WO2016066140A1 - 柔性多孔金属箔及其制备方法 - Google Patents

柔性多孔金属箔及其制备方法 Download PDF

Info

Publication number
WO2016066140A1
WO2016066140A1 PCT/CN2015/093483 CN2015093483W WO2016066140A1 WO 2016066140 A1 WO2016066140 A1 WO 2016066140A1 CN 2015093483 W CN2015093483 W CN 2015093483W WO 2016066140 A1 WO2016066140 A1 WO 2016066140A1
Authority
WO
WIPO (PCT)
Prior art keywords
sintering
metal foil
porous metal
film
solid solution
Prior art date
Application number
PCT/CN2015/093483
Other languages
English (en)
French (fr)
Inventor
高麟
汪涛
王韬
李波
Original Assignee
成都易态科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 成都易态科技有限公司 filed Critical 成都易态科技有限公司
Priority to JP2017522942A priority Critical patent/JP6587683B2/ja
Priority to US15/523,044 priority patent/US10722945B2/en
Publication of WO2016066140A1 publication Critical patent/WO2016066140A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/11Making porous workpieces or articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • B22F1/107Metallic powder containing lubricating or binding agents; Metallic powder containing organic material containing organic material comprising solvents, e.g. for slip casting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/1017Multiple heating or additional steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/1017Multiple heating or additional steps
    • B22F3/1021Removal of binder or filler
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/22Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces for producing castings from a slip
    • B22F3/225Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces for producing castings from a slip by injection molding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/006Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of flat products, e.g. sheets
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F2003/1042Sintering only with support for articles to be sintered
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/15Nickel or cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps

Definitions

  • the invention relates to a sintered metal porous material and a preparation thereof, in particular to a flexible porous metal foil and a preparation method thereof.
  • the sintered metal porous material is mainly used as a filter material.
  • the sintered metal porous material is required to be a filter element of a certain shape and configuration.
  • Existing sintered metal porous material filter elements are basically tubular or plate-type structures. Their preparation principle is similar, that is, the raw material powder constituting the porous metal material is first pressed into a tubular or plate type compact by a special molding die (generally using isostatic pressing technology), and then pressed. The billet is sintered and sintered to obtain a product.
  • the above-mentioned tubular or plate type sintered metal porous material filter element has a limited use range due to its shape, configuration, and accompanying influence on the corresponding requirements of the filter device and system.
  • the sintered metal porous material filter element is stronger than the current filter element (for example, an organic filter membrane) in terms of chemical corrosion resistance, material irreversible pollution resistance, mechanical strength, and the like.
  • the advantage of this is therefore the development of new sintered metal porous material filter elements that can replace the original filter elements in multiple fields.
  • the technical problem to be solved by the present invention is to provide two flexible porous metal foils and a preparation method of the flexible porous metal foil, respectively.
  • the present invention provides a film forming tool and a film sintering tool which can be used in the above-mentioned flexible porous metal foil preparing method, which makes the flexible porous metal foil easier to manufacture, and the product quality can be better ensured.
  • the "film" to which it is directed is not only the “film” obtained in the method for producing a flexible porous metal foil of the present invention.
  • the diaphragm sintering tool can be used to sinter the "paper film” mentioned in the background art.
  • the first flexible porous metal foil to be provided by the present invention is a thin plate composed of a solid solution alloy, a face-centered cubic metal element or a body-centered cubic metal elemental matrix phase, and the thickness of the sheet is 5 to 200 ⁇ m, an average pore diameter of 0.05 to 100 ⁇ m, a porosity of 15 to 70%, and sintered by a homogeneous membrane.
  • the flexible porous metal foil is first composed of a solid solution alloy, a face-centered cubic metal element or a body-centered cubic metal element as a matrix phase, thereby ensuring flexibility of the flexible porous metal foil. And through this The following corresponding preparation methods of the invention can be prepared.
  • the metal material constituting the flexible porous metal foil should be a porous material having a pore structure characterized by an average pore diameter of 0.05 to 100 ⁇ m and a porosity of 15 to 70%, so that the flexible porous metal foil can satisfy a wide range of filtration separation requirements.
  • the flexible porous metal foil (sheet) has a thickness of 5 to 200 ⁇ m, and is usually 10 to 60 ⁇ m.
  • the flexible porous metal foil is sintered from a homogeneous membrane.
  • homogeneous it is meant that the composition of the membrane is substantially uniform, that is, essentially different from that after the coating treatment and the reaction synthesis mentioned in the background art "Progress in the research of porous materials of Ti-Al intermetallic compounds".
  • Aluminum foil The aluminum foil after the film treatment and before the reaction synthesis can be understood as an asymmetrical sheet.
  • the meaning of "asymmetry” is common in the field of sintered metal porous materials.
  • "Homogeneity" in the present invention is a difference concept proposed with respect to "asymmetry". Since the flexible porous metal foil of the present invention is sintered from a homogeneous membrane, the pore size distribution of the foil is more uniform, the foil flatness and the like are better.
  • the sheet may be composed of a metal porous material in which an infinite solid solution alloy is a matrix phase.
  • the sheet is composed of a metal porous material in which Ag-Au solid solution, Ti-Zr solid solution, Mg-Cd solid solution or Fe-Cr solid solution is a matrix phase.
  • the sheet is preferably composed of a Ni-Cu solid solution metal porous material, and at this time, it is required that 75% or more of the plurality of pores of the porous material have a pore diameter difference of less than 70 ⁇ m.
  • the Ni-Cu solid solution metal porous material is ideal in terms of flexibility (multiple foldability) and chemical stability, and is excellent in permeability of the porous material formed by sintering, and thus the application range is relatively wide.
  • the sheet may also be composed of a porous metal material having a limited solid solution alloy as a matrix phase.
  • the sheet is composed of a metal porous material in which a Cu-Al solid solution, a Cu-Zn solid solution, and a Fe-C-Cr solid solution are a matrix phase.
  • the sheet may also be composed of a metal porous material in which a face-centered cubic structure of Al, Ni, Cu or Pb is a matrix phase.
  • the sheet may also be composed of a metal porous material in which a body-centered cubic structure of Cr, W, V or Mo is a matrix phase.
  • the above flexible porous metal foil of the invention has broad application space, for example, industrial waste, waste heat recovery, chemical recovery, pollution control in the textile and tanning industry, purification, concentration, disinfection, by-products in the food processing industry Recycling, artificial air pipe, controlled release, blood filtration, water purification in the pharmaceutical and healthcare industries, filters in the automotive industry; dust filter materials for masks and curtain materials with electrostatic dust removal for civilian use.
  • the method for preparing the above flexible porous metal foil of the present invention comprises: (1) disposing a raw material powder constituting the metal porous material thereof with a dispersing agent and a binder into a viscous suspension; (2) hanging the suspension The turbid liquid is injected into the molding cavity of the film forming tool and dried to form a homogeneous film; (3) the film is loaded into a sintering tool that conforms to the shape of the film and then subjected to constrained sintering and sintering. Thereafter, it was taken out from the sintering tool and a flexible porous metal foil was obtained.
  • the flexible porous metal foil is composed of a metal porous material of a Ni-Cu solid solution
  • the Ni powder and the Cu powder are uniformly mixed first. Forming a raw material powder, wherein the mass of the Cu powder is 30-60% of the mass of the raw material powder, and then using ethanol as a dispersing agent and PVB as a binder, and the mass ratio of PVB to ethanol is (0.5 to 5):100. PVB is added to ethanol to make PVB solution, and then per 100 ml of ethanol.
  • the raw material powder is added to the PVB solution at a ratio of 20 to 50 g of the raw material powder, and the raw material powder is sufficiently dispersed by stirring to obtain a viscous suspension; in the step (3), the sintering process includes gradually increasing the sintering temperature to 520.
  • a film forming tool which can be used in the above method, comprising: a fixing portion including a mold frame for molding an edge of the diaphragm; and an adjusting portion including a template for molding the bottom surface of the diaphragm in cooperation with the mold frame,
  • the template is connected with an adjusting device that can move the template in the depth direction of the mold frame; the movable portion includes a top surface of the mold frame and the cutting edge is flush with the top surface of the mold frame during the working process. scraper.
  • the film forming tool can accurately control the thickness of the diaphragm and ensure the uniformity of the thickness of the diaphragm and the flatness of the surface of the diaphragm.
  • the adjusting device comprises a height adjusting mechanism which is fixed to the mold frame and respectively connected to the four corners of the bottom surface of the template and operates independently. In this way, the height of the four corners of the template can be adjusted separately to ensure the parallelism of the template as a whole and the top surface of the mold frame, and the thickness of the diaphragm is even higher.
  • the molding surface of the mold frame and the molding surface of the template are further provided with a lubricant coating which is volatile at 580 °C.
  • the lubricant coating can be specifically coated with a Vaseline coating. In this way, it is possible to ensure that the formed diaphragm is smoothly taken out from the film forming tool to prevent the sticking mold, and at the same time, since the volatility of the lubricant coating layer does not affect the composition of the subsequently prepared flexible porous metal foil, it is advantageous. Increase the porosity of the flexible porous metal foil.
  • a cavity the cavity is connected with an exhaust structure for emitting sintered volatiles, the exhaust structure is a matching clearance reserved at a mating portion of the upper die and the side die, and/or a fit between the lower die and the side die.
  • the mating clearance reserved for the portion and/or the air holes provided in at least one of the upper mold, the lower mold, and the side mold.
  • the film can be constrained and sintered by the sintering tool to prevent deformation of the film during sintering.
  • the upper mold, the lower mold and the side mold, the side mold is a frame cover, and the upper mold and the lower mold are respectively a splint, and the frame cover is provided with at least three layers of splints, any adjacent The cavity is formed between the two plywoods.
  • the upper mold, the lower mold, and the surface of the side mold for contacting the diaphragm are further provided with an alumina coating.
  • Alumina can block interdiffusion of elements between the sintering tool's own material and the diaphragm material during high temperature sintering.
  • At least one of the upper mold, the lower mold, and the side mold may be made of graphite.
  • Graphite has good high temperature resistance, and because of the smooth surface of the graphite, it can also facilitate the demolding of the product after sintering.
  • the second flexible porous metal foil provided by the present invention is a sheet made of a porous metal material having a solid solution alloy as a matrix phase, the sheet having a thickness of 5 to 200 ⁇ m, an average pore diameter of 0.05 to 100 ⁇ m, and a porosity of 15 to ⁇ . 70%.
  • the flexible porous metal foil is composed of a metal having a solid solution alloy as a matrix phase in a material composition, thereby ensuring the softness. The flexibility of the porous metal foil.
  • the metal material constituting the flexible porous metal foil is a porous material, and its pore structure is characterized by an average pore diameter of 0.05 to 100 ⁇ m and a porosity of 15 to 70%, so that the flexible porous metal foil can satisfy a wide range of filtration separation requirements.
  • the flexible porous metal foil (sheet) has a thickness of 5 to 200 ⁇ m, and is usually 10 to 60 ⁇ m.
  • the sheet may be composed of a metal porous material in which an infinite solid solution alloy is a matrix phase.
