243 switches the mode of the electrostatic spraying device 100 to the adjustment mode (S5, switching step).
  • the setting unit 244 changes the magnitude of the pre-adjustment voltage Em and sets the adjustment voltage Es in the adjustment mode (S6, setting step). As shown in FIG. 5B, as described above, the setting unit 244 may set the adjustment voltage Es based on the ambient environment information.
  • the setting unit 244 does not necessarily need to set the adjustment voltage Es based on the ambient environment information.
  • the setting unit 244 may set one adjustment voltage Es regardless of the surrounding environment information.
  • the switching unit 243 may switch the adjustment mode to the operation mode in response to the setting unit 244 setting the adjustment voltage Es in the adjustment mode (S7, switching step). By switching the mode in this way, the adjustment voltage Es adjusted in S6 (adjustment mode) can be immediately applied between the spray electrode 1 and the reference electrode 2 in the operation mode.
  • the command unit 245 gives the above-described application command to the setting unit 244, for example, and applies the adjustment voltage Es (S8, command step).
  • the setting unit 244 receives the application command from the command unit 245 and causes the power supply device 3 to apply the adjustment voltage Es.
  • the switching unit 243 causes the electrostatic spraying device 100 to operate in the operation mode.
  • the pre-adjustment voltage Em in S2 (operation mode) is applied as it is between the spray electrode 1 and the reference electrode 2.
  • the electrostatic spraying device 100 includes (i) the switching unit 243 that switches between the operation mode and the adjustment mode described above, (ii) the setting unit 244 that sets the adjustment voltage Es in the adjustment mode, and (iii) A command unit 245 that applies the adjustment voltage Es is provided between the spray electrode 1 and the reference electrode 2 in the operation mode.
  • the electrostatic spraying device 100 can be operated in the adjustment mode. According to the adjustment mode, the adjustment voltage Es suitable for the spraying operation of the electrostatic spraying device 100 can be set. For this reason, the electrostatic spraying apparatus 100 can apply the said adjustment voltage Es in an operation mode. Therefore, it is possible to provide the electrostatic spraying device 100 having excellent spray stability.
  • the inventors have found a plurality of cases in which the voltage E applied between the spray electrode 1 and the reference electrode 2 deviates from a suitable value. As a result, the inventors have found that there is a concern that the liquid spray state may become unstable in the case. In order to solve the problem, the inventors have come up with the technical idea of adjusting the voltage E to an optimum value by operating the electrostatic spraying device 100 in the adjustment mode as described above.
  • the voltage E can be appropriately adjusted even in the electrostatic spraying device that does not use the conventional feedback control by operating the electrostatic spraying device 100 in the adjustment mode.
  • conventional feedback control include current feedback control, voltage feedback control, current / voltage feedback control, and output power feedback control.
  • the electrostatic spray apparatus 100 having excellent spray stability can be provided.
  • Embodiment 2 will be described with reference to FIGS.
  • the electrostatic spray device of the second embodiment is referred to as an electrostatic spray device 100v.
  • the electrostatic spraying device 100v and the smartphone (information processing terminal) 200 are combined will be described.
  • FIG. 8 is a functional block diagram illustrating a configuration of main parts of the electrostatic spraying device 100v and the smartphone 200 according to the second embodiment.
  • the electrostatic spraying device 100v includes (i) a switching unit 243, a setting unit 244, a command unit 245, a light emitting element 26, and an input unit 27 from the electrostatic spraying device 100 of the first embodiment. (Ii) A configuration in which a communication unit 248a is added.
  • the power supply device, the control circuit, and the microprocessor in the electrostatic spraying device 100v are referred to as a power supply device 3v, a control circuit 24v, and a microprocessor 241v, respectively.
  • a power supply device 3v a control circuit 24v
  • a microprocessor 241v a microprocessor 241v
  • the smartphone 200 includes a touch panel (input unit, display unit, notification unit) 28, a control unit 290, a storage unit 29b, and a communication unit 248b. Further, as illustrated in FIG. 8, the control unit 290 includes the switching unit 243, the setting unit 244, and the command unit 245 of the first embodiment.
  • the smartphone 200 includes a touch panel (input unit, display unit, notification unit) 28, a control unit 290, a storage unit 29b, and a communication unit 248b.
  • the control unit 290 includes the switching unit 243, the setting unit 244, and the command unit 245 of the first embodiment.
  • a mobile phone (smart phone 200) is illustrated as an example of the information processing terminal, but the information processing terminal is not limited to the mobile phone.
  • the information processing terminal may be a remote control for the user to remotely operate the electrostatic spraying device 100v, or may be a portable information processing device such as a notebook PC (Personal Computer) or a tablet PC. Good.
  • the control unit 290 controls each unit of the smartphone 200 in an integrated manner.
  • the function of the control unit 290 may be realized by the CPU executing a program stored in the storage unit 29b.
  • the storage unit 29b stores various programs executed by the control unit 290 and data used by the programs.
  • the touch panel 28 is a member in which an input unit and a display unit are integrally provided. As described below, in the second embodiment, the touch panel 28 serves as an input unit. However, in the second embodiment, the input unit and the display unit may be provided separately. For example, a known hard key may be provided on the smartphone 200 as an input unit. Further, as described above, the touch panel 28 (display unit) can also function as a notification unit.
  • the communication units 248a and 248b are communication interfaces for performing communication between the electrostatic spraying device 100v and the smartphone 200.
  • Embodiment 2 the case where the electrostatic spray apparatus 100v and the smart phone 200 perform wireless communication is illustrated. However, communication between the electrostatic spraying device 100v and the smartphone 200 may be performed via a wired line.
  • FIG. 9 is a diagram for explaining an example of operations of the electrostatic spraying device 100v and the smartphone 200.
  • the switching unit 243 may cause the user to switch the mode of the electrostatic spraying device 100v by displaying a predetermined image (icon, object) on the touch panel 28.
  • the switching unit 243 may cause the touch panel 28 to display an image IMG on which characters “adjustment mode start” are described.
  • the touch panel 28 receives a touch (input operation) of the image IMG by the user as the above-described user operation.
  • the switching unit 243 switches the mode to the adjustment mode when the touch panel 28 receives the user operation.
  • each unit of the smartphone 200 may receive an instruction from another device via the communication network.
  • the switching unit 243 may receive an instruction to switch the mode from the other device.
  • the smartphone 200 transmits information (e-mail or the like) indicating that the adjustment mode has been completed to the information terminal device (smart phone or the like) owned by the seller of the electrostatic spraying device 100v via the communication network. May be.
  • FIG. 10 is a sequence diagram illustrating the flow of processing from the start of operation to the application of the adjustment voltage Es in the second embodiment.
  • the electrostatic spraying device 100v After S12, the electrostatic spraying device 100v provides the power supply voltage information described above to the switching unit 243 of the smartphone 200 via the communication units 248a and 248b. And the smart phone 200 switches the mode of the electrostatic spray apparatus 100v in S14 (process similar to above-mentioned S5 * S7) after S13 (process similar to above-mentioned S3).
  • the smartphone 200 sets the adjustment voltage Es in the adjustment mode in S15 (the same processing as S6 and S8 described above). Thereafter, the smartphone 200 causes the adjustment voltage Es to be applied to the high voltage generation device 22 of the electrostatic spraying device 100v in the operation mode.
  • the setting unit 244 may set the adjustment voltage Es based on the ambient environment information. Alternatively, the setting unit 244 may set one adjustment voltage Es regardless of the surrounding environment information.
  • the mode switching of the electrostatic spraying device 100v and the setting and application command of the adjustment voltage Es are performed. Each process for performing may be performed.
  • each functional unit for switching the mode of the electrostatic spraying device, setting the adjustment voltage, and applying the command is provided only in either the electrostatic spraying device or the information processing terminal.
  • the provided configuration has been described.
  • a part of each functional unit can be individually provided in the electrostatic spraying device and the information processing terminal to constitute an integrated voltage regulating device (voltage regulating system) as a whole.
  • a voltage regulator according to one embodiment of the present invention (that is, a device that executes the voltage regulation method according to one embodiment of the present invention) can be expressed as follows.
  • the voltage regulator according to one embodiment of the present invention is applied to an electrostatic spraying device that sprays liquid from the tip of the first electrode by applying a voltage between the first electrode and the second electrode.
  • a voltage adjusting device for adjusting an operation mode for operating the electrostatic spraying device and a voltage applied between the first electrode and the second electrode. Adjustment mode, and a switching unit that switches between the operation mode and the adjustment mode, and the electrostatic spraying device is applied between the first electrode and the second electrode in the adjustment mode.
  • a setting unit that sets an adjustment voltage to be applied, and the adjustment voltage set by the setting unit between the first electrode and the second electrode in the adjustment mode is applied to the electrostatic spraying device in the operation mode. And a command section That.
  • the information processing terminal according to one embodiment of the present invention can be expressed as follows.
  • the setting unit may set the adjustment voltage based on ambient environment information indicating an ambient environment of the electrostatic spraying device in the adjustment mode.
  • the ambient environment information may include information on at least one of the ambient temperature, humidity, and atmospheric pressure around the electrostatic spraying device.
  • the setting unit when the ambient environment information includes information related to the ambient temperature of the electrostatic spraying device, the setting unit is configured to increase the ambient temperature.
  • the adjustment voltage may be increased, and the adjustment voltage may be decreased as the temperature decreases.
  • the switching unit when the voltage supplied from a power source to the electrostatic spraying device is a power source voltage, the switching unit is configured to operate the operation mode when the power source voltage is equal to or higher than a predetermined threshold May be switched to the adjustment mode.
  • An information processing terminal further includes an input unit that receives a user operation, and the switching unit switches a mode between the operation mode and the adjustment mode according to the user operation. It's okay.
  • the switching unit in response to the setting unit setting the adjustment voltage in the adjustment mode, the switching unit may switch the adjustment mode to the operation mode.
  • the information processing terminal may further include a notification unit that notifies the outside that the adjustment mode has ended.
  • the notification mode of the notification unit may include at least one of voice, light, vibration, and a text message.
  • control blocks (particularly the microprocessors 241 and 241v and the control unit 290) of the electrostatic spraying apparatuses 100 and 100v and the smartphone 200 may be realized by a logic circuit (hardware) formed in an integrated circuit (IC chip) or the like. However, it may be realized by software using a CPU (Central Processing Unit).
  • a logic circuit hardware
  • IC chip integrated circuit
  • CPU Central Processing Unit
  • the electrostatic spraying apparatus 100 / 100v and the smartphone 200 have a CPU that executes instructions of a program that is software that realizes each function, and the program and various data are recorded so as to be readable by a computer (or CPU).
  • a ROM (Read Only Memory) or a storage device (these are referred to as “recording media”), a RAM (Random Access Memory) for expanding the program, and the like are provided.
  • the objective of this invention is achieved when a computer (or CPU) reads the said program from the said recording medium and runs it.
  • a “non-temporary tangible medium” such as a tape, a disk, a card, a semiconductor memory, a programmable logic circuit, or the like can be used.
  • the program may be supplied to the computer via an arbitrary transmission medium (such as a communication network or a broadcast wave) that can transmit the program.
  • an arbitrary transmission medium such as a communication network or a broadcast wave
  • one embodiment of the present invention can also be realized in the form of a data signal embedded in a carrier wave, in which the program is embodied by electronic transmission.
  • the electrostatic spraying device is an electrostatic spraying device that sprays a liquid from the tip of the first electrode by applying a voltage between the first electrode and the second electrode, In the adjustment mode, a switching unit that switches between an operation mode for operating the electrostatic spraying device and an adjustment mode for adjusting a voltage applied between the first electrode and the second electrode, A setting unit for setting an adjustment voltage to be applied between the first electrode and the second electrode; and the adjustment voltage set by the setting unit between the first electrode and the second electrode in the adjustment mode. And a command unit for applying the voltage in the operation mode.
  • an electrostatic spraying apparatus can be operated in adjustment mode. That is, even when the above case occurs, the voltage can be set to an appropriate value (adjustment voltage) in the adjustment mode.
  • the voltage applied between the first electrode and the second electrode can be adjusted. Therefore, the adjustment voltage can be applied to the electrostatic spraying device in the operation mode. Therefore, an electrostatic spraying device having excellent spray stability can be provided.
  • the electrostatic spraying device according to aspect 2 of the present invention is the electrostatic spraying device according to aspect 1, in which the setting unit sets the adjustment voltage based on ambient environment information indicating the ambient environment of the electrostatic spraying device in the adjustment mode. It's okay.
  • the adjustment voltage can be set according to the surrounding environment of the electrostatic spraying device.
  • the ambient environment information includes information on at least one of the ambient temperature, humidity, and atmospheric pressure around the electrostatic spraying device. Good.
  • the adjustment voltage can be set according to at least one of the ambient temperature, humidity, and atmospheric pressure around the electrostatic spraying device.
  • the setting unit The adjustment voltage may be increased according to an increase in the temperature, and the adjustment voltage may be decreased according to a decrease in the temperature.
  • the voltage suitable for the spraying operation of the electrostatic spraying device tends to increase when the temperature is high.
  • the temperature is low, there is a tendency for a decrease suitable for the spraying operation of the electrostatic spraying device to increase.
  • the adjustment voltage can be increased or decreased in accordance with the increase or decrease of the temperature, so that the adjustment voltage can be set more appropriately.
  • the electrostatic spraying device is the electrostatic spraying device according to any one of the above aspects 1 to 4, wherein a voltage supplied from a power source to the electrostatic spraying device is a power supply voltage, and the switching unit is the power supply voltage.
  • a voltage supplied from a power source to the electrostatic spraying device is a power supply voltage
  • the switching unit is the power supply voltage.
  • the electrostatic spraying device can be operated in the adjustment mode. Therefore, it is possible to improve the convenience of testing the electrostatic spraying device in the assembly factory.
  • the electrostatic spraying device further includes an input unit that receives a user operation, and the switching unit performs the operation mode according to the user operation. And switching between the adjustment modes described above.
  • the user can operate the electrostatic spraying apparatus in the adjustment mode as desired.
  • the electrostatic spraying device is the electrostatic spraying device according to any one of the aspects 1 to 6, wherein the switching unit is configured to receive the adjustment voltage in the adjustment mode.
  • the adjustment mode may be switched to the operation mode.
  • the adjustment voltage adjusted in the adjustment mode can be immediately applied between the first electrode and the second electrode in the operation mode.
  • the electrostatic spraying device may further include a notification unit that notifies the outside that the adjustment mode has ended in any one of the above aspects 1 to 7.
  • the notification mode of the notification unit may include at least one of voice, light, vibration, and a text message.
  • the information processing terminal can be communicably connected to an electrostatic spraying device that sprays liquid from the tip of the first electrode by applying a voltage between the first electrode and the second electrode.
  • An information processing terminal wherein the electrostatic spraying device is configured to adjust an operation mode for operating the electrostatic spraying device and a voltage applied between the first electrode and the second electrode.
  • An adjustment mode, and a switching unit that switches between the operation mode and the adjustment mode, and in the adjustment mode, the electrostatic spraying device applies between the first electrode and the second electrode.
  • the voltage adjustment method according to aspect 11 of the present invention is a voltage applied to an electrostatic spraying device that sprays liquid from the tip of the first electrode by applying a voltage between the first electrode and the second electrode.
  • An adjustment method wherein the electrostatic spraying device includes an operation mode for operating the electrostatic spraying device, and an adjustment for adjusting a voltage applied between the first electrode and the second electrode.
  • a switching step for switching between the operation mode and the adjustment mode, and an adjustment applied by the electrostatic spraying device between the first electrode and the second electrode in the adjustment mode.
  • a setting step for setting a voltage; and the adjustment voltage set in the setting step between the first electrode and the second electrode in the adjustment mode is applied to the electrostatic spraying device in the operation mode.
  • Voltage adjusting method comprising the instruction step, the that.
  • the information processing terminal according to each aspect of the present invention may be realized by a computer.
  • the information processing terminal is operated on each computer by causing the computer to operate as each unit (software element) included in the information processing terminal.
  • the control program for the information processing terminal to be realized and the computer-readable recording medium on which the control program is recorded also fall within the scope of the present invention.
  • Spray electrode (first electrode) 2 Reference electrode (second electrode) 21 Power supply 25 Feedback information (Ambient environment information) 26 Light emitting element (notification part) 27 Input unit 28 Touch panel (input unit, notification unit) 100, 100v electrostatic spraying device 200 Smartphone (information processing terminal) 243 switching unit 244 setting unit 245 command unit E voltage Es adjustment voltage Em, Em1, Em2 voltage before adjustment TH threshold T temperature VS power supply voltage

