WO2016067632A1 - 電気化学素子用電極の製造方法、電気化学素子用電極および電気化学素子 - Google Patents

電気化学素子用電極の製造方法、電気化学素子用電極および電気化学素子 Download PDF

Info

Publication number
WO2016067632A1
WO2016067632A1 PCT/JP2015/005480 JP2015005480W WO2016067632A1 WO 2016067632 A1 WO2016067632 A1 WO 2016067632A1 JP 2015005480 W JP2015005480 W JP 2015005480W WO 2016067632 A1 WO2016067632 A1 WO 2016067632A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
mixture layer
mass
water
electrode mixture
Prior art date
Application number
PCT/JP2015/005480
Other languages
English (en)
French (fr)
Inventor
園部 健矢
金田 拓也
豊 丸橋
政憲 渋谷
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to CN201580056974.4A priority Critical patent/CN107078270B/zh
Priority to JP2016556376A priority patent/JP6747297B2/ja
Priority to KR1020177010526A priority patent/KR102646180B1/ko
Publication of WO2016067632A1 publication Critical patent/WO2016067632A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/043Processes of manufacture in general involving compressing or compaction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • H01G11/06Hybrid capacitors with one of the electrodes allowing ions to be reversibly doped thereinto, e.g. lithium ion capacitors [LIC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a method for producing an electrode for an electrochemical element, and an electrode for an electrochemical element and an electrochemical element.
  • batteries such as lithium ion secondary batteries and capacitors such as electric double layer capacitors and lithium ion capacitors have been used in a wide range of applications.
  • the electrochemical element generally includes a plurality of electrodes (a positive electrode and a negative electrode) and a separator that isolates these electrodes to prevent a short circuit.
  • the electrode provided with a collector and the electrode compound-material layer formed on the collector is used, for example.
  • the electrode mixture layer of the electrode is usually formed by binding constituent components such as an electrode active material with a binder.
  • the electrode mixture layer of the electrode for an electrochemical element is, for example, an electrode slurry composition in which an electrode active material and a binder, and a conductive material blended as necessary are dispersed in a dispersion medium.
  • the applied electrode slurry composition is dried. Further, in recent years, after the electrode slurry composition is dried to form an electrode mixture layer on the current collector, the resulting electrode mixture layer is pressed to increase the density of the electrode mixture layer.
  • a technique for improving the adhesion between the electrode mixture layer and the current collector has been proposed (see, for example, Patent Document 1).
  • the obtained electrode for an electrochemical element can sufficiently exhibit the expected performance (for example, dust resistance, peel strength, swell resistance, etc.).
  • the electrical characteristics (for example, cycle characteristics) of an electrochemical device using the electrochemical device electrode could not be sufficiently improved.
  • the present invention is a method for producing an electrode for an electrochemical element including a step of pressing an electrode mixture layer formed on a current collector, and the obtained electrode for an electrochemical element has sufficient expected performance. It aims at providing the manufacturing method of the electrode for electrochemical elements which can be exhibited. Another object of the present invention is to provide an electrode for an electrochemical element excellent in performance such as dust resistance, peel strength and swell resistance, and an electrochemical element excellent in electrical characteristics.
  • the present inventor has intensively studied for the purpose of solving the above problems. And when this inventor manufactures the electrode for electrochemical elements through the process of pressing the electrode compound-material layer formed on the electrical power collector, the water solution mix
  • the present inventors have found that an electrode for an electrochemical device having the following performance can be produced.
  • the method for producing an electrode for an electrochemical device of the present invention comprises an electrode active material, a binder containing a water-soluble polymer, and A step of forming a pre-pressing electrode composite layer containing a plasticizer for the water-soluble polymer on a current collector, and a step of pressing the pre-pressing electrode composite layer to obtain a post-pressing electrode composite layer;
  • the melting point of the plasticizer is equal to or lower than the temperature at which the pre-pressing electrode mixture layer is pressed, and the amount of the plasticizer in the pre-pressing electrode mixture layer is 500 mass ppm or more and 10,000 mass ppm or less. It is characterized by that.
  • the “water-soluble polymer” means a mixture obtained by adding 1 part by mass (corresponding to a solid content) of 100 parts by mass of ion-exchanged water and stirring the mixture at a temperature of 20 ° C. or higher. Adjust to at least one of the conditions within the range of 70 ° C.
  • the plasticizer when the binder contains a plurality of water-soluble polymers, the plasticizer is plasticized with respect to at least one of the water-soluble polymers blended as the binder. It only has to be effective. Furthermore, in the present invention, the “melting point of the plasticizer” can be measured according to JIS K0064.
  • the “amount of plasticizer” can be measured by using a measuring method according to the type of plasticizer.
  • a measuring method for example, when the plasticizer is water, a Karl Fischer moisture meter is used.
  • the plasticizer is an organic compound such as alcohol
  • the organic compound (plasticizer) is extracted from the electrode mixture layer using an extraction solvent, and the organic compound in the resulting extract is extracted.
  • the amount can be determined by measuring by gas chromatography or high performance liquid chromatography.
  • the step of forming the pre-press electrode mixture layer on the current collector includes the electrode active material and the binder.
  • the method includes a step of forming a layer on the current collector and a step of preparing the pre-press electrode mixture layer by adding the plasticizer to the electrode mixture layer. If a pre-press electrode composite layer is prepared by adding a plasticizer to the electrode composite layer, the amount of plasticizer in the pre-press electrode composite layer can be easily adjusted, and the pre-press electrode composite layer It is because it can form easily.
  • the pre-pressing electrode mixture layer has a water-soluble polymer of 0.3 to 10 parts by mass per 100 parts by mass of the electrode active material. It is preferable to include by a ratio. If the amount of the water-soluble polymer falls within the above range, the collapse of the binding structure and accumulation of residual stress due to the press can be sufficiently suppressed by blending the plasticizer while the water-soluble polymer functions sufficiently as a binder. Because it can be done.
  • the water-soluble polymer comprises an ethylenically unsaturated carboxylic acid compound (A) comprising at least one of an ethylenically unsaturated carboxylic acid and a salt thereof, and 20 ° C.
  • the ratio of the ethylenically unsaturated carboxylic acid compound (A) in all monomers is 20.0 mass% or more and 79.5 mass% or less, and the compound (B) in all monomers
  • the ratio is 20.0 mass% or more and 79.5 mass% or less, and the copolymer preferably has an electrolyte swelling degree of less than 120 mass%.
  • the internal resistance of an electrochemical element including an electrode for an electrochemical element is reduced, and cycle characteristics are improved while suppressing swelling of the electrode. Because you can.
  • the electrode mixture layer containing such a copolymer problems such as collapse of the binding structure due to pressing and accumulation of residual stress are particularly likely to occur.
  • the “electrolyte swelling degree” of the copolymer can be measured using the method described in the examples of the present specification.
  • the monomer composition further includes a polyfunctional compound (C) having a polyoxyalkylene structure and two or more ethylenically unsaturated bonds,
  • the ratio of the polyfunctional compound (C) in all monomers is preferably 0.1% by mass or more and 20.0% by mass or less. If the copolymer is formed using the monomer composition containing the polyfunctional compound (C) in the above-mentioned proportion, the internal resistance of the electrochemical element can be further reduced and the cycle characteristics can be improved. Because it can.
  • the water-soluble polymer contains at least one selected from the group consisting of polyacrylic acid, carboxymethylcellulose, and salts thereof. This is because at least one selected from the group consisting of polyacrylic acid and its salt and carboxymethylcellulose and its salt is easily available and can be used favorably as a binder. Further, in the electrode mixture layer containing these water-soluble polymers, problems such as collapse of the binding structure due to pressing and accumulation of residual stress are particularly likely to occur.
  • the said plasticizer is water. Water exhibits an excellent plasticizing effect on the water-soluble polymer, and can be easily removed from the electrode mixture layer by means such as heating during or after pressing the electrode mixture layer before pressing. Because.
  • the electrode for electrochemical elements of this invention was manufactured using either of the manufacturing method of the electrode for electrochemical elements mentioned above. It is characterized by that. As described above, when the method for manufacturing an electrode for an electrochemical device described above is used, the binding structure of the electrode mixture layer is collapsed by pressing, or residual stress is accumulated in the electrode mixture layer after pressing. Thus, an electrode for an electrochemical element that is excellent in performance such as powder resistance, peel strength, and swell resistance can be obtained.
  • the present invention aims to advantageously solve the above-mentioned problems, and the electrochemical element of the present invention is characterized by comprising the above-described electrode for an electrochemical element.
  • the electrode for electrochemical devices described above is used, an electrochemical device having excellent electrical characteristics can be obtained.
  • a method for producing an electrode for an electrochemical element including a step of pressing an electrode mixture layer formed on a current collector, and the desired performance is sufficiently obtained in the obtained electrode for an electrochemical element.
  • the manufacturing method of the electrode for electrochemical elements which can be exhibited can be provided.
  • the electrode for electrochemical elements excellent in performance, such as dust-proofing property, peel strength, and swelling resistance, and the electrochemical element excellent in an electrical property can be provided.
  • the method for manufacturing an electrode for an electrochemical element of the present invention is used when manufacturing an electrode used for an electrochemical element such as a battery or a capacitor.
  • the electrode for electrochemical devices of the present invention is manufactured using the method for manufacturing an electrode for electrochemical devices of the present invention, and includes a current collector and an electrode mixture layer formed on the current collector. Yes.
  • the electrochemical element of the present invention is characterized by using the electrode for an electrochemical element of the present invention.
  • the method for producing an electrode for an electrochemical element of the present invention is a method for producing an electrode having an electrode mixture layer containing an electrode active material and a binder on a current collector, and the electrode before pressing on the current collector Including a step of forming a composite material layer (pre-pressing electrode composite material layer forming step) and a step of pressing the pre-pressing electrode composite material layer to obtain a post-pressing electrode composite material layer (pressing step), optionally after pressing The method further includes a step of drying the electrode mixture layer (post-press drying step).
  • the manufacturing method of the electrode for electrochemical elements of this invention shows the plasticizing effect with respect to a water-soluble polymer with respect to the electrode compound-material layer before a press, and a binder contains a water-soluble polymer. A predetermined amount of a predetermined plasticizer is contained.
  • Pre-pressing electrode mixture layer forming step> in the electrode mixture layer forming step before press, the electrode active material, the binder containing the water-soluble polymer, and the plasticizer for the water-soluble polymer, and the amount of the plasticizer is 500 ppm by mass. A pre-press electrode mixture layer of 10000 mass ppm or less is formed on the current collector.
  • the plasticizer a plasticizer having a melting point equal to or lower than the temperature at which the pre-pressing electrode mixture layer is pressed in a pressing step (to be described in detail later) (hereinafter sometimes referred to as “pressing temperature”) is used.
  • the electrode mixture layer is pressed by the press. It is possible to suppress the collapse of the binding structure and the accumulation of residual stress in the electrode mixture layer after pressing. As a result, it is possible to manufacture an electrode for an electrochemical element having desired performance (for example, powder-proofing property, peel strength, swell resistance).
  • the pre-press electrode mixture layer contains a predetermined amount of a plasticizer having a melting point equal to or lower than the press temperature, a certain degree of flexibility can be imparted to the pre-press electrode mix layer at the pressed temperature. The collapse of the wearing structure and the accumulation of residual stress can be suppressed.
  • the electrode active material contained in the pre-press electrode mixture layer is not particularly limited, and a known electrode active material used in an electrode for an electrochemical element can be used.
  • a known electrode active material used in an electrode for an electrochemical element can be used.
  • the electrode active material for example, an electrode active material disclosed in JP 2014-42063 A can be used.
  • the binder is a component that can be held in an electrode manufactured by forming an electrode mixture layer on a current collector so that components contained in the electrode mixture layer are not detached from the electrode mixture layer.
  • a water-soluble polymer is used as a binder contained in the pre-press electrode mixture layer, and a water-insoluble heavy polymer such as a particulate polymer is optionally used.
  • the coalescence is used in combination with a water-soluble polymer.
  • the water-soluble polymer is not particularly limited, and a known water-soluble polymer that can be used as a binder for the electrode mixture layer can be used.
  • a known water-soluble polymer that can be used as a binder for the electrode mixture layer can be used.
  • the water-soluble polymer it is preferable to use at least one selected from the group consisting of polyacrylic acid and salts thereof, carboxymethylcellulose and salts thereof, and copolymers described later. More preferably, it is used. If these water-soluble polymers are used as a binder, the peel strength and dust resistance of the electrode can be increased, or the expansion and contraction of the electrode active material accompanying charge / discharge can be suppressed to increase the swell resistance of the electrode. Because it can be done.
  • these water-soluble polymers have a relatively rigid structure
  • the binder structure is easily collapsed by press and accumulation of residual stress is likely to occur. This is because, by using the production method of the present invention, it is possible to obtain an electrode excellent in powder fall resistance, swell resistance and peel strength while suppressing collapse of the binding structure and accumulation of residual stress.
  • a copolymer to be described later is used as a binder, the internal resistance of an electrochemical element provided with an electrode for an electrochemical element can be reduced and cycle characteristics can be improved.
  • polyacrylic acid and its salt, and carboxymethylcellulose and its salt are easily available, and can be used favorably as a binder.
  • the copolymer that can be suitably used as the water-soluble polymer contains an ethylenically unsaturated carboxylic acid compound (A) composed of at least one of an ethylenically unsaturated carboxylic acid and a salt thereof in a predetermined ratio. And it is obtained by polymerizing a monomer composition containing a copolymerizable compound (B) having an ethylenically unsaturated bond, having a solubility in 100 g of water at 20 ° C. of 7 g or more, It is a copolymer having an electrolyte solution swelling degree of less than 120% by mass. And when the said copolymer is used as a binder, while reducing the internal resistance of an electrochemical element provided with the electrode for electrochemical elements, it can improve cycling characteristics, suppressing the swelling of an electrode. .
  • the internal resistance of an electrochemical element is reduced by using the said copolymer, and the swelling of an electrode is suppressed and a cycle characteristic improves, it is not clear, but is based on the following reasons. It is guessed that. That is, the compound (B) is a monomer having high solubility in water, that is, high polarity. Therefore, the copolymer obtained has a low affinity for non-aqueous electrolytes usually used in electrochemical devices, and the resulting copolymer has a moderate swelling (less than 120% by mass) in the electrolyte. ) Suppressed. For this reason, it is presumed that the cycle characteristics are improved by suppressing the swelling of the electrodes.
  • the ionic conductivity is improved by the carboxyl group of the ethylenically unsaturated carboxylic acid compound (A), the internal resistance of the electrochemical device is reduced, and the cycle characteristics are improved.
  • the copolymer suitably covers the electrode active material due to the contribution of the carboxyl group of the ethylenically unsaturated carboxylic acid compound (A), the decomposition of the electrolyte solution on the surface of the electrode active material is suppressed, and gas generation is suppressed. Therefore, it is speculated that the storage stability can be improved.
  • the copolymer is obtained by polymerizing a monomer composition described in detail below. And this copolymer usually has a structural unit derived from a monomer contained in the monomer composition at a ratio similar to the abundance ratio of each monomer in the monomer composition. Contains.
  • the monomer composition used for preparing the copolymer contains, for example, a monomer, an additive such as a polymerization initiator, and a polymerization solvent. And a monomer composition contains an ethylenically unsaturated carboxylic acid compound (A) and a compound (B) in a predetermined ratio as a monomer. Specifically, the monomer composition has an ethylenic content of 20.0% by mass or more and 79.5% by mass or less when the amount of all monomers in the monomer composition is 100% by mass. A saturated carboxylic acid compound (A) and 20.0 mass% or more and 79.5 mass% or less of compound (B) are contained.
  • the copolymer is composed of 20.0% by mass or more and 79.5% by mass or less of ethylenically unsaturated carboxylic acid compound (A) unit and 20.0% by mass or more and 79.5% by mass or less of compound ( B) containing units.
  • the monomer composition arbitrarily excluded the polyfunctional compound (C) and the compound (D) copolymerizable with the ethylenically unsaturated carboxylic acid compound (A) and the compound (B), and these.
  • Other compounds may be contained as monomers.
  • ethylenically unsaturated carboxylic acid compound (A) at least one of an ethylenically unsaturated carboxylic acid and a salt thereof can be used.
  • the ethylenically unsaturated carboxylic acid include ethylenically unsaturated monocarboxylic acid and derivatives thereof, ethylenically unsaturated dicarboxylic acid and acid anhydrides thereof, and derivatives thereof.
  • the ethylenically unsaturated carboxylate include sodium salts, potassium salts and lithium salts of ethylenically unsaturated carboxylic acids.
  • ethylenically unsaturated carboxylic acid and its salt may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
  • examples of the ethylenically unsaturated monocarboxylic acid include acrylic acid, methacrylic acid, and crotonic acid.
  • examples of the ethylenically unsaturated monocarboxylic acid derivatives include 2-ethylacrylic acid, isocrotonic acid, ⁇ -acetoxyacrylic acid, ⁇ -trans-aryloxyacrylic acid, ⁇ -chloro- ⁇ -E-methoxyacrylic. Acid, ⁇ -diaminoacrylic acid and the like.
  • examples of the ethylenically unsaturated dicarboxylic acid include maleic acid, fumaric acid, itaconic acid and the like.
  • Examples of acid anhydrides of ethylenically unsaturated dicarboxylic acids include maleic anhydride, diacrylic anhydride, methyl maleic anhydride, dimethyl maleic anhydride, and the like.
  • examples of the ethylenically unsaturated dicarboxylic acid derivative include methylmaleic acid, dimethylmaleic acid, phenylmaleic acid, chloromaleic acid, dichloromaleic acid, and fluoromaleic acid.
  • an ethylenically unsaturated carboxylate preferably a lithium salt of ethylenically unsaturated carboxylic acid
  • the water solubility of the resulting copolymer can be increased, so when preparing the copolymer using water as the polymerization solvent, the monomer composition contains Even when the monomer concentration is high, it is possible to prevent inhomogeneous progress of polymerization due to precipitation of the copolymer. Accordingly, the polymerization can be progressed uniformly while increasing the productivity by using the monomer composition having a high monomer concentration.
  • a lithium salt of an ethylenically unsaturated carboxylic acid is used, a lithium carboxylate base (—COOLi) is introduced into the resulting copolymer, and the cycle characteristics of the electrochemical device are further improved and the internal resistance is further increased. Can be reduced.
  • acrylic acid, methacrylic acid or a salt thereof is used as the ethylenically unsaturated carboxylic acid compound. More preferably, acid or acrylate is used.
  • the monomer which the monomer composition used for preparation of a copolymer has the ratio for which the ethylenically unsaturated carboxylic acid compound (A) accounts is 20.0 mass% or more and 79.5 mass% or less.
  • the proportion of the ethylenically unsaturated carboxylic acid compound (A) in the monomer is more preferably 21.0% by mass or more, and further preferably 22.0% by mass or more. 75.0% by mass or less, more preferably 72.0% by mass or less, still more preferably 50.0% by mass or less, and 45.0% by mass or less. Is particularly preferred.
