WO2016068174A1 - 多関節ロボッ卜アーム機構、インクジェットプリンタ、3軸移動機構、油圧機構及びケーブル配線機構 - Google Patents

多関節ロボッ卜アーム機構、インクジェットプリンタ、3軸移動機構、油圧機構及びケーブル配線機構 Download PDF

Info

Publication number
WO2016068174A1
WO2016068174A1 PCT/JP2015/080352 JP2015080352W WO2016068174A1 WO 2016068174 A1 WO2016068174 A1 WO 2016068174A1 JP 2015080352 W JP2015080352 W JP 2015080352W WO 2016068174 A1 WO2016068174 A1 WO 2016068174A1
Authority
WO
WIPO (PCT)
Prior art keywords
cable
path
wiring
robot arm
length
Prior art date
Application number
PCT/JP2015/080352
Other languages
English (en)
French (fr)
Inventor
尹 祐根
光 佐野
順央 川口
眞二 栗原
宗祐 ▲高▼▲瀬▼
摩美 前田
Original Assignee
ライフロボティクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ライフロボティクス株式会社 filed Critical ライフロボティクス株式会社
Publication of WO2016068174A1 publication Critical patent/WO2016068174A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J29/00Details of, or accessories for, typewriters or selective printing mechanisms not otherwise provided for
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G11/00Arrangements of electric cables or lines between relatively-movable parts