  • the sheet is composed of a metal porous material in which Ag-Au solid solution, Ti-Zr solid solution, Mg-Cd solid solution or Fe-Cr solid solution is a matrix phase.
  • the sheet is preferably composed of a Ni-Cu solid solution metal porous material, and the Ni-Cu solid solution metal porous material is ideal in terms of flexibility (multiple foldability) and chemical stability, and thus the application range is relatively wide. .
  • the sheet may also be composed of a porous metal material having a limited solid solution alloy as a matrix phase.
  • the sheet is composed of a metal porous material in which a Cu-Al solid solution, a Cu-Zn solid solution, and a Fe-C-Cr solid solution are a matrix phase.
  • the above second flexible porous metal foil of the invention is industrially applicable to waste heat recovery, chemical recovery, pollution control in the textile and leather industry, purification, concentration, disinfection, by-product recovery in the food processing industry, medicine and health care industry Artificial gas pipeline, controlled release, blood filtration, water purification, filter in the automobile industry; dust filter material which can be used as a mask for civilian use, and curtain material with electrostatic dust removal function.
  • the method for preparing a second flexible porous metal foil comprises the steps of: (1) preparing a carrier, the carrier being composed of a certain element or elements of a metal porous material constituting the flexible porous metal foil; a raw material powder made of the remaining elements constituting the porous metal material is disposed as a viscous suspension with a dispersing agent and a binder; (3) the suspension is attached to the surface of the carrier and dried to form a film attached to the surface of the carrier; (4) the carrier to which the film is attached is placed in a sintering tool having an outer shape and then subjected to constrained sintering, and after sintering, it is taken out from the sintering tool to obtain a flexible porous metal foil.
  • a film forming tool which can be used in the above-described second method for preparing a flexible porous metal foil, comprising: a fixing portion including a mold frame for molding an edge of the diaphragm; an adjusting portion including the mold frame Cooperating with a template for placing a carrier, the template being connected with an adjusting device for moving the template in the depth direction of the mold frame; the movable portion including the top surface of the mold frame and the cutting edge during the working process The top surface of the mold frame is kept flush.
  • the film forming tool can accurately control the thickness of the diaphragm and ensure the uniformity of the thickness of the diaphragm and the flatness of the surface of the diaphragm.
  • the adjusting device comprises a height adjusting mechanism which is fixed to the mold frame and respectively connected to the four corners of the bottom surface of the template and operates independently. In this way, the height of the four corners of the template can be adjusted separately to ensure the parallelism of the template as a whole and the top surface of the mold frame, and the thickness of the diaphragm is even higher.
  • a sintering tool which can be used in the above-mentioned second method for preparing a flexible porous metal foil, comprising an upper mold, a lower mold and a side mold made of a high temperature resistant material, the upper and lower molds respectively being combined with the side mold to form a a cavity in which the carrier of the attached film is matched; the cavity is connected with an exhaust structure for emitting sintered volatiles, and the exhaust structure is a matching clearance reserved at a mating portion of the upper die and the side die and/or a matching clearance reserved at a mating portion of the lower mold and the side mold and/or a vent hole provided on at least one of the upper mold, the lower mold, and the side mold.
  • the carrier attached to the diaphragm can be The line is constrained to be sintered to prevent it from deforming during sintering.
  • the upper mold, the lower mold and the side mold, the side mold is a frame cover, and the upper mold and the lower mold are respectively a splint, and the frame cover is provided with at least three layers of splints, any adjacent The cavity is formed between the two plywoods.
  • the upper mold, the lower mold, and the surface for contacting the diaphragm on the upper mold and the side mold are further provided with an alumina coating.
  • Alumina can block interdiffusion of elements between the sintering tool itself and the carrier and diaphragm material during high temperature sintering.
  • At least one of the upper mold, the lower mold, and the side mold is made of graphite.
  • Graphite has good high temperature resistance, and because of the smooth surface of the graphite, it can also facilitate the demolding of the product after sintering.
  • the film forming tool and the sintering tool used in the preparation method of the second flexible porous metal foil described above may be identical to the film forming tool and the sintering tooling structure used in the method for preparing the first flexible porous metal foil.
  • the film forming tool of the second method needs to place the carrier on the template when using the film forming tool, and the film forming tool of the first method does not place the carrier on the template when used;
  • the sintering method of the second method is placed in the cavity of the sintering tool It is the carrier (which is an asymmetrical structure) to which the film is attached, and the sintering tool of the first method has a homogeneous film placed in the cavity.
  • FIG. 1 is a schematic view showing the appearance of a rectangular flexible porous metal foil in a specific embodiment of the present invention.
  • Fig. 2 is a schematic perspective view showing the structure of a film forming tool for preparing the flexible porous metal foil shown in Fig. 1.
  • Figure 3 is a cross-sectional view taken along line I-I of Figure 2;
  • Fig. 4 is a schematic view showing the structure of a diaphragm sintering tool for preparing the flexible porous metal foil shown in Fig. 1.
  • Figure 5 is a cross-sectional view taken along line II-II of Figure 4.
  • a flexible porous metal foil 100 as shown in FIG. 1 is a sheet composed of a solid solution alloy, a face-centered cubic metal element or a body-centered cubic metal elemental matrix-based metal porous material, the thickness of the sheet.
  • H is 5 to 200 ⁇ m, has an average pore diameter of 0.05 to 100 ⁇ m, a porosity of 15 to 70%, and is sintered by a homogeneous membrane.
  • the shape of the sheet may be a rectangle as shown in FIG. 1, or may be other planar shapes such as a circle or an ellipse.
  • the method for preparing the flexible porous metal foil 100 includes: (1) disposing a raw material powder constituting the metal porous material thereof with a dispersing agent and a binder into a viscous suspension; (2) suspending the suspension The liquid is injected into the molding cavity of the film forming tool and dried to form a homogeneous film; (3) the film is loaded into a sintering tool that conforms to the shape of the film and then subjected to constrained sintering, after sintering The flexible porous metal foil 100 is taken out from the sintering tool and obtained.
  • the dispersing agent may be an organic solvent such as ethanol, methyl ethyl ketone or toluene which has a small surface tension and is quick to evaporate and dry.
  • Solvent such as ethanol, methyl ethyl ketone or toluene which has a small surface tension and is quick to evaporate and dry.
  • Solvent the binder may be PVB, PVA, PVC, polyvinyl alcohol, polyethylene glycol (low molecular wax), paraffin, fatty acid, aliphatic amide and ester.
  • the ratio between the raw material powder and the dispersing agent can be determined based on the specific composition of the raw material powder to ensure the surface quality of the film after drying.
  • the content of the raw material powder is too high, the surface quality of the film after drying is not good, and cracking or the like is likely to occur; if the content of the raw material powder is too low, the suspension is injected later. The number of times the film forming tool forms the cavity, prolonging the preparation cycle of the flexible porous metal foil.
  • the ratio between the binder and the dispersant can be determined based on the specific composition of the raw material powder to ensure the surface quality of the film after drying and the strength of the film.
  • the binder content is too high, the fluidity of the suspension is poor, and defects such as shrinkage cavities are likely to occur after drying, and demolding after sintering is difficult; if the binder content is too low, the powder particles of the raw material powder are inter It cannot be effectively bonded, the film formability is poor, the film strength is low, and the removal is difficult.
  • constrained sintering refers to sintering under the premise of maintaining the shape of the diaphragm by the sintering tool to prevent deformation of the film during sintering.
  • the specific sintering system should be determined based on the specific composition of the raw material powder and the pore structure to be achieved.
  • the film forming tool shown in Figs. 2 to 3 can be used in the second step of the above method.
  • the film forming tool includes a fixing portion 210 including a mold frame 211 for molding a film edge, and the mold frame 211 is mounted on a support base 212 to support the mold frame 211 (of course
  • the mold frame 211 can also be fixed by other means;
  • the adjusting portion 220 includes a template 221 for molding the bottom surface of the diaphragm with the mold frame 211, and the template 221 is connected with the template 221 in the mold frame.
  • An adjustment device 222 that moves in the depth direction of 211; and a movable portion 230 that includes a blade 231 that is located on the top surface of the mold frame 211 and that is flush with the top surface of the mold frame 211 during operation.
  • the inner cavity of the mold frame 211 is also a rectangle, and the template 221 is located in the inner cavity and cooperates with the rectangular inner cavity.
  • the adjusting device 222 may specifically include a height adjusting mechanism 222a (for example, a spiral lifting mechanism located below the four corners of the bottom surface of the template 221), which is fixed to the mold frame 211 and respectively connected to the four corners of the bottom surface of the template 221.
  • the bottom of the mold frame 211 is further provided with an inwardly extending support structure 211a, and the height adjustment mechanism 222a is mounted on the support structure 211a.
  • the above film forming tool is used by first adjusting the height adjustment mechanism 222a to adjust the template 221 to a set height and keeping parallel with the top surface of the mold frame 211, and then on the molding surface of the mold frame 211 and the template 221 A layer of Vaseline coating is respectively disposed on the forming surface (the template 221 can be first adjusted to a position where the top surface of the template 221 is 20 ⁇ m lower than the top surface of the mold frame 211, and then the cavity formed by the mold frame 211 and the template 221 is filled with Vaseline, and then The scraper 231 is moved and the cutting edge is ensured to be flush with the top surface of the mold frame 211, so that the Vaseline attached to the top surface of the mold frame 211 is scraped off by the scraper 231, and finally the template 221 is correspondingly according to the design thickness of the diaphragm.