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Software Systems (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Electrostatic Spraying Apparatus (AREA)

Abstract

第1電極と第2電極との間に印加される電圧の調整が可能な静電噴霧装置を提供する。スプレー電極(1)と基準電極(2)との間に電圧を印加することにより、スプレー電極(1)の先端から液体を噴霧する静電噴霧装置(100)は、運転モードと調整モードとを切り替える切替部(243)と、上記調整モードにおいて、調整電圧を設定する設定部(244)と、調整モードにおいてスプレー電極(1)と基準電極(2)との間に設定部(244)が設定した調整電圧を、上記運転モードにおいて印加させる指令部(245)と、を備える。

Description

静電噴霧装置、情報処理端末、電圧調整方法、および制御プログラム
 本発明は、静電噴霧装置等に関する。
 従来、容器内の液体をノズルから噴射する噴霧装置が幅広い分野に適用されている。この種の噴霧装置として、電気流体力学(EHD:Electro Hydrodynamics)により液体を霧化して噴霧する静電噴霧装置が知られている。この静電噴霧装置は、ノズルの先端近傍に電場を形成し、その電場を利用してノズルの先端の液体を霧化して噴射するものである。そのような静電噴霧装置を開示する文献として、特許文献1が知られている。
 特許文献1の静電噴霧装置は電流フィードバック回路を備え、電流フィードバック回路は、基準電極の電流値を測定する。特許文献1の静電噴霧装置は電荷平衡されるため、この電流値が測定され、参照されることにより、スプレー電極での電流が正確に把握される。そして、特許文献1の静電噴霧装置は、スプレー電極での電流値を一定の値に保つフィードバック制御を用いることにより噴霧の安定性を高めている。
国際特許公報2013/018477号公報(2013年2月7日公開)
 従来の静電噴霧装置において、スプレー電極(第1電極)と基準電極(第2電極)との間に印加される電圧は、組立工場にて調整される。しかし、従来の静電噴霧装置では、実際の使用環境下において、上記電圧を随意に調整するための構成は設けられていない。そのため、例えば以下(1)~(3)の場合に、上記電圧が好適な値から乖離し、液体噴霧の状態が不安定になる懸念があった。
(1)上記従来の静電噴霧装置の使用環境が変化した場合。
(2)上記従来の静電噴霧装置に含まれる1または複数の部品の特性が経年使用により変化した場合。
(3)上記従来の静電噴霧装置の組立精度が高くなく、上記組立工場にて基板単体を用いて上記電圧を調整した結果と、装置組立後に上記電圧を確認した結果とに差が生じる場合。
 本発明は、上記の問題を解決するためになされたものであり、その目的は、第1電極と第2電極との間に印加される電圧の調整が可能な静電噴霧装置を提供することにある。
 上記の課題を解決するために、本発明の一態様に係る静電噴霧装置は、第1電極と第2電極との間に電圧を印加することにより、当該第1電極の先端から液体を噴霧する静電噴霧装置であって、上記静電噴霧装置を運転するための運転モードと、上記第1電極と上記第2電極との間に印加する電圧を調整するための調整モードと、を切り替える切替部と、上記調整モードにおいて、上記第1電極と上記第2電極との間に印加する調整電圧を設定する設定部と、上記調整モードにおいて上記第1電極と上記第2電極との間に上記設定部が設定した上記調整電圧を、上記運転モードにおいて印加させる指令部と、を備える。
 また、上記の課題を解決するために、本発明の一態様に係る情報処理端末は、第1電極と第2電極との間に電圧を印加することにより、当該第1電極の先端から液体を噴霧する静電噴霧装置と通信接続可能な情報処理端末であって、上記静電噴霧装置には、当該静電噴霧装置を運転するための運転モードと、上記第1電極と上記第2電極との間に印加する電圧を調整するための調整モードと、が設けられており、上記運転モードと上記調整モードとを切り替える切替部と、上記調整モードにおいて、上記静電噴霧装置が上記第1電極と上記第2電極との間に印加する調整電圧を設定する設定部と、上記調整モードにおいて上記第1電極と上記第2電極との間に上記設定部が設定した上記調整電圧を、上記運転モードにおいて上記静電噴霧装置に印加させる指令部と、を備える。
 また、上記の課題を解決するために、本発明の一態様に係る電圧調整方法は、第1電極と第2電極との間に電圧を印加することにより、当該第1電極の先端から液体を噴霧する静電噴霧装置に適用される電圧調整方法であって、上記静電噴霧装置には、当該静電噴霧装置を運転するための運転モードと、上記第1電極と上記第2電極との間に印加する電圧を調整するための調整モードと、が設けられており、上記運転モードと上記調整モードとを切り替える切替ステップと、上記調整モードにおいて、上記静電噴霧装置が上記第1電極と上記第2電極との間に印加する調整電圧を設定する設定ステップと、上記調整モードにおいて上記第1電極と上記第2電極との間に上記設定ステップにおいて設定された上記調整電圧を、上記運転モードにおいて上記静電噴霧装置に印加させる指令ステップと、を含む。
 本発明の一態様に係る静電噴霧装置によれば、第1電極と第2電極との間に印加される電圧の調整が可能となる。
 また、本発明の一態様に係る情報処理端末および電圧調整方法によっても、同様の効果を奏する。
実施形態1に係る静電噴霧装置の要部の構成を示す機能ブロック図である。 図1の静電噴霧装置の外観を説明するための図である。 スプレー電極、および基準電極を説明するための図である。 (a)~(c)はそれぞれ、図1の静電噴霧装置の周囲環境と基準電極における電流との関係を説明するための図である。 (a)および(b)はそれぞれ、調整前電圧と調整電圧との関係を説明するための図である。 (a)および(b)はそれぞれ、静電噴霧装置における電圧の調整タイミングを説明するための図である。 図1の静電噴霧装置における、運転開始から調整電圧の印加までの処理の流れを例示する図である。 実施形態2に係る静電噴霧装置およびスマートフォンの要部の構成を示す機能ブロック図である。 図8の静電噴霧装置およびスマートフォンの動作の一例を説明するための図である。 図8の静電噴霧装置およびスマートフォンにおける、運転開始から調整電圧の印加までの処理の流れを例示する図である。
 〔実施形態1〕
 以下、図1~図7を参照し、実施形態1に係る静電噴霧装置100について説明する。以下の説明では、同一の部品および構成要素には同一の符号を付している。それらの名称および機能も同じである。従って、それらについての詳細な説明は繰り返さない。
 〔静電噴霧装置100〕
 静電噴霧装置100は、芳香油、農産物用化学物質、医薬品、農薬、殺虫剤、空気清浄化薬剤等の噴霧等に用いられる装置である。静電噴霧装置100は、スプレー電極(第1電極)1と、基準電極(第2電極)2と、電源装置3と、発光素子(報知部)26、入力部27とを備える。
 まず、静電噴霧装置100の外観を図2により説明する。図2は、静電噴霧装置100の外観を説明するための図である。
 図示するように、静電噴霧装置100は、直方形状である。その装置の一面に、スプレー電極1および基準電極2が配設されている。スプレー電極1は、基準電極2の近傍に位置する。また、スプレー電極1を取り囲むように環状の開口11が、基準電極2を取り囲むように環状の開口12が、それぞれ形成されている。
 スプレー電極1と基準電極2との間には電圧が印加され、それによりスプレー電極1と基準電極2との間に電場が形成される。スプレー電極1からは正帯電した液滴が噴霧される。基準電極2は、電極近傍の空気をイオン化して負帯電させる。そして、負帯電した空気は、電極間に形成された電場と負帯電された空気粒子間の反発力とによって基準電極2から遠ざかる動きをする。この動きが空気の流れ(以下、イオン流と称する場合もある)を生み、このイオン流によって正帯電した液滴が静電噴霧装置100から離れる方向へと噴霧される。
 静電噴霧装置100は、直方形状ではなく、他の形状であってもよい。また、開口11、および開口12は、環状とは異なる形状であってよく、その開口寸法も適宜調整されうる。
 図2に示されるように、発光素子26は、静電噴霧装置100の筐体の表面に設けられていてよい。一例として、発光素子26は、所定の複数の色の光を選択的に出射できる多色LED(Light Emitting Diode,発光ダイオード)であってよい。発光素子26の動作の一例については後述する。
 入力部27は、ユーザの入力操作(以下、ユーザ操作)を受け付ける部材である。入力部27は、例えば押しボタンであってよい。入力部27も、静電噴霧装置100の筐体の表面に設けられていてよい。ユーザ操作に応じた静電噴霧装置100の動作の一例については後述する。
 〔スプレー電極1、基準電極2〕
 スプレー電極1、および基準電極2を図3により説明する。図3は、スプレー電極1、および基準電極2を説明するための図である。
 スプレー電極1は、金属性キャピラリ(例えば、304型ステンレス鋼など)等の導電性導管と、先端部である先端部5とを有する。スプレー電極1は、電源装置3を介して基準電極2と電気的に接続される。先端部5からは噴霧物質(以下、「液体」と称する)が噴霧される。スプレー電極1は、スプレー電極1の軸心に対して傾斜する傾斜面9を有し、先端部5に向かうほど先端が細く、尖った形状である。
 基準電極2は、金属ピン(例えば、304型スチールピンなど)等の導電性ロッドからなる。スプレー電極1および基準電極2は、一定の間隔をあけて離間し、互いに平行に配置されている。スプレー電極1および基準電極2は、例えば、互いに8mmの間隔をあけて配置される。
 電源装置3は、スプレー電極1と基準電極2との間に高電圧を印加する。例えば、電源装置3は、スプレー電極1と基準電極2との間に1~30kVの間の高電圧(例えば、3~7kV)を印加する。高電圧が印加されると電極間に電場が形成され、誘電体10の内部に電気双極子が生じる。このとき、スプレー電極1は正に帯電し、基準電極2は負に帯電する(その逆でもよい)。そして、負の双極子が正のスプレー電極1に最も近い誘電体10の表面に生じ、正の双極子が負の基準電極2に最も近い誘電体10の表面に生じ、帯電したガスおよび物質種が、スプレー電極1および基準電極2によって放出される。ここで、上述したように、基準電極2において生成される電荷は、液体の極性とは逆の極性の電荷である。従って、液体の電荷は、基準電極2において生成される電荷によって平衡化される。それゆえ、静電噴霧装置100は、電荷平衡の原理に基づき、噴霧の安定性を図ることができる。
 このように、静電噴霧装置100は、スプレー電極1と基準電極2との間に電圧を印加することにより、スプレー電極1の先端(先端部5)から液体を噴霧できるように構成されている。
 誘電体10は、例えばナイロン6、ナイロン11、ナイロン12、ポリプロピレン、ナイロン66またはポリアセチル-ポリテトラフルオロエチレン混合物などの誘電体材料からなる。誘電体10は、スプレー電極1をスプレー電極取付部6において支持し、基準電極2を基準電極取付部7において支持する。
 〔電源装置3〕
 電源装置3を図1により説明する。図1は、静電噴霧装置100の要部の構成を示す機能ブロック図である。
 電源装置3は、電源21と、高電圧発生装置22と、制御回路(制御部)24と、記憶部29aとを備える。
 電源21は、静電噴霧装置100の運転に必要な電源を供給する。電源21は、周知の電源であってよく、主電源または1つ以上のバッテリーを含んでよい。電源21は、低電圧電源、直流(DC)電源が好ましく、例えば、1つ以上の乾電池を組み合わせて構成されてよい。電池の個数は、必要な電圧レベルと電源の消費電力とによって決まる。電源21は、高電圧発生装置22の発振器221に直流電力(換言すれば、直流電流および直流電圧)を供給する。後述するように、電源21は、静電噴霧装置100を製造する組立工場において用いられる試験電源であってもよい。
 高電圧発生装置22は、発振器221と、変圧器222と、コンバータ回路223とを備える。発振器221は、直流電力(換言すれば、直流電流および直流電圧)を交流電力(換言すれば、交流電流および交流電圧)に変換する。発振器221には変圧器222が接続される。変圧器222は、交流電流の電圧の大きさ(または交流電流の大きさ)を変換する。変圧器222にはコンバータ回路223が接続される。コンバータ回路223は、所望の電圧を生成し、交流電力(換言すれば、交流電流および交流電圧)を直流電力(換言すれば、直流電流および直流電圧)に変換する。通常、コンバータ回路223は、チャージポンプと整流回路とを備える。典型的なコンバータ回路は、コックロフト・ウォルトン回路である。
 制御回路24は、静電噴霧装置100の各部を統括的に制御する。制御回路24の機能は、記憶部29aに記憶されたプログラムを、CPU(Central Processing Unit)が実行することで実現されてよい。記憶部29aは、制御回路24が実行する各種のプログラム、および当該プログラムによって使用されるデータを格納する。
 制御回路24は、一定の値に設定されたPWM(Pulse Width Modulation,パルス幅変調)信号を発振器221に出力する。PWMとは、パルス信号を出力する時間(パルス幅)を変更することで電流や電圧を制御する方式のことである。パルス信号とは、ON、OFFを繰り返す電気信号のことであり、例えば、矩形波で表され、電圧の出力時間であるパルス幅は矩形波の横軸で表される。
 PWM方式では、一定周期で動作するタイマを利用する。このタイマにパルス信号をONにする位置を設定してパルス幅を制御する。一定周期の中でONにしている比率のことを「デューティーサイクル」(「デューティー比」とも称される)と言う。
 制御回路24は、様々な用途に対応するために、マイクロプロセッサ241を備える。マイクロプロセッサ241は、フィードバック情報(運転環境情報)25に基づいて、PWM信号のデューティーサイクルをさらに調整できるように設計されていてもよい。
