WO2016063515A1 - 車両の制御装置 - Google Patents

車両の制御装置 Download PDF

Info

Publication number
WO2016063515A1
WO2016063515A1 PCT/JP2015/005253 JP2015005253W WO2016063515A1 WO 2016063515 A1 WO2016063515 A1 WO 2016063515A1 JP 2015005253 W JP2015005253 W JP 2015005253W WO 2016063515 A1 WO2016063515 A1 WO 2016063515A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
temperature
soc value
cooling water
control device
Prior art date
Application number
PCT/JP2015/005253
Other languages
English (en)
French (fr)
Inventor
強 岡本
宣昭 池本
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2016063515A1 publication Critical patent/WO2016063515A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K11/00Arrangement in connection with cooling of propulsion units
    • B60K11/02Arrangement in connection with cooling of propulsion units with liquid cooling
    • B60K11/04Arrangement or mounting of radiators, radiator shutters, or radiator blinds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/02Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/24Conjoint control of vehicle sub-units of different type or different function including control of energy storage means
    • B60W10/26Conjoint control of vehicle sub-units of different type or different function including control of energy storage means for electrical energy, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/02Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving vehicles; peculiar to engines driving variable pitch propellers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present disclosure relates to a vehicle control device including an engine and an electric motor as power sources.
  • the vehicle described in Patent Literature 1 includes an engine, a motor generator, an accelerator position sensor that detects an operation amount of an accelerator pedal, and a control device.
  • the control device described in Patent Literature 1 executes vehicle speed holding control with the engine stopped.
  • the vehicle speed holding control is a control for driving the motor so that the vehicle speed is maintained at a constant speed.
  • the control device described in Patent Literature 1 executes the variable deceleration control with the engine stopped.
  • the variable deceleration control is a control for driving the motor so that the vehicle speed gradually decreases. In the variable deceleration control, the deceleration increases as the SOC value (state of charge) of the battery decreases.
  • the device described in Patent Literature 1 restarts the engine when detecting the on-operation of the accelerator pedal during the execution of the speed holding control or the variable deceleration control. By executing these speed holding control and variable deceleration control, fuel efficiency can be improved.
  • the SOC is driven by, for example, a motor generator driven by an electric motor or a load of auxiliary machinery.
  • the value decreases.
  • Auxiliary equipment refers to in-vehicle devices such as an air conditioning device and a car navigation device.
  • the present disclosure has been made in view of such circumstances, and an object of the present disclosure is to provide a vehicle control device capable of suppressing deterioration in fuel consumption due to forced driving of an engine.
  • the vehicle control device includes an engine that transmits power to the drive wheels of the vehicle, an electric motor that transmits power to the drive wheels and performs regenerative power generation based on regenerative energy transmitted from the drive wheels, Controlling a vehicle including a generator that generates electric power based on driving of an engine, a battery that supplies electric power generated by the generator, and electric power that is regeneratively generated by the electric motor and that supplies electric power to the vehicle-mounted device It is.
  • the vehicle control device includes a control unit. The control unit forcibly drives the engine based on the cooling water temperature of the engine being equal to or lower than the forced driving temperature, and forcibly drives the engine based on the SOC value of the battery being equal to or lower than the forced driving SOC value.
  • control unit shifts the vehicle to a cut-off state in which the transmission of power between the engine and the drive wheels and the transmission of power between the electric motor and the drive wheels are cut off. And when it is estimated that the vehicle is in the shut-off state and the temperature of the cooling water is lower than the forced drive temperature during the shut-off period, or the vehicle is estimated to be in the shut-off state and during the shut-off period When it is estimated that the SOC value becomes equal to or less than the forced drive SOC value, the control unit increases the SOC value.
  • the engine when it is estimated that the vehicle is in the shut-off state and the temperature of the cooling water is estimated to be equal to or lower than the forcible driving temperature during the shut-off state, the engine is driven. Rises. As a result, the temperature of the cooling water can be increased before the vehicle enters the shut-off state, and therefore, the temperature of the cooling water is less likely to become the forced drive temperature or less when the vehicle is actually put into the shut-off state thereafter. Therefore, it is possible to suppress deterioration in fuel consumption due to forced driving of the engine.
  • the engine is driven, so the battery SOC value increases. .
  • the SOC value increases before the vehicle enters the shut-off state, and therefore, when the vehicle actually enters the shut-off state thereafter, the SOC value is less likely to be less than or equal to the forced drive SOC value. Therefore, it is possible to suppress deterioration in fuel consumption due to forced driving of the engine.
  • the block diagram which shows the schematic structure about 1st Embodiment of the control apparatus of a vehicle.
  • (A) to (d) are timing charts showing changes in the vehicle speed V, the engine rotational speed Ne, the coolant temperature Tw, and the SOC value of the high-voltage battery for a vehicle control apparatus as a reference example.
  • the flowchart which shows the procedure of the process performed by the HEV control apparatus about the control apparatus of the vehicle of 1st Embodiment.
  • the map which shows the relationship between the amount of charge Cw of a high voltage battery about the vehicle control apparatus of 1st Embodiment, and deviation (DELTA) SOC of target SOC value and the present SOC value.
  • (A)-(d) is a timing chart which shows transition of the vehicle speed V, the engine rotational speed Ne, the temperature Tw of cooling water, and the SOC value of a high voltage battery about the vehicle control apparatus of 1st Embodiment.
  • the block diagram which shows the schematic structure about 2nd Embodiment of the control apparatus of a vehicle.
  • the vehicle 1 of this embodiment includes a drive system 2, a cooling system 3, and an air conditioner 4.
  • the drive system 2 includes an engine 20, an electric motor 21, a transmission 22, a differential gear 23, a generator 24, a high voltage battery 25, an inverter 26, an SOC (state of charge) sensor 27, and rotation. And a speed sensor 28.
  • the electric motor 21 is provided in the middle of the output shaft 200 of the engine 20.
  • the electric motor 21 rotates the output shaft 200 by applying torque to the output shaft 200 of the engine 20.
  • the transmission 22 is connected to one end of the output shaft 200 of the engine 20.
  • the transmission 22 changes the power transmitted from the engine 20 via the output shaft 200 according to the gear stage, and outputs it from the output shaft 230.
  • An output shaft 220 of the transmission 22 is connected to the drive wheel 10 via a differential gear 23 and a drive shaft 29.
  • the transmission 22 has a lockup clutch 221.
  • the lockup clutch 221 has a function of mechanically connecting the output shaft 200 of the engine 20 and the output shaft 220 of the transmission 22 and a function of cutting off the connection.
  • the input shaft 240 of the generator 24 is connected to the end of the output shaft 200 of the engine 20 opposite to the end to which the transmission 22 is connected via a pulley 241. That is, the generator 24 generates power based on the driving of the engine 20.
  • the generator 24 charges the high-voltage battery 25 with the generated power.
  • the generator 24 supplies the generated power to the electric pump 30 of the engine cooling system 3 and various on-vehicle devices 13 via the DC-DC converter 11 and charges the low-voltage battery 12.
  • the low voltage battery 12 supplies electric power to the electric pump 30 and the in-vehicle device 13.
  • the high voltage battery 25 supplies charging power to the inverter 26.
  • the high voltage battery 25 supplies charging power to the electric pump 30 of the engine cooling system 3 and various on-vehicle devices 13 via the DC-DC converter 11 and charges the low voltage battery 12. Therefore, the electric pump 30 and the in-vehicle device 13 are driven based on the electric power supplied from the low voltage battery 12 or the high voltage battery 25.
  • the inverter 26 converts the DC power supplied from the high voltage battery 25 into AC power, and supplies the AC power to the electric motor 21.
  • the SOC sensor 27 detects the SOC value of the high voltage battery 25.
  • the SOC value represents the state of charge of the high voltage battery 25 in the range of 0% to 100% after defining the fully discharged state as 0% and the fully charged state as 100%.
  • the rotational speed sensor 28 detects the rotational speed Ne of the output shaft 200 of the engine 20.
  • the vehicle 1 includes the engine 20 and the electric motor 21 as power sources.
  • the electric motor 21 performs regenerative power generation based on the regenerative energy transmitted from the drive wheel 10 to the output shaft 220 via the differential gear 23 and the transmission 22.
  • the inverter 26 converts AC power generated by the electric motor 21 through regenerative power generation into DC power and charges the high voltage battery 25.
  • the drive system 2 can perform regenerative charging.
  • the mechanical connection between the drive wheel 10 and the engine 20 is interrupted by blocking the mechanical connection between the output shaft 200 of the engine 20 and the output shaft 220 of the transmission 22 by the lockup clutch 221. It is possible to cut off both the simple connection and the mechanical connection between the drive wheel 10 and the electric motor 21.
  • the cooling system 3 includes an electric pump 30, a radiator 31, a heater core 32, and a water temperature sensor 33.
  • the electric pump 30, the radiator 31, the heater core 32, and the engine 20 are connected in a ring shape by a cooling water pipe 34.
  • the cooling water for cooling the engine 20 flows through the cooling water pipe 34.
  • the engine 20 is cooled by heat exchange between the cooling water in the cooling water pipe 34 and the engine 20.
  • the electric pump 30 circulates the cooling water in the cooling water pipe 34 in the order of “engine 20 ⁇ heater core 32 ⁇ radiator 31 ⁇ electric pump 30 ⁇ engine 20”.
  • the radiator 31 cools the cooling water by exchanging heat between the cooling water passing through the inside and the outside air.
  • the heater core 32 is disposed in the air passage 40 of the air conditioner 4.
  • the air passage 40 sucks air from inside or outside the vehicle, adjusts the temperature of the air, and blows it out into the vehicle.
  • the heater core 32 heats the air in the air passage 40 by exchanging heat between the cooling water flowing inside and the air in the air passage 40. As a result, the temperature of the air blown out from the air passage 40 into the vehicle rises and the vehicle interior is heated.
  • the water temperature sensor 33 detects the temperature Tw of the cooling water flowing through the cooling water pipe 34.
  • the air conditioner 4 has an air passage 40 and a blower 41.
  • the blower 41 takes air outside or inside the vehicle into the air passage 40.
  • the blower 41 adjusts the flow rate of the air taken into the air passage 40 according to the rotation speed, in other words, the air volume of the temperature-controlled air blown out from the air passage 40 into the vehicle.
  • the vehicle 1 includes an air conditioner control device 50, an engine control device 51, a motor generator control device 52, a power supply control device 53, and a HEV (Hybrid Electric Vehicle) control device 54.
  • Each of the control devices 50 to 54 is configured around a microcomputer, and has a memory and the like.
  • the control devices 50 to 54 can communicate with each other via an in-vehicle network 55 such as a CAN (Controller Area Network).
  • the air conditioner control device 50 executes air volume control for adjusting the air volume of the air blown from the air passage 40 into the vehicle through the drive control of the blower 41.
  • the air conditioner control device 50 adjusts the heating amount of the air flowing in the air passage 40 by adjusting the flow rate of the cooling water flowing through the heater core 32 through the drive control of the electric pump 30. In other words, the air conditioner control device 50 blows out into the vehicle. Heating output control is performed to adjust the heating effect of the air that is generated.
  • the air conditioner control device 50 flows in the air passage 40 by changing the opening degree of a plurality of dampers (not shown) provided in the air passage 40 or controlling the driving of a cooling heat exchanger (not shown). Temperature control for adjusting the temperature of the air is also executed.
  • the engine control device 51 performs throttle valve opening / closing control, fuel injection control, ignition timing control, and the like of the engine 20.
  • the motor generator control device 52 controls the drive of the motor 21 by controlling the electric power supplied to the motor 21 by the inverter 26.
  • the motor generator control device 52 also controls driving of the generator 24.
  • the power supply control device 53 controls charging / discharging of the high voltage battery 25. Specifically, the power supply control device 53 controls the power discharged from the high voltage battery 25 to the inverter 26 and the like. Further, the power supply control device 53 controls the electric power charged in the high voltage battery 25 from the electric motor 21 via the inverter 26.
  • the vehicle 1 is, for example, an accelerator pedal position sensor 60, a shift position sensor 61, a brake switch 62, a vehicle speed sensor 63 as a vehicle speed detection unit, an acceleration sensor 64, and a temperature detection unit as sensors for detecting the state of the vehicle.
  • a temperature sensor 65 is provided.
  • the accelerator pedal position sensor 60 detects the depression amount (accelerator opening) Pa of the accelerator pedal.
  • the shift position sensor 61 detects the shift position Ps of the shift lever.
  • the brake switch 62 detects a depression operation of the brake pedal.
  • the vehicle speed sensor 63 detects the speed (vehicle speed) V of the vehicle 1.
  • the acceleration sensor 64 detects an acceleration (vehicle acceleration) A in the three-axis direction of the vehicle 1.
  • the temperature sensor 65 detects a temperature outside the vehicle (outside air temperature) Tod.
  • the HEV control device 54 includes a control unit 54b.
  • the HEV control device 54 provides the control unit 54b with an SOC sensor 27, a rotation speed sensor 28, a water temperature sensor 33, an accelerator pedal position sensor 60, a shift position sensor 61, a brake switch 62, a vehicle speed sensor 63, an acceleration sensor 64, and Each output of the temperature sensor 65 is captured at a predetermined cycle.
  • the control unit 54b of the HEV control device 54 sets various control amounts based on the detection values of the sensors 27, 28, 33, 60 to 65, and transmits the set various control amounts to the control devices 50 to 53. Based on these various control amounts, the control devices 50 to 53 respectively control the objects to be controlled, so that the drive system 2, the cooling system 3, and the air conditioner 4 are driven.
  • the control unit 54b of the HEV control device 54 calculates the travel driving force of the vehicle 1 based on the accelerator opening degree Pa, the shift position Ps, whether or not the brake pedal is depressed, the vehicle speed V, the vehicle acceleration A, and the like.
  • the torque command values of the engine 20 and the electric motor 21 are set so that the required driving force can be obtained while minimizing the fuel consumption (fuel consumption).
  • the control unit 54b of the HEV control device 54 performs torque control of the engine 20, drive control and stop control of the engine 20 by transmitting the set torque command value to the engine control device 51.
  • the control unit 54b of the HEV control device 54 performs torque control of the motor 21 and drive control and stop control of the motor 21 by transmitting the set torque command value to the motor generator control device 52.
  • the control unit 54b performs hybrid (HEV) travel control that causes the vehicle 1 to travel by driving both the engine 20 and the electric motor 21, or by driving either one of them.
  • HEV hybrid
  • the control unit 54b of the HEV control device 54 performs coasting control when the accelerator opening degree Pa becomes zero during HEV travel control, that is, when the accelerator pedal is turned off. Specifically, the control unit 54b enables the vehicle 1 to coast (coasting) by blocking the output shaft 200 of the engine 20 and the output shaft 220 of the transmission 22 by the lock-up clutch 221. Then, the engine 20 is stopped. As a result, the vehicle 1 can travel without idling fuel, friction loss of the engine 20, and loss during regenerative power generation in the electric motor 21, so that fuel efficiency can be improved.
  • the control unit 54b of the HEV control device 54 determines whether or not the cooling water temperature Tw is equal to or higher than a predetermined forced driving temperature Twc while the engine 20 is stopped.
  • the forced drive temperature Twc is set to the lower limit temperature of the cooling water necessary for exhibiting the heating function in the air conditioner 4.
  • the control unit 54b performs the cooling water when restarting the engine 20 based on the depression operation of the accelerator pedal.
  • the engine 20 is forcibly driven until the temperature Tw becomes equal to or higher than the forced drive temperature Twc.
  • the forced drive of the engine 20 means that the engine 20 is driven until the cooling water temperature Tw becomes equal to or higher than the forced drive temperature Twc even when the accelerator opening degree Pa becomes zero during execution of the HEV control. Means to continue.
  • the control unit 54b of the HEV control device 54 controls the driving of the engine 20 so that the SOC value of the high voltage battery 25 becomes the target SOC value Sd while the engine 20 is being driven.
  • the basic value Ss of the target SOC value is set to 60%, for example, in order to secure a surplus capacity for charging the high-voltage battery 25 with regenerative power generated by the electric motor 21.
  • the control unit 54b increases the rotational speed Ne of the engine 20 as the deviation between the SOC value of the high voltage battery 25 and the target SOC value Sd increases, thereby quickly setting the SOC value of the high voltage battery 25 to the target SOC value Sd. Move closer.
  • the control unit 54b of the HEV control device 54 forcibly drives the engine 20 when the SOC value of the high voltage battery 25 becomes equal to or lower than a preset forcible drive SOC value while the engine 20 is stopped.
  • the forced drive SOC value is set to a value considerably smaller than the basic value Ss of the target SOC value, for example, 40%.
  • FIGS. 2A and 2B are timing charts showing changes in the vehicle speed V, the engine rotational speed Ne, the cooling water temperature Tw, and the SOC value of the high-voltage battery for the control device of the vehicle 1 as a reference example.