  • the suspension obtained in the step (1) is injected into the molding cavity formed by the mold frame 211 and the template 221, after which the doctor blade 231 is moved and the cutting edge is ensured to be flush with the top surface of the mold frame 211 while moving. Therefore, the suspension attached to the top surface of the mold frame 211 is scraped off by the doctor blade 231, and the suspension is further subjected to the suspension. After drying and drying, the suspension is solidified into a film of uniform thickness, and finally the film is removed from the film forming tool.
  • the above film forming tool can accurately control the thickness of the diaphragm and ensure the uniformity of the thickness of the diaphragm and the flatness of the surface of the diaphragm.
  • a diaphragm sintering tool as shown in Figs. 4 to 5 can be used in the third step of the above method.
  • the diaphragm sintering tool includes an upper mold 310a made of graphite, a lower mold 310b, and a side mold 320, and the upper mold 310a and the lower mold 310b are respectively engaged with the side mold 320 to form a film for use with the inside.
  • the mold 100 is a matching cavity; wherein the side mold 320 is specifically a frame cover 321, the upper mold 310a and the lower mold 310b are respectively a clamping plate 310, and the frame cover 321 is mounted with a plurality of laminated plates 310, any adjacent ones.
  • the cavity is formed between the two layers of the clamping plates 310.
  • a matching gap for dissipating the sintered volatiles is reserved in the joint portion of each of the clamping plates 310 and the frame cover 321 .
  • the side portion of the frame cover 321 is a rectangular structure composed of a front plate 321a, a rear plate 321b, a left plate 321c, and a right plate 321d.
  • the above-mentioned diaphragm sintering tool is used by first providing an aluminum oxide coating on the inner wall of the frame cover 321 and the two side walls of each of the clamping plates 310 (which can be firstly mixed with ethanol, PVB and alumina powder to form a viscous layer).
  • the alumina powder suspension is then applied to the inner wall of the frame 321 and the side walls of each of the plates 310 to form an aluminum oxide coating, and then the bottom plate 310 is laid on the bottom of the frame 321
  • a diaphragm 100' is placed above the splint 310, and a second ply 310 is laid over the diaphragm 100', and all the splints 310 can be laid down in turn, and the adjacent two splints 310 are secured.
  • a diaphragm 100' is sandwiched between each, and the assembled diaphragm sintering tool is then sent to the sintering furnace for sintering.
  • the flexible porous metal foil 100 is taken out from the diaphragm sintering tool. Therefore, the above-described diaphragm sintering tooling realizes the simultaneous restraint sintering of the plurality of diaphragms 100', thereby improving the production efficiency while ensuring the sintering consistency.
  • Another flexible porous metal foil of the present invention is a sheet made of a porous metal material having a solid solution alloy as a matrix phase, the sheet having a thickness H of 5 to 200 ⁇ m, an average pore diameter of 0.05 to 100 ⁇ m, and a porosity of 15 to 70. %.
  • the shape of the sheet may be rectangular or may be other planar shapes such as a circle or an ellipse.
  • the steps of the second flexible porous metal foil preparation method include: (1) preparing a carrier which is a foil composed of an element or elements of a metal porous material constituting the flexible porous metal foil; 2) arranging the raw material powder made of the remaining elements constituting the porous metal material into a viscous suspension with a dispersing agent and a binder; (3) attaching the suspension to the surface of the carrier and drying it Forming a film attached to the surface of the carrier; (4) loading the carrier of the attached film into a sintering tool that conforms to its outer shape and then performing constrained sintering, and then taking out from the sintering tool after sintering to obtain a flexible porous metal foil.
  • the dispersing agent may be an organic solvent such as ethanol, methyl ethyl ketone or toluene which has a small surface tension and is volatilized and easily dried;
  • the binder may be PVB, PVA, PVC, polyvinyl alcohol or polyethylene glycol (low molecular wax). ), paraffin, fatty acids, aliphatic amides and esters.
  • the ratio between the raw material powder and the dispersing agent can be determined based on the specific composition of the raw material powder to ensure the surface quality of the film after drying.
  • the content of the raw material powder is too high, the surface quality of the film after drying is not good, and cracking or the like is likely to occur; if the content of the raw material powder is too low, the suspension is injected later.
  • Film forming tooling The number of cavity times extends the preparation cycle of the flexible porous metal foil.
  • the ratio between the binder and the dispersant can be determined based on the specific composition of the raw material powder to ensure the surface quality of the film after drying and the strength of the film.
  • the binder content is too high, the fluidity of the suspension is poor, and defects such as shrinkage cavities are likely to occur after drying, and demolding after sintering is difficult; if the binder content is too low, the powder particles of the raw material powder are inter It cannot be effectively bonded, the film formability is poor, the film strength is low, and the removal is difficult.
  • constrained sintering refers to sintering under the premise of maintaining the shape of the diaphragm by the sintering tool to prevent deformation of the film during sintering.
  • the specific sintering system should be determined based on the specific composition of the raw material powder and the pore structure to be achieved.
  • step 3 of the above method it may be attached to the surface of the carrier by spraying or the like.
  • the specific method is: first adjust the template 221 to a set height by adjusting each height adjusting mechanism 222a and keep parallel with the top surface of the mold frame 211, and then place the carrier on the template 221, and obtain the step (2).
  • the suspension is injected into the molding cavity between the mold frame 211 and the carrier, after which the doctor blade 231 is moved and the cutting edge is ensured to be flush with the top surface of the mold frame 211, so that the blade 231 is attached to the mold frame 211.
  • the suspension above the top surface is scraped off, and then the suspension is dried. After drying, the suspension is solidified into a film having a uniform thickness, and finally the carrier attached to the film is removed from the film forming tool.
  • the diaphragm sintering tool shown in Figs. 4 to 5 is also used in the step 4 of the above method.
  • the flexible porous metal foil 100 is a rectangular sheet composed of a Ni-Cu solid solution alloy porous material having a thickness H of 10 ⁇ m, a length of 160 mm, a width of 125 mm, an average pore diameter of 18.4 ⁇ m, and a porosity of 58.37%.
  • the flexible porous metal foil 100 is prepared by first uniformly mixing Ni powder and Cu powder to form a raw material powder, wherein the quality of the Cu powder is 30% of the mass of the raw material powder, and then using ethanol as a dispersing agent and PVB as a binder. PVB is added to ethanol in a ratio of PVB to ethanol of 2.5:100 to prepare a PVB solution.
  • the raw material powder is added to the PVB solution in a ratio of 25 g of the raw material powder per 100 ml of ethanol, and the raw material powder is stirred by stirring. Fully dispersed uniformly to obtain a viscous suspension; secondly, the suspension is injected into a molding cavity of the film forming tool shown in FIGS. 2 to 3 and dried to form a homogeneous film. 100'; Then, the film 100' is loaded into the film sintering tool shown in Figures 4 to 5.
  • the specific sintering process is to gradually increase the sintering temperature to 550 ° C and keep it for 90 minutes (the main role of this process) It is to remove binder, petroleum jelly, etc., and then directly raise the temperature to 1130 ° C at a heating rate of 6 ° C / min and keep it for 180 min (rapid heating to 1170 ° C exceeds the melting point of Cu, can use the fluidity after Cu melting to drive Ni powder , fully combine Ni powder to ensure flexible porous gold And the integrity of the flexible foil after sintering 100), removed from the sintering and after sintering the porous metal foil 100 obtained within a flexible tooling.
  • the flexible porous metal foil 100 is a rectangular sheet composed of a Ni-Cu solid solution alloy porous material having a thickness H of 100 ⁇ m, a length of 200 mm, a width of 130 mm, an average pore diameter of 30 ⁇ m, and a porosity of 61.68%.
  • Flexible porous metal The preparation method of the foil 100 is as follows: First, the Ni powder and the Cu powder are uniformly mixed to form a raw material powder, wherein the quality of the Cu powder is 60% of the mass of the raw material powder, and then the ethanol is used as a dispersing agent, the PVB is used as a binder, and the PVB is used. The ratio of ethanol to mass ratio is 4:100. PVB is added to ethanol to prepare PVB solution.
  • the raw material powder is added to the PVB solution at a ratio of 40 g of raw material powder per 100 ml of ethanol, and the raw material powder is sufficiently dispersed by stirring.
  • Obtaining a viscous suspension secondly, injecting the suspension into a molding cavity of the film forming tool shown in FIGS. 2 to 3 and drying it to form a homogeneous film 100';
  • the diaphragm 100' is loaded into the diaphragm sintering tool shown in Figures 4 to 5.
  • the specific sintering process is to gradually increase the sintering temperature to 550 ° C and keep it for 90 min, then at a heating rate of 8 ° C / min. The temperature was directly raised to 1180 ° C and held for 180 min, and after sintering, it was taken out from the sintering tool and the flexible porous metal foil 100 was obtained.
  • the flexible porous metal foil is a rectangular sheet composed of a porous material of a Ni-Cu solid solution alloy having a thickness H of 60 ⁇ m, a length of 150 mm, a width of 100 mm, an average pore diameter of 54.1 ⁇ m, and a porosity of 40.16%.
  • the preparation method of the flexible porous metal foil is: firstly, surface treatment is performed on a Cu foil (carrier) having a purity of 99% or more and a thickness of 10 ⁇ m: impurities such as oil stains on the surface of the Cu foil are washed with a NaOH solution having a mass concentration of 10%, and washed with water.
  • the Cu foil is acid-washed in a 10% mass concentration of H 2 SO 4 solution for two minutes to remove oxides and rust stains on the surface of the Cu foil; and the alkali-washed and acid-washed Cu foil is immersed in the acetone solution.
  • the Cu foil is pressed against the surface of the template 221 of the film forming tool, the thickness of the film is controlled by adjusting the height of the top surface of the template 221, and then the suspension is injected into the molding cavity of the film forming tool to ensure that The mass ratio of Ni to Cu is controlled at 1:1.
  • the membrane drying loaded tooling shown in FIG. 4 to 5 sintered in the same sintering process as in Example 1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Powder Metallurgy (AREA)

Abstract

一种柔性多孔金属箔(100),由固溶体合金、面心立方结构的金属单质或体心立方结构的金属单质为基体相的金属多孔材料构成的薄片,该薄片的厚度为5~200μm、平均孔径为0.05~100μm,孔隙率为15~70%,且由一个均质的膜片烧结而成。一种该柔性多孔金属箔的制备方法,包括:(1)将构成其金属多孔材料的原料粉用分散剂和粘结剂配置成粘稠状的悬浊液;(2)将该悬浊液注入制膜工装的成型模腔内并使之烘干形成一均质的膜片;(3)将所述膜片装入与该膜片外形吻合的烧结工装内然后进行烧结,烧结后从工装内取出并得到柔性多孔金属箔。使用上述方法制备的柔性多孔金属箔应用领域广泛,在柔性和化学稳定性方面性能理想。

Description

柔性多孔金属箔及其制备方法 技术领域
本发明涉及烧结金属多孔材料及其制备,具体涉及一种柔性多孔金属箔及其制备方法。
背景技术
烧结金属多孔材料的主要用作过滤材料。具体应用中需将烧结金属多孔材料制成一定形状和构造的过滤元件。现有的烧结金属多孔材料过滤元件基本上都为管型或板型结构。它们的制备原理类似,即大致上为:先通过专门的成型模具将构成该金属多孔材料的原料粉压制成管型或板型的压坯(一般采用等静压成型技术),然后再对压坯进行烧结,烧结后得到产品。
上述管型或板型的烧结金属多孔材料过滤元件由于受其形状、构造以及附带而来的对过滤装置及系统的相应要求的影响,使用范围受限。但本申请的发明人却注意到,由于烧结金属多孔材料过滤元件在化学侵蚀的抵抗性、材料不可逆污染抵抗性、机械强度等方面上相比目前的过滤元件(例如有机过滤膜)具有更强的优势,因此,开发出在多个领域中能够相应替代原有过滤元件的新型烧结金属多孔材料过滤元件很有意义。
在上述背景基础上,申请人开创性提出开发一种柔性多孔金属箔。即,由金属多孔材料所构成可比较自由的弯曲甚至可折迭的薄片。
论文“Ti-Al金属间化合物多孔材料的研究进展,江垚等,中国材料进展,第29卷,第3期,2010年3月”的第2.3中节描述了一种Ti-Al金属间化合物纸型膜的制备工艺。由于上述纸型膜由Ti-Al金属间化合物构成,因此是一种刚性材料。
发明内容
本发明所要解决的技术问题是分别提供两种柔性多孔金属箔以及该柔性多孔金属箔的制备方法。本发明其次要提供可用于上述柔性多孔金属箔制备方法的制膜工装和膜片烧结工装,使柔性多孔金属箔更容易制造,且产品质量也可得到更好的保证。
当然,就上述制膜工装和膜片烧结工装而言,其所针对的“膜”并非只能是本发明的柔性多孔金属箔制备方法中所得到的“膜”。比如,所述的膜片烧结工装就可以用来对背景技术中提及的“纸型膜”进行烧结。
本发明所要提供的第一种柔性多孔金属箔,是由固溶体合金、面心立方结构的金属单质或体心立方结构的金属单质为基体相的金属多孔材料所构成的薄片,该薄片的厚度为5~200μm、平均孔径为0.05~100μm,孔隙率为15~70%,且由一个均质的膜片烧结而成。具体而言,该柔性多孔金属箔首先在材料成分上是由固溶体合金、面心立方结构的金属单质或体心立方结构的金属单质为基体相的金属构成,从而保证该柔性多孔金属箔的柔性以及通过本 发明的下述相应制备方法能够被制备出。其次,构成该柔性多孔金属箔的金属材料应当是多孔材料,其孔结构表征为平均孔径为0.05~100μm,孔隙率为15~70%,这样,柔性多孔金属箔可满足广泛的过滤分离要求。另外,柔性多孔金属箔(薄片)的厚度为5~200μm,一般为10~60μm。更重要的是,该柔性多孔金属箔由一个均质的膜片烧结而成。所谓“均质”表示膜片的成分大致上均匀,即本质上区别于在背景技术“Ti-Al金属间化合物多孔材料的研究进展”中提及的经过了覆膜处理后、反应合成前的铝箔。覆膜处理后、反应合成前的铝箔可理解为一种非对称形态的薄片。而“非对称”的含义在烧结金属多孔材料领域是通用的。本发明中的“均质”即是相对于“非对称”所提出区别概念。由于本发明的柔性多孔金属箔由一个均质的膜片烧结而成,因此该箔片的孔径分布更均匀、箔片平整度等更好。
所述薄片可以由无限固溶体合金为基体相的金属多孔材料所构成。例如,所述薄片由Ag-Au固溶体、Ti-Zr固溶体、Mg-Cd固溶体或Fe-Cr固溶体为基体相的金属多孔材料所构成。又例如,所述薄片优选由Ni-Cu固溶体金属多孔材料所构成,这时可要求该多孔材料的众多孔隙中有75%以上孔径差在小于70μm的范围内。另外,Ni-Cu固溶体金属多孔材料在柔性(可多次折迭)和化学稳定性等方面都比较理想,且在烧结形成的多孔材料的渗透性上也十分优异,因此应用范围相对比较广泛。
所述薄片还可以由有限固溶体合金为基体相的金属多孔材料所构成。例如,所述薄片由Cu-Al固溶体、Cu-Zn固溶体、Fe-C-Cr固溶体为基体相的金属多孔材料所构成。所述薄片也可以由面心立方结构的Al、Ni、Cu或Pb为基体相的金属多孔材料所构成。所述薄片还可以由体心立方结构的Cr、W、V或Mo为基体相的金属多孔材料所构成。
本发明的上述柔性多孔金属箔具有广阔的应用空间,例如:在工业上,可用于纺织和制革工业中的余热回收、药剂回收、污染控制,食品加工工业中的净化、浓缩、消毒、副产品回收,医药及保健行业中的人造气管、控制释放、血液过滤、水净化,汽车工业中的滤清器;在民用上可作为口罩的粉尘过滤材料以及带静电除尘功能的窗帘材料。
本发明上述柔性多孔金属箔的制备方法的步骤包括:(1)将构成其金属多孔材料的原料粉用分散剂和粘结剂配置成粘稠状的悬浊液;(2)将所述悬浊液注入制膜工装的成型模腔内并使之烘干形成一均质的膜片;(3)将所述膜片装入与该膜片外形吻合的烧结工装内然后进行约束烧结,烧结后从烧结工装内取出并得到柔性多孔金属箔。
上述方法中,如柔性多孔金属箔由Ni-Cu固溶体的金属多孔材料构成,为了制备高性能的Ni-Cu柔性多孔金属箔,则,步骤(1)中,先将Ni粉和Cu粉均匀混合形成原料粉,其中Cu粉质量为原料粉质量的30~60%,然后以乙醇为分散剂、以PVB为粘结剂,按PVB与乙醇的质量比为(0.5~5):100的比例将PVB加入乙醇中制成PVB溶液,此后再按每100ml乙醇中 加入原料粉20~50g的比例将原料粉加入PVB溶液中,通过搅拌使原料粉充分分散均匀,得到粘稠状的悬浊液;步骤(3)中,烧结工艺包括将烧结温度逐渐升至520~580℃并保温60~180min的第一烧结阶段以及在第一阶段后以≥5℃/min的升温速率直接升温至1130~1180℃并保温120~300min的第二烧结阶段。
可用于上述方法的制膜工装,包括:固定部,所述固定部包括用于成型膜片边缘的模框;调节部,所述调节部包括与模框配合用于成型膜片底面的模板,所述模板连接有可使该模板在模框的深度方向上移动的调节装置;活动部,所述活动部包括位于模框顶面并且在工作过程中刃口与模框顶面保持齐平的刮刀。该制膜工装能够比较准确的控制膜片的厚度,并且保证膜片厚度的均匀性以及膜片表面的平整度。
作为所述调节装置的一种具体实施方式,调节装置包括与模框相对固定并分别与模板底面四角连接且独立工作的高度调节机构。这样可分别对模板的四角高度进行调节,保证模板整体与模框顶面的平行度,膜片的厚度均匀更高。
另外,所述模框的成型面以及模板的成型面上还进一步的设有在580℃下可挥发的润滑剂涂层。其中,润滑剂涂层可具体采用凡士林涂层。这样,就能够保证成型的膜片顺利从制膜工装上取出,防止粘模,同时由于润滑剂涂层的可挥发性,对后续制备的柔性多孔金属箔的成分不造成影响,且反而有利于提高柔性多孔金属箔的孔隙率。
可用于上述方法的膜片烧结工装,包括由耐高温材料制成的上模、下模以及边模,所述上模、下模分别与边模配合从而形成用于与内部的膜片相吻合的模腔;所述模腔连接有用于散发烧结挥发物的排气结构,所述排气结构为在上模与边模的配合部位预留的配合间隙以及/或者在下模与边模的配合部位预留的配合间隙以及/或者在上模、下模以及边模中的至少一个上所设置的气孔。通过该烧结工装能够对膜片进行约束烧结,防止膜片的烧结中变形。
作为上模、下模以及边模的一种优选的具体结构,所述边模为一框罩,上模和下模分别为夹板,所述框罩内安装有至少三层夹板,任意相邻的两层夹板之间形成所述的模腔。这样就能够实现多个膜片同时烧结,既提高生产效率,同时也可保证烧结一致性。
另外,所述上模、下模以及边模上用于与膜片相接触的表面还进一步设有用氧化铝涂层。氧化铝可以在高温烧结过程中阻隔烧结工装自身材料与膜片材料之间的元素相互扩散。
所述上模、下模以及边模中至少一个可由石墨制成。石墨有良好的耐高温性能,且由于石墨表面光滑,也可便于烧结后产品的脱模。
本发明所提供第二种的柔性多孔金属箔,是由固溶体合金为基体相的金属多孔材料所构成的薄片,该薄片的厚度为5~200μm、平均孔径为0.05~100μm,孔隙率为15~70%。具体而言,该柔性多孔金属箔在材料成分上是由固溶体合金为基体相的金属构成,从而保证该柔 性多孔金属箔的柔性。其次,构成该柔性多孔金属箔的金属材料是多孔材料,其孔结构表征为平均孔径为0.05~100μm,孔隙率为15~70%,这样,柔性多孔金属箔可满足广泛的过滤分离要求。另外,柔性多孔金属箔(薄片)的厚度为5~200μm,一般为10~60μm。
所述薄片可以由无限固溶体合金为基体相的金属多孔材料所构成。例如,所述薄片由Ag-Au固溶体、Ti-Zr固溶体、Mg-Cd固溶体或Fe-Cr固溶体为基体相的金属多孔材料所构成。又例如,所述薄片优选由Ni-Cu固溶体金属多孔材料所构成,Ni-Cu固溶体金属多孔材料在柔性(可多次折迭)和化学稳定性等方面都比较理想,因此应用范围相对比较广泛。
所述薄片还可以由有限固溶体合金为基体相的金属多孔材料所构成。例如,所述薄片由Cu-Al固溶体、Cu-Zn固溶体、Fe-C-Cr固溶体为基体相的金属多孔材料所构成。
本发明的上述第二种柔性多孔金属箔在工业上可用于纺织和制革工业中的余热回收、药剂回收、污染控制,食品加工工业中的净化、浓缩、消毒、副产品回收,医药及保健行业中的人造气管、控制释放、血液过滤、水净化,汽车工业中的滤清器;在民用上可作为口罩的粉尘过滤材料以及带静电除尘功能的窗帘材料。
本发明第二种柔性多孔金属箔的制备方法,步骤包括:(1)准备载体,载体由构成柔性多孔金属箔的金属多孔材料中的某一元素或几种元素所构成的箔片;(2)将构成金属多孔材料的其余元素制成的原料粉用分散剂和粘结剂配置成粘稠状的悬浊液;(3)将所述悬浊液附着于载体表面并使之烘干形成附着于载体表面上的膜片;(4)将附着膜片的载体装入与其外形吻合的烧结工装内然后进行约束烧结,烧结后从烧结工装内取出并得到柔性多孔金属箔。
可用于上述第二种柔性多孔金属箔的制备方法的制膜工装,其包括:固定部,所述固定部包括用于成型膜片边缘的模框;调节部,所述调节部包括与模框配合用于放置载体的模板,所述模板连接有可使该模板在模框的深度方向上移动的调节装置;活动部,所述活动部包括位于模框顶面并且在工作过程中刃口与模框顶面保持齐平的刮刀。该制膜工装能够比较准确的控制膜片的厚度,并且保证膜片厚度的均匀性以及膜片表面的平整度。
作为所述调节装置的一种具体实施方式,调节装置包括与模框相对固定并分别与模板底面四角连接且独立工作的高度调节机构。这样可分别对模板的四角高度进行调节,保证模板整体与模框顶面的平行度,膜片的厚度均匀更高。
可用于上述第二种柔性多孔金属箔的制备方法的烧结工装,包括由耐高温材料制成的上模、下模以及边模,所述上模、下模分别与边模配合从而形成用于附着膜片的载体相吻合的模腔;所述模腔连接有用于散发烧结挥发物的排气结构,所述排气结构为在上模与边模的配合部位预留的配合间隙以及/或者在下模与边模的配合部位预留的配合间隙以及/或者在上模、下模以及边模中的至少一个上所设置的气孔。通过该烧结工装能够对附着膜片的载体进 行约束烧结,防止其在烧结中变形。
作为上模、下模以及边模的一种优选的具体结构,所述边模为一框罩,上模和下模分别为夹板,所述框罩内安装有至少三层夹板,任意相邻的两层夹板之间形成所述的模腔。这样就能够实现多个附着膜片载体的同时烧结,既提高生产效率,同时也可保证烧结一致性。
另外,上模、下模以及边模上用于与膜片相接触的表面还进一步设有用氧化铝涂层。氧化铝可以在高温烧结过程中阻隔烧结工装自身材料与载体及膜片材料之间的元素相互扩散。
所述上模、下模以及边模中至少一个由石墨制成。石墨有良好的耐高温性能,且由于石墨表面光滑,也可便于烧结后产品的脱模。
需要指出,上述第二种柔性多孔金属箔的制备方法所使用的制膜工装以及烧结工装与上述第一种柔性多孔金属箔的制备方法所使用的制膜工装以及烧结工装结构上可以完全相同。区别在于,第二种方法的制膜工装使用时需在模板上放置载体,而第一种方法的制膜工装使用时不在模板上放置载体;第二种方法的烧结工装其模腔内放置的是附着膜片的载体(是非对称结构),而第一种方法的烧结工装其模腔内放置的是均质的膜片。
下面结合附图和具体实施方式对本发明做进一步说明。本发明附加的方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
图1为本发明具体实施方式中的一种矩形柔性多孔金属箔的外形示意图。
图2为制备图1所示的柔性多孔金属箔的制膜工装的立体结构示意图。
图3为图2中I-I向剖视图。
图4为制备图1所示的柔性多孔金属箔的膜片烧结工装的结构示意图。
图5为图4中II-II向剖视图。
具体实施方式
如图1所示的一种柔性多孔金属箔100,是由固溶体合金、面心立方结构的金属单质或体心立方结构的金属单质为基体相的金属多孔材料所构成的薄片,该薄片的厚度H为5~200μm、平均孔径为0.05~100μm,孔隙率为15~70%,且由一个均质的膜片烧结而成。其中,薄片的形状可以是图1所示的矩形,也可以是圆形、椭圆形等其他平面形状。
该柔性多孔金属箔100的制备方法的步骤包括:(1)将构成其金属多孔材料的原料粉用分散剂和粘结剂配置成粘稠状的悬浊液;(2)将所述悬浊液注入制膜工装的成型模腔内并使之烘干形成一均质的膜片;(3)将所述膜片装入与该膜片外形吻合的烧结工装内然后进行约束烧结,烧结后从烧结工装内取出并得到柔性多孔金属箔100。
上述方法中,分散剂可以使用乙醇、甲乙酮、甲苯等表面张力小且挥发快易干燥的有机 溶剂;粘结剂可以使用PVB、PVA、PVC、聚乙烯醇、聚乙二醇(低分子蜡类)、石蜡、脂肪酸类、脂肪族酰胺类和酯类等。
上述方法中,原料粉与分散剂之间的比例可根据原料粉的具体成分以保证烘干后膜片的表面质量为原则来确定。一般而言,若原料粉的含量过高,则烘干后膜片的表面质量不好,容易出现龟裂等现象;若原料粉的含量过低,则会增加后续将所述悬浊液注入制膜工装成型模腔的次数,延长柔性多孔金属箔的制备周期。
上述方法中,粘结剂与分散剂之间的比例可根据原料粉的具体成分以保证烘干后膜片的表面质量和膜片强度为原则来确定。一般而言,若粘结剂含量过高,则悬浊液流动性差,烘干后容易有缩孔等缺陷,且烧结后脱模困难;若粘结剂含量过低,原料粉的粉末颗粒间不能有效粘接,膜片成型性差、膜片强度低且取出困难。
上述方法中,约束烧结是指通过烧结工装保持膜片形状的前提下烧结,防止膜片在烧结过程中发生变形。具体的烧结制度应根据原料粉的具体成分以及所要达到的孔结构来确定。
上述方法的步骤2中可使用如图2~3所示的制膜工装。具体而言,该制膜工装包括固定部210,所述固定部210包括用于成型膜片边缘的模框211,该模框211安装在一支撑底座212上以对模框211进行支撑(当然模框211也可由其他方式进行固定);调节部220,所述调节部220包括与模框211配合用于成型膜片底面的模板221,所述模板221连接有可使该模板221在模框211的深度方向上移动的调节装置222;以及活动部230,所述活动部230包括位于模框211顶面并且在工作过程中刃口与模框211顶面保持齐平的刮刀231。当柔性多孔金属箔100的形状是图1所示的矩形时,模框211的内腔也是一矩形,模板221位于该内腔内并与矩形内腔配合。另外,调节装置222具体可包括与模框211相对固定并分别与模板221底面四角连接且独立工作的高度调节机构222a(例如分别位于模板221底面四角下方螺旋升降机构)。为便于高度调节机构222a的安装,模框211的底部还设有向内延伸的支撑结构211a,所述高度调节机构222a安装在支撑结构211a上。
上述制膜工装的使用方法是:先通过调节各个高度调节机构222a将模板221调整到设定的高度上并与模框211顶面保持平行,然后再在模框211的成型面以及模板221的成型面上分别设置一层凡士林涂层(可以先将模板221调节到模板221顶面低于模框211顶面20μm的位置,然后向模框211与模板221构成的模腔中填充凡士林,然后移动刮刀231并在移动时保证其刃口与模框211顶面齐平,从而用刮刀231将附着在模框211顶面以上的凡士林刮离,最后再根据膜片的设计厚度将模板221相应下降),将步骤(1)所得到的悬浊液注入到由模框211与模板221构成的成型模腔中,此后移动刮刀231并在移动时保证其刃口与模框211顶面齐平,从而用刮刀231将附着在模框211顶面以上的悬浊液刮离,再对悬浊液进行 烘干,烘干后悬浊液凝固成厚度均匀的膜片,最后将膜片从制膜工装上取下即可。上述制膜工装能够准确的控制膜片的厚度,并且保证膜片厚度的均匀性以及膜片表面的平整度。
上述方法的步骤3中可使用如图4~5所示的膜片烧结工装。具体而言,该膜片烧结工装包括由石墨制成的上模310a、下模310b以及边模320,所述上模310a、下模310b分别与边模320配合从而形成用于与内部的膜片100’相吻合的模腔;其中,边模320具体为一框罩321,上模310a和下模310b分别为夹板310,所述框罩321内安装有多层夹板310,任意相邻的两层夹板310之间形成所述的模腔;另外,各夹板310与框罩321的配合部位还预留有用于散发烧结挥发物的配合间隙。当柔性多孔金属箔100的形状是图1所示的矩形时,所述框罩321的侧部是由前板321a、后板321b、左板321c以及右板321d所构成的矩形结构。
上述膜片烧结工装的使用方法是:先在框罩321的内壁以及各夹板310的两侧壁上设置一层氧化铝涂层(可先用乙醇、PVB与氧化铝粉末混合配置成粘稠的氧化铝粉悬浊液,然后把化铝粉悬浊液涂覆到框罩321的内壁以及各夹板310的两侧壁上形成氧化铝涂层),然后在框罩321的底部铺设底层夹板310,在该夹板310上方放置一膜片100’,再在该膜片100’的上方铺设第二层夹板310,依次类推可铺设好全部的夹板310,并且保证在任意相邻的两层夹板310之间各夹有一块膜片100’,此后将组装好的膜片烧结工装送入烧结炉内进行烧结,烧结后从膜片烧结工装中取出柔性多孔金属箔100。因此,上述膜片烧结工装实现了多个膜片100’同时约束烧结,既提高生产效率,同时也可保证烧结一致性。
本发明的另一种柔性多孔金属箔,是由固溶体合金为基体相的金属多孔材料所构成的薄片,该薄片的厚度H为5~200μm、平均孔径为0.05~100μm,孔隙率为15~70%。其中,薄片的形状可以矩形,也可以是圆形、椭圆形等其他平面形状。
第二种柔性多孔金属箔的制备方法的步骤包括:(1)准备载体,所述载体是由构成柔性多孔金属箔的金属多孔材料中的某一元素或几种元素所构成的箔片;(2)将构成金属多孔材料的其余元素制成的原料粉用分散剂和粘结剂配置成粘稠状的悬浊液;(3)将所述悬浊液附着于载体表面并使之烘干形成附着于载体表面上的膜片;(4)将附着膜片的载体装入与其外形吻合的烧结工装内然后进行约束烧结,烧结后从烧结工装内取出并得到柔性多孔金属箔。
上述方法中,分散剂可以使用乙醇、甲乙酮、甲苯等表面张力小且挥发快易干燥的有机溶剂;粘结剂可以使用PVB、PVA、PVC、聚乙烯醇、聚乙二醇(低分子蜡类)、石蜡、脂肪酸类、脂肪族酰胺类和酯类等。
上述方法中,原料粉与分散剂之间的比例可根据原料粉的具体成分以保证烘干后膜片的表面质量为原则来确定。一般而言,若原料粉的含量过高,则烘干后膜片的表面质量不好,容易出现龟裂等现象;若原料粉的含量过低,则会增加后续将所述悬浊液注入制膜工装成型 模腔的次数,延长柔性多孔金属箔的制备周期。
上述方法中,粘结剂与分散剂之间的比例可根据原料粉的具体成分以保证烘干后膜片的表面质量和膜片强度为原则来确定。一般而言,若粘结剂含量过高,则悬浊液流动性差,烘干后容易有缩孔等缺陷,且烧结后脱模困难;若粘结剂含量过低,原料粉的粉末颗粒间不能有效粘接,膜片成型性差、膜片强度低且取出困难。
上述方法中,约束烧结是指通过烧结工装保持膜片形状的前提下烧结,防止膜片在烧结过程中发生变形。具体的烧结制度应根据原料粉的具体成分以及所要达到的孔结构来确定。
上述方法的步骤3中可以采用喷涂等方式附着于载体表面,但建议使用上述图2~3所示的制膜工装将所述悬浊液附着于载体表面。具体方法是:先通过调节各个高度调节机构222a将模板221调整到设定的高度上并与模框211顶面保持平行,然后再在模板221上放置载体,并将步骤(2)所得到的悬浊液注入到由模框211与载体之间的成型模腔中,此后移动刮刀231并在移动时保证其刃口与模框211顶面齐平,从而用刮刀231将附着在模框211顶面以上的悬浊液刮离,再对悬浊液进行烘干,烘干后悬浊液凝固成厚度均匀的膜片,最后将附着膜片的载体从制膜工装上取下即可。
上述方法的步骤4中同样使用如图4~5所示的膜片烧结工装。
实施例1
柔性多孔金属箔100是由Ni-Cu固溶体合金多孔材料构成的矩形薄片,该薄片厚度H为10μm,长度为160mm,宽度为125mm,平均孔径为18.4μm,孔隙率为58.37%。该柔性多孔金属箔100的制备方法是:首先,将Ni粉和Cu粉均匀混合形成原料粉,其中Cu粉质量为原料粉质量的30%,然后以乙醇为分散剂、以PVB为粘结剂,按PVB与乙醇的质量比为2.5:100的比例将PVB加入乙醇中制成PVB溶液,此后再按每100ml乙醇中加入原料粉25g的比例将原料粉加入PVB溶液中,通过搅拌使原料粉充分分散均匀,得到粘稠状的悬浊液;其次,将所述悬浊液注入如图2~3所示的制膜工装的成型模腔内并使之烘干形成一均质的膜片100’;然后,将所述膜片100’装入如图4~5所示的膜片烧结工装,具体的烧结工艺是先将烧结温度逐渐升至550℃并保温90min(此过程的主要作用在于脱除粘结剂、凡士林等),然后以6℃/min的升温速率直接升温至1130℃并保温180min(快速升温至1170℃超过Cu的熔点,可利用Cu熔融后的流动性带动Ni粉,使Ni粉充分结合,保证柔性多孔金属箔100烧结后的完整性及柔性),烧结后从烧结工装内取出并得到柔性多孔金属箔100。
实施例2
柔性多孔金属箔100是由Ni-Cu固溶体合金多孔材料构成的矩形薄片,该薄片厚度H为100μm,长度为200mm,宽度为130mm,平均孔径为30μm,孔隙率为61.68%。该柔性多孔金属 箔100的制备方法是:首先,将Ni粉和Cu粉均匀混合形成原料粉,其中Cu粉质量为原料粉质量的60%,然后以乙醇为分散剂、以PVB为粘结剂,按PVB与乙醇的质量比为4:100的比例将PVB加入乙醇中制成PVB溶液,此后再按每100ml乙醇中加入原料粉40g的比例将原料粉加入PVB溶液中,通过搅拌使原料粉充分分散均匀,得到粘稠状的悬浊液;其次,将所述悬浊液注入如图2~3所示的制膜工装的成型模腔内并使之烘干形成一均质的膜片100’;然后,将所述膜片100’装入如图4~5所示的膜片烧结工装,具体的烧结工艺是先将烧结温度逐渐升至550℃并保温90min,然后以8℃/min的升温速率直接升温至1180℃并保温180min,烧结后从烧结工装内取出并得到柔性多孔金属箔100。
实施例3
柔性多孔金属箔是由Ni-Cu固溶体合金多孔材料构成的矩形薄片,该薄片厚度H为60μm,长度为150mm,宽度为100mm,平均孔径为54.1μm,孔隙率为40.16%。该柔性多孔金属箔制备方法是:首先,对纯度为99%以上,厚度为10μm的Cu箔(载体)进行表面处理:采用质量浓度为10%的NaOH溶液清洗Cu箔表面的油污等杂质,水洗后再将Cu箔放入质量浓度10%的H2SO4溶液中酸洗两分钟,除去Cu箔表面的氧化物和锈渍;再将经碱洗、酸洗后的Cu箔浸入丙酮溶液中用超声波清洗8min,最后放入真空烘箱中进行烘干,并记录Cu箔质量;然后,以单质Ni粉为原料,以乙醇为分散剂、以PVB为粘结剂,按PVB与乙醇的质量比为4:100的比例将PVB加入乙醇中制成PVB溶液,此后再按每100ml乙醇中加入Ni粉25g的比例加入PVB溶液中,通过搅拌使Ni粉充分分散均匀,得到粘稠状的悬浊液;此后,将Cu箔紧贴制膜工装的模板221表面,通过调整模板221顶面的高度控制覆膜的厚度,然后将所述悬浊液注入制膜工装的成型模腔内,确保将Ni与Cu质量比控制在1:1左右,然后进行烘干并将烘干后的坯件装入如图4~5所示的膜片烧结工装,按实施例1相同的烧结工艺进行烧结。
实施例1~3的柔性多孔金属箔性能对比结果如图1所示。
图1:柔性多孔金属箔性能对比结果
Figure PCTCN2015093483-appb-000001

Claims (10)

  1. 柔性多孔金属箔,其特征在于:是由固溶体合金、面心立方结构的金属单质或体心立方结构的金属单质为基体相的金属多孔材料所构成的薄片,该薄片的厚度为5~200μm、平均孔径为0.05~100μm,孔隙率为15~70%,且由一个均质的膜片烧结而成。
  2. 如权利要求1所述的柔性多孔金属箔,其特征在于:所述薄片由无限固溶体合金为基体相的金属多孔材料所构成。
  3. 如权利要求2所述的柔性多孔金属箔,其特征在于:所述薄片由Ag-Au固溶体、Ti-Zr固溶体、Mg-Cd固溶体或Fe-Cr固溶体为基体相的金属多孔材料所构成。
  4. 如权利要求2所述的柔性多孔金属箔,其特征在于:所述薄片由Ni-Cu固溶体金属多孔材料所构成,该多孔材料的孔隙中有75%以上孔径差在小于70μm的范围内。
  5. 如权利要求1所述的柔性多孔金属箔,其特征在于:所述薄片由有限固溶体合金为基体相的金属多孔材料所构成。
  6. 如权利要求5所述的柔性多孔金属箔,其特征在于:所述薄片由Cu-Al固溶体、Cu-Zn固溶体、Fe-C-Cr固溶体为基体相的金属多孔材料所构成。
  7. 如权利要求1所述的柔性多孔金属箔,其特征在于:所述薄片由面心立方结构的Al、Ni、Cu或Pb为基体相的金属多孔材料所构成。
  8. 如权利要求1所述的柔性多孔金属箔,其特征在于:所述薄片由体心立方结构的Cr、W、V或Mo为基体相的金属多孔材料所构成。
  9. 如权利要求1所述的柔性多孔金属箔的制备方法,其步骤包括:
    (1)将构成其金属多孔材料的原料粉用分散剂和粘结剂配置成粘稠状的悬浊液;
    (2)将所述悬浊液注入制膜工装的成型模腔内并使之烘干形成一均质的膜片;
    (3)将所述膜片装入与该膜片外形吻合的烧结工装内然后进行约束烧结,烧结后从烧结工装内取出并得到柔性多孔金属箔。
  10. 如权利要求9所述的方法,其特征在于:所述柔性多孔金属箔由Ni-Cu固溶体的金属多孔材料构成;则步骤(1)中,先将Ni粉和Cu粉均匀混合形成原料粉,其中Cu粉质量为原料粉质量的30~60%,然后以乙醇为分散剂、以PVB为粘结剂,按PVB与乙醇的质量比为(0.5~5):100的比例将PVB加入乙醇中制成PVB溶液,此后再按每100ml乙醇中加入原料粉20~50g的比例将原料粉加入PVB溶液中,通过搅拌使原料粉充分分散均匀,得到粘稠状的悬浊液;步骤(3)中,烧结工艺包括将烧结温度逐渐升至520~580℃并保温60~180min的第一烧结阶段以及在第一阶段后以≥5℃/min的升温速率直接升温至1130~1180℃并保温120~300min的第二烧结阶段。
PCT/CN2015/093483 2014-10-31 2015-10-31 柔性多孔金属箔及其制备方法 WO2016066140A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017522942A JP6587683B2 (ja) 2014-10-31 2015-10-31 フレキシブル多孔質金属箔およびその製造方法
US15/523,044 US10722945B2 (en) 2014-10-31 2015-10-31 Flexible porous metal foil and preparation method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410608980.3A CN104588651A (zh) 2014-10-31 2014-10-31 柔性多孔金属箔及其制备方法
CN201410608980.3 2014-10-31

Publications (1)

Publication Number Publication Date
WO2016066140A1 true WO2016066140A1 (zh) 2016-05-06

Family

ID=53114899

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/093483 WO2016066140A1 (zh) 2014-10-31 2015-10-31 柔性多孔金属箔及其制备方法

Country Status (4)

Country Link
US (1) US10722945B2 (zh)
JP (1) JP6587683B2 (zh)
CN (1) CN104588651A (zh)
WO (1) WO2016066140A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180258693A1 (en) * 2017-03-07 2018-09-13 David R. Hall Window Blinds that Collect Dust from Air using Electrostatic Charge
EP3626371A4 (en) * 2017-05-16 2020-03-25 LG Chem, Ltd. METHOD FOR PRODUCING A METAL FOAM
US20220281003A1 (en) * 2016-10-14 2022-09-08 Lg Chem, Ltd. Method for manufacturing metal foam
JP7205974B2 (ja) 2017-09-22 2023-01-17 エルジー・ケム・リミテッド フィルムの製造方法
EP3527308B1 (en) * 2016-10-14 2023-05-10 LG Chem, Ltd. Metal alloy foam manufacturing method

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104588651A (zh) * 2014-10-31 2015-05-06 成都易态科技有限公司 柔性多孔金属箔及其制备方法
CN104949219B (zh) * 2015-06-30 2017-12-26 成都易态科技有限公司 空气净化系统
CN105066268A (zh) * 2015-07-31 2015-11-18 成都易态科技有限公司 空气净化方法及装置
CN105727627A (zh) * 2016-03-25 2016-07-06 成都易态科技有限公司 多孔材料、其制备方法以及应用该多孔材料的过滤元件
CN107914015B (zh) * 2016-10-09 2020-08-18 成都易态科技有限公司 制备多孔薄膜的烧结方法
KR102218854B1 (ko) * 2016-11-30 2021-02-23 주식회사 엘지화학 금속폼의 제조 방법
CN107030286A (zh) * 2017-05-05 2017-08-11 湖南艾华集团股份有限公司 一种多孔铝阳极材料的制作方法
CN110785249B (zh) * 2017-07-06 2022-03-01 株式会社Lg化学 金属泡沫的制备方法
CN109395752A (zh) * 2018-06-20 2019-03-01 长沙理工大学 一种自支撑双金属磷化物Ni2P-Cu3P复合材料及其制备方法
CN108754482A (zh) * 2018-06-20 2018-11-06 长沙理工大学 一种新型多孔NiCuC合金膜材料及其制备方法
CN110814348A (zh) * 2019-11-22 2020-02-21 湖南艾华集团股份有限公司 一种具有高比容的烧结铝箔的制备方法
CN112317747A (zh) * 2020-09-09 2021-02-05 南通通途机电制造有限公司 一种热逆向式金属粉末烧结工艺
CN112620625B (zh) * 2020-11-24 2022-09-20 西部宝德科技股份有限公司 一种多孔金属表面覆膜的方法
CN112828280B (zh) * 2021-01-06 2022-09-09 南京工业大学 一种梯度孔径结构金属膜的制备方法
JP2022190310A (ja) * 2021-06-14 2022-12-26 セイコーエプソン株式会社 波長変換部材および発光装置
CN114843117A (zh) * 2022-04-18 2022-08-02 湖南防灾科技有限公司 一种金属硫化物储能电极及其制备方法和应用
CN114603140B (zh) * 2022-05-12 2022-08-05 西部宝德科技股份有限公司 一种多孔金属薄膜的烧结装置及方法
CN114875266B (zh) * 2022-05-30 2023-04-18 浙江工业大学 一种多孔FeCoNiCr均质固溶高熵合金及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1942270A (zh) * 2004-04-15 2007-04-04 贝卡尔特股份有限公司 制造烧结金属纤维介质的方法
CN101032751A (zh) * 2007-04-29 2007-09-12 西北有色金属研究院 一种金属多孔薄钛板的制备方法
US20110155662A1 (en) * 2009-05-21 2011-06-30 Battelle Memorial Institute Thin, Porous Metal Sheets and Methods for Making the Same
CN103695689A (zh) * 2013-11-01 2014-04-02 西安宝德粉末冶金有限责任公司 一种Fe-Al系金属间化合物多孔膜的制备方法
CN104588651A (zh) * 2014-10-31 2015-05-06 成都易态科技有限公司 柔性多孔金属箔及其制备方法
CN104588662A (zh) * 2014-10-31 2015-05-06 成都易态科技有限公司 柔性多孔金属箔及柔性多孔金属箔的制备方法
CN104759630A (zh) * 2015-04-01 2015-07-08 成都易态科技有限公司 多孔金属箔的制备方法
CN104759629A (zh) * 2015-04-01 2015-07-08 成都易态科技有限公司 柔性多孔金属箔及柔性多孔金属箔的制备方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57172038U (zh) * 1981-04-21 1982-10-29
JP3271439B2 (ja) * 1994-09-12 2002-04-02 三菱マテリアル株式会社 多孔質金属焼結体製造用混合原料
JP2001040402A (ja) * 1999-07-29 2001-02-13 Daido Steel Co Ltd 多孔質金属薄葉体とその製造方法
DE19963698A1 (de) * 1999-12-29 2001-07-12 Gkn Sinter Metals Gmbh Dünne poröse Schicht mit offener Porosität und Verfahren zu ihrer Herstellung
JP3850357B2 (ja) * 2002-08-29 2006-11-29 日本ピストンリング株式会社 多孔質金属構造体
GB0304939D0 (en) * 2003-03-05 2003-04-09 Johnson Matthey Plc Light-duty diesel engine and a particulate filter therefor
DE10316929B3 (de) * 2003-04-07 2004-09-16 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zur Herstellung eines offenporigen Formkörpers ein solcher Formkörper sowie dessen Verwendung
JP4300871B2 (ja) * 2003-05-09 2009-07-22 三菱マテリアル株式会社 シート状多孔質金属体の製造方法
KR100562043B1 (ko) * 2005-07-27 2006-03-17 한국화학연구원 금속 분리막의 제조방법
EP2038441B1 (de) * 2006-06-22 2015-10-28 H.C. Starck GmbH Verfahren zur herstellung von refraktärmetallformkörpern
CN101007347A (zh) * 2006-12-29 2007-08-01 西北有色金属研究院 一种高孔隙率金属多孔载体材料的制备方法
US7960009B2 (en) * 2008-02-29 2011-06-14 Corning Incorporated Dispersion-toughened cordierite for filter and substrate applications
CN101358304B (zh) * 2008-09-27 2010-12-08 成都易态科技有限公司 NiAl金属间化合物多孔材料及其制备方法
JP5976354B2 (ja) * 2011-09-27 2016-08-23 新日鉄住金化学株式会社 多孔質焼結金属およびその製造方法
JP5825598B2 (ja) * 2012-03-13 2015-12-02 国立研究開発法人産業技術総合研究所 金属多孔体及び金属多孔体の製造方法。
JP2014239023A (ja) * 2012-09-07 2014-12-18 新日鉄住金化学株式会社 色素増感太陽電池用集電体およびその材料の製造方法ならびに色素増感太陽電池
CN103343251B (zh) * 2013-06-30 2015-08-05 成都易态膜分离技术有限公司 烧结Ti-Al基合金多孔材料、应用及改善其孔结构的方法
CN103409678B (zh) * 2013-07-31 2015-10-07 成都易态科技有限公司 烧结Fe-Al基合金多孔材料及应用它的过滤元件

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1942270A (zh) * 2004-04-15 2007-04-04 贝卡尔特股份有限公司 制造烧结金属纤维介质的方法
CN101032751A (zh) * 2007-04-29 2007-09-12 西北有色金属研究院 一种金属多孔薄钛板的制备方法
US20110155662A1 (en) * 2009-05-21 2011-06-30 Battelle Memorial Institute Thin, Porous Metal Sheets and Methods for Making the Same
CN103695689A (zh) * 2013-11-01 2014-04-02 西安宝德粉末冶金有限责任公司 一种Fe-Al系金属间化合物多孔膜的制备方法
CN104588651A (zh) * 2014-10-31 2015-05-06 成都易态科技有限公司 柔性多孔金属箔及其制备方法
CN104588662A (zh) * 2014-10-31 2015-05-06 成都易态科技有限公司 柔性多孔金属箔及柔性多孔金属箔的制备方法
CN104759630A (zh) * 2015-04-01 2015-07-08 成都易态科技有限公司 多孔金属箔的制备方法
CN104759629A (zh) * 2015-04-01 2015-07-08 成都易态科技有限公司 柔性多孔金属箔及柔性多孔金属箔的制备方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220281003A1 (en) * 2016-10-14 2022-09-08 Lg Chem, Ltd. Method for manufacturing metal foam
EP3527308B1 (en) * 2016-10-14 2023-05-10 LG Chem, Ltd. Metal alloy foam manufacturing method
US11951544B2 (en) 2016-10-14 2024-04-09 Lg Chem, Ltd. Method for manufacturing metal alloy foam
US20180258693A1 (en) * 2017-03-07 2018-09-13 David R. Hall Window Blinds that Collect Dust from Air using Electrostatic Charge
US10605000B2 (en) * 2017-03-07 2020-03-31 Hall Labs Llc Window blinds that collect dust from air using electrostatic charge
EP3626371A4 (en) * 2017-05-16 2020-03-25 LG Chem, Ltd. METHOD FOR PRODUCING A METAL FOAM
JP7205974B2 (ja) 2017-09-22 2023-01-17 エルジー・ケム・リミテッド フィルムの製造方法

Also Published As

Publication number Publication date
US10722945B2 (en) 2020-07-28
CN104588651A (zh) 2015-05-06
JP2017537225A (ja) 2017-12-14
JP6587683B2 (ja) 2019-10-09
US20170333992A1 (en) 2017-11-23

Similar Documents

Publication Publication Date Title
WO2016066140A1 (zh) 柔性多孔金属箔及其制备方法
WO2016155621A1 (zh) 柔性多孔金属箔及柔性多孔金属箔的制备方法
CN104588662B (zh) 柔性多孔金属箔及柔性多孔金属箔的制备方法
CN105854629B (zh) 多孔薄膜及其制备方法
WO2011135683A1 (ja) ハニカム構造体の製造方法及びハニカム構造体
JP2004332069A (ja) シート状多孔質金属体の製造方法
CN103933872B (zh) 一种多通道型非对称不锈钢膜的制备方法
CN204321194U (zh) 膜片烧结工装
WO2022042467A1 (zh) 一种非晶微纳结构的制备方法及热压成型装置
Tsumori et al. Development of improved solid oxide fuel cell electrolyte sheet by microimprinting for layered material
KR20130118533A (ko) 탄소나노구조체-금속 복합체 또는 탄소나노구조체-금속산화물 복합체로 구성된 나노 다공막 및 이의 제조방법
JP5767504B2 (ja) ハニカム構造体の製造方法
KR20180081316A (ko) 세라믹 지지체 및 그 제조 방법
CN104759630B (zh) 多孔金属箔的制备方法
CN204524259U (zh) 一种制膜工装
CN105237027B (zh) 一种多通道堇青石平板陶瓷膜支撑体的制备方法及其应用
Mekaru Formation of metal nanostructures by high-temperature imprinting
CN204320110U (zh) 制膜工装
US20050019199A1 (en) Double-layer metal sheet and method of fabricating the same
CN102580404B (zh) 一种非对称不锈钢过滤片的制备方法
JPH1080613A (ja) 金属フィルタ及びその製造方法
JP2007176720A (ja) 3次元骨格構造セラミック多孔体およびセラミック多孔体の製造方法
TW201325884A (zh) 光學薄膜壓印滾輪及該滾輪之製作方法
CN110237600A (zh) 一种制备多孔镍质滤膜的装置及方法
PL225961B1 (pl) Sposob wytwarzania wielowarstwowego nanolaminatu grafenowego

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15854666

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017522942

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15854666

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC

122 Ep: pct application non-entry in european phase

Ref document number: 15854666

Country of ref document: EP

Kind code of ref document: A1