 フィードバック情報25には、環境条件(気温、湿度、および/または、大気圧)、液体量、ユーザによる任意の設定などが含まれる。その情報は、アナログ情報またはデジタル情報として与えられ、マイクロプロセッサ241により処理される。マイクロプロセッサ241は、入力情報に基づいて、スプレー間隔、スプレーをオンにする時間、または印加電圧の何れかを変更することでスプレーの品質および安定性を高めるための補償を行うことも可能に設計されていてもよい。
 一例として、フィードバック情報25は、温度補償のために使用されるサーミスタなどの温度検知素子によって得られる。このとき、マイクロプロセッサ241は、温度検知素子により検知された温度の変化に従ってスプレー間隔を変化させる。スプレー間隔は、静電噴霧装置100が液体を噴霧する時間および噴霧を停止する時間を一サイクルとする噴霧間隔である。例えば、35秒間噴霧(オン)とし(その間、電源は第1電極と第2電極との間に高電圧を印加する)、145秒間噴霧停止(オフ)とする(その間、電源は第1電極と第2電極との間に高電圧を印加しない)周期的なスプレー間隔の場合を考える。この場合、スプレー間隔は、35秒+145秒=180秒である。
 スプレー間隔は、電源のマイクロプロセッサ241に内蔵されたソフトウェアにより変更することができ、温度が上昇すると設定点から増加し、温度が低下すると設定点から減少するように制御されてよい。スプレー間隔の増加および短縮は、噴霧される液体の特性によって定まる所定の指標に従うことが好ましい。便宜上、スプレー間隔の補償変化量は、スプレー間隔が0~60℃(例えば、10~45℃)の間でのみ変化するよう制限されていてもよい。そのため、温度検知素子によって記録された極端な温度は誤りとみなされ、考慮されず、高温および低温に対しては、最適ではないものの容認しうるスプレー間隔が設定される。
 フィードバック情報25として、図1で示すように、温度センサ251の測定結果、湿度センサ252の測定結果、圧力センサ253の測定結果、液体の内容物に関する情報254、電圧・電流センサ255の測定結果などが挙げられる。液体の内容物に関する情報254は、例えば、液体貯留量をレベル計で測定した結果を示す情報であってよい。また、液体の内容物に関する情報254には、液体の粘度を示す情報(例:液体の粘度を粘度センサ(不図示)で測定した結果を示す情報)が含まれていてもよい。
 ここで、(i)静電噴霧装置100の周囲環境、および、(ii)静電噴霧装置100に電力を供給する電源21の動作状態、の少なくともいずれかを示す情報を、運転環境情報を称する。運転環境情報としては、フィードバック情報25が用いられてよい。
 ここで、静電噴霧装置100の周囲環境を示す情報を、周囲環境情報と称する。また、静電噴霧装置100に電力を供給する電源21の動作状態を示す情報を、電源動作情報と称する。実施形態1では、運転環境情報に周囲環境情報および電源動作情報の両方が含まれている場合を例示する。
 周囲環境情報には、静電噴霧装置100の周囲の気温(温度)、湿度、および気圧の少なくとも1つに関する情報が含まれていてよい。実施形態1では、周囲環境情報に、(i)静電噴霧装置100の周囲の気温を示す情報(温度情報)、および、(ii)当該静電噴霧装置100の周囲の湿度を示す情報(湿度情報)が含まれている場合を例示する。
 電源動作情報には、電源21から高電圧発生装置22に供給される電圧および電流の少なくとも一方の大きさを示す情報を含まれていてよい。実施形態1では、電源動作情報に、電源21から静電噴霧装置100(より具体的には、高電圧発生装置22)に供給される電圧(電源電圧)の大きさを示す情報(電源電圧情報)が含まれている場合を例示する。なお、電源電圧は、電圧・電流センサ255によって測定されてよい。
 通常、制御回路24は、マイクロプロセッサ241の出力ポートであり、発振器221に対してPWM信号を出力する。スプレー・デューティーサイクルおよびスプレー間隔もまた、同じPWM出力ポートを介して制御されてよい。静電噴霧装置100が液体を噴霧する間、PWM信号が発振器221に対して出力される。
 制御回路24は、発振器221における交流電流の振幅の大きさ、周波数、またはデューティーサイクル、電圧のオン-オフ時間(あるいは、これらの組み合わせ)を制御することにより、高電圧発生装置22の出力電圧を制御することが可能であってよい。
 〔マイクロプロセッサ241〕
 図1に示されるように、マイクロプロセッサ241は、測定部242、切替部243、設定部244、および指令部245を備える。以下、マイクロプロセッサ241の各部について説明する。
 測定部242は、電源装置3がスプレー電極1と基準電極2との間に印加する電圧(以下、電圧E)を測定する。測定部242は、任意の電圧測定装置(例:変圧器)を含んでもよい。
 測定部242は、スプレー電極1における電流、または、基準電極2における電流(以下、電流I)をさらに測定してもよい。実施形態1では、測定部242が電流I(基準電極2における電流)を測定する場合を例示する。測定部242は、任意の電流測定装置(例:変流器)を含んでもよい。
 実施形態1では、説明の便宜上、測定部242がマイクロプロセッサ241の内部に設けられている構成が例示されている。但し、測定部242は、マイクロプロセッサ241の外部に設けられてもよい。
 切替部243は、静電噴霧装置100が有する2つのモードを切り替える。具体的には、切替部243は、運転モードと調整モードとを切り替える。運転モードとは、静電噴霧装置100を運転するためのモード(通常の噴霧動作を行うためのモード)である。
 調整モードとは、上述の電圧Eを調整電圧(以下、「調整電圧Es」とも表す)に調整(設定,変更)するためのモードである。調整モードが開始される前に、運転モードにおいて印加されていた電圧Eを、「調整前電圧Em」とも表す。実施形態1では、調整電圧Esが調整前電圧Emとは異なる電圧である場合を例示する。但し、調整電圧Esと調整前電圧Emとは等しい電圧であってもよい。
 調整モードとは、調整前電圧Emを調整電圧Esに設定(変更)するためのテストモードであると理解されてよい。一例として、調整モードは、組立工場において製造された静電噴霧装置100を当該組立工場から出荷する前に実行されてよい。調整モードにおける静電噴霧装置100の具体的な動作については後述する。
 静電噴霧装置100における1回の噴霧時(1周期のスプレー間隔)には、1つのパルス状の電圧Eがスプレー電極1と基準電極2との間に印加される。設定部244は、電圧Eを設定する。
 具体的には、設定部244は、調整モードにおいて、電圧E(電圧パルス)の大きさ(波高値)を設定(変更)する。一例として、設定部244は、PWM信号のデューティーサイクルを調整することで、電圧Eの大きさを変更してよい。設定部244は、上述の調整前電圧Emの大きさを変更することで、調整電圧Esを設定する。
 指令部245は、設定部244が設定した調整電圧Esを、運転モードにおいて印加させる指令(以下、印加指令)を出力する。一例として、指令部245は、設定部244に印加指令を与えてよい。
 この場合、設定部244は、指令部245からの印加指令を受けて、運転モードにおいて電源装置3に調整電圧Esを印加させる。但し、指令部245は、設定部244以外の機能部に印加指令を与え、電源装置3に調整電圧Esを印加させてもよい。
 なお、ユーザに上述の入力部27に所定の入力操作(ユーザ操作)を行わせることにより、運転モードと調整モードとの間のモードの切り替えを行ってもよい。具体的に、入力部27は、上記ユーザ操作(例:ボタンの押下)を受け付けて、切替部243に運転モードから調整モードへのモードの切り替えを行わせてもよい。これにより、ユーザは、随意に、運転モードから調整モードへ切り替えることができる。
 また、静電噴霧装置100には、静電噴霧装置100のモードを外部に報知させる報知指示部をさらに設けてもよい。実施形態1では、説明の便宜上、切替部243に報知指示部の機能が併有されている場合を例示する。但し、当該報知指示部を切替部243とは別体の機能部として設けてもよい。
 切替部243は、静電噴霧装置100が運転モードであるか調整モードであるかに応じて、発光素子26の動作を制御してよい。一例として、切替部243は静電噴霧装置100が運転モードにある場合には、発光素子26をOFF状態(非発光状態)としてよい。
 切替部243は、静電噴霧装置100が調整モードにある場合には、発光素子26に所定の色の光(例:赤色光)を出射させてよい。発光素子26の発光状態によって、静電噴霧装置100のモードが運転モードおよび調整モードのいずれであるかが、静電噴霧装置100の外部に報知される。
 以上のように、発光素子26は、静電噴霧装置100のモードが運転モードおよび調整モードのいずれであるかを報知する「報知部」としての役割を果たす。特に、報知部が発光素子26である場合には、発光素子26は、ユーザに対して光による視覚的な報知を行う。
 切替部243は、調整モードが終了したことを発光素子26(報知部)に報知させてもよい。例えば、切替部243は、調整モードから運転モードへのモードの切り替えが完了した場合には、発光素子26を点滅させてよい。
 上述の報知の方法(報知態様)は、光を使用した方法に限定されない。例えば、静電噴霧装置100にスピーカ(音声出力部)を設け、当該スピーカを報知部として機能させてもよい。切替部243は、スピーカに所定の音声(例:アラーム音)を出力させることにより、調整モードが終了したことを報知させてもよい。このように、報知部にユーザに音声による聴覚的な報知を行わせてもよい。
 静電噴霧装置100にバイブレータ(振動部)を設け、当該バイブレータを報知部として機能させてもよい。切替部243は、バイブレータを振動させることにより、調整モードが終了したことを報知させてもよい。
 静電噴霧装置100に表示部(例:後述のタッチパネル28)を設け、当該表示部を報知部として機能させることもできる。当該表示部は、文字メッセージによって、調整モードが終了したことを報知してもよい。
 さらに、上述の各報知態様(光、音声、振動、文字メッセージ)を組み合わせてもよい。このように、報知態様は、音声、光、振動、および文字メッセージのうち少なくとも1つを含んでいればよい。
 〔周囲環境と電流Iとの関係〕
 図4の(a)~(c)はそれぞれ、静電噴霧装置100の周囲環境と電流Iとの関係を説明するための図である。具体的には、図4の(a)~(c)はそれぞれ、異なる周囲環境(気温および湿度)において静電噴霧装置100に噴霧動作を行わせた場合における、電流Iの測定結果を示すグラフである。当該グラフにおいて、縦軸は電流I(単位:μA)を、横軸は時刻(任意単位)をそれぞれ示す。
 図4の(a)~(c)はそれぞれ、(i)「気温25℃,相対湿度(RelativeHumidity,RH)55%」、(ii)「気温35℃,相対湿度75%」、および、(iii)「気温15℃,相対湿度35%」の場合の電流Iの測定結果を示す。
 図4の(a)~(c)に示されるように、静電噴霧装置100を動作させた場合には、動作時間の経過に伴って、電流Iが減少する傾向が確認された。電流Iのこのような減少が生じる主な理由は、以下の通りである。
 静電噴霧装置100の動作期間の経過に伴って、異物(例:空気中の埃、噴霧する液体に由来する汚れ、基準電極2の腐食によって生じた生成物、基準電極2に発生した錆)が基準電極2に次第に付着する。このため、異物の付着量が多くなるにつれて、基準電極2の抵抗が増加する。その結果、電流Iが減少する。
 また、通常の動作状態の場合に比べて電流Iが顕著に低下した場合には、静電噴霧装置100の噴霧性能が低下し、好適な噴霧動作を行うことができない。
 以上のことから、静電噴霧装置100を長時間に亘って使用した場合には、電流Iの減少に応じて、電圧Eの値も変化する。
 また、静電噴霧装置100に含まれる1または複数の部品の特性が、経年使用により変化することも考えられる。静電噴霧装置100を長時間に亘って使用した場合には、当該経年使用による特性の変化によっても、電圧Eの値が変化する。
 このため、静電噴霧装置100の製造時に電圧Eが最適な値にあらかじめ調整されていたとしても、静電噴霧装置100を長時間に亘って使用した場合には、当該電圧Eが最適な値から乖離する。その結果、静電噴霧装置100の噴霧安定性が低下する。それゆえ、静電噴霧装置100を長時間に亘って使用する場合、静電噴霧装置100の噴霧安定性を維持するためには、電圧Eを随意に調整できることが好ましい。
 ところで、一般的な自然環境下では、気温が高いと湿度が高くなる。そして、湿度が高くなると、空気中の水分がスプレー電極1の周囲に帯電した電荷に影響を及ぼす。その結果、スプレー電極1と基準電極2との間に漏れ電流が発生しやすくなる。漏れ電流が発生すると、スプレー電極1の抵抗が低下し、スプレー電極1と基準電極2との間に静電噴霧に好適な電場が形成されにくくなる。これにより、静電噴霧装置100の噴霧性能が低下する。
 このため、気温が高い場合には、気温が低い場合に比べて、基準電極2に流れる電流Iが増加する傾向を示すことが考えられる。図4の(b)は、図4の(a)の場合に比べて、気温および湿度が高い場合の電流Iの測定結果である。図4の(b)のグラフからも、電流Iが増加する傾向が確認された。
 他方、気温が低い場合には、気温が高い場合に比べて、基準電極2に流れる電流Iは減少する傾向を示すことが考えられる。図4の(c)は、図4の(a)の場合に比べて、気温および湿度が低い場合の電流Iの測定結果である。図4の(c)のグラフからも、電流Iが減少する傾向が確認された。
 以上のことから、静電噴霧装置100の周囲環境(使用環境)が変化した場合にも、電流Iの変化に応じて、噴霧動作に最適な電圧Eの値も変化する。このような周囲環境の変化にも対処して、静電噴霧装置100の噴霧安定性を維持するためには、電圧Eを随意に調整できることが好ましい。
 また、後述のように、静電噴霧装置100の組立精度が高くない場合にも、噴霧動作に最適な電圧Eの値が変化する。このような組立精度に起因する問題に対処して、静電噴霧装置100の噴霧安定性を維持するためにも、電圧Eを随意に調整できることが好ましい。