  • the engine 20 is stopped while the vehicle 1 is coasting. Therefore, as shown in FIGS. 2C and 2D, the temperature Tw of the cooling water and the SOC value of the high-voltage battery 25 decrease with time. Due to this, when the temperature Tw of the cooling water becomes equal to or lower than the forcible drive temperature Twc at time t1, the engine 20 is forcibly driven when the driver depresses the accelerator pedal at time t2 to accelerate the vehicle 1 thereafter. .
  • the engine 20 continues to be driven until time t4 when the temperature Tw of the cooling water exceeds the forced drive temperature Twc. At this time, even if the driver turns off the accelerator pedal for coasting at time t3, the engine 20 does not stop.
  • the fuel is consumed by the engine 20 during the period from the time t3 to the time t4.
  • the heating function of the air conditioner 4 is lowered due to the decrease in the temperature Tw of the cooling water during the coasting travel, and thus there is a possibility that the interior comfort cannot be ensured particularly in winter. .
  • the SOC value of the high voltage battery 25 decreases as the vehicle-mounted device 13 is driven while the vehicle 1 is traveling on the coast. If the SOC value of the high voltage battery 25 becomes equal to or less than the forced drive SOC value due to this, the engine 20 is forcibly driven. Even in this case, even if the driver turns off the accelerator pedal for coasting, the engine 20 does not stop, and the fuel efficiency improvement effect due to coasting decreases.
  • the control unit 54b estimates whether or not the coasting travel is performed during the HEV travel. Then, when it is estimated that the coasting is performed, the control unit 54b determines whether or not the temperature Tw of the cooling water becomes equal to or lower than the forcible driving temperature Twc during the coasting and the SOC value of the high voltage battery 25 is It is determined whether or not the driving SOC value is reached. Further, when it is estimated that the temperature Tw of the cooling water becomes equal to or lower than the forced drive temperature Twc during the coasting run, or when the SOC value of the high voltage battery 25 becomes lower than the forced drive SOC value during the coasting run.
  • the SOC value of the high voltage battery 25 is increased in advance by increasing the target SOC value Sd. Further, when the target SOC value Sd is increased, the engine 20 is driven in order to generate electric power according to the deviation between the target SOC value Sd and the SOC value of the high voltage battery 25 by the generator 24. Therefore, the temperature of the cooling water can be increased in advance.
  • the HEV control device 54 stores the following information (a1) to (a5) in the memory 54a when setting the target SOC value Sd.
  • the power consumption average value Wa is calculated by the power supply control device 53.
  • the power supply control device 53 integrates the power consumption of the high-voltage battery 25 excluding, for example, EV travel from the present to a predetermined time T1 before, and calculates the average power consumption value Wa of the high-voltage battery 25 based on the integrated value.
  • the HEV control device 54 sequentially acquires information on the average power consumption value Wa of the high-voltage battery 25 from the power supply control device 53, and stores the information in the memory 54a.
  • the control unit 54b periodically calculates the traveling load of the vehicle 1 based on, for example, the accelerator opening degree Pa, the rotational speed Ne of the engine 20, the vehicle speed V, and the like.
  • An average value Caa of the travel load of the vehicle 1 is calculated based on time-series data of the travel load.
  • (A4) The average value Hra of the heat dissipation amount of the cooling water in the heater core 32.
  • the control unit 54b of the HEV control device 54 Based on the cooling water temperature Tw detected by the water temperature sensor 33, the control unit 54b of the HEV control device 54, for example, chronologically determines the heat dissipation amount of the cooling water in the heater core 32 during a period from the present to a predetermined time T1. And the average value Hra of the heat radiation amount of the cooling water in the heater core 32 is calculated based on the data.
  • the control unit 54b corrects the target SOC value Sd using the information (a1) to (a6). Next, the procedure for setting the target SOC value Sd by the HEV controller 54 will be described in detail.
  • the control unit 54b repeatedly executes the process shown in FIG. 3 at a predetermined calculation cycle when the vehicle 1 is running on HEV. That is, the control unit 54b first sets the target SOC value Sd to the basic value Ss (step S10). Next, the control unit 54b determines whether or not the coasting travel is performed, and determines whether or not the engine 20 may be forcibly driven during the coasting travel (step S11). Specifically, the control unit 54b estimates that the coasting traveling is performed when at least one of the following conditions (b1) and (b2) is satisfied, and the engine 20 during the coasting traveling is estimated. Is estimated to be forcibly driven.
  • (B1) A situation occurs in which the current temperature Tw of the cooling water is equal to or lower than the first temperature threshold Tw1, and the temperature Tw of the cooling water is equal to or lower than the second temperature threshold Tw2 during a period from the present to the predetermined time T1.
  • the second temperature threshold value Tw2 is set to a value that can determine whether or not the temperature of the cooling water has decreased to the vicinity of the forced drive temperature Twc, for example, a value slightly larger than the forced drive temperature Twc.
  • the first temperature threshold value Tw1 is set to a value larger than the second temperature threshold value Tw2.
  • the current SOC value is equal to or less than the first threshold value S1, and a situation has occurred in which the SOC value is equal to or less than the second threshold value S2 during the period from the present to the predetermined time T1.
  • the second threshold value S2 is set to a value that can determine whether or not the SOC value has decreased to the vicinity of the forced drive SOC value, for example, a value slightly larger than the forced drive SOC value.
  • the first threshold value S1 is set to a value larger than the second threshold value S2, for example.
  • the control unit 54b makes an affirmative determination in the determination process in step S11 (step S11: YES), and corrects the target SOC value Sd (step S12). ).
  • the correction method of the target SOC value Sd is as follows.
  • the control unit 54b first corrects the target SOC value Sd so as to avoid the forced drive of the engine 20 due to the decrease in the SOC value during the next coasting run. Specifically, the control unit 54b detects the current vehicle speed V. Next, the controller 54b performs the next coasting run based on the vehicle speed Vcs when the coasting run is started in the period from the present to the predetermined time T1 and the coasting running duration Tc at that time. Is calculated at the current vehicle speed V, and the coasting estimated duration Tcf is calculated.
  • the control unit 54b calculates the estimated value Ee of the consumed electric energy of the high-voltage battery 25 during the next coasting run based on the following equation f1. To do.
  • the unit of “Ee” is [kJ]
  • the unit of “Wa” is [kW]
  • the unit of “Tcf” is [sec].
  • the control unit 54b estimates the amount of decrease in the SOC value during the next coasting run from the calculated consumed electric energy estimated value Ee. (Hereinafter, abbreviated as “consumed SOC estimated value”) Se is calculated.
  • the control unit 54b calculates the provisional target SOC value Sda based on the following equation f2 based on the calculated consumption SOC estimated value Se and the forced drive SOC value Sc.
  • Sda Sc + Se ⁇ ⁇ (f2) “ ⁇ ” is a safety factor set to a value larger than 1.
  • the control unit 54b compares the calculated provisional target SOC value Sda with the basic value Ss, and sets the larger one of them as the first target SOC value Sd1.
  • the first target SOC value Sd1 is an SOC value that can avoid the forced drive of the engine 20 due to a decrease in the SOC value during the next coasting run.
  • the controller 54b determines whether or not the first target SOC value Sd1 needs to be further corrected in order to avoid the forced drive of the engine 20 due to the decrease in the coolant temperature Tw during the next coasting run. judge.
  • control unit 54b estimates and releases the cooling water during the next coasting run based on the average value Hra of the heat dissipation amount of the cooling water in the heater core 32, the current vehicle speed V, and the current outside air temperature Tod. The amount of heat Hre is calculated. Further, the control unit 54b allows the cooling water allowed until the cooling water temperature Tw decreases from the current value to the forced driving temperature Twc based on the deviation between the current temperature Tw of the cooling water and the forced driving temperature Twc. The allowable heat radiation amount Hrb is calculated.
  • the controller 54b calculates the insufficient heat quantity Hs of the cooling water based on the following equation f3 from the allowable heat radiation amount Hrb and the estimated heat radiation amount Hre of the cooling water at the next coasting travel.
  • Each unit of “Hs”, “Hrb”, and “Hre” is [kJ].
  • Hs Hrb ⁇ Hre (f3)
  • the heating amount of the cooling water by the engine 20 can be obtained by multiplying the fuel consumption energy of the engine 20 by the average cooling water heating efficiency Ewe.
  • the average cooling water heating efficiency Ewe indicates the ratio of the consumed fuel energy to the heating amount of the cooling water of the engine 20, and is obtained in advance through experiments or the like.
  • the fuel consumption energy of the engine 20 is a value obtained by dividing the output (work volume) of the engine 20 by the engine average efficiency Eae.
  • the output of the engine 20 mainly includes an output for driving the vehicle 1 and an output for driving the generator 24.
  • the former output is substantially correlated with the running load of the engine.
  • the latter output is substantially correlated with the power generation amount of the generator 24.
  • the power generation amount of the generator 24 is substantially equal to the power consumption amount of the high voltage battery 25.
  • the control unit 54b obtains the average value Wha of the power consumption amount of the high voltage battery 25 in the period from the present time to the predetermined time T1 based on the average power consumption value Wa of the high voltage battery 25. Then, the control unit 54b cools based on the following formula f4 from the obtained average power consumption value Wha of the high-voltage battery 25, the average value Caa of the travel load of the vehicle 1, the engine average efficiency Eae, and the average cooling water heating efficiency Ewe. The heating amount Hf of water is calculated. Each unit of “Hf”, “Wha”, and “Caa” is [kJ].
  • the engine average efficiency Eae indicates the ratio of the total consumed fuel energy to the total output of the engine 20.
  • the controller 54b subtracts the heating amount Hf of the cooling water calculated by the equation f4 from the insufficient heat amount Hs of the cooling water calculated by the equation f3, and whether or not the subtraction value “Hs ⁇ Hf” is equal to or less than zero. Determine whether.
  • the control unit 54b estimates that the engine 20 is not forcibly driven due to the decrease in the coolant temperature Tw during the next coasting run. In this case, since the additional correction of the first target SOC value Sd1 is not necessary, the control unit 54b sets the target SOC value Sd to the first target SOC value Sd1.
  • the control unit 54b may cause the engine 20 to be forcibly driven due to a decrease in the coolant temperature Tw during the next coasting run. to decide.
  • the controller 54b calculates the additional power amount Whad based on the following formula (f5) from the cooling water shortage heat amount Hs, the cooling water heating amount Hf, the engine average efficiency Eae, and the average cooling water heating efficiency Ewe. .
  • the additional power amount Whad is a charge power amount of the high-voltage battery 25 required to drive the engine 20 when heating the coolant so that the coolant temperature Tw does not become the forced drive temperature Twc or less during the next coasting run.
  • the control unit 54b calculates the SOC value correction amount Sad from the calculated additional power amount Whad.
  • the controller 54b obtains the second target SOC value Sd2 by adding the correction amount Sad to the first target SOC value Sd1. That is, the control unit 54b obtains the second target SOC value Sd2 based on the following formula f6.
  • control unit 54b sets the target SOC value Sd to the second target SOC value Sd2.
  • step S13 the control unit 54b calculates the deviation ⁇ SOC by subtracting the current SOC value from the target SOC value Sd.
  • the controller 54b calculates the charge amount Cw of the high-voltage battery 25 from the calculated deviation ⁇ SOC based on the map shown in FIG. Note that the map shown in FIG. 4 is obtained in advance through experiments and the like, and is stored in the memory 54a of the control unit 54b.
  • the control unit 54b sets the engine output Ep by adding the charge amount Cw to the driver request power calculated from the accelerator opening degree Pa (step S14). Further, the control unit 54b calculates the front-rear direction inclination angle (inclination angle in the pitch direction) ⁇ of the vehicle 1 based on the detection value of the acceleration sensor 64, the front-rear direction inclination angle ⁇ of the vehicle 1, and the current vehicle speed V. Whether or not to drive the engine 20 is determined based on the engine output Ep (step S15). Specifically, the control unit 54b calculates a threshold value Epth of the engine output based on the map shown in FIG. The map shown in FIG.
  • the controller 54b drives the engine 20 when the engine output Ep calculated in step S13 is greater than the threshold Epth. On the other hand, when the engine output Ep is less than or equal to the threshold Epth, the electric motor 21 is driven without driving the engine 20.
  • the temperature Tw of the cooling water becomes equal to or lower than the first temperature threshold Tw1 at time t10, and the temperature Tw of the cooling water becomes the second temperature threshold Tw2 during a period from time t10 to a predetermined time T1.
  • the control unit 54b corrects the target SOC value Sd at time t10. Specifically, the control unit 54b sets the target SOC value Sd to a second target SOC value Sd2 that is larger than the basic value Ss.
  • the engine 20 drives the generator 24 so as to bring the SOC value of the high voltage battery 25 closer to the target SOC value Sd. Therefore, as shown by the solid lines in FIGS.
  • the SOC value of the high-voltage battery 25 increases with the temperature Tw of the cooling water until the time t11 when the traveling is started.
  • 7 (b) to 7 (d) show, for reference, the transition of the engine speed Ne, the transition of the cooling water temperature Tw, and the transition of the SOC value of the high-voltage battery 25 in FIG. ing.
  • the temperature Tw of the cooling water at the time t11 when the coasting is started is obtained. To rise. Therefore, it becomes difficult for the temperature Tw of the cooling water to become equal to or lower than the forced drive temperature Twc during coasting.
  • the control unit 54b causes the temperature Tw of the cooling water to become the first temperature threshold value Tw1 at time t12 and from time t13 to a predetermined time T1. If it is determined that the situation in which the temperature Tw of the cooling water becomes the second temperature threshold value Tw2 occurs during the period, the target SOC value Sd is corrected. Specifically, the control unit 54b sets the target SOC value Sd to a second target SOC value Sd2 that is larger than the basic value Ss. Thereby, the SOC value of the high voltage battery 25 increases again with the temperature Tw of the cooling water from the time t12 to the time t13 when the coasting is started. Therefore, the temperature Tw of the cooling water rises again by time t13 when coasting is started. Thereby, the temperature Tw of the cooling water is less likely to be equal to or lower than the forced drive temperature Twc even during coasting after time t13.
  • the controller 54b corrects the target SOC value. Therefore, similarly, the SOC value of the high voltage battery 25 is less likely to be equal to or less than the forced drive SOC value.
  • the coolant temperature Tw is less likely to become the forced drive temperature Twc or less, and the SOC value of the high-voltage battery 25 is less likely to be less than the forced drive SOC value, thereby avoiding the forced drive of the engine 20. It becomes easy to do. As a result, the situation in which the engine 20 is forcibly driven during coasting is less likely to occur, so that deterioration in fuel consumption due to forced driving of the engine can be suppressed.
  • the control unit 54b of the HEV control device 54 estimates that coasting travel is performed when at least one of the above conditions (b1) and (b2) is satisfied, and the coasting travel is in progress. It is assumed that the engine 20 may be forcibly driven. Thereby, the possibility of the forced drive of the engine 20 resulting from the fall of the temperature Tw and SOC value of a cooling water can be estimated easily.
  • the controller 54b adds the target SOC based on the current vehicle speed V, the current temperature Tw of the cooling water, the forced drive temperature Twc, and the forced drive SOC value.
  • the value Sd was corrected.
  • the target SOC value Sd necessary for increasing the temperature Tw of the cooling water and the SOC value of the high-voltage battery 25 to the extent that the engine 20 is not forcibly driven during the coasting travel is more appropriately set. Can do.
  • the vehicle 1 of this embodiment includes an information device 9.
  • the information device 9 includes an inter-vehicle distance detection unit 90 and an information device control device 91.
  • the inter-vehicle distance detection unit 90 is a device for detecting the inter-vehicle distance Dc between the front vehicle traveling in front of the host vehicle and the host vehicle.
  • the inter-vehicle distance detection unit 90 can use, for example, an imaging device that captures an image in front of the vehicle, a radar device that detects a time width until the reflected wave returns after the radar is emitted in front of the vehicle.
  • an imaging device that captures an image in front of the vehicle
  • a radar device that detects a time width until the reflected wave returns after the radar is emitted in front of the vehicle.
  • the information captured by the imaging device and the time width until the reflected wave detected by the radar device returns is referred to as “information indicating the inter-vehicle distance Dc”.
  • the inter-vehicle distance detection unit 90 outputs information indicating the detected inter-vehicle distance Dc to the information device control device 91.
  • the information device control device 91 performs various calculations on the information indicating the inter-vehicle distance Dc transmitted from the inter-vehicle distance detection unit 90, and calculates the inter-vehicle distance Dc.
  • the information equipment control device 91 transmits the in-vehicle network 55 to the HEV control device 54 via the calculated inter-vehicle distance Dc.
  • the HEV control device 54 sequentially acquires information on the inter-vehicle distance Dc from the information device control device 91.
  • the controller 54b determines whether or not the coasting can be performed based on the inter-vehicle distance Dc and the vehicle speed V when the accelerator opening degree Pa becomes zero in order to avoid contact with the preceding vehicle due to the coasting. to decide.