Definitions

  • Embodiments of the present invention relate to an articulated robot arm mechanism, an inkjet printer, a triaxial moving mechanism, a hydraulic mechanism, and a cable wiring mechanism.
  • articulated robot arm mechanisms have been used in various fields such as industrial robots.
  • a torsional joint, a bending joint, and a linear motion joint are combined.
  • an electric cable is accommodated in the joint portion.
  • an electric cable generally, a harness in which a plurality of electric wires are bundled or a covered wiring that is an aggregate of a plurality of wires is used. In this case, an extra length is given to the electric cable in advance in consideration of the rotation operation of the robot.
  • the purpose is to reduce the interference between the electrical cable and the surrounding parts, damage to the interfered parts, breakage of the electrical cable, etc., and further reduce the accommodation space of the electrical cable.
  • the robot arm mechanism has a base.
  • a robot arm having a plurality of rotary joints is attached to the base.
  • the robot arm mechanism is provided with a stretchable cable having stretchability for supplying at least one of electric power and a signal to the tip portion of the robot arm.
  • the telescopic cable is guided by a cable guide.
  • the cable guide is disposed between the cable fixing portion on the distal end side and the base side cable fixing portion.
  • a path extension for extending the wiring path by the cable guide from the cable fixing part on the distal end side to the base side cable fixing part is interposed on the wiring path of the telescopic cable.
  • FIG. 1 is a diagram showing an internal structure of the articulated robot arm mechanism according to the first embodiment.
  • FIG. 2 is a diagram illustrating an example of the structure of the path extension portion of FIG.
  • FIG. 3 is a supplementary explanatory diagram for explaining a method of determining the total length of the telescopic cable used in the articulated robot arm mechanism of the first embodiment.
  • FIG. 4 is a supplementary explanatory diagram for explaining the wiring path length extended by the path extension portion of FIG. 2.
  • FIG. 5A is a plan view showing a first modification of the path extension portion of FIG. 2.
  • FIG. 5B is a side view showing a first modification of the path extension in FIG. 2.
  • FIG. 6 is a diagram illustrating a second modification of the path extension portion of FIG. FIG.
  • FIG. 7 is a diagram illustrating an internal structure of an articulated robot arm mechanism according to a first modification of the first embodiment.
  • FIG. 8 is a diagram illustrating an internal structure of an articulated robot arm mechanism according to a second modification of the first embodiment.
  • FIG. 9A is a side view showing the internal structure of the path extension portion of the first example constituted by the rotary joint portion according to the second modification of the first embodiment.
  • FIG. 9B is a plan view showing an internal structure of a path extension portion configured by using a rotary shaft body of a rotary joint portion according to a second modification of the first embodiment.
  • FIG. 10A is a side view showing an internal structure of a path extension portion of a second example constituted by a rotary joint portion, according to a second modification of the first embodiment.
  • FIG. 10A is a side view showing an internal structure of a path extension portion of a second example constituted by a rotary joint portion, according to a second modification of the first embodiment.
  • FIG. 10B is a plan view showing an internal structure of a path extension portion of a second example constituted by a rotary joint portion, according to a second modification of the first embodiment.
  • FIG. 11 is a schematic configuration diagram of an ink jet printer according to the second embodiment.
  • FIG. 12 is a diagram illustrating an example of a wiring mechanism for an extendable cable of the ink jet printer according to the second embodiment.
  • FIG. 13 is an external perspective view of a triaxial moving mechanism according to the third embodiment.
  • FIG. 14 is a diagram illustrating an example of a wiring mechanism for the telescopic cable of the triaxial moving mechanism according to the third embodiment.
  • FIG. 15 is an external view of an aerial work vehicle equipped with a hydraulic mechanism according to the fourth embodiment.
  • FIG. 16 is a diagram illustrating an example of a wiring mechanism for an extendable cable of an aerial work vehicle equipped with a hydraulic mechanism according to the fourth embodiment.
  • FIG. 17 is an external perspective view showing a configuration of an assembly line incorporating the wiring mechanism according to the fifth embodiment.
  • FIG. 18 is a diagram illustrating an example of a wiring mechanism for an extendable cable between a tool carriage and an external power source according to the fifth embodiment.
  • the first embodiment corresponds to the case where the present invention is applied to an articulated robot arm mechanism.
  • the articulated robot arm mechanism according to the first embodiment will be described below with reference to the drawings.
  • FIG. 1 is a diagram showing an internal structure of the articulated robot arm mechanism according to the first embodiment.
  • the articulated robot arm mechanism has a base 101 and a robot arm 102.
  • the base 101 is fixed to a ground plane or the like.
  • a hand effector called an end effector is attached to the tip of the robot arm 102.
  • FIG. 1 shows a hand unit 116 that can hold an object as a hand effector.
  • the hand effector is not limited to the hand unit 116.
  • the hand unit 116 may be another tool, a sensor, a camera, or a display.
  • An adapter that can be replaced with any kind of hand effector may be provided at the tip of the robot arm 102.
  • the robot arm 102 has a plurality of rotary joint portions J1-J4 and a plurality of arm portions 103, 105, 107, 109.
  • the plurality of rotary joint portions J1-J4 and the plurality of arm portions 103, 105, 107, 109 are alternately connected in series from the base portion 101.
  • the first rotation joint portion J1 is indirect bending rotation about the first rotation axis RA1.
  • the first rotary joint portion J1 supports the arm portion 103 with respect to the base portion 101 so as to be rotatable around the first rotation axis RA1.
  • the second rotary joint part J2, the third rotary joint part J4, and the fourth rotary joint part J4 are bending rotary joints around the second rotary axis RA2, the third rotary axis RA3, and the fourth rotary axis RA4.
  • the second rotation axis RA2, the third rotation axis RA3, and the fourth rotation axis RA4 each have an axis parallel to the first rotation axis RA1.
  • the second rotary joint portion J2 supports the arm portion 105 so as to be rotatable about the second rotation axis RA2 with respect to the arm portion 103.
  • the third rotation joint portion J3 supports the arm portion 107 with respect to the arm portion 105 so as to be rotatable around the third rotation axis RA3.
  • the fourth rotation joint portion J4 supports the arm portion 108 so as to be rotatable about the fourth rotation axis RA4 with respect to the arm portion 107.
  • the hand unit 116 can be arranged at an arbitrary position on the YZ plane in the fixed coordinate system of the base 101.
  • the elastic cable 30 supplies at least one of electric power and a signal to the hand unit 116 disposed at an arbitrary position with respect to the base 101.
  • the wiring mechanism of the telescopic cable 30 will be described.
  • the wiring mechanism of the elastic cable 30 includes an elastic cable 30, a plurality of cable guides 51, a path extension part 40, a hand part side cable fixing part 133 a, and a base part side cable fixing part 133 b. Composed.
  • the extension cable 30 is composed of a plurality of types of transmission lines having elasticity.
  • the transmission line includes a power transmission line for transmitting current, an electrical signal transmission line for transmitting electrical signals, an optical transmission line for transmitting light, and an optical signal transmission line for transmitting optical signals.
  • the stretchable cable 30 is configured by combining these transmission lines according to the application and the like.
  • the stretchable cable 30 includes a power transmission line that transmits current and an electrical signal transmission line that transmits electrical signals.
  • the power transmission line having elasticity is, for example, a copper wire or an aluminum wire spirally wound around an elastic body.
  • the electric signal transmission line having elasticity is, for example, one in which two or more conductor lines are wound around the elastic body in the same direction.
  • the stretchable electric signal transmission line may be one in which two or more conductor wires are wound around the elastic body.
  • the motor driver 131 controls a motor as an actuator for opening and closing the hand unit 116.
  • the other end of the elastic cable 30 is connected to a connector of an external power source that generates electric power and a connector of an external control device that generates a control signal.
  • the motor driver 131 generates a driving pulse for driving the motor by using electric power input from the power source via the telescopic cable 30 in accordance with a control signal from the control device.
  • the motor rotates according to the drive pulse supplied from the motor driver 131. When the motor rotates in the forward direction, the power of the drive shaft of the motor is transmitted to the hand unit 116 via a gear or the like (not shown). Thereby, the hand part 116 opens and closes when rotating in the reverse direction.
  • the one end part of the telescopic cable 30 is fixed to a cable fixing part 133a (hereinafter referred to as a hand part side cable fixing part 133a).
  • the hand part side cable fixing part 133 a is provided in the vicinity of the motor driver 131 in the hand part 116.
  • the other end portion of the elastic cable 30 is fixed to a cable fixing portion 133b (hereinafter referred to as a base side cable fixing portion 133b).
  • the base side cable fixing portion 133 b is provided at the bottom position in the base portion 101.
  • the telescopic cable 30 is guided by a plurality of cable guides 51 between the hand portion side cable fixing portion 133a and the base portion side cable fixing portion 133b.
  • the plurality of cable guides 51 are installed in a distributed manner along the base 101 and the robot arm 102. By installing the plurality of cable guides 51, a wiring path of the telescopic cable 30 is formed.
  • the cable guide 51 has, for example, a ring structure having a circular arc cross section.
  • the plurality of cable guides 51 form a wiring path by inserting the extension cables 30 through the corresponding rings, respectively, and hold the extension cables 30 in an extendable manner.
  • the path extension 40 is interposed on the wiring path of the telescopic cable 30.
  • the path extension part 40 extends the wiring path from the hand part side cable fixing part 133a to the base part side cable fixing part 133b.
  • the structure of the path extension 40 will be described with reference to FIG.
  • FIG. 2 is a diagram showing an example of the structure of the route extension 40 of FIG.
  • the path extension 40 includes a plurality of pulleys having the same radius r, here, a first pulley 141, a second pulley 142, and a third pulley 143.
  • Each of these pulleys 141, 142, and 143 is dispersedly arranged in a direction substantially parallel to the axis (Z axis) of the base 101.
  • the pulleys 141 and 142 are disposed at the same position with respect to the Z axis.
  • the pulley 143 is disposed below the pulleys 141 and 142 at a predetermined distance.
  • the pulley 141 is arranged so that the rotation axis Rx1 thereof is parallel to the rotation axis (X axis) of each rotary joint.
  • the pulleys 142 and 143 are arranged so that the respective rotation axes Rx2 and Rx3 are parallel to the rotation axis Rx1 of the pulley 141.
  • the pulley 142 is disposed at a distance shorter than the radius r along the Y axis perpendicular to the X axis and the Z axis with respect to the pulley 141.
  • the pulley 143 is disposed at the center position between the pulley 141 and the pulley 142 in the Y-axis direction.
  • the stretchable cable 30 is stretched over the pulley 141, the pulley 143, and the pulley 142 in this order.
  • the plurality of pulleys 141, 142, and 143 form a reciprocating wiring path along the axial direction of the base 101 for the stretchable cable 30.
  • the reciprocating wiring path realizes the extension of the wiring path by only the plurality of cable guides 51 arranged between the hand part side cable fixing part 133a and the base part side cable 133b.
  • the required total length of the expansion cable 30 is extended beyond the total length of the expansion cable 30 that is guided only by the plurality of cable guides 51 without the path extension 40 interposed therebetween.
  • the route extension 40 is provided with an auxiliary pulley 144.
  • the auxiliary pulley 144 is disposed such that its rotation axis Ry is perpendicular to the rotation axis Rx2 of the pulley 142 and the central axis of the base 101.
  • the arrangement of the pulley 144 enables the stretchable cable 30 to be drawn out from the vicinity of the central axis of the base 101 to the pulley 142 along the radial direction thereof.
  • the radius of the auxiliary pulley 144 is determined by the drawing amount.
  • the rotation axis Ry of the pulley 144 is arranged perpendicular to the rotation axes Rx1, Rx2, and Rx3 of the other pulleys 141, 142, and 143.
  • the pulley 144 is arranged offset in the X-axis direction with respect to the YZ plane on which the other pulleys 141, 142, and 143 are arranged.
  • the pulley 144 is configured such that the stretchable cable 30 guided by being offset in the X-axis direction from the YZ plane on which the other pulleys 141, 142, and 143 are disposed is guided by the YZ plane on which the other pulleys 141, 142, and 143 are disposed. Therefore, it is possible to secure a wiring path portion for guiding.
  • FIG. 3 is a supplementary explanatory diagram for explaining a method for determining the total length of the telescopic cable 30 used in the articulated robot arm mechanism of the first embodiment.
  • the length of the wiring path from the hand side cable fixing portion 133a to the base side cable fixing portion 133b is changed by bending and rotating each of the plurality of rotary joint portions J1 to J4. To do.
  • the shortest route when the wiring path from the hand side cable fixing part 133a to the base side cable fixing part 133b is formed by only the plurality of cable guides 51 is used.
  • the wiring route be the shortest route length Lc1.
  • the shortest path length Lc1 is determined by the grounding position of the cable guide 51 and the posture of the robot arm 102.
  • the first posture is a reference posture when the articulated robot arm mechanism is turned on.
  • the first posture indicates a state in which each of the plurality of rotary joints J1-J4 is rotated such that the robot arm 102 is folded toward the cable wiring path.
  • the wiring path from the hand portion side cable fixing portion 133a to the base portion side cable fixing portion 133b is configured to be shortest.
  • the shortest wiring path when the wiring path from the hand section side cable fixing section 133a to the base section cable fixing section 133b is formed by only the plurality of cable guides 51 is the longest path length Lc2.
  • the second posture corresponds to a state in which each of the plurality of rotary joints J1-J4 is most rotated from the position in the first posture.
  • the second posture indicates a state in which each of the plurality of rotary joints J1-J4 is rotated such that the robot arm 102 is folded to the opposite side to the cable wiring path.
  • the wiring path from the hand part side cable fixing part 133a to the base part side cable fixing part 133b is configured to be the longest.
  • the total length Lw1 of the expansion cable 30 at the time of contraction has a length required to ensure an expansion / contraction length that is greater than or equal to the path difference ⁇ dc1.
  • the total length Lw1 of the telescopic cable 30 at the time of contraction may be determined as follows. Assuming that the expansion / contraction ratio of the expansion / contraction cable 30 is expansion / contraction ratio ⁇ , the following expression (1) is established between the total length Lw1 of the expansion / contraction cable 30 during contraction, the expansion / contraction ratio ⁇ , and the path difference ⁇ dc1. That is, the path difference ⁇ dc1 must be equal to or less than the length obtained by multiplying the total length Lw1 of the expansion cable 30 at the time of contraction by the expansion / contraction ratio ⁇ .
  • the path extension unit 40 of the articulated robot arm mechanism forms a reciprocal wiring path. Therefore, the length (extension cable length) d1 of the extension portion of the wiring route extended by the route extension 40 is larger than zero (d1> 0).
  • the extension cable length d1 is substantially equivalent to the difference between the shortest path length Lc1 and the total length Lw1 of the expansion cable 30 at the time of contraction. That is, the total length Lw1 of the stretchable cable 30 at the time of contraction needs to satisfy the following formula (3).
  • Formula (3) represents that the total length Lw1 of the telescopic cable 30 at the time of contraction must be longer than the shortest path length Lc1.
  • Lw1 ⁇ Lc2 From Expression (2), Expression (3), and Expression (4), when the expansion cable 30 at the time of contraction has an expansion ratio ⁇ satisfying Expression (5), the expansion cable 30 full length Lw1 at the time of contraction is determined as the longest path.
  • the difference between the total length Lw1 ′ of the extendable cable 30 at the time of expansion and the total length Lw1 of the expandable cable 30 at the time of contraction can be equal to or greater than the path difference ⁇ dc1. That is, the total length Lw1 of the telescopic cable 30 at the time of contraction can ensure an expansion / contraction length that is greater than or equal to the path difference ⁇ dc1.
  • the total length of the cable needs to be equal to or longer than the longest path length Lc2.
  • the full length Lw1 of the expansion-contraction cable 30 at the time of contraction can be made shorter than the longest path
  • the first embodiment does not deny the use of the expansion cable 30 having an expansion ratio ⁇ that is equal to or lower than the lower limit expansion ratio ( ⁇ dc1 / Lc2) in the range of the expression (5).
  • ⁇ dc1 / Lc2 the lower limit expansion ratio
  • the options for the telescopic cable 30 can be expanded. For example, it may be possible to select a type of stretchable cable in which more electric wires are braided or a stretchable cable having a waterproof function.
  • the length Lw1 when the expansion cable 30 is contracted preferably does not exceed the longest path length Lc2.
  • the first embodiment does not deny that the length Lw1 when the expansion cable 30 is contracted is so long that it exceeds the longest path length Lc2.
  • the path difference ⁇ dc1 required for the structure can be secured by using a part of the maximum expansion / contraction length determined by the expansion / contraction ratio (inherent expansion / contraction ratio) possessed by the expansion / contraction cable 30 and the total length Lw1.
  • the shrinkage ratio (practical stretch ratio) in use can be kept lower than the intrinsic stretch ratio.
  • FIG. 4 is a supplementary explanatory diagram for explaining the wiring path length extended by the path extension 40 of FIG.
  • the total length of the wiring path extended by the path extension 40 in the first posture is the total length of the expansion cable 30 at the time of contraction required to secure an expansion / contraction length of ⁇ dc1 or more. It is approximately equivalent to Lw1.
  • the total length of the wiring path extended by the path extension portion 40 is slightly shorter than the total length Lw1 of the expansion / contraction cable 30 at the time of contraction, which is necessary for securing an expansion / contraction length of ⁇ dc1 or more. is there.
  • the total length Lw1 of the elastic cable 30 used in the first embodiment is longer than the shortest path length Lc1 by a length d1.
  • the path extension 40 interposed on the wiring path constitutes the reciprocal wiring path described in FIG. 2, for example, in order to secure a wiring path for the extra length d1 of the telescopic cable 30.
  • the path extension unit 40 extends the entire length of the wiring path from the shortest path length Lc1 to Lw1 (Lc1 + d1).
  • the total length of the stretchable cable 30 at the time of extension becomes Lw1 ′ or more, and the route difference ⁇ dc1 can be secured.
  • FIG. 5A is a plan view showing another first example of the path extension 40 of FIG.
  • FIG. 5B is a side view showing another first example of the path extension 40 of FIG.
  • the path extension 40 according to the first example has a spool 155 for winding the telescopic cable 30.
  • the path extension unit 40 of the first example can extend the wiring path.
  • the number of turns of the telescopic cable 30 wound around the spool 155 is the same between the first posture and the second posture.
  • FIG. 5A is a plan view showing another first example of the path extension 40 of FIG.
  • FIG. 5B is a side view showing another first example of the path extension 40 of FIG.
  • the path extension 40 according to the first example has a spool 155 for winding the telescopic cable 30.
  • the path extension unit 40 of the first example can extend the wiring path.
  • the number of turns of the telescopic cable 30 wound around the spool 155 is the same between the first posture and the second posture.
  • the spool 155 has a mechanism for preventing the stretchable cables 30 wound around the spool 155 from contacting each other.
  • the spool 155 has a spiral guide groove 157 that prevents the elastic cables 30 from contacting each other. Since the stretchable cable 30 is wound along the guide groove 157, adjacent stretchable cable portions do not come into contact with each other, so that friction between stretchable cable portions that expand and contract in the reverse direction due to stretching can be suppressed.
  • the spool 155 is supported so as to be axially rotatable with respect to the base 101.
  • the spool 155 freely rotates in accordance with the expansion / contraction of the expansion / contraction cable 30, so that the friction between the spool 155 and the expansion / contraction cable 30 can be reduced. As a result, the risk of disconnection of the telescopic cable 30 is reduced. Due to these effects, the risk of breakage of the elastic cable 30 can be reduced.
  • the path extension portion 40 of the first example described above has the same effect as the path extension portion 40 shown in FIG. 2 by using the spool 155 as an alternative to the plurality of pulleys of the path extension portion 40 shown in FIG. Can be obtained.
  • FIG. 6 is a front view of another second example of the path extension 40 of FIG.
  • the path extension 40 when the robot arm 102 is in the first posture is shown in FIG.
  • FIG. 6B shows the path extension 40 when the robot arm 102 is in the second posture.
  • the path extension part 40 according to the second example is constituted by a plurality of pulleys in the same manner as the path extension part 40 according to the first embodiment shown in FIG.
  • the difference from the path extension 40 shown in FIG. 2 is that the path extension 40 according to the second example has a function of securing a substantial extension / contraction length of the extension / contraction cable 30.
  • the path extension 40 includes a plurality of pulleys having the same radius, here, a first pulley 159 and a second pulley 161. These pulleys 159 and 161 are urged in directions substantially parallel to the axis (Z axis) of the base 101 by urging mechanisms 163 and 165, respectively. As shown in FIG. 6, for example, a biasing spring is used for the biasing mechanism.
  • the urging mechanism may be another mechanism as long as urging is possible.
  • the urging mechanism may be a nesting type, a bellows type, a rubber type, or the like.
  • Each of these pulleys 159 and 161 is dispersedly arranged in a direction substantially parallel to the axis (Z axis) of the base 101.
  • the pulley 159 is disposed below the pulley 161 at a predetermined distance.
  • the pulleys 159 and 161 are arranged such that the respective rotation axes are parallel to the second rotation axis RA2 (X axis) of the second rotation joint portion J2.
  • the plurality of pulleys 159 and 161 form a reciprocal wiring path along the axial direction of the base 101 of the telescopic cable 30.
  • the reciprocating wiring path extends a wiring path formed only by a plurality of cable guides 51 arranged between the hand part side cable fixing part 133a and the base part side cable 133b. Thereby, the total length of the elastic cable 30 is extended from the total length of the elastic cable 30 guided only by the plurality of cable guides 51.
  • the path extension 40 according to the second example has a function of securing a substantial cable extension / contraction length. Specifically, the length of the extension part extended by the path extension part 40 differs before and after the extension of the telescopic cable 30. As shown in FIG. 6A, in the first posture, the biasing spring is in a contracted state. On the other hand, as shown in FIG. 6B, in the second posture, tension is generated in the elastic cable 30 in the axial direction of the base 101, and the biasing spring is extended in the axial direction of the base 101. At this time, the extension of the biasing spring is ⁇ d11. Then, the length of the extended portion extended by the path extending portion 40 in the second posture is shorter by 2 ⁇ ⁇ d11 than that in the first posture.
  • the extension (2 ⁇ ⁇ d11) of the biasing spring of the path extension 40 in the second posture is applied to the path difference ⁇ dc1. That is, in the first embodiment, it is necessary to ensure the path difference ⁇ dc1 only by expansion and contraction of the extension cable 30. However, in the second example, the extension of the extension cable 30 and the extension part of the wiring path of the path extension part 40 are required. The path difference ⁇ dc1 can be ensured by the expansion and contraction. Thereby, in addition to the effect of 1st Embodiment, the robot arm mechanism which concerns on a 2nd example is compared with the robot arm mechanism of 1st Embodiment. Can be shortened.
  • the robot arm mechanism according to the second example can absorb the tension by the biasing spring when the tension in the axial direction of the base 101 is generated in the telescopic cable 30. Therefore, the path extension part 40 according to the second example can reduce the burden on the stretchable cable 30 compared to the path extension part 40 shown in FIG.
  • the structure of the path extension 40 shown in FIG. 6 can be applied even when the hand portion side cable fixing portion 133a and the base side cable fixing portion 133b are wired with a non-stretchable cable.
  • the total elongation of the two biasing springs may be equal to or greater than the path difference ⁇ dc1.