  • the proportion of the ethylenically unsaturated carboxylic acid compound (A) in the monomer is less than 20.0% by mass, the rigidity of the copolymer is lowered and the swelling of the electrode accompanying charge / discharge is sufficiently suppressed. The cycle characteristics of the electrochemical device deteriorate.
  • the proportion of the ethylenically unsaturated carboxylic acid compound (A) in the monomer is more than 79.5% by mass, the rigidity of the copolymer becomes excessively high and the electrode composite layer is pressed during pressing. It is easy for collapse of the wearing structure and accumulation of residual stress.
  • the compound (B) a compound having an ethylenically unsaturated bond and having a solubility in 100 g of water at 20 ° C. of 7 g or more can be used. This is because the structural unit derived from the compound (B) having such solubility has low swellability with respect to the electrolytic solution and high polymerizability when water is used as a polymerization solvent.
  • the ethylenically unsaturated carboxylic acid and the salt thereof are not included in the compound (B) but are included in the ethylenically unsaturated carboxylic acid compound (A) even when the above-described solubility is satisfied.
  • ethylenically unsaturated sulfonic acid, ethylenically unsaturated phosphoric acid, and salts thereof satisfy the above-mentioned solubility, they are not included in compound (B) but are included in compound (D).
  • examples of the compound (B) include 2-hydroxypropyl methacrylate (100 or more), 2-hydroxypropyl acrylate (100 or more), 2-hydroxyethyl methacrylate (100 or more), 2-hydroxyethyl acrylate (100 or more).
  • the numerical value in the parenthesis indicates water solubility (unit: g / 100 g) at a temperature of 20 ° C.
  • the water solubility at 20 ° C. can be measured by the EPA method (EPA Chemical Fate testing Guideline CG-1500 Water Solubility).
  • the solubility of the compound (B) in 100 g of water at 20 ° C. is preferably 100 g or more.
  • the compound (B) includes 2-hydroxyethyl acrylate, Acrylamide, N-methylolacrylamide, and acrylonitrile are preferably used, and 2-hydroxyethyl acrylate and acrylamide are more preferably used.
  • the monomer contained in the monomer composition used for preparing the copolymer preferably has a ratio of 20.0% by mass or more and 79.5% by mass or less of the above-described compound (B).
  • the proportion of the compound (B) in the monomer is more preferably 30.0% by mass or more, further preferably 50.0% by mass or more, and particularly preferably 55.0% by mass or more. Preferably, it is 75.0 mass% or less.
  • the proportion of the compound (B) in the monomer is less than 20.0% by mass, the electrode mixture layer becomes excessively brittle, the structure cannot be maintained, and cracks may occur. As a result, cycle characteristics deteriorate. In addition, the storage stability is lowered. Furthermore, the internal resistance of the electrochemical element cannot be sufficiently reduced.
  • the proportion of the compound (B) in the monomer exceeds 79.5% by mass, the swelling of the electrode cannot be sufficiently suppressed, and the cycle characteristics of the electrochemical device are deteriorated.
  • divided the ratio of the ethylenically unsaturated carboxylic acid compound (A) in all the monomers by the ratio of the said compound (B) in all the monomers is less than 1.5.
  • it is 1.0 or less, more preferably 0.8 or less, further preferably 0.2 or more, and more preferably 0.3 or more.
  • a / B is less than 1.5, the copolymer does not swell excessively in the electrolyte, the interparticle distance between the electrode active materials is maintained, and ion conductivity is also ensured. This is because the internal resistance of the electrochemical element can be further reduced.
  • a / B is within the above-described range, reduction of the internal resistance of the electrochemical element and improvement of cycle characteristics can be achieved in a balanced manner.
  • the monomer composition used for preparation of a copolymer contains the polyfunctional compound (C) which has a polyoxyalkylene structure and two or more ethylenically unsaturated bonds as a monomer. That is, the copolymer preferably contains a polyfunctional compound (C) unit.
  • a polyfunctional compound (C) for the polymerization of the copolymer, it is possible to impart moderately high rigidity and flexibility to the copolymer. Accordingly, it is possible to suppress the deterioration of the cycle characteristics by suppressing the swelling of the electrode due to charge / discharge. Moreover, the polymerization of the copolymer is facilitated by the contribution of the ethylene oxide chain having a high affinity with water.
  • the polyfunctional compound (C) is represented by the general formula: — (C m H 2m O) n — [wherein m is an integer of 1 or more and n is an integer of 2 or more].
  • a compound having a polyoxyalkylene structure and two or more ethylenically unsaturated bonds can be used.
  • the compound having a polyoxyalkylene structure and two or more ethylenically unsaturated bonds one type may be used alone, or two or more types may be used in combination at any ratio.
  • a compound corresponding to the polyfunctional compound (C) is not included in the compound (B).
  • the polyfunctional compound (C) the poly (meth) acrylate of the polyol which has a polyoxyalkylene structure etc. are mentioned, for example.
  • the polyfunctional compound is not particularly limited, and examples thereof include the following compounds (I) to (V).
  • “(meth) acrylate” means acrylate and / or Refers to methacrylate.
  • (I) The following general formula: [Wherein n is an integer of 2 or more] polyethylene glycol diacrylate represented by (II) The following general formula: [Wherein n is an integer of 2 or more] polytetramethylene glycol diacrylate.
  • the number (functional number) of ethylenically unsaturated bonds of the polyfunctional compound (C) is preferably 2 or more and 6 or less, and preferably 2 or more and 4 or less. More preferably it is.
  • the polyfunctional compound (C) is preferably a bi- to hexa-functional polyacrylate, more preferably a bi- to tetra-functional polyacrylate.
  • the integer m of the polyoxyalkylene structure (— (C m H 2m O) n —) of the polyfunctional compound (C) is 20 or less. Is preferably 15 or less, particularly preferably 10 or less, and more preferably 2 or more. This is because when the integer m is too small, the rigidity of the copolymer is increased and the storage stability of the electrochemical device may be lowered.
  • the integer n of the polyoxyalkylene structure (— (C m H 2m O) n —) of the polyfunctional compound (C) is preferably 20 or less, and preferably 15 or less.
  • the polyfunctional compound (C) has a plurality of polyoxyalkylene structures (— (C m H 2m O) n —) in the molecule, the average value of the integers n of the plurality of polyoxyalkylene structures is It is preferable to be included in the range, and it is more preferable that the integer n of all the polyoxyalkylene structures is included in the above range.
  • the monomer which the monomer composition used for preparation of a copolymer accounts for the polyfunctional compound (C) mentioned above is 0.1 mass% or more, and 0.3 mass% More preferably, it is more preferably 0.5% by mass or more, more preferably 20.0% by mass or less, and even more preferably 10.0% by mass or less, and 5.0% by mass. % Or less is more preferable.
  • the proportion of the polyfunctional compound (C) in the monomer is 0.1% by mass or more, the swelling of the electrode can be sufficiently suppressed, and the cycle characteristics of the electrochemical device can be further improved. it can.
  • the proportion of the polyfunctional compound (C) in the monomer is 20.0% by mass or less, the rigidity of the copolymer is prevented from becoming excessively high and becoming brittle. It is possible to suppress a decrease in storage stability of the electrochemical device due to the occurrence of slag.
  • the monomer composition used for preparing the copolymer is at least selected from the group consisting of ethylenically unsaturated sulfonic acid and salts thereof, and ethylenically unsaturated phosphoric acid and salts thereof as monomers.
  • the compound (D) which consists of 1 type may be included. That is, the copolymer may contain a compound (D) unit.
  • Examples of the ethylenically unsaturated sulfonic acid include 2-acrylamido-2-methylpropane sulfonic acid, styrene sulfonic acid, and vinyl sulfonic acid.
  • Examples of the ethylenically unsaturated sulfonate include sodium salt, potassium salt, and lithium salt of ethylenically unsaturated sulfonic acid.
  • Examples of the ethylenically unsaturated phosphoric acid include phosphoric acid-2- (meth) acryloyloxyethyl.
  • Examples of the ethylenically unsaturated phosphate include sodium salt, potassium salt and lithium salt of ethylenically unsaturated phosphoric acid.
  • a compound (D) may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
  • “(meth) acryloyl” refers to acryloyl and / or methacryloyl.
  • 2-acrylamido-2-methylpropanesulfonic acid As compound (D), 2-acrylamido-2-methylpropanesulfonic acid, styrenesulfonic acid, vinylsulfonic acid, 2-methacryloyloxyethyl phosphate (acid phosphooxyethyl methacrylate) or a salt thereof should be used. 2-acrylamido-2-methylpropanesulfonic acid or a salt thereof is more preferable.
  • an ethylenically unsaturated sulfonate and / or an ethylenically unsaturated phosphate can be preferably used, more preferably a lithium salt of ethylenically unsaturated sulfonic acid and / or ethylene.
  • Lithium salt of ionic unsaturated phosphoric acid can be used.
  • the ratio for which a compound (D) accounts in the monomer which the monomer composition used for preparation of a copolymer occupies is 0.5 mass% or more and 30.0 mass% or less without being specifically limited. can do.
  • the monomer composition used for preparing the copolymer can be copolymerized with the above-described ethylenically unsaturated carboxylic acid compound (A), compound (B), polyfunctional compound (C) and compound (D). Such known compounds may be included.
  • the proportion of the monomer contained in the monomer composition used for preparing the copolymer is preferably 20% by mass or less, and the proportion of other compounds excluding (A) to (D) is preferably 10% by mass. % Or less is more preferable.
  • other compounds include methyl acrylate, ethyl acrylate, n-propyl acrylate, isopropyl acrylate, n-butyl acrylate, t-butyl acrylate, pentyl acrylate, hexyl acrylate, heptyl acrylate, octyl acrylate, nonyl acrylate, Acrylic esters such as decyl acrylate, lauryl acrylate, n-tetradecyl acrylate, stearyl acrylate, perfluoroalkyl ethyl acrylate, phenyl acrylate, etc .; methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, isopropyl methacrylate, n-butyl methacrylate, t -Butyl methacrylate, pentyl methacrylate, hexyl methacrylate Methacrylic
  • additives that can be used for a polymerization reaction such as a polymerization initiator such as potassium persulfate and a polymerization accelerator such as tetramethylethylenediamine. These additives may be mentioned.
  • the kind and compounding quantity of an additive can be arbitrarily selected according to a polymerization method etc.
  • a polymerization solvent to be blended in the monomer composition used for preparing the copolymer a known solvent capable of dissolving or dispersing the above-described monomer can be used depending on the polymerization method and the like.
  • water is preferably used as the polymerization solvent.
  • the polymerization solvent an aqueous solution of an arbitrary compound or a mixed solution of a small amount of an organic medium and water may be used.
  • the copolymer can be obtained by, for example, radical polymerization of a monomer composition obtained by mixing the above-described monomers, additives and polymerization solvent by a known method.
  • the solution obtained by polymerizing the monomer composition and containing the copolymer and the polymerization solvent may be used as it is for forming the electrode mixture layer before pressing, You may use for forming the electrode compound-material layer before a press after adding arbitrary components.
  • examples of the polymerization method of the copolymer include known polymerization methods such as aqueous solution polymerization, slurry polymerization, suspension polymerization, and emulsion polymerization.
  • aqueous solvent polymerization using water as a polymerization solvent is preferable because the operation of removing the solvent is unnecessary, the safety of the solvent is high, and there is no problem of mixing of the surfactant.
  • the monomer composition is adjusted to a predetermined concentration, and the dissolved oxygen in the reaction system is sufficiently replaced with an inert gas. Then, a radical polymerization initiator is added, and if necessary, heating or ultraviolet rays are added. It is a method of performing a polymerization reaction by irradiating light.
  • the pH of the aqueous solution should be adjusted to 8 or more and 9 or less after polymerization. Is preferred. This is because the storage stability of the electrochemical device can be further improved by neutralizing the resulting aqueous solution and adjusting the pH to 8-9.
  • a monomer composition containing an ethylenically unsaturated carboxylic acid is used as the ethylenically unsaturated carboxylic acid compound (A)
  • a basic lithium compound is used when neutralizing the aqueous solution. It is preferable to use it.
  • the carboxylic acid group in the copolymer becomes carboxylic acid lithium base (—COOLi), the internal resistance of the electrochemical device is reduced, and the cycle characteristics are improved.
  • the basic lithium compound lithium carbonate (Li 2 CO 3 ) or lithium hydroxide (LiOH) can be used, and lithium hydroxide is preferably used.
  • the copolymer prepared as described above preferably has an electrolyte swelling degree of less than 120% by mass, more preferably less than 115% by mass, and still more preferably less than 110% by mass. Moreover, it is preferable that it is 100 mass% or more, it is more preferable that it is 103 mass% or more, and it is still more preferable that it is 105 mass% or more. If the degree of swelling of the electrolyte solution in the copolymer is 120% by mass or more, the copolymer is excessively swollen in the electrolyte solution, the structure of the electrode mixture layer cannot be maintained, and cycle characteristics may be deteriorated.
  • the degree of swelling of the electrolyte in the copolymer is 100% by mass or more, ionic conductivity is ensured, and the internal resistance of the electrochemical element can be further reduced.
  • the flexibility of the copolymer can be ensured, cracking and peeling of the copolymer can be suppressed, and the storage stability of the electrochemical device can be further improved.
  • the electrolyte solution swelling degree of a copolymer can be adjusted by changing the kind and quantity of the ethylenically unsaturated carboxylic acid compound (A) and compound (B) in a monomer composition.
  • the water-insoluble polymer that can be optionally used in combination with the above-described water-soluble polymer is not particularly limited, and examples thereof include known water-insoluble polymers that can be used as a binder.
  • the water-insoluble polymer it is preferable to use a particulate polymer that exists in a particulate state in water and can maintain the particulate shape even in the electrode mixture layer. This is because if the water-soluble polymer and the particulate polymer are used in combination, the adhesion between the electrode mixture layer and the current collector can be improved.
  • the particulate polymer for example, a diene polymer such as a styrene-butadiene copolymer or an acrylonitrile-butadiene copolymer, an acrylic polymer, a fluorine polymer, or a silicon polymer can be used.
  • a diene polymer such as a styrene-butadiene copolymer or an acrylonitrile-butadiene copolymer, an acrylic polymer, a fluorine polymer, or a silicon polymer.
  • the particulate polymer since the particulate polymer is in contact with the component such as the electrode active material in a state close to point contact in the electrode mixture layer, the water-soluble property described above that covers at least a part of the surface of the component such as the electrode active material. Compared to a polymer, even if it is contained in the electrode mixture layer, it is less likely to cause damage to the binding structure or accumulation of residual stress.
  • the water-soluble polymer mentioned above is contained in the electrode mixture layer before press at a ratio of 0.3 parts by mass or more and 10 parts by mass or less per 100 parts by mass of the electrode active material. More preferably, it is contained in a proportion of not less than 5 parts by mass. This is because if the amount of the water-soluble polymer in the pre-press electrode mixture layer is too large, there is a possibility that even if a plasticizer is added, the fracture of the binding structure and the accumulation of residual stress may not be sufficiently suppressed. Further, when the amount of the water-soluble polymer is too small, the water-soluble polymer cannot sufficiently function as a binder.
  • the ratio of the water-soluble polymer in the polymer contained as a binder in the pre-press electrode mixture layer is preferably 20% by mass or more and 100% by mass or less, and more preferably 30% by mass or more. preferable. If the proportion of the water-soluble polymer in the binder is 20% by mass or more, the water-soluble polymer functions sufficiently as a binder while suppressing the destruction of the binder structure and the accumulation of residual stress by the plasticizer. It is because it can be made.
  • the plasticizer exerts a plasticizing effect on the water-soluble polymer.
  • the plasticizer is plasticized. This is a component that suppresses the collapse of the binding structure of the electrode mixture layer and the accumulation of residual stress in the electrode mixture layer.
  • the plasticizer needs to have a melting point temperature equal to or lower than the pressing temperature of the pre-pressing electrode mixture layer in the pressing step. In other words, it is necessary to perform the pressing of the pre-pressing electrode mixture layer in the pressing step at a temperature equal to or higher than the melting point of the plasticizer. This is because it is necessary to function as a plasticizer for the water-soluble polymer during pressing.
  • the plasticizer described above is not particularly limited, but water; 1 to 6 carbon atoms such as methanol, ethanol, n-propanol, isopropanol, n-butanol, isobutanol, t-butanol, pentanol, hexanol and the like.
  • C1-20 polyhydric alcohols such as glycerin and esters thereof and esters thereof; ketones such as acetone and methyl ethyl ketone; and polar compounds such as esters thereof.
  • a plasticizer may be used individually by 1 type and may be used combining two or more types by arbitrary ratios.
  • the amount of the plasticizer in the pre-press electrode mixture layer needs to be 500 mass ppm or more and 10,000 mass ppm or less, and the amount of the plasticizer is preferably 800 mass ppm or more and 5000 mass ppm or less. If the amount of the plasticizer is too small, the water-soluble polymer cannot be sufficiently plasticized, and it is possible to suppress the collapse of the binding structure of the electrode mixture layer and the accumulation of residual stress in the electrode mixture layer. It is not possible. On the other hand, when the amount of the plasticizer is too large, the water-soluble polymer is excessively plasticized, so that pressing becomes difficult, or the shape of the electrode mixture layer before pressing cannot be maintained.
  • the amount of the plasticizer in the pre-press electrode mixture layer can be adjusted by changing the pre-press electrode mixture layer forming conditions (for example, drying conditions) and the plasticizer addition amount.
  • the electrode mixture layer before press may contain components, such as a conductive material, a reinforcing material, a leveling agent, and an electrolytic solution additive, in addition to the above components. These are not particularly limited as long as they do not affect the battery reaction, and known ones such as those described in International Publication No. 2012/115096 can be used. These components may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
  • the current collector for forming the pre-press electrode mixture layer containing the above-described components a material having electrical conductivity and electrochemical durability is used.
  • a current collector for example, a current collector made of iron, copper, aluminum, nickel, stainless steel, titanium, tantalum, gold, platinum, or the like can be used.
  • a copper foil is particularly preferable as the current collector used for the negative electrode.
  • the current collector used for the positive electrode is particularly preferably an aluminum foil.
  • the said material may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
  • the electrode mixture layer before press containing an electrode active material, a binder containing a water-soluble polymer, and a plasticizer, and optionally further containing other additives includes, for example, (1) an electrode active material, An electrode mixture layer is formed on the current collector using a slurry composition containing a binder, a plasticizer, and optional additives, and then a plasticizer is further added to the formed electrode mixture layer as necessary. Or (2) formed after forming an electrode mixture layer on the current collector using a slurry composition containing an electrode active material, a binder and optional additives, and not containing a plasticizer It can prepare using the method of adding a plasticizer to an electrode compound-material layer.
  • the method (1) is preferably used. From the viewpoint of facilitating the formation of the electrode and the adjustment of the amount of plasticizer in the pre-press electrode mixture layer, the method of (1) above, in which a plasticizer is further added to the formed electrode mixture layer, is used. Is more preferable.
  • the slurry composition containing an electrode active material, a binder, a plasticizer, and optional additives is particularly limited.
  • the above components and the dispersion medium are mixed using a blender such as a ball mill, sand mill, bead mill, pigment disperser, cracker, ultrasonic disperser, homogenizer, planetary mixer, or fill mix. be able to.
  • a blender such as a ball mill, sand mill, bead mill, pigment disperser, cracker, ultrasonic disperser, homogenizer, planetary mixer, or fill mix.
  • water, a lower alcohol, etc. you may prepare a slurry composition using a plasticizer as a dispersion medium.
  • the electrode mixture layer can be formed, for example, by applying a slurry composition on a current collector and then drying the applied slurry composition.
  • coating a slurry composition on a collector A well-known method can be used. Specifically, as a coating method, a doctor blade method, a dip method, a reverse roll method, a direct roll method, a gravure method, an extrusion method, a brush coating method, or the like can be used.
  • the slurry composition may be applied to only one side of the current collector or may be applied to both sides.
  • the thickness of the slurry film on the current collector after application and before drying can be appropriately set according to the thickness of the electrode mixture layer obtained by drying.