  • the control unit 54b calculates the vehicle speed threshold value Vth from the inter-vehicle distance Dc based on the map shown in FIG. Note that the map shown in FIG. 9 is obtained in advance through experiments or the like and stored in the memory 54a.
  • the control unit 54b performs coasting control when the current vehicle speed V is equal to or lower than the vehicle speed threshold Vth.
  • the control unit 54b does not execute the coasting control when the current vehicle speed V is larger than the vehicle speed threshold value Vth.
  • step S11 shown in FIG. 3 the control unit 54b is estimated that coasting is performed when one of the following conditions (d1) and (d2) is satisfied, In addition, it is estimated that the engine 20 may be forcibly driven during the coasting run.
  • the current temperature Tw of the cooling water is not more than the first temperature threshold value Tw1, and the current vehicle speed V is not more than the vehicle speed threshold value Vth.
  • the current SOC value is less than or equal to the first threshold value S1
  • the current vehicle speed V is less than or equal to the vehicle speed threshold value Vth.
  • the control unit 54b calculates the estimated duration Tcf during the next coasting run using the information of the inter-vehicle distance Dc instead of the information of (a2). Specifically, after detecting the current vehicle speed V, the control unit 54b continues the estimation of coasting travel when it is assumed that the next coasting travel is performed at the current vehicle speed V based on the inter-vehicle distance Dc. Time Tcf is calculated.
  • the controller 54b of the HEV control device 54 estimates that the coasting travel is performed when at least one of the above conditions (d1) and (d2) is satisfied, and the coasting travel is in progress. It is assumed that the engine 20 may be forcibly driven. Thereby, the possibility of the forced drive of the engine 20 resulting from the fall of the cooling water temperature Tw and the SOC value can be estimated with higher accuracy.
  • the control unit 54b adds the current vehicle speed V, the current temperature Tw of the cooling water, the forced drive temperature Twc, the forced drive SOC value, and The target SOC value Sd is corrected based on the inter-vehicle distance Dc. Thereby, the target SOC value Sd necessary for increasing the temperature Tw of the cooling water and the SOC value of the high-voltage battery 25 to the extent that the engine 20 is not forcibly driven during the coasting travel is more appropriately set. Can do.
  • the information device 9 of this embodiment has a car navigation device 92.
  • the car navigation apparatus 92 performs route guidance of the vehicle to the destination.
  • the information device control device 91 acquires information on the predicted travel route of the vehicle 1 from the car navigation device 92 and transmits the acquired information on the predicted travel route of the vehicle 1 to the HEV control device 54 via the in-vehicle network 55.
  • the control unit 54b calculates the tilt angle ⁇ in the front-rear direction of the vehicle 1 based on the detection value of the acceleration sensor 64, and determines whether or not to perform coasting control based on the calculated tilt angle ⁇ . Specifically, the control unit 54b does not perform the coasting control when it is determined that the vehicle 1 is traveling on an uphill of a predetermined angle or more based on the forward / backward inclination angle ⁇ of the vehicle 1. This is because the situation where the vehicle 1 is traveling uphill is not suitable for coasting. Further, the control unit 54b does not execute the coasting control even when it is determined that the vehicle 1 is traveling on a downhill having a predetermined angle or more based on the inclination angle ⁇ in the front-rear direction of the vehicle 1. This is to prevent the vehicle speed V from becoming too high when coasting is performed on a downhill.
  • the HEV control device 54 sequentially acquires information on the predicted travel route of the vehicle 1 from the information device control device 91.
  • the control unit 54b is estimated that coasting is performed when one of the following conditions (e1) and (e2) is satisfied, In addition, it is estimated that the engine 20 may be forcibly driven during the coasting run.
  • the current temperature Tw of the cooling water is equal to or lower than the first temperature threshold value Tw1
  • the current vehicle speed V is equal to or lower than the vehicle speed threshold value Vth
  • the average road surface gradient of the predicted travel route from the present time to a predetermined time ahead is predetermined.
  • the current SOC value is equal to or less than the first threshold value S1
  • the current vehicle speed V is equal to or less than the vehicle speed threshold value Vth
  • the average road surface gradient of the predicted travel route from the present time to a predetermined time ahead is within a predetermined range. thing.
  • the predetermined range is set to a range corresponding to the inclination angle ⁇ of the vehicle 1 on which the coasting control is executed by the control unit 54b.
  • the control unit 54b calculates an estimated duration Tcf for the next coasting travel based on the information on the inter-vehicle distance Dc and the predicted travel route. Specifically, after detecting the current vehicle speed V, the control unit 54b assumes that the next coasting travel is performed at the current vehicle speed V based on the inter-vehicle distance Dc and the predicted travel route. The estimated traveling duration Tcf is calculated.
  • the control unit 54b estimates the travel pattern of the vehicle 1 from the information of the predicted travel route, and estimates the estimated heat dissipation amount Hre of the cooling water at the next coasting travel based on the estimated travel pattern of the vehicle 1.
  • the controller 54b calculates the insufficient heat amount Hs of the cooling water from the estimated heat release amount Hre and the allowable heat release amount Hrb of the cooling water during the next coasting travel based on the above-described equation f3.
  • the control unit 54b estimates the travel pattern of the vehicle 1 from the information of the predicted travel route, and estimates the output Pe of the engine 20 based on the estimated travel pattern of the vehicle 1.
  • the control unit 54b calculates the heating amount Hf of the cooling water based on the following formula f4 ′ from the estimated value of the output Pe of the engine 20, the engine average efficiency Eae, and the average cooling water heating efficiency Ewe instead of the above formula f4. To do.
  • the unit of “Hf” and “Pe” is [kJ].
  • Hf Pe / Eae ⁇ Ewe (f4 ′) According to the HEV control device 54 of the present embodiment described above, in addition to the operation and effect (1), the operation and effect shown in the following (6) and (7) can be obtained.
  • the controller 54b of the HEV control device 54 estimates that coasting travel is performed when at least one of the above conditions (e1) and (e2) is satisfied, and the coasting travel is in progress. It is assumed that the engine 20 may be forcibly driven. Thereby, the possibility of the forced drive of the engine 20 resulting from the fall of the cooling water temperature Tw and the SOC value can be estimated with higher accuracy.
  • the control unit 54b determines the target SOC value Sd based on the current vehicle speed V, the current temperature Tw of the cooling water, the forced drive temperature Twc, the forced drive SOC value, the inter-vehicle distance Dc, and the predicted travel route of the vehicle 1. I decided to correct it. Thereby, the target SOC value Sd necessary for increasing the temperature Tw of the cooling water and the SOC value of the high-voltage battery 25 to the extent that the engine 20 is not forcibly driven during the coasting travel is more appropriately set. Can do.
  • the HEV control device 54 of the first to third embodiments is to increase the temperature Tw of the cooling water in advance before the next coasting travel is performed in order to avoid forced driving of the engine 20.
  • the HEV control device 54 of the present embodiment avoids forced driving of the engine 20 by suppressing a decrease in the temperature Tw of the cooling water. Details will be described below.
  • the HEV control device 54 of the present embodiment notifies the control command to the air conditioner control device 50 to reduce or stop the heating output of the air conditioner 4.
  • the third temperature threshold Tw3 is set in advance through experiments or the like so that the temperature Tw of the cooling water does not become the forced drive temperature Twc or less during coasting.
  • the control unit 54b of the HEV control device 54 when the cooling water temperature Tw is equal to or lower than the third temperature threshold Tw3, causes the blower 41 to decrease as the cooling water temperature Tw decreases. Is reduced from the upper limit value Wmax to zero.
  • the state in which the air volume W of the blower 41 is zero means a state in which the output of the air conditioner 4 is stopped.
  • the control unit 54b sets the flow rate F of the electric pump 30 to the upper limit value as the temperature Tw of the cooling water decreases. Decrease from Fmax to lower limit Fmin.
  • the lower limit value Fmin is set to a minimum flow rate necessary for cooling the engine 20.
  • the vehicle 1 of this embodiment includes a heat pump 7 as an electric heating device.
  • the heat pump 7 includes an electric compressor 70, a condenser 71, an expansion valve 72, and a radiator 31.
  • the electric compressor 70, the condenser 71, the expansion valve 72, and the radiator 31 are connected in a ring shape via a pipe 73.
  • the electric compressor 70 compresses the heat medium in the pipe 73 to increase the temperature of the heat medium, and also converts the heat medium in the pipe 73 into “electric compressor 70 ⁇ capacitor 71 ⁇ expansion valve 72 ⁇ radiator 31 ⁇ electric compressor 70”. Cycle in order.
  • the electric compressor 70 obtains operating power from the low-voltage battery 12.
  • the condenser 71 is disposed in the air passage 40 of the air conditioner 4, and performs heat exchange between the heat medium whose temperature has increased through the electric compressor 70 and the air in the air passage 40. Heat the air. The heated air is blown into the vehicle, thereby heating the vehicle.
  • the expansion valve 72 expands the heat medium radiated by the condenser 71 and lowers its temperature.
  • the radiator 31 raises the temperature of the heat medium by exchanging heat between the heat medium that has been expanded by the expansion valve 72 and has fallen in temperature and the outside air.
  • the air conditioner control device 50 controls the operation of the heat pump 7 through the drive control of the electric compressor 70.
  • the control unit 54b of the HEV control device 54 performs regenerative power generation with the electric motor 21 when the accelerator opening degree Pa becomes zero during traveling of the vehicle and the cooling water temperature Tw is equal to or lower than the fourth temperature threshold value Tw4. For example, as shown in FIG. 14, the flow rate of the electric pump 30 is decreased to reduce the heating output of the air conditioner 4. Moreover, the control part 54b raises the heating output of the heat pump 7 so that the heating fall part of the air conditioner 4 may be compensated.
  • the regenerative power of the electric motor 21 is used for driving the electric compressor 70 of the heat pump 7, but the surplus is charged to the high voltage battery 25 and the low voltage battery 12.
  • the cooling system 3 of the present embodiment includes a bypass pipe 34 a for allowing the cooling medium to flow directly from the heater core 32 to the electric pump 30 without passing through the radiator 31. Further, the cooling system 3 has an electric thermostat 34 b at the outlet side of the radiator 31 in the cooling water pipe 34. The thermostat 34b switches between the circulation of the cooling water to the radiator 31 and the interruption of the circulation by opening and closing the cooling water pipe 34. The driving of the thermostat 34 b is controlled by the engine control device 51.
  • the engine control device 51 takes in the detection value of the water temperature sensor 33. As indicated by a solid line in FIG. 16, the engine control device 51 closes the thermostat 34b when the cooling water temperature Tw is lower than the thermostat driving temperature Tws. As a result, the cooling medium that has passed through the heater core 32 flows to the electric pump 30 without passing through the radiator 31, so that a decrease in the temperature Tw of the cooling water is suppressed and warming up of the engine 20 can be accelerated.
  • the engine control device 51 varies the thermostat drive temperature Tws based on the variation amount ⁇ Twa transmitted from the HEV control device 54.
  • the control unit 54b of the HEV control device 54 increases the variation amount ⁇ Twa to a predetermined value ⁇ Tw1 as the outside air temperature Tod becomes lower than the temperature threshold Tod1.
  • a vehicle is provided with a front grille in front of the engine room, and outside air for cooling is introduced into the engine room through an opening provided in the front grille.
  • the vehicle 1 of the present embodiment has a grill shutter 8 provided at an opening of a front grill (not shown).
  • the grill shutter 8 is for opening and closing the opening of the front grill.
  • the driving of the grill shutter 8 is controlled by a grill shutter control device 56.
  • the grill shutter control device 56 basically closes the grill shutter 8 in order to reduce the air resistance of the vehicle 1. Further, the grill shutter control device 56 takes in the detection value of the water temperature sensor 33. As shown in FIG. 19, when the cooling water temperature Tw becomes equal to or higher than the grill shutter driving temperature Twg, the grill shutter control device 56 opens the grill shutter 8 to reduce the cooling water temperature Tw. Grill shutter control device 56 varies grill shutter drive temperature Twg based on variation ⁇ Twb transmitted from HEV control device 54.
  • the control unit 54b of the HEV control device 54 increases the fluctuation amount ⁇ Twb to a predetermined value ⁇ Tw2 as the outside air temperature Tod becomes lower than the temperature threshold Tod2.
  • the grill shutter drive temperature Twg increases as the outside air temperature Tod decreases. That is, as the outside air temperature Tod decreases, the temperature Tw of the cooling water at which the grille shutter 8 starts to close increases. Thereby, since the fall of the temperature Tw of a cooling water can be suppressed, the temperature Tw of a cooling water becomes difficult to become below the forced drive temperature Twc during coasting driving
  • the HEV control device 54 of the present embodiment transmits a command to the grill shutter control device 56 to open the grill shutter 8 when the heat pump 7 is driven.
  • the HEV control device 54 transmits to the grill shutter control device 56 a command to change the opening degree of the grill shutter 8 stepwise as the output of the heat pump 7 increases. To do.
  • the grille shutter 8 When the grille shutter 8 is in the closed state, it is difficult for the radiator 31 to exchange heat with the outside air. Therefore, if the grille shutter 8 is closed when the heat pump 7 is driven, the COP (Coefficient Of Performance) of the heat pump 7 may be lowered. In this regard, in the present embodiment, the grill shutter 8 is opened when the heat pump 7 is driven, or the opening of the grill shutter 8 is increased, so that the radiator 31 appropriately performs heat exchange with the outside air. As a result, the reduction in COP of the heat pump 7 can be suppressed.
  • the control unit 54b repeatedly executes the processing shown in FIG. 22 at a predetermined calculation cycle during execution of the coasting control. That is, the control unit 54b of the HEV control device 54 determines whether or not the cooling water temperature Tw is equal to or lower than the forced drive temperature Twc (step S20). When the temperature Tw of the cooling water is equal to or lower than the forced drive temperature Twc (step S20: YES), the controller 54b forcibly drives the engine 20.
  • the estimated duration Tcf during the next coasting run may be estimated based only on the information of the predicted travel route of the car navigation device 92.
  • the control unit 54b of the HEV control device 54 learns the duration and the travel route every time coasting is performed. Then, the control unit 54b may estimate the estimated duration Tcf for the next coasting run based on the learned duration and the predicted travel route.
  • the SOC value of the high-voltage battery 25 and the cooling water temperature Tw are increased by increasing the target SOC value Sd.
  • the SOC value of the high-voltage battery 25 and the cooling water temperature Tw are increased.
  • the method of raising the value can be changed as appropriate.
  • the SOC value of the high-voltage battery 25 and the temperature Tw of the cooling water may be increased by driving the engine 20 so as to increase the SOC value of the high-voltage battery 25 by a predetermined value.
  • an appropriate electric heating device may be used instead of the heat pump 7.
  • the vehicle 1 of each of the above embodiments includes the electric motor 21 and the generator 24 separately, but may include an electric generator (motor generator) in which they are integrated.
  • the HEV control device 54 of each of the above embodiments can use appropriate information related to the power consumption history of the high-voltage battery 25 as the information (a1).
  • the HEV control device 54 of each of the above embodiments can use appropriate information related to the history of the coasting running duration Tc as the information (a2).
  • the HEV control device 54 of each of the above embodiments can use appropriate information related to the travel load history of the vehicle 1 as the information (a3).
  • the HEV control device 54 of each of the above embodiments can use appropriate information related to the history of the heat dissipation amount of the cooling water as the information (a4).
  • the conditions for the HEV control device 54 to start the coasting control can be changed as appropriate.
  • step S10 the control unit 54b of the HEV control device 54 executes the process shown in FIG. 23 instead of the process shown in FIG.
  • step S10 after setting the target SOC value Sd to the basic value Ss (step S10), the control unit 54b is estimated that the vehicle 1 is stopped, and the engine 20 may be forcibly driven while the vehicle is stopped. It is determined whether or not there is (step S16).
  • step S16 As the determination processing in step S16, a method similar to or equivalent to the method exemplified in the first embodiment, the second embodiment, and the third embodiment can be employed.
  • the controller 54b of the HEV control device 54 is in a cut-off state in which the transmission of power between the engine 20 and the drive wheels 10 and the transmission of power between the electric motor 21 and the drive wheels 10 are cut off. Any device having a function of shifting 1 can be used. Then, the control unit 54b estimates that the vehicle 1 is in the cut-off state and estimates that the cooling water temperature Tw becomes equal to or lower than the forced drive temperature Twc during the cut-off state, or when the vehicle 1 enters the cut-off state. What is necessary is just to drive the engine 20 in order to increase the SOC value when it is estimated and the SOC value is estimated to be equal to or less than the forced drive SOC value during the period of the shut-off state.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Power Engineering (AREA)
  • Sustainable Development (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Automation & Control Theory (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)