  • the path difference ⁇ dc1 can be ensured only by the extension of the biasing spring without using the expansion cable 30.
  • the path extension 40 described with reference to FIGS. 2 and 6 is not limited to the mechanisms illustrated in FIGS. 2 and 6, respectively.
  • the number of pulleys, the distance between the pulleys, and the orientation of each pulley depend on the total length of the telescopic cable 30, the volume that can be occupied as the path extension 40, the positional relationship between the base cable fixing portion 133b and the cable guide 51, etc. Changes can be made accordingly.
  • the plurality of pulleys may be arranged in a positional relationship for forming a wiring path necessary for reciprocating the stretchable cable 30 along a direction orthogonal to the axial direction of the base 101.
  • the pulleys 141, 142, and 143 may be arranged such that the respective rotation axes are substantially parallel to the radial direction centered on the axis of the base 101.
  • each of the pulleys 141, 142, and 143 can be arranged on a circumference centered on the axis of the base 101. Therefore, in the case of the base 101 having a cylindrical shape, the path extension 40 into the base 101 is provided. The degree of freedom of arrangement can be improved.
  • the total length of the expansion cable 30 at the time of contraction according to the first embodiment has a length necessary for securing the path difference ⁇ dc1 by the expansion / contraction length.
  • the total length Lw1 of the expansion cable 30 at the time of contraction is longer than the shortest path length Lc1. Therefore, the path extension unit 40 according to the first embodiment has a function of extending the wiring path and a function of accommodating the telescopic cable 30.
  • the path extension portion 40 is configured such that the total length of the wiring path extended by the path extension portion 40 is substantially equivalent to the total length Lw1 of the telescopic cable 30 when contracted.
  • the entire length of the wiring path extended by the path extending portion 40 is extended by the length d1 as compared with the wiring path formed by only the plurality of cable guides 51. Accordingly, even in the first posture, the extension cable 30 is accommodated in the path extension part 40 without sagging, so that the extension cable 30 does not interfere with surrounding parts and the like during the extension operation of the robot arm 102. As a result, breakage of parts, breakage of the extension cable 30 and the like can be solved.
  • the total length of the wiring path extended by the path extension 40 is slightly shorter than the total length Lw1 of the expansion cable 30 at the time of contraction.
  • the path extension 40 has a mechanism in which a plurality of pulleys 141, 142, and 143 are arranged so as to form a reciprocating wiring path along the axial direction of the base 101 of the telescopic cable 30.
  • the number of pulleys, the distance between the pulleys, and the orientation of each pulley are the total length of the stretchable cable 30, the volume that can be occupied as the path extension 40, and the positional relationship between the base side cable fixing portion 133b and the cable guide 51. It suffices to be configured according to the above. Therefore, the path extension 40 according to the first embodiment can reduce the accommodation space of the elastic cable 30.
  • the pulley functions as an extension part for the extension cable 30 and a retracting part for the extension part. Friction generated between the portion 40 and the telescopic cable 30 can be reduced.
  • FIG. 7 is a diagram illustrating an internal structure of an articulated robot arm mechanism according to a first modification of the first embodiment.
  • the articulated robot arm mechanism according to the first modification includes a non-stretchable cable 30a, a plurality of telescopic cables 30b-30e, a plurality of cable fixing portions 135a-135j, and a plurality of driver sets 140a-140e. And a plurality of path extensions 40b1-40e1.
  • the driver set 140a includes a motor driver 137a and a motor 139a.
  • Other driver sets 140b-140e also have motor and motor driver sets (motor driver 137b and motor 139b, motor driver 137c and motor 139c, motor driver 137d and motor 139d, motor driver 137e and motor 139e), respectively.
  • the plurality of driver sets 140a-140d generate power for rotating the corresponding plurality of rotary joint portions J1-J4.
  • the driver set 140e generates power for opening and closing the hand unit 116.
  • One end of the cable 30a is connected to the connector of the motor driver 137a, and the other end is connected to the connector of the power supply circuit and the connector of the control device.
  • One end portion of the extension cable 30a is fixed by a cable fixing portion 135b provided in the vicinity of the motor driver 137a, and the other end portion is fixed by a cable fixing portion 135a provided at the bottom position in the base 101. Since there is no rotary joint between the cable fixing part 135a and the cable fixing part 135b, the distance between the motor driver 137a and the power supply circuit or the like does not change during the rotation of the robot arm 102. Therefore, the cable 30a may not have elasticity.
  • One end of the telescopic cable 30b is connected to the connector of the motor driver 137a, and the other end is connected to the connector of the motor driver 137b.
  • One end portion of the extension cable 30b is fixed by a cable fixing portion 135c provided in the vicinity of the motor driver 137a, and the other end portion is fixed by a cable fixing portion 135d provided in the vicinity of the motor driver 137b.
  • the path extension 40b1 is interposed on the wiring path between the cable fixing part 135c and the cable fixing part 135d. A path difference occurs between the cable fixing part 135c and the cable fixing part 135d depending on the rotational position of the rotary joint part J1.
  • the total length of the expansion cable 30b at the time of contraction has a length necessary for securing an expansion / contraction length that is greater than or equal to the maximum path difference generated at the rotary joint J1.
  • the path extension 40b1 is a difference between the total length of the telescopic cable 30b at the time of contraction and the wiring path length formed by only the plurality of cable guides 51 from the cable fixing part 135c to the cable fixing part 135d in the first posture. Is extended. Thereby, the expansion cable 30b can maintain the electrical connection between the motor driver 137a and the motor driver 137b, regardless of the position where the rotary joint portion J1 rotates.
  • One end of the telescopic cable 30c is connected to the connector of the motor driver 137b, and the other end is connected to the connector of the motor driver 137c.
  • One end portion of the telescopic cable 30c is fixed by a cable fixing portion 135e provided in the vicinity of the motor driver 137b, and the other end portion is fixed by a cable fixing portion 135f provided in the vicinity of the motor driver 137c.
  • the path extension 40c1 is interposed on the wiring path between the cable fixing part 135e and the cable fixing part 135f. Depending on the rotational position of the rotary joint J2, a path difference occurs between the cable fixing part 135e and the cable fixing part 135f.
  • the total length of the expansion cable 30c at the time of contraction has a length required to ensure an expansion / contraction length that is greater than or equal to the maximum path difference generated at the rotary joint J2.
  • the path extension 40c1 is a difference between the total length of the telescopic cable 30c at the time of contraction and the wiring path length formed by only the plurality of cable guides 51 from the cable fixing part 135e to the cable fixing part 135f in the first posture. Is extended. Thereby, the expansion cable 30c can maintain the electrical connection between the motor driver 137b and the motor driver 137c, regardless of the position of the rotary joint portion J2.
  • One end of the telescopic cable 30d is connected to the connector of the motor driver 137c, and the other end is connected to the connector of the motor driver 137d.
  • One end portion of the extension cable 30d is fixed by a cable fixing portion 135g provided in the vicinity of the motor driver 137c, and the other end portion is fixed by a cable fixing portion 135h provided in the vicinity of the motor driver 137d.
  • the path extension 40d1 is interposed on the wiring path between the cable fixing part 135g and the cable fixing part 135h. Depending on the rotational position of the rotary joint J3, a path difference occurs between the cable fixing part 135g and the cable fixing part 135h.
  • the total length of the telescopic cable 30d at the time of contraction has a length necessary for securing an expansion / contraction length that is greater than or equal to the maximum path difference generated at the rotary joint J3.
  • the path extension 40d1 is a difference between the total length of the telescopic cable 30d when contracted and the wiring path length formed by only the plurality of cable guides 51 from the cable fixing part 135g to the cable fixing part 135h in the first posture. Is extended. Thereby, the elastic cable 30d can maintain the electrical connection between the motor driver 137c and the motor driver 137d regardless of the position of the rotary joint portion J3.
  • One end of the telescopic cable 30e is connected to the connector of the motor driver 137d, and the other end is connected to the connector of the motor driver 137e.
  • One end portion of the telescopic cable 30e is fixed by a cable fixing portion 135i provided near the motor driver 137d, and the other end portion is fixed by a cable fixing portion 135j provided near the motor driver 137e.
  • the path extension 40e1 is interposed on the wiring path between the cable fixing part 135i and the cable fixing part 135j. A path difference occurs between the cable fixing part 135i and the cable fixing part 135j depending on the rotational position of the rotary joint part J4.
  • the total length of the expansion cable 30e at the time of contraction has a length required to ensure an expansion / contraction length that is greater than or equal to the maximum path difference generated at the rotary joint J4.
  • the path extension 40e1 is a difference between the total length of the telescopic cable 30e when contracted and the wiring path length formed by only the plurality of cable guides 51 from the cable fixing part 135i to the cable fixing part 135j in the first posture. Is extended. Thereby, the expansion cable 30e can maintain the electrical connection between the motor driver 137d and the motor driver 137e, regardless of the position of the rotary joint J4.
  • the structure of the path extension 40 described in FIGS. 2, 5, and 6 of the first embodiment can be applied to each of the plurality of path extensions 40b1-40e1.
  • the route is extended on the wiring route straddling the rotary joint.
  • the telescopic cable 30b connects the motor driver 137a and the motor driver 137b.
  • a rotary joint J1 is interposed on the wiring path between the motor driver 137a and the motor driver 137b.
  • the total length of the expansion cable 30b at the time of contraction has a length required to ensure an expansion / contraction length that is greater than or equal to the maximum path difference generated at the rotary joint J1.
  • the total length of the wiring path extended by the path extension 40b1 is substantially equivalent to the total length of the telescopic cable 30b when contracted. That is, the path extension 40b1 can accommodate the telescopic cable 30b without sagging regardless of the rotation of the rotary joint J1.
  • the telescopic cable 30b can maintain the electrical connection between the motor driver 137a and the motor driver 137b regardless of the rotation of the rotary joint portion J1.
  • each of the plurality of motor drivers 137b to 137e may be independently connected to the power supply source by the telescopic cable 30.
  • the path extension 40 may be provided for each wiring path of the plurality of stretchable cables 30.
  • FIG. 8 is a diagram illustrating an internal structure of an articulated robot arm mechanism according to a second modification of the first embodiment.
  • FIG. 8 corresponds to FIG.
  • the plurality of path extension portions 40b1-40e1 according to the first modification are provided between adjacent pairs of the rotary joint portions J1-J4.
  • each of the path extension portions 40b2-40e2 according to the second modification is configured inside the rotary joint portion.
  • the path extension part 40c2 is configured using a rotary shaft body of the rotary joint part J2.
  • FIG. 9A is a side view showing an internal structure of a path extension portion 40c2 configured by using a rotating shaft body of the rotary joint portion J2 according to the second modification of the first embodiment.
  • FIG. 9B is a plan view showing an internal structure of a path extension portion 40c2 that is configured using the rotary shaft body of the rotary joint portion J2 according to the second modification of the first embodiment.
  • the path extension 40c2 is configured on the rotary shaft 170 of the rotary joint J2.
  • the rotating shaft 170 connects the arm part 105 and the arm part 103 rotatably.
  • a guide groove 172 for preventing the extension cables 30c from contacting each other is formed in the rotary shaft 170 in a spiral shape.
  • the path extension 40c2 can extend the wiring path.
  • the total length of the wiring path extended by the path extension 40c2 is substantially equivalent to the total length of the telescopic cable 30c when contracted.
  • the total length of the expansion / contraction cable 30c at the time of contraction has a length required to ensure an expansion / contraction length that is greater than or equal to the path difference between the wiring paths generated at the rotary joint J2.
  • the route extension 40c2 is a difference between the total length of the telescopic cable 30c when contracted and the length of the wiring route formed by only the plurality of cable guides 51 from the cable fixing portion 135e to the cable fixing portion 135f in the first posture. Is extended.
  • the length of the wiring path extended by the path extending portion 40c2 can be appropriately changed depending on the number of turns of the telescopic cable 30c around the rotating shaft 170, the diameter of the rotating shaft 170, and the like. Since the stretchable cable 30c is wound along the guide groove 172, adjacent stretchable cable portions do not come into contact with each other, so that friction between stretchable cable portions that expand and contract in the reverse direction due to stretching can be suppressed.
  • the telescopic cable 30c expands and contracts by the rotation of the wound rotary shaft 170. Therefore, the friction between the rotating shaft 170 and the telescopic cable 30c can be reduced. Due to these effects, the risk of breakage of the elastic cable 30 can be reduced.
  • the path extension portion 40c2 can be configured using the rotating shaft body 170 of the part that originally exists, the occupied volume as the path extension portion 40c2 can be minimized. Further, as in the first embodiment, additional parts as the path extension 40c2 are not necessary, so that the cost can be reduced.
  • FIG. 10A is a side view showing an internal structure of a path extension portion 40c2 configured by using a rotating shaft body of the rotary joint portion J2 according to the second modification of the first embodiment.
  • FIG. 10B is a plan view showing an internal structure of a path extension portion 40c2 that is configured using the rotary shaft body of the rotary joint portion J2 according to the second modification of the first embodiment.
  • the path extension 40c2 is configured on the rotary shaft body 174 of the rotary joint J2.
  • the rotating shaft body 174 rotatably connects the arm portion 105 and the arm portion 103.
  • the rotating shaft body 174 has a cylindrical shape. When the telescopic cable 30c is inserted into the cylindrical hollow portion, the path extension 40c2 can extend the wiring path.
  • the extended wiring path length corresponds to the length of the insertion portion of the rotating shaft body 174 in the axial direction (X direction in the drawing).
  • the telescopic cable 30c may be wound along the axial direction of the rotary shaft body 174.
  • the path extension 40c2 is configured using a cylindrical rotating shaft body 174, which is an originally existing part. Therefore, the occupied volume as the path extension 40 can be minimized. Further, as in the first embodiment, since no additional part is required as the path extension unit 40, the cost can be reduced.
  • the second embodiment corresponds to the case where the present invention is applied to an ink jet printer.
  • an inkjet printer according to a second embodiment will be described with reference to the drawings.
  • FIG. 11 is a schematic configuration diagram of the inkjet printer 2 according to the second embodiment.
  • the inkjet printer 2 according to the second embodiment includes a carriage 202, an inkjet printer head 203 (hereinafter simply referred to as the head 203), a printer frame 204, a carriage shaft 205, A paper discharge roller 206.
  • FIG. 12 is a diagram illustrating an example of a wiring mechanism of the telescopic cable 30 of the ink jet printer according to the second embodiment.
  • FIG. 12A shows a wiring mechanism of the telescopic cable 30 when the carriage 202 is disposed at the reference position.
  • FIG. 12B shows a wiring mechanism of the telescopic cable 30 when the carriage 202 is disposed at the maximum movement position.
  • the reference position corresponds to a position where the head side cable fixing portion 220a is closest to the main body side cable fixing portion 220b.
  • the maximum movement position corresponds to a position where the head side cable fixing portion 220a is farthest from the main body side cable fixing portion 220b.
  • the carriage 202 has a plurality of ink cartridges 202a, 202b, 202c and 202d mounted therein.
  • the carriage 202 includes a head 203 on the lower surface thereof.
  • the head 203 outputs a predetermined image or the like on a recording paper (recording medium) P by discharging ink from an inkjet nozzle (not shown).
  • the type and amount of ink ejected from the inkjet nozzle are controlled by a main body (not shown).
  • the main body has a power supply circuit and a control device.
  • the carriage 202 has a receiving unit 207 for receiving power and signals from the main body.
  • the main body unit and the receiving unit 207 are connected by the extendable cable 30.
  • the wiring mechanism of the telescopic cable 30 will be described later.
  • the carriage 202 is movably supported by a carriage shaft 205 in the printer frame 204.
  • the carriage shaft 205 has an axis (X axis) B orthogonal to the conveyance direction A (Z-axis direction) of the recording paper P and parallel to the conveyance surface of the recording paper P.
  • the paper discharge roller 206 discharges the recording paper P.
  • the operation of the inkjet printer 2 is as follows. First, the recording paper P fed from a paper feed unit (not shown) is transported between a platen roller (not shown) and the head 203 along a transport direction A by a transport unit (not shown). Is done. Then, the main body controls the movement of the carriage 202, the ejection of ink by the head 203, and the conveyance of the recording paper P, thereby outputting a predetermined image or the like on the recording paper P. Thereafter, the recording paper P after recording is discharged by the paper discharge roller 206. As shown in FIG. 12, the wiring mechanism of the stretchable cable 30 includes the stretchable cable 30, a plurality of cable guides 51, a path extension portion 40, a head side cable fixing portion 220a, and a main body side cable fixing portion 220b. Is done.
  • One end of the telescopic cable 30 is connected to the connector of the receiving unit 207 in the carriage 202.
  • the other end is connected to a connector of the main body (a connector of a power supply circuit that generates electric power and a connector of a control device that generates a control signal).
  • the ink jet control unit 208 controls the ink jet nozzles based on the electric power input via the receiving unit 207 and the control signal.
  • One end portion of the telescopic cable 30 is fixed to a cable fixing portion 220a (referred to as a head-side cable fixing portion 220a) provided in the vicinity of the receiving portion 207 in the carriage 202.
  • the other end portion of the elastic cable 30 is fixed to a cable fixing portion 220b (referred to as a main body side cable fixing portion 220b) provided in the main body portion.
  • a portion of the telescopic cable 30 between the head side cable fixing portion 220 a and the main body side cable fixing portion 220 b is guided by a plurality of cable guides 51.
  • the plurality of cable guides 51 form a wiring path for the telescopic cable 30.
  • the telescopic cable 30 guided by the plurality of cable guides 51 passes through the carriage shaft 205.
  • the path extension part 40 is interposed on the wiring path of the telescopic cable 30 in order to extend the wiring path from the head side cable fixing part 220a to the main body side cable fixing part 220b.
  • the path extension 40 is provided in the carriage shaft 205.
  • the path extension 40 includes a plurality of pulleys having the same radius, here, a first pulley 241 and a second pulley 242. These pulleys 241 and 242 are dispersedly arranged in a direction substantially parallel to the axial direction (X axis) of the carriage shaft 205.
  • the first pulley 241 is disposed at a position spaced a predetermined distance above the second pulley 242 (in the Y-axis direction).
  • the elastic cable 30 is stretched over the first pulley 241 and the second pulley 242 in this order from the head side cable fixing portion 220a. Accordingly, the plurality of pulleys 241 and 242 form a reciprocating wiring path along the axial direction of the carriage shaft 205 for the telescopic cable 30.
  • a wiring path including only the plurality of cable guides 51 arranged between the head side cable fixing part 220a and the main body side cable fixing part 220b is referred to as a shortest path.
  • the total length of the telescopic cable 30 at the time of contraction is determined by the distance (movement length) ⁇ d21 between the position of the carriage 202 when placed at the reference position and the position of the carriage 202 at the time of maximum movement.
  • the total length of the expansion cable 30 at the time of contraction has a length for securing an expansion / contraction length that is greater than or equal to the movement length ⁇ d21.
  • the total length of the expansion cable 30 at the time of contraction thus determined is longer than the total length of the shortest path.
  • the reciprocating wiring path of the path extension 40 extends the difference between the total length of the telescopic cable 30 at the time of contraction and the total length of the shortest path. According to the inkjet printer 2 according to the second embodiment described above, the same effects as those of the first embodiment can be obtained.
  • the third embodiment corresponds to a case where the present invention is applied to a triaxial moving mechanism.
  • the three-axis moving mechanism can be installed in, for example, a crane-type game machine, a 3D printer, a work XY stage, and the like.
  • the triaxial moving mechanism according to the third embodiment will be described with reference to the drawings.
  • FIG. 13 is an external perspective view of the triaxial moving mechanism 3 according to the third embodiment.
  • the three-axis moving mechanism 3 includes a pair of columns 301, a cross rail 303, a cross rail moving unit 305, a main shaft device 307, a main shaft device moving unit 309, an action unit 311, an action Part moving part 313.
  • the pair of columns 301 are arranged at positions separated by a predetermined distance in the X-axis direction.
  • the pair of columns 301 supports the cross rail 303 so as to be movable in the Y-axis direction.
  • the cross rail 303 is moved in the Y-axis direction by the cross rail moving unit 305.
  • the cross rail moving unit 305 operates according to the control of the main body (not shown).
  • the cross rail 303 supports the spindle device 307 so as to be movable in the X-axis direction.
  • the spindle device 307 is moved in the X-axis direction by the spindle device moving unit 309.
  • the spindle device moving unit 309 operates according to the control of the main body.
  • the spindle device 307 supports the action portion 311 at its tip portion so as to be movable in the Z-axis direction.
  • the action part 311 operates according to the control of the main body part.
  • the action part 311 is a drill 311 for cutting.
  • the spindle device 307 holds the drill 311 in a rotatable manner.
  • the main spindle device 307 has a rotation axis parallel to the Z axis.
  • the action part 311 can be replaced with another one.
  • the spindle device 307 may be equipped with an attachment portion such as a rotary joint for attaching the action portion 311.
  • the main unit has a power supply circuit and a control device.
  • the main body portion and the drill 311 are connected by the extension cable 30.
  • the wiring mechanism of the telescopic cable 30 will be described later.
  • the drill 311 receives power supply from the power supply circuit of the main body, and performs an operation according to a control signal from the control device of the main body.
  • the main body and the drill 311 are connected by an extendable cable 30.
  • the position of the drill 311 is determined by moving the cross rail 303 in the Y-axis direction, the spindle device 307 in the X-axis direction, and the drill 311 in the Z-axis direction.
  • FIG. 14 is a diagram illustrating an example of a wiring mechanism of the telescopic cable 30 of the triaxial moving mechanism 3 according to the third embodiment.
  • the wiring mechanism of the stretchable cable 30 includes a stretchable cable 30, a plurality of cable guides 51, a plurality, here, three path extension portions 40a3, 40c3, 40d3, and a plurality of cable fixing portions 320a- 320d.
  • One end of the extension cable 30 is connected to the connector of the drill 311.
  • the other end is connected to the connector of the main body.
  • One end portion of the telescopic cable 30 is fixed to a cable fixing portion 320a (hereinafter referred to as a drill-side cable fixing portion 320a) provided in the vicinity of the connector of the drill 311 in the spindle device 307.
  • the other end portion of the telescopic cable 30 is fixed to a cable fixing portion 320b (hereinafter referred to as a column side cable fixing portion 320b) provided in the vicinity of the main body portion in the column 301.
  • the middle part of the telescopic cable 30 includes a cable fixing portion 320c (hereinafter referred to as a main shaft side cable fixing portion 320c) provided in the vicinity of the cross rail 303 in the main shaft device 307, and a column 301 in the cross rail 303. Is fixed to a cable fixing portion 320d (hereinafter referred to as a cross rail side cable fixing portion 320d).
  • the wiring path of the telescopic cable 30 is divided into three wiring sections by a plurality of cable fixing portions 320a, 320b, 320c and 320d.
  • the column wiring section is a section divided by the column side cable fixing portion 320b and the cross rail side cable fixing portion 320d.