  • the method for drying the slurry composition on the current collector is not particularly limited, and a known method can be used. For example, a drying method using hot air, hot air, low-humidity air, vacuum drying method, infrared ray or electron beam The drying method by irradiation etc. is mentioned.
  • the drying is performed at the drying temperature or
  • the amount of the plasticizer remaining in the electrode mixture layer by adjusting the drying conditions such as the drying time may be 500 mass ppm or more and 10000 mass ppm or less, or the plasticity remaining in the electrode mixture layer You may carry out so that the quantity of an agent may be less than 500 mass ppm.
  • the electrode mixture layer obtained by drying the slurry composition applied on the current collector is the electrode mixture layer before pressing as it is when the amount of plasticizer is 500 ppm by mass or more and 10,000 ppm by mass or less.
  • the plasticizer may be further added to the electrode mixture layer within a range in which the amount of the plasticizer does not exceed 10,000 ppm by mass, and then the electrode mixture layer before pressing may be used.
  • the amount of the plasticizer is less than 500 ppm by mass
  • the plasticizer is added to the electrode mixture layer within a range where the amount of the plasticizer is 500 ppm by mass or more and 10000 ppm by mass or less, and then the electrode assembly before press. It can be a material layer.
  • the addition of the plasticizer means contact between the gaseous plasticizer and the electrode mixture layer, application of the liquid plasticizer to the electrode mixture layer, and immersion of the electrode mixture layer in the liquid plasticizer. Or the like.
  • the addition of the plasticizer exposes the electrode mixture layer to the atmosphere in which the gaseous plasticizer exists, It is preferable to use a method of contacting the electrode mixture layer.
  • the plasticizer is water
  • the electrode mixture layer obtained by drying the slurry composition is left in an air atmosphere, and moisture in the air is absorbed into the electrode mixture layer. It is preferable to add water as a plasticizer to the electrode mixture layer.
  • preparation of a slurry composition and formation of an electrode compound-material layer are the same of said (1) except not mix
  • the pre-pressing electrode composite layer formed in the pre-pressing electrode composite layer forming step is pressed to obtain a post-pressing electrode composite layer.
  • the electrode mixture layer before pressing that is pressed in the pressing process contains a water-soluble polymer and a predetermined amount of plasticizer, in the pressing process, the binding structure of the electrode mixture layer collapses and the electrode mixture layer Accumulation of residual stress on is suppressed.
  • the press of the pre-press electrode mixture layer formed on the current collector is not particularly limited, and can be performed using a known pressurizing method such as a mold press or a roll press.
  • the pressure at the time of pressing the electrode compound-material layer before a press is not specifically limited, It can be set as 1 Mpa or more and 30 Mpa or less. This is because if the pressure is too low, the density of the post-pressing electrode composite layer and the adhesion between the post-pressing electrode composite layer and the current collector cannot be sufficiently increased. On the other hand, when the pressure is too high, the collapse of the binding structure and the accumulation of residual stress cannot be sufficiently suppressed.
  • the temperature at the time of pressing the electrode compound-material layer before a press is not specifically limited, Preferably it is 20 to 80 degreeC, More preferably, it can be 20 to 60 degreeC. This is because if the temperature is too low, the plasticizer may not exhibit a sufficient plasticizing effect.
  • the post-pressing electrode mixture layer obtained in the pressing step is dried, and the plasticizer is removed from the post-pressing electrode mixture layer to obtain an electrode for an electrochemical device.
  • the plasticizer remaining in the electrode mixture layer after press is removed to, for example, less than 500 ppm by mass. This prevents the plasticizer from adversely affecting the electrochemical reaction in the electrochemical element.
  • a well-known method can be used. Specifically, a drying method using warm air, hot air or low-humidity air, a vacuum drying method, or a drying method using irradiation with infrared rays or electron beams can be used.
  • the electrode for an electrochemical element of the present invention manufactured using the method for manufacturing an electrode for an electrochemical element described above has a pressed electrode mixture layer on a current collector, and the electrode mixture layer includes At least an electrode active material and a binder containing a water-soluble polymer are included. And since this electrode for electrochemical elements has fully suppressed the collapse
  • the density of the electrode mixture layer of the electrode for an electrochemical element is 1. It is preferably 1 g / cm 3 or more, more preferably 1.3 g / cm 3 or more, further preferably 1.5 g / cm 3 or more, and 1.6 g / cm 3 or more. Particularly preferred.
  • the density of the electrode mixture layer is usually 1.9 g / cm 3 or less.
  • the amount of the plasticizer in the electrode mixture layer of the electrode for an electrochemical element is 500 mass. It is preferably less than ppm, and more preferably 300 ppm by mass or less. In addition, the quantity of the plasticizer in an electrode compound material is 150 mass ppm or more normally.
  • the electrochemical element of the present invention is characterized in that the above-described electrode for an electrochemical element is used as at least one of the electrodes.
  • an example of the electrochemical device of the present invention is a secondary battery such as a lithium ion secondary battery, or a capacitor such as an electric double layer capacitor and a lithium ion capacitor, and includes a positive electrode, a negative electrode, an electrolyte solution, and the like.
  • the separator, and the above-described electrode for an electrochemical element is used as at least one of the positive electrode and the negative electrode.
  • the electrochemical element of this invention uses the electrode for electrochemical elements of this invention, it exhibits the outstanding electrical property.
  • electrodes other than the electrode for electrochemical elements mentioned above which can be used for the electrochemical element of this invention it is not specifically limited, It is using the known electrode currently used for manufacture of an electrochemical element. it can.
  • an electrode other than the above-described electrode for an electrochemical element an electrode formed by forming an electrode mixture layer on a current collector using a known production method can be used.
  • electrolytic solution and the separator are not particularly limited, and known electrolytic solutions and separators used for the production of electrochemical elements can be used.
  • the electrochemical element is formed by, for example, stacking a positive electrode and a negative electrode through a separator, winding it as necessary, folding it into a container, injecting an electrolyte into the container and sealing it. Can be manufactured.
  • an overcurrent prevention element such as a fuse or a PTC element, an expanded metal, a lead plate, or the like may be provided as necessary.
  • the shape of the electrochemical element may be any of a coin shape, a button shape, a sheet shape, a cylindrical shape, a square shape, a flat shape, and the like.
  • ⁇ Electrolytic solution swelling> The aqueous solution containing the copolymer was dried in an environment of 50% humidity and a temperature of 23 to 25 ° C. to form a film having a thickness of 1 ⁇ 0.3 mm.
  • the film formed was dried with a vacuum dryer at a temperature of 60 ° C. for 10 hours, then cut and weighed approximately 1 g.
  • the mass of the obtained film piece is defined as W0.
  • Electrolyte swelling degree (mass%) (W1 / W0) ⁇ 100 ⁇ Amount of plasticizer in electrode mixture layer> A negative electrode mixture layer having a length of 50 mm and a width of 30 mm was cut out from the produced negative electrode to obtain a test piece.
  • the quantity of the plasticizer (water, ethanol) in a negative electrode compound material layer was measured with the following method using the test piece.
  • [Measurement of water content] Under the environment of a temperature of 150 ° C., the moisture content in the test piece was measured using a Karl Fischer moisture meter (KF-200, manufactured by Mitsubishi Chemical Analytech).
  • [Measurement of ethanol content] The test piece was immersed in distilled water as an extraction solvent, and ethanol in the test piece was extracted into distilled water. And the amount of ethanol in a test piece was measured using the high performance liquid chromatography (the Tosoh make, HLC-8220).
  • ⁇ Peel strength of electrode> The prepared negative electrode was cut into a rectangle having a length of 100 mm and a width of 10 mm to obtain a test piece. Then, a cellophane tape (as defined in JIS Z1522) is attached to the surface of the test piece on the negative electrode mixture layer side, and the test piece is fixed to the test stand with the surface having the negative electrode mixture layer facing down. The stress was measured when one end of the body was pulled in the vertical direction and pulled at a pulling speed of 50 mm / min. The measurement was performed 3 times, the average value was calculated
  • peel strength is 3.0 N / m or more
  • B Peel strength is 2.5 N / m or more and less than 3.0 N / m
  • C Peel strength is 2.0 N / m or more and less than 2.5 N / m
  • D Peel strength is Less than 2.0 N / m ⁇ swelling resistance>
  • the prepared laminated cell type lithium ion secondary battery was allowed to stand for 5 hours after injecting the electrolyte solution, charged at 25 ° C. to a cell voltage of 3.65 V by a constant current method of 0.2 C, and then at 60 ° C.
  • CC-CV charge upper limit cell voltage 4.20V
  • CC discharge lower limit voltage 2.75V
  • CC-CV charge was performed at a rate of 4.40 V and 1 C in an environment of 25 ° C., and then the cell was disassembled.
  • the swelling resistance was evaluated as follows according to the ratio (T1 / T0) when the thickness of the negative electrode mixture layer before cell preparation was T0 and the thickness of the negative electrode mixture layer after charge disassembly was T1. As the ratio (T1 / T0) is smaller, the bulge is suppressed, which indicates that the bulge resistance is excellent.
  • C T1 / T0 is 1.30 or more and less than 1.35
  • T1 / T0 is 1.35 or more ⁇ cycle Characteristics>
  • the prepared laminated cell type lithium ion secondary battery was allowed to stand for 5 hours after injecting the electrolyte solution, charged at 25 ° C.
  • Example 1 ⁇ Preparation of water-soluble polymer (copolymer)> 720 g of ion-exchanged water was charged into a 1 L flask with a septum, heated to a temperature of 40 ° C., and the inside of the flask was replaced with nitrogen gas at a flow rate of 100 mL / min. Next, 10 g of ion-exchanged water, 9.5 g (25.0%) of acrylic acid as the ethylenically unsaturated carboxylic acid compound (A), and 28.5 g (75.0%) of acrylamide as the compound (B) And were injected into the flask with a syringe.
  • ⁇ Preparation of particulate polymer> In a 5 MPa pressure vessel with a stirrer, 63 parts of styrene as an aromatic vinyl monomer, 34 parts of 1,3-butadiene as an aliphatic conjugated diene monomer, 2 parts of itaconic acid as an ethylenically unsaturated carboxylic acid monomer, hydroxyl group 1 part of 2-hydroxyethyl acrylate as a monomer, 0.3 part of t-dodecyl mercaptan as a molecular weight regulator, 5 parts of sodium dodecylbenzenesulfonate as an emulsifier, 150 parts of ion-exchanged water as a solvent, and excess as a polymerization initiator 1 part of potassium sulfate was added and stirred sufficiently, and then heated to 55 ° C.
  • the obtained particulate polymer A had a gel content of 92% and a glass transition temperature (Tg) of 10 ° C.
  • a slurry composition for a battery negative electrode was prepared.
  • the solid content concentration of the slurry composition at this time was 45 mass%.
  • the copper foil coated with the slurry composition is conveyed at a rate of 200 mm / min in an oven at a temperature of 80 ° C. for 2 minutes and further in an oven at a temperature of 120 ° C. for 2 minutes, thereby allowing the copper foil on the copper foil.
  • the slurry composition was dried to obtain a negative electrode original fabric having an electrode mixture layer on the current collector. Further, the obtained negative electrode raw material is left in an environment of temperature 25 ⁇ 1 ° C. and humidity 50% ⁇ 5% for one week to absorb water (melting point: 0 ° C.) as a plasticizer in the negative electrode mixture layer. Then, the pre-press electrode composite material layer was formed on the current collector (pre-press electrode composite material layer forming step).
  • the amount of water in the pre-press electrode mixture layer was 5000 ppm. Thereafter, using a roll press machine, the current collector and the electrode mixture layer before pressing were pressed in an environment of a temperature of 25 ° C. (load: 11 ton (linear pressure: 1 MN / m), pressing speed: 1000 mm / min), density Obtained a post-pressing electrode mixture layer of 1.63-1.67 g / cm 3 (pressing step). Furthermore, the electrode mixture layer after pressing was dried at a temperature of 105 ° C. for 4 hours to obtain a negative electrode (drying step after pressing). The peel strength and swell resistance of the negative electrode were evaluated. The results are shown in Table 1.
  • the obtained slurry composition was applied on a 20 ⁇ m-thick aluminum foil (current collector) with a comma coater so that the coating amount was 26.3 to 27.7 mg / cm 2 . Then, the slurry composition was dried by conveying the aluminum foil in an oven at 60 ° C. at a speed of 0.5 m / min for 2 minutes. Thereafter, heat treatment was performed at 120 ° C. for 2 minutes to obtain a positive electrode raw material. Further, the obtained positive electrode raw material was pressed with a roll press machine so that the density after pressing was 3.40 to 3.50 g / cm 3, and a vacuum at a temperature of 120 ° C. was used for the purpose of removing moisture.
  • a positive electrode having a positive electrode mixture layer on the current collector was obtained by placing it under conditions for 3 hours.
  • Example 2 When preparing the water-soluble polymer, the amount of acrylic acid as the ethylenically unsaturated carboxylic acid compound (A) was 19.0 g (50.0%), and the amount of acrylamide as the compound (B) was 19.0 g ( A water-soluble polymer B was obtained in the same manner as in Example 1 except that the amount was 50.0%). And except having used water-soluble polymer B, it carried out similarly to Example 1, and manufactured and evaluated the slurry composition for negative electrodes, the negative electrode, the positive electrode, and the lithium ion secondary battery. The results are shown in Table 1.
  • Example 3 When preparing the water-soluble polymer, the amount of acrylic acid as the ethylenically unsaturated carboxylic acid compound (A) was 28.5 g (75.0%), and the amount of acrylamide as the compound (B) was 9.5 g ( A water-soluble polymer C was obtained in the same manner as in Example 1 except that the content was 25.0%. And except having used the water-soluble polymer C, it carried out similarly to Example 1, and manufactured and evaluated the slurry composition for negative electrodes, the negative electrode, the positive electrode, and the lithium ion secondary battery. The results are shown in Table 1.
  • Example 5 At the time of preparing the water-soluble polymer, the amount of acrylamide as the compound (B) was 26.6 g (70.0%), and the polyfunctional compound (C) was polyethylene glycol diacrylate (manufactured by Kyoeisha Chemical Co., Ltd.)
  • Example 6 During the preparation of the negative electrode slurry composition, a mixture of 90 parts of artificial graphite and 10 parts of SiO x was used as the negative electrode active material, and the amount of the water-soluble polymer D was changed to 3.0 parts corresponding to the solid content.
  • a slurry composition for a negative electrode, a negative electrode, a positive electrode, and a lithium ion secondary battery were produced and evaluated in the same manner as Example 4 except that the particulate polymer A was not blended. The results are shown in Table 1.
  • Example 7 During the preparation of the negative electrode slurry composition, a mixture of 95 parts of artificial graphite and 5 parts of SiO x was used as the negative electrode active material, and the amount of the water-soluble polymer D was changed to 2.0 parts corresponding to the solid content.
  • a negative electrode slurry composition, a negative electrode, a positive electrode, and a lithium ion secondary battery are produced in the same manner as in Example 4 except that the particulate polymer B prepared as follows is used in place of the particulate polymer A. And evaluated. The results are shown in Table 1.
  • ⁇ Preparation of particulate polymer B> In a 5 MPa pressure vessel equipped with a stirrer, 34 parts of styrene as an aromatic vinyl monomer, 46 parts of 1,3-butadiene as an aliphatic conjugated diene monomer, 20 parts of acrylic acid as an ethylenically unsaturated carboxylic acid monomer, molecular weight After adding 1.0 part of t-dodecyl mercaptan as an adjusting agent, 5 parts of sodium dodecylbenzenesulfonate as an emulsifier, 150 parts of ion-exchanged water as a solvent, and 1 part of potassium persulfate as a polymerization initiator, The polymerization was started by heating to 0 ° C.
  • the reaction was stopped by cooling.
  • a 5% aqueous sodium hydroxide solution was added to the aqueous dispersion containing the polymer thus obtained to adjust the pH to 8.
  • the unreacted monomer was removed by heating under reduced pressure. Furthermore, it cooled to 30 degrees C or less after that, and the aqueous dispersion liquid of the particulate polymer B was obtained.
  • the gel content of the obtained particulate polymer B was 98%, and the glass transition temperature (Tg) was 10 ° C.
  • Example 8 A slurry composition for negative electrode, negative electrode, positive electrode and lithium ion were used in the same manner as in Example 1 except that an aqueous solution of carboxymethyl cellulose (CMC) (manufactured by Nippon Paper Chemicals, MAC800LC) was used instead of the aqueous solution of water-soluble polymer A.
  • CMC carboxymethyl cellulose
  • a slurry composition for negative electrode, a negative electrode, a positive electrode, and a lithium ion secondary battery were produced and evaluated in the same manner as in Example 1 except that an aqueous solution of (PAA) was used. The results are shown in Table 1.
  • Example 10 At the time of manufacturing the negative electrode, the obtained negative electrode raw material was left in an environment of a temperature of 25 ⁇ 1 ° C. and a humidity of 50% ⁇ 5% for one week, and then placed in an aluminum pouch. Then, ethanol (melting point: ⁇ 114 ° C.) as a plasticizer is added to the aluminum pouch so that the ethanol is 0.5 part with respect to a total of 100 parts of the negative electrode active material and the binder, and the aluminum pouch is heat sealed. did. Thereafter, the aluminum pouch was left in a thermostatic bath at 50 ° C. for 3 days to absorb all ethanol in the negative electrode mixture layer, thereby forming a pre-press electrode mixture layer (pre-press electrode mixture layer forming step).
  • pre-press electrode mixture layer forming step pre-press electrode mixture layer forming step
  • the amount of water and ethanol in the electrode mixture layer before pressing was 5000 ppm (total plasticizer of 10,000 ppm), respectively.
  • a pressing step and a post-pressing drying step were performed in the same manner as in Example 1 to obtain a negative electrode.
  • a positive electrode and a lithium ion secondary battery were produced and evaluated in the same manner as in Example 1 except that the negative electrode was used. The results are shown in Table 1.
  • Example 11 The electrode mixture before press was performed in the same manner as in Example 1 except that the obtained negative electrode raw material was left in a dry room environment at a temperature of 25 ⁇ 1 ° C. and a dew point of ⁇ 60 to ⁇ 50 ° C. for one week. A layer forming step, a pressing step, and a drying step after pressing were performed to obtain a negative electrode. The amount of water in the pre-press electrode mixture layer was 1000 ppm. A positive electrode and a lithium ion secondary battery were produced and evaluated in the same manner as in Example 1 except that the negative electrode was used. The results are shown in Table 1.
  • Example 12 During the production of the negative electrode, the copper foil coated with the slurry composition was conveyed at a rate of 200 mm / min in an oven at a temperature of 80 ° C. for 2 minutes and further in an oven at a temperature of 105 ° C. for 2 minutes. The slurry composition on the foil was dried, and the pre-press electrode mixture layer was directly formed on the current collector (pre-press electrode mixture layer forming step). The amount of water in the pre-press electrode mixture layer was 800 ppm. Further, a pressing step and a post-pressing drying step were performed in the same manner as in Example 1 to obtain a negative electrode. A positive electrode and a lithium ion secondary battery were produced and evaluated in the same manner as in Example 1 except that the negative electrode was used. The results are shown in Table 1.
  • the obtained negative electrode raw material was put in an aluminum pouch. And the water as a plasticizer was added in the aluminum pouch so that it might become 2.0 parts of water with respect to a total of 100 parts of a negative electrode active material and a binder, and the aluminum pouch was heat-sealed. Thereafter, the aluminum pouch was left in a 50 ° C. constant temperature bath for 3 days to absorb water into the negative electrode mixture layer. Further, the negative electrode raw material taken out from the aluminum pouch was left in an environment of a temperature of 25 ⁇ 1 ° C. and a humidity of 50% ⁇ 5% for 1 day to form a pre-pressing electrode mixture layer on the current collector (press Front electrode mixture layer forming step).
  • the amount of water in the pre-press electrode mixture layer was 11000 ppm. Thereafter, an attempt was made to carry out the pressing step and the post-pressing drying step in the same manner as in Example 1, but the negative electrode composite material layer adhered to the roll of the roll press machine during pressing, and pressing was not possible. Therefore, the negative electrode could not be manufactured.
  • a method for producing an electrode for an electrochemical element including a step of pressing an electrode mixture layer formed on a current collector, and the desired performance is sufficiently obtained in the obtained electrode for an electrochemical element.
  • the manufacturing method of the electrode for electrochemical elements which can be exhibited can be provided.
  • the electrode for electrochemical elements excellent in performance, such as dust-proofing property, peel strength, and swelling resistance, and the electrochemical element excellent in an electrical property can be provided.