Abstract

 HEV制御装置(54)の制御部(54b)は、エンジン(20)と駆動輪(10)との間での動力の伝達、及び電動機(21)と駆動輪(10)との間での動力の伝達を遮断することにより、車両(1)をコースティング走行させる。制御部(54a)は、車両(1)がコースティング走行を行うと推定され、且つコースティング走行中にエンジン(20)の冷却水の温度Twが強制駆動温度以下になると推定される場合、あるいは車両(1)がコースティング走行を行うと推定され、且つコースティング走行中に高圧バッテリ(25)のSOC値が強制駆動SOC値以下になると推定される場合には、高圧バッテリ(25)のSOC値を増加させる。

Description

車両の制御装置 関連出願の相互参照
 本出願は、当該開示内容が参照によって本出願に組み込まれた、2014年10月23日に出願された日本特許出願2014-216276号を基にしている。
 本開示は、動力源としてエンジン及び電動機を備える車両の制御装置に関する。
 この種の車両としては、特許文献1に記載の車両がある。特許文献1に記載の車両は、エンジンと、モータジェネレータと、アクセルペダルの操作量を検出するアクセルポジションセンサと、制御装置とを備えている。
 特許文献1に記載の制御装置は、アクセルペダルポジションセンサを通じてアクセルペダルのオフ操作を検出した際、車載バッテリが満充電状態の場合には、エンジンを停止させた状態で車速保持制御を実行する。車速保持制御は、車速が一定速度で維持されるようにモータを駆動させる制御である。また、特許文献1に記載の制御装置は、アクセルペダルのオフ操作を検出した際、車載バッテリが満充電状態でない場合には、エンジンを停止させた状態で減速度可変制御を実行する。減速度可変制御は、車速が徐々に減少するようにモータを駆動させる制御である。減速度可変制御では、バッテリのSOC値(state of charge:充電状態)が小さくなるほど、減速度を大きくする。特許文献1に記載の装置は、速度保持制御又は減速度可変制御の実行中にアクセルペダルのオン操作を検出した場合、エンジンを再始動させる。これらの速度保持制御及び減速度可変制御の実行により、燃費を向上させることができる。
特許第4079077号公報
 ところで、特許文献1に記載の制御装置では、速度保持制御又は減速度可変制御が行われている間、エンジンが駆動していないため、エンジンの冷却水の温度が低下していく。冷却水の温度が低下すると、車両の暖房機能が低下する。その対策として、一般的な制御装置は、その後にエンジンを再始動させた時、冷却水の温度が所定温度以上になるまでエンジンを強制的に駆動させ続ける制御を行う。
 また、制御装置が速度保持制御又は回生発電を伴わない減速度可変制御を行っている間は、バッテリの充電が行われないため、例えばモータジェネレータによる電動機としての駆動や補機類の負荷によりSOC値が低下していく。補機類とは、例えばエアーコンディショニング装置やカーナビゲーション装置等の車載機を示す。SOC値が低下して下限値に達すると、一般的な制御装置は、エンジンを強制的に駆動させてバッテリを充電する。
 冷却水の温度低下やSOC値の低下に伴いエンジンが強制駆動している間、制御装置は、アクセルペダルがオフ操作された際にエンジンを停止させることができない。そのため、燃費の改善効果が低下するおそれがある。
 本開示は、こうした実情に鑑みてなされたものであり、その目的は、エンジンの強制駆動による燃費の悪化を抑制することのできる車両の制御装置を提供することにある。
 第1の態様に係る車両の制御装置は、車両の駆動輪に動力を伝達するエンジンと、駆動輪に動力を伝達するとともに、駆動輪から伝達される回生エネルギに基づき回生発電を行う電動機と、エンジンの駆動に基づき発電する発電機と、発電機により発電される電力、及び電動機により回生発電される電力を充電するとともに、車載機に電力を供給するバッテリと、を備えた車両を制御するものである。車両の制御装置は、制御部を備える。この制御部は、エンジンの冷却水の温度が強制駆動温度以下になることに基づきエンジンを強制駆動させるとともに、バッテリのSOC値が強制駆動SOC値以下になることに基づきエンジンを強制駆動させる。また、制御部は、エンジンと駆動輪との間での動力の伝達、及び電動機と駆動輪との間での動力の伝達を遮断する遮断状態に車両を移行させる。そして、車両が遮断状態になると推定され、且つ遮断状態の期間中に冷却水の温度が強制駆動温度以下になると推定される場合、あるいは車両が遮断状態になると推定され、且つ遮断状態の期間中にSOC値が強制駆動SOC値以下になると推定される場合には、制御部がSOC値を増加させる。
 この構成によれば、車両が遮断状態になると推定され、且つ遮断状態の期間中に冷却水の温度が強制駆動温度以下になると推定される場合には、エンジンが駆動するため、冷却水の温度が上昇する。これにより、車両が遮断状態になる前に冷却水の温度を上昇させることができるため、その後に車両が実際に遮断状態になった際に冷却水の温度が強制駆動温度以下になり難くなる。よって、エンジンの強制駆動に起因する燃費の悪化を抑制することができる。
 また、車両が遮断状態になると推定され、且つ遮断状態の期間中にバッテリのSOC値が強制駆動SOC値以下になると推定される場合には、エンジンが駆動するため、バッテリのSOC値が増加する。これにより、車両が遮断状態になる前にSOC値が増加するため、その後に車両が実際に遮断状態になった際にSOC値が強制駆動SOC値以下になり難くなる。よって、エンジンの強制駆動に起因する燃費の悪化を抑制することができる。
車両の制御装置の第1実施形態についてその概略構成を示すブロック図。 (a)~(d)は、参考例としての車両の制御装置について車速V、エンジン回転速度Ne、冷却水の温度Tw、及び高圧バッテリのSOC値の推移を示すタイミングチャート。 第1実施形態の車両の制御装置についてHEV制御装置により実行される処理の手順を示すフローチャート。 第1実施形態の車両の制御装置について高圧バッテリの充電量Cwと、目標SOC値及び現在のSOC値の偏差ΔSOCとの関係を示すマップ。 第1実施形態の車両の制御装置についてエンジン出力の閾値Epthと、車速Vと、車両の前後方向の傾斜角θとの関係を示すマップ。 第1実施形態の車両の制御装置について冷却水の温度Twの推移を示すグラフ。 (a)~(d)は、第1実施形態の車両の制御装置について車速V、エンジン回転速度Ne、冷却水の温度Tw、及び高圧バッテリのSOC値の推移を示すタイミングチャート。 車両の制御装置の第2実施形態についてその概略構成を示すブロック図。 第2実施形態の車両の制御装置について車速閾値Vthと車間距離Dcとの関係を示すマップ。 車両の制御装置の第3実施形態についてその概略構成を示すブロック図。 車両の制御装置の第4実施形態について送風機の風量Wと、冷却水の温度Twとの関係を示すマップ。 第4実施形態の車両の制御装置について電動ポンプの流量Fと、冷却水の温度Twとの関係を示すマップ。 車両の制御装置の第5実施形態についてその概略構成を示すブロック図。 第5実施形態の車両の制御装置について電動ポンプの流量Fと、冷却水の温度Twとの関係を示すマップ。 車両の制御装置の第6実施形態についてその概略構成を示すブロック図。 第6実施形態の車両の制御装置についてサーモスタットの開度と、冷却水の温度Twとの関係を示すマップ。 第6実施形態の車両の制御装置についてサーモスタット駆動温度の変動量ΔTwaと、外気温Todとの関係を示すマップ。 車両の制御装置の第7実施形態についてその概略構成を示すブロック図。 第7実施形態の車両の制御装置についてグリルシャッタの開度と、冷却水の温度Twとの関係を示すマップ。 第7実施形態の車両の制御装置についてグリルシャッタ駆動温度の変動量ΔTwaと、外気温Todとの関係を示すマップ。 車両の制御装置の第8実施形態についてグリルシャッタの開度とヒートポンプの出力との関係を示すマップ。 車両の制御装置の第9実施形態についてHEV制御装置により実行される処理の手順を示すフローチャート。 車両の制御装置の他の実施形態についてHEV制御装置により実行される処理の手順を示すフローチャート。
 (第1実施形態)
 以下、車両の制御装置の第1実施形態について説明する。はじめに、本実施形態の車両1の概要について説明する。
 図1に示されるように、本実施形態の車両1は、駆動システム2と、冷却システム3と、空調装置4とを備えている。
 (駆動システム2の構成)
 駆動システム2は、エンジン20と、電動機21と、変速機22と、デファレンシャルギア23と、発電機24と、高圧バッテリ25と、インバータ26と、SOC(State ofcharge;充電状態)センサ27と、回転速度センサ28とを有している。
 電動機21は、エンジン20の出力軸200の途中に設けられている。電動機21は、エンジン20の出力軸200にトルクを付与することにより出力軸200を回転させる。
 変速機22は、エンジン20の出力軸200の一端部に連結されている。変速機22は、エンジン20から出力軸200を介して伝達される動力をギア段に応じて変速し、出力軸230から出力する。変速機22の出力軸220はデファレンシャルギア23及びドライブシャフト29を介して駆動輪10に連結されている。変速機22はロックアップクラッチ221を有している。ロックアップクラッチ221は、エンジン20の出力軸200と変速機22の出力軸220とを機械的に連結する機能と、その連結を遮断する機能とを有している。
 発電機24の入力軸240は、エンジン20の出力軸200における変速機22が連結される側の端部と反対側の端部にプーリ241を介して連結されている。すなわち、発電機24はエンジン20の駆動に基づき発電する。発電機24は、発電した電力を高圧バッテリ25に充電する。また、発電機24は、発電した電力をDC-DCコンバータ11を介してエンジン冷却システム3の電動ポンプ30や各種車載機13に供給するとともに、低圧バッテリ12に充電する。低圧バッテリ12は、電動ポンプ30や車載機13に電力を供給する。
 高圧バッテリ25は充電電力をインバータ26に供給する。また、高圧バッテリ25は、充電電力をDC-DCコンバータ11を介してエンジン冷却システム3の電動ポンプ30や各種車載機13に供給するとともに、低圧バッテリ12に充電する。よって、電動ポンプ30及び車載機13は、低圧バッテリ12あるいは高圧バッテリ25から供給される電力に基づき駆動する。
 インバータ26は、高圧バッテリ25から供給される直流電力を交流電力に変換し、当該交流電力を電動機21に供給する。
 SOCセンサ27は高圧バッテリ25のSOC値を検出する。SOC値は、完全放電状態を0%とし、満充電状態を100%と定義した上で、高圧バッテリ25の充電状態を0%から100%の範囲で表したものである。
 回転速度センサ28は、エンジン20の出力軸200の回転速度Neを検出する。
 駆動システム2では、エンジン20あるいは電動機21から変速機22及びデファレンシャルギア23を介して駆動輪10に動力が伝達されることにより、駆動輪10が回転する。このように、本実施形態の車両1は、動力源としてエンジン20及び電動機21を備えている。
 駆動システム2では、駆動輪10からデファレンシャルギア23及び変速機22を介して出力軸220に伝達される回生エネルギに基づき電動機21が回生発電を行う。この際、インバータ26は、回生発電を通じて電動機21により生成される交流電力を直流電力に変換し、高圧バッテリ25に充電する。このように、駆動システム2では、回生充電が可能となっている。
 駆動システム2では、ロックアップクラッチ221によりエンジン20の出力軸200と変速機22の出力軸220との間の機械的な連結を遮断することにより、駆動輪10とエンジン20との間の機械的な連結、及び駆動輪10と電動機21との間の機械的な連結を共に遮断することが可能となっている。
 (冷却システム3の構成)
 冷却システム3は、電動ポンプ30と、ラジエータ31と、ヒータコア32と、水温センサ33とを備えている。電動ポンプ30、ラジエータ31、ヒータコア32、及びエンジン20は冷却水配管34により環状に連結されている。
 冷却水配管34には、エンジン20を冷却するための冷却水が流れている。冷却水配管34内の冷却水とエンジン20との間で熱交換が行われることによりエンジン20が冷却される。
 電動ポンプ30は、冷却水配管34内の冷却水を「エンジン20→ヒータコア32→ラジエータ31→電動ポンプ30→エンジン20」の順で循環させる。
 ラジエータ31は、内部を通過する冷却水と外気との間で熱交換を行うことにより、冷却水を冷却する。
 ヒータコア32は、空調装置4の空気通路40内に配置されている。空気通路40は、車内あるいは車外から空気を吸入するとともに、その空気の温度を調整して車内へ吹き出す。ヒータコア32は、内部を流れる冷却水と空気通路40内の空気との間で熱交換を行うことにより、空気通路40内の空気を加熱する。これにより、空気通路40から車内に吹き出される空気の温度が上昇し、車内が暖房される。
 水温センサ33は、冷却水配管34を流れる冷却水の温度Twを検出する。
 (空調装置4の構成)
 空調装置4は、空気通路40と、送風機41とを有している。送風機41は、車外あるいは車内の空気を空気通路40に取り込む。送風機41は、その回転数に応じて空気通路40に取り込まれる空気の流量、換言すれば空気通路40から車内に吹き出される温調空気の風量を調整する。
 (車両1の電気的な構成)
 車両1は、エアコン制御装置50と、エンジン制御装置51と、電動発電機制御装置52と、電源制御装置53と、HEV(Hybrid Electric Vehicle)制御装置54とを備えている。各制御装置50~54はマイクロコンピュータを中心に構成されており、メモリ等を有している。各制御装置50~54は、CAN(Controller Area Network)等の車載ネットワーク55を介して互いに通信可能となっている。
 エアコン制御装置50は、送風機41の駆動制御を通じて空気通路40から車内に吹き出される空気の風量を調整する風量制御を実行する。また、エアコン制御装置50は、電動ポンプ30の駆動制御を通じてヒータコア32を流通する冷却水の流量を調整することにより、空気通路40内を流れる空気の加熱量を調整する、換言すれば車内に吹き出される空気の暖房効果を調整する暖房出力制御を実行する。なお、エアコン制御装置50は、空気通路40内に設けられた図示しない複数のダンパの開度を変更したり、図示しない冷房用熱交換器の駆動を制御することにより、空気通路40内を流れる空気の温度を調整する温調制御等も実行する。
 エンジン制御装置51は、エンジン20のスロットルバルブ開閉制御や燃料噴射制御、点火時期制御等を行う。
 電動発電機制御装置52は、インバータ26により電動機21に供給される電力を制御することにより、電動機21の駆動を制御する。また、電動発電機制御装置52は、発電機24の駆動も制御する。
 電源制御装置53は、高圧バッテリ25の充放電を制御する。具体的には、電源制御装置53は、高圧バッテリ25からインバータ26等に放電される電力を制御する。また、電源制御装置53は、電動機21からインバータ26を介して高圧バッテリ25に充電される電力を制御する。