  • a portion corresponding to the column wiring section of the extension cable 30 is contracted as the cross rail 303 moves in the Y-axis direction.
  • the cross rail wiring section is a section divided by the cross rail side cable fixing portion 320d and the main shaft side cable fixing portion 320c.
  • a portion corresponding to the cross rail wiring section of the extension cable 30 is contracted as the spindle device 307 moves in the X-axis direction.
  • the main shaft wiring section is a section of the wiring path divided by the main shaft side cable fixing portion 320c and the drill side cable fixing portion 320a.
  • a portion corresponding to the main shaft wiring section of the extension cable 30 is contracted as the drill 311 moves in the Z-axis direction.
  • the spindle-side cable fixing portion 320c becomes a fixing point
  • the drill-side cable fixing portion 320a becomes a moving point that moves together with the drill 311.
  • the drill side cable fixing portion 320a and the column side cable fixing portion 320b may be connected using a plurality of, here, three extension cables 301, 302, and 303.
  • the first telescopic cable 301 corresponds to the column wiring section, and one end is connected to the connector of the main body portion and the other end is connected to the connector of the cross rail side cable fixing portion 320d.
  • the second telescopic cable 302 corresponds to the cross rail wiring section, and one end is connected to the connector of the cross rail side cable fixing portion 320d and the other end is connected to the connector of the main shaft side cable fixing portion 320c.
  • the third telescopic cable 303 corresponds to the main shaft wiring section, and one end is connected to the connector of the main shaft side cable fixing portion 320 c and the other end is connected to the connector of the drill 311.
  • the plurality of telescopic cables 301, 302, and 303 are wired in the Y-axis direction, the X-axis direction, and the Z-axis direction, respectively. Therefore, each of the plurality of stretchable cables 301, 302, and 303 does not need to be fixed on the way by the cable fixing portion. Further, each of the plurality of stretchable cables 301, 302, and 303 works only in one direction. On the other hand, when wiring one elastic cable 30, the elastic cable 30 is fixed by a plurality of cable fixing portions.
  • Tension from two directions orthogonal to each other is generated at the portion where the elastic cable 30 is fixed.
  • the tension from the X-axis direction and the tension from the Y-axis direction act on the stretchable cable 30 fixed by the cross rail side cable fixing portion 320d. Therefore, the wiring method using the plurality of stretchable cables 301, 302, and 303 can improve the durability as compared with the case where a single stretchable cable 30 is wired.
  • the wiring is performed using one stretchable cable 30, if there is a disconnected portion, it is necessary to replace the stretchable cable 30 in its entirety.
  • the route extension 40 is provided in each wiring section (between a fixed point and a moving point).
  • the path extension 40a3 is provided in the spindle wiring section, and is formed in the spindle device 307, for example.
  • the path extension 40c3 is provided in the cross rail wiring section, and is formed in the cross rail 303, for example.
  • the path extension 40d3 is provided in the column wiring section, and is formed in the column 301, for example.
  • the plurality of path extensions 40a3, 40c3, 40d3 each have a plurality of pulleys, here two pulleys.
  • the two pulleys are distributed in the wiring direction of the corresponding wiring section and form a reciprocal wiring path along the wiring direction.
  • the path extension 40c3 includes a first pulley 341c and a second pulley 342c.
  • the first pulley 341c and the second pulley 341c are dispersedly arranged in the X-axis direction.
  • the first pulley 341c is disposed at a position spaced a predetermined distance above the Z axis of the second pulley 342c.
  • the telescopic cable 30 is stretched from the main shaft side cable fixing portion 320c in the order of the first pulley 341c and the second pulley 342c.
  • the plurality of pulleys 341c and 342c form a reciprocal wiring path along the X-axis direction of the telescopic cable 30.
  • the path extension part 40c3 has a third pulley 343c for guiding the telescopic cable 30 from the cross rail side cable fixing part 320d to the second pulley 342c.
  • the reciprocal wiring route of the route extension 40c3 extends the wiring route only by the plurality of cable guides 51 arranged in the cross rail wiring section.
  • the length of the telescopic cable 30 at the time of contraction required in the cross rail wiring section is determined by the expansion / contraction length ⁇ d32.
  • the path difference ⁇ d32 corresponds to the distance between the reference position of the spindle device 307 and the maximum movement position of the spindle device 307.
  • the reference position of the spindle device 307 corresponds to the position at which the spindle device 307 is closest to the cross rail side cable fixing portion 320d.
  • the position of the main shaft side cable fixing portion 320c at this time is indicated by a dotted line in the figure.
  • the maximum movement position of the spindle device 307 corresponds to the position where the spindle device 307 is farthest from the cross rail side cable fixing portion 320d.
  • the position of the main shaft side cable fixing portion 320c at this time is indicated by a solid line in the drawing.
  • a wiring route including only the plurality of cable guides 51 arranged between the cross rail side cable fixing portion 320d and the main shaft side cable fixing portion 320c is referred to as a shortest route.
  • the stretchable cable 30 required in the cross rail wiring section has a total length necessary for securing the stretchable length ⁇ d32 with the stretchable length of the cable when the cable is contracted. Specifically, the total length of the portion corresponding to the cross rail wiring section of the stretchable cable 30 is determined so that the difference in length before and after contraction is equal to or greater than ⁇ d32. The total length of the elastic cable 30 required in the cross rail wiring section is longer than the total length of the shortest path.
  • the reciprocal wiring path of the path extension 40c3 extends the difference between the total length of the telescopic cable 30 at the time of contraction and the total length of the shortest path required in the cross rail wiring section.
  • the expansion cable 30 required in the column wiring section has a total length necessary for securing the expansion / contraction length ⁇ d33 with the expansion / contraction length of the cable when the cable contracts.
  • the total length of the portion corresponding to the column wiring section of the telescopic cable 30 is determined so that the difference in length before and after contraction is equal to or greater than ⁇ d33.
  • the path difference ⁇ d33 corresponds to the distance between the reference position of the cross rail 303 and the maximum movement position of the cross rail 303.
  • the reference position of the cross rail 303 corresponds to a position where the cross rail 303 is closest to the column side cable fixing portion 320b.
  • the position of the cross rail side cable fixing portion 320d at this time is indicated by a dotted line in the figure.
  • the maximum movement position of the cross rail 303 corresponds to the position where the cross rail 303 is farthest from the column side cable fixing portion 320b.
  • the position of the cross rail side cable fixing portion 320d at this time is indicated by a solid line in the drawing.
  • a wiring route including only the plurality of cable guides 51 arranged between the column side cable fixing portion 320b and the cross rail side cable fixing portion 320d is referred to as a shortest route.
  • the total length of the telescopic cable 30 required in the column wiring section is longer than the total length of the shortest path.
  • the reciprocal wiring path of the path extension 40d3 extends the difference between the total length of the telescopic cable 30 during contraction and the total length of the shortest path required in the column wiring section.
  • the extendable cable 30 required in the spindle wiring section has a total length necessary for securing the extension length ⁇ d31 with the extension / contraction length of the cable when the cable is contracted. Specifically, the total length of the portion corresponding to the main-axis wiring section of the telescopic cable 30 is determined so that the difference in length before and after contraction is equal to or greater than ⁇ d31.
  • the path difference ⁇ d31 corresponds to the distance between the reference position of the drill 311 and the maximum movement position of the drill 311.
  • the reference position of the drill 311 corresponds to a position where the drill 311 is closest to the main shaft side cable fixing portion 320c.
  • the position of the drill side cable fixing part 320a at this time is indicated by a dotted line in the figure.
  • the maximum movement position of the drill 311 corresponds to the position where the drill 311 is farthest from the main shaft side cable fixing portion 320c.
  • the position of the drill side cable fixing portion 320a at this time is indicated by a solid line in the drawing.
  • a wiring route including only the plurality of cable guides 51 arranged between the main shaft side cable fixing portion 320c and the drill side cable fixing portion 320a is referred to as a shortest route.
  • the total length of the telescopic cable 30 required in the spindle wiring section is longer than the total length of the shortest path.
  • the reciprocal wiring path of the path extension 40a3 extends the difference between the total length of the telescopic cable 30 at the time of contraction and the total length of the shortest path required in the main shaft wiring section.
  • the total length of the expansion cable 30 at the time of contraction is determined by the sum of the lengths of the expansion cable 30 at the time of contraction required for each wiring section.
  • the wiring path from the main body portion to the drill 311 is divided into three wiring sections by a plurality of cable fixing portions 320a to 320d.
  • the three wiring sections correspond to a wiring section in the X-axis direction, a wiring section in the Y-axis direction, and a wiring direction in the Z-axis direction, respectively.
  • a path extension 40c3 is provided in the wiring section in the X-axis direction
  • a path extension 40d3 is provided in the wiring section in the Y-axis direction
  • a path extension 40a3 is provided in the wiring direction in the Z-axis direction.
  • the path extension 40a3 is configured to respond to contraction in the Z-axis direction of the telescopic cable 30 accompanying movement of the drill 311 in the Z-axis direction. As a result, only the tension in the Z-axis direction is generated at the portion of the stretchable cable 30 that spans the path extension 40a3.
  • the path extension 40c3 is configured to correspond to the contraction in the X-axis direction of the telescopic cable 30 accompanying the movement of the drill 311 in the X-axis direction. Thereby, only the tension
  • the path extension 40d3 is configured to correspond to contraction in the Y-axis direction of the telescopic cable 30 accompanying movement of the drill 311 in the Y-axis direction.
  • the plurality of path extension portions 40a3, 40c3, and 40d3 can be configured as a pulley or the like so that the elastic cable 30 can smoothly expand and contract according to the tension generated in each wiring section. That is, the friction generated between the expansion cable 30 and other components (cable guides, pulleys, etc.) as the expansion cable 30 expands and contracts can be reduced, thereby reducing the risk of disconnection of the expansion cable 30 and the like. Can do.
  • the fourth embodiment corresponds to a case where the present invention is applied to a hydraulic mechanism.
  • an aerial work vehicle equipped with a hydraulic mechanism according to the fourth embodiment will be described with reference to the drawings.
  • FIG. 15 is an external view of an aerial work vehicle equipped with a hydraulic mechanism according to the fourth embodiment.
  • the aerial work vehicle 4 includes a chassis 411, a swivel base 412, an arm 413, an action part 414, and a hoisting actuator 415.
  • the chassis 411 supports the turntable 412 so as to be turnable.
  • the swivel base 412 has a swivel axis parallel to the Z axis.
  • the swivel base 412 supports the arm 413 so that it can be raised and lowered.
  • the hoisting actuator 415 fixes the swivel base 412 and the arm 413.
  • the undulation actuator 415 has a hydraulic cylinder.
  • the arm 413 rises and falls according to the expansion and contraction of the hydraulic cylinder.
  • the arm 413 is configured by, for example, a nested structure of an arm part 413a and an arm part 413b having a cylindrical shape.
  • a hydraulic cylinder is provided inside the arm 413. The arm 413 expands when the inner hydraulic cylinder is extended and contracted, and the inner arm 413b extends from the outer arm 413a, and contracts when inserted.
  • the action part 414 is attached to the tip of the arm 413.
  • the operator uses an operation panel (not shown) to move the action unit 414 to an arbitrary position by instructing the turning operation of the turntable 412, the raising / lowering operation of the arm 413 of the raising / lowering actuator 415, and the expansion / contraction operation of the arm 413. be able to.
  • the action part 414 is referred to as the illumination 414. Electric power is supplied to the illumination 414 from an external power source via the telescopic cable 30.
  • the dotted line indicates the reference posture of the arm 413, and the solid line indicates the undulating posture when the arm 413 is extended to the maximum.
  • FIG. 16 is a diagram showing an example of the structure of the route extension 40 of the aerial work vehicle 4 equipped with the hydraulic mechanism according to the fourth embodiment.
  • the reference posture of the arm 413 is indicated by a dotted line
  • the undulating posture is indicated by a solid line.
  • the wiring mechanism of the telescopic cable 30 includes the telescopic cable 30, a plurality of cable guides 51, a path extension 40, an action part side cable fixing part 420a, and a swivel base side cable fixing part 420b. Consists of.
  • One end of the extension cable 30 is connected to the connector of the illumination 414.
  • the other end is connected to an external connector provided on the swivel base 412.
  • An external power source is connected to the external connector.
  • One end portion of the telescopic cable 30 is fixed to a cable fixing portion 420a (hereinafter referred to as an action portion side cable fixing portion 420a) provided in the vicinity of the illumination 414.
  • the other end portion of the telescopic cable 30 is fixed to a cable fixing portion 420b (hereinafter referred to as a swivel base side cable fixing portion 420b) provided in the vicinity of the external connector in the swivel base 412.
  • a portion between the action part side cable fixing part 420 a and the swivel base side cable fixing part 420 b of the telescopic cable 30 is guided by a plurality of cable guides 51.
  • the plurality of cable guides 51 form the wiring path of the elastic cable 30 along the arm 413 outside.
  • the plurality of cable guides 51 may be arranged such that the wiring path of the telescopic cable 30 is formed in the arm 413. Further, the plurality of cable guides 51 may be arranged such that a part of the wiring path is formed in the arm 413.
  • the path extension part 40 is interposed on the wiring path of the telescopic cable 30 in order to extend the wiring path from the action part side cable fixing part 420a to the swivel base side cable fixing part 420b. As shown in FIG. 16, the path extension 40 is formed in the swivel base 412.
  • the path extension 40 includes a first pulley 441 and a second pulley 442 having the same radius. These pulleys 441 and 442 are dispersedly arranged in a direction (Z-axis direction) orthogonal to the installation surface G.
  • the telescopic cable 30 is stretched over the swivel base side cable fixing portion 420b, the first pulley 441, and the second pulley 442 in this order.
  • the first pulley 441 and the second pulley 442 form a reciprocal wiring path along the Z-axis direction of the telescopic cable 30.
  • the third pulley 443 hangs the stretchable cable 30 wired along the arm 413 to the second pulley 442.
  • the arm 413 is raised and lowered with respect to the installation surface G at an arbitrary angle. Therefore, the third pulley 443 is disposed at a position where the telescopic cable 30 is not detached from the third pulley 443 no matter how the arm 413 is raised or lowered.
  • a wiring route including only the plurality of cable guides 51 arranged between the action portion side cable fixing portion 420a and the swivel base side cable fixing portion 420b is referred to as a shortest route.
  • the total length of the telescopic cable 30 at the time of contraction is determined by a distance (extension / contraction length) ⁇ d41 between the position of the illumination 414 at the reference posture and the position of the illumination 414 at the undulating posture.
  • the total length of the expansion cable 30 at the time of contraction is longer than the total length of the shortest path.
  • the reciprocating wiring path of the path extension 40 extends the difference between the total length of the telescopic cable 30 at the time of contraction and the total length of the shortest path.
  • (Fifth embodiment) 5th Embodiment is related with the wiring mechanism of the expansion-contraction cable 30 between a fixing
  • the fixed portion is equipped with, for example, an external power supply device and an external control device.
  • the moving unit corresponds to the hand unit 116 provided in the robot arm 102 having the plurality of rotary joints J1-J4 in the first embodiment.
  • the second embodiment corresponds to a carriage that reciprocates along the carriage shaft 205.
  • it is equivalent to the drill 311 hold
  • it corresponds to the action part 414 with which the arm 413 which can be expanded-contracted with a hydraulic mechanism was equipped.
  • the application destination of the wiring mechanism according to the present embodiment is not limited to each device described in the first to fourth embodiments. If it is necessary to supply at least one of electric power and a control signal from the fixed unit to the moving unit, the present embodiment can be applied as a wiring mechanism between the fixed unit and the moving unit. Specifically, the wiring mechanism of the telescopic cable 30 according to the present embodiment can be applied to an apparatus using a conventional cable carrier (registered trademark).
  • the cable carrier is a device for protecting the cable connected between the fixed part and the moving part and guiding it to a predetermined wiring path. Therefore, even when an extra length is generated in the cable connecting the fixed portion and the moving portion, the extra length is guided to a predetermined wiring path.
  • the device using the cable carrier include a chip mounter, an inspection device, an X-ray inspection machine, a work conveyance carriage, an electric door opening / closing device (power slide door such as a car), and an overhead crane.
  • the present invention can be applied to a cable wiring mechanism such as an exoskeleton robot for supporting human movement.
  • the wiring mechanism of the telescopic cable 30 will be described taking application to an assembly factory line as an example.
  • FIG. 17 is an external perspective view showing a configuration of an assembly line incorporating the wiring mechanism according to the fifth embodiment.
  • the assembly line includes a conveyor 61, a tool carriage track 65, and a tool carriage 67.
  • the fixed part is an external power source (not shown)
  • the moving part is an outlet 671 equipped on the tool carriage 67.
  • the conveyor 61 is a belt-like mechanical device for transporting the work object 63 continuously or intermittently.
  • the conveyor 61 has, for example, a belt type and a chain type structure.
  • the tool carriage track 65 is provided so as to run parallel to the conveyor 61.
  • the tool carriage 67 has wheels at the lower part and moves on a tool carriage line 65 provided in parallel with the conveyor 61.
  • the tool carriage 67 is equipped with an electrical outlet (electrical connection) 671 for inserting a plug of an electric machine tool, for example, an electric drill.
  • the outlet (electrical connection part) 671 and the external power supply are connected by the telescopic cable 30.
  • the wiring mechanism of the telescopic cable 30 will be described later.
  • the worker stands on the conveyor 61 and uses the machine tool attached to the tool cart 67 to perform work on the work target 63.
  • the work area for working with the machine tool attached to the tool carriage 67 is limited on the assembly line. The worker performs work on the work target 63 while moving the corresponding tool cart 67 for each work area.
  • FIG. 18 is a diagram illustrating an example of a wiring mechanism of the telescopic cable 30 between the tool carriage 67 and an external power source according to the fifth embodiment.
  • FIG. 18A shows a wiring mechanism of the telescopic cable 30 when the tool carriage 67 is arranged at the reference position.
  • FIG. 18B shows a wiring mechanism of the telescopic cable 30 when the tool carriage 67 is disposed at the maximum movement position.
  • the reference position corresponds to the center position of the movement range of the tool cart 67.
  • the maximum movement position is a position where the tool carriage 67 is farthest from the reference position.
  • the maximum movement position is the case where the tool carriage 67 is farthest from the reference position in the + Z direction.
  • the wiring mechanism of the elastic cable 30 includes the elastic cable 30, a plurality of guide pulleys 625, 626 a, 626 b, a path extension 40, a cart side cable fixing part 620 a, and a power source side cable fixing part. 620b.
  • One end of the telescopic cable 30 is connected to an outlet 671 of the tool cart 67.
  • the other end of the elastic cable 30 is connected to an external power source.
  • the telescopic cable 30 is wired between the tool carriage tracks 65, for example.
  • One end portion of the telescopic cable 30 is fixed by a cable fixing portion 620a (hereinafter referred to as a cart side cable fixing portion 620a) provided in the vicinity of the outlet 671 of the tool cart 67.
  • the other end portion of the elastic cable 30 is fixed by a cable fixing portion 620b (hereinafter referred to as a power supply side cable fixing portion 620b) provided in the vicinity of the external power source.
  • the path extension 40 is interposed on the wiring path of the expansion cable 30 in order to extend the wiring path of the expansion cable 30 from the cart side cable fixing section 620a to the power supply side cable fixing section 620b.
  • the path extension 40 is preferably provided in the vicinity of the reference position of the tool cart 67. Thereby, the required length of the elastic cable 30 can be shortened.
  • the path extension 40 includes a plurality of pulleys having the same radius, here, a first pulley 621, a second pulley 622, a third pulley 623, and a fourth pulley 624.
  • These pulleys 621, 622, 623 and 624 are dispersedly arranged in a direction substantially parallel to the moving direction (Z-axis direction) of the tool carriage 67.
  • the first pulley 621 and the third pulley 623 are disposed at the same position with respect to the Z axis.
  • the second pulley 622 and the fourth pulley 624 are disposed at the same position with respect to the Z axis.
  • the second pulley 622 and the fourth pulley 624 are disposed at a position separated from the first pulley 621 and the third pulley 623 by a predetermined distance in the Z-axis direction.
  • the elastic cable 30 is stretched from the power supply side cable fixing portion 620b in the order of the first pulley 621, the second pulley 622, the third pulley 623, and the fourth pulley 624.
  • the plurality of pulleys 621, 622, 623, and 624 form a reciprocal wiring path along the moving direction of the tool carriage 67 for the telescopic cable 30.
  • a plurality of guide pulleys here the first guide pulley 625, the second guide pulley 626a, and the third guide pulley 626b, guide the telescopic cable 30 from the cart side cable fixing portion 620a to the fourth pulley 624 of the path extension portion 40.
  • the second guide pulley 626a guides the telescopic cable 30 to the first guide pulley 625 when the tool carriage 67 is moved in the ⁇ Z direction from the reference position.
  • the third guide pulley 626b guides the telescopic cable 30 to the first guide pulley 625 when the tool carriage 67 is moved in the + Z direction from the reference position.
  • the first guide pulley 625 guides the telescopic cable 30 guided by the second guide pulley 626 a or the third guide pulley 626 b to the fourth pulley 624 of the path extension 40.
  • a wiring path including only the plurality of guide pulleys 625 and 626 disposed between the carriage side cable fixing part 620a and the power supply side cable fixing part 620b is referred to as a shortest path.
  • the total length of the telescopic cable 30 at the time of contraction is determined by the distance (movement length) ⁇ d61 between the reference position of the tool carriage 67 and the maximum movement position. Specifically, the total length of the stretchable cable 30 at the time of contraction is determined to be a length necessary for securing a stretchable length that is equal to or longer than the movement length ⁇ d61. The total length of the expansion cable 30 at the time of contraction thus determined is longer than the total length of the shortest path.
  • the reciprocating wiring path of the path extension 40 extends the difference between the total length of the telescopic cable 30 at the time of contraction and the total length of the shortest path.
  • the path extension unit 40 has the fixed unit and the moving unit. It is only necessary to be provided on the wiring path between the two. At this time, the total length of the stretchable cable 30 at the time of contraction has a length for securing the maximum wiring path difference between the fixed portion and the moving portion by the stretchable length of the stretchable cable 30.
  • the path extension 40 may be configured to extend the difference between the total length of the telescopic cable 30 when contracted and the minimum wiring path length between the fixed part and the moving part.
  • the structure of the path extension 40 described in the second to fifth embodiments is not limited to the structure described in each embodiment.
  • the number of pulleys constituting the path extension 40 according to these embodiments, the distance between the pulleys, the orientation of each pulley, and the position of each cable fixing portion can be appropriately changed.
  • any structure described in the first embodiment can be applied to the path extension 40 according to these embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Manipulator (AREA)
  • Ink Jet (AREA)
  • Electric Cable Arrangement Between Relatively Moving Parts (AREA)