Abstract

 本発明は、得られる電気化学素子用電極に所期の性能を十分に発揮させることが可能な電気化学素子用電極の製造方法を提供することを目的とする。本発明の電気化学素子用電極の製造方法は、電極活物質と、水溶性重合体を含む結着材と、水溶性重合体に対する可塑剤とを含むプレス前電極合材層を集電体上に形成する工程と、プレス前電極合材層をプレスしてプレス後電極合材層を得る工程とを含み、可塑剤の融点がプレス前電極合材層をプレスする温度以下であり、プレス前電極合材層中の可塑剤の量が500~10000質量ppmである。

Description

電気化学素子用電極の製造方法、電気化学素子用電極および電気化学素子
 本発明は、電気化学素子用電極の製造方法、並びに、電気化学素子用電極および電気化学素子に関するものである。
 従来、電気化学素子として、リチウムイオン二次電池などの電池や、電気二重層キャパシタおよびリチウムイオンキャパシタなどのキャパシタが幅広い用途に使用されている。
 ここで、電気化学素子は、一般に、複数の電極(正極および負極)と、これら電極を隔離して短絡を防止するセパレータとを備えている。そして、電気化学素子用の電極としては、例えば、集電体と、集電体上に形成された電極合材層とを備える電極が用いられている。また、当該電極の電極合材層は、通常、電極活物質などの構成成分同士を結着材を介して結着して形成されている。
 具体的には電気化学素子用電極の電極合材層は、例えば、電極活物質および結着材と、必要に応じて配合される導電材などとを分散媒に分散させてなる電極用スラリー組成物を集電体上に塗布した後、塗布した電極用スラリー組成物を乾燥させることにより形成されている。また、近年では、電極用スラリー組成物を乾燥させて集電体上に電極合材層を形成した後、得られた電極合材層をプレスすることにより、電極合材層を高密度化すると共に電極合材層と集電体との密着性を高める技術が提案されている(例えば、特許文献1参照)。
特開2007-273390号公報
 しかし、電極用スラリー組成物を用いて集電体上に形成した電極合材層をプレスする工程を含む電気化学素子用電極の製造方法について本発明者が研究を重ねたところ、特に結着材として水溶性重合体を含む電極用スラリー組成物を使用した場合に、プレス時に負荷される圧力によって電極合材層内で構成成分同士の結着材を介した結着構造が崩壊したり、プレス後の電極合材層内に残留応力が蓄積したりする虞があることが明らかとなった。
 即ち、上記従来の電気化学素子用電極の製造方法では、得られる電気化学素子用電極に所期の性能(例えば、耐粉落ち性、ピール強度、耐膨らみ性など)を十分に発揮させることができず、また、当該電気化学素子用電極を用いた電気化学素子の電気的特性(例えば、サイクル特性など)を十分に向上させることができなかった。
 そこで、本発明は、集電体上に形成した電極合材層をプレスする工程を含む電気化学素子用電極の製造方法であって、得られる電気化学素子用電極に所期の性能を十分に発揮させることが可能な電気化学素子用電極の製造方法を提供することを目的とする。
 また、本発明は、耐粉落ち性、ピール強度、耐膨らみ性などの性能に優れる電気化学素子用電極および電気的特性に優れる電気化学素子を提供することを目的とする。
 本発明者は、上記課題を解決することを目的として鋭意検討を行った。そして、本発明者は、集電体上に形成した電極合材層をプレスする工程を経て電気化学素子用電極を製造するに当たり、電極合材層に対して結着材として配合されている水溶性重合体に対して可塑化効果を発揮する所定の可塑剤をプレス前の電極合材層に所定量含ませることにより、プレスによる結着構造の崩壊および残留応力の蓄積を抑制し、所期の性能を有する電気化学素子用電極を製造できることを見出し、本発明を完成させた。
 即ち、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の電気化学素子用電極の製造方法は、電極活物質と、水溶性重合体を含む結着材と、前記水溶性重合体に対する可塑剤とを含むプレス前電極合材層を集電体上に形成する工程と、前記プレス前電極合材層をプレスしてプレス後電極合材層を得る工程とを含み、前記可塑剤の融点は、前記プレス前電極合材層をプレスする温度以下であり、前記プレス前電極合材層中の前記可塑剤の量が500質量ppm以上10000質量ppm以下であることを特徴とする。このように、プレス前電極合材層に対して融点がプレス温度以下の可塑剤を500質量ppm以上10000質量ppm以下含有させれば、プレスによる結着構造の崩壊および残留応力の蓄積を抑制することができる。従って、所期の性能を有する電気化学素子用電極を製造することができる。
 ここで、本発明において、「水溶性重合体」とは、イオン交換水100質量部に対して重合体を1質量部(固形分相当)添加し攪拌して得られる混合物を、温度20℃以上70℃以下の範囲内で、かつ、pH3以上12以下(pH調整にはNaOH水溶液および/またはHCl水溶液を使用)の範囲内である条件のうち少なくとも一条件に調整し、250メッシュのスクリーンを通過させた際に、スクリーンを通過せずにスクリーン上に残る残渣の固形分の質量が、添加した重合体の固形分に対して50質量%を超えない重合体を指す。また、本発明において、結着材が複数の水溶性重合体を含んでいる場合には、可塑剤は、結着材として配合されている水溶性重合体のうちの少なくとも一種に対して可塑化効果を発揮すればよい。更に、本発明において、「可塑剤の融点」は、JIS K0064に準拠して測定することができる。また、本発明において、「可塑剤の量」は、可塑剤の種類に応じた測定方法を用いて測定することができ、例えば、可塑剤が水である場合にはカールフィッシャー水分計を用いて測定することができ、可塑剤がアルコール等の有機化合物である場合には、抽出溶媒を用いて電極合材層から有機化合物(可塑剤)を抽出し、得られた抽出液中の有機化合物の量をガスクロマトグラフィー法または高速液体クロマトグラフィー法により測定して求めることができる。
 ここで、本発明の電気化学素子用電極の製造方法は、前記プレス前電極合材層を集電体上に形成する工程が、前記電極活物質と、前記結着材とを含む電極合材層を集電体上に形成する工程と、前記電極合材層に前記可塑剤を添加して前記プレス前電極合材層を調製する工程とを含むことが好ましい。電極合材層に可塑剤を添加してプレス前電極合材層を調製すれば、プレス前電極合材層中の可塑剤量を容易に調整することができると共に、プレス前電極合材層を容易に形成することができるからである。
 また、本発明の電気化学素子用電極の製造方法は、前記プレス前電極合材層が、前記電極活物質100質量部当たり、前記水溶性重合体を0.3質量部以上10質量部以下の割合で含むことが好ましい。水溶性重合体の量を上記範囲内とすれば、水溶性重合体を結着材として十分に機能させつつ、プレスによる結着構造の崩壊および残留応力の蓄積を可塑剤の配合により十分に抑制することができるからである。
 更に、本発明の電気化学素子用電極の製造方法は、前記水溶性重合体が、エチレン性不飽和カルボン酸およびその塩の少なくとも一方よりなるエチレン性不飽和カルボン酸化合物(A)と、20℃における水100gに対する溶解度が7g以上である、エチレン性不飽和結合を有する共重合可能な化合物(B)とを含む単量体組成物を重合して得られる共重合体を含み、前記単量体組成物は、全単量体中の前記エチレン性不飽和カルボン酸化合物(A)の割合が20.0質量%以上79.5質量%以下であり、全単量体中の前記化合物(B)の割合が20.0質量%以上79.5質量%以下であり、前記共重合体は、電解液膨潤度が120質量%未満であることが好ましい。上記共重合体を含む水溶性重合体を結着材として使用すれば、電気化学素子用電極を備える電気化学素子の内部抵抗を低減すると共に、電極の膨れを抑制しつつサイクル特性を向上させることができるからである。また、このような共重合体を含む電極合材層では、プレスによる結着構造の崩壊および残留応力の蓄積の問題が特に起こり易いからである。
 なお、本発明において、共重合体の「電解液膨潤度」は、本明細書の実施例に記載の方法を用いて測定することができる。
 ここで、本発明の電気化学素子用電極の製造方法において、前記単量体組成物は、ポリオキシアルキレン構造および2つ以上のエチレン性不飽和結合を有する多官能化合物(C)をさらに含み、全単量体中の前記多官能化合物(C)の割合が0.1質量%以上20.0質量%以下であることが好ましい。多官能化合物(C)を上述の割合で含む単量体組成物を用いて共重合体を形成すれば、電気化学素子の内部抵抗を更に低減することができると共に、サイクル特性を向上させることができるからである。
 また、本発明の電気化学素子用電極の製造方法は、前記水溶性重合体が、ポリアクリル酸、カルボキシメチルセルロースおよびそれらの塩からなる群より選択される少なくとも一種を含むことが好ましい。ポリアクリル酸およびその塩、並びに、カルボキシメチルセルロースおよびその塩からなる群より選択される少なくとも一種は、入手が容易であり、結着材として良好に使用し得るからである。また、これらの水溶性重合体を含む電極合材層では、プレスによる結着構造の崩壊および残留応力の蓄積の問題が特に起こり易いからである。
 そして、本発明の電気化学素子用電極の製造方法においては、前記可塑剤が水であることが好ましい。水は、水溶性重合体に対して優れた可塑化効果を発揮すると共に、プレス前電極合材層のプレス中またはプレス後に加熱などの手段によって電極合材層中から容易に除去することができるからである。
 また、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の電気化学素子用電極は、上述した電気化学素子用電極の製造方法の何れかを用いて製造したことを特徴とする。このように、上述した電気化学素子用電極の製造方法を用いれば、プレスにより電極合材層の結着構造が崩壊したり、プレス後の電極合材層に残留応力が蓄積したりするのを抑制し、耐粉落ち性、ピール強度、耐膨らみ性などの性能に優れる電気化学素子用電極が得られる。
 更に、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の電気化学素子は、上述した電気化学素子用電極を備えることを特徴とする。このように、上述した電気化学素子用電極を用いれば、電気的特性に優れる電気化学素子が得られる。
 本発明によれば、集電体上に形成した電極合材層をプレスする工程を含む電気化学素子用電極の製造方法であって、得られる電気化学素子用電極に所期の性能を十分に発揮させることが可能な電気化学素子用電極の製造方法を提供することができる。
 また、本発明によれば、耐粉落ち性、ピール強度、耐膨らみ性などの性能に優れる電気化学素子用電極および電気的特性に優れる電気化学素子を提供することができる。
 以下、本発明の実施形態について詳細に説明する。
 ここで、本発明の電気化学素子用電極の製造方法は、電池やキャパシタ等の電気化学素子に用いられる電極を製造する際に用いられる。そして、本発明の電気化学素子用電極は、本発明の電気化学素子用電極の製造方法を用いて製造され、集電体と、集電体上に形成された電極合材層とを備えている。更に、本発明の電気化学素子は、本発明の電気化学素子用電極を用いたことを特徴とする。
(電気化学素子用電極の製造方法)
 本発明の電気化学素子用電極の製造方法は、電極活物質と結着材とを含む電極合材層を集電体上に有する電極を製造する方法であり、集電体上にプレス前電極合材層を形成する工程(プレス前電極合材層形成工程)と、プレス前電極合材層をプレスしてプレス後電極合材層を得る工程(プレス工程)とを含み、任意にプレス後電極合材層を乾燥する工程(プレス後乾燥工程)を更に含む。そして、本発明の電気化学素子用電極の製造方法は、結着材が水溶性重合体を含み、且つ、プレス前電極合材層に対し、水溶性重合体に対して可塑化効果を発揮する所定の可塑剤を所定量含有させることを特徴とする。
<プレス前電極合材層形成工程>
 ここで、プレス前電極合材層形成工程では、電極活物質と、水溶性重合体を含む結着材と、水溶性重合体に対する可塑剤とを含み、且つ、可塑剤の量が500質量ppm以上10000質量ppm以下であるプレス前電極合材層を集電体上に形成する。そして、可塑剤として、融点が後に詳細に説明するプレス工程においてプレス前電極合材層をプレスする温度(以下、「プレス温度」と称することがある。)以下の可塑剤を使用する。
 このように、プレス前電極合材層に所定の融点を有する可塑剤を所定量含有させることで、後に実施するプレス工程においてプレス前電極合材層をプレスした際に、プレスにより電極合材層の結着構造が崩壊したり、プレス後の電極合材層に残留応力が蓄積したりするのを抑制することができる。そして、その結果、所期の性能(例えば、耐粉落ち性、ピール強度、耐膨らみ性など)を有する電気化学素子用電極を製造することができる。
 なお、所定の融点を有する可塑剤を所定量含有させることで結着構造の崩壊および残留応力の蓄積を抑制することができる理由は、明らかではないが、以下の通りであると推察されている。即ち、水溶性重合体を含む結着材を使用して電極合材層を形成した場合、水溶性重合体は電極活物質などの成分の表面の少なくとも一部を被覆しつつ各成分同士を結着する。そのため、電極の機械的強度を確保するために剛直な水溶性重合体を使用した場合等には特に、電極合材層をプレスして圧力を負荷すると、電極活物質などの成分と、当該成分を被覆する水溶性重合体との間の界面で結着構造が破壊されたり、電極活物質などの成分や水溶性重合体の配列が変わることにより残留応力が蓄積されたりし易い。しかし、プレス前電極合材層に融点がプレス温度以下の可塑剤を所定量含有させれば、プレスされる温度においてプレス前電極合材層にある程度の柔軟性を付与することができるので、結着構造の崩壊および残留応力の蓄積を抑制することができる。
[電極活物質]
 ここで、プレス前電極合材層に含有させる電極活物質としては、特に限定されることなく、電気化学素子用電極において使用されている既知の電極活物質を用いることができる。具体的には、電極活物質としては、例えば特開2014-42063号公報に開示されている電極活物質などを用いることができる。
[結着材]
 結着材は、集電体上に電極合材層を形成することにより製造した電極において、電極合材層に含まれる成分が電極合材層から脱離しないように保持し得る成分である。そして、本発明の電気化学素子用電極の製造方法では、プレス前電極合材層に含有させる結着材として、少なくとも水溶性重合体を使用し、任意に粒子状重合体などの非水溶性重合体を水溶性重合体と併用する。
[[水溶性重合体]]
 水溶性重合体としては、特に限定されることなく、電極合材層の結着材として使用可能な既知の水溶性重合体を用いることができる。中でも、水溶性重合体としては、ポリアクリル酸およびその塩、カルボキシメチルセルロースおよびその塩、並びに、後述する共重合体からなる群より選択される少なくとも一種を用いることが好ましく、後述する共重合体を用いることが更に好ましい。これらの水溶性重合体を結着材として使用すれば、電極のピール強度および耐粉落ち性を高めたり、充放電に伴う電極活物質の膨張収縮を抑制して電極の耐膨らみ性を高めたりすることができるからである。また、これらの水溶性重合体は比較的剛直な構造を有するため、これらの水溶性重合体を結着材として使用した場合にはプレスによる結着構造の崩壊および残留応力の蓄積が起こり易いが、本発明の製造方法を使用すれば、結着構造の崩壊および残留応力の蓄積を抑制しつつ、耐粉落ち性、耐膨らみ性およびピール強度に優れる電極を得ることができるからである。更に、後述する共重合体を結着材として使用した場合には、電気化学素子用電極を備える電気化学素子の内部抵抗を低減すると共に、サイクル特性を向上させることもできる。また、ポリアクリル酸およびその塩、並びに、カルボキシメチルセルロースおよびその塩は、入手が容易であり、結着材として良好に使用し得る。
-共重合体-
 ここで、水溶性重合体として好適に使用し得る上記共重合体は、エチレン性不飽和カルボン酸およびその塩の少なくとも一方よりなるエチレン性不飽和カルボン酸化合物(A)を所定の割合で含有し、且つ、20℃における水100gに対する溶解度が7g以上である、エチレン性不飽和結合を有する共重合可能な化合物(B)を所定の割合で含有する単量体組成物を重合して得られる、電解液膨潤度が120質量%未満の共重合体である。そして、当該共重合体を結着材として使用した場合には、電気化学素子用電極を備える電気化学素子の内部抵抗を低減すると共に、電極の膨れを抑制しつつサイクル特性を向上させることができる。
 なお、上記共重合体を使用することで、電気化学素子の内部抵抗が低減され、かつ、電極の膨れが抑制されると共にサイクル特性が向上する理由は、明らかではないが、以下の理由によるものであると推察される。
 即ち、化合物(B)は水への溶解性が高い、すなわち極性の高い単量体である。よって、得られる共重合体は電気化学素子で通常使用される非水系の電解液に対する親和性が低く、結果として得られる共重合体の電解液中での膨潤が適度に(120質量%未満に)抑制される。そのため、電極の膨れが抑制されることで、サイクル特性が向上すると推察される。一方、エチレン性不飽和カルボン酸化合物(A)のカルボキシル基によりイオン伝導性が向上し、電気化学素子の内部抵抗が低減され、また、サイクル特性が向上する。加えて、エチレン性不飽和カルボン酸化合物(A)のカルボキシル基の寄与により共重合体が電極活物質を好適に被覆し、電極活物質表面での電解液の分解が抑制され、ガス発生が抑制されるため保存安定性も向上させることができると推察される。
 ここで、共重合体は、以下に詳細に説明する単量体組成物を重合して得られる。そして、通常、この共重合体は、単量体組成物中に含まれていた単量体に由来する構造単位を当該単量体組成物中の各単量体の存在比率と同様の比率で含有している。
 共重合体の調製に用いる単量体組成物は、例えば、単量体と、重合開始剤などの添加剤と、重合溶媒とを含有する。そして、単量体組成物は、単量体として、エチレン性不飽和カルボン酸化合物(A)および化合物(B)を所定の割合で含有する。具体的には、単量体組成物は、単量体組成物中の全単量体の量を100質量%とした際に、20.0質量%以上79.5質量%以下のエチレン性不飽和カルボン酸化合物(A)と、20.0質量%以上79.5質量%以下の化合物(B)とを含有する。換言すれば、共重合体は、20.0質量%以上79.5質量%以下のエチレン性不飽和カルボン酸化合物(A)単位と、20.0質量%以上79.5質量%以下の化合物(B)単位とを含有する。