 以上の点を踏まえ、本願の発明者ら(以下、発明者ら)は、「調整モード」という新規なモードを設け、静電噴霧装置100の電圧Eを最適な値に調整する構成を想到した。
 〔調整モード〕
 図5の(a)および(b)はそれぞれ、上述の調整前電圧Emと調整電圧Esとの関係を説明するための図である。具体的には、図5の(a)および(b)は、様々な気温における調整前電圧Emと調整電圧Esとの関係を例示するグラフである。当該グラフにおいて、縦軸は電圧(単位:kV)を、横軸は温度(単位:℃)をそれぞれ示す。
 (第1の例)
 はじめに、図5の(a)を参照する。図5の(a)における例を、第1の例と称する。第1の例では、設定部244が、調整モードにおいて、いずれの気温(15℃,25℃,35℃)においても、調整電圧Esを6kV(以下に述べる目標値Es0に等しい値)として設定する場合が示されている。
 調整電圧Esの目標値Es0は、設定部244において、あらかじめ設定されていてよい。あるいは、目標値Es0は、記憶部29aにあらかじめ格納されていてもよい。この場合、設定部244は、記憶部29aから目標値Es0を取得すればよい。
 なお、6kVという目標値Es0の数値は、単なる一例である。目標値Es0は、静電噴霧装置100の噴霧動作に好適な電圧(後述の最適電圧Eopt)を目安として設定されていればよい。
 図5の(a)では、各気温(15℃,25℃,35℃)に対して、2通りの調整前電圧Emが示されている。説明の便宜上、調整電圧Es(6kV)よりも低い調整前電圧Emを、Em1という記号で表す。また、当該調整電圧Es(6kV)よりも高い調整前電圧Emを、Em2という記号で表す。
 設定部244は、目標値Es0と調整前電圧Emとの差を、差分電圧ΔEとして算出する。つまり、設定部244は、以下の式(1)、
  ΔE=Es0-Em…(1)
によって、差分電圧ΔEを算出する。設定部244は、算出した差分電圧ΔEの値を、記憶部29aに書き込んでよい。
 続いて、設定部244は、差分電圧ΔEを調整前電圧Emに加算した値を、調整電圧Esとして設定する。つまり、設定部244は、調整前電圧Emを差分電圧ΔEだけオフセットさせることにより、調整電圧Esを設定する。
 具体的には、設定部244は、以下の式(2)、
  Es=Em+ΔE…(2)
によって、調整電圧Esを設定する。
 一例として、設定部244は、記憶部29aに書き込まれた差分電圧ΔEの値を取得し、式(2)の演算を行ってよい。式(2)によれば、上述の目標値Es0に等しい調整電圧Esを設定できる。
 (気温15℃の場合)
 調整前電圧Em1は5.7kVであった。設定部244は、差分電圧ΔEを0.3kVとして算出する。設定部244は、調整前電圧Em1(5.7kV)に差分電圧ΔEの絶対値(0.3kV)を加算して、調整電圧Esを目標値Es0(6kV)に等しく設定する。
 調整前電圧Em2は6.1kVであった。設定部244は、差分電圧ΔEを-0.1kVとして算出する。設定部244は、調整前電圧Em2(6.1kV)から差分電圧ΔEの絶対値(0.1kV)を減算して、調整電圧Esを目標値Es0に等しく設定する。
 (気温25℃の場合)
 調整前電圧Em1は5.8kVであった。設定部244は、差分電圧ΔEを0.2kVとして算出する。設定部244は、調整前電圧Em1(5.8kV)に差分電圧ΔEの絶対値(0.2kV)を加算して、調整電圧Esを目標値Es0に等しく設定する。
 調整前電圧Em2は6.2kVであった。設定部244は、差分電圧ΔEを-0.2kVとして算出する。設定部244は、調整前電圧Em2(6.2kV)から差分電圧ΔEの絶対値(0.2kV)を減算して、調整電圧Esを目標値Es0に等しく設定する。
 (気温35℃の場合)
 調整前電圧Em1は5.9kVであった。設定部244は、差分電圧ΔEを0.1kVとして算出する。設定部244は、調整前電圧Em1(5.9kV)に差分電圧ΔEの絶対値(0.1kV)を加算して、調整電圧Esを目標値Es0に等しく設定する。
 調整前電圧Em2は6.3kVであった。設定部244は、差分電圧ΔEを-0.3kVとして算出する。設定部244は、調整前電圧Em2(6.3kV)から差分電圧ΔEの絶対値(0.3kV)を減算して、調整電圧Esを目標値Es0に等しく設定する。
 以上のように、調整前電圧Emは、静電噴霧装置100の周囲環境(例:気温)の変化に応じて、電流Iと同様に変化する傾向を示す。具体的には、図5の(a)に示されるように、調整前電圧Emは、気温の上昇に応じて増加する傾向にある。また、調整前電圧Emは、気温の低下に応じて減少する傾向にある。
 そこで、静電噴霧装置100の周囲環境が変化した場合にも、調整モードにおいて調整電圧Esを目標値Es0に等しく設定することにより、周囲環境の変化に応じた調整前電圧Emの変化を相殺できる。
 上述のように、静電噴霧装置100を長時間に亘って使用した場合にも、調整前電圧Emは変化し得る。このようなに調整前電圧Emの変化が発生したとしても、調整電圧Esを目標値Es0に等しく設定することにより、当該変化を相殺できる。調整モードによれば、静電噴霧装置100を長時間に亘って使用した場合において、静電噴霧装置100の噴霧安定性を維持できる。
 静電噴霧装置100の周囲環境の変化が比較的少ない環境下において、静電噴霧装置100を使用する場合には、第1の例による調整電圧Esの設定が行われてもよい。
 但し、静電噴霧装置100の周囲環境の変化が比較的大きい環境下において、静電噴霧装置100を使用する場合には、以下に述べる第2の例による調整電圧Esの設定が行われることがより好ましい。
 (第2の例)
 続いて、図5の(b)を参照する。図5の(b)における例を、第2の例と称する。第2の例では、設定部244が、調整モードにおいて、気温に応じて、調整電圧Esを異なる値に設定する場合が示されている。
 上述のように、調整前電圧Emは、静電噴霧装置100の周囲環境(例:気温)の変化に応じて変化する傾向を示す。このため、静電噴霧装置100の噴霧動作に好適な電圧も、上記周囲環境の変化に応じて変化し得る。
 そこで、設定部244は、上述の周囲環境情報に基づいて(つまり、静電噴霧装置100の周囲環境に応じて)、調整電圧Esを設定することがより好ましい。以下、設定部244が、周囲環境情報に含まれる温度情報を用いて、調整電圧Esを設定する場合を例示する。説明の便宜上、気温T(単位:℃)における調整電圧EsをEs(T)と表す。また、気温Tにおける目標値Es0をEs0(T)と表す。
 一例として、設定部244は、気温Tの増加に応じて調整電圧Esを増加させてよい。上述のように、気温Tが高い場合には、静電噴霧装置100の噴霧動作に好適な電圧が増加する傾向にあるためである。
 また、設定部244は、気温Tの低下に応じて調整電圧Esを減少させてよい。気温Tが低い場合には、静電噴霧装置100の噴霧動作に好適な電圧が減少する傾向にあるためである。
 当該構成によれば、気温Tの増減に応じて調整電圧Esを増減できるので、静電噴霧装置100の噴霧動作に好適な電圧(調整電圧Es)を、静電噴霧装置100の周囲環境の変化(特に気温Tの変化)に応じて変更することが可能となる。
 第2の例において、設定部244は、以下の式(3)、
  Es0(T)=Es0(25℃)+K×(T-25)…(3)
によって、目標値Es0(T)を算出する。式(3)において、Kは比例定数(単位:kV/℃)である。実施形態1では、K=0.01とした。但し、Kの値はこれに限定されない。
 式(3)は、設定部244において、25℃における目標値Es0(25℃)を基準として、気温Tにおける目標値Es0(T)が算出されることを示している。つまり、設定部244は、25℃における目標値Es0(25℃)を気温Tによって補正(calibrate)することにより、気温Tにおける目標値Es0(T)を算出する。第2の例では、Es0(25℃)が6kVである場合が示されている。
 続いて、設定部244は、上述の通り、調整電圧Es(T)を目標値Es0(T)に等しく設定する。以下、各気温(15℃,25℃,35℃)における具体例について述べる。なお、各気温における調整前電圧Em1およびEm2の値はそれぞれ、上述の第1の例と同様である。
 (気温15℃の場合)
 まず、設定部244は、式(3)を用いて、Es0(15℃)を5.9kVと設定する。
 設定部244は、調整前電圧Em1(5.7kV)に対して、差分電圧ΔEを0.2kVとして算出する。設定部244は、調整前電圧Em1(5.7kV)に差分電圧ΔEの絶対値(0.2kV)を加算して、調整電圧Es(15℃)を目標値Es0(15℃)(5.9kV)に等しく設定する。
 設定部244は、調整前電圧Em2(6.1kV)に対して、差分電圧ΔEを-0.2kVとして算出する。設定部244は、調整前電圧Em2(6.1kV)から差分電圧ΔEの絶対値(0.2kV)を減算して、調整電圧Es(15℃)を目標値Es0(15℃)(5.9kV)に等しく設定する。
 (気温25℃の場合)
 目標値Es0(25℃)は6kVであり、上述の第1の例における目標値Es0と等しい。このため、設定部244によって得られる調整電圧Es(25℃)は、上述の第1の例における気温25℃の場合と同様となる。このため、詳細な説明は省略する。
 (気温35℃の場合)
 まず、設定部244は、式(3)を用いて、Es0(35℃)を6.1kVと設定する。
 設定部244は、調整前電圧Em1(5.9kV)に対して、差分電圧ΔEを0.2kVとして算出する。設定部244は、調整前電圧Em1(5.9kV)に差分電圧ΔEの絶対値(0.2kV)を加算して、調整電圧Es(35℃)を目標値Es0(35℃)(6.1kV)に等しく設定する。
 設定部244は、調整前電圧Em2(6.3kV)に対して、差分電圧ΔEを-0.2kVとして算出する。設定部244は、調整前電圧Em2(6.3kV)から差分電圧ΔEの絶対値(0.2kV)を減算して、調整電圧Es(35℃)を目標値Es0(35℃)(6.1kV)に等しく設定する。
 以上のように、設定部244に、周囲環境情報に基づいて調整電圧Esを設定させることにより、静電噴霧装置100の噴霧動作に好適な電圧(調整電圧Es)を、静電噴霧装置100の周囲環境の変化に応じて変更することが可能となる。
 なお、上述の式(3)は、気温Tと目標値Es0(T)(または調整電圧Es(T))との対応関係を示す換算式の一例である。当該換算式は、上述の式(3)に限定されず、任意のものが用いられてよい。
 あるいは、設定部244は、気温Tと目標値Es0(T)(または調整電圧Es(T))との対応関係を示すテーブルを参照することにより、気温Tに応じた調整電圧Es(T)を設定してもよい。上述の対応関係を示す所定のテーブルまたは換算式は、静電噴霧装置100の製造者によって、記憶部29aにあらかじめ格納されてよい。
 また、設定部244は、気温(温度情報)に替えて、湿度(湿度情報)を用いて、上述の説明と同様にして、調整電圧Esを設定してもよい。あるいは、設定部244は、気温および湿度の両方を用いて調整電圧Esを設定してもよい。
 なお、周囲環境情報には、静電噴霧装置100の周囲の気圧を示す情報(気圧情報)が含まれていてもよい。この場合、設定部244は気圧情報を用いて調整電圧Esを設定してもよい。
 〔電圧Eの調整タイミングについて〕
 図6の(a)および(b)はそれぞれ、電圧Eの調整タイミングを説明するための図である。具体的には、図6の(a)および(b)のそれぞれには、複数の静電噴霧装置を組立工場において製造する場合における、当該複数の静電噴霧装置間の電圧Eのばらつきが示されている。以下、電圧Eのばらつきにおける最大値を電圧Emax、最小値を電圧Eminとしてそれぞれ表す。
 (従来の静電噴霧装置の場合)
 図6の(a)は、従来の静電噴霧装置における電圧Eの調整タイミングを説明するための図である。凡例「初期」は、上記複数の静電噴霧装置の各部品が組み立てられる前の状態を示す。「初期」の時点では、電圧Eは調整されていないので、電圧Emaxと電圧Eminとは大きく乖離している。つまり、上記複数の静電噴霧装置間の電圧Eのばらつきは大きい。
 「初期」の時点における電圧Eのばらつきは、例えば上記複数の静電噴霧装置のそれぞれに設けられる電気部品の特性のばらつきに起因する。
 凡例「基板実装+電圧調整」は、「初期」の後の状態を示す。具体的には、「基板実装+電圧調整」は、上記複数の静電噴霧装置の各電気部品を基板に実装し、その直後に電圧Eの調整が行われた状態を示す。
 「基板実装+電圧調整」の時点において、電圧Eの調整により、電圧Emaxと電圧Eminとの乖離の程度は小さくなる。つまり、上記複数の静電噴霧装置間の電圧Eのばらつきが小さくなる(電圧Eのばらつきを所定の公差内に収める)ように、当該複数の静電噴霧装置それぞれにおいて電圧Eが調整される。
 凡例「筐体組立」は、「基板実装+電圧調整」の後の状態を示す。具体的には、「筐体組立」は、静電噴霧装置の筐体を組み立てた後の状態を示す。図6の(a)に示されるように、「筐体組立」の時点では、「基板実装+電圧調整」の時点に比べて、電圧Emaxと電圧Eminとの乖離の程度は大きくなる。つまり、「基板実装+電圧調整」の時点で、電圧Eが調整されたにも関わらず、上記複数の静電噴霧装置間における電圧Eのばらつきが再び大きくなる。
 「筐体組立」の時点における、電圧Eのばらつきの増加は、上記複数の静電噴霧装置の各部品を組み立てる工程(組立工程)における組立精度に起因する。例えば、静電噴霧装置の組立精度が高くない場合には、静電噴霧装置の筐体に導電性の電気部品(例:スプレー電極)を取り付ける位置が、静電噴霧装置ごとに異なる可能性がある。また、当該電気部品を固定するために、当該電気部品に印加される力の強さも、静電噴霧装置ごとに異なる可能性がある。
 その結果、上記電気部品の位置の違い、および、上記電気部品に印加される力の強さの違いの少なくともいずれかによって、上記複数の静電噴霧装置のそれぞれにおいて、各電気部品と筐体との間のインピーダンスが変化し得る。当該インピーダンスの変化が、「筐体組立」の時点における、電圧Eのばらつきの増加をもたらす一要因となる。
 このように、従来の静電噴霧装置では、各電気部品を基板に実装する時に、上記複数の静電噴霧装置において電圧Eを調整したにも関わらず、その後の組立工程によって、当該複数の静電噴霧装置間における電圧Eのばらつきが再び大きくなる。