Abstract

 電気ケーブルと周囲の部品等との干渉、干渉した部品の破損、電気ケーブルの破断等の解消、さらに、電気ケーブルの収容スペースの縮小化を実現すること。 ロボットアーム機構は基部101を有する。基部101には、複数の回転関節部J1-J4を有するロボットアーム102が取り付けられる。ロボットアーム機構には、ロボットアーム102の先端部分へ電力と信号との少なくとも一方を供給するための伸縮性を有する伸縮ケーブル30が配設される。伸縮ケーブル30は、ケーブルガイド51によりガイドされる。ケーブルガイド51は、先端部分側のケーブル固定部133aから基部側ケーブル固定部133bまで間に配設される。伸縮ケーブル30の配線経路上には、先端部分側のケーブル固定部133aから基部側ケーブル固定部133bまでのケーブルガイド51による配線経路を延長するための経路延長部40が介在される。

Description

多関節ロボッ卜アーム機構、インクジェットプリンタ、3軸移動機構、油圧機構及びケーブル配線機構
 本発明の実施形態は、多関節ロボッ卜アーム機構、インクジェットプリンタ、3軸移動機構、油圧機構及びケーブル配線機構に関する。
 従来より多関節ロボットアーム機構が産業用ロボットなどさまざまな分野で用いられている。アーム機構に装備される関節としてはねじり関節、曲げ関節、さらに直動関節が組み合わされている。このような多関節ロボットアーム機構において、関節部分には電気ケーブルが収容配置されている。電気ケーブルとして、一般には複数の電線を束ねたハーネスや、複数の配線の集合体である被覆付き配線が用いられる。この場合、電気ケーブルには、ロボットの回転動作を考慮して余長分があらかじめ付与される。
 電気ケーブルに余長分を設けることは、そのたるみに起因して、周囲の部品等との干渉、干渉した部品の破損、電気ケーブルの破断等を生じさせるおそれがある。さらに、電気ケーブルの余長分を収容する収容スペースをアーム機構内部に必要とする。
 目的は、電気ケーブルと周囲の部品等との干渉、干渉した部品の破損、電気ケーブルの破断等の軽減、さらに、電気ケーブルの収容スペースの縮小化を実現することにある。
 一実施形態に係るロボットアーム機構は基部を有する。基部には、複数の回転関節部を有するロボットアームが取り付けられる。ロボットアーム機構には、ロボットアームの先端部分へ電力と信号との少なくとも一方を供給するための伸縮性を有する伸縮ケーブルが配設される。伸縮ケーブルは、ケーブルガイドによりガイドされる。ケーブルガイドは、先端部分側のケーブル固定部から基部側ケーブル固定部まで間に配設される。伸縮ケーブルの配線経路上には、先端部分側のケーブル固定部から基部側ケーブル固定部までのケーブルガイドによる配線経路を延長するための経路延長部が介在される。
図1は、第1実施形態に係る多関節ロボットアーム機構の内部構造を示す図である。 図2は、図1の経路延長部の構造の一例を示す図である。 図3は、第1実施形態の多関節ロボットアーム機構で用いられる伸縮ケーブルの全長の決定方法を説明するための補足説明図である。 図4は、図2の経路延長部により延長される配線経路長を説明するための補足説明図である。 図5Aは、図2の経路延長部の第1変形例を示す平面図である。 図5Bは、図2の経路延長部の第1変形例を示す側面図である。 図6は、図2の経路延長部の第2変形例を示す図である。 図7は、第1実施形態の第1変形例に係る多関節ロボットアーム機構の内部構造を示す図である。 図8は、第1実施形態の第2変形例に係る多関節ロボットアーム機構の内部構造を示す図である。 図9Aは、第1実施形態の第2変形例に係り、回転関節部で構成した第1例の経路延長部の内部構造を示す側面図である。 図9Bは、第1実施形態の第2変形例に係り、回転関節部の回転軸体を用いて構成される経路延長部の内部構造を示す平面図である。 図10Aは、第1実施形態の第2変形例に係り、回転関節部で構成した第2例の経路延長部の内部構造を示す側面図である。 図10Bは、第1実施形態の第2変形例に係り、回転関節部で構成した第2例の経路延長部の内部構造を示す平面図である。 図11は、第2実施形態に係るインクジェットプリンタの概略構成図である。 図12は、第2実施形態に係るインクジェットプリンタの伸縮ケーブルの配線機構の一例を示す図である。 図13は、第3実施形態に係る3軸移動機構の外観斜視図である。 図14は、第3実施形態に係る3軸移動機構の伸縮ケーブルの配線機構の一例を示す図である。 図15は、第4実施形態に係る油圧機構を搭載した高所作業車の外観図である。 図16は、第4実施形態に係る油圧機構を搭載した高所作業車の伸縮ケーブルの配線機構の一例を示す図である。 図17は、第5実施形態に係る配線機構を組み込んだ組立ラインの構成を示す外観斜視図である。 図18は、第5実施形態に係り、工具台車と外部電源との間の伸縮ケーブルの配線機構の一例を示す図である。
 以下、図面を参照しながら第1実施形態について説明する。以下の説明において、略同一の機能及び構成を有する構成要素については、同一符号を付し、重複説明は必要な場合にのみ行う。
 (第1実施形態) 
 第1実施形態は、本発明を多関節ロボットアーム機構に適用した場合に対応する。以下、図面を参照しながら、第1実施形態に係る多関節ロボットアーム機構について説明する。
 図1は、第1実施形態に係る多関節ロボットアーム機構の内部構造を示す図である。多関節ロボットアーム機構は、基部101とロボットアーム102とを有する。基部101は接地面等に固定される。ロボットアーム102の先端にはエンドエフェクタと呼ばれる手先効果器が取り付けられる。図1では手先効果器として対象物を把持可能なハンド部116を図示している。手先効果器としてはハンド部116に限定されない。ハンド部116は、他のツール、センサ、カメラ又はディスプレイであってもよい。ロボットアーム102の先端には任意の種類の手先効果器に交換することができるアダプタが設けられていてもよい。
 ロボットアーム102は、複数の回転関節部J1-J4と複数のアーム部103、105、107、109とを有する。複数の回転関節部J1-J4と複数のアーム部103、105、107、109とは、基部101から交互に直列に接続される。第1回転関節部J1は第1回転軸RA1を中心とした曲げ回転間接である。第1回転関節部J1は、基部101に対してアーム部103を第1回転軸RA1回りに回転自在に支持する。第2回転関節部J2、第3回転関節部J4および第4回転関節部J4は、第2回転軸RA2、第3回転軸RA3および第4回転軸RA4を中心とした曲げ回転関節である。第2回転軸RA2、第3回転軸RA3および第4回転軸RA4は、それぞれ第1回転軸RA1と平行な軸を有する。第2回転関節部J2は、アーム部103に対してアーム部105を第2回転軸RA2回りに回転自在に支持する。第3回転関節部J3は、アーム部105に対してアーム部107を第3回転軸RA3回りに回転自在に支持する。第4回転関節部J4は、アーム部107に対してアーム部108を第4回転軸RA4回りに回転自在に支持する。第1乃至第4回転関節部J1-J4の曲げ回転動作により、ハンド部116を基部101の固定座標系におけるYZ平面の任意の位置に配置することが可能である。伸縮ケーブル30は、基部101に対して任意の位置に配置されるハンド部116に対して、電力と信号との少なくとも一方を供給する。以下、伸縮ケーブル30の配線機構について説明する。
 図1に示すように、伸縮ケーブル30の配線機構は、伸縮ケーブル30と、複数のケーブルガイド51と、経路延長部40と、ハンド部側ケーブル固定部133aと、基部側ケーブル固定部133bとで構成される。
 伸縮ケーブル30は、伸縮性を有する複数種類の伝送線により構成される。例えば、伝送線には、電流を伝送する電力伝送線、電気信号を伝送する電気信号伝送線、光を伝送する光伝送線、および光信号を伝送する光信号伝送線等がある。伸縮ケーブル30は、その用途等に応じて、これらの伝送線を組み合わせて構成される。ここでは、伸縮ケーブル30は、電流を伝送する電力伝送線と電気信号を伝送する電気信号伝送線により構成される。伸縮性を有する電力伝送線は、例えば、弾性体の周囲に銅線やアルミ線をらせん状に捲回させたものである。伸縮性を有する電気信号伝送線は、例えば、2本以上の導体線を弾性体の周囲に同一方向に捲回させたものである。なお、伸縮性を有する電気信号伝送線は、2本以上の導体線を弾性体の周囲に交差して捲回させたものであってもよい。
 伸縮ケーブル30の一端は、モータドライバ131に接続される。モータドライバ131は、ハンド部116を開閉するためのアクチュエータとしてのモータを制御する。伸縮ケーブル30の他端は、電力を発生する外部電源のコネクタと制御信号を発生する外部制御装置のコネクタとに接続される。モータドライバ131は、制御装置からの制御信号に従って、電源から伸縮ケーブル30を介して入力された電力を用いてモータを駆動するための駆動パルスを発生する。モータは、モータドライバ131から供給された駆動パルスに従って回転する。モータが順方向に回転するとき、モータのドライブシャフトの動力は、図示しないギア等を介してハンド部116に伝達される。それによりハンド部116が開き、逆方向に回転するとき閉じる。
 伸縮ケーブル30の一端部分は、ケーブル固定部133a(以下、ハンド部側ケーブル固定部133aと称する。)に固定される。ハンド部側ケーブル固定部133aは、ハンド部116内のモータドライバ131の近傍に設けられる。伸縮ケーブル30の他端部分は、ケーブル固定部133b(以下、基部側ケーブル固定部133bと称する。)に固定される。基部側ケーブル固定部133bは、基部101内の底の位置に設けられる。これにより、伸縮ケーブル30に張力がかけられた状態であっても、伸縮ケーブル30がコネクタから抜けてしまう等の不通リスクを低減することができる。伸縮ケーブル30はハンド部側ケーブル固定部133aと基部側ケーブル固定部133bとの間にわたって、複数のケーブルガイド51によりガイドされる。複数のケーブルガイド51は、基部101、ロボットアーム102に沿って分散設置される。複数のケーブルガイド51の設置により、伸縮ケーブル30の配線経路が形成される。ケーブルガイド51は、例えば、断面が円弧状のリング構造を有する。複数のケーブルガイド51は、それぞれ対応する複数のリング各々に伸縮ケーブル30を挿通させることで配線経路を形成し、伸縮ケーブル30を伸縮自在に保持する。
 経路延長部40は、伸縮ケーブル30の配線経路上に介在される。経路延長部40は、ハンド部側ケーブル固定部133aから基部側ケーブル固定部133bまでの配線経路を延長する。経路延長部40の構造について図2を参照して説明する。
 図2は、図1の経路延長部40の構造の一例を示す図である。経路延長部40は、同一の半径rを有する複数のプーリー、ここでは第1プーリー141、第2プーリー142および第3プーリー143を有する。これらのプーリー141,142,143各々は、基部101の軸線(Z軸)と略平行な方向に関して分散配置される。例えばプーリー141,142はZ軸に関して同位置に配置される。プーリー143はプーリー141,142の下方に所定距離隔てた位置に配置される。ここでは、プーリー141はその回転軸Rx1が、各回転関節部の回転軸(X軸)に平行になるよう配置される。プーリー142、143はそれぞれの回転軸Rx2、Rx3がプーリー141の回転軸Rx1と平行になるよう配置される。プーリー142はプーリー141に対してX軸とZ軸とに直交するY軸に沿って半径rよりも短い距離を隔てて配置される。プーリー143は、Y軸方向に関して、プーリー141とプーリー142との中央位置に配置される。伸縮ケーブル30は、プーリー141、プーリー143、プーリー142の順に掛け渡される。これにより複数のプーリー141,142,143は、伸縮ケーブル30を基部101の軸方向に沿って往復配線経路を形成する。往復配線経路は、ハンド部側ケーブル固定部133a、基部側ケーブル133bの間に配列される複数のケーブルガイド51のみによる配線経路の延長を実現する。それにより、必要とされる伸縮ケーブル30の全長は、経路延長部40が介在せず、複数のケーブルガイド51のみにより誘導される伸縮ケーブル30の全長よりも延長される。
 経路延長部40には、補助プーリー144が設けられる。補助プーリー144はその回転軸Ryがプーリー142の回転軸Rx2と基部101の中心軸とに垂直になるよう配置される。プーリー144の配置は伸縮ケーブル30を基部101の中心軸付近からその半径方向に沿ってプーリー142に引き出すことを可能にする。補助プーリー144の半径は、引き出し量により決定されている。
 具体的には、図2に示すようにプーリー144の回転軸Ryは、他のプーリー141,142,143の回転軸Rx1、Rx2、Rx3に垂直に配置される。プーリー144は、他のプーリー141,142,143が配置されたYZ平面に対して、X軸方向にオフセットして配置される。これによりプーリー144は、他のプーリー141,142,143が配置されたYZ平面からX軸方向にオフセットしてガイドされた伸縮ケーブル30を、他のプーリー141,142,143が配置されたYZ平面にガイドするための配線経路部分を確保することができる。
 次に、伸縮ケーブル30の全長の決定方法について、図3を参照して説明する。図3は、第1実施形態の多関節ロボットアーム機構で用いられる伸縮ケーブル30の全長の決定方法を説明するための補足説明図である。 
 第1実施形態に係る多関節ロボットアーム機構は、複数の回転関節部J1―J4各々の曲げ回転により、ハンド部側ケーブル固定部133aから基部側ケーブル固定部133bまでの配線経路の長さが変化する。
 図3に示すように、ロボットアーム102の第1姿勢時における、ハンド部側ケーブル固定部133aから基部側ケーブル固定部133bまでの配線経路を、複数のケーブルガイド51のみで形成した場合の最短の配線経路を最短経路長Lc1とする。最短経路長Lc1は、ケーブルガイド51の接地位置とロボットアーム102の姿勢とにより決まる。例えば、第1姿勢は、多関節ロボットアーム機構の電源投入時の基準姿勢である。第1姿勢は、ロボットアーム102がケーブル配線経路側に折りたたまれるように、複数の回転関節部J1-J4各々が回転された状態を指す。このとき、ハンド部側ケーブル固定部133aから基部側ケーブル固定部133bまでの配線経路が最短に構成される。
 ロボットアーム102の第2姿勢時における、ハンド部側ケーブル固定部133aから基部側ケーブル固定部133bまでの配線経路を、複数のケーブルガイド51のみで形成した場合の最短の配線経路を最長経路長Lc2とする。第2姿勢は、複数の回転関節部J1-J4各々が、第1姿勢時の位置から、最も回転された状態に対応する。第2姿勢は、ロボットアーム102がケーブル配線経路と反対側に折りたたまれるように、複数の回転関節部J1-J4各々が回転された状態を指す。このとき、ハンド部側ケーブル固定部133aから基部側ケーブル固定部133bまでの配線経路が最長に構成される。
 収縮時の伸縮ケーブル30の全長Lw1は、経路差Δdc1以上の伸縮長を確保するために必要とされる長さを有する。具体的には、収縮時の伸縮ケーブル30の全長Lw1は、以下のように決定されればよい。伸縮ケーブル30の伸縮率を伸縮率αとすると、収縮時の伸縮ケーブル30の全長Lw1と伸縮率αと経路差Δdc1との間には、以下の式(1)が成立する。つまり、経路差Δdc1は、収縮時の伸縮ケーブル30の全長Lw1に伸縮率αを乗算した長さ以下でなくてはならない。
              Δdc1≦Lw1×α…(1)
 したがって、収縮時の伸縮ケーブル30の全長Lw1は、以下の式(2)を満たす必要がある。
              Lw1≧Δdc1/α…(2)
 また、第1実施形態に係る多関節ロボットアーム機構の経路延長部40は往復配線経路を形成する。そのため、経路延長部40により延長される配線経路の延長部分の長さ(延長ケーブル長)d1はゼロよりも大きい(d1>0)。延長ケーブル長d1は、最短経路長Lc1と、収縮時の伸縮ケーブル30の全長Lw1との差に略等価である。すなわち、収縮時の伸縮ケーブル30の全長Lw1は、以下の式(3)を満たす必要がある。式(3)は、収縮時の伸縮ケーブル30の全長Lw1は、最短経路長Lc1よりも長くなければならないことを表している。
Lw1>Lc1…(3)
 また、伸縮ケーブル30は、収縮時の伸縮ケーブル30の全長Lw1が、最長経路長Lc2よりも短いのが好適である。つまり、収縮時の伸縮ケーブル30の全長Lw1は、以下の式(5)を満たす必要がある。
Lw1<Lc2…(4)
 式(2)と式(3)と式(4)とから、収縮時の伸縮ケーブル30は、式(5)を満たす伸縮率αを有するとき、収縮時の伸縮ケーブル30全長Lw1を、最長経路長Lc2よりも短くすることができる。なお、収縮時の伸縮ケーブル30のケーブル長が、α×Lw1=Δdc1により決まるLw1に設定されるのが好適である。
(Δdc1/Lc2)<α<(Δdc1/Lc1)…(5)
 したがって、第1実施形態に係る伸縮ケーブル30は、伸縮率αが式(5)を満たし、収縮時の伸縮ケーブル30の全長Lw1が式(3)と式(4)とを満たすように決定すればよい。これにより、伸長時の伸縮ケーブル30の全長Lw1´と収縮時の伸縮ケーブル30の全長Lw1との差分を経路差Δdc1以上にできる。つまり、収縮時の伸縮ケーブル30の全長Lw1は、経路差Δdc1以上の伸縮長を確保することができる。また、従来、伸縮性を有さないケーブルを使用した場合において、ケーブルの全長は最長経路長Lc2以上である必要があった。一方、第1実施形態では、収縮時の伸縮ケーブル30の全長Lw1を最長経路長Lc2よりも短くすることができる。その結果、経路延長部40での伸縮ケーブル30の収容スペースを縮小化することができる。
 なお、第1実施形態は式(5)の範囲の下限伸縮率(Δdc1/Lc2)以下の伸縮率αを有する伸縮ケーブル30の使用を否定するものではない。この場合、収縮時の伸縮ケーブル30の全長Lw1は、最長経路長Lc2より長くなることは避けられないかもしれない。しかし、伸縮ケーブル30の選択肢を拡大できる。例えば、より多くの電線が編みこまれた種類の伸縮ケーブル、または、防水機能を有する伸縮ケーブル等を選択することができるかもしれない。
 また、上述の説明では伸縮ケーブル30の収縮時の長さLw1は、最長経路長Lc2を越えないことが好適であると説明した。しかし第1実施形態は伸縮ケーブル30の収縮時の長さLw1が、最長経路長Lc2を越えるほど長いことを否定するものではない。伸縮ケーブル30の保有する伸縮率(固有伸縮率)とその全長Lw1とにより決まる最大の伸縮長の一部を使って、構造上要求される経路差Δdc1を確保することができる。この場合の使用上の収縮率(実用伸縮率)は固有伸縮率よりも低く抑えることができる。このように実装上、伸縮ケーブル30を固有収縮率より低い実用伸縮率で伸縮させることは伸縮ケーブル30の耐久性を向上させる効果を奏する可能性を示唆している。さらに、実装上、伸縮ケーブル30を固有収縮率より低い実用伸縮率で伸縮させて、構造上要求される経路差Δdc1を確保するときに伸縮ケーブル30にかかる張力を、伸縮ケーブル30の固有収縮率を最大限使って、構造上要求される経路差Δdc1を確保するときに伸縮ケーブル30にかかる張力より低く抑えることを可能とし、それにより多関節ロボットアーム機構の伸縮に際してかかる構造上及び駆動上の負荷を低減させる効果を奏する可能性を示唆している。
 次に、経路延長部40により延長される配線経路の全長について、図4を参照して説明する。 
 図4は、図2の経路延長部40により延長される配線経路長を説明するための補足説明図である。第1姿勢時における、経路延長部40により延長される配線経路の全長は、図3で説明したように、Δdc1以上の伸縮長を確保するために必要とされる収縮時の伸縮ケーブル30の全長Lw1に略等価である。実際には、経路延長部40により延長される配線経路の全長が、Δdc1以上の伸縮長を確保するために必要とされる収縮時の伸縮ケーブル30の全長Lw1よりもわずかに短いのが好適である。これにより、第1姿勢時においても、経路延長部40を構成する複数のプーリー141-144に掛け渡された伸縮ケーブル30にわずかなテンションがかかるため、伸縮ケーブル30のたるみを防止することができる。第1実施形態で用いられる伸縮ケーブル30の全長Lw1は、最短経路長Lc1よりも長さd1分長い。したがって、配線経路上に介在される経路延長部40は、伸縮ケーブル30の余長d1分の配線経路を確保するために、例えば、図2で説明した往復配線経路を構成する。これにより、経路延長部40は、配線経路の全長を最短経路長Lc1からLw1(Lc1+d1)に延長する。経路延長部40により延長された配線経路に沿って、式(4)を満たす伸縮ケーブル30を配線することにより、伸長時の伸縮ケーブル30の全長がLw1´以上となり、経路差Δdc1を確保できる。
 以下、図5と図6とを参照して、経路延長部40の他の構成例について説明する。 
 図5Aは、図2の経路延長部40の他の第1例を示す平面図である。図5Bは、図2の経路延長部40の他の第1例を示す側面図である。図5A、図5Bに示すように、第1例に係る経路延長部40は、伸縮ケーブル30を巻き付けるためのスプール155を有する。当該スプール155に対して伸縮ケーブル30が巻き付けられることにより、第1例の経路延長部40は、配線経路を延長することができる。図5Bに示すように、当該スプール155に巻き付けられている伸縮ケーブル30の巻き数は、第1姿勢時と第2姿勢時とで同一である。図5Bに示すように、スプール155は、当該スプール155に巻きつけられた伸縮ケーブル30同士が接触しないための機構を有する。例えば、当該スプール155には、伸縮ケーブル30同士を接触させないためのガイド溝157がらせん状に形成されている。ガイド溝157に沿って伸縮ケーブル30が巻き付けられることにより、隣り合う伸縮ケーブル部分同士が接触しないため、伸縮により逆方向に伸び縮みする伸縮ケーブル部分同士の摩擦を抑えることができる。スプール155は、基部101に対して軸回転可能に支持される。これにより、伸縮ケーブル30の伸縮に併せて当該スプール155が自由回転するため、当該スプール155と伸縮ケーブル30との間の摩擦を小さくすることができる。これらにより、伸縮ケーブル30の不通リスクは低減される。これらの効果により、伸縮ケーブル30の破断のリスクを小さくできる。
 以上説明した第1例の経路延長部40は、図2で示した経路延長部40の複数のプーリーの代替として、スプール155を用いることにより、図2で示した経路延長部40と同様の効果を得られる。
 図6は、図2の経路延長部40の他の第2例の正面図である。ここでは、ロボットアーム102の第1姿勢時の経路延長部40を図6(a)に示す。ロボットアーム102の第2姿勢時の経路延長部40を図6(b)に示す。第2例に係る経路延長部40は、図2で示した第1実施形態に係る経路延長部40と同じように複数のプーリーにより構成される。図2で示した経路延長部40との差異は、第2例に係る経路延長部40が、実質的な伸縮ケーブル30の伸縮長を確保する機能を有する点にある。
 経路延長部40は、同一の半径を有する複数のプーリー、ここでは第1プーリー159と第2プーリー161とを有する。これらのプーリー159、161は、それぞれ付勢機構163、165により、基部101の軸線(Z軸)と略平行な方向に付勢される。図6に示すように、例えば、付勢機構には付勢バネが使用される。なお、付勢機構は、付勢可能であれば他の機構であってもよい。例えば、付勢機構は、入れ子型、蛇腹型およびゴム型等であってもよい。これらのプーリー159,161各々は、基部101の軸線(Z軸)と略平行な方向に関して分散配置される。プーリー159はプーリー161の下方に所定距離隔てた位置に配置される。プーリー159、161はそれぞれの回転軸が第2回転関節部J2の第2回転軸RA2(X軸)に平行になるよう配置される。これにより複数のプーリー159、161は、伸縮ケーブル30を基部101の軸方向に沿って往復配線経路を形成する。往復配線経路は、ハンド部側ケーブル固定部133a、基部側ケーブル133bの間に配列される複数のケーブルガイド51のみによる配線経路を延長する。それにより伸縮ケーブル30の全長は、複数のケーブルガイド51のみにより誘導される伸縮ケーブル30の全長よりも延長される。
 第2例に係る経路延長部40は、実質的なケーブルの伸縮長を確保する機能を有する。具体的には、経路延長部40により延長される延長部分の長さが、伸縮ケーブル30の伸長前後で異なる。図6(a)に示すように、第1姿勢時において、付勢バネは収縮した状態である。一方、図6(b)に示すように、第2姿勢時において、伸縮ケーブル30には、基部101の軸方向への張力が発生し、付勢バネは基部101の軸方向に伸長される。このときの、付勢バネの伸びをΔd11とする。すると、第2姿勢時の、経路延長部40で延長される延長部分の長さは、第1姿勢時に比べて2×Δd11分短くなる。第2姿勢時における経路延長部40の付勢バネの伸長分(2×Δd11)は、経路差Δdc1に充当される。つまり、第1実施形態では、伸縮ケーブル30の伸縮だけで、経路差Δdc1を確保する必要があったが、第2例では、伸縮ケーブル30の伸縮と経路延長部40の配線経路の延長部分の伸縮とで、経路差Δdc1を確保することができる。これにより、第2例に係るロボットアーム機構は、第1実施形態の効果に加えて、第1実施形態のロボットアーム機構に比べて、使用する伸縮ケーブル30の全長を、付勢バネの伸長分短くすることができる。また、第2例に係るロボットアーム機構は、伸縮ケーブル30に基部101の軸方向への張力が発生したときに、付勢バネでその張力を吸収することができる。したがって、第2例に係る経路延長部40は、図2で示した経路延長部40に比べて、伸縮ケーブル30にかかる負担を小さくすることができる。