 なお、単量体組成物は、任意に、エチレン性不飽和カルボン酸化合物(A)および化合物(B)と共重合可能な多官能化合物(C)および化合物(D)や、更にこれらを除いたその他の化合物を単量体として含有していてもよい。
 エチレン性不飽和カルボン酸化合物(A)としては、エチレン性不飽和カルボン酸およびその塩の少なくとも一方を用いることができる。そして、エチレン性不飽和カルボン酸としては、エチレン性不飽和モノカルボン酸およびその誘導体、エチレン性不飽和ジカルボン酸およびその酸無水物並びにそれらの誘導体などが挙げられる。また、エチレン性不飽和カルボン酸塩としては、エチレン性不飽和カルボン酸のナトリウム塩、カリウム塩、リチウム塩などが挙げられる。
 なお、エチレン性不飽和カルボン酸およびその塩は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 ここで、エチレン性不飽和モノカルボン酸の例としては、アクリル酸、メタクリル酸、クロトン酸などが挙げられる。そして、エチレン性不飽和モノカルボン酸の誘導体の例としては、2-エチルアクリル酸、イソクロトン酸、α-アセトキシアクリル酸、β-trans-アリールオキシアクリル酸、α-クロロ-β-E-メトキシアクリル酸、β-ジアミノアクリル酸などが挙げられる。
 また、エチレン性不飽和ジカルボン酸の例としては、マレイン酸、フマル酸、イタコン酸などが挙げられる。そして、エチレン性不飽和ジカルボン酸の酸無水物の例としては、無水マレイン酸、ジアクリル酸無水物、メチル無水マレイン酸、ジメチル無水マレイン酸などが挙げられる。さらに、エチレン性不飽和ジカルボン酸の誘導体の例としては、メチルマレイン酸、ジメチルマレイン酸、フェニルマレイン酸、クロロマレイン酸、ジクロロマレイン酸、フルオロマレイン酸、などが挙げられる。
 なお、エチレン性不飽和カルボン酸化合物(A)としては、エチレン性不飽和カルボン酸塩、好ましくはエチレン性不飽和カルボン酸のリチウム塩を用いることができる。エチレン性不飽和カルボン酸塩を使用すれば、得られる共重合体の水溶性を高めることができるので、重合溶媒として水を使用して共重合体を調製する際に、単量体組成物中の単量体濃度を高濃度としても、共重合体の析出による重合の不均質な進行を防止することができる。従って、高単量体濃度の単量体組成物を使用して生産性を高めつつ、重合を均一に進行させることができる。また、エチレン性不飽和カルボン酸のリチウム塩を使用すれば、得られる共重合体中にカルボン酸リチウム塩基(-COOLi)が導入され、電気化学素子のサイクル特性が更に向上するとともに内部抵抗を更に低減することができる。
 ここで、電気化学素子のサイクル特性を更に向上させ、内部抵抗を更に低減する観点からは、エチレン性不飽和カルボン酸化合物としては、アクリル酸、メタクリル酸またはそれらの塩を用いることが好ましく、アクリル酸またはアクリル酸塩を用いることが更に好ましい。
 そして、共重合体の調製に用いる単量体組成物が含む単量体は、上述したエチレン性不飽和カルボン酸化合物(A)が占める割合が20.0質量%以上79.5質量%以下であることが好ましく、単量体中でエチレン性不飽和カルボン酸化合物(A)が占める割合は、21.0質量%以上であることがより好ましく、22.0質量%以上であることが更に好ましく、75.0質量%以下であることがより好ましく、72.0質量%以下であることが更に好ましく、50.0質量%以下であることがより一層好ましく、45.0質量%以下であることが特に好ましい。単量体中でエチレン性不飽和カルボン酸化合物(A)が占める割合が20.0質量%未満の場合、共重合体の剛性が低下し、充放電に伴う電極の膨らみを十分に抑制することができず、電気化学素子のサイクル特性が低下する。一方、単量体中でエチレン性不飽和カルボン酸化合物(A)が占める割合が79.5質量%超の場合、共重合体の剛性が過度に高くなり、電極合材層のプレス時の結着構造の崩壊および残留応力の蓄積が起こり易くなる。
 化合物(B)としては、エチレン性不飽和結合を有する共重合可能な化合物であって、20℃における水100gに対する溶解度が、7g以上の化合物を用いることができる。このような溶解度を有する化合物(B)に由来する構造単位は、電解液に対する膨潤性が低いと共に、水を重合溶媒とした際の重合性が高いからである。なお、本発明において、エチレン性不飽和カルボン酸およびその塩は、前述の溶解度を満たす場合であっても、化合物(B)には含まれず、エチレン性不飽和カルボン酸化合物(A)に含まれるものとし、エチレン性不飽和スルホン酸、エチレン性不飽和リン酸、およびそれらの塩は、前述の溶解度を満たす場合であっても、化合物(B)には含まれず、化合物(D)に含まれるものとする。
 そして、化合物(B)としては、例えば、2-ヒドロキシプロピルメタクリレート(100以上)、2-ヒドロキシプロピルアクリレート(100以上)、2-ヒドロキシエチルメタクリレート(100以上)、2-ヒドロキシエチルアクリレート(100以上)、アクリルアミド(100以上)、メタクリルアミド(100以上)、N-メチロールアクリルアミド(100以上)、アクリロニトリル(7)などの、エチレン性不飽和結合を有し、かつ極性の高い官能基(水酸基、アミド基、ニトリル基、アミノ基など)を有する化合物や、エチレングリコールジメタクリレート(100以上)を挙げることができる。これらは1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。ここで、上記の括弧中の数値は、温度20℃における水溶解度(単位:g/100g)を示す。なお、温度20℃における水溶解度は、EPA法(EPA Chemical Fate testing Guideline CG-1500 Water Solubility)で測定することができる。
 ここで、化合物(B)の20℃における水100gに対する溶解度は、100g以上であることが好ましい。
 そして、電解液中での電極の膨らみを抑制し、内部抵抗を更に低減し、結果として電気化学素子のサイクル特性を更に向上させる観点からは、化合物(B)としては、2-ヒドロキシエチルアクリレート、アクリルアミド、N-メチロールアクリルアミド、アクリロニトリルを用いることが好ましく、2-ヒドロキシエチルアクリレート、アクリルアミドを用いることがより好ましい。
 そして、共重合体の調製に用いる単量体組成物が含む単量体は、上述した化合物(B)が占める割合が20.0質量%以上79.5質量%以下であることが好ましく、単量体中で化合物(B)が占める割合は、30.0質量%以上であることがより好ましく、50.0質量%以上であることが更に好ましく、55.0質量%以上であることが特に好ましく、75.0質量%以下であることがより好ましい。単量体中で化合物(B)が占める割合が20.0質量%未満の場合、電極合材層が過度に脆くなり構造が維持できず、亀裂等が発生することがある。その結果、サイクル特性が低下する。また、保存安定性も低下する。さらに、電気化学素子の内部抵抗を十分に低減することもできない。一方、単量体中で化合物(B)が占める割合が79.5質量%超の場合、電極の膨らみを十分に抑制することができず、電気化学素子のサイクル特性が低下する。
 また、全単量体中のエチレン性不飽和カルボン酸化合物(A)の割合を全単量体中の前記化合物(B)の割合で除した値(A/B)は、1.5未満であることが好ましく、1.0以下であることがより好ましく、0.8以下であることが更に好ましく、また、0.2以上であることが好ましく、0.3以上であることがより好ましい。
 A/Bが1.5未満であることで、共重合体が電解液中で過度に膨潤することがなく、電極活物質間の粒子間距離が保たれ、かつイオン伝導性も確保されるため、電気化学素子の内部抵抗を更に低減することができるからである。
 加えて、A/Bが上述の範囲内であることで、電気化学素子の内部抵抗の低減と、サイクル特性の向上とをバランスよく達成することができる。
 ここで、共重合体の調製に用いる単量体組成物は、単量体として、ポリオキシアルキレン構造および2つ以上のエチレン性不飽和結合を有する多官能化合物(C)を含むことが好ましい。即ち、共重合体は、多官能化合物(C)単位を含むことが好ましい。このような多官能化合物(C)を共重合体の重合に用いることで、共重合体に適度に高い剛性と柔軟性とを付与することができる。従って、充放電による電極の膨れを抑制すること等によりサイクル特性の低下を抑制することができる。また、水との親和性が高いエチレンオキシド鎖の寄与により、共重合体の重合が容易となる。加えて、イオン伝導性が確保され、電気化学素子の内部抵抗を低減することができる。
 ここで、多官能化合物(C)としては、一般式:-(Cm2mO)n-[式中、mは1以上の整数であり、nは2以上の整数である]で表されるポリオキシアルキレン構造と、2つ以上のエチレン性不飽和結合とを有する化合物を用いることができる。
 ポリオキシアルキレン構造と2つ以上のエチレン性不飽和結合とを有する化合物は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 なお、本発明において、多官能化合物(C)に該当する化合物は、化合物(B)に含まれないものとする。
 ここで、多官能化合物(C)としては、例えば、ポリオキシアルキレン構造を有するポリオールのポリ(メタ)アクリレートなどが挙げられる。具体的には、多官能化合物としては、特に限定されることなく、下記の化合物(I)~(V)が挙げられる
 なお、本発明において、「(メタ)アクリレート」とは、アクリレートおよび/またはメタクリレートを指す。
(I)下記一般式:
Figure JPOXMLDOC01-appb-C000001
[式中、nは2以上の整数である]で表されるポリエチレングリコールジアクリレート。
(II)下記一般式:
Figure JPOXMLDOC01-appb-C000002
[式中、nは2以上の整数である]で表されるポリテトラメチレングリコールジアクリレート。
(III)下記一般式:
Figure JPOXMLDOC01-appb-C000003
[式中、n1およびn2は、2以上の整数であり、互いに同一でも、異なっていても良い]で表されるエトキシ化ビスフェノールAジアクリレート。
(IV)下記一般式:
Figure JPOXMLDOC01-appb-C000004
[式中、n1、n2およびn3は、2以上の整数であり、互いに同一でも、異なっていても良い]で表されるエトキシ化グリセリントリアクリレート。
(V)下記一般式:
Figure JPOXMLDOC01-appb-C000005
[式中、n1、n2、n3およびn4は、2以上の整数であり、互いに同一でも、異なっていても良い]で表されるエトキシ化ペンタエリスリトールテトラアクリレート。
 なお、共重合体の重合を容易にする観点からは、多官能化合物(C)のエチレン性不飽和結合の数(官能数)は、2以上6以下であることが好ましく、2以上4以下であることが更に好ましい。
 また、多官能化合物(C)は、2~6官能のポリアクリレートであることが好ましく、2~4官能のポリアクリレートであることが更に好ましい。
 更に、電気化学素子の保存安定性を向上させる観点からは、多官能化合物(C)が有するポリオキシアルキレン構造(-(Cm2mO)n-)の整数mは、20以下であることが好ましく、15以下であることが更に好ましく、10以下であることが特に好ましく、2以上であることが好ましい。整数mが小さすぎる場合には、共重合体の剛性が高くなり、電気化学素子の保存安定性が低下する虞があるからである。
 また、同様の理由により、多官能化合物(C)が有するポリオキシアルキレン構造(-(Cm2mO)n-)の整数nは、20以下であることが好ましく、15以下であることが更に好ましく、10以下であることが特に好ましく、2以上であることが好ましく、3以上であることが更に好ましく、4以上であることが特に好ましい。整数nが小さすぎる場合には、共重合体の剛性が高くなり、電気化学素子の保存安定性が低下する虞があるからである。なお、多官能化合物(C)が分子内に複数のポリオキシアルキレン構造(-(Cm2mO)n-)を有する場合には、複数のポリオキシアルキレン構造の整数nの平均値が上記範囲内に含まれることが好ましく、全てのポリオキシアルキレン構造の整数nが上記範囲内に含まれることが更に好ましい。
 そして、共重合体の調製に用いる単量体組成物が含む単量体は、上述した多官能化合物(C)が占める割合が0.1質量%以上であることが好ましく、0.3質量%以上であることがより好ましく、0.5質量%以上であることが更に好ましく、20.0質量%以下であることが好ましく、10.0質量%以下であることがより好ましく、5.0質量%以下であることが更に好ましい。単量体中で多官能化合物(C)が占める割合が0.1質量%以上であることで、電極の膨らみを十分に抑制することができ、電気化学素子のサイクル特性を更に向上させることができる。一方、単量体中で多官能化合物(C)が占める割合が20.0質量%以下であることで、共重合体の剛性が過度に高くなって脆くなることを防止し、その結果、ガスの発生などによる電気化学素子の保存安定性の低下を抑制することができる。
 なお、共重合体の調製に用いる単量体組成物は、単量体として、エチレン性不飽和スルホン酸およびその塩、並びに、エチレン性不飽和リン酸およびその塩からなる群から選択される少なくとも一種よりなる化合物(D)を含んでいてもよい。即ち、共重合体は、化合物(D)単位を含んでいてもよい。
 ここで、エチレン性不飽和スルホン酸としては、2-アクリルアミド-2-メチルプロパンスルホン酸、スチレンスルホン酸、ビニルスルホン酸などが挙げられる。また、エチレン性不飽和スルホン酸塩としては、エチレン性不飽和スルホン酸のナトリウム塩、カリウム塩、リチウム塩などが挙げられる。
 また、エチレン性不飽和リン酸としては、リン酸-2-(メタ)アクリロイルオキシエチルなどが挙げられる。また、エチレン性不飽和リン酸塩としては、エチレン性不飽和リン酸のナトリウム塩、カリウム塩、リチウム塩などが挙げられる。
 化合物(D)は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 なお、本発明において、「(メタ)アクリロイル」とは、アクリロイルおよび/またはメタクリロイルを指す。
 なお、化合物(D)としては、2-アクリルアミド-2-メチルプロパンスルホン酸、スチレンスルホン酸、ビニルスルホン酸、リン酸-2-メタクリロイルオキシエチル(アシッドホスホオキシエチルメタクリレート)またはそれらの塩を用いることが好ましく、2-アクリルアミド-2-メチルプロパンスルホン酸またはその塩を用いることがより好ましい。
 また、化合物(D)としては、好ましくはエチレン性不飽和スルホン酸塩および/またはエチレン性不飽和リン酸塩を用いることができ、より好ましくはエチレン性不飽和スルホン酸のリチウム塩および/またはエチレン性不飽和リン酸のリチウム塩を用いることができる。
 そして、共重合体の調製に用いる単量体組成物が含む単量体中で化合物(D)が占める割合は、特に限定されることなく、0.5質量%以上30.0質量%以下とすることができる。
 また、共重合体の調製に用いる単量体組成物には、上述したエチレン性不飽和カルボン酸化合物(A)、化合物(B)、多官能化合物(C)および化合物(D)と共重合可能な既知の化合物が含まれていてもよい。そして、共重合体の調製に用いる単量体組成物が含む単量体は、これら(A)~(D)を除くその他の化合物が占める割合が20質量%以下であることが好ましく、10質量%以下であることがより好ましい。
 具体的には、その他の化合物としては、メチルアクリレート、エチルアクリレート、n-プロピルアクリレート、イソプロピルアクリレート、n-ブチルアクリレート、t-ブチルアクリレート、ペンチルアクリレート、ヘキシルアクリレート、ヘプチルアクリレート、オクチルアクリレート、ノニルアクリレート、デシルアクリレート、ラウリルアクリレート、n-テトラデシルアクリレート、ステアリルアクリレート、パーフルオロアルキルエチルアクリレート、フェニルアクリレート、などのアクリル酸エステル;メチルメタクリレート、エチルメタクリレート、n-プロピルメタクリレート、イソプロピルメタクリレート、n-ブチルメタクリレート、t-ブチルメタクリレート、ペンチルメタクリレート、ヘキシルメタクリレート、ヘプチルメタクリレート、オクチルメタクリレート、ノニルメタクリレート、デシルメタクリレート、ラウリルメタクリレート、n-テトラデシルメタクリレート、ステアリルメタクリレート、パーフルオロアルキルエチルメタクリレート、フェニルメタクリレート、などのメタクリル酸エステル;酢酸ビニル、グリシジルメタクリレート、2-ビニルピリジン、等が挙げられる。
 ここで、共重合体の調製に用いる単量体組成物に配合する添加剤としては、過硫酸カリウム等の重合開始剤や、テトラメチルエチレンジアミン等の重合促進剤などの重合反応に使用し得る既知の添加剤が挙げられる。なお、添加剤の種類および配合量は、重合方法等に応じて任意に選択することができる。
 また、共重合体の調製に用いる単量体組成物に配合する重合溶媒としては、重合方法等に応じて、前述した単量体を溶解または分散可能な既知の溶媒を用いることができる。中でも、重合溶媒としては、水を用いることが好ましい。なお、重合溶媒としては、任意の化合物の水溶液や、少量の有機媒体と水との混合溶液などを用いてもよい。
 そして、共重合体は、上述した単量体、添加剤および重合溶媒を既知の方法で混合して得た単量体組成物を、例えばラジカル重合させることで得られる。なお、上記単量体組成物を重合して得られる、共重合体と重合溶媒とを含む溶液は、そのままの状態でプレス前電極合材層の形成に使用してもよいし、溶媒置換や任意の成分の添加などを行なった後にプレス前電極合材層の形成に使用してもよい。
 ここで、共重合体の重合方法としては、水溶液重合、スラリー重合、懸濁重合、乳化重合などの公知の重合法が挙げられる。中でも、溶媒の除去操作が不要であり、溶媒の安全性が高く、且つ、界面活性剤の混入の問題が無いことから、重合溶媒として水を使用した水溶液重合が好ましい。なお、水溶液重合は、単量体組成物を所定の濃度に調整し、反応系内の溶存酸素を不活性ガスで十分に置換した後、ラジカル重合開始剤を添加し、必要により、加熱や紫外線などの光照射をすることによって重合反応を行う方法である。