 それゆえ、組立工場において製造された上記複数の静電噴霧装置のうち、一部の静電噴霧装置については、電圧Eのばらつきが所定の公差内から外れる懸念がある。このような静電噴霧装置については、電圧Eのばらつきが所定の公差内に収めるための対処が必要となる。例えば、このような静電噴霧装置については、当該静電噴霧装置を分解し、再度組み立てる必要が生じる。
 このように、従来の静電噴霧装置では、組立工場における一部の工程において手戻りが発生し得る。それゆえ、静電噴霧装置の製造時における工数が増加する場合がある。
 (静電噴霧装置100の場合)
 図6の(b)は、静電噴霧装置100における電圧Eの調整タイミングを説明するための図である。凡例「初期」については、上述の図6の(a)と同様であるため、説明を省略する。
 凡例「基板実装」は、「初期」の後の状態を示す。具体的には、「基板実装」は、静電噴霧装置100の各電気部品を基板に実装した後の状態を示す。つまり、静電噴霧装置100では、基板実装工程の直後に電圧Eの調整が行われていない。
 このため、図6の(b)に示されるように、「基板実装」においても、「初期」と同様に、電圧Emaxと電圧Eminとは大きく乖離したままである。つまり、複数の静電噴霧装置100間の電圧Eのばらつきは大きいままである。この点において、静電噴霧装置100は従来の静電噴霧装置とは相違する。
 なお、「基板実装」の時点では、上述の「初期」の時点とは異なる要因によって、上記複数の静電噴霧装置100間の電圧Eのばらつきが生じ得る。一例として、当該ばらつきは、上記複数の静電噴霧装置100のそれぞれに設けられる電気部品を、上記複数の静電噴霧装置それぞれの基板に実装する工程(基板実装工程)における組立精度に起因する。
 例えば、静電噴霧装置の組立精度が高くない場合には、基板上の複数の電気部品を接続する端子の位置が、静電噴霧装置ごとに異なる可能性がある。また、当該端子を固定するために、当該端子に印加される力の強さも、静電噴霧装置ごとに異なる可能性がある。
 その結果、上記端子の位置の違い、および、上記端子に印加される力の強さの違いの少なくともいずれかによって、上記複数の静電噴霧装置のそれぞれにおいて、各端子間のインピーダンスが変化し得る。当該インピーダンスの変化が、「基板実装」の時点における、電圧Eのばらつきの増加をもたらす一要因となる。
 凡例「筐体組立+電圧調整」は、「基板実装」の後の状態を示す。具体的には、「筐体組立+電圧調整」は、静電噴霧装置100の筐体を組み立て、その直後に上述の調整モードによって電圧Eの調整が行われた状態を示す。「筐体組立+電圧調整」の時点において、電圧Eの調整により、電圧Emaxと電圧Eminとの乖離の程度は小さくなる。つまり、上記複数の静電噴霧装置100それぞれの間の電圧Eのばらつきが小さくなる(電圧Eのばらつきを所定の公差内に収める)ように、上記複数の静電噴霧装置100それぞれにおいて電圧Eが調整される。
 このように、静電噴霧装置100では、組立工程の後に電圧Eの調整を行うことができる。当該構成によれば、組立工程によって電圧Eのばらつきが増加したとしても、当該ばらつきの増加を相殺するように、電圧Eを調整することが可能となる。
 それゆえ、上述の調整モードによれば、静電噴霧装置100の組立精度が高くない場合にも、電圧Eのばらつきを所定の公差内に収めることができる。その結果、噴霧安定性に優れた静電噴霧装置100を提供できる。
 また、組立工場における上述の手戻りが生じる可能性を低減できるので、静電噴霧装置100の製造時における工数を低減することもできる。
 〔電源電圧に応じたモードの切り替え〕
 上述のように、静電噴霧装置100において、調整モードは組立工程の後に実行されてよい。例えば、上述のように、調整モードは、組立工場において製造された静電噴霧装置100を、当該組立工場から出荷する前に実行されてよい。
 ところで、出荷後の静電噴霧装置100をユーザが上述の運転モードで動作させる場合には、電源21として電池が用いられうる。他方、静電噴霧装置100の製造者が出荷前に静電噴霧装置100を動作させる場合には、電池よりも電圧が高い試験電源が、電源21として用いられうる。
 そこで、切替部243は、上述の電源動作情報に基づいて、運転モードと調整モードとの間のモードの切り替えを行ってもよい。一例として、切替部243は、電源動作情報に含まれる電源電圧情報(電源電圧の大きさを示す情報)に基づいて、運転モードと調整モードとの間のモードの切り替えを行ってもよい。以下、説明の便宜上、電源電圧をVSという記号によって表す。
 一例として、電源21が電池である場合を考える。例えば、電源21が、直列に接続された2個の単三アルカリ乾電池によって構成されている場合を考える。この場合、電源電圧VSは3.2V以下程度である。他方、電源21が試験電源である場合、電源電圧VSは4.0V以上程度である。試験電源の電源電圧VSは、マイクロプロセッサ241の動作電圧(約4.0V)を目安として設定されることが一般的であるためである。
 切替部243は、電源電圧VSと所定の閾値THとの大小関係を比較してよい。閾値THは、電源電圧VSに対する閾値である。閾値THは、静電噴霧装置100においてあらかじめ設定されていてよい。切替部243に、上述の周囲環境情報に基づいて、閾値THを設定する機能を付加してもよい。
 例えば、閾値THは、3.5Vとして設定されてよい。閾値THは、電源電圧VSに対する閾値である。但し、3.5Vという値は単なる一例である。閾値THは、電源電圧VSが電池または試験電源のいずれによって供給されたものかを区別できるように設定されていればよい。
 切替部243は、電源電圧VSが閾値TH以上である場合(VS≧THである場合)には、運転モードを調整モードに切り替えてよい。電源電圧VSが閾値TH以上である場合には、電源21として試験電源が用いられていると考えられるためである。
 当該構成によれば、静電噴霧装置100を組立工場内の試験電源(電源21)に接続すると、静電噴霧装置100を調整モードで動作させることができる。それゆえ、組立工場における静電噴霧装置100の試験の利便性を向上させることができる。
 なお、切替部243は、電源電圧VSが閾値THよりも小さい場合(VS<THである場合)には、運転モードを選択してよい。電源電圧VSが閾値THよりも小さい場合には、電源21として試験電源以外の電源(例:電池)が用いられていると考えらえるためである。
 例えば、静電噴霧装置100が運転モードで動作している場合には、切替部243は、静電噴霧装置100を運転モードのままで動作させてよい。あるいは、静電噴霧装置100が調整モードで動作している場合には、切替部243は、調整モードを運転モードに切り替えてよい。
 〔静電噴霧装置100における運転開始から調整電圧Esの印加までの処理の流れ〕
 図7は、静電噴霧装置100における、運転開始から電圧Eの調整電圧Esの印加までの処理の流れを例示するフローチャートである。以下、当該処理の流れについて述べる。
 まず、静電噴霧装置100の電源が投入(ON)されると、静電噴霧装置100は運転を開始する(S1)。電源装置3がスプレー電極1と基準電極2との間に電圧E(より具体的には、調整前電圧Em)を印加することで(S2)、静電噴霧装置100は運転モードでの動作を開始する。
 切替部243は、電源電圧情報に示される電源電圧VSの値を取得し(S3)、電源電圧VSと上述の閾値THとの大小関係を比較する(S4)。切替部243は、電源電圧VSが閾値TH以上である場合(VS≧THである場合)には(S4でYES)、静電噴霧装置100のモードを調整モードに切り替える(S5,切替ステップ)。
 S5の後、設定部244は、調整モードにおいて、調整前電圧Emの大きさを変更し、調整電圧Esを設定する(S6,設定ステップ)。上述の図5の(b)に示される通り、通り、設定部244は、周囲環境情報に基づいて、調整電圧Esを設定してよい。
 但し、設定部244は、必ずしも周囲環境情報に基づいて調整電圧Esを設定する必要はない。例えば、上述の図5の(a)に示される通り、設定部244は、周囲環境情報によらず、1つの調整電圧Esを設定してもよい。
 切替部243は、設定部244が調整モードにおいて調整電圧Esを設定したことを受けて、調整モードを運転モードに切り替えてよい(S7,切替ステップ)。このようにモードの切り替えを行うことで、S6(調整モード)において調整された調整電圧Esを、運転モードにおいてスプレー電極1と基準電極2との間にすみやかに印加できる。
 指令部245は、運転モードにおいて、例えば設定部244に上述の印加指令を与え、調整電圧Esを印加させる(S8,指令ステップ)。この場合、設定部244は、指令部245からの印加指令を受けて、電源装置3に調整電圧Esを印加させる。
 なお、切替部243は、電源電圧VSが閾値THよりも小さい場合(VS<THである場合)には(S4でNO)、静電噴霧装置100を運転モードのままで動作させる。この場合、S2(運転モード)における調整前電圧Emが、スプレー電極1と基準電極2との間にそのまま印加される。
 〔静電噴霧装置100の効果〕
 以上のように、静電噴霧装置100は、(i)上述の運転モードと調整モードとを切り替える切替部243と、(ii)調整モードにおいて調整電圧Esを設定する設定部244と、(iii)運転モードにおいてスプレー電極1と基準電極2との間に、当該調整電圧Esを印加させる指令部245と、を備える。
 当該構成によれば、静電噴霧装置100を調整モードで動作させることができる。調整モードによれば、静電噴霧装置100の噴霧動作に好適な調整電圧Esを設定できる。このため、静電噴霧装置100は、運転モードにおいて、当該調整電圧Esを印加できる。それゆえ、噴霧安定性に優れた静電噴霧装置100を提供できる。
 〔補足事項〕
 発明者らは、スプレー電極1と基準電極2との間に印加される電圧Eが、好適な値から乖離する複数のケースを見出した。その結果、発明者らは、当該ケースにおいて液体噴霧の状態が不安定になる懸念がある、という課題を見出した。その課題を解決すべく、発明者らは、上述したように、静電噴霧装置100を調整モードで動作させることにより、電圧Eを最適な値に調整するという技術的思想に想到した。
 特に、静電噴霧装置100の構成によれば、静電噴霧装置100を調整モードで動作させることにより、従来のフィードバック制御を用いない静電噴霧装置においても、電圧Eを適切に調整できる。従来のフィードバック制御の例としては、電流フィードバック制御、電圧フィードバック制御、電流/電圧フィードバック制御、および出力電力フィードバック制御が挙げられる。
 それゆえ、静電噴霧装置100の構成を簡素化した場合にも、噴霧安定性に優れた静電噴霧装置100を提供できる。
 〔実施形態2〕
 以下、図8~図10を参照し、実施形態2について説明する。なお、実施形態1との区別のため、実施形態2の静電噴霧装置を静電噴霧装置100vと称する。実施形態2では、静電噴霧装置100vとスマートフォン(情報処理端末)200とを組み合わせた例について述べる。
 図8は、実施形態2における静電噴霧装置100vおよびスマートフォン200の要部の構成を示す機能ブロック図である。図8に示されるように、静電噴霧装置100vは、実施形態1の静電噴霧装置100から、(i)切替部243、設定部244、指令部245、発光素子26、および入力部27を取り除き、(ii)通信部248aを付加した構成である。
 なお、実施形態1との区別のため、静電噴霧装置100vにおける電源装置、制御回路、およびマイクロプロセッサを、電源装置3v、制御回路24v、およびマイクロプロセッサ241vとそれぞれ称する。実施形態2では、説明の便宜上、電源装置3vにおける測定部242がマイクロプロセッサ241vの外部に設けられた構成が例示されている。
 スマートフォン200は、タッチパネル(入力部,表示部,報知部)28、制御部290、記憶部29b、および通信部248bを備えている。また、図8に示されるように、制御部290は、実施形態1の切替部243、設定部244、および指令部245を備えている。このように、実施形態2では、静電噴霧装置100vのモードの切り替えと、調整電圧Esの設定および印加指令とを行うための各部が、スマートフォン200に設けられている。
 なお、実施形態2では、情報処理端末の一例として携帯電話機(スマートフォン200)を例示しているが、当該情報処理端末は携帯電話機のみに限定されない。例えば、当該情報処理端末は、ユーザが静電噴霧装置100vを遠隔操作するためのリモコンであってもよいし、ノートPC(Personal Computer)またはタブレットPCなどの可搬型の情報処理装置であってもよい。
 制御部290は、スマートフォン200の各部を統括的に制御する。制御部290の機能は、記憶部29bに記憶されたプログラムを、CPUが実行することで実現されてよい。記憶部29bは、制御部290が実行する各種のプログラム、および当該プログラムによって使用されるデータを格納する。
 タッチパネル28は、入力部と表示部とが一体として設けられた部材である。以下に述べるように、実施形態2では、タッチパネル28が入力部としての役割を果たす。但し、実施形態2において、入力部と表示部とが別体として設けられてもよい。例えば、公知のハードキーを、入力部としてスマートフォン200に設けてもよい。また、上述のように、タッチパネル28(表示部)を報知部として機能させることもできる。
 通信部248a・248bは、静電噴霧装置100vとスマートフォン200との間の通信を行うための通信インターフェースである。実施形態2では、静電噴霧装置100vとスマートフォン200とが無線通信を行う場合を例示する。但し、有線を介して、静電噴霧装置100vとスマートフォン200との間の通信を行わせてもよい。
 図9は、静電噴霧装置100vおよびスマートフォン200の動作の一例を説明するための図である。実施形態2では、切替部243は、タッチパネル28に所定の画像(アイコン,オブジェクト)を表示させることにより、ユーザに静電噴霧装置100vのモードの切り替えを行わせてよい。