 なお、図6で示した経路延長部40の構造は、ハンド部側ケーブル固定部133aと、基部側ケーブル固定部133bとの間を、伸縮性のないケーブルで配線した場合においても適用できる。例えば、2つの付勢バネの伸びの合計が、経路差Δdc1以上であればよい。これにより、伸縮ケーブル30を用いなくても、経路差Δdc1を付勢バネの伸びだけで確保することができる。
 また、図2と図6とで説明した経路延長部40は、それぞれ図2と図6とに図示した機構に限定されない。プーリー数、各プーリー間の距離および各プーリーの向きは、伸縮ケーブル30の全長、経路延長部40として占有可能な体積、および基部側ケーブル固定部133bとケーブルガイド51との間の位置関係等に応じて適宜変更が可能である。例えば、複数のプーリーは、伸縮ケーブル30を基部101の軸方向に直交する方向に沿って往復させるために必要な配線経路を形成するための位置関係に配置されてもよい。例えば、プーリー141,142,143は、それぞれの回転軸が、基部101の軸を中心とした半径方向に略平行となるように配置されてもよい。これにより、プーリー141,142,143各々を基部101の軸を中心とした円周上に配置することができるため、円筒形を有する基部101の場合などにおいて、基部101内への経路延長部40の配置自由度を向上させることができる。
 以上述べた、第1実施形態に係る多関節ロボットアーム機構によれば、以下の効果を得られる。第1実施形態に係る収縮時の伸縮ケーブル30の全長は、経路差Δdc1を伸縮長で確保するために必要な長さを有する。収縮時の伸縮ケーブル30の全長Lw1は、最短経路長Lc1よりも長い。そのため、第1実施形態に係る経路延長部40は、配線経路を延長する機能と伸縮ケーブル30を収容する機能とを有する。経路延長部40は、第1姿勢時において、経路延長部40により延長される配線経路の全長が、収縮時の伸縮ケーブル30の全長Lw1に略等価になるように構成される。これにより、経路延長部40により延長された配線経路の全長は、複数のケーブルガイド51のみで形成した配線経路に比べて、長さd1分延長される。これにより、第1姿勢時においても、伸縮ケーブル30がたるむことなく経路延長部40に収容されるため、ロボットアーム102の伸縮動作等で、伸縮ケーブル30が周囲の部品等と干渉しない。その結果、部品の破損や伸縮ケーブル30の破断等を解消することができる。なお、第1姿勢時において、経路延長部40により延長される配線経路の全長は、収縮時の伸縮ケーブル30の全長Lw1よりもわずかに短いのが好適である。これにより、第1姿勢時においても、経路延長部40を構成する複数のプーリーに引き渡された伸縮ケーブル30にわずかなテンションがかかるため、伸縮ケーブル30が経路延長部40でたるむのを防止することができる。
 経路延長部40は、伸縮ケーブル30を基部101の軸方向に沿って往復配線経路を形成するように複数のプーリー141,142、143を配置した機構を有する。しかしながら、プーリー数、各プーリー間の距離および各プーリーの向きは、伸縮ケーブル30の全長、経路延長部40として占有可能な体積、および基部側ケーブル固定部133bとケーブルガイド51との間の位置関係等に応じて構成されればよい。したがって、第1実施形態に係る経路延長部40は、伸縮ケーブル30の収容スペースを縮小化することができる。また、経路延長部40に、回転自在なプーリーを使用することで、プーリーが伸縮ケーブル30の伸長分の送り出し、また、収縮分の巻き取りとして機能するため、伸縮ケーブル30の伸縮時における経路延長部40と伸縮ケーブル30との間に発生する摩擦を低減することができる。
 (変形例1) 
 第1変形例では、複数の電力等の供給先(モータドライバ)がロボットアーム102にある場合の経路延長部40の構成例について説明する。以下、第1実施形態との差異を中心に、第1変形例に係る多関節ロボットアーム機構について図7を参照して説明する。 
 図7は、第1実施形態の第1変形例に係る多関節ロボットアーム機構の内部構造を示す図である。第1変形例に係る多関節ロボットアーム機構は、伸縮性を有さないケーブル30aと、複数の伸縮ケーブル30b-30eと、複数のケーブル固定部135a-135jと、複数のドライバセット140a-140eと、複数の経路延長部40b1-40e1とを有する。ドライバセット140aは、モータドライバ137aとモータ139aとを有する。他のドライバセット140b-140eもモータとモータドライバとのセット(モータドライバ137bとモータ139b、モータドライバ137cとモータ139c、モータドライバ137dとモータ139d、モータドライバ137eとモータ139e)をそれぞれ有する。複数のドライバセット140a-140dは、それぞれ対応する複数の回転関節部J1-J4を回転するための動力を発生する。ドライバセット140eは、ハンド部116を開閉するための動力を発生する。
 ケーブル30aの一端は、モータドライバ137aのコネクタに接続され、他端は、電源回路のコネクタと制御装置のコネクタとに接続される。伸縮ケーブル30aの一端部分は、モータドライバ137aの近傍に設けられたケーブル固定部135bで固定され、他端部分は、基部101内の底の位置に設けられたケーブル固定部135aで固定される。
ケーブル固定部135aとケーブル固定部135bとの間に回転関節部が介在していないため、ロボットアーム102の回転動作で、モータドライバ137aと電源回路等との間の距離に変化は生じない。したがって、ケーブル30aは伸縮性を有さなくてもよい。
 伸縮ケーブル30bの一端はモータドライバ137aのコネクタに接続され、他端は、モータドライバ137bのコネクタに接続される。伸縮ケーブル30bの一端部分は、モータドライバ137aの近傍に設けられたケーブル固定部135cで固定され、他端部分は、モータドライバ137bの近傍に設けられたケーブル固定部135dで固定される。経路延長部40b1は、ケーブル固定部135cとケーブル固定部135dとの間の配線経路上に介在される。回転関節部J1の回転位置によって、ケーブル固定部135cとケーブル固定部135dとの間に経路差が生じる。収縮時の伸縮ケーブル30bの全長は、回転関節部J1で発生する最大の経路差以上の伸縮長を確保するために必要とされる長さを有する。経路延長部40b1は、収縮時の伸縮ケーブル30bの全長と、第1姿勢時における、ケーブル固定部135cからケーブル固定部135dまでを複数のケーブルガイド51のみで形成した配線経路長との間の差分を延長する。これにより、伸縮ケーブル30bは、回転関節部J1がどの位置に回転しても、モータドライバ137aとモータドライバ137bとの間の電気的な接続を維持させることができる。
 伸縮ケーブル30cの一端はモータドライバ137bのコネクタに接続され、他端は、モータドライバ137cのコネクタに接続される。伸縮ケーブル30cの一端部分は、モータドライバ137bの近傍に設けられたケーブル固定部135eで固定され、他端部分は、モータドライバ137cの近傍に設けられたケーブル固定部135fで固定される。経路延長部40c1は、ケーブル固定部135eとケーブル固定部135fとの間の配線経路上に介在される。回転関節部J2の回転位置によって、ケーブル固定部135eとケーブル固定部135fとの間に経路差が生じる。収縮時の伸縮ケーブル30cの全長は、回転関節部J2で発生する最大の経路差以上の伸縮長を確保するために必要とされる長さを有する。経路延長部40c1は、収縮時の伸縮ケーブル30cの全長と、第1姿勢時における、ケーブル固定部135eからケーブル固定部135fまでを複数のケーブルガイド51のみで形成した配線経路長との間の差分を延長する。これにより、伸縮ケーブル30cは、回転関節部J2がどの位置まで回転しても、モータドライバ137bとモータドライバ137cとの間の電気的な接続を維持させることができる。
 伸縮ケーブル30dの一端はモータドライバ137cのコネクタに接続され、他端は、モータドライバ137dのコネクタに接続される。伸縮ケーブル30dの一端部分は、モータドライバ137cの近傍に設けられたケーブル固定部135gで固定され、他端部分は、モータドライバ137dの近傍に設けられたケーブル固定部135hで固定される。経路延長部40d1は、ケーブル固定部135gとケーブル固定部135hとの間の配線経路上に介在される。回転関節部J3の回転位置によって、ケーブル固定部135gとケーブル固定部135hとの間に経路差が生じる。収縮時の伸縮ケーブル30dの全長は、回転関節部J3で発生する最大の経路差以上の伸縮長を確保するために必要とされる長さを有する。経路延長部40d1は、収縮時の伸縮ケーブル30dの全長と、第1姿勢時における、ケーブル固定部135gからケーブル固定部135hまでを複数のケーブルガイド51のみで形成した配線経路長との間の差分を延長する。これにより、伸縮ケーブル30dは、回転関節部J3がどの位置まで回転しても、モータドライバ137cとモータドライバ137dとの間の電気的な接続を維持させることができる。
 伸縮ケーブル30eの一端はモータドライバ137dのコネクタに接続され、他端は、モータドライバ137eのコネクタに接続される。伸縮ケーブル30eの一端部分は、モータドライバ137dの近傍に設けられたケーブル固定部135iで固定され、他端部分は、モータドライバ137eの近傍に設けられたケーブル固定部135jで固定される。経路延長部40e1は、ケーブル固定部135iとケーブル固定部135jとの間の配線経路上に介在される。回転関節部J4の回転位置によって、ケーブル固定部135iとケーブル固定部135jとの間に経路差が生じる。収縮時の伸縮ケーブル30eの全長は、回転関節部J4で発生する最大の経路差以上の伸縮長を確保するために必要とされる長さを有する。経路延長部40e1は、収縮時の伸縮ケーブル30eの全長と、第1姿勢時における、ケーブル固定部135iからケーブル固定部135jまでを複数のケーブルガイド51のみで形成した配線経路長との間の差分を延長する。これにより、伸縮ケーブル30eは、回転関節部J4がどの位置まで回転しても、モータドライバ137dとモータドライバ137eとの間の電気的な接続を維持させることができる。
 複数の経路延長部40b1-40e1各々には、第1実施形態の図2、図5および図6で説明した経路延長部40の構造を適用することができる。以上説明した第1実施形態の第1変形例に係る多関節ロボットアーム機構によれば、ロボットアーム102に電力等の供給先が複数ある場合においても、回転関節部を跨ぐ配線経路上に経路延長部40を設けることで、第1実施形態と同様の効果を得ることができる。例えば、伸縮ケーブル30bは、モータドライバ137aとモータドライバ137bとを接続する。モータドライバ137aとモータドライバ137bとの間の配線経路上には回転関節部J1が介在される。収縮時の伸縮ケーブル30bの全長は、回転関節部J1で発生される最大の経路差以上の伸縮長を確保するために必要とされる長さを有する。経路延長部40b1により延長される配線経路の全長は、収縮時の伸縮ケーブル30bの全長に略等価である。すなわち、経路延長部40b1は、回転関節部J1の回転に依らず、伸縮ケーブル30bをたるませずに収容することができる。また、伸縮ケーブル30bは、回転関節部J1の回転に依らず、モータドライバ137aとモータドライバ137bとの間の電気的な接続を維持させることができる。
 なお、ロボットアーム102に電力等の供給先が複数ある場合における伸縮ケーブル30の配線方法は、図7で示した構成に限定されない。例えば、複数のモータドライバ137b-137e各々が電力等の供給元に独立に伸縮ケーブル30で接続されてもよい。このとき、経路延長部40は、複数の伸縮ケーブル30の配線経路毎に設けられればよい。
 (変形例2) 
 第2変形例では、回転関節部を用いた経路延長部40の構成例について説明する。以下、第1実施形態と第1実施形態の変形例1との差異を中心に、第2変形例に係る多関節ロボットアーム機構について図8を参照して説明する。 
 図8は、第1実施形態の第2変形例に係る多関節ロボットアーム機構の内部構造を示す図である。図8は図7に対応する。図7で説明したように、第1変形例に係る複数の経路延長部40b1-40e1は、回転関節部J1-J4の隣り合うペアの間に設けられる。一方、第2変形例に係る経路延長部40b2-40e2各々は、回転関節部の内部に構成される。例えば、経路延長部40c2は、回転関節部J2の回転軸体を用いて構成される。
 図9Aは、第1実施形態の第2変形例に係り、回転関節部J2の回転軸体を用いて構成される経路延長部40c2の内部構造を示す側面図である。図9Bは、第1実施形態の第2変形例に係り、回転関節部J2の回転軸体を用いて構成される経路延長部40c2の内部構造を示す平面図である。経路延長部40c2は、回転関節部J2の回転軸体170に構成される。回転軸体170は、アーム部105とアーム部103とを回転自在に連結する。回転軸体170には、伸縮ケーブル30c同士を接触させないためのガイド溝172がらせん状に形成されている。ガイド溝172に沿って、伸縮ケーブル30cが巻き付けられることにより、経路延長部40c2は、配線経路を延長することができる。経路延長部40c2により延長される配線経路の全長は、収縮時の伸縮ケーブル30cの全長に略等価である。収縮時の伸縮ケーブル30cの全長は、回転関節部J2で発生する配線経路の経路差以上の伸縮長を確保するために必要とされる長さを有する。経路延長部40c2は、収縮時の伸縮ケーブル30cの全長と、第1姿勢時における、ケーブル固定部135eからケーブル固定部135fまでを複数のケーブルガイド51のみで形成した配線経路長との間の差分を延長する。経路延長部40c2で延長する配線経路長は、回転軸体170への伸縮ケーブル30cの巻き数、回転軸体170の径等で適宜変更することができる。ガイド溝172に沿って伸縮ケーブル30cが巻き付けられることにより、隣り合う伸縮ケーブル部分同士が接触しないため、伸縮により逆方向に伸び縮みする伸縮ケーブル部分同士の摩擦を抑えることができる。また、伸縮ケーブル30cは、巻き付けられた回転軸体170の回転により伸縮する。そのため、回転軸体170と伸縮ケーブル30cとの間の摩擦を小さくすることができる。これらの効果により、伸縮ケーブル30の破断のリスクを小さくできる。また、元々存在する部品の回転軸体170を利用して経路延長部40c2を構成することができるため、経路延長部40c2としての占有体積を極小化することができる。さらに、第1実施形態のように、経路延長部40c2としての追加部品が不要であるため、コストを削減することができる。
 図10Aは、第1実施形態の第2変形例に係り、回転関節部J2の回転軸体を用いて構成される経路延長部40c2の内部構造を示す側面図である。図10Bは、第1実施形態の第2変形例に係り、回転関節部J2の回転軸体を用いて構成される経路延長部40c2の内部構造を示す平面図である。経路延長部40c2は、回転関節部J2の回転軸体174に構成される。回転軸体174は、アーム部105とアーム部103とを回転自在に連結する。回転軸体174は、筒状形状を有する。筒状の中空部分に伸縮ケーブル30cが挿通されることにより、経路延長部40c2は、配線経路を延長することができる。このとき、延長される配線経路長は、回転軸体174の軸方向(図中X方向)の挿通部分の長さに対応する。経路延長部40c2で延長する必要のある配線経路長が長い場合、伸縮ケーブル30cは回転軸体174の軸方向に沿って巻き付けられてもよい。経路延長部40c2は、元々存在する部品の筒状の回転軸体174を利用して構成される。そのため、経路延長部40としての占有体積を極小化することができる。また、第1実施形態のように、経路延長部40としての追加部品が不要であるため、コストを削減することができる。
 (第2実施形態) 
 第2実施形態は、本発明をインクジェットプリンタに適用した場合に対応する。以下、図面を参照しながら、第2実施形態に係るインクジェットプリンタについて説明する。
 図11は、第2実施形態に係るインクジェットプリンタ2の概略構成図である。図11に示すように、第2実施形態に係るインクジェットプリンタ2は、キャリッジ202と、インクジェットプリンタ用のヘッド203(以下、単にヘッド203と称する。)と、プリンタフレーム204と、キャリッジ軸205と、排紙ローラ206とを有する。
 図12は、第2実施形態に係るインクジェットプリンタの伸縮ケーブル30の配線機構の一例を示す図である。図12(a)は、キャリッジ202が基準位置に配置されたときの伸縮ケーブル30の配線機構を示す。図12(b)は、キャリッジ202が最大移動位置に配置されたときの伸縮ケーブル30の配線機構を示す。基準位置は、ヘッド側ケーブル固定部220aが本体側ケーブル固定部220bに最も近づく位置に対応する。最大移動位置は、ヘッド側ケーブル固定部220aが本体側ケーブル固定部220bから最も遠ざかる位置に対応する。
 キャリッジ202は、複数のインクカートリッジ202a,202b,202cおよび202dを内部に搭載する。キャリッジ202は、その下面にヘッド203を備える。ヘッド203は、インクジェットノズル(図示せず)からインクを吐出することにより記録用紙(記録媒体)Pに所定の画像等を出力する。インクジェットノズルから吐出されるインクの種類および量は、本体部(図示せず)により制御される。本体部は、電源回路と制御装置とを有する。キャリッジ202は、本体部からの電力および信号の供給を受けるための受信部207を有する。本体部と受信部207との間は、伸縮ケーブル30により接続される。伸縮ケーブル30の配線機構については後述する。キャリッジ202は、プリンタフレーム204内のキャリッジ軸205により移動可能に支持される。キャリッジ軸205は、記録用紙Pの搬送方向A(Z軸方向)と直交し、記録用紙Pの搬送面と平行な軸(X軸)Bを有する。排紙ローラ206は、記録用紙Pを排紙する。
 インクジェットプリンタ2の動作は、以下の通りである。まず、給紙部(図示せず)から給紙された記録用紙Pが、搬送部(図示せず)により搬送方向Aに沿って、プラテンローラ(図示せず)とヘッド203との間に搬送される。そして、本体部により、キャリッジ202の移動、ヘッド203によるインクの吐出、及び記録用紙Pの搬送が連動するように制御されることにより、記録用紙Pに所定の画像などが出力される。その後、記録後の記録用紙Pが排紙ローラ206により排紙される。図12に示すように、伸縮ケーブル30の配線機構は、伸縮ケーブル30と、複数のケーブルガイド51と、経路延長部40と、ヘッド側ケーブル固定部220aと、本体側ケーブル固定部220bとで構成される。
 伸縮ケーブル30の一端は、キャリッジ202内の受信部207のコネクタに接続される。他端は、本体部のコネクタ(電力を発生する電源回路のコネクタと制御信号を発生する制御装置のコネクタと)に接続される。インクジェット制御部208は、受信部207を介して入力された電力と制御信号とに基づいて、インクジェットノズルを制御する。
 伸縮ケーブル30の一端部分は、キャリッジ202内の受信部207の近傍に設けられたケーブル固定部220a(ヘッド側ケーブル固定部220aと称する。)に固定される。伸縮ケーブル30の他端部分は、本体部内に設けられたケーブル固定部220b(本体側ケーブル固定部220bと称する。)に固定される。これにより、伸縮ケーブル30に張力がかけられた状態であっても、伸縮ケーブル30がコネクタから抜けてしまう等の不通リスクを低減することができる。伸縮ケーブル30のヘッド側ケーブル固定部220aと本体側ケーブル固定部220bとの間の部分は、複数のケーブルガイド51によりガイドされる。複数のケーブルガイド51は、伸縮ケーブル30の配線経路を形成する。複数のケーブルガイド51によりガイドされた伸縮ケーブル30は、キャリッジ軸205内を通る。
 経路延長部40は、ヘッド側ケーブル固定部220aから本体側ケーブル固定部220bまでの配線経路を延長するために、伸縮ケーブル30の配線経路上に介在する。図12に示すように、例えば、経路延長部40は、キャリッジ軸205内に設けられる。経路延長部40は、同一の半径を有する複数のプーリー、ここでは第1のプーリー241と第2プーリー242とを有する。これらのプーリー241と242とは、キャリッジ軸205の軸方向(X軸)と略平行な方向に関して分散配置される。例えば、第1プーリー241は、第2プーリー242の上方(Y軸方向に)に所定距離隔てた位置に配置される。伸縮ケーブル30が、ヘッド側ケーブル固定部220aから第1プーリー241、第2プーリー242の順に掛け渡される。これにより複数のプーリー241,242は、伸縮ケーブル30をキャリッジ軸205の軸方向に沿った往復配線経路を形成する。
 キャリッジ202が基準位置に配置されているとき、ヘッド側ケーブル固定部220aから本体側ケーブル固定部220bまでの間に配列される複数のケーブルガイド51のみによる配線経路を最短経路と称する。収縮時の伸縮ケーブル30の全長は、基準位置に配置されたときのキャリッジ202の位置と最大移動時のキャリッジ202の位置との間の距離(移動長)Δd21により決定される。具体的には、収縮時の伸縮ケーブル30の全長は、移動長Δd21以上の伸縮長を確保するための長さを有する。このように決定された収縮時の伸縮ケーブル30の全長は、最短経路の全長よりも長い。経路延長部40の往復配線経路は、収縮時の伸縮ケーブル30の全長と最短経路の全長との間の差分を延長する。以上述べた、第2実施形態に係るインクジェットプリンタ2によれば、第1実施形態と同様の効果を得ることができる。
 (第3実施形態) 
 第3実施形態は、本発明を3軸移動機構に適用した場合に対応する。当該3軸移動機構は、例えば、クレーン式のゲーム機器、3Dプリンタ、工作用のXYステージ等に装備されることができる。以下、図面を参照しながら、第3実施形態に係る3軸移動機構について説明する。
 図13は、第3実施形態に係る3軸移動機構3の外観斜視図である。図13に示すように、3軸移動機構3は、一対のコラム301と、クロスレール303と、クロスレール移動部305と、主軸装置307と、主軸装置移動部309と、作用部311と、作用部移動部313と、を有する。
 一対のコラム301は、X軸方向に所定距離隔てた位置に配置される。一対のコラム301は、クロスレール303をY軸方向に移動可能に支持する。クロスレール303は、クロスレール移動部305により、Y軸方向に移動される。クロスレール移動部305は、本体部(図示せず)の制御に従って動作する。クロスレール303は、主軸装置307をX軸方向に移動可能に支持する。主軸装置307は、主軸装置移動部309により、X軸方向に移動される。主軸装置移動部309は、本体部の制御に従って動作する。主軸装置307は、その先端部分に、作用部311をZ軸方向に移動可能に支持する。作用部311は、本体部の制御に従って動作する。ここでは、作用部311を切削用のドリル311とする。主軸装置307は、ドリル311を回転自在に保持する。主軸装置307は、Z軸に平行な回転軸を有する。なお、作用部311は、他のものに代替が可能である。例えば、主軸装置307には、作用部311を取り付けるための回転継手等の取り付け部が装備されてもよい。
 本体部は、電源回路と制御装置とを有する。本体部とドリル311は伸縮ケーブル30により接続される。伸縮ケーブル30の配線機構については後述する。ドリル311は、本体部の電源回路から電力供給を受け、本体部の制御装置からの制御信号に応じた動作を行う。本体部とドリル311との間は、伸縮ケーブル30により接続される。ドリル311は、クロスレール303がY軸方向、主軸装置307がX軸方向、及びドリル311がZ軸方向にそれぞれ移動されることにより、その位置が決定される。
 図14は、第3実施形態に係る3軸移動機構3の伸縮ケーブル30の配線機構の一例を示す図である。図14に示すように、伸縮ケーブル30の配線機構は、伸縮ケーブル30と、複数のケーブルガイド51と、複数、ここでは3つの経路延長部40a3、40c3、40d3と、複数のケーブル固定部320a-320dとで構成される。
 伸縮ケーブル30の一端は、ドリル311のコネクタに接続される。他端は、本体部のコネクタに接続される。伸縮ケーブル30の一端部分は、主軸装置307内のドリル311のコネクタ近傍に設けられたケーブル固定部320a(以下、ドリル側ケーブル固定部320aと称する。)に固定される。伸縮ケーブル30の他端部分は、コラム301内の本体部の近傍に設けられたケーブル固定部320b(以下、コラム側ケーブル固定部320bと称する。)に固定される。これにより、伸縮ケーブル30に張力がかけられた状態であっても、伸縮ケーブル30がコネクタから抜けてしまう等の不通リスクを低減することができる。また、伸縮ケーブル30の途中部分は、主軸装置307内のクロスレール303の近傍に設けられたケーブル固定部320c(以下、主軸側ケーブル固定部320cと称する。)と、クロスレール303内のコラム301の近傍に設けられたケーブル固定部320d(以下、クロスレール側ケーブル固定部320dと称する。)に固定される。