 なお、重合溶媒として水を使用し、上述した単量体組成物を水中で重合して共重合体を含む水溶液を調製する場合には、重合後に水溶液のpHを8以上9以下に調整することが好ましい。得られる水溶液を中和してpHを8~9に調整すれば、電気化学素子の保存安定性を更に高めることができるからである。
 ここで、エチレン性不飽和カルボン酸化合物(A)としてエチレン性不飽和カルボン酸を含む単量体組成物を使用した場合には、上記水溶液の中和を行なう際に、塩基性のリチウム化合物を使用することが好ましい。塩基性のリチウム化合物を使用すれば、共重合体中のカルボン酸基がカルボン酸リチウム塩基(-COOLi)となり、電気化学素子の内部抵抗が低減され、加えてサイクル特性が向上するからである。なお、塩基性のリチウム化合物としては、炭酸リチウム(Li2CO3)や水酸化リチウム(LiOH)を用いることができ、水酸化リチウムを用いることが好ましい。
 そして、上述のようにして調製した共重合体は、電解液膨潤度が120質量%未満であることが好ましく、115質量%未満であることがより好ましく、110質量%未満であることが更に好ましく、また、100質量%以上であることが好ましく、103質量%以上であることがより好ましく、105質量%以上であることが更に好ましい。共重合体の電解液膨潤度が120質量%以上であると、共重合体が電解液中で過度に膨潤して電極合材層の構造が維持できず、サイクル特性が低下する虞がある。一方、共重合体の電解液膨潤度が100質量%以上であれば、イオン伝導性が確保され、電気化学素子の内部抵抗を更に低減することができる。加えて、共重合体の柔軟性を確保し、共重合体の割れおよび剥離を抑制して、電気化学素子の保存安定性を更に高めることができる。
 なお、共重合体の電解液膨潤度は、単量体組成物中のエチレン性不飽和カルボン酸化合物(A)や化合物(B)の種類や量を変更することにより調整することができる。
[[非水溶性重合体]]
 上述した水溶性重合体と任意に併用し得る非水溶性重合体としては、特に限定されることなく、結着材として使用し得る既知の非水溶性重合体が挙げられる。中でも、非水溶性重合体としては、水中において粒子状の状態で存在し、且つ、電極合材層中においても粒子状を維持し得る粒子状重合体を用いることが好ましい。水溶性重合体と粒子状重合体とを併用すれば、電極合材層と集電体との密着性を向上させることができるからである。そして、粒子状重合体としては、例えば、スチレン-ブタジエン共重合体やアクリロニトリル-ブタジエン共重合体等のジエン重合体、アクリル重合体、フッ素重合体、シリコン重合体を用いることができる。
 なお、粒子状重合体は、電極合材層中において電極活物質などの成分と点接触に近い状態で接触するため、電極活物質などの成分の表面の少なくとも一部を被覆する上述した水溶性重合体と比較し、電極合材層中に含まれていても、結着構造の破壊や残留応力の蓄積の原因となり難い。
[[水溶性重合体の含有量]]
 そして、上述した水溶性重合体は、プレス前電極合材層中に、電極活物質100質量部当たり0.3質量部以上10質量部以下の割合で含まれていることが好ましく、0.5質量部以上5質量部以下の割合で含まれていることが更に好ましい。プレス前電極合材層中の水溶性重合体の量が多すぎる場合、可塑剤を配合しても結着構造の破壊および残留応力の蓄積を十分に抑制できない虞があるからである。また、水溶性重合体の量が少なすぎる場合、水溶性重合体を結着材として十分に機能させることができないからである。
 また、プレス前電極合材層に結着材として含まれる重合体中の水溶性重合体の割合は、20質量%以上100質量%以下であることが好ましく、30質量%以上であることがより好ましい。結着材中の水溶性重合体の割合が20質量%以上であれば、可塑剤により結着構造の破壊および残留応力の蓄積を抑制しつつ、水溶性重合体を結着材として十分に機能させることができるからである。
[可塑剤]
 可塑剤は、水溶性重合体に対して可塑化効果を発揮し、後述するプレス工程においてプレス前電極合材層をプレスしてプレス後電極合材層を得る際に、水溶性重合体を可塑化することで電極合材層の結着構造の崩壊および電極合材層への残留応力の蓄積を抑制する成分である。
 そのため、可塑剤は、融点の温度がプレス工程におけるプレス前電極合材層のプレス温度以下である必要がある。換言すれば、プレス工程におけるプレス前電極合材層のプレスは、可塑剤の融点以上の温度で実施する必要がある。プレス時に水溶性重合体に対する可塑剤として機能する必要があるからである。
 そして、上述した可塑剤としては、特に限定されることなく、水;メタノール、エタノール、n-プロパノール、イソプロパノール、n-ブタノール、イソブタノール、t-ブタノール、ペンタノール、ヘキサノール等の炭素数1~6の低級アルコールおよびそれらのエステル;グリセリンおよびそのエステル等の炭素数1から20の多価アルコールおよびそれらのエステル;アセトン、メチルエチルケトン等のケトン類;などの極性を有する化合物が挙げられる。これらの中でも、水溶性重合体に対して優れた可塑化効果を発揮すると共に、加熱などの手段によって電極合材層中から容易に除去することができる(即ち、可塑剤の電極中への残留による電気化学素子への悪影響の発生を抑制し易い)という観点から、可塑剤としては、水および低級アルコールを用いることが好ましく、水を用いることがより好ましい。
 なお、可塑剤は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 また、プレス前電極合材層中の可塑剤の量は、500質量ppm以上10000質量ppm以下である必要があり、可塑剤の量は800質量ppm以上5000質量ppm以下であることが好ましい。可塑剤の量が少なすぎる場合、水溶性重合体を十分に可塑化することができず、電極合材層の結着構造の崩壊および電極合材層への残留応力の蓄積を抑制することができないからである。一方、可塑剤の量が多すぎる場合、水溶性重合体が過度に可塑化し、プレスが困難になったり、プレス前電極合材層の形状が維持できなくなったりするからである。
 なお、プレス前電極合材層中の可塑剤の量は、プレス前電極合材層の形成条件(例えば、乾燥条件など)や可塑剤の添加量を変更することにより調整することができる。
[その他の添加剤]
 なお、プレス前電極合材層は、上記成分の他に、導電材、補強材、レベリング剤、電解液添加剤などの成分を含有していてもよい。これらは、電池反応に影響を及ぼさないものであれば特に限られず、公知のもの、例えば国際公開第2012/115096号に記載のものを使用することができる。これらの成分は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
[集電体]
 上述した成分を含有するプレス前電極合材層を形成する集電体としては、電気導電性を有し、かつ、電気化学的に耐久性のある材料が用いられる。具体的には、集電体としては、例えば、鉄、銅、アルミニウム、ニッケル、ステンレス鋼、チタン、タンタル、金、白金などからなる集電体を用い得る。中でも、負極に用いる集電体としては銅箔が特に好ましい。また、正極に用いる集電体としては、アルミニウム箔が特に好ましい。なお、前記の材料は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
[プレス前電極合材層の調製方法]
 そして、電極活物質と、水溶性重合体を含む結着材と、可塑剤とを含み、任意にその他の添加剤を更に含むプレス前電極合材層は、例えば、(1)電極活物質、結着材、可塑剤および任意の添加剤を含むスラリー組成物を用いて集電体上に電極合材層を形成し、その後、必要に応じて形成した電極合材層に可塑剤を更に添加する方法、或いは、(2)電極活物質、結着材および任意の添加剤を含み、可塑剤を含まないスラリー組成物を用いて集電体上に電極合材層を形成した後、形成した電極合材層に可塑剤を添加する方法、を用いて調製することができる。これらの中でも、水などの可塑剤としても作用し得る分散媒を用いてスラリー組成物を容易に調製し得る観点からは、上記(1)の方法を用いることが好ましく、プレス前電極合材層の形成およびプレス前電極合材層中の可塑剤量の調整を容易にする観点からは、上記(1)の方法であって形成した電極合材層に可塑剤を更に添加する方法を用いることがより好ましい。
 ここで、上記(1)の方法を用いてプレス前電極合材層を形成する場合、電極活物質、結着材、可塑剤および任意の添加剤を含むスラリー組成物は、特に限定されることなく、ボールミル、サンドミル、ビーズミル、顔料分散機、らい潰機、超音波分散機、ホモジナイザー、プラネタリーミキサー、フィルミックスなどの混合機を用いて上記各成分と分散媒とを混合することにより調製することができる。なお、可塑剤として水や低級アルコール等を使用する場合には、可塑剤を分散媒として用いてスラリー組成物を調製してもよい。
 そして、上記スラリー組成物を用いた電極合材層の形成は、既知の方法を用いて行うことができる。具体的には、電極合材層は、例えば、集電体上にスラリー組成物を塗布した後、塗布したスラリー組成物を乾燥させることにより形成することができる。
 なお、スラリー組成物を集電体上に塗布する方法としては、特に限定されず公知の方法を用いることができる。具体的には、塗布方法としては、ドクターブレード法、ディップ法、リバースロール法、ダイレクトロール法、グラビア法、エクストルージョン法、ハケ塗り法などを用いることができる。この際、スラリー組成物は、集電体の片面だけに塗布してもよいし、両面に塗布してもよい。塗布後乾燥前の集電体上のスラリー膜の厚みは、乾燥して得られる電極合材層の厚みに応じて適宜に設定し得る。また、集電体上のスラリー組成物を乾燥する方法としては、特に限定されず公知の方法を用いることができ、例えば温風、熱風、低湿風による乾燥法、真空乾燥法、赤外線や電子線などの照射による乾燥法が挙げられる。
 ここで、スラリー組成物を乾燥させて電極合材層を形成するに際し、可塑剤として水や低級アルコール等のスラリー組成物の乾燥時に揮発する化合物を使用する場合には、乾燥は、乾燥温度や乾燥時間などの乾燥条件を調整して電極合材層中に残留する可塑剤の量が500質量ppm以上10000質量ppm以下となるように行ってもよいし、電極合材層中に残留する可塑剤の量が500質量ppm未満となるように行ってもよい。
 そして、集電体上に塗布したスラリー組成物を乾燥して得られた電極合材層は、可塑剤の量が500質量ppm以上10000質量ppm以下の場合には、そのままプレス前電極合材層としてもよいし、可塑剤の量が10000質量ppmを超えない範囲内で可塑剤を電極合材層に更に添加してからプレス前電極合材層としてもよい。また、可塑剤の量が500質量ppm未満の場合には、可塑剤の量が500質量ppm以上10000質量ppm以下となる範囲内で可塑剤を電極合材層に添加してからプレス前電極合材層とすることができる。
 なお、可塑剤の添加は、気体状の可塑剤と電極合材層との接触、電極合材層への液体状の可塑剤の塗布、液体状の可塑剤中への電極合材層の浸漬などの手法を用いて行うことができる。中でも、電極合材層に添加する可塑剤量を容易に調整する観点からは、可塑剤の添加は、気体状の可塑剤が存在する雰囲気に電極合材層を曝し、気体状の可塑剤と電極合材層とを接触させる方法を用いることが好ましい。具体的には、例えば、可塑剤が水である場合には、スラリー組成物を乾燥して得られた電極合材層を大気雰囲気中に放置し、大気中の水分を電極合材層に吸水させることで、可塑剤としての水を電極合材層に添加することが好ましい。
 なお、上記(2)の方法を用いてプレス前電極合材層を形成する場合には、スラリー組成物の調製および電極合材層の形成は、可塑剤を配合しない以外は上記(1)の方法と同様にして行うことができる。また、形成した電極合材層への可塑剤の添加も、上記(1)の方法と同様にして行うことができる。
<プレス工程>
 プレス工程では、プレス前電極合材層形成工程で形成したプレス前電極合材層をプレスし、プレス後電極合材層を得る。なお、プレス工程でプレスされるプレス前電極合材層は水溶性重合体および所定量の可塑剤を含有しているので、プレス工程では電極合材層の結着構造の崩壊および電極合材層への残留応力の蓄積が抑制される。
 ここで、集電体上に形成したプレス前電極合材層のプレスは、特に限定されることなく、金型プレスまたはロールプレスなどの既知の加圧処理方法を用いて実施することができる。
 そして、プレス前電極合材層をプレスする際の圧力は、特に限定されることなく、1MPa以上30MPa以下とすることができる。圧力が低すぎる場合、プレス後電極合材層の密度およびプレス後電極合材層と集電体との密着性を十分に高めることができないからである。一方、圧力が高すぎる場合、結着構造の崩壊および残留応力の蓄積を十分に抑制することができないからである。
 また、プレス前電極合材層をプレスする際の温度は、特に限定されることなく、好ましくは20℃以上80℃以下、より好ましくは20℃以上60℃以下とすることができる。温度が低すぎる場合、可塑剤が十分な可塑化効果を発揮することができない虞があるからである。また、温度が高すぎる場合、可塑剤の揮発等によってプレス開始初期に水溶性重合体の可塑性が失われてしまい、結着構造の崩壊および残留応力の蓄積を十分に抑制することができないからである。
<プレス後乾燥工程>
 プレス後乾燥工程では、プレス工程で得たプレス後電極合材層を乾燥し、プレス後電極合材層中から可塑剤を除去して電気化学素子用電極を得る。具体的には、プレス後乾燥工程では、可塑剤として例えば水や低級アルコール等を用いた場合に、プレス後電極合材層中に残存している可塑剤を例えば500質量ppm未満まで除去することにより、可塑剤が電気化学素子における電気化学反応へ悪影響を及ぼすのを防止する。
 なお、集電体上のプレス後合材層を乾燥する方法としては、特に限定されず公知の方法を用いることができる。具体的には、温風、熱風、低湿風による乾燥法、真空乾燥法、赤外線や電子線などの照射による乾燥法を用いることができる。
(電気化学素子用電極)
 上述した電気化学素子用電極の製造方法を用いて製造される本発明の電気化学素子用電極は、プレスされた電極合材層を集電体上に有しており、電極合材層には、少なくとも、電極活物質と、水溶性重合体を含む結着材とが含まれている。そして、この電気化学素子用電極は、結着構造の崩壊および残留応力の蓄積が十分に抑制されているので、耐粉落ち性、ピール強度、耐膨らみ性などの性能に優れている。
 ここで、電極合材層の高密度化を達成すると共に電極合材層と集電体との密着性を高める観点からは、電気化学素子用電極が有する電極合材層の密度は、1.1g/cm3以上であることが好ましく、1.3g/cm3以上であることがより好ましく、1.5g/cm3以上であることが更に好ましく、1.6g/cm3以上であることが特に好ましい。なお、電極合材層の密度は、通常、1.9g/cm3以下である。
 また、電極合材層中の可塑剤が電気化学素子における電気化学反応へ悪影響を及ぼすのを防止する観点からは、電気化学素子用電極の電極合材層中の可塑剤の量は、500質量ppm未満であることが好ましく、300質量ppm以下であることがより好ましい。なお、電極合材中の可塑剤の量は、通常、150質量ppm以上である。
(電気化学素子)
 本発明の電気化学素子は、電極の少なくとも一つに上述した電気化学素子用電極を用いたことを特徴とする。具体的には、本発明の電気化学素子の一例は、リチウムイオン二次電池などの二次電池や、電気二重層キャパシタおよびリチウムイオンキャパシタなどのキャパシタであり、正極と、負極と、電解液と、セパレータとを備え、正極および負極の少なくとも一方として上述した電気化学素子用電極を用いたものである。そして、本発明の電気化学素子は、本発明の電気化学素子用電極を用いているので、優れた電気的特性を発揮する。
 なお、本発明の電気化学素子に使用し得る、上述した電気化学素子用電極以外の電極としては、特に限定されることなく、電気化学素子の製造に用いられている既知の電極を用いることができる。具体的には、上述した電気化学素子用電極以外の電極としては、既知の製造方法を用いて集電体上に電極合材層を形成してなる電極を用いることができる。
 また、電解液およびセパレータとしては、特に限定されることなく、電気化学素子の製造に用いられている既知の電解液およびセパレータを用いることができる。
 そして、電気化学素子は例えば、正極と、負極とを、セパレータを介して重ね合わせ、これを必要に応じて巻く、折るなどして容器に入れ、容器に電解液を注入して封口することにより製造することができる。電気化学素子の内部の圧力上昇、過充放電等の発生を防止するために、必要に応じて、ヒューズ、PTC素子等の過電流防止素子、エキスパンドメタル、リード板などを設けてもよい。電気化学素子の形状は、例えば、コイン型、ボタン型、シート型、円筒型、角形、扁平型など、何れであってもよい。
 以下、本発明について実施例に基づき具体的に説明するが、本発明はこれら実施例に限定されるものではない。なお、以下の説明において、量を表す「%」、「ppm」及び「部」は、特に断らない限り、質量基準である。
 実施例および比較例において、共重合体の電解液膨潤度、電極合材層中の可塑剤量、電極のピール強度および耐膨らみ性、並びに、リチウムイオン二次電池のサイクル特性は、それぞれ以下の方法を使用して評価した。
<電解液膨潤度>
 共重合体を含む水溶液を、湿度50%、温度23~25℃の環境下で乾燥させて、厚み1±0.3mmに成膜した。成膜したフィルムを、温度60℃の真空乾燥機で10時間乾燥させた後、裁断して約1gを精秤した。得られたフィルム片の質量をW0とする。このフィルム片を、温度60℃の環境下で、電解液(組成:濃度1.0MのLiPF6溶液(溶媒はエチレンカーボネート(EC)/エチルメチルカーボネート(EMC)=3/7(体積比)の混合溶媒、添加剤としてビニレンカーボネート2体積%(溶媒比)を添加)に3日間浸漬し、膨潤させた。その後、フィルム片を引き上げ、表面の電解液をキムワイプで拭いた後、質量を測定した。膨潤後のフィルム片の質量をW1とする。
 そして、以下の計算式を用いて電解液膨潤度を算出した。