 一例として、図9に示されるように、切替部243は、「調整モード開始」という文字が記載された画像IMGをタッチパネル28に表示させてよい。タッチパネル28は、ユーザによる画像IMGのタッチ(入力操作)を、上述のユーザ操作として受け付ける。切替部243は、タッチパネル28が当該ユーザ操作を受け付けたことを契機として、上記モードを調整モードに切り替える。
 また、スマートフォン200が所定の通信ネットワーク(例:無線LANネットワーク)と接続可能である場合には、スマートフォン200の各部は、当該通信ネットワークを介して、他の装置からの指示を受け付けてもよい。例えば、切替部243は、上記モードを切り替える指示を、上記他の装置から受け付けてもよい。
 また、スマートフォン200は、上記通信ネットワークを介して、調整モードが終了したことを示す情報(電子メール等)を、静電噴霧装置100vの販売元が保有する情報端末装置(スマートフォン等)に送信してもよい。
 〔実施形態2における運転開始から調整電圧Esの印加までの処理の流れ〕
 図10は、実施形態2における運転開始から調整電圧Esの印加までの処理の流れを例示するシーケンス図である。まず、静電噴霧装置100vの電源が投入されると、静電噴霧装置100vは、S11~S12(上述のS1~S2と同様の処理)を行う。
 S12の後、静電噴霧装置100vは、通信部248a・248bを介して、上述の電源電圧情報を、スマートフォン200の切替部243に与える。そして、スマートフォン200は、S13(上述のS3と同様の処理)の後に、S14(上述のS5・S7と同様の処理)において静電噴霧装置100vのモードを切り替える。また、スマートフォン200は、S15(上述のS6・S8と同様の処理)において、調整モードにおいて調整電圧Esを設定する。その後、スマートフォン200は、運転モードにおいて、静電噴霧装置100vの高電圧発生装置22に当該調整電圧Esを印加させる。
 なお、実施形態1において述べた通り、設定部244は、周囲環境情報に基づいて調整電圧Esを設定してよい。あるいは、設定部244は、周囲環境情報によらず1つの調整電圧Esを設定してもよい。
 以上のように、静電噴霧装置100vと通信接続可能な、当該静電噴霧装置100vに適用される情報処理端末において、静電噴霧装置100vのモードの切り替えと、調整電圧Esの設定および印加指令とを行うための各処理が行われてもよい。
 〔変形例〕
 上述の実施形態1・2では、説明を簡素化するために、上述の従来のフィードバック制御を用いない静電噴霧装置の構成を例示した。但し、本発明の一態様に係る静電噴霧装置において、従来のフィードバック制御を適用し、噴霧安定性をさらに向上させてもよい。
 〔補足事項〕
 上述の実施形態1・2では、静電噴霧装置のモードの切り替えと、調整電圧の設定および印加指令とを行うための各機能部が、静電噴霧装置または情報処理端末のいずれか一方のみに設けられている構成を説明した。但し、本発明の一態様において、各機能部の一部を、静電噴霧装置および情報処理端末に個別に設け、全体として一体の電圧調整装置(電圧調整システム)を構成することもできる。本発明の一態様に係る電圧調整装置(つまり、本発明の一態様に係る電圧調整方法を実行する装置)は、以下のように表現できる。
 すなわち、本発明の一態様に係る電圧調整装置は、第1電極と第2電極との間に電圧を印加することにより、当該第1電極の先端から液体を噴霧する静電噴霧装置に適用される電圧調整装置であって、上記静電噴霧装置には、当該静電噴霧装置を運転するための運転モードと、上記第1電極と上記第2電極との間に印加する電圧を調整するための調整モードと、が設けられており、上記運転モードと上記調整モードとを切り替える切替部と、上記調整モードにおいて、上記静電噴霧装置が上記第1電極と上記第2電極との間に印加する調整電圧を設定する設定部と、上記調整モードにおいて上記第1電極と上記第2電極との間に上記設定部が設定した上記調整電圧を、上記運転モードにおいて上記静電噴霧装置に印加させる指令部と、を備える。
 〔補足事項〕
 また、本発明の一態様に係る情報処理端末は、以下のように表現できる。
 本発明の一態様に係る情報処理端末において、上記設定部は、上記調整モードにおいて、上記静電噴霧装置の周囲環境を示す周囲環境情報に基づいて上記調整電圧を設定してよい。
 本発明の一態様に係る情報処理端末において、上記周囲環境情報には、上記静電噴霧装置の周囲の気温、湿度、および気圧の少なくとも1つに関する情報が含まれていてよい。
 本発明の一態様に係る情報処理端末において、上記周囲環境情報に、上記静電噴霧装置の周囲の気温に関する情報が含まれている場合に、上記設定部は、上記気温の増加に応じて、上記調整電圧を増加させ、上記気温の低下に応じて、上記調整電圧を減少させてよい。
 本発明の一態様に係る情報処理端末において、電源から上記静電噴霧装置に供給される電圧を電源電圧として、上記切替部は、上記電源電圧が所定の閾値以上である場合に、上記運転モードを上記調整モードに切り替えてよい。
 本発明の一態様に係る情報処理端末は、ユーザ操作を受け付ける入力部をさらに備え、上記切替部は、上記ユーザ操作に応じて、上記運転モードと上記調整モードとの間のモードの切り替えを行ってよい。
 本発明の一態様に係る情報処理端末において、上上記設定部が上記調整モードにおいて上記調整電圧を設定したことを受けて、上記切替部は、上記調整モードを上記運転モードに切り替えてよい。
 本発明の一態様に係る情報処理端末は、上記調整モードが終了したことを外部に報知する報知部をさらに備えてよい。
 本発明の一態様に係る情報処理端末において、上記報知部の報知態様は、音声、光、振動、および文字メッセージのうち少なくとも1つを含んでいてよい。
 〔ソフトウェアによる実現例〕
 静電噴霧装置100・100vおよびスマートフォン200の制御ブロック(特にマイクロプロセッサ241・241vおよび制御部290)は、集積回路(ICチップ)等に形成された論理回路(ハードウェア)によって実現してもよいし、CPU(Central Processing Unit)を用いてソフトウェアによって実現してもよい。
 後者の場合、静電噴霧装置100・100vおよびスマートフォン200は、各機能を実現するソフトウェアであるプログラムの命令を実行するCPU、上記プログラムおよび各種データがコンピュータ(またはCPU)で読み取り可能に記録されたROM(Read Only Memory)または記憶装置(これらを「記録媒体」と称する)、上記プログラムを展開するRAM(Random Access Memory)などを備えている。そして、コンピュータ(またはCPU)が上記プログラムを上記記録媒体から読み取って実行することにより、本発明の目的が達成される。上記記録媒体としては、「一時的でない有形の媒体」、例えば、テープ、ディスク、カード、半導体メモリ、プログラマブルな論理回路などを用いることができる。また、上記プログラムは、該プログラムを伝送可能な任意の伝送媒体(通信ネットワークや放送波等)を介して上記コンピュータに供給されてもよい。なお、本発明の一態様は、上記プログラムが電子的な伝送によって具現化された、搬送波に埋め込まれたデータ信号の形態でも実現され得る。
 〔まとめ〕
 本発明の態様1に係る静電噴霧装置は、第1電極と第2電極との間に電圧を印加することにより、当該第1電極の先端から液体を噴霧する静電噴霧装置であって、上記静電噴霧装置を運転するための運転モードと、上記第1電極と上記第2電極との間に印加する電圧を調整するための調整モードと、を切り替える切替部と、上記調整モードにおいて、上記第1電極と上記第2電極との間に印加する調整電圧を設定する設定部と、上記調整モードにおいて上記第1電極と上記第2電極との間に上記設定部が設定した上記調整電圧を、上記運転モードにおいて印加させる指令部と、を備える。
 上述のように、発明者らは、第1電極と第2電極との間に印加される電圧が、好適な値から乖離する複数のケースを見出した。上記の構成によれば、静電噴霧装置を調整モードで動作させることができる。つまり、上述のケースが発生した場合にも、調整モードにおいて、当該電圧を適切な値(調整電圧)に設定できる。
 このように、本発明の一態様に係る静電噴霧装置によれば、第1電極と第2電極との間に印加される電圧の調整が可能となる。従って、当該静電噴霧装置に、運転モードにおいて上記調整電圧を印加させることができる。それゆえ、噴霧安定性に優れた静電噴霧装置を提供できる。
 本発明の態様2に係る静電噴霧装置は、上記態様1において、上記設定部は、上記調整モードにおいて、上記静電噴霧装置の周囲環境を示す周囲環境情報に基づいて上記調整電圧を設定してよい。
 上記の構成によれば、静電噴霧装置の周囲環境に応じて、調整電圧を設定できる。
 本発明の態様3に係る静電噴霧装置は、上記態様2において、上記周囲環境情報には、上記静電噴霧装置の周囲の気温、湿度、および気圧の少なくとも1つに関する情報が含まれていてよい。
 上記の構成によれば、静電噴霧装置の周囲の気温、湿度、および気圧の少なくとも1つに応じて、調整電圧を設定できる。
 本発明の態様4に係る静電噴霧装置は、上記態様3において、上記周囲環境情報に、上記静電噴霧装置の周囲の気温に関する情報が含まれている場合に、上記設定部は、上記気温の増加に応じて、上記調整電圧を増加させ、上記気温の低下に応じて、上記調整電圧を減少させてよい。
 上述のように、静電噴霧装置の周囲の気温が高い場合には、気温が高い場合には、静電噴霧装置の噴霧動作に好適な電圧が増加する傾向にある。他方、上記気温が低い場合には、静電噴霧装置の噴霧動作に好適な減少が増加する傾向にある。
 そこで、上記の構成によれば、上記気温の増減に応じて調整電圧を増減できるので、より適切に調整電圧を設定することが可能となる。
 本発明の態様5に係る静電噴霧装置は、上記態様1から4のいずれか1つにおいて、電源から上記静電噴霧装置に供給される電圧を電源電圧として、上記切替部は、上記電源電圧が所定の閾値以上である場合に、上記運転モードを上記調整モードに切り替えてよい。
 上記の構成によれば、例えば、上記電源として組立工場内の試験電源(電池よりも電源電圧が高い電源)が用いられた場合に、静電噴霧装置を調整モードで動作させることができる。それゆえ、当該組立工場における静電噴霧装置の試験の利便性を向上させることが可能となる。
 本発明の態様6に係る静電噴霧装置は、上記態様1から5のいずれか1つにおいて、ユーザ操作を受け付ける入力部をさらに備え、上記切替部は、上記ユーザ操作に応じて、上記運転モードと上記調整モードとの間のモードの切り替えを行ってよい。
 上記の構成によれば、ユーザに、静電噴霧装置を随意に調整モードで動作させることができる。
 本発明の態様7に係る静電噴霧装置は、上記態様1から6のいずれか1つにおいて、上記設定部が上記調整モードにおいて上記調整電圧を設定したことを受けて、上記切替部は、上記調整モードを上記運転モードに切り替えてよい。
 上記の構成によれば、調整モードにおいて調整された調整電圧を、運転モードにおいて第1電極と第2電極との間にすみやかに印加できる。
 本発明の態様8に係る静電噴霧装置は、上記態様1から7のいずれか1つにおいて、上記調整モードが終了したことを外部に報知する報知部をさらに備えてよい。
 上記の構成によれば、調整モードが終了したことを外部に報知できる。
 本発明の態様8に係る静電噴霧装置は、上記態様8において、上記報知部の報知態様は、音声、光、振動、および文字メッセージのうち少なくとも1つを含んでいてよい。
 上記の構成によれば、様々な報知態様によって報知を行うことが可能となる。
 本発明の態様10に係る情報処理端末は、第1電極と第2電極との間に電圧を印加することにより、当該第1電極の先端から液体を噴霧する静電噴霧装置と通信接続可能な情報処理端末であって、上記静電噴霧装置には、当該静電噴霧装置を運転するための運転モードと、上記第1電極と上記第2電極との間に印加する電圧を調整するための調整モードと、が設けられており、上記運転モードと上記調整モードとを切り替える切替部と、上記調整モードにおいて、上記静電噴霧装置が上記第1電極と上記第2電極との間に印加する調整電圧を設定する設定部と、上記調整モードにおいて上記第1電極と上記第2電極との間に上記設定部が設定した上記調整電圧を、上記運転モードにおいて上記静電噴霧装置に印加させる指令部と、を備える。
 上記の構成によれば、本発明の一態様に係る静電噴霧装置と同様の効果を奏する。
 本発明の態様11に係る電圧調整方法は、第1電極と第2電極との間に電圧を印加することにより、当該第1電極の先端から液体を噴霧する静電噴霧装置に適用される電圧調整方法であって、上記静電噴霧装置には、当該静電噴霧装置を運転するための運転モードと、上記第1電極と上記第2電極との間に印加する電圧を調整するための調整モードと、が設けられており、上記運転モードと上記調整モードとを切り替える切替ステップと、上記調整モードにおいて、上記静電噴霧装置が上記第1電極と上記第2電極との間に印加する調整電圧を設定する設定ステップと、上記調整モードにおいて上記第1電極と上記第2電極との間に上記設定ステップにおいて設定された上記調整電圧を、上記運転モードにおいて上記静電噴霧装置に印加させる指令ステップと、を含む電圧調整方法。
 上記の構成によれば、本発明の一態様に係る静電噴霧装置と同様の効果を奏する。
 本発明の各態様に係る情報処理端末は、コンピュータによって実現してもよく、この場合には、コンピュータを上記情報処理端末が備える各部(ソフトウェア要素)として動作させることにより上記情報処理端末をコンピュータにて実現させる情報処理端末の制御プログラム、およびそれを記録したコンピュータ読み取り可能な記録媒体も、本発明の範疇に入る。
 〔付記事項〕
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
 1 スプレー電極(第1電極)
 2 基準電極(第2電極)
 21 電源
 25 フィードバック情報(周囲環境情報)
 26 発光素子(報知部)
 27 入力部
 28 タッチパネル(入力部,報知部)
 100,100v 静電噴霧装置
 200 スマートフォン(情報処理端末)
 243 切替部
 244 設定部
 245 指令部
 E 電圧
 Es 調整電圧
 Em,Em1,Em2 調整前電圧
 TH 閾値
 T 温度
 VS 電源電圧