 伸縮ケーブル30の配線経路は、複数のケーブル固定部320a、320b、320c及び320dにより3つの配線区間に分けられる。配線経路のうち、コラム配線区間は、コラム側ケーブル固定部320bとクロスレール側ケーブル固定部320dとで区切られた区間である。伸縮ケーブル30のコラム配線区間に対応する部分は、クロスレール303のY軸方向の移動に伴って収縮される。配線経路のうち、クロスレール配線区間は、クロスレール側ケーブル固定部320dと主軸側ケーブル固定部320cとで区切られた区間である。伸縮ケーブル30のクロスレール配線区間に対応する部分は、主軸装置307のX軸方向の移動に伴って収縮される。主軸配線区間は、配線経路のうち、主軸側ケーブル固定部320cとドリル側ケーブル固定部320aとで区切られた区間である。伸縮ケーブル30の主軸配線区間に対応する部分は、ドリル311のZ軸方向の移動に伴って収縮される。クロスレール303がコラム301上を移動するとき、コラム側ケーブル固定部320bは固定点となり、クロスレール側ケーブル固定部320dはクロスレール303と共に移動する移動点となる。主軸装置307がクロスレール303に沿って移動するとき、クロスレール側ケーブル固定部320dは固定点となり、主軸側ケーブル固定部320cは主軸装置307と共に移動する移動点となる。ドリル311が主軸装置307に対して移動するとき、主軸側ケーブル固定部320cは固定点となり、ドリル側ケーブル固定部320aはドリル311と共に移動する移動点となる。このように、3つの配線区間にそれぞれ対応する伸縮ケーブル30の3つのケーブル部分はそれぞれ独立に伸縮される。
 なお、ドリル側ケーブル固定部320aとコラム側ケーブル固定部320bとの間は、複数、ここでは3本の伸縮ケーブル301,302、303を用いて接続されてもよい。このとき、第1の伸縮ケーブル301は、コラム配線区間に対応し、一端が本体部のコネクタ、他端がクロスレール側ケーブル固定部320dのコネクタに接続される。第2の伸縮ケーブル302は、クロスレール配線区間に対応し、一端がクロスレール側ケーブル固定部320dのコネクタ、他端が主軸側ケーブル固定部320cのコネクタに接続される。第3の伸縮ケーブル303は、主軸配線区間に対応し、一端が主軸側ケーブル固定部320cのコネクタ、他端がドリル311のコネクタに接続される。複数の伸縮ケーブル301、302、及び303は、それぞれY軸方向、X軸方向およびZ軸方向に配線される。したがって、複数の伸縮ケーブル301、302、及び303各々は、ケーブル固定部により途中で固定される必要はない。また、複数の伸縮ケーブル301、302、及び303各々には、一方向の張力しか働かない。一方、1本の伸縮ケーブル30を配線する場合、伸縮ケーブル30は複数ケーブル固定部により固定される。伸縮ケーブル30が固定された部分には、直交する2つの方向からの張力が発生する。例えば、クロスレール側ケーブル固定部320dで固定されている伸縮ケーブル30には、X軸方向からの張力とY軸方向からの張力とが働く。そのため、そのため、複数の伸縮ケーブル301、302、及び303を用いた配線方法は、1本の伸縮ケーブル30を配線する場合に比べて、耐久性を向上させることができる。また、1本の伸縮ケーブル30を用いて配線した場合において、不通部分があれば、伸縮ケーブル30を丸々交換する必要がある。一方、複数の伸縮ケーブル301、302、及び303を用いて配線した場合において、不通部分があれば、その部分を含む伸縮ケーブルだけを交換すればよい。そのため、複数の伸縮ケーブル301、302、及び303を用いた配線方法は、1本の伸縮ケーブル30を配線する場合に比べて、メンテナンス時の伸縮ケーブルの交換が容易であり、伸縮ケーブルの交換のコストを低減することができる。
 経路延長部40は、各配線区間(固定点と移動点との間)に設けられる。経路延長部40a3は、主軸配線区間に設けられ、例えば、主軸装置307内に形成される。経路延長部40c3は、クロスレール配線区間に設けられ、例えば、クロスレール303内に形成される。経路延長部40d3は、コラム配線区間に設けられ、例えば、コラム301内に形成される。
 複数の経路延長部40a3、40c3、40d3は、それぞれ複数のプーリー、ここでは2つのプーリーを有する。2つのプーリーは、対応する配線区間の配線方向に分散配置され、配線方向に沿った往復配線経路を形成する。例えば、経路延長部40c3は、第1プーリー341cと第2プーリー342cとを有する。第1プーリー341cと第2プーリー341cとは、X軸方向に分散配置される。第1プーリー341cは、第2プーリー342cのZ軸の上方に所定距離隔てた位置に配置される。伸縮ケーブル30は、主軸側ケーブル固定部320cから第1プーリー341c、第2プーリー342cの順に掛け渡される。これにより複数のプーリー341c,342cは、伸縮ケーブル30をX軸方向に沿った往復配線経路を形成する。経路延長部40c3は、伸縮ケーブル30を、クロスレール側ケーブル固定部320dから第2プーリー342cにガイドするための第3プーリー343cを有する。
 経路延長部40c3の往復配線経路は、クロスレール配線区間に配列される複数のケーブルガイド51のみによる配線経路を延長する。具体的には、クロスレール配線区間で必要とされる、収縮時の伸縮ケーブル30の長さは、伸縮長Δd32により決定される。経路差Δd32は、主軸装置307の基準位置と主軸装置307の最大移動位置との間の距離に対応する。主軸装置307の基準位置は、主軸装置307がクロスレール側ケーブル固定部320dに最も近づく位置に対応する。このときの、主軸側ケーブル固定部320cの位置を、図中の点線で示す。一方、主軸装置307の最大移動位置は、主軸装置307がクロスレール側ケーブル固定部320dから最も遠い位置に対応する。このときの、主軸側ケーブル固定部320cの位置を、図中の実線で示す。主軸装置307が基準位置に配置されているときの、クロスレール側ケーブル固定部320dから主軸側ケーブル固定部320cまでの間に配列される複数のケーブルガイド51のみによる配線経路を最短経路と称する。
 クロスレール配線区間で必要とされる伸縮ケーブル30は、ケーブル収縮時において、伸縮長Δd32をケーブルの伸縮長で確保するために必要な全長を有する。具体的には、伸縮ケーブル30のクロスレール配線区間に対応する部分が、収縮前後の長さの差分がΔd32以上となるように、全長が決定される。クロスレール配線区間で必要とされる伸縮ケーブル30の全長は、最短経路の全長よりも長い。経路延長部40c3の往復配線経路は、クロスレール配線区間で必要とされる収縮時の伸縮ケーブル30の全長と最短経路の全長との間の差分を延長する。
 同様に、コラム配線区間で必要とされる伸縮ケーブル30は、ケーブル収縮時において、伸縮長Δd33をケーブルの伸縮長で確保するために必要な全長を有する。具体的には、伸縮ケーブル30のコラム配線区間に対応する部分が、収縮前後の長さの差分がΔd33以上となるように、全長が決定される。経路差Δd33は、クロスレール303の基準位置とクロスレール303の最大移動位置との間の距離に対応する。クロスレール303の基準位置は、クロスレール303がコラム側ケーブル固定部320bに最も近づく位置に対応する。このときの、クロスレール側ケーブル固定部320dの位置を、図中の点線で示す。一方、クロスレール303の最大移動位置は、クロスレール303がコラム側ケーブル固定部320bから最も遠い位置に対応する。このときの、クロスレール側ケーブル固定部320dの位置を、図中の実線で示す。クロスレール303が基準位置に配置されているときの、コラム側ケーブル固定部320bからクロスレール側ケーブル固定部320dまでの間に配列される複数のケーブルガイド51のみによる配線経路を最短経路と称する。コラム配線区間で必要とされる伸縮ケーブル30の全長は、最短経路の全長よりも長い。経路延長部40d3の往復配線経路は、コラム配線区間で必要とされる収縮時の伸縮ケーブル30の全長と最短経路の全長との間の差分を延長する。
 主軸配線区間で必要とされる伸縮ケーブル30は、ケーブル収縮時において、伸縮長Δd31をケーブルの伸縮長で確保するために必要な全長を有する。具体的には、伸縮ケーブル30の主軸配線区間に対応する部分が、収縮前後の長さの差分がΔd31以上となるように、全長が決定される。経路差Δd31は、ドリル311の基準位置とドリル311の最大移動位置との間の距離に対応する。ドリル311の基準位置は、ドリル311が主軸側ケーブル固定部320cに最も近づく位置に対応する。このときの、ドリル側ケーブル固定部320aの位置を、図中の点線で示す。一方、ドリル311の最大移動位置は、ドリル311が主軸側ケーブル固定部320cから最も遠い位置に対応する。このときの、ドリル側ケーブル固定部320aの位置を、図中の実線で示す。ドリル311が基準位置に配置されているときの、主軸側ケーブル固定部320cからドリル側ケーブル固定部320aまでの間に配列される複数のケーブルガイド51のみによる配線経路を最短経路と称する。主軸配線区間で必要とされる伸縮ケーブル30の全長は、最短経路の全長よりも長い。経路延長部40a3の往復配線経路は、主軸配線区間で必要とされる収縮時の伸縮ケーブル30の全長と最短経路の全長との間の差分を延長する。
 以上まとめると、収縮時の伸縮ケーブル30の全長は、各配線区間で必要とされる収縮時の伸縮ケーブル30の長さの和で決定される。
 以上述べた、第3実施形態に係る3軸移動機構3によれば、第1実施形態と同様の効果に加えて、以下の効果を得ることができる。また、第3実施形態において、本体部からドリル311までの配線経路は、複数のケーブル固定部320a-320dにより、3つの配線区間に区分けされる。3つの配線区間は、それぞれX軸方向の配線区間、Y軸方向の配線区間、及びZ軸方向の配線方向に対応する。X軸方向の配線区間に経路延長部40c3が設けられ、Y軸方向の配線区間に経路延長部40d3が設けられ、Z軸方向の配線方向に経路延長部40a3が設けられる。経路延長部40a3はドリル311のZ軸方向の移動に伴う伸縮ケーブル30のZ軸方向の収縮に対応するように構成される。これにより、伸縮ケーブル30の経路延長部40a3に掛け渡されている部分には、Z軸方向の張力しか発生しない。経路延長部40c3はドリル311のX軸方向の移動に伴う伸縮ケーブル30のX軸方向の収縮に対応するように構成される。これにより、伸縮ケーブル30の経路延長部40c3に掛け渡されている部分には、X軸方向の張力しか発生しない。経路延長部40d3はドリル311のY軸方向の移動に伴う伸縮ケーブル30のY軸方向の収縮に対応するように構成される。これにより、伸縮ケーブル30の経路延長部40d3に掛け渡されている部分には、Y軸方向の張力しか発生しない。したがって、ドリル311がどのような位置に動いても、3つの配線区間各々に対応する伸縮ケーブル30の3つの部分には、常に同じ方向の張力しか発生しない。複数の経路延長部40a3、40c3および40d3は、それぞれの配線区間で発生する張力に応じて伸縮ケーブル30がスムーズに伸縮するようにプーリー等を構成することができる。すなわち、伸縮ケーブル30の伸縮に伴って、伸縮ケーブル30と他の部品(ケーブルガイドおよびプーリー等)との間に発生する摩擦を小さくでき、ひいては、伸縮ケーブル30の断線等のリスクを低減することができる。
 (第4実施形態) 
 第4実施形態は、本発明を油圧機構に適用した場合に対応する。以下、図面を参照しながら、第4実施形態に係る油圧機構を搭載した高所作業車について説明する。
 図15は、第4実施形態に係る油圧機構を搭載した高所作業車の外観図である。図15に示すように、高所作業車4は、車台411と、旋回台412と、アーム413と、作用部414と、起伏アクチュエータ415とを有する。車台411は、旋回台412を旋回自在に支持する。旋回台412はZ軸に平行な旋回軸を有する。旋回台412は、アーム413を起伏自在に支持する。起伏アクチュエータ415は、旋回台412とアーム413とを固定する。起伏アクチュエータ415は、油圧シリンダーを有する。油圧シリンダーの伸縮に応じて、アーム413が起伏する。アーム413は、例えば、円筒形状を有するアーム部413aとアーム部413bとの入れ子構造により構成される。アーム413の内部には、油圧シリンダーが設けられる。アーム413は、内部油圧シリンダーの伸縮によって、内側のアーム部413bが外側のアーム部413aから送り出されることにより伸長し、挿入されることにより収縮する。
 アーム413の先端部分には作用部414が取り付けられる。操作者は、図示しない操作盤を用いて、旋回台412の旋回動作、起伏アクチュエータ415のアーム413の起伏動作、アーム413の伸縮動作を指示することにより、作用部414を任意の位置に移動させることができる。ここでは、作用部414を照明414とする。照明414には、伸縮ケーブル30を介して外部電源から電力が供給される。なお、図15において、点線はアーム413の基準姿勢を示し、実線はアーム413が最大に伸長されたときの起伏姿勢を示す。
 図16は、第4実施形態に係る油圧機構を搭載した高所作業車4の経路延長部40の構造の一例を示す図である。図16において、アーム413の基準姿勢を点線で、起伏姿勢を実線で示す。図16に示すように、伸縮ケーブル30の配線機構は、伸縮ケーブル30と、複数のケーブルガイド51と、経路延長部40と、作用部側ケーブル固定部420aと、旋回台側ケーブル固定部420bとで構成される。
 伸縮ケーブル30の一端は、照明414のコネクタに接続される。他端は、旋回台412に設けられた外部コネクタに接続される。外部コネクタには、外部電源が接続される。
 伸縮ケーブル30の一端部分は、照明414の近傍に設けられたケーブル固定部420a(以下、作用部側ケーブル固定部420aと称する。)に固定される。伸縮ケーブル30の他端部分は、旋回台412内の外部コネクタの近傍に設けられたケーブル固定部420b(以下、旋回台側ケーブル固定部420bと称する。)に固定される。これにより、伸縮ケーブル30に張力がかけられた状態であっても、伸縮ケーブル30がコネクタから抜けてしまう等の不通リスクを低減することができる。伸縮ケーブル30の作用部側ケーブル固定部420aと旋回台側ケーブル固定部420bとの間の部分は、複数のケーブルガイド51によりガイドされる。複数のケーブルガイド51は、伸縮ケーブル30の配線経路をアーム413に沿って外部に形成する。なお、複数のケーブルガイド51は、伸縮ケーブル30の配線経路がアーム413内に形成されるように配置されてもよい。また、複数のケーブルガイド51は、配線経路の一部分がアーム413内に形成されるように配置されてもよい。
 経路延長部40は、作用部側ケーブル固定部420aから旋回台側ケーブル固定部420bまでの配線経路を延長するために、伸縮ケーブル30の配線経路上に介在する。図16に示すように、経路延長部40は、旋回台412内に形成される。経路延長部40は、同一の半径を有する第1プーリー441と第2プーリー442とを有する。これらのプーリー441,442は、設置面Gに直交する方向(Z軸方向)に関して分散配置される。伸縮ケーブル30が、旋回台側ケーブル固定部420b、第1プーリー441、第2プーリー442の順に掛け渡される。これにより第1プーリー441と第2プーリー442は、伸縮ケーブル30をZ軸方向に沿って往復配線経路を形成する。第3プーリー443は、アーム413に沿って配線された伸縮ケーブル30を第2プーリー442に掛け渡す。アーム413は、設置面Gに対して、任意の角度に起伏される。そのため、第3プーリー443は、アーム413がどのように起伏されても、第3プーリー443から伸縮ケーブル30が外れない位置に配置される。
 基準姿勢時において、作用部側ケーブル固定部420aから旋回台側ケーブル固定部420bまでの間に配列される複数のケーブルガイド51のみによる配線経路を最短経路と称する。収縮時の伸縮ケーブル30の全長は、基準姿勢時の照明414の位置と起伏姿勢時の照明414の位置との間の距離(伸縮長)Δd41により決定される。このとき、収縮時の伸縮ケーブル30の全長は、最短経路の全長よりも長い。経路延長部40の往復配線経路は、収縮時の伸縮ケーブル30の全長と最短経路の全長との間の差分を延長する。
 以上述べた、第4実施形態に係る高所作業車4によれば、第1実施形態と同様の効果を得ることができる。
 (第5実施形態) 
 第5実施形態は、固定部と移動部とを有する装置(機構)における、固定部と移動部との間の伸縮ケーブル30の配線機構に関する。第1-第4実施形態のように、固定部には、例えば外部電源装置と外部制御装置等が装備されている。例えば、移動部は、第1実施形態では複数の回転関節部J1-J4を有するロボットアーム102に装備されたハンド部116に相当する。第2実施形態では、キャリッジ軸205に沿って往復移動するキャリッジに相当する。第3実施形態では、3軸移動機構によって、3軸方向に移動可能に保持されるドリル311に相当する。第4実施形態では、油圧機構によって伸縮可能なアーム413に装備された作用部414に相当する。
 本実施形態に係る配線機構の適用先は、第1-第4実施形態で説明した各装置に限定されない。固定部から移動部に対して電力および制御信号の少なくとも一方を供給する必要があれば、固定部と移動部との間の配線機構として、本実施形態の適用が可能である。具体的には、本実施形態に係る伸縮ケーブル30の配線機構は、従来、ケーブルベヤ(登録商標)を用いた装置に適用することができる。ケーブルベヤは、固定部と移動部との間に接続されたケーブルを保護し、予め決まった配線経路に案内するための装置である。したがって、固定部と移動部とを接続するケーブルに余長分が発生した場合においても、余長分が予め決まった配線経路に誘導される。そのため、ケーブルの余長分が周辺部品等に干渉することを防ぐことができる。ケーブルベヤを用いた装置には、例えば、チップマウンタ、検査装置、X線検査機、ワークの搬送台車、電動式の扉の開閉装置(車等のパワースライドドア)、天井クレーン等がある。また、人の動きをサポートするための外骨格ロボット等のケーブル配線機構に適用することができる。以下、伸縮ケーブル30の配線機構について組立工場のラインへの適用を例に説明する。
 図17は、第5実施形態に係る配線機構を組み込んだ組立ラインの構成を示す外観斜視図である。図17に示すように、組立ラインは、コンベア61と、工具台車線路65と、工具台車67とを有する。ここでは、固定部は図示しない外部電源とし、移動部は工具台車67に装備されているコンセント671とする。
 コンベア61は、作業対象物63を連続的または断続的に運搬するための帯状の機械装置である。コンベア61は、例えば、ベルト式及び鎖式の構造を有する。工具台車線路65は、コンベア61に並走するように設けられる。工具台車67は下部に車輪を有し、コンベア61に並設された工具台車線路65上を移動する。工具台車67は、電動式の工作機械、例えば電動ドリル等のプラグを差し込むためのコンセント(電気的接続部)671を装備する。コンセント(電気的接続部)671と外部電源との間は、伸縮ケーブル30により接続される。伸縮ケーブル30の配線機構については後述する。例えば、作業者はコンベア61上に立ち、工具台車67に取り付けられている工作機械を使用して、作業対象物63に対する作業を行う。工具台車67に取り付けられている工作機械で作業を行う作業エリアは組立ライン上で限定されている。作業者は、作業エリア毎に、対応する工具台車67を移動させながら、作業対象物63に対する作業を行う。
 図18は、第5実施形態に係り、工具台車67と外部電源との間の伸縮ケーブル30の配線機構の一例を示す図である。図18(a)は、工具台車67が基準位置に配置されたときの伸縮ケーブル30の配線機構を示す。図18(b)は、工具台車67が最大移動位置に配置されたときの伸縮ケーブル30の配線機構を示す。基準位置は、工具台車67の移動範囲の中心位置に対応する。最大移動位置は、工具台車67が基準位置から最も遠ざかる位置である。第5実施形態において、工具台車67はZ軸方向に移動可能であり、基準位置を移動範囲の中央に配置したため、最大移動位置は、工具台車67が基準位置から+Z方向に最も遠ざかった場合の位置Bと、-Z方向に最も遠ざかった場合の位置Aとの2つの位置がある。
 図18に示すように、伸縮ケーブル30の配線機構は、伸縮ケーブル30と、複数のガイドプーリー625、626a、626bと、経路延長部40と、台車側ケーブル固定部620aと、電源側ケーブル固定部620bとで構成される。
 伸縮ケーブル30の一端は、工具台車67のコンセント671に接続される。伸縮ケーブル30の他端は、外部電源に接続される。伸縮ケーブル30は、例えば、工具台車線路65の線路間に配線される。伸縮ケーブル30の一端部分は、工具台車67のコンセント671の近傍に設けられたケーブル固定部620a(以下、台車側ケーブル固定部620aと称す。)により固定される。伸縮ケーブル30の他端部分は、外部電源の近傍に設けられたケーブル固定部620b(以下、電源側ケーブル固定部620bと称す。)により固定される。これにより、伸縮ケーブル30に張力がかけられた状態であっても、伸縮ケーブル30がコネクタから抜けてしまう等の不通リスクを低減することができる。
 経路延長部40は、台車側ケーブル固定部620aから電源側ケーブル固定部620bまでの伸縮ケーブル30の配線経路を延長するために、伸縮ケーブル30の配線経路上に介在する。経路延長部40は、工具台車67の基準位置の近傍に設けられるのが好適である。これにより、伸縮ケーブル30の必要な長さを短くすることができる。図18に示すように、例えば、経路延長部40は、同一の半径を有する複数のプーリー、ここでは第1のプーリー621、第2プーリー622、第3プーリー623及び第4プーリー624を有する。これらのプーリー621,622,623,624は、工具台車67の移動方向(Z軸方向)に略平行な方向に関して分散配置される。例えば、第1プーリー621と第3プーリー623とは、Z軸に関して同位置に配置される。第2プーリー622と第4プーリー624とは、Z軸に関して同位置に配置される。第2プーリー622と第4プーリー624とは、第1プーリー621と第3プーリー623とからZ軸方向に所定距離隔てた位置に配置される。伸縮ケーブル30が、電源側ケーブル固定部620bから第1プーリー621、第2プーリー622、第3プーリー623、第4プーリー624の順に掛け渡される。これにより複数のプーリー621,622,623,624は、伸縮ケーブル30を工具台車67の移動方向に沿った往復配線経路を形成する。
 複数のガイドプーリー、ここでは第1ガイドプーリー625、第2ガイドプーリー626a、第3ガイドプーリー626bは、伸縮ケーブル30を台車側ケーブル固定部620aから経路延長部40の第4プーリー624に誘導するためのケーブルガイドとして機能する。具体的には、第2ガイドプーリー626aは、工具台車67が基準位置から-Z方向に移動された場合に、伸縮ケーブル30を第1ガイドプーリー625に誘導する。第3ガイドプーリー626bは、工具台車67が基準位置から+Z方向に移動された場合に、伸縮ケーブル30を第1ガイドプーリー625に誘導する。第1ガイドプーリー625は、第2ガイドプーリー626aまたは第3ガイドプーリー626bにより誘導された伸縮ケーブル30を、経路延長部40の第4プーリー624に誘導する。
 工具台車67が基準位置に配置されているとき、台車側ケーブル固定部620aから電源側ケーブル固定部620bまでの間に配設された複数のガイドプーリー625,626のみによる配線経路を最短経路と称する。収縮時の伸縮ケーブル30の全長は、工具台車67の基準位置と最大移動位置との間の距離(移動長)Δd61により決定される。具体的には、収縮時の伸縮ケーブル30の全長は、移動長Δd61以上の伸縮長を確保するために必要な長さに決定される。このように決定された収縮時の伸縮ケーブル30の全長は、最短経路の全長よりも長い。経路延長部40の往復配線経路は、収縮時の伸縮ケーブル30の全長と最短経路の全長との間の差分を延長する。
 以上述べた、第5実施形態に係る伸縮ケーブル30の配線機構によれば、第1実施形態と同様の効果を得ることができる。
 なお、ここでは、移動部としての工具台車67と固定部としての電源との間の伸縮ケーブル30の配線機構について説明したが、他の適用例においても、経路延長部40は固定部と移動部との間の配線経路上に設けられればよい。このとき、収縮時の伸縮ケーブル30の全長は、固定部と移動部との間の最大の配線経路差を、伸縮ケーブル30の伸縮長で確保するための長さを有する。経路延長部40は、収縮時の伸縮ケーブル30の全長と、固定部と移動部との間の最小の配線経路長との間の差分を延長するように構成されればよい。
 なお、第2-第5実施形態で説明した経路延長部40の構造は、各実施形態で説明した構造に限定されない。第1実施形態と同様に、これらの実施形態に係る経路延長部40を構成するプーリーの数、各プーリー間の距離、各プーリーの向き、及びケーブル固定部各々の位置は適宜変更が可能である。また、これらの実施形態に係る経路延長部40は、第1実施形態で説明したいずれの構造を適用することができる。
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の趣旨を逸脱しない範囲で、種々の省略、置き換え、変更を行なうことができる。これら実施形態やその変形は、発明の範囲や趣旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものある。
30…伸縮ケーブル、40…経路延長部、51…ケーブルガイド、101…基部、102…ロボットアーム、103、105、107、109…アーム部、J1、J2、J3、J4…回転関節部、116…ハンド部、131…モータドライバ、133a…ハンド部側ケーブル固定部、133b…基部側ケーブル固定部、141、142、143、144…プーリー。