 車両1は、車両の状態を検出するためのセンサとして、例えばアクセルペダルポジションセンサ60、シフトポジションセンサ61、ブレーキスイッチ62、車速検出部としての車速センサ63、加速度センサ64、及び温度検出部としての温度センサ65を有している。アクセルペダルポジションセンサ60は、アクセルペダルの踏み込み量(アクセル開度)Paを検出する。シフトポジションセンサ61は、シフトレバーのシフトポジションPsを検出する。ブレーキスイッチ62は、ブレーキペダルの踏み込み操作を検出する。車速センサ63は、車両1の速度(車速)Vを検出する。加速度センサ64は、車両1の3軸方向の加速度(車両加速度)Aを検出する。温度センサ65は、車外の温度(外気温)Todを検出する。
 HEV制御装置54は、制御部54bを備えている。HEV制御装置54は、この制御部54bに対し、SOCセンサ27、回転速度センサ28、水温センサ33、アクセルペダルポジションセンサ60、シフトポジションセンサ61、ブレーキスイッチ62、車速センサ63、加速度センサ64、及び温度センサ65のそれぞれの出力を所定の周期で取り込む。HEV制御装置54の制御部54bは、各センサ27,28,33,60~65の検出値に基づいて各種制御量を設定し、設定した各種制御量を制御装置50~53に送信する。この各種制御量に基づき制御装置50~53が制御対象をそれぞれ制御することにより、駆動システム2や冷却システム3、空調装置4が駆動する。
 例えば、HEV制御装置54の制御部54bは、アクセル開度Pa、シフトポジションPs、ブレーキペダルの踏み込み操作の有無、車速V、及び車両加速度A等に基づいて車両1の走行駆動力を演算し、燃料消費量(燃費)を最小としつつ必要な走行駆動力が得られるようにエンジン20及び電動機21のそれぞれのトルク指令値を設定する。HEV制御装置54の制御部54bは、設定したトルク指令値をエンジン制御装置51に送信することにより、エンジン20のトルク制御、並びにエンジン20の駆動制御及び停止制御を行う。また、HEV制御装置54の制御部54bは、設定したトルク指令値を電動発電機制御装置52に送信することにより、電動機21のトルク制御、並びに電動機21の駆動制御及び停止制御を行う。そして、制御部54bは、エンジン20及び電動機21の両者の駆動、あるいはそれらのうちのいずれか一方の駆動により車両1を走行させるハイブリッド(HEV)走行制御を行う。
 HEV制御装置54の制御部54bは、HEV走行制御中にアクセル開度Paが零となった場合、すなわちアクセルペダルがオフ操作された場合、コースティング制御を実行する。具体的には、制御部54bは、ロックアップクラッチ221によりエンジン20の出力軸200と変速機22の出力軸220とを遮断することにより車両1の惰性走行(コースティング走行)を可能とするとともに、エンジン20を停止させる。これにより、アイドル燃料やエンジン20のフリクション損失、電動機21における回生発電時の損失を伴うことなく車両1が走行できるため、燃費を向上させることができる。
 HEV制御装置54の制御部54bは、エンジン20の停止中、冷却水の温度Twが予め定められた強制駆動温度Twc以上であるか否かを判断する。強制駆動温度Twcは、例えば空調装置4において暖房機能を発揮するために必要な冷却水の下限温度に設定されている。制御部54bは、エンジン20が停止している期間に冷却水の温度Twが強制駆動温度Twc以下になった場合、その後にアクセルペダルの踏み込み操作に基づきエンジン20を再始動させる際に、冷却水の温度Twが強制駆動温度Twc以上になるまでエンジン20を強制的に駆動させ続ける。なお、エンジン20の強制駆動とは、例えば上記のHEV制御の実行中にアクセル開度Paが零になった場合でも、冷却水の温度Twが強制駆動温度Twc以上になるまでエンジン20を駆動させ続けることを意味する。
 HEV制御装置54の制御部54bは、エンジン20の駆動中、高圧バッテリ25のSOC値を目標SOC値Sdとすべくエンジン20の駆動を制御する。目標SOC値の基本値Ssは、電動機21により生成される回生電力を高圧バッテリ25に充電する余力を確保するために、例えば60%に設定される。また、制御部54bは、高圧バッテリ25のSOC値と目標SOC値Sdとの偏差が大きくなるほどエンジン20の回転速度Neを増加させることにより、高圧バッテリ25のSOC値を早期に目標SOC値Sdに近づける。
 HEV制御装置54の制御部54bは、エンジン20の停止中、高圧バッテリ25のSOC値が予め設定された強制駆動SOC値以下になると、エンジン20を強制駆動させる。強制駆動SOC値は、目標SOC値の基本値Ssよりも小さい値かなり、例えば40%に設定される。
 図2(a)~(d)は、参考例としての車両1の制御装置について車速V、エンジン回転速度Ne、冷却水の温度Tw、及び高圧バッテリのSOC値の推移を示すタイミングチャートである。図2(a),(b)に示されるように、車両1がコースティング走行している間は、エンジン20が停止している。そのため、図2(c),(d)に示されるように、時間の経過に伴い冷却水の温度Tw及び高圧バッテリ25のSOC値が低下する。これに起因して時刻t1で冷却水の温度Twが強制駆動温度Twc以下になると、それ以降に運転者が時刻t2でアクセルペダルを踏み込んで車両1を加速させた際にエンジン20が強制駆動する。よって、冷却水の温度Twが強制駆動温度Twcを超える時刻t4まで、エンジン20が駆動し続けることになる。この際、運転者が時刻t3でコースティング走行をすべくアクセルペダルをオフ操作したとしても、エンジン20は停止しない。結果的に、参考例に係る車両1の制御装置では、時刻t3から時刻t4までの期間にエンジン20で燃料が消費されるため、コースティング走行による燃費の改善効果が低下する。また、参考例に係る車両1の制御装置では、コースティング走行中の冷却水の温度Twの低下により空調装置4の暖房機能が低下するため、特に冬季において車内の快適性を確保できないおそれがある。
 さらに、参考例に係る車両1の制御装置では、車両1がコースティング走行している間は、車載機13の駆動に伴い高圧バッテリ25のSOC値が低下していく。これに起因して高圧バッテリ25のSOC値が強制駆動SOC値以下になると、エンジン20が強制駆動する。この際も、運転者がコースティング走行をすべくアクセルペダルをオフ操作したとしても、エンジン20が停止しないため、コースティング走行による燃費の改善効果が低下する。
 そこで、本実施形態のHEV制御装置54では、HEV走行中に、コースティング走行が行われるか否かを制御部54bが推定する。そして、制御部54bは、コースティング走行が行われると推定される場合、コースティング走行中に冷却水の温度Twが強制駆動温度Twc以下になるか否か、及び高圧バッテリ25のSOC値が強制駆動SOC値以下になるか否かを判断する。また、制御部54bは、コースティング走行中に冷却水の温度Twが強制駆動温度Twc以下になると推定される場合、あるいはコースティング走行中に高圧バッテリ25のSOC値が強制駆動SOC値以下になると推定される場合、目標SOC値Sdを増加させることにより、高圧バッテリ25のSOC値を予め上昇させる。また、目標SOC値Sdを増加させると、目標SOC値Sdと高圧バッテリ25のSOC値との偏差に応じた電力を発電機24により生成するために、エンジン20が駆動する。そのため、冷却水の温度を予め上昇させることもできる。
 次に、HEV制御装置54による目標SOC値Sdの設定方法について説明する。
 HEV制御装置54は、目標SOC値Sdを設定するに当たり、以下の(a1)~(a5)に示される情報をメモリ54aに記憶している。
 (a1)電動機21の動力に基づく車両1のEV(Electric Vehicle)走行に費やされた消費電力を除く高圧バッテリ25の消費電力の平均値Wa。消費電力平均値Waは電源制御装置53により演算される。電源制御装置53は、例えば現在から所定時間T1前までのEV走行を除く高圧バッテリ25の消費電力を積算し、その積算値に基づいて高圧バッテリ25の消費電力平均値Waを演算する。HEV制御装置54は、電源制御装置53から高圧バッテリ25の消費電力平均値Waの情報を逐次取得し、その情報をメモリ54aに記憶させている。
 (a2)現在から所定時間T1前までの期間におけるコースティング走行開始時の車速Vcsと、そのときのコースティング走行の継続時間Tc。これらの情報は、制御部54bにより検出されてメモリ54aに記憶されている。
 (a3)車両1の走行負荷の平均値Caa。この値はHEV制御装置54の制御部54bにより逐次演算される。制御部54bは、例えばアクセル開度Pa、エンジン20の回転速度Ne、及び車速V等に基づいて車両1の走行負荷を周期的に演算しており、現在から所定時間T1前までの車両1の走行負荷の時系列的なデータに基づき車両1の走行負荷の平均値Caaを演算する。
 (a4)ヒータコア32における冷却水の放熱量の平均値Hra。換言すれば、ヒータコア32の出力の平均値。HEV制御装置54の制御部54bは、水温センサ33により検出される冷却水の温度Twに基づいて、例えば現在から所定時間T1前までの期間におけるヒータコア32での冷却水の放熱量の時系列的なデータを取得し、そのデータに基づいてヒータコア32における冷却水の放熱量の平均値Hraを演算する。
 (a5)現在から所定時間T1前までの期間における冷却水の温度Twの推移。
 (a6)現在から所定時間T1前までの期間における高圧バッテリ25のSOC値の推移。
 制御部54bは、これらの(a1)~(a6)の情報を用いて目標SOC値Sdを補正する。次に、HEV制御装置54による目標SOC値Sdの設定手順について詳述する。
 制御部54bは、車両1がHEV走行している際に、図3に示される処理を所定の演算周期で繰り返し実行する。すなわち、制御部54bは、まず、目標SOC値Sdを基本値Ssに設定する(ステップS10)。次に、制御部54bは、コースティング走行が行われると推定され、且つコースティング走行中にエンジン20が強制駆動する可能性があるか否かを判定する(ステップS11)。具体的には、制御部54bは、以下の(b1)の条件及び(b2)の条件の少なくとも一方が満たされることをもって、コースティング走行が行われると推定され、且つコースティング走行中にエンジン20が強制駆動する可能性があると推定する。
 (b1)冷却水の現在の温度Twが第1温度閾値Tw1以下であり、且つ現在から所定時間T1前までの期間に冷却水の温度Twが第2温度閾値Tw2以下となる状況が発生していること。なお、第2温度閾値Tw2は、冷却水の温度が強制駆動温度Twc付近まで低下したか否かを判断できる値、例えば強制駆動温度Twcよりも若干大きい値に設定される。第1温度閾値Tw1は、例えば第2温度閾値Tw2よりも大きい値に設定される。
 (b2)現在のSOC値が第1閾値S1以下であり、且つ現在から所定時間T1前までの期間にSOC値が第2閾値S2以下となる状況が発生していること。なお、第2閾値S2は、SOC値が強制駆動SOC値付近まで低下したか否かを判断できる値、例えば強制駆動SOC値よりも若干大きい値に設定される。第1閾値S1は、例えば第2閾値S2よりも大きい値に設定される。
 制御部54bは、(b1)の条件及び(b2)の条件の少なくとも一方が満たされる場合、ステップS11の判定処理で肯定判定し(ステップS11:YES)、目標SOC値Sdを補正する(ステップS12)。目標SOC値Sdの補正方法は以下の通りである。
 制御部54bは、まず、次回のコースティング走行時にSOC値の低下に起因するエンジン20の強制駆動を回避すべく、目標SOC値Sdを補正する。具体的には、制御部54bは現在の車速Vを検出する。次に、制御部54bは、現在から所定時間T1前までの期間におけるコースティング走行が開始された際の車速Vcsと、そのときのコースティング走行の継続時間Tcに基づいて、次回のコースティング走行が現在の車速Vで行われたと仮定した際のコースティング走行の推定継続時間Tcfを演算する。制御部54bは、演算した推定継続時間Tcfと高圧バッテリ25の消費電力平均値Waとから以下の式f1に基づいて、次回コースティング走行時における高圧バッテリ25の消費電気エネルギの推定値Eeを演算する。なお、「Ee」の単位は[kJ]であり、「Wa」の単位は[kW]であり、「Tcf」の単位は[sec]である。
 Ee=Wa×Tcf (f1)
 制御部54bは、高圧バッテリ25の消費電気エネルギとSOC値の低下量との相関関係に基づいて、演算した消費電気エネルギ推定値Eeから、次回コースティング走行時のSOC値の低下量の推定値(以下、「消費SOC推定値」と略記する)Seを演算する。制御部54bは、演算した消費SOC推定値Seと、強制駆動SOC値Scとに基づいて暫定目標SOC値Sdaを以下の式f2に基づいて演算する。
 Sda=Sc+Se×γ (f2)
 なお、「γ」は1よりも大きい値に設定された安全係数である。
 制御部54bは、演算した暫定目標SOC値Sdaと基本値Ssとを比較し、それらのうちの大きい方を第1目標SOC値Sd1に設定する。第1目標SOC値Sd1は、次回コースティング走行時にSOC値の低下に起因するエンジン20の強制駆動を回避することの可能なSOC値である。
 次に、制御部54bは、次回コースティング走行時に冷却水の温度Twの低下に起因するエンジン20の強制駆動を回避すべく、第1目標SOC値Sd1を更に補正する必要があるか否かを判定する。
 具体的には、制御部54bは、ヒータコア32における冷却水の放熱量の平均値Hraと、現在の車速Vと、現在の外気温Todとに基づき、次回コースティング走行時における冷却水の推定放熱量Hreを演算する。また、制御部54bは、冷却水の現在の温度Twと、強制駆動温度Twcとの偏差に基づき、冷却水の温度Twが現在値から強制駆動温度Twcに低下するまでに許容される冷却水の許容放熱量Hrbを演算する。制御部54bは、この許容放熱量Hrbと、次回コースティング走行時の冷却水の推定放熱量Hreとから冷却水の不足熱量Hsを以下の式f3に基づき演算する。「Hs」、「Hrb」、及び「Hre」のそれぞれの単位は[kJ]である。
 Hs=Hrb-Hre (f3)
 この不足熱量Hsが、エンジン20による冷却水の加熱量よりも大きい場合、次回コースティング走行時に冷却水の温度Twの低下に起因してエンジン20が強制駆動すると推定することができる。
 ここで、エンジン20による冷却水の加熱量は、エンジン20の消費燃料エネルギに平均冷却水加熱効率Eweを乗算することにより求めることができる。平均冷却水加熱効率Eweは、エンジン20の冷却水の加熱量に対する消費燃料エネルギの比率を示したものであり、予め実験等を通じて求められている。エンジン20の消費燃料エネルギは、エンジン20の出力(仕事量)をエンジン平均効率Eaeで除した値である。エンジン20の出力は、大きくは、車両1の走行のための出力と、発電機24の駆動のための出力とからなる。前者の出力は、エンジンの走行負荷とほぼ相関関係がある。後者の出力は、発電機24の発電量とほぼ相関関係がある。発電機24の発電量は高圧バッテリ25の消費電力量にほぼ等しい。そこで、制御部54bは、高圧バッテリ25の消費電力平均値Waに基づき、現在から所定時間T1までの期間における高圧バッテリ25の消費電力量の平均値Whaを求める。そして、制御部54bは、求めた高圧バッテリ25の消費電力量平均値Wha、車両1の走行負荷の平均値Caa、エンジン平均効率Eae、及び平均冷却水加熱効率Eweから以下の式f4に基づき冷却水の加熱量Hfを演算する。「Hf」、「Wha」、及び「Caa」のそれぞれの単位は[kJ]である。
 Hf=(Wha+Caa)/Eae×Ewe (f4)
 なお、エンジン平均効率Eaeは、エンジン20の全出力に対する全消費燃料エネルギの比率を示すものである。