Claims (12)

  1.  第1電極と第2電極との間に電圧を印加することにより、当該第1電極の先端から液体を噴霧する静電噴霧装置であって、
     上記静電噴霧装置を運転するための運転モードと、上記第1電極と上記第2電極との間に印加する電圧を調整するための調整モードと、を切り替える切替部と、
     上記調整モードにおいて、上記第1電極と上記第2電極との間に印加する調整電圧を設定する設定部と、
     上記調整モードにおいて上記第1電極と上記第2電極との間に上記設定部が設定した上記調整電圧を、上記運転モードにおいて印加させる指令部と、を備える静電噴霧装置。
  2.  上記設定部は、上記調整モードにおいて、上記静電噴霧装置の周囲環境を示す周囲環境情報に基づいて上記調整電圧を設定する、請求項1に記載の静電噴霧装置。
  3.  上記周囲環境情報には、上記静電噴霧装置の周囲の気温、湿度、および気圧の少なくとも1つに関する情報が含まれている、請求項2に記載の静電噴霧装置。
  4.  上記周囲環境情報に、上記静電噴霧装置の周囲の気温に関する情報が含まれている場合に、
     上記設定部は、
      上記気温の増加に応じて、上記調整電圧を増加させ、
      上記気温の低下に応じて、上記調整電圧を減少させる、請求項3に記載の静電噴霧装置。
  5.  電源から上記静電噴霧装置に供給される電圧を電源電圧として、
     上記切替部は、上記電源電圧が所定の閾値以上である場合に、上記運転モードを上記調整モードに切り替える、請求項1から4のいずれか1項に記載の静電噴霧装置。
  6.  ユーザ操作を受け付ける入力部をさらに備え、
     上記切替部は、上記ユーザ操作に応じて、上記運転モードと上記調整モードとの間のモードの切り替えを行う、請求項1から5のいずれか1項に記載の静電噴霧装置。
  7.  上記設定部が上記調整モードにおいて上記調整電圧を設定したことを受けて、
     上記切替部は、上記調整モードを上記運転モードに切り替える、請求項1から6のいずれか1項に記載の静電噴霧装置。
  8.  上記調整モードが終了したことを外部に報知する報知部をさらに備える、請求項1から7のいずれか1項に記載の静電噴霧装置。
  9.  上記報知部の報知態様は、音声、光、振動、および文字メッセージのうち少なくとも1つを含む、請求項8に記載の静電噴霧装置。
  10.  第1電極と第2電極との間に電圧を印加することにより、当該第1電極の先端から液体を噴霧する静電噴霧装置と通信接続可能な情報処理端末であって、
     上記静電噴霧装置には、当該静電噴霧装置を運転するための運転モードと、上記第1電極と上記第2電極との間に印加する電圧を調整するための調整モードと、が設けられており、
     上記運転モードと上記調整モードとを切り替える切替部と、
     上記調整モードにおいて、上記静電噴霧装置が上記第1電極と上記第2電極との間に印加する調整電圧を設定する設定部と、
     上記調整モードにおいて上記第1電極と上記第2電極との間に上記設定部が設定した上記調整電圧を、上記運転モードにおいて上記静電噴霧装置に印加させる指令部と、を備える情報処理端末。
  11.  第1電極と第2電極との間に電圧を印加することにより、当該第1電極の先端から液体を噴霧する静電噴霧装置に適用される電圧調整方法であって、
     上記静電噴霧装置には、当該静電噴霧装置を運転するための運転モードと、上記第1電極と上記第2電極との間に印加する電圧を調整するための調整モードと、が設けられており、
     上記運転モードと上記調整モードとを切り替える切替ステップと、
     上記調整モードにおいて、上記静電噴霧装置が上記第1電極と上記第2電極との間に印加する調整電圧を設定する設定ステップと、
     上記調整モードにおいて上記第1電極と上記第2電極との間に上記設定ステップにおいて設定された上記調整電圧を、上記運転モードにおいて上記静電噴霧装置に印加させる指令ステップと、を含む電圧調整方法。
  12.  請求項10に記載の情報処理端末としてコンピュータを機能させるための制御プログラムであって、上記切替部、上記設定部、および上記指令部としてコンピュータを機能させるための制御プログラム。
PCT/JP2017/044768 2017-01-30 2017-12-13 静電噴霧装置、情報処理端末、電圧調整方法、および制御プログラム WO2018139091A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-014464 2017-01-30
JP2017014464 2017-01-30