 電解液膨潤度(質量%)=(W1/W0)×100
<電極合材層中の可塑剤量>
 作製した負極から長さ50mm、幅30mmの負極合材層を切り出し、試験片とした。そして、試験片を用いて、以下の方法により負極合材層中の可塑剤(水、エタノール)の量を測定した。
[水分量の測定]
 温度150℃の環境下、カールフィッシャー水分計(三菱化学アナリテック製、KF-200)を用いて試験片中の水分量を測定した。
[エタノール量の測定]
 試験片を抽出溶媒としての蒸留水に浸漬して試験片中のエタノールを蒸留水中に抽出した。そして、高速液体クロマトグラフィー(東ソー製、HLC-8220)を用いて試験片中のエタノール量を測定した。
<電極のピール強度>
 作製した負極を長さ100mm、幅10mmの長方形に切り出して試験片とした。そして、試験片の負極合材層側の表面にセロハンテープ(JIS Z1522に規定されるもの)を貼り付け、負極合材層を有する面を下にして試験片を試験台に固定し、集電体の一端を垂直方向に引張り速度50mm/分で引っ張って剥がしたときの応力を測定した。測定を3回行い、その平均値を求めてこれをピール強度とし、以下の基準により評価した。ピール強度の値が大きいほど、負極合材層と集電体との密着性に優れることを示す。
 A:ピール強度が3.0N/m以上
 B:ピール強度が2.5N/m以上3.0N/m未満
 C:ピール強度が2.0N/m以上2.5N/m未満
 D:ピール強度が2.0N/m未満
<耐膨らみ性>
 作製したラミネートセル型のリチウムイオン二次電池を、電解液注液後、5時間静置させ、0.2Cの定電流法によって、セル電圧3.65Vまで25℃で充電し、その後60℃で12時間エージング処理を行い、0.2Cの定電流法によって25℃でセル電圧2.75Vまで放電を行った。
 その後、25℃にて、0.2Cの定電流にて、CC-CV充電(上限セル電圧4.20V)を行い、0.2Cの定電流にてCC放電(下限電圧2.75V)を実施した。更に、25℃環境下で4.40V、1CのレートでCC-CV充電を行い、その後セルを解体した。
 耐膨らみ性は、セル作製前の負極合材層の厚みをT0、充電解体後の負極合材層の厚みをT1としたときにその比(T1/T0)によって以下のように評価した。比(T1/T0)が小さいほど膨らみが抑制されており、耐膨らみ性に優れていることを示す。
 A:T1/T0が1.25未満
 B:T1/T0が1.25以上1.30未満
 C:T1/T0が1.30以上1.35未満
 D:T1/T0が1.35以上
<サイクル特性>
 作製したラミネートセル型のリチウムイオン二次電池を、電解液注液後、5時間静置させ、0.2Cの定電流法によって、セル電圧3.65Vまで25℃で充電し、その後60℃で12時間エージング処理を行い、0.2Cの定電流法によって25℃でセル電圧2.75Vまで放電を行った。
 その後、25℃にて、0.2Cの定電流にて、CC-CV充電(上限セル電圧4.20V)を行い、0.2Cの定電流にてCC放電(下限電圧2.75V)を実施した。更に、25℃、0.1Cの定電流法にて、再度、セル電圧2.75Vまで放電した。その後、45℃環境下で4.40V、0.5Cの充放電レートにて100サイクル充放電の操作を行った。そのとき1サイクル目の容量、すなわち初期放電容量X1、および、50サイクル目の放電容量X2を測定し、ΔC´=(X2/X1)×100(%)で示す容量変化率を求め、以下の基準により評価した。この容量変化率ΔC´の値が高いほど、サイクル特性に優れることを示す。
 A:ΔC´が85%以上
 B:ΔC´が83%以上85%未満
 C:ΔC´が80%以上83%未満
 D:ΔC´が80%未満
(実施例1)
<水溶性重合体(共重合体)の調製>
 セプタム付き1Lフラスコに、イオン交換水720gを投入して、温度40℃に加熱し、流量100mL/分の窒素ガスでフラスコ内を置換した。次に、イオン交換水10gと、エチレン性不飽和カルボン酸化合物(A)としてのアクリル酸9.5g(25.0%)と、化合物(B)としてのアクリルアミド28.5g(75.0%)とを混合して、シリンジでフラスコ内に注入した。その後、重合開始剤としての過硫酸カリウムの2.5%水溶液8.0gをシリンジでフラスコ内に追加した。更に、その15分後に、重合促進剤としてのテトラメチルエチレンジアミンの2.0%水溶液40gをシリンジで追加した。4時間後、重合開始剤としての過硫酸カリウムの2.5%水溶液4.0gをフラスコ内に追加し、更に重合促進剤としてのテトラメチルエチレンジアミンの2.0%水溶液20gを追加して、温度を60℃に昇温し、重合反応を進めた。更に3時間が経過した後、フラスコを空気中に開放して重合反応を停止させ、生成物を温度80℃で脱臭し、残留モノマーを除去した。その後、10%LiOHを用いてpH8に調整して、水溶性の共重合体(水溶性重合体A)を得た。
<粒子状重合体の調製>
 攪拌機付き5MPa耐圧容器に、芳香族ビニル単量体としてスチレン63部、脂肪族共役ジエン単量体として1,3-ブタジエン34部、エチレン性不飽和カルボン酸単量体としてイタコン酸2部、水酸基含有単量体として2-ヒドロキシエチルアクリレート1部、分子量調整剤としてt-ドデシルメルカプタン0.3部、乳化剤としてドデシルベンゼンスルホン酸ナトリウム5部、溶媒としてイオン交換水150部、及び重合開始剤として過硫酸カリウム1部を入れ、十分に攪拌した後、55℃に加温して重合を開始した。
 モノマー消費量が95.0%になった時点で冷却し、反応を停止した。こうして得られた重合体を含んだ水分散体に、5%水酸化ナトリウム水溶液を添加して、pH8に調整した。その後、加熱減圧蒸留によって未反応単量体の除去を行った。さらにその後、30℃以下まで冷却し、粒子状重合体Aの水分散液を得た。得られた粒子状重合体Aのゲル含有量は92%、ガラス転移温度(Tg)は10℃であった。
<負極用スラリー組成物の調製>
 負極活物質としての人造黒鉛100部と、濃度4.5%の水溶性重合体Aの水溶液を固形分相当で1.0部とを混合し、プラネタリーミキサー(回転速度:40rpm)で30分混合した。その後、粒子状重合体Aを固形分相当で1.0部加え、更に回転速度30rpmで15分間混合した。その後、粘度が2000±100mPa・s(B型粘度計、12rpmで測定)となるようにイオン交換水を加え、結着材として水溶性重合体Aおよび粒子状重合体Aを含むリチウムイオン二次電池負極用スラリー組成物を調製した。なお、このときのスラリー組成物の固形分濃度は45質量%であった。
<負極の製造>
 上述のリチウムイオン二次電池負極用スラリー組成物を、コンマコーターで、厚さ20μmの銅箔(集電体)の上に塗付量が12mg/cm2となるように塗布した。その後、スラリー組成物が塗布された銅箔を、200mm/分の速度で温度80℃のオーブン内を2分間、さらに温度120℃のオーブン内を2分間かけて搬送することにより、銅箔上のスラリー組成物を乾燥させ、集電体上に電極合材層を有する負極原反を得た。
 更に、得られた負極原反を、温度25±1℃、湿度50%±5%の環境下に1週間放置して、負極合材層に可塑剤としての水(融点:0℃)を吸収させ、集電体上にプレス前電極合材層を形成した(プレス前電極合材層形成工程)。なお、プレス前電極合材層中の水の量は、5000ppmであった。
 その後、ロールプレス機を使用し、温度25℃の環境下で集電体およびプレス前電極合材層をプレス(荷重:11ton(線圧1MN/m)、プレス速度:1000mm/分)し、密度が1.63~1.67g/cm3のプレス後電極合材層を得た(プレス工程)。更に、プレス後電極合材層を温度105℃で4時間乾燥させて負極を得た(プレス後乾燥工程)。
 そして、負極のピール強度および耐膨らみ性を評価した。結果を表1に示す
<正極の製造>
 プラネタリーミキサーに、正極活物質としてLiCoO2100部、導電材としてアセチレンブラック2部(電気化学工業(株)製「HS-100」)、結着材としてPVDF(ポリフッ化ビニリデン、(株)クレハ化学製「KF-1100」)2部、さらに全固形分濃度が67%となるように分散媒として2-メチルピリロドンを加えて混合し、リチウムイオン二次電池正極用スラリー組成物を調製した。
 そして、得られたスラリー組成物を、コンマコーターで、厚さ20μmのアルミ箔(集電体)の上に塗布量が26.3~27.7mg/cm2となるように塗布した。その後、アルミ箔を0.5m/分の速度で60℃のオーブン内を2分間かけて搬送することにより、スラリー組成物を乾燥させた。その後、120℃にて2分間加熱処理して正極原反を得た。
 更に、得られた正極原反を、ロールプレス機にてプレス後の密度が3.40~3.50g/cm3になるようにプレスし、さらに水分の除去を目的として、温度120℃の真空条件下に3時間置き、集電体上に正極合材層を有する正極を得た。
<リチウムイオン二次電池の製造>
 単層のポリプロピレン製セパレータ、上記の正極および負極を用いてセル(800mAh相当)を作成し、アルミ包材内に配置した。その後、電解液として濃度1.0MのLiPF6溶液(溶媒はエチレンカーボネート(EC)/エチルメチルカーボネート(EMC)=3/7(体積比)の混合溶媒、添加剤としてビニレンカーボネート2体積%(溶媒比)含有)を充填した。さらに、アルミ包材の開口を密封するために、150℃のヒートシールをしてアルミ包材を閉口し、ラミネートセル型のリチウムイオン二次電池を製造した。そして、リチウムイオン二次電池のサイクル特性を評価した。結果を表1に示す。
(実施例2)
 水溶性重合体の調製時に、エチレン性不飽和カルボン酸化合物(A)としてのアクリル酸の量を19.0g(50.0%)とし、化合物(B)としてのアクリルアミドの量を19.0g(50.0%)とした以外は実施例1と同様にして水溶性重合体Bを得た。そして、水溶性重合体Bを用いた以外は実施例1と同様にして、負極用スラリー組成物、負極、正極およびリチウムイオン二次電池を製造し、評価を行った。結果を表1に示す。
(実施例3)
 水溶性重合体の調製時に、エチレン性不飽和カルボン酸化合物(A)としてのアクリル酸の量を28.5g(75.0%)とし、化合物(B)としてのアクリルアミドの量を9.5g(25.0%)とした以外は実施例1と同様にして水溶性重合体Cを得た。そして、水溶性重合体Cを用いた以外は実施例1と同様にして、負極用スラリー組成物、負極、正極およびリチウムイオン二次電池を製造し、評価を行った。結果を表1に示す。
(実施例4)
 水溶性重合体の調製時に、エチレン性不飽和カルボン酸化合物(A)としてのアクリル酸の量を9.12g(24.0%)とし、更に、多官能化合物(C)としてポリエチレングリコールジアクリレート(共栄社化学(株)製、ライトアクリレート9EG-A、n=9の化合物(I)に相当、官能数=2)を0.38g(1.0%)配合した以外は実施例1と同様にして水溶性重合体Dを得た。そして、水溶性重合体Dを用いた以外は実施例1と同様にして、負極用スラリー組成物、負極、正極およびリチウムイオン二次電池を製造し、評価を行った。結果を表1に示す。
(実施例5)
 水溶性重合体の調製時に、化合物(B)としてのアクリルアミドの量を26.6g(70.0%)とし、更に、多官能化合物(C)としてポリエチレングリコールジアクリレート(共栄社化学(株)製、ライトアクリレート9EG-A、n=9の化合物(I)に相当、官能数=2)を1.9g(5.0%)配合した以外は実施例1と同様にして水溶性重合体Eを得た。そして、水溶性重合体Eを用いた以外は実施例1と同様にして、負極用スラリー組成物、負極、正極およびリチウムイオン二次電池を製造し、評価を行った。結果を表1に示す。
(実施例6)
 負極用スラリー組成物の調製時に、負極活物質として人造黒鉛90部とSiOX10部との混合物を使用し、水溶性重合体Dの配合量を固形分相当で3.0部に変更し、粒子状重合体Aを配合しなかった以外は実施例4と同様にして、負極用スラリー組成物、負極、正極およびリチウムイオン二次電池を製造し、評価を行った。結果を表1に示す。
(実施例7)
 負極用スラリー組成物の調製時に、負極活物質として人造黒鉛95部とSiOX5部との混合物を使用し、水溶性重合体Dの配合量を固形分相当で2.0部に変更し、粒子状重合体Aに替えて下記のようにして調製した粒子状重合体Bを使用した以外は実施例4と同様にして、負極用スラリー組成物、負極、正極およびリチウムイオン二次電池を製造し、評価を行った。結果を表1に示す。
<粒子状重合体Bの調製>
 攪拌機付き5MPa耐圧容器に、芳香族ビニル単量体としてスチレン34部、脂肪族共役ジエン単量体として1,3-ブタジエン46部、エチレン性不飽和カルボン酸単量体としてアクリル酸20部、分子量調整剤としてt-ドデシルメルカプタン1.0部、乳化剤としてドデシルベンゼンスルホン酸ナトリウム5部、溶媒としてイオン交換水150部、及び重合開始剤として過硫酸カリウム1部を入れ、十分に攪拌した後、55℃に加温して重合を開始した。
 モノマー消費量が95.0%になった時点で冷却し、反応を停止した。こうして得られた重合体を含んだ水分散体に、5%水酸化ナトリウム水溶液を添加して、pH8に調整した。その後、加熱減圧蒸留によって未反応単量体の除去を行った。さらにその後、30℃以下まで冷却し、粒子状重合体Bの水分散液を得た。得られた粒子状重合体Bのゲル含有量は98%、ガラス転移温度(Tg)は10℃であった。
(実施例8)
 水溶性重合体Aの水溶液に替えてカルボキシメチルセルロース(CMC)(日本製紙ケミカル製、MAC800LC)の水溶液を用いた以外は実施例1と同様にして、負極用スラリー組成物、負極、正極およびリチウムイオン二次電池を製造し、評価を行った。結果を表1に示す。
(実施例9)
 水溶性重合体Aの水溶液に替えてポリカルボン酸(アルドリッチ製、粘度平均分子量=300万)の1%水溶液をLiOH(和光純薬、特級試薬)でpH8に調整してなるポリカルボン酸リチウム塩(PAA)の水溶液を用いた以外は実施例1と同様にして、負極用スラリー組成物、負極、正極およびリチウムイオン二次電池を製造し、評価を行った。結果を表1に示す。
(実施例10)
 負極の製造時に、得られた負極原反を、温度25±1℃、湿度50%±5%の環境下に1週間放置した後、アルミパウチに入れた。そして、負極活物質および結着材の合計100部に対してエタノール0.5部となるように可塑剤としてのエタノール(融点:-114℃)をアルミパウチ内に添加し、アルミパウチをヒートシールした。その後、アルミパウチを50℃恒温槽内で3日放置し、エタノールを全て負極合材層に吸収させ、プレス前電極合材層を形成した(プレス前電極合材層形成工程)。なお、プレス前電極合材層中の水およびエタノールの量は、それぞれ5000ppm(可塑剤合計10000ppm)であった。更に、実施例1と同様にしてプレス工程およびプレス後乾燥工程を実施して、負極を得た。そして、当該負極を用いた以外は実施例1と同様にして、正極およびリチウムイオン二次電池を製造し、評価を行った。結果を表1に示す。
(実施例11)
 負極の製造時に、得られた負極原反を、温度25±1℃、露点-60~-50℃のドライルーム環境下に1週間放置した以外は実施例1と同様にしてプレス前電極合材層形成工程、プレス工程およびプレス後乾燥工程を実施し、負極を得た。なお、プレス前電極合材層中の水の量は、1000ppmであった。そして、当該負極を用いた以外は実施例1と同様にして、正極およびリチウムイオン二次電池を製造し、評価を行った。結果を表1に示す。
(実施例12)
 負極の製造時に、スラリー組成物が塗布された銅箔を、200mm/分の速度で温度80℃のオーブン内を2分間、さらに温度105℃のオーブン内を2分間かけて搬送することにより、銅箔上のスラリー組成物を乾燥させ、集電体上にプレス前電極合材層を直接形成した(プレス前電極合材層形成工程)。なお、プレス前電極合材層中の水の量は、800ppmであった。更に、実施例1と同様にしてプレス工程およびプレス後乾燥工程を実施して、負極を得た。そして、当該負極を用いた以外は実施例1と同様にして、正極およびリチウムイオン二次電池を製造し、評価を行った。結果を表1に示す。
(比較例1~5)
 負極の製造時に、負極合材層に可塑剤としての水を吸収させるプレス前電極合材層形成工程を実施せず、得られた負極原反に対してプレス工程およびプレス後乾燥工程を実施した以外はそれぞれ実施例1,6,7,8,9と同様にして、負極を得た。なお、負極原反の電極合材層中の水の量は、400ppmであった。そして、当該負極を用いた以外は実施例1,6,7,8,9と同様にして、正極およびリチウムイオン二次電池を製造し、評価を行った。結果を表1に示す。
(比較例6)
 負極の製造時に、得られた負極原反を、アルミパウチに入れた。そして、負極活物質および結着材の合計100部に対して水2.0部となるように可塑剤としての水をアルミパウチ内に添加し、アルミパウチをヒートシールした。その後、アルミパウチを50℃恒温槽内で3日放置し、水を負極合材層に吸収させた。更に、アルミパウチから取り出した負極原反を、温度25±1℃、湿度50%±5%の環境下に1日放置して、集電体上にプレス前電極合材層を形成した(プレス前電極合材層形成工程)。なお、プレス前電極合材層中の水の量は、11000ppmであった。その後、実施例1と同様にしてプレス工程およびプレス後乾燥工程を実施しようとしたが、プレス時にロールプレス機のロールに負極合材層が貼り付き、プレスができなかった。そのため、負極を製造することができなかった。
Figure JPOXMLDOC01-appb-T000001
 表1より、プレス前電極合材層に所定量の可塑剤を含有させた実施例1~11およびスラリー組成物の乾燥温度を下げることによりプレス前電極合材層に所定量の可塑剤を残留させた実施例12では、可塑剤量が少ない比較例1~5と比較し、得られる負極に所期の性能を十分に発揮させ、リチウムイオン二次電池のサイクル特性を十分に向上させ得ることが分かる。また、可塑剤量が多い比較例6では、プレスが困難になることが分かる。
 本発明によれば、集電体上に形成した電極合材層をプレスする工程を含む電気化学素子用電極の製造方法であって、得られる電気化学素子用電極に所期の性能を十分に発揮させることが可能な電気化学素子用電極の製造方法を提供することができる。
 また、本発明によれば、耐粉落ち性、ピール強度、耐膨らみ性などの性能に優れる電気化学素子用電極および電気的特性に優れる電気化学素子を提供することができる。