Claims (19)

  1.  基部と、
     前記基部に取り付けられる、複数の回転関節部を有するアームと、
     前記アームの先端部分へ電力と信号との少なくとも一方を供給するための伸縮性を有するケーブルと、
     前記先端部分側のケーブル固定部から前記基部側ケーブル固定部まで前記ケーブルをガイドするケーブルガイドと、
     前記先端部分側のケーブル固定部から前記基部側ケーブル固定部までの前記ケーブルガイドによる配線経路を延長するために、前記配線経路上に介在される経路延長部と、を具備する多関節ロボットアーム機構。
  2.  前記経路延長部により延長される配線経路の全長は、前記配線経路長の最長時と最短時との間の差分を、前記ケーブルの伸縮により確保するために必要とされる前記ケーブルの収縮時のケーブル長に略等価であることを特徴とする請求項1記載の多関節ロボットアーム機構。
  3.  前記経路延長部により延長される配線経路の延長部分の長さは、前記配線経路の最短時の長さと前記ケーブルの収縮時のケーブル長との差に略等価であることを特徴とする請求項2記載の多関節ロボットアーム機構。
  4.  前記ケーブルは、前記配線経路長の最長時と最短時との間の差分以上に前記ケーブルの伸縮長を確保するために必要とされる収縮時のケーブル長を有することを特徴とする請求項1記載の多関節ロボットアーム機構。
  5.  前記収縮時のケーブル長は、前記配線経路長の最短時における、前記経路延長部により延長される配線経路の全長に略等価であることを特徴とする請求項4記載の多関節ロボットアーム機構。
  6.  前記経路延長部は、前記ケーブルが掛け渡される複数のプーリーを有することを特徴とする請求項1記載の多関節ロボットアーム機構。
  7.  前記複数のプーリーは、前記ケーブルを前記基部の軸方向に沿って往復させるために必要な配線経路を形成するための位置関係に配置されることを特徴とする請求項6記載の多関節ロボットアーム機構。
  8.  前記経路延長部は、前記ケーブルを前記基部の軸方向に略直交する方向への配線経路部分を確保するための他のプーリーを有することを特徴とする請求項7記載の多関節ロボットアーム機構。
  9.  前記複数のプーリーは同一半径を有し、前記複数のプーリーの幾つかは、前記軸方向に関して同一の位置に配置され、前記同一の位置に配置された幾つかのプーリーは互いに半径よりも短い距離を隔てて配置されることを特徴とする請求項7記載の多関節ロボットアーム機構。
  10.  前記複数のプーリーは、前記基部の軸を中心とした半径方向に略平行な回転軸を有することを特徴とする請求項9記載の多関節ロボットアーム機構。
  11.  前記経路延長部は、前記プーリーを前記基部の軸方向に沿って付勢する付勢機構をさらに有することを特徴とする請求項7記載の多関節ロボットアーム機構。
  12.  前記配線経路上に前記経路延長部を複数備える、請求項1記載の多関節ロボットアーム機構。
  13.  前記回転関節部の回転軸体を用いて前記経路延長部が構成される、請求項12記載の多関節ロボットアーム機構。
  14.  前記ケーブルは前記回転軸体に巻き付けられる、請求項13記載の多関節ロボットアーム機構。
  15.  前記回転軸体は筒状形状を有し、前記ケーブルは前記回転軸体に挿通される、請求項13記載の多関節ロボットアーム機構。
  16.  本体部と、
     プリンタヘッド部と、
     前記プリンタヘッドを移動可能に支持するプリンタヘッド支持部と、
     前記本体部から前記プリンタヘッドに電力と信号との少なくとも一方を供給するための伸縮性を有するケーブルと、
     前記プリンタヘッド側のケーブル固定部から前記本体部側のケーブル固定部までの前記ケーブルの配線経路上に介在される、前記配線経路を延長する経路延長部と、を具備するプリンタ。
  17.  作用部と、
     前記作用部を2軸に沿って移動可能に支持する支持部と、
     前記作用部に電力と信号との少なくとも一方を供給するための伸縮性を有するケーブルと、
     前記作用部側のケーブル固定部と前記支持部側のケーブル固定部との間に介在される、前記ケーブルの配線経路を延長する経路延長部と、を具備する2軸移動機構。
  18.  基台と、
     前記基台に取り付けられ、油圧手段により伸縮及び回動されるアーム部と、
     前記アーム部の先端部分へ電力と信号との少なくとも一方を供給するための伸縮性を有するケーブルと、
     前記先端部分側のケーブル固定部から前記基台側のケーブル固定部まで前記ケーブルをガイドするケーブルガイドと、
     前記先端部分側のケーブル固定部から前記基台側のケーブル固定部までの前記ケーブルガイドによる配線経路を延長するために、前記配線経路上に介在される経路延長部と、を具備する油圧機構。
  19.  外部の固定部と外部の移動部との間に配置される配線機構において、
     前記固定部と前記移動部とを電気的に接続するための伸縮性を有するケーブルと、
     前記固定部から前記移動部までの前記ケーブルの配線経路を延長するために、前記配線経路上に介在される経路延長部とを具備する配線機構。
PCT/JP2015/080352 2014-10-31 2015-10-28 多関節ロボッ卜アーム機構、インクジェットプリンタ、3軸移動機構、油圧機構及びケーブル配線機構 WO2016068174A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-222100 2014-10-31
JP2014222100A JP6508701B2 (ja) 2014-10-31 2014-10-31 多関節ロボッ卜アーム機構、インクジェットプリンタ、3軸移動機構、油圧機構及びケーブル配線機構。

Publications (1)

Publication Number Publication Date
WO2016068174A1 true WO2016068174A1 (ja) 2016-05-06

Family

ID=55857509

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/080352 WO2016068174A1 (ja) 2014-10-31 2015-10-28 多関節ロボッ卜アーム機構、インクジェットプリンタ、3軸移動機構、油圧機構及びケーブル配線機構

Country Status (3)

Country Link
JP (1) JP6508701B2 (ja)
TW (1) TW201622912A (ja)
WO (1) WO2016068174A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106493708A (zh) * 2016-12-09 2017-03-15 南京理工大学 一种基于双机械臂和辅助臂的带电作业机器人控制系统
CN106972407A (zh) * 2017-04-25 2017-07-21 国网安徽省电力公司检修公司 一种超、特高压输变电设备高空接地操作装置
CN108152908A (zh) * 2017-12-29 2018-06-12 周保中 一种光缆铺设机器人
CN109202937A (zh) * 2018-11-19 2019-01-15 河北科技大学 模块化多关节线控机器人
US10696115B2 (en) 2018-06-22 2020-06-30 Southwest Research Institute Movement system for an omnidirectional vehicle
CN111452055A (zh) * 2019-01-03 2020-07-28 浙江大学山东工业技术研究院 室内巡检机器人
US10744657B2 (en) 2018-06-22 2020-08-18 Southwest Research Institute Seal
US10974396B2 (en) 2018-06-22 2021-04-13 Southwest Research Institute Robotic system for surface treatment of vehicles
CN113578647A (zh) * 2021-08-23 2021-11-02 张家港市光学仪器有限公司 一种能够限定范围的镜片涂黑设备
US11167866B2 (en) 2018-06-22 2021-11-09 Southwest Research Institute Localization system and methods
WO2022156884A1 (en) * 2021-01-20 2022-07-28 Hitachi Energy Switzerland Ag Electrical connector for valve arrangements
CN117226850A (zh) * 2023-11-09 2023-12-15 国网山东省电力公司东营供电公司 带电作业机器人执行路径生成方法、系统、终端及介质

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106042643B (zh) * 2016-06-06 2017-11-10 上海银帆信息科技有限公司 一种基于单点定位技术的移动机器人打印系统
JP6697338B2 (ja) * 2016-07-01 2020-05-20 ライフロボティクス株式会社 プーリーユニット
JP6773703B2 (ja) * 2018-03-13 2020-10-21 ファナック株式会社 ロボット
CN110683414B (zh) * 2019-09-05 2021-08-10 广东坚宝电缆有限公司 一种机器人使用超柔性耐磨电缆的电缆卷收装置
JP7564692B2 (ja) * 2020-11-24 2024-10-09 ニデックインスツルメンツ株式会社 産業用ロボット
CN113997323A (zh) * 2021-12-08 2022-02-01 珠海格力电器股份有限公司 线缆组件和水平多关节工业机器人

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5517022U (ja) * 1978-07-17 1980-02-02
JPS597598A (ja) * 1982-06-30 1984-01-14 松下電器産業株式会社 工業用ロボツト
JPS63228913A (ja) * 1987-03-17 1988-09-22 富士通株式会社 無張力ケ−ブルの繰り出し機構
JPH071380A (ja) * 1993-06-21 1995-01-06 Hitachi Ltd ロボット
JPH07156093A (ja) * 1993-12-02 1995-06-20 Fanuc Ltd 産業用ロボットの関節部におけるケーブル処理装置
JPH07233642A (ja) * 1994-02-22 1995-09-05 Penta Ocean Constr Co Ltd 鉄筋上走行用作業車
JP2002185191A (ja) * 2000-12-12 2002-06-28 Sanyo Electric Co Ltd 電子部品装着装置
JP2004130710A (ja) * 2002-10-11 2004-04-30 Konica Minolta Holdings Inc インクジェットプリンタ
JP2005096018A (ja) * 2003-09-24 2005-04-14 Toyota Motor Corp ロボット走行装置
JP2007152500A (ja) * 2005-12-06 2007-06-21 Tokyo Institute Of Technology 回転ジョイント構造
JP2013007223A (ja) * 2011-06-27 2013-01-10 Hitachi Constr Mach Co Ltd 電動式作業機とその給電ユニットおよび移動方法
JP2013071209A (ja) * 2011-09-28 2013-04-22 Denso Wave Inc ロボット
JP2014111294A (ja) * 2012-12-05 2014-06-19 Asahi Kasei Fibers Corp 伸縮性伝送路を備えたロボット

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5517022U (ja) * 1978-07-17 1980-02-02
JPS597598A (ja) * 1982-06-30 1984-01-14 松下電器産業株式会社 工業用ロボツト
JPS63228913A (ja) * 1987-03-17 1988-09-22 富士通株式会社 無張力ケ−ブルの繰り出し機構
JPH071380A (ja) * 1993-06-21 1995-01-06 Hitachi Ltd ロボット
JPH07156093A (ja) * 1993-12-02 1995-06-20 Fanuc Ltd 産業用ロボットの関節部におけるケーブル処理装置
JPH07233642A (ja) * 1994-02-22 1995-09-05 Penta Ocean Constr Co Ltd 鉄筋上走行用作業車
JP2002185191A (ja) * 2000-12-12 2002-06-28 Sanyo Electric Co Ltd 電子部品装着装置
JP2004130710A (ja) * 2002-10-11 2004-04-30 Konica Minolta Holdings Inc インクジェットプリンタ
JP2005096018A (ja) * 2003-09-24 2005-04-14 Toyota Motor Corp ロボット走行装置
JP2007152500A (ja) * 2005-12-06 2007-06-21 Tokyo Institute Of Technology 回転ジョイント構造
JP2013007223A (ja) * 2011-06-27 2013-01-10 Hitachi Constr Mach Co Ltd 電動式作業機とその給電ユニットおよび移動方法
JP2013071209A (ja) * 2011-09-28 2013-04-22 Denso Wave Inc ロボット
JP2014111294A (ja) * 2012-12-05 2014-06-19 Asahi Kasei Fibers Corp 伸縮性伝送路を備えたロボット

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106493708A (zh) * 2016-12-09 2017-03-15 南京理工大学 一种基于双机械臂和辅助臂的带电作业机器人控制系统
CN106493708B (zh) * 2016-12-09 2019-09-27 南京理工大学 一种基于双机械臂和辅助臂的带电作业机器人控制系统
CN106972407A (zh) * 2017-04-25 2017-07-21 国网安徽省电力公司检修公司 一种超、特高压输变电设备高空接地操作装置
CN106972407B (zh) * 2017-04-25 2018-05-29 国网安徽省电力公司检修公司 一种超、特高压输变电设备高空接地操作装置
CN108152908B (zh) * 2017-12-29 2020-12-04 南京溧水高新创业投资管理有限公司 一种光缆铺设机器人
CN108152908A (zh) * 2017-12-29 2018-06-12 周保中 一种光缆铺设机器人
US11167866B2 (en) 2018-06-22 2021-11-09 Southwest Research Institute Localization system and methods
US10744657B2 (en) 2018-06-22 2020-08-18 Southwest Research Institute Seal
US10696115B2 (en) 2018-06-22 2020-06-30 Southwest Research Institute Movement system for an omnidirectional vehicle
US10974396B2 (en) 2018-06-22 2021-04-13 Southwest Research Institute Robotic system for surface treatment of vehicles
CN109202937A (zh) * 2018-11-19 2019-01-15 河北科技大学 模块化多关节线控机器人
CN111452055A (zh) * 2019-01-03 2020-07-28 浙江大学山东工业技术研究院 室内巡检机器人
WO2022156884A1 (en) * 2021-01-20 2022-07-28 Hitachi Energy Switzerland Ag Electrical connector for valve arrangements
CN113578647A (zh) * 2021-08-23 2021-11-02 张家港市光学仪器有限公司 一种能够限定范围的镜片涂黑设备
CN113578647B (zh) * 2021-08-23 2023-03-10 张家港市光学仪器有限公司 一种能够限定范围的镜片涂黑设备
CN117226850A (zh) * 2023-11-09 2023-12-15 国网山东省电力公司东营供电公司 带电作业机器人执行路径生成方法、系统、终端及介质
CN117226850B (zh) * 2023-11-09 2024-04-26 国网山东省电力公司东营供电公司 带电作业机器人执行路径生成方法、系统、终端及介质

Also Published As

Publication number Publication date
TW201622912A (zh) 2016-07-01
JP6508701B2 (ja) 2019-05-08
JP2016087718A (ja) 2016-05-23

Similar Documents

Publication Publication Date Title
WO2016068174A1 (ja) 多関節ロボッ卜アーム機構、インクジェットプリンタ、3軸移動機構、油圧機構及びケーブル配線機構
KR102253215B1 (ko) 다관절 용접 로봇
US8661926B2 (en) Robot manipulator and robot system
US9694493B2 (en) Umbilical member arrangement structure of parallel link robot
CN109476020B (zh) 用于机器人关节的齿轮组件
JP6467644B2 (ja) レーザ加工ロボット
US20180281119A1 (en) Pipe crawling welding device and method of welding pipes with such device
US20110123305A1 (en) Transfer robot
CN110072674B (zh) 工业用机器人
JP6525541B2 (ja) ロボッ卜アーム機構
CN110234474B (zh) 机器人手臂的线束连接结构、以及多关节焊接机器人
JP2019018320A (ja) ロボットシステム
US11173596B2 (en) Working unit and working device
KR20200003880A (ko) 케이블 처리 장치
EP0997239A2 (en) Structure of cable and/or pipe arrangement applied in parallel link mechanism
US12011823B2 (en) Linear motion mechanism
JP4791734B2 (ja) 作業車の伸縮ブーム
JP6457599B2 (ja) 連結器具
KR102071822B1 (ko) 이중 배관 검사 장치
JP4134858B2 (ja) 多関節ロボットの移動システム
JP2007196958A (ja) ボーディングブリッジ
KR20220040706A (ko) 배관 청소 장치
JP2006199407A (ja) 伸縮ブーム
KR100215423B1 (ko) 겐츄리 로봇용접장치의 수평 회동구조
IT202000004765A1 (it) Robot azionato a cavi

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15855948

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15855948

Country of ref document: EP

Kind code of ref document: A1