 制御部54bは、式f3により演算される冷却水の不足熱量Hsから、式f4により演算される冷却水の加熱量Hfを減算し、その減算値「Hs-Hf」が零以下であるか否かを判断する。制御部54bは、減算値「Hs-Hf」が零以下の場合には、次回コースティング走行時に冷却水の温度Twの低下に起因するエンジン20の強制駆動が行われないと推定する。この場合、第1目標SOC値Sd1の追加補正は必要ないため、制御部54bは、目標SOC値Sdを第1目標SOC値Sd1に設定する。
 一方、制御部54bは、減算値「Hs-Hf」が零以上の場合には、次回コースティング走行時に冷却水の温度Twの低下に起因するエンジン20の強制駆動が行われる可能性があると判断する。この場合、制御部54bは、冷却水の不足熱量Hs、冷却水の加熱量Hf、エンジン平均効率Eae、及び平均冷却水加熱効率Eweから以下の式(f5)に基づき追加電力量Whadを演算する。追加電力量Whadは、次回コースティング走行時に冷却水の温度Twが強制駆動温度Twc以下にならないように冷却水を加熱するにあたり、エンジン20を駆動させるのに必要な高圧バッテリ25の充電電力量を表す。
 Whad=(Hs-Hf)×Eae/Ewe (f5)
 制御部54bは、演算した追加電力量WhadからSOC値の補正量Sadを演算する。制御部54bは、第1目標SOC値Sd1に補正量Sadを加算することにより第2目標SOC値Sd2を求める。すなわち、制御部54bは、以下の式f6に基づき第2目標SOC値Sd2を求める。
 Sd2←Sd1+Sad (f6)
 そして、制御部54bは、目標SOC値Sdを第2目標SOC値Sd2に設定する。
 図3に示されるように、制御部54bは、ステップS12の処理で目標SOC値Sdの補正を行った場合、あるいはステップS11の判定処理で否定判定を行った場合(ステップS11:NO)、目標SOC値Sd及び現在のSOC値に基づき高圧バッテリ25の充電量Cwを演算する(ステップS13)。具体的には、制御部54bは、目標SOC値Sdから現在のSOC値を減算することにより、それらの偏差ΔSOCを演算する。制御部54bは、演算した偏差ΔSOCから図4に示されるマップに基づいて高圧バッテリ25の充電量Cwを演算する。なお、図4に示されるマップは予め実験等を通じて求められており、制御部54bのメモリ54aに記憶されている。
 次に、制御部54bは、アクセル開度Paから算出されるドライバ要求パワーに充電量Cwを加算することにより、エンジン出力Epを設定する(ステップS14)。また、制御部54bは、加速度センサ64の検出値に基づき車両1の前後方向の傾斜角(ピッチ方向の傾斜角)θを演算し、この車両1の前後方向の傾斜角θ、現在の車速V、及びエンジン出力Epに基づきエンジン20を駆動させるか否かを判定する(ステップS15)。具体的には、制御部54bは、車両1の前後方向の傾斜角θ及び車速Vから図5に示されるマップに基づいてエンジン出力の閾値Epthを演算する。図5に示されるマップは、車速Vが遅くなるほど、また車両1の傾斜角θが上り方向に大きくなるほど、閾値Epthが小さくなるように設定された三次元マップからなる。図5に示されるマップは予め実験等を通じて求められており、HEV制御装置54のメモリ54aに記憶されている。制御部54bは、ステップS13で演算されたエンジン出力Epが閾値Epthよりも大きい場合には、エンジン20を駆動させる。これに対し、エンジン出力Epが閾値Epth以下の場合には、エンジン20を駆動させずに、電動機21を駆動させる。
 次に、本実施形態の車両1の動作例について説明する。
 図6に示されるように、時刻t10で冷却水の温度Twが第1温度閾値Tw1以下となり、且つ時刻t10から所定時間T1前までの期間に冷却水の温度Twが第2温度閾値Tw2となる状況が発生している場合、制御部54bは、時刻t10で目標SOC値Sdを補正する。具体的には、制御部54bは、目標SOC値Sdを基本値Ssよりも大きい第2目標SOC値Sd2に設定する。
 これにより、高圧バッテリ25のSOC値を目標SOC値Sdに近づけるべくエンジン20が発電機24を駆動させるため、図7(a)~(d)に実線で示されるように、時刻t10以降、コースティング走行が開始される時刻t11までの間に冷却水の温度Twと共に高圧バッテリ25のSOC値が増加する。なお、図7(b)~(d)では、図2のエンジンの回転速度Neの推移、冷却水の温度Twの推移、及び高圧バッテリ25のSOC値の推移を一点鎖線で参考のために示している。図7(c),(d)の実線及び一点鎖線を比較して明らかなように、目標SOC値Sdを補正することにより、コースティング走行が開始される時刻t11での冷却水の温度Twが上昇する。そのため、コースティング走行中に冷却水の温度Twが強制駆動温度Twc以下になり難くなる。
 また、時刻t11以降の時刻t12に運転者が車両1を加速させた際、制御部54bは、時刻t12で冷却水の温度Twが第1温度閾値Tw1となり、且つ時刻t13から所定時間T1前までの期間に冷却水の温度Twが第2温度閾値Tw2となる状況が発生していると判定すると、目標SOC値Sdを補正する。具体的には、制御部54bは、目標SOC値Sdを基本値Ssよりも大きい第2目標SOC値Sd2に設定する。これにより、時刻t12から、コースティング走行が開始される時刻t13までの間に冷却水の温度Twと共に高圧バッテリ25のSOC値が再び増加する。そのため、コースティング走行が開始される時刻t13までに冷却水の温度Twが再度上昇する。これにより、時刻t13以降のコースティング走行の際にも冷却水の温度Twが強制駆動温度Twc以下になり難くなる。
 なお、時刻t10あるいは時刻t12でSOC値が第1閾値S1以下となり、且つその時点から所定時間T1前までの期間にSOC値が第2閾値S2以下となる状況が発生している場合にも、制御部54bは目標SOC値を補正する。そのため、同様に高圧バッテリ25のSOC値が強制駆動SOC値以下になり難くなる。
 以上説明した本実施形態のHEV制御装置54によれば、以下の(1)~(3)に示される作用及び効果を得ることができる。
 (1)コースティング走行中に冷却水の温度Twが強制駆動温度Twc以下になり難くなるとともに、高圧バッテリ25のSOC値が強制駆動SOC値以下になり難くなるため、エンジン20の強制駆動を回避し易くなる。これにより、コースティング走行中にエンジン20が強制駆動する状況が生じ難くなるため、エンジンの強制駆動に起因する燃費の悪化を抑制することができる。
 (2)HEV制御装置54の制御部54bは、上記の(b1)の条件及び(b2)の条件の少なくとも一方が満たされることをもって、コースティング走行が行われると推定し、且つコースティング走行中にエンジン20が強制駆動する可能性があると推定することとした。これにより、冷却水の温度Tw及びSOC値の低下に起因するエンジン20の強制駆動の可能性を容易に推定することができる。
 (3)制御部54bは、上記の(a1)~(a4)の情報に加え、現在の車速V、冷却水の現在の温度Tw、強制駆動温度Twc、及び強制駆動SOC値に基づいて目標SOC値Sdを補正することとした。これにより、コースティング走行中にエンジン20の強制駆動が行われない程度まで冷却水の温度Tw及び高圧バッテリ25のSOC値を増加させるために必要な目標SOC値Sdを、より適切に設定することができる。
 (第2実施形態)
 次に、車両の制御装置の第2実施形態について説明する。以下、第1実施形態との相違点を中心に説明する。
 図8に示されるように、本実施形態の車両1は情報機器9を備えている。情報機器9は、車間距離検出部90と、情報機器制御装置91とを有している。
 車間距離検出部90は、自車両の前方を走行する前方車両と自車両との間の車間距離Dcを検出するための装置である。車間距離検出部90は、例えば車両前方の画像を撮像する撮像装置や、車両前方にレーダを発射してその反射波が戻るまでの時間幅を検出するレーダ装置等を用いることができる。以下、撮像装置により撮像される画像や、レーダ装置により検出される反射波が戻るまでの時間幅の情報を「車間距離Dcを示す情報」と称する。車間距離検出部90は、検出した車間距離Dcを示す情報を情報機器制御装置91に出力する。
 情報機器制御装置91は、車間距離検出部90から送信される車間距離Dcを示す情報に対して各種演算を施し、車間距離Dcを演算する。情報機器制御装置91は、演算した車間距離Dcを介してHEV制御装置54に車載ネットワーク55を送信する。
 HEV制御装置54は、情報機器制御装置91から車間距離Dcの情報を逐次取得する。制御部54bは、コースティング走行による前方車両との接触を回避すべく、アクセル開度Paが零となった際に、車間距離Dcと車速Vとに基づいてコースティング走行が可能か否かを判断する。具体的には、制御部54bは、図9に示されるマップに基づいて車間距離Dcから車速閾値Vthを演算する。なお、図9に示されるマップは、予め実験等を通じて求められており、メモリ54aに記憶されている。制御部54bは、現在の車速Vが車速閾値Vth以下である場合には、コースティング制御を実行する。これに対し、制御部54bは、現在の車速Vが車速閾値Vthよりも大きい場合には、コースティング制御を実行しない。
 制御部54bは、図3に示されるステップS11の処理において、以下の(d1)の条件、及び(d2)の条件のいずれか一方が満たされることをもって、コースティング走行が行われると推定され、且つコースティング走行中にエンジン20が強制駆動する可能性があると推定する。
 (d1)冷却水の現在の温度Twが第1温度閾値Tw1以下であり、且つ現在の車速Vが車速閾値Vth以下であること。
 (d2)現在のSOC値が第1閾値S1以下であり、且つ現在の車速Vが車速閾値Vth以下であること。
 制御部54bは、図3に示されるステップS12の処理において、上記(a2)の情報の代わりに車間距離Dcの情報を用いて次回コースティング走行時の推定継続時間Tcfを演算する。具体的には、制御部54bは、現在の車速Vを検出した後、車間距離Dcに基づいて、次回のコースティング走行が現在の車速Vで行われたと仮定した際のコースティング走行の推定継続時間Tcfを演算する。
 以上説明した本実施形態のHEV制御装置54によれば、上記の(1)に示される作用及び効果に加え、以下の(4)及び(5)に示される作用及び効果を得ることができる。
 (4)HEV制御装置54の制御部54bは、上記の(d1)の条件及び(d2)の条件の少なくとも一方が満たされることをもって、コースティング走行が行われると推定し、且つコースティング走行中にエンジン20が強制駆動する可能性があると推定することとした。これにより、冷却水の温度Tw及びSOC値の低下に起因するエンジン20の強制駆動の可能性を、より高い精度で推定することができる。
 (5)制御部54bは、上記の(a1),(a3),(a4)の情報に加え、現在の車速V、冷却水の現在の温度Tw、強制駆動温度Twc、強制駆動SOC値、及び車間距離Dcに基づいて目標SOC値Sdを補正することとした。これにより、コースティング走行中にエンジン20の強制駆動が行われない程度まで冷却水の温度Tw及び高圧バッテリ25のSOC値を増加させるために必要な目標SOC値Sdを、より適切に設定することができる。
 (第3実施形態)
 次に、車両の制御装置の第3実施形態について説明する。以下、第2実施形態との相違点を中心に説明する。
 図10に示されるように、本実施形態の情報機器9はカーナビゲーション装置92を有している。カーナビゲーション装置92は目的地までの車両の経路案内を行う。
 情報機器制御装置91は、カーナビゲーション装置92から車両1の予想走行ルートの情報を取得するとともに、取得した車両1の予想走行ルートの情報を車載ネットワーク55を介してHEV制御装置54に送信する。
 制御部54bは、加速度センサ64の検出値に基づき車両1の前後方向の傾斜角θを演算し、演算した傾斜角θに基づきコースティング制御を行うか否かを判断する。具体的には、制御部54bは、車両1の前後方向の傾斜角θに基づき車両1が所定角以上の上り坂を走行していると判断した場合には、コースティング制御を実行しない。これは、車両1が上り坂を走行している状況は、コースティング走行に適さない状況だからである。また、制御部54bは、車両1の前後方向の傾斜角θに基づき車両1が所定角以上の下り坂を走行していると判断した場合にも、コースティング制御を実行しない。これは、下り坂でコースティング走行を行った際に、車速Vが速くなりすぎることを回避するためである。
 HEV制御装置54は、情報機器制御装置91から車両1の予想走行ルートの情報を逐次取得している。制御部54bは、図3に示されるステップS11の処理において、以下の(e1)の条件、及び(e2)の条件のいずれか一方が満たされることをもって、コースティング走行が行われると推定され、且つコースティング走行中にエンジン20が強制駆動する可能性があると推定する。
 (e1)冷却水の現在の温度Twが第1温度閾値Tw1以下であり、且つ現在の車速Vが車速閾値Vth以下であり、且つ現在から所定時間先までの予想走行ルートの平均路面勾配が所定範囲内であること。
 (e2)現在のSOC値が第1閾値S1以下であり、且つ現在の車速Vが車速閾値Vth以下であり、且つ現在から所定時間先までの予想走行ルートの平均路面勾配が所定範囲内であること。
 なお、所定の範囲は、制御部54bによりコースティング制御が実行される車両1の傾斜角θに対応した範囲に設定されている。
 制御部54bは、図3に示されるステップS12の処理において、車間距離Dc及び予想走行ルートの情報に基づき次回コースティング走行時の推定継続時間Tcfを演算する。具体的には、制御部54bは、現在の車速Vを検出した後、車間距離Dc及び予想走行ルートに基づいて、仮に次回のコースティング走行が現在の車速Vで行われたとした際のコースティング走行の推定継続時間Tcfを演算する。
 制御部54bは、予想走行ルートの情報から車両1の走行パターンを推定するとともに、推定された車両1の走行パターンに基づいて次回コースティング走行時の冷却水の推定放熱量Hreを推定する。制御部54bは、この次回コースティング走行時の冷却水の推定放熱量Hreと許容放熱量Hrbとから上記の式f3に基づき冷却水の不足熱量Hsを演算する。
 制御部54bは、予想走行ルートの情報から車両1の走行パターンを推定するとともに、推定された車両1の走行パターンに基づいてエンジン20の出力Peを推定する。制御部54bは、上記の式f4に代えて、エンジン20の出力Peの推定値、エンジン平均効率Eae、及び平均冷却水加熱効率Eweから以下の式f4’に基づき冷却水の加熱量Hfを演算する。なお、「Hf」、及び「Pe」の単位は[kJ]である。
 Hf=Pe/Eae×Ewe (f4’)
 以上説明した本実施形態のHEV制御装置54によれば、上記(1)の作用及び効果に加え、以下の(6)及び(7)に示される作用及び効果を得ることができる。
 (6)HEV制御装置54の制御部54bは、上記の(e1)の条件及び(e2)の条件の少なくとも一方が満たされることをもって、コースティング走行が行われると推定し、且つコースティング走行中にエンジン20が強制駆動する可能性があると推定することとした。これにより、冷却水の温度Tw及びSOC値の低下に起因するエンジン20の強制駆動の可能性を、より高い精度で推定することができる。
 (7)制御部54bは、現在の車速V、冷却水の現在の温度Tw、強制駆動温度Twc、強制駆動SOC値、車間距離Dc、及び車両1の予想走行ルートに基づいて目標SOC値Sdを補正することとした。これにより、コースティング走行中にエンジン20の強制駆動が行われない程度まで冷却水の温度Tw及び高圧バッテリ25のSOC値を増加させるために必要な目標SOC値Sdを、より適切に設定することができる。
 (第4実施形態)
 次に、車両の制御装置の第4実施形態について説明する。以下、上記各実施形態との相違点を中心に説明する。
 第1~第3実施形態のHEV制御装置54は、エンジン20の強制駆動を回避するために、次回のコースティング走行が行われる前に冷却水の温度Twを予め上昇させるものであった。これに対し、本実施形態のHEV制御装置54は、冷却水の温度Twの低下を抑制することにより、エンジン20の強制駆動を回避する。以下、その詳細を説明する。
 本実施形態のHEV制御装置54は、冷却水の温度Twが第3温度閾値Tw3以下である場合、空調装置4の暖房出力を低減あるいは停止させるべくエアコン制御装置50に対して制御指令を通知する。第3温度閾値Tw3は、コースティング走行中に冷却水の温度Twが強制駆動温度Twc以下にならないように、予め実験等を通じて設定されている。
 具体的には、HEV制御装置54の制御部54bは、図11に示されるように、冷却水の温度Twが第3温度閾値Tw3以下である場合、冷却水の温度Twが低下するほど送風機41の風量Wを上限値Wmaxから零まで減少させる。なお、送風機41の風量Wが零の状態とは、空調装置4の出力が停止した状態を意味する。
 また、制御部54bは、図12に示されるように、冷却水の温度Twが第3温度閾値Tw3以下である場合、冷却水の温度Twが低下するほど、電動ポンプ30の流量Fを上限値Fmaxから下限値Fminまで減少させる。下限値Fminは、エンジン20の冷却のために必要な最低限の流量に設定されている。
 以上説明した本実施形態のHEV制御装置54によれば、以下の(8)に示される作用及び効果を更に得ることができる。
 (8)電動ポンプ30の流量Fを減少させることにより冷却水の温度Twの低下を抑制することができるため、コースティング走行中に冷却水の温度Twが強制駆動温度Twc以下になり難くなる。これにより、エンジン20の強制駆動に起因する燃費の悪化を、より的確に抑制することができる。
 (第5実施形態)
 次に、車両の制御装置の第5実施形態について説明する。以下、上記各実施形態との相違点を中心に説明する。
 図13に示されるように、本実施形態の車両1は、電気暖房装置としてのヒートポンプ7を備えている。ヒートポンプ7は、電動コンプレッサ70と、コンデンサ71と、膨張弁72と、ラジエータ31とを有している。電動コンプレッサ70、コンデンサ71、膨張弁72、ラジエータ31は配管73を介して環状に接続されている。
 電動コンプレッサ70は、配管73内の熱媒体を圧縮して熱媒体の温度を上昇させるとともに、配管73内の熱媒体を「電動コンプレッサ70→コンデンサ71→膨張弁72→ラジエータ31→電動コンプレッサ70」の順で循環させる。なお、電動コンプレッサ70は、低圧バッテリ12から動作電源を得ている。コンデンサ71は、空調装置4の空気通路40内に配置されており、電動コンプレッサ70を通じて温度上昇した熱媒体と空気通路40内の空気との間で熱交換を行うことにより、空気通路40内の空気を加熱する。この加熱された空気が車内に吹き出されることにより、車内が暖房される。膨張弁72は、コンデンサ71にて放熱された熱媒体を膨張させてその温度を低下させる。ラジエータ31は、膨張弁72にて膨張して温度低下した熱媒体と外気との間で熱交換を行うことにより熱媒体の温度を上昇させる。
 エアコン制御装置50は、電動コンプレッサ70の駆動制御を通じてヒートポンプ7の動作を制御する。
 HEV制御装置54の制御部54bは、車両走行中にアクセル開度Paが零になった際、冷却水の温度Twが第4温度閾値Tw4以下である場合には、電動機21にて回生発電を行うとともに、例えば図14に示されるように電動ポンプ30の流量を減少させて空調装置4の暖房出力を絞る。また、制御部54bは、空調装置4の暖房低下分を補うように、ヒートポンプ7の暖房出力を上昇させる。なお、電動機21の回生電力はヒートポンプ7の電動コンプレッサ70の駆動のために用いられるが、余剰分は高圧バッテリ25や低圧バッテリ12に充電される。
 以上説明した本実施形態のHEV制御装置54によれば、以下の(9)に示される作用及び効果を更に得ることができる。
 (9)電動ポンプ30の流量を減少させることにより冷却水の温度Twの低下を抑制することができるため、コースティング走行中に冷却水の温度Twが強制駆動温度Twc以下になり難くなる。これにより、エンジン20の強制駆動に起因する燃費の悪化を、より的確に抑制することができる。
 (第6実施形態)
 次に、車両の制御装置の第6実施形態について説明する。以下、上記各実施形態との相違点を中心に説明する。
 図15に示されるように、本実施形態の冷却システム3は、冷却媒体をヒータコア32からラジエータ31を介さずに電動ポンプ30へと直接流すためのバイパス配管34aを有している。また、冷却システム3は、冷却水配管34におけるラジエータ31の出口側の部分に電動式のサーモスタット34bを有している。サーモスタット34bは、冷却水配管34を開閉させることにより、ラジエータ31への冷却水の流通及び当該流通の遮断を切り替える。サーモスタット34bの駆動は、エンジン制御装置51により制御されている。
 エンジン制御装置51は水温センサ33の検出値を取り込む。エンジン制御装置51は、図16に実線で示されるように、冷却水の温度Twがサーモスタット駆動温度Twsよりも低い場合、サーモスタット34bを閉状態とする。これにより、ヒータコア32を通過した冷却媒体はラジエータ31を通過せずに電動ポンプ30へと流れるため、冷却水の温度Twの低下が抑制され、エンジン20の暖気を早めることができる。エンジン制御装置51は、HEV制御装置54から送信される変動量ΔTwaに基づきサーモスタット駆動温度Twsを変動させる。
 HEV制御装置54の制御部54bは、図17に示されるように、外気温Todが温度閾値Tod1よりも低くなるほど、変動量ΔTwaを所定値ΔTw1まで増加させる。
 以上説明した本実施形態のHEV制御装置54によれば、以下の(10)に示される作用及び効果を更に得ることができる。
 (10)外気温Todが低くなるほど、サーモスタット駆動温度Twsが大きくなる。すなわち、外気温Todが低くなるほど、サーモスタット34bが閉状態になり始める冷却水の温度Twが上昇する。これにより、冷却水の温度Twの低下を抑制することができるため、コースティング走行中に冷却水の温度Twが強制駆動温度Twc以下になり難くなる。よって、エンジン20の強制駆動に起因する燃費の悪化を、より的確に抑制することができる。
 (第7実施形態)
 次に、車両の制御装置の第7実施形態について説明する。以下、上記各実施形態との相違点を中心に説明する。
 一般に、車両には、エンジンルームの前面にフロントグリルが設けられており、このフロントグリルに設けられた開口部からエンジンルーム内に冷却用の外気を導入している。本実施形態の車両1は、図18に示されるように、図示しないフロントグリルの開口部に設けられたグリルシャッタ8を有している。グリルシャッタ8は、フロントグリルの開口部を開閉させるためのものである。グリルシャッタ8の駆動は、グリルシャッタ制御装置56により制御されている。
 グリルシャッタ制御装置56は、基本的には、車両1の空気抵抗を低減するためにグリルシャッタ8を閉状態にしている。また、グリルシャッタ制御装置56は、水温センサ33の検出値を取り込んでいる。グリルシャッタ制御装置56は、図19に示されるように、冷却水の温度Twがグリルシャッタ駆動温度Twg以上になると、冷却水の温度Twを低下させるべく、グリルシャッタ8を開状態とする。グリルシャッタ制御装置56は、HEV制御装置54から送信される変動量ΔTwbに基づきグリルシャッタ駆動温度Twgを変動させる。
 HEV制御装置54の制御部54bは、図20に示されるように、外気温Todが温度閾値Tod2よりも低くなるほど、変動量ΔTwbを所定値ΔTw2まで増加させる。
 以上説明した本実施形態のHEV制御装置54によれば、以下の(11)に示される作用及び効果を更に得ることができる。
 (11)外気温Todが低くなるほど、グリルシャッタ駆動温度Twgが大きくなる。すなわち、外気温Todが低くなるほど、グリルシャッタ8が閉状態になり始める冷却水の温度Twが上昇する。これにより、冷却水の温度Twの低下を抑制することができるため、コースティング走行中に冷却水の温度Twが強制駆動温度Twc以下になり難くなる。よって、エンジン20の強制駆動に起因する燃費の悪化を、より的確に抑制することができる。
 (第8実施形態)
 次に、車両の制御装置の第8実施形態について説明する。以下、上記各実施形態との相違点を中心に説明する。
 本実施形態のHEV制御装置54は、ヒートポンプ7が駆動している場合には、グリルシャッタ8を開状態とすべき旨の指令をグリルシャッタ制御装置56に送信する。あるいは、HEV制御装置54は、図21に示されるように、ヒートポンプ7の出力が大きくなるほどグリルシャッタ8の開度を段階的に大きくなるように変化させる旨の指令をグリルシャッタ制御装置56に送信する。
 以上説明した本実施形態のHEV制御装置54によれば、以下の(12)に示される作用及び効果を更に得ることができる。
 (12)グリルシャッタ8が閉状態の場合、ラジエータ31において外気との熱交換が行われ難くなる。そのため、ヒートポンプ7の駆動時にグリルシャッタ8が閉状態になると、ヒートポンプ7のCOP(Coefficient Of Performance)が低下するおそれがある。この点、本実施形態では、ヒートポンプ7の駆動時にグリルシャッタ8が開状態となるか、あるいはグリルシャッタ8の開度が大きくなるため、ラジエータ31において外気との熱交換が適切に行われる。結果的に、ヒートポンプ7のCOPの低下を抑制することができる。
 (第9実施形態)
 次に、車両の制御装置の第9実施形態について説明する。以下、上記各実施形態との相違点を中心に説明する。
 本実施形態のHEV制御装置54は、コースティング制御の実行中に図22に示される処理を所定の演算周期で制御部54bが繰り返し実行する。すなわち、HEV制御装置54の制御部54bは、冷却水の温度Twが強制駆動温度Twc以下であるか否かを判断する(ステップS20)。制御部54bは、冷却水の温度Twが強制駆動温度Twc以下である場合には(ステップS20:YES)、エンジン20を強制駆動させる。
 以上説明した本実施形態のHEV制御装置54によれば、以下の(13)に示される作用及び効果を更に得ることができる。
 (13)コースティング走行中に冷却水の温度Twが低下すると、空調装置4の暖房機能が低下するため、空調装置4から車内に吹き出される空気の温度が上昇しない。このような状況では、生暖かい空気が車両乗員に当たることになるため、車両乗員に不快感を与えるおそれがある。この点、上記のようにコースティング制御の実行中に冷却水の温度Twが強制駆動温度Twc以下になった際に即座にエンジン20を強制駆動させれば、アクセルペダルの踏み込み操作が行われた後にエンジンを強制駆動させる場合と比較すると、冷却水の温度Twが上昇し易くなる。これにより、空調装置4の暖房機能を確保することができるため、乗員の快適性を向上させることができる。
 (他の実施形態)
 上記各実施形態は、以下の形態にて実施することもできる。
 上記第3実施形態では、カーナビゲーション装置92の予想走行ルートの情報のみに基づいて次回コースティング走行時の推定継続時間Tcfを推定してもよい。例えば、HEV制御装置54の制御部54bは、コースティング走行が行われる都度、その継続時間と、走行ルートとを学習する。そして、制御部54bは、その学習した継続時間と予想走行ルートとに基づいて、次回コースティング走行時の推定継続時間Tcfを推定してもよい。
 上記第1~第3実施形態では、目標SOC値Sdを増加させることにより、高圧バッテリ25のSOC値及び冷却水の温度Twを上昇させたが、高圧バッテリ25のSOC値及び冷却水の温度Twを上昇させる方法は適宜変更可能である。例えば高圧バッテリ25のSOC値を予め定められた所定値だけ増加させるようにエンジン20を駆動させることにより、高圧バッテリ25のSOC値及び冷却水の温度Twを上昇させてもよい。
 上記第5~第8実施形態では、ヒートポンプ7に代えて、適宜の電気暖房装置を用いてもよい。
 上記各実施形態の車両1は、電動機21と発電機24とを別々に備えていたが、それらが一体化された電動発電機(モータジェネレータ)を備えるものであってもよい。
 上記各実施形態のHEV制御装置54は、(a1)の情報として、高圧バッテリ25の消費電力の履歴に関連する適宜の情報を用いることができる。
 上記各実施形態のHEV制御装置54は、(a2)の情報として、コースティング走行の継続時間Tcの履歴に関連する適宜の情報を用いることができる。
 上記各実施形態のHEV制御装置54は、(a3)の情報として、車両1の走行負荷の履歴に関連する適宜の情報を用いることができる。
 上記各実施形態のHEV制御装置54は、(a4)の情報として、冷却水の放熱量の履歴に関連する適宜の情報を用いることができる。
 HEV制御装置54がコースティング制御を開始するための条件は適宜変更可能である。
 車両には、停車時にエンジンを停止させる制御を行うものがある。このような車両に対して、上記各実施形態の構成を採用してもよい。具体的には、HEV制御装置54の制御部54bは、図3に示される処理に代えて、図23に示される処理を実行する。なお、図23に示される処理において、図3に示される処理と同一の処理には同一の符号を付すことにより重複する説明を割愛する。図23に示されるように、制御部54bは、目標SOC値Sdを基本値Ssに設定した後(ステップS10)、車両1が停車すると推定され、且つ停車中にエンジン20が強制駆動する可能性があるか否かを判断する(ステップS16)。ステップS16の判断処理としては、第1実施形態、第2実施形態、及び第3実施形態に例示した方法と同様、あるいはそれに準じた方法を採用することができる。このような構成であれば、車両1の停車中におけるエンジン20の強制駆動を回避することができるため、エンジンの強制駆動に起因する燃費の悪化を抑制することができる。要は、HEV制御装置54の制御部54bは、エンジン20と駆動輪10との間での動力の伝達、及び電動機21と駆動輪10との間での動力の伝達を遮断する遮断状態に車両1を移行させる機能を有するものであればよい。そして、制御部54bは、車両1が遮断状態になると推定され、且つ遮断状態の期間中に冷却水の温度Twが強制駆動温度Twc以下になると推定される場合、あるいは車両1が遮断状態になると推定され、且つ遮断状態の期間中にSOC値が強制駆動SOC値以下になると推定される場合に、SOC値を増加させるべくエンジン20を駆動させるものであればよい。
 本開示は上記の具体例に限定されるものではない。すなわち、上記の具体例に、当業者が適宜設計変更を加えたものも、本開示の特徴を備えている限り、本開示の範囲に包含される。例えば、前述した各具体例が備える各要素及びその配置、材料、条件、形状、サイズ等は、例示したものに限定されるわけではなく適宜変更することができる。また、前述した実施形態が備える各要素は、技術的に可能な限りにおいて組み合わせることができ、これらを組み合わせたものも本開示の特徴を含む限り本開示の範囲に包含される。

 

Claims (14)

  1.  車両(1)の駆動輪(10)に動力を伝達するエンジン(20)と、前記駆動輪に動力を伝達するとともに、前記駆動輪から伝達される回生エネルギに基づき回生発電を行う電動機(21)と、前記エンジンの駆動に基づき発電する発電機(24)と、前記発電機により発電される電力、及び前記電動機により回生発電される電力を充電するとともに、車載機(13)に電力を供給するバッテリ(25)とを備えた車両の制御装置であって、
     制御部(54b)を備え、
     前記制御部は、
     前記エンジンの冷却水の温度が強制駆動温度以下になることに基づき前記エンジンを強制駆動させるとともに、
     前記バッテリのSOC値が強制駆動SOC値以下になることに基づき前記エンジンを強制駆動させ、
     前記エンジンと前記駆動輪との間での動力の伝達、及び前記電動機と前記駆動輪との間での動力の伝達を遮断する遮断状態に前記車両を移行させ、
     前記車両が前記遮断状態になると推定され、且つ前記遮断状態の期間中に前記冷却水の温度が前記強制駆動温度以下になると推定される場合、あるいは前記車両が前記遮断状態になると推定され、且つ前記遮断状態の期間中に前記SOC値が前記強制駆動SOC値以下になると推定される場合に、前記SOC値を増加させる車両の制御装置。
  2.  前記冷却水の温度に対して第1温度閾値と、当該第1温度閾値よりも低い温度に設定された第2温度閾値と、前記SOC値に対して第1閾値と、当該第1閾値よりも小さい値に設定された第2閾値と、が設定され、
     前記制御部は、
     現在の冷却水の温度が前記第1温度閾値以下であり、且つ現在から所定時間前までの期間に前記冷却水の温度が前記第2温度閾値以下になる状況が発生していることをもって、前記車両が前記遮断状態になると推定し、且つ前記遮断状態の期間中に前記冷却水の温度が前記強制駆動温度以下になる状況であると推定するとともに、
     現在のSOC値が前記第1閾値以下であり、且つ現在から前記所定時間前までの期間に前記SOC値が前記第2閾値以下になる状況が発生していることをもって、前記車両が前記遮断状態になると推定し、且つ前記遮断状態の期間中に前記SOC値が前記強制駆動SOC値以下になると推定する請求項1に記載の車両の制御装置。
  3.  前記制御部は、
     前記バッテリのSOC値を目標SOC値に制御するとともに、
     前記目標SOC値を補正させることにより前記バッテリのSOC値を増加させ、
     前記車両に設けられた車速検出部(63)が検出した前記車両の現在の速度、前記車両の走行負荷の履歴、前記冷却水の放熱量の履歴、前記冷却水の現在の温度、前記強制駆動温度、前記強制駆動SOC値、前記バッテリの消費電力の履歴、及び前記遮断状態の継続時間の履歴に基づき前記目標SOC値の補正量を設定する請求項2に記載の車両の制御装置。
  4.  前記制御部は、
     前記車両に設けられた車間距離検出部(60)が検出した前方車両との間の車間距離に基づき車速閾値を設定し、
     前記車両に設けられた車速検出部が検出した前記車両の速度が前記車速閾値以下であり、且つ前記冷却水の現在の温度が温度閾値以下であることをもって、前記車両が前記遮断状態になると推定し、且つ前記遮断状態の期間中に前記冷却水の温度が前記強制駆動温度以下になると推定するとともに、
     前記車両の速度が前記車速閾値以下であり、且つ現在のSOC値が閾値以下であることをもって、前記車両が前記遮断状態になると推定し、且つ前記遮断状態の期間中に前記SOC値が前記強制駆動SOC値以下になると推定する請求項1に記載の車両の制御装置。
  5.  前記制御部は、
     前記バッテリのSOC値を目標SOC値に制御するとともに、
     前記目標SOC値を補正させることにより前記バッテリのSOC値を増加させ、
     前記車両の現在の速度、前記車両の走行負荷の履歴、前記冷却水の放熱量の履歴、前記冷却水の現在の温度、前記強制駆動温度、前記強制駆動SOC値、前記バッテリの消費電力の履歴、及び前記車間距離に基づき前記目標SOC値の補正量を設定する請求項4に記載の車両の制御装置。
  6.  前記制御部は、
     前記車両に設けられて目的地までの前記車両の経路案内を行うカーナビゲーション装置(92)から前記車両の予想走行ルートの情報を取得し、
     前記予想走行ルートの情報に基づき前記車両が前記遮断状態になるか否かを推定する請求項1,4,5のいずれか一項に記載の車両の制御装置。
  7.  前記制御部は、
     前記バッテリのSOC値を目標SOC値に制御するとともに、
     前記目標SOC値を補正することにより前記バッテリのSOC値を増加させ、
     前記予想走行ルートに基づき前記目標SOC値の補正量を設定する請求項6に記載の車両の制御装置。
  8.  前記制御部は、
     前記冷却水の温度が第3温度閾値以下である場合、前記車両に設けられ車内の温度を調整する空調装置(4)の暖房出力を低減、又は停止させる請求項1~7のいずれか一項に記載の車両の制御装置。
  9.  前記制御部は、
     前記車両を前記遮断状態に移行させる条件が満たされた際、前記冷却水の温度が第4温度閾値以下である場合には、前記車両を前記遮断状態に移行させずに前記電動機により回生発電を行うとともに、車内の温度を上昇させる電気暖房装置(7)を駆動させる請求項1~8のいずれか一項に記載の車両の制御装置。
  10.  車外の温度を検出する温度検出部(65)と、前記車両のラジエータへの前記冷却水の流通及び当該流通の遮断を切り替えるサーモスタット(34b)とが前記車両に設けられ、
     前記制御部は、
     前記冷却水の温度がサーモスタット駆動温度以下の場合には、前記ラジエータへの前記冷却水の流通が遮断されるように前記サーモスタットを駆動させるものであり、
     前記車外の温度が低くなるほど、前記サーモスタット駆動温度を高くする請求項1~9のいずれか一項に記載の車両の制御装置。
  11.  車外の温度を検出する温度検出部と、前記車両のフロントグリルの開口部に設けられ、当該開口部を開閉させるグリルシャッタ(8)とが前記車両に設けられ、
     前記制御部は、
     前記冷却水の温度がグリルシャッタ駆動温度以上の場合には、前記グリルシャッタを開状態とし、
     前記車外の温度が低くなるほど、前記グリルシャッタ駆動温度を高くする請求項1~10のいずれか一項に記載の車両の制御装置。
  12.  前記制御部は、
     前記車両に設けられ車内の温度を上昇させるための電気暖房装置の駆動時に、前記グリルシャッタを開状態にする請求項11に記載の車両の制御装置。
  13.  前記制御部は、
     前記車両に設けられ車内の温度を上昇させるための電気暖房装置の駆動時に、前記電気暖房装置の出力に応じて前記グリルシャッタの開度を変化させる請求項11に記載の車両の制御装置。
  14.  前記制御部は、
     前記車両が前記遮断状態となっている間に前記冷却水の温度が前記強制駆動温度以下になった場合、前記エンジンを強制駆動させる請求項1~13のいずれか一項に記載の車両の制御装置。

     
PCT/JP2015/005253 2014-10-23 2015-10-19 車両の制御装置 WO2016063515A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-216276 2014-10-23
JP2014216276A JP6264258B2 (ja) 2014-10-23 2014-10-23 車両の制御装置

Publications (1)

Publication Number Publication Date
WO2016063515A1 true WO2016063515A1 (ja) 2016-04-28

Family

ID=55760574

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/005253 WO2016063515A1 (ja) 2014-10-23 2015-10-19 車両の制御装置

Country Status (2)

Country Link
JP (1) JP6264258B2 (ja)
WO (1) WO2016063515A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016083958A (ja) * 2014-10-23 2016-05-19 株式会社デンソー 車両の制御装置
CN113547909A (zh) * 2021-07-14 2021-10-26 东风柳州汽车有限公司 进气格栅控制方法、装置、设备及存储介质
US11279227B2 (en) 2019-10-03 2022-03-22 Toyota Motor Engineering & Manufacturing North America, Inc. Rotatable drive axle assembly for an electric vehicle
US11305640B2 (en) 2019-10-03 2022-04-19 Toyota Motor Engineering & Manufacturing North America, Inc. Vehicle caravan of electric vehicles configured for coordinated movement and airflow control and method of using
US11447006B2 (en) 2019-10-03 2022-09-20 Toyota Motor Engineering & Manufacturing North America, Inc. Electric or hybrid electric vehicle having adjustable vertical electric drive motor and method of making and using
US11560053B2 (en) 2019-10-03 2023-01-24 Toyota Motor Engineering & Manufacturing North America, Inc. Electric vehicle comprising a vertical electric propulsion motor and method of making and using the same
CN116997493A (zh) * 2021-02-18 2023-11-03 日产自动车株式会社 混合动力车辆控制方法及混合动力车辆控制装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6589906B2 (ja) * 2017-02-16 2019-10-16 トヨタ自動車株式会社 内燃機関の制御装置
KR102444663B1 (ko) * 2017-11-07 2022-09-19 현대자동차주식회사 하이브리드 자동차 및 그를 위한 난방 제어 방법
JP7079668B2 (ja) * 2018-06-14 2022-06-02 本田技研工業株式会社 車両の熱管理システム

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0473473A (ja) * 1990-07-12 1992-03-09 Nippondenso Co Ltd 内燃機関の冷却液制御装置
JPH08126116A (ja) * 1994-10-25 1996-05-17 Aqueous Res:Kk ハイブリッド車両
JP2006306231A (ja) * 2005-04-27 2006-11-09 Equos Research Co Ltd ハイブリッド車両
JP2007055493A (ja) * 2005-08-25 2007-03-08 Toyota Motor Corp 車両およびその制御方法
JP2007331599A (ja) * 2006-06-15 2007-12-27 Nissan Motor Co Ltd ハイブリッド車両の伝動状態切り替え制御装置
JP2009180103A (ja) * 2008-01-29 2009-08-13 Toyota Motor Corp 冷却液循環装置
JP2011190761A (ja) * 2010-03-16 2011-09-29 Aisin Aw Co Ltd 運転支援装置、方法およびプログラム
JP2013163496A (ja) * 2012-02-13 2013-08-22 Denso Corp ハイブリッド車両の制御装置
JP2014054973A (ja) * 2012-09-12 2014-03-27 Hyundai Motor Company Co Ltd ハイブリッド自動車のバッテリ充電方法およびシステム
JP2014095300A (ja) * 2012-11-07 2014-05-22 Aisin Seiki Co Ltd グリルシャッター制御装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3211699B2 (ja) * 1996-09-17 2001-09-25 トヨタ自動車株式会社 動力出力装置
JP2001268719A (ja) * 2000-03-23 2001-09-28 Toyota Motor Corp ハイブリッド車両のバッテリ充電制御装置
JP2014184799A (ja) * 2013-03-22 2014-10-02 Toyota Motor Corp 電動車両の走行制御装置
JP6264258B2 (ja) * 2014-10-23 2018-01-24 株式会社デンソー 車両の制御装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0473473A (ja) * 1990-07-12 1992-03-09 Nippondenso Co Ltd 内燃機関の冷却液制御装置
JPH08126116A (ja) * 1994-10-25 1996-05-17 Aqueous Res:Kk ハイブリッド車両
JP2006306231A (ja) * 2005-04-27 2006-11-09 Equos Research Co Ltd ハイブリッド車両
JP2007055493A (ja) * 2005-08-25 2007-03-08 Toyota Motor Corp 車両およびその制御方法
JP2007331599A (ja) * 2006-06-15 2007-12-27 Nissan Motor Co Ltd ハイブリッド車両の伝動状態切り替え制御装置
JP2009180103A (ja) * 2008-01-29 2009-08-13 Toyota Motor Corp 冷却液循環装置
JP2011190761A (ja) * 2010-03-16 2011-09-29 Aisin Aw Co Ltd 運転支援装置、方法およびプログラム
JP2013163496A (ja) * 2012-02-13 2013-08-22 Denso Corp ハイブリッド車両の制御装置
JP2014054973A (ja) * 2012-09-12 2014-03-27 Hyundai Motor Company Co Ltd ハイブリッド自動車のバッテリ充電方法およびシステム
JP2014095300A (ja) * 2012-11-07 2014-05-22 Aisin Seiki Co Ltd グリルシャッター制御装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016083958A (ja) * 2014-10-23 2016-05-19 株式会社デンソー 車両の制御装置
US11279227B2 (en) 2019-10-03 2022-03-22 Toyota Motor Engineering & Manufacturing North America, Inc. Rotatable drive axle assembly for an electric vehicle
US11305640B2 (en) 2019-10-03 2022-04-19 Toyota Motor Engineering & Manufacturing North America, Inc. Vehicle caravan of electric vehicles configured for coordinated movement and airflow control and method of using
US11447006B2 (en) 2019-10-03 2022-09-20 Toyota Motor Engineering & Manufacturing North America, Inc. Electric or hybrid electric vehicle having adjustable vertical electric drive motor and method of making and using
US11560053B2 (en) 2019-10-03 2023-01-24 Toyota Motor Engineering & Manufacturing North America, Inc. Electric vehicle comprising a vertical electric propulsion motor and method of making and using the same
CN116997493A (zh) * 2021-02-18 2023-11-03 日产自动车株式会社 混合动力车辆控制方法及混合动力车辆控制装置
CN113547909A (zh) * 2021-07-14 2021-10-26 东风柳州汽车有限公司 进气格栅控制方法、装置、设备及存储介质

Also Published As

Publication number Publication date
JP2016083958A (ja) 2016-05-19
JP6264258B2 (ja) 2018-01-24

Similar Documents

Publication Publication Date Title
JP6264258B2 (ja) 車両の制御装置
WO2016098327A1 (ja) ハイブリッド車の制御装置
JP4678139B2 (ja) 自動車の暖房制御システム
JP6056789B2 (ja) 電気自動車の回生制動制御装置
JP6406215B2 (ja) 車両の制御装置
WO2017098799A1 (ja) 車両の制御装置
US8919468B2 (en) Driving-power control device for vehicle
JP5928576B2 (ja) ハイブリッド車両の制御装置
US20150274022A1 (en) Power generation control device
US10639962B2 (en) Air-conditioner for vehicle
JP6136474B2 (ja) ハイブリッド車の制御装置
JP5664456B2 (ja) 車両
US10696140B2 (en) Air conditioner for vehicle
KR101898848B1 (ko) 차량 주행 제어 방법 및 차량 주행 제어 장치
JP2007154842A (ja) 車両用冷却システムおよびその制御方法
JP2015137032A (ja) 車両
JP3894166B2 (ja) 自動車
JP2007326432A (ja) ハイブリッド自動車用エンジン冷却システム
JP7373265B2 (ja) 制御装置
JP5502702B2 (ja) ハイブリッド自動車
JP6531515B2 (ja) ハイブリッド自動車
JP2017030661A (ja) 車両走行制御方法及び車両走行制御装置
JP6070531B2 (ja) ハイブリッド車の制御装置
JP6032192B2 (ja) ハイブリッド車の制御装置
JP2011101510A (ja) バッテリ装置およびバッテリの昇温方法並びに車両

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15853349

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15853349

Country of ref document: EP

Kind code of ref document: A1