Claims (9)

  1.  電極活物質と、水溶性重合体を含む結着材と、前記水溶性重合体に対する可塑剤とを含むプレス前電極合材層を集電体上に形成する工程と、
     前記プレス前電極合材層をプレスしてプレス後電極合材層を得る工程と、
    を含み、
     前記可塑剤の融点は、前記プレス前電極合材層をプレスする温度以下であり、
     前記プレス前電極合材層中の前記可塑剤の量が500質量ppm以上10000質量ppm以下である、電気化学素子用電極の製造方法。
  2.  前記プレス前電極合材層を集電体上に形成する工程が、
     前記電極活物質と、前記結着材とを含む電極合材層を集電体上に形成する工程と、
     前記電極合材層に前記可塑剤を添加して前記プレス前電極合材層を調製する工程と、
    を含む、請求項1に記載の電気化学素子用電極の製造方法。
  3.  前記プレス前電極合材層が、前記電極活物質100質量部当たり、前記水溶性重合体を0.3質量部以上10質量部以下の割合で含む、請求項1または2に記載の電気化学素子用電極の製造方法。
  4.  前記水溶性重合体が、エチレン性不飽和カルボン酸およびその塩の少なくとも一方よりなるエチレン性不飽和カルボン酸化合物(A)と、20℃における水100gに対する溶解度が7g以上である、エチレン性不飽和結合を有する共重合可能な化合物(B)とを含む単量体組成物を重合して得られる共重合体を含み、
     前記単量体組成物は、全単量体中の前記エチレン性不飽和カルボン酸化合物(A)の割合が20.0質量%以上79.5質量%以下であり、全単量体中の前記化合物(B)の割合が20.0質量%以上79.5質量%以下であり、
     前記共重合体は、電解液膨潤度が120質量%未満である、請求項1~3の何れかに記載の電気化学素子用電極の製造方法。
  5.  前記単量体組成物は、ポリオキシアルキレン構造および2つ以上のエチレン性不飽和結合を有する多官能化合物(C)をさらに含み、全単量体中の前記多官能化合物(C)の割合が0.1質量%以上20.0質量%以下である、請求項4に記載の電気化学素子用電極の製造方法。
  6.  前記水溶性重合体が、ポリアクリル酸、カルボキシメチルセルロースおよびそれらの塩からなる群より選択される少なくとも一種を含む、請求項1~3の何れかに記載の電気化学素子用電極の製造方法。
  7.  前記可塑剤が水である、請求項1~6の何れかに記載の電気化学素子用電極の製造方法。
  8.  請求項1~7の何れかに記載の電気化学素子用電極の製造方法を用いて製造した、電気化学素子用電極。
  9.  請求項8に記載の電気化学素子用電極を備える、電気化学素子。
PCT/JP2015/005480 2014-10-31 2015-10-30 電気化学素子用電極の製造方法、電気化学素子用電極および電気化学素子 WO2016067632A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201580056974.4A CN107078270B (zh) 2014-10-31 2015-10-30 电化学元件用电极的制造方法、电化学元件用电极以及电化学元件
JP2016556376A JP6747297B2 (ja) 2014-10-31 2015-10-30 電気化学素子用電極の製造方法、電気化学素子用電極および電気化学素子
KR1020177010526A KR102646180B1 (ko) 2014-10-31 2015-10-30 전기 화학 소자용 전극의 제조 방법, 전기 화학 소자용 전극 및 전기 화학 소자

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014-222438 2014-10-31
JP2014222438 2014-10-31
JP2015051212 2015-03-13
JP2015-051212 2015-03-13

Publications (1)

Publication Number Publication Date
WO2016067632A1 true WO2016067632A1 (ja) 2016-05-06

Family

ID=55856995

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/005480 WO2016067632A1 (ja) 2014-10-31 2015-10-30 電気化学素子用電極の製造方法、電気化学素子用電極および電気化学素子

Country Status (4)

Country Link
JP (1) JP6747297B2 (ja)
KR (1) KR102646180B1 (ja)
CN (1) CN107078270B (ja)
WO (1) WO2016067632A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019110002A (ja) * 2017-12-18 2019-07-04 荒川化学工業株式会社 リチウムイオン電池用バインダー水溶液、リチウムイオン電池用電極スラリー及びその製造方法、リチウムイオン電池用電極、並びにリチウムイオン電池

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102330108B1 (ko) 2017-12-01 2021-11-23 주식회사 엘지에너지솔루션 이차전지용 전극의 제조방법
CN110459773B (zh) * 2019-09-09 2022-05-27 江苏正力新能电池技术有限公司 一种锂离子电池极片浆料、极片及其制备方法和应用
CN111224063A (zh) * 2020-01-14 2020-06-02 广州鹏辉能源科技股份有限公司 一种正极片、水性电极浆料及其制备方法
KR20230129916A (ko) * 2022-03-02 2023-09-11 주식회사 엘지에너지솔루션 전극 슬러리용 고분자 용액의 제조방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008108462A (ja) * 2006-10-23 2008-05-08 Toyota Motor Corp リチウム二次電池およびその製造方法
WO2013080938A1 (ja) * 2011-11-29 2013-06-06 日本ゼオン株式会社 リチウムイオン二次電池用電極、リチウムイオン二次電池及びスラリー組成物、並びにリチウムイオン二次電池用電極の製造方法
WO2015186363A1 (ja) * 2014-06-04 2015-12-10 日本ゼオン株式会社 リチウムイオン二次電池電極用バインダー組成物、リチウムイオン二次電池電極用スラリー組成物、リチウムイオン二次電池用電極およびリチウムイオン二次電池

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1040921A (ja) * 1996-07-26 1998-02-13 Fuji Photo Film Co Ltd 非水二次電池
JP2001223030A (ja) * 2000-02-09 2001-08-17 Ngk Insulators Ltd リチウム二次電池
CN1195036C (zh) * 2001-06-08 2005-03-30 成都茵地乐电源科技有限公司 锂离子二次电池电极材料水性粘合剂及其制备方法
CN100401565C (zh) * 2005-04-27 2008-07-09 剩沅科技股份有限公司 锂高分子电池
JP4954585B2 (ja) 2006-03-31 2012-06-20 株式会社デンソー リチウムイオン電池用電極の製造方法
JP2010182548A (ja) * 2009-02-06 2010-08-19 Hymo Corp リチウムイオン二次電池用負極及びその作成方法
JP5943602B2 (ja) * 2010-12-28 2016-07-05 三井化学株式会社 電気化学セル用アクリル系水分散体および水性ペースト、それからなる電極・電池の製造方法
JP2013118104A (ja) * 2011-12-02 2013-06-13 Toyota Motor Corp 非水電解液型二次電池用の負極の製造方法および該負極を用いた非水電解液型二次電池の製造方法
JP6292739B2 (ja) * 2012-01-26 2018-03-14 Jx金属株式会社 リチウムイオン電池用正極活物質、リチウムイオン電池用正極、及び、リチウムイオン電池

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008108462A (ja) * 2006-10-23 2008-05-08 Toyota Motor Corp リチウム二次電池およびその製造方法
WO2013080938A1 (ja) * 2011-11-29 2013-06-06 日本ゼオン株式会社 リチウムイオン二次電池用電極、リチウムイオン二次電池及びスラリー組成物、並びにリチウムイオン二次電池用電極の製造方法
WO2015186363A1 (ja) * 2014-06-04 2015-12-10 日本ゼオン株式会社 リチウムイオン二次電池電極用バインダー組成物、リチウムイオン二次電池電極用スラリー組成物、リチウムイオン二次電池用電極およびリチウムイオン二次電池

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019110002A (ja) * 2017-12-18 2019-07-04 荒川化学工業株式会社 リチウムイオン電池用バインダー水溶液、リチウムイオン電池用電極スラリー及びその製造方法、リチウムイオン電池用電極、並びにリチウムイオン電池
JP7031278B2 (ja) 2017-12-18 2022-03-08 荒川化学工業株式会社 リチウムイオン電池用バインダー水溶液、リチウムイオン電池用電極スラリー及びその製造方法、リチウムイオン電池用電極、並びにリチウムイオン電池

Also Published As

Publication number Publication date
CN107078270A (zh) 2017-08-18
CN107078270B (zh) 2021-05-25
JP6747297B2 (ja) 2020-08-26
JPWO2016067632A1 (ja) 2017-08-10
KR102646180B1 (ko) 2024-03-08
KR20170076668A (ko) 2017-07-04

Similar Documents

Publication Publication Date Title
US10044026B2 (en) Paste composition for lithium ion secondary battery negative electrode-use, composite particles for lithium ion secondary battery negative electrode-use, slurry composition for lithium ion secondary battery negative electrode-use, negative electrode for lithium ion secondary battery-use, and lithium ion secondary battery
JP7056568B2 (ja) 非水系二次電池正極用スラリー組成物、非水系二次電池用正極、および非水系二次電池
JP6760074B2 (ja) リチウムイオン二次電池正極用バインダー組成物、リチウムイオン二次電池正極用スラリー組成物、リチウムイオン二次電池用正極およびリチウムイオン二次電池
JP6809466B2 (ja) 非水系二次電池機能層用組成物、非水系二次電池用機能層および非水系二次電池
JP7259746B2 (ja) 電気化学素子機能層用バインダー組成物、電気化学素子機能層用組成物、電気化学素子用機能層、及び電気化学素子
JP6747297B2 (ja) 電気化学素子用電極の製造方法、電気化学素子用電極および電気化学素子
JP2014165131A (ja) リチウムイオン二次電池正極用スラリー組成物の製造方法、リチウムイオン二次電池用正極の製造方法、及び、リチウムイオン二次電池
KR20180003619A (ko) 2차 전지 전극용 바인더 조성물, 2차 전지 전극용 슬러리 조성물, 2차 전지용 전극 및 2차 전지
WO2018123624A1 (ja) 非水系二次電池負極用スラリー組成物及びその製造方法、非水系二次電池用負極、並びに非水系二次電池
WO2015064099A1 (ja) リチウムイオン二次電池正極用スラリー組成物、リチウムイオン二次電池用正極およびリチウムイオン二次電池
US20140151609A1 (en) Slurry composition for composite particles for positive electrode and method for producing composite particles for positive electrode
WO2019131210A1 (ja) 二次電池正極用バインダー組成物、二次電池正極用スラリー組成物及びその製造方法、二次電池用正極、並びに二次電池
JP6645101B2 (ja) リチウムイオン二次電池電極用スラリー組成物、リチウムイオン二次電池用電極およびリチウムイオン二次電池
JPWO2020090395A1 (ja) 非水系二次電池機能層用組成物、非水系二次電池用機能層、非水系二次電池用セパレータ、および非水系二次電池
JP6070266B2 (ja) リチウムイオン二次電池正極用スラリー組成物、リチウムイオン二次電池用正極の製造方法、リチウムイオン二次電池用正極、及び、リチウムイオン二次電池
JPWO2019065416A1 (ja) 非水系二次電池機能層用組成物、非水系二次電池用機能層および非水系二次電池
JPWO2017090242A1 (ja) 非水系二次電池接着層用組成物、非水系二次電池用接着層、及び非水系二次電池
WO2018003707A1 (ja) 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極および非水系二次電池
WO2018180472A1 (ja) 非水系二次電池多孔膜用バインダー組成物、非水系二次電池多孔膜用スラリー組成物、非水系二次電池用多孔膜、および非水系二次電池
JP6237306B2 (ja) リチウムイオン二次電池正極用スラリー組成物、リチウムイオン二次電池用正極およびリチウムイオン二次電池
WO2021059880A1 (ja) 非水系二次電池耐熱層用スラリー組成物、非水系二次電池用耐熱層、および非水系二次電池
WO2018003636A1 (ja) 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極および非水系二次電池
WO2020213721A1 (ja) 非水系二次電池電極用バインダー組成物、非水系二次電池正極用スラリー組成物、非水系二次電池用正極、および非水系二次電池
JPWO2016143344A1 (ja) 電気化学キャパシタ電極用スラリー組成物、電気化学キャパシタ用電極および電気化学キャパシタ
WO2020213722A1 (ja) 非水系二次電池電極用バインダー組成物、非水系二次電池正極用スラリー組成物、非水系二次電池用正極、および非水系二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15855859

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016556376

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20177010526

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15855859

Country of ref document: EP

Kind code of ref document: A1