Publications (1)

Publication Number Publication Date
WO2018139091A1 true WO2018139091A1 (ja) 2018-08-02

Family

ID=62977968

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/044768 WO2018139091A1 (ja) 2017-01-30 2017-12-13 静電噴霧装置、情報処理端末、電圧調整方法、および制御プログラム

Country Status (2)

Country Link
TW (1) TW201829070A (ja)
WO (1) WO2018139091A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113713976A (zh) * 2021-09-01 2021-11-30 浙江国达智能机电装备科技有限公司 一种静电喷涂系统的控制方法及装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007145058A1 (ja) * 2006-06-13 2007-12-21 Panasonic Electric Works Co., Ltd. 静電霧化装置
JP2010064052A (ja) * 2008-09-12 2010-03-25 Panasonic Electric Works Co Ltd 静電霧化装置
JP2010240190A (ja) * 2009-04-07 2010-10-28 Olympus Corp 薬剤噴霧装置
JP2013027832A (ja) * 2011-07-29 2013-02-07 Sumitomo Chemical Co Ltd 静電噴霧装置、および当該静電噴霧装置を用いて静電噴霧を行う方法
JP2014168739A (ja) * 2013-03-01 2014-09-18 Sumitomo Chemical Co Ltd 静電噴霧装置、および静電噴霧装置における電流制御方法
JP2016073270A (ja) * 2014-10-02 2016-05-12 株式会社ミヤマエ 魚釣用電動リールの遠隔操作システム
JP2016080273A (ja) * 2014-10-17 2016-05-16 三菱重工業株式会社 室内機の制御装置、それを備えた空気調和システム、及び室内機の制御方法並びに制御プログラム
WO2016076081A1 (ja) * 2014-11-10 2016-05-19 住友化学株式会社 静電噴霧装置、検査方法、検査プログラム、及びコンピュータ読み取り可能な情報記録媒体

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007145058A1 (ja) * 2006-06-13 2007-12-21 Panasonic Electric Works Co., Ltd. 静電霧化装置
JP2010064052A (ja) * 2008-09-12 2010-03-25 Panasonic Electric Works Co Ltd 静電霧化装置
JP2010240190A (ja) * 2009-04-07 2010-10-28 Olympus Corp 薬剤噴霧装置
JP2013027832A (ja) * 2011-07-29 2013-02-07 Sumitomo Chemical Co Ltd 静電噴霧装置、および当該静電噴霧装置を用いて静電噴霧を行う方法
JP2014168739A (ja) * 2013-03-01 2014-09-18 Sumitomo Chemical Co Ltd 静電噴霧装置、および静電噴霧装置における電流制御方法
JP2016073270A (ja) * 2014-10-02 2016-05-12 株式会社ミヤマエ 魚釣用電動リールの遠隔操作システム
JP2016080273A (ja) * 2014-10-17 2016-05-16 三菱重工業株式会社 室内機の制御装置、それを備えた空気調和システム、及び室内機の制御方法並びに制御プログラム
WO2016076081A1 (ja) * 2014-11-10 2016-05-19 住友化学株式会社 静電噴霧装置、検査方法、検査プログラム、及びコンピュータ読み取り可能な情報記録媒体

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113713976A (zh) * 2021-09-01 2021-11-30 浙江国达智能机电装备科技有限公司 一种静电喷涂系统的控制方法及装置

Also Published As

Publication number Publication date
TW201829070A (zh) 2018-08-16

Similar Documents

Publication Publication Date Title
JP6104640B2 (ja) 静電噴霧装置
US9937508B2 (en) Electrostatic spraying device and method for controlling electrostatic spraying device
JP4329672B2 (ja) 静電霧化装置
JP2007021370A (ja) 静電霧化装置
WO2018139090A1 (ja) 静電噴霧装置、情報処理端末、制御方法、および制御プログラム
WO2018139091A1 (ja) 静電噴霧装置、情報処理端末、電圧調整方法、および制御プログラム
WO2016076081A1 (ja) 静電噴霧装置、検査方法、検査プログラム、及びコンピュータ読み取り可能な情報記録媒体
WO2014112447A1 (ja) 静電噴霧装置、および静電噴霧装置の制御方法
WO2018139089A1 (ja) 静電噴霧装置、情報処理端末、異常報知方法、および制御プログラム
AU2017319627B2 (en) Electrostatic spraying device
WO2012043231A1 (ja) 静電霧化装置
JP2014233667A (ja) 静電噴霧装置、および静電噴霧装置の制御方法
JP2014176833A (ja) 静電噴霧装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17894191

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17894191

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP