WO2016062896A1 - Mèches poudrées par procédé électrostatique - Google Patents

Mèches poudrées par procédé électrostatique Download PDF

Info

Publication number
WO2016062896A1
WO2016062896A1 PCT/EP2015/074734 EP2015074734W WO2016062896A1 WO 2016062896 A1 WO2016062896 A1 WO 2016062896A1 EP 2015074734 W EP2015074734 W EP 2015074734W WO 2016062896 A1 WO2016062896 A1 WO 2016062896A1
Authority
WO
WIPO (PCT)
Prior art keywords
ribbon
wick
width
polymer
filaments
Prior art date
Application number
PCT/EP2015/074734
Other languages
English (en)
Inventor
Romain PELLET
Grégory Merle
Original Assignee
Porcher Industries
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=52007209&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2016062896(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority to EP15785102.3A priority Critical patent/EP3209473B1/fr
Priority to ES15785102T priority patent/ES2859728T3/es
Priority to MX2017005352A priority patent/MX2017005352A/es
Priority to RU2017113762A priority patent/RU2703213C9/ru
Priority to JP2017521566A priority patent/JP6730270B2/ja
Priority to US15/521,473 priority patent/US10538015B2/en
Priority to BR112017008256-0A priority patent/BR112017008256B1/pt
Application filed by Porcher Industries filed Critical Porcher Industries
Priority to CN201580062689.3A priority patent/CN107107395B/zh
Priority to CN202011079562.1A priority patent/CN112454736B/zh
Priority to DK15785102.3T priority patent/DK3209473T3/da
Priority to CA2965448A priority patent/CA2965448C/fr
Publication of WO2016062896A1 publication Critical patent/WO2016062896A1/fr
Priority to IL251752A priority patent/IL251752B/en
Priority to US16/731,927 priority patent/US11518068B2/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B15/00Pretreatment of the material to be shaped, not covered by groups B29B7/00 - B29B13/00
    • B29B15/08Pretreatment of the material to be shaped, not covered by groups B29B7/00 - B29B13/00 of reinforcements or fillers
    • B29B15/10Coating or impregnating independently of the moulding or shaping step
    • B29B15/12Coating or impregnating independently of the moulding or shaping step of reinforcements of indefinite length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B15/00Pretreatment of the material to be shaped, not covered by groups B29B7/00 - B29B13/00
    • B29B15/08Pretreatment of the material to be shaped, not covered by groups B29B7/00 - B29B13/00 of reinforcements or fillers
    • B29B15/10Coating or impregnating independently of the moulding or shaping step
    • B29B15/12Coating or impregnating independently of the moulding or shaping step of reinforcements of indefinite length
    • B29B15/122Coating or impregnating independently of the moulding or shaping step of reinforcements of indefinite length with a matrix in liquid form, e.g. as melt, solution or latex
    • B29B15/125Coating or impregnating independently of the moulding or shaping step of reinforcements of indefinite length with a matrix in liquid form, e.g. as melt, solution or latex by dipping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/22Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of indefinite length
    • B29C43/24Calendering
    • B29C43/245Adjusting calender parameters, e.g. bank quantity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/58Measuring, controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/58Measuring, controlling or regulating
    • B29C2043/5825Measuring, controlling or regulating dimensions or shape, e.g. size, thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2307/00Use of elements other than metals as reinforcement
    • B29K2307/04Carbon

Definitions

  • the present invention relates to the technical field of composites with continuous reinforcement with thermoplastic or thermosetting organic matrix. It relates more particularly to semi-products used in the manufacture of composite materials by automated fiber placement (AFP) or by filament winding, pultrusion, braiding, 3D printer. These composites are intended for "indirect” processes, which means that the entire organic matrix of the final composite is already on the semi-finished product.
  • AFP automated fiber placement
  • filament winding, pultrusion, braiding, 3D printer 3D printer.
  • This type of product is usually obtained in several steps that can be done separately or online.
  • the first step is to obtain a unidirectional carbon sheet formed of several strands of carbon. Once the filaments are aligned and the surface weight of carbon adjusted, the sheet is immersed in a polymer dispersion in the liquid phase, it is the impregnation phase. Once the filaments loaded with polymer, the web is heated in order to melt the polymer and to evacuate the liquid phase. Finally, once the web consolidated, it is cut into ribbon width controlled, and then wound on reels.
  • the major drawbacks of this method is that the cutting makes that filaments may protrude from the edges of the ribbon and that if the cut is not perfectly parallel to the filaments, the latter are not rigorously oriented in the longitudinal direction of the ribbon.
  • EP 1 007 309 describes the production of continuous ribbons by impregnating strands of inorganic material, carbon or glass type, in a polymer bath with application of shear. This process is directed to the production of ribbon for the indirect process, with a polymer content ranging from 25 to 75% by weight.
  • Example 1 describes the passage of a wick of glass threads in an impregnation bath, then in a die of rectangular section of dimensions 0.64 cm x 0.023 cm, to produce a ribbon having these dimensions.
  • An object of the invention is to produce and provide a large length of reinforcement tape in one piece, without cutting and without splicing, which can reach the length of the wick of the supply reel, for example able to reach and exceed the 1000 meters, while having a very regular width that can be characterized by a very small standard deviation and / or good management of the distribution of the polymer.
  • Another object of the invention is to produce and provide such a ribbon with a controlled rate of polymer.
  • Another object of the invention is to produce and propose such a ribbon whose constituent filaments are strictly parallel to the longitudinal direction of the ribbon.
  • An object of the invention is therefore to provide a method for making such a ribbon continuously.
  • Another object of the invention is to produce and provide such a ribbon which is flexible, especially whose flexibility can easily be adjusted, and preferably which is non-brittle.
  • Yet another object of the invention is to produce and propose such a ribbon at a competitive cost.
  • the subject of the present invention is a process for manufacturing a ribbon of reinforcing filaments impregnated with a thermoplastic or thermosetting polymer matrix, which ribbon has a constant width throughout its length, in which the filaments extend in a parallel direction. to the length of the ribbon.
  • This method may apply to the treatment of a wick from a supply coil or, simultaneously and parallel to several (2 or more) wicks from as many feed coils.
  • the supply coils can be in particular of a commonly used type, most commonly a cross reel (the wick is wound with a crank and crosswise) or possibly a reel with simple slicing.
  • This method is characterized in that it comprises, for each wick (one or more wicks that can be processed simultaneously), the following manufacturing steps, from a wick supply coil to a ribbon storage spool:
  • a wick is defined as consisting of a set of filaments (or fibers) and comprises from about 1,000 to about 80,000 filaments, preferably from about 3,000 to about 24,000 filaments.
  • the locks used in the context of the invention are preferably made of a material chosen from carbon, ceramics, glasses, silicas, basalts, and aramids, or any other material used in the field of materials.
  • composites, for example filaments or metal fibers, the filaments may be of natural or synthetic origin. Carbon is particularly preferred.
  • Useful ceramics include silicon carbide and refractory oxides, for example, alumina and zirconia.
  • the starting wick may be in a form already flattened or more or less round.
  • the locks are presented in coiled bobbin flat bobbins.
  • one uses carbon wicks comprising from about 1,000 to about 80,000 filaments, preferably from about 3,000 to about 24,000 filaments.
  • the flat composite formed of the wick and the thermoplastic or thermosetting polymer is called a ribbon.
  • this ribbon is advantageously stored on a spool or support directly usable on the depositing robots.
  • the winding can be of the wire-to-wire type (the ribbon is wound edge to edge, this mode is preferred) or of the crossed type.
  • the constituent filaments of the wick or ribbon are preferably continuous.
  • the filaments used generally have a substantially circular cross section (round filaments) or, preferably, substantially parallelepipedal or elliptical (flat filaments).
  • the locks have irregular widths, as described in the table below, giving the width of the carbon locks according to the number of filaments and their title.
  • any type of carbon wire can be used.
  • HR High Resistance
  • IM Intermediate Module
  • HM High Module
  • the voltage between the two coils is managed or adjusted, which means that the wick and the resulting continuous ribbon are kept energized between the supply coil and the storage coil. .
  • the tension along the line and the process may vary according to the steps and devices that the wick and then the ribbon pass through. This tension can in particular be understood and vary between about 5 and about 50 N.
  • the guide of the wick in step b) allows its precise alignment in the machine axis. The guiding step may in particular eliminate the slicing of the wick and / or eliminate the lateral movements associated with the unwinding of a wick wound crosswise on the supply reel.
  • the guidance may use in particular at least one set of at least two bars oriented so as to be able to return the wick from the feed reel to a line or path perfectly aligned with the machine axis (positioning in the axis includes positioning at a given height, which is that of the axis machine), at least until the cooling of the impregnated tape.
  • a set of two bars can be used at 90 °.
  • the first bar is parallel to the axis of the coil, oriented at 90 ° to the direction of travel of the wick, the latter sliding from left to right on the first bar because of the slicing of the supply reel. This first bar allows to adjust the alignment of the wick in the rest of the process.
  • the wick goes into contact with the second bar located below the first, oriented at 90 ° relative to the previous and perpendicular to the machine axis, and which keeps the wick flat and adjust the height of the wick to following the process.
  • the wick has a width that is constantly greater than the width of the final ribbon.
  • the width of the wick is constantly or punctually equal, close to or less than the width of the final ribbon.
  • the wick brought back in the machine axis is spread transversely.
  • the transverse spreading of the wick is wider than the nominal width of the ribbon.
  • This step ensures that the wick, as it is submitted at this stage, always has a width greater than the nominal width of the final ribbon.
  • bars having a diameter of between about 10 mm and about 100 mm may be used.
  • the bars Preferably, the bars have a low abrasion surface, for example chromium, aluminum or ceramic.
  • abrasion surface for example chromium, aluminum or ceramic.
  • the width of the wick is controlled or adjusted in d), which means that the width of the wick is reduced to a predetermined value by passing through a calibration device.
  • the width is reduced to a predetermined value, in particular between the maximum spreading width and the nominal width of the final ribbon.
  • the width after spreading is from about 1.5 to about 4.5, for example from about 2 to about 3 times the nominal width of the final ribbon.
  • the calibration width is from about 10 mm to about 29 mm for a nominal ribbon of about 6.35 mm.
  • step e Downstream of this stage, at a time of its course in which the wick is under high tension (there may be a tension of up to 5 kg per wick), it is preferable in step e) to pull the wick in order to maintain its width and to apply to the wick a forward movement towards the storage reel.
  • This step can in particular be done using a device for gripping the wick and forcing it to move in the opposite direction to the supply reel. In particular, it is possible to use a scarf or similar device.
  • the work done on the wick so far allows to work with initial wicks of very different qualities, having for example a variable width, to ensure a regular powder level and significantly improve the dispersion of width of the final ribbon.
  • a step of measuring the width can be performed with a laser, as will be described later.
  • the running speed of the wick and ribbon may be in particular between about 5 and about 50 m / min, especially between about 10 and about 40 m / min, typically between about 15 and about 35 m / min. This speed is adapted to the different steps, in particular to the dusting step.
  • the grounding f) of the wick, to allow the electrostatic powdering, is advantageously carried out as close as possible to the powdering, so just upstream of this step.
  • the g) powdering step determines the distribution of the matrix in the final ribbon and the fiber / matrix rate in the final composite product.
  • an electrostatic powdering method is used.
  • the wick is grounded, in particular by passing in contact with one or more bars connected to the ground, for example one or more bars of docking.
  • This dusting step comprises a first dry fluidization step. Fluidization involves passing a gas between small polymer particles. When the friction of the gas creates a force sufficient to compensate for the weight of all particles in the bed, it is said that the bed of particles is fluidized. The use of the dry fluidized bed makes it possible to deposit larger amounts of powder and to work with more powder compared to the pressure pots.
  • One or more electrostatic powder spray guns or nozzles using the corona discharge principle is preferably used. This involves applying a high potential difference between the tip of the gun and the part to be covered, which is connected to the ground. The electric field at the tip accelerates the electrons of the surrounding medium by the Coulomb force and ionizes the molecules present in the air. By avalanche effect, a self-sustaining process is obtained which makes the surrounding medium conductive. The powder particles passing through this ionized medium are charged by the accumulation of electrons on their surface. They are then driven by the electric field towards the wick which is connected to the mass. For strands of non-conductive filaments, the conductive surface is made before dusting by misting, metallization or use of a conductive polymer.
  • the deposition of the powder is via the use of one or two gun (s) on which a nozzle, preferably flat, is mounted.
  • a gun s
  • This type of installation creates a cloud of powder around the wick which is itself connected to the ground.
  • the powder that is around the fiber is then attracted by the wick changing its path to create a thin layer of deposit all around the wick.
  • a gun is disposed above the wick, the other below.
  • the guns are controlled via a central unit that allows the two guns to be independently driven.
  • the parameters that can be set are:
  • the adjustment of these parameters makes it possible to adjust the rate of powder deposited on the fiber and the regularity of the deposit.
  • the settings are to be adapted for each wick / die pair.
  • the carbon ribbon is divided into several bundles of filaments during the dusting.
  • a first dusting pass is carried out vertically or in the vicinity of the wick separated in bundles, and that a second dusting pass is carried out a little further, at a location where the line where the ribbon is again joined (the adjacent bundles then tend to come closer together to tend towards the ribbon structure as it was before the bundle separation, except that the polymer was deposited part of which can separate, more or less distinctly, the adjacent beams), to ensure the sheathing of the wick.
  • the number of beams and how to obtain them are discussed below. More details of this embodiment are given in Example 4.
  • ribbon which therefore consists of a fibrous reinforcement oriented in the longitudinal direction impregnated with a polymeric matrix.
  • the length of a ribbon spool may be equal to or substantially equal to the spool of which the thread is issued, with no limit on the length of the thread.
  • the weight ratio of the polymeric matrix applied to the spread wick may especially be between about 20, 25 or 30% and about 75%, especially between about 20, 25 or 30% and about 50% and more particularly between about 30% and about 40%.
  • This particularly high rate makes it possible to use the ribbon in the indirect process. This rate can reach significant values, greater than 30 or 40%, while being flexible and well consolidated, as will be seen below.
  • the polymer that impregnates the fiber is in the form of powder whose grains have a diameter in particular between about 10 ⁇ and about 300 ⁇ and preferably between about 30 ⁇ and about 200 ⁇ .
  • thermoplastic and thermosetting polymers polyamides (in particular PA6, PAI2, PAU, PA6.6, PA 6.10, PA 6.12), copolyamides (CoPA), polyamide-blocks ether or ester (PEBAX, PEBA), polyphthalamides (PPA), polyesters (especially polyethylene terephthalate-PET-, polybutylene terephthalate-PBT-), copolyesters (CoPE), thermoplastic polyurethanes (TPU), polyacetals (POM, ...), polyolefins (especially PP, HDPE, LDPE, LLDPE), polyethersulfones (PES), polysulfones (PSU, ...), polyphenylenesulfones (PPSU, etc.), polyetheretherketones (PEEK) , polyetherketones (PEEK) , polyetherketones (PEEK) , polyetherketones (PEEK) , polyetherketones (PEEK) , polyetherket
  • the thermoplastic material is a thermoplastic material.
  • it may be a high performance thermoplastic material that is to say having a melting point and / or a transformation temperature of greater than or equal to 280 ° C. It can be chosen in particular from PEEK, PPS, PEKK, PEI, or a mixture of at least two of them.
  • thermosetting polymers in powder form having a softening temperature lower than their crosslinking temperature.
  • This type of powder is obtained by uncrosslinked thermosetting polymer formulation and provides a ribbon with a non-crosslinked thermosetting polymer content of between 20, 25 or 30% and 75%.
  • This tape can then be used in a method of automated fiber placement or filament winding, where the crosslinking will be activated once the crosslinking temperature reached.
  • This tape impregnated with thermosetting polymer makes it possible to produce composite parts without an injection or infusion step after placement of the ribbon and also allows storage of unlimited duration at ambient temperature.
  • the melting or softening of the powder can in particular be carried out by passing through one or more, especially 2 ovens, preferably short or medium infrared ovens, just after the dusting step.
  • the regulation of the furnace (s) is preferably in power for a better stability of the process.
  • the settings are to be adapted for each pair wick / matrix but also depending on the speed of travel and the target powder rate.
  • the temperature applied to the polymer is in all cases higher than its melting point (eg for semi-crystalline polymers) or sufficient to pass the powdery polymer in the viscous state for impregnation.
  • the temperature may especially be between 300 and 450 ° C., more particularly between 350 and 450 ° C.
  • Calibration of the ribbon in step i) at a target width is a decisive feature since, for example, variations in width result in non-qualities at the time of automated deposition of the ribbon by the deposition robots to form. Too small a width generates "gap” while a too large width generates "overlap” and jams at the deposition head.
  • the ribbon can be calendered.
  • This calendering can allow alignment on the machine axis or contribute to it.
  • the calendering makes it possible to ensure the impregnation of the wick by the thermoplastic or thermosetting material, which is still in the molten state.
  • the calender is cooled.
  • the temperature of the material at this stage may allow it to be sufficiently fluid to be shaped.
  • the calendering can be achieved by passing the ribbon between at least two cooled rollers whose pressure and temperature can be regulated. In this device, the calendering allows to penetrate more or less the matrix in the ribbon but also, possibly, to spread the ribbon.
  • the impregnation rate accounts for the distribution of the matrix in the transverse direction of the ribbon.
  • a low impregnation rate amounts to having, according to one embodiment, a hollow strip with a distribution of the polymer only at the periphery of the wick (eg carbon), thus forming a polymer sheath (or continuous layer) which protects the filaments and guarantees a very high flexibility to the ribbon.
  • the calender pressure is preferably less than 1 bar, typically it is between about 0.1 and about 0.9 bar, especially between about 0.1 and about 0.6. bar. This type of product is particularly interesting for the draping of complex shapes with very small radii of curvature.
  • a high impregnation rate will correspond, in another embodiment, to a ribbon where the polymer is distributed substantially uniformly between the filaments (e.g., carbon) in the width and thickness direction.
  • the polymer protects the filaments of the ribbon with a sheath, but it does not necessarily form a continuous outer layer as in the previous case.
  • the calender pressure is preferably greater than or equal to 1 bar, typically it is between about 1 and about 4 bar.
  • the temperature parameter can be continuously monitored by the temperature measurement, for example using an infrared pyrometer, at the outlet of the oven and / or before calendering.
  • Step i) may comprise a width calibration of the ribbon by passing through a transverse calibration device or width, or calibration both width and thickness.
  • step i) comprises, on the one hand, the calendering and, on the other hand, the calibration in width, or in width and in thickness.
  • one caliber both in the transverse direction and in thickness Preferably, one caliber both in the transverse direction and in thickness.
  • the calibration is advantageously set to the desired nominal width for the ribbon. Various embodiments will be described later.
  • the cooling takes place gradually between the exit of the oven and the winding. It is not essential to provide a cooling device. It has been seen that the calender at calibration step i) is performed at a sufficient temperature, e.g., between the glass transition temperature and the melting point of the semicrystalline polymer. Before winding, the temperature reached is such that the polymer is no longer deformable, for example it is less than the glass transition temperature Tg of the semicrystalline polymer.
  • the width and / or thickness of the tape can be measured in j) continuously, preferably with its standard deviation, during the manufacture of the tape using the following method. Downstream of its calibration and upstream of its reel storage, spot measurements of width and / or thickness are carried out every x cm (for example every 50 cm or every 1 meter) with the aid of a Laser, the data is processed by a computer processing unit or a computer collecting width values and calculating the standard deviation.
  • a laser formed of a transmitter emitting a line of laser light and a receiver having a line of receptor cells. The transmitter is placed on one side of the ribbon, facing one of its flat faces if the width is measured. The receiver is placed on the other side of the ribbon, facing its other flat face always for width measurement. The shadow of the ribbon projected on the receiver makes it possible to know the width (or the thickness) with a great precision.
  • the winding in step k) consists in winding the ribbon onto supports that are preferably compatible with automated dispensing robots. It can be done in two different ways: in tension or in speed.
  • the spindle carrying the storage spool adapts its speed of rotation according to the tension information of the ribbon, for example raised by a dancer arm.
  • This type of winding makes it possible to have a very clean winding and does not require speed control with the device, such as the scarf, which tows the ribbon at the beginning of the line.
  • the speed of the spindle is entered in setpoint, it is then necessary to slave the winder and the drive device such as the scarf to avoid any problem of tension due to the speed difference. between the two devices. Voltage winding is preferred.
  • the winding and thus the speed of production of the tape may be between about 5 and about 50 m / min, especially between about 10 and about 40 m / min, typically between about 15 and about 35 m / min.
  • the method described in the invention makes it possible to produce a ribbon both from a single lock and from several (2 or more) locks.
  • the surface weight of carbon is increased.
  • at least two, preferably two, carbon ribbons are superimposed to obtain a given mass per unit area.
  • the combination of the two son can be done before dusting at the level of the spreading or after dusting, once the polymer melted. In both cases it is necessary to reproduce the unwinding and guiding elements described earlier. Then, in the first case, the mixture of the filaments of the two threads is made throughout the jams used to spread the threads.
  • a continuous reinforcing tape formed from unidirectional inorganic material filaments, substantially uniformly coated and / or substantially impregnated with a thermoplastic polymer core or thermosetting at a mass ratio of from about 20, 25 or 30% to about 75%, especially from about 20, 25 or 30% to about 50% and more preferably from about 30% to about 40%.
  • the ribbon is of predetermined constant width and controlled, preferably with a standard deviation of between 0.02 and 0.15 mm, preferably between 0.02 and 0.05 (inclusive), over a length of one piece (without splicing) greater than or equal to 100, 500, 1000 or 5000 m, or more.
  • This standard deviation is actually the entire length of ribbon produced from a continuous feed wick length. From a reel of x meters of wick, a ribbon of substantially equal length is produced with the standard width and standard deviation. This standard deviation is typically measured as described above by laser measurement.
  • the ribbon is also continuous throughout its length, without cutting filament and in one piece, ie without splice or "splice". Its component filaments are substantially parallel to the longitudinal direction of the ribbon (or perfectly aligned in the longitudinal direction).
  • This product is intended for indirect processes for making composite parts from one or more tapes.
  • the ribbon has a constant width, which may be in particular between about 2 mm and about 75 mm and more particularly between about 5 mm and about 10 mm.
  • the rate of thermoplastic or thermosetting material can reach significant values, greater than 30 or 40%, while being flexible and well consolidated, as will be seen later.
  • the standard deviation is calculated using the following formula:
  • the width of the ribbon can be measured with its standard deviation continuously during the manufacture of the ribbon using the method described above, which makes it possible to obtain the standard deviation over the total length of the ribbon or on a fraction.
  • outside the production line to characterize a ribbon according to the invention, it is possible to proceed in the same manner, by unwinding the ribbon and by making spot width measurements, for example every 1 m by the laser measurement.
  • the subject of the invention is also an impregnated and / or consolidated continuous ribbon formed of unidirectional inorganic material filaments, preferably made of carbon, uniformly coated and / or impregnated with a core of a thermoplastic or thermosetting polymer, comprising a polymer content included from about 20, 25 or 30% to about 75%, especially from about 20, 25 or 30% to about 50% by weight and preferably from about 30% to about 40% by weight, based on the weight of the strip.
  • This ribbon can be presented in particular in the three forms that will be described, namely hollow, impregnated and substantially consolidated at heart, impregnated and substantially consolidated at heart. with bundles of filaments.
  • the ribbon has a constant width, in particular with a standard deviation of between 0.02 and 0.15 mm, preferably between 0.02 and 0.05 mm (inclusive).
  • the width of this tape may be in particular between about 2 mm and about 75 mm and more particularly between about 5 mm and about 10 mm.
  • the ribbon has an average width in the specification of 6.35 mm ⁇ 0.15 mm with a standard deviation of 0.02 to 0.05 mm, preferably a length of a single piece. , that of the starting wick, especially greater than or equal to 100, 500, 1000 or 5000 m.
  • a ribbon with an average width of 6.35 mm and a standard deviation of between 0.02 and 0.05 mm can be used.
  • the tape is impregnated and consolidated at the periphery, including on its two longitudinal edges (or longitudinal edges), the thermoplastic or thermosetting material impregnating the filaments at the periphery forming a substantially continuous sheath, including the long ribbon edges.
  • this tape has a particular surface state, corresponding to the fact that it is completely or mostly coated with molten or softened polymer which substantially forms a polymer continuum across the ribbon in the direction of the width and in the direction of the length, as illustrated by way of example in FIG. 6.
  • the average thickness of the surface polymer (outer layer) may advantageously be between approximately 10 and approximately 100 ⁇ , preferably between about 25 and about 100 ⁇ .
  • the ribbon comprises a certain proportion of non-polymer impregnated filaments (taken in the polymer) within it.
  • This proportion can in particular represent from about 20, 25 or 30 to about 50% of the total of the ribbon filaments (this can be determined by analysis of the impregnated and non-impregnated surfaces by image processing of sections with adequate magnification; microscopically or any other digital imaging device (camera, camera, etc.) makes it possible to distinguish the bare fiber zones from the impregnated fiber zones taken in the polymer, as well as the polymer zones which are substantially or totally filament-free )).
  • This ribbon is said to be hollow, insofar as the heart of the ribbon is formed of non-impregnated filaments, the heart being thereby non-impregnated or unconsolidated.
  • the tape is impregnated and / or substantially solidified to the core, i.e., it comprises a high proportion of polymer impregnated filaments within it.
  • This proportion can in particular represent from about 80 to about 100% of the total of the ribbon filaments.
  • this ribbon has a particular surface condition, corresponding to the fact that it is partly covered with molten or softened polymer, forming discontinuous phases across the ribbon in the direction of its width and in the direction of its length, as illustrated by way of example in Figure 7.
  • This tape is said impregnated to heart.
  • the proportion of filaments taken in the polymer is between 80% and 99, 98, 97, 96, 95 or 90%. Typical ranges are 90 to 100%, especially 95 to 100%.
  • the average thickness of the surface polymer (outer layer) may advantageously be between about 10 and about 100 ⁇ , preferably between about 25 and about 100 ⁇ .
  • the filaments are distributed in the form of bundles.
  • the filaments extend in the longitudinal direction of the strip in the form of at least two bundles of separate filaments coated with polymer.
  • the beams are notably more or less individualized on the transverse plane. It will be readily understood that the number of beams can be adapted according to the width of the ribbon. Typically 2 to 50, especially 5 to 50, preferably 10 to 30, beams can be provided. The beams are separated from each other by the polymer alone or possibly containing sparse filaments.
  • the impregnated product may be characterized by a distribution of filaments in the form of bundles with a width of between about 200 ⁇ m and about 6000 ⁇ m and a height of between about 50 ⁇ m and about 250 ⁇ m, the spacing of which is between about 25 ⁇ m and about 100 ⁇ m.
  • the fiber bundles are totally or partially impregnated with polymer to form a ribbon which has a strong cohesion in the direction transverse to the fibers.
  • this product retains a thin sheath (outer layer) of polymer.
  • the average thickness of the surface polymer may advantageously be between about 10 and about 100 ⁇ , preferably between about 25 and about 100 ⁇ .
  • the measurement of the impregnation rate can be carried out by image analysis (use of a micrioscope or camera or digital camera, in particular), of a cross-section of the ribbon, by dividing the surface of the tape impregnated with the polymer. by the total surface of the product (impregnated surface + surface of the porosities).
  • image analysis use of a micrioscope or camera or digital camera, in particular
  • impregnation rates typically: hollow product: from about 30% to about 70% and preferably from about 40% to about 60%; impregnated product: from about 70% to about 100% and preferably from about 90 to about 98%; impregnated product with bundle structure: from about 70% to about 100% and preferably from about 90 to about 100%.
  • the thickness measurement of the polymer sheath is performed by the same tools, in particular using a microscope from a cross section of the ribbon (the sample preparation is identical to that intended for the measurement impregnation rate).
  • the flexibility of the ribbon can be characterized by a Taber Model 150D stiffness meter (Taber Industries, North Tonawanda, New York, USA) in accordance with NF ISO 2493-2 (Part 2: Taber Tester). All measurements are made with the No. 1 gauge, referred to as extreme sensitivity, the bending angle used is 7.5 ° and the average of the reference pad is 88.3TSU (Taber Stiffness Unit) for a nominal from 88TSU.
  • Taber Model 150D stiffness meter Tiber Industries, North Tonawanda, New York, USA
  • NF ISO 2493-2 Part 2: Taber Tester
  • the Taber rigidity of the hollow tape with a mass of 250 UT is between about 5 TSU and about 25 TSU and more specifically between about 10 TSU and about 20 TSU.
  • the rigidity of the tape impregnated at heart is between about 45 TSU and about 65 TSU and more specifically between about 50 TSU and about 60 TSU.
  • the same measurement can be carried out with a mass of 500UT on the impregnated tape at heart, the Taber rigidity is then between about 20 TSU and about 40 TSU and more precisely between about 25TSU and about 35TSU.
  • a ribbon according to the invention with a proportion of filaments taken from the polymer matrix of less than 100% has the remarkable characteristic of not breaking when it is folded on itself, unlike ribbons obtained by standard impregnation in the liquid phase. .
  • a proportion of filaments, in particular of carbon, which are not embedded in the matrix can slide on each other during the deformation of the ribbon.
  • the ribbon according to the invention having a proportion of filaments taken in the polymer matrix of less than 100%, preferably less than or equal to 99, 98, 97, 96, 95 or 90%, does not break during a folding operation. which is not the case of ribbons obtained by standard impregnation which can break when folded on themselves.
  • the tapes according to the invention have an unequaled bending capacity, with a very small radius of curvature.
  • the invention also relates to an installation for implementing the method according to the invention and to produce a ribbon according to the invention.
  • This installation includes the following elements.
  • At least one spool pin with brake At least one spool pin with brake.
  • the device is a machine-axis yarn alignment device; the device may for example comprise a set of two bars at 90 °, a first bar parallel to the axis of the coil, oriented at about 90 ° relative to the direction of travel of the wick leaving the coil, and a second bar located below the first, oriented at about 90 ° to the previous and perpendicular to the machine axis, as described supra.
  • a device for transverse spreading of the wick in particular a loading device operating on the principle of the application of a tension on the wick causing the transverse spreading of the filaments, in particular of the type comprising at least 1, of preferably several (typically from 2 to 7) bars perpendicular to the machine axis and of which at least 1 is above or below this machine axis (which allows to impose a tension on the wick, causing its opening );
  • the bars may in particular have a diameter of between about 10 mm and about 100 mm; they preferably have a low abrasive surface, for example chromium, aluminum or ceramic; they can be heated and / or vibrating; they can have a regular cylindrical, oval or elliptical shape or with a non-constant section, they can be rectilinear or bent, they can be braked or not
  • a calibration device in width, to manage or adjust the width of the wick may in particular comprise a piece provided with a groove bringing the filaments of the wick to the width of the groove.
  • the width of the groove may advantageously be determined by the width of the ribbon to be produced, for example the calibration width (or throat) is from 1.5 to 4.5, in particular from 2 to 3 times the nominal width of the ribbon to be produced. final ribbon.
  • a device for gripping and pulling the wick preferably comprising two rollers, at least one of which is rotated, for example a scarf or the like, for gripping the wick to maintain its width and applying to the wick a forward movement towards the storage spool;
  • the scarf or similar device may in particular comprise at least two rollers arranged one above the other, at least one of them is movable towards the other in order to apply pressure to a material in this case the wick, which would pass between them, and of which at least one is rotated.
  • a device for measuring the width of the wick in particular a laser, as described above.
  • At least one metal part (preferably of good electrically conductive and non-abrasive surface metal) grounded.
  • This metal part can advantageously be placed as close as possible to the powder which will be described. It can be one or more (typically 2) metal bars.
  • the powder former comprises a fluidizer or dry fluidization device with a powder storage chamber maintained in the fluidized state.
  • the powder duster comprises a control unit of the gun or guns, making it possible to regulate in particular the injection pressure, the dilution pressure, the voltage and the intensity released at the cathode. Operating details are given supra.
  • This initial ribbon splitting system can be made using a comb or other grooved element (for example a bar whose surface has threads or grooves extending over the circumference of the bar) permitting the separation of the filaments in a regular manner (examples number of beams above, and therefore grooves or the like).
  • the objective is to deposit the powder in the heart of the ribbon to increase the impregnation rate.
  • this dividing device makes it preferable for the first powdering gun to be placed plumb with or in the vicinity of the strip separated in bundles, thus at the plumb or in the vicinity of the separating device or immediately downstream, and that the second is further downstream in the dusting device, at a place where the beams are closer, the second gun for the cladding of the tape.
  • the precise location within the powder duster is easily determinable.
  • At least one heating unit such as an oven.
  • one or short or medium infrared furnaces are used.
  • the regulation of the furnace (s) is preferably in power. Their power is adapted to the polymer used.
  • a ribbon alignment device to make it coincide with the machine axis and in particular with the calibrator that will be described.
  • a grille Possibly, a grille.
  • the calender is cooled.
  • the pressure applied by the calender is preferably adjustable.
  • a calibration device in the transverse direction and in thickness may especially comprise at least two forms of calibration, in particular grooves, antagonists, that is to say that one of forms comes act in contact with a first face of the ribbon, the other in contact with the other ribbon face.
  • the width of the shapes is advantageously set to the desired nominal width for the ribbon.
  • a first groove is flared at the beginning and then has a nominal width equal to the desired nominal width for the final ribbon, for example 6.35 mm.
  • This groove is in contact with the underside or upper side of the ribbon.
  • a second groove is in contact with the other face of the ribbon, it also has a nominal width equal to the desired nominal width for the final ribbon, for example 6.35 mm.
  • This groove may for example be machined on a wheel.
  • the two grooves must be perfectly aligned and can for example be mounted on verniers which allow a very fine adjustment of their position, one with respect to the other but also with respect to the scrolling of the ribbon. Different embodiments will be described in the examples.
  • a device for measuring the width of the ribbon in particular a laser, as described above and in the examples.
  • This measuring device can preferably be connected to a computer or processor programmed to adjust the measurement rate (for example every x cm, eg every 50 cm or every 1 meter), record the measured values throughout the measurement. producing a tape reel and / or calculating the standard deviation.
  • this pin is offset relative to the machine axis in the direction of the height, for example by one or more (typically 2) return bars.
  • This spindle can be part of a conventional winding device, allowing for cross winding or wire to wire, for example.
  • the pin can be enslaved in particular speed or voltage.
  • the elements b), c), d), e), g), h), i), j), k) and I), preferably also n), are aligned on the machine axis so that the wick, then the ribbon does not undergo significant lateral movement movement. More preferably, the elements e), g), h), i), j), and k), preferably also d) are perfectly aligned on the machine axis, so that the wick, then the ribbon undergoes no lateral movement movement or sensitive height
  • the setting device c) is itself preferably arranged so that the entry and the exit of the wick is done being perfectly aligned on the machine axis, laterally and preferably also in height.
  • Driving devices include devices for rotating the pin of the formed ribbon winding device. They also include the scarf or the like in e). These drive devices can advantageously be enslaved, to manage the tension of the wick, then the ribbon, all along the production line.
  • the installation can include several production lines allowing to simultaneously produce several ribbons from several wicks.
  • the invention also relates to composite parts or articles made from a ribbon according to the invention or produced according to the method of the invention.
  • These parts or articles are formed in whole or part of tape, the part or article having been consolidated hot, for example in an autoclave or in an oven, after placing the tape to form the blank.
  • the part or article is formed exclusively or mainly of ribbon according to the invention or produced according to the method of the invention.
  • the invention also relates to the use of a ribbon according to the invention for the manufacture of an article or composite part, and such a manufacturing method, comprising the placement of the ribbon to form a blank, and then the consolidation of the piece or article hot, especially in an autoclave or in an oven.
  • the ribbon can be placed edge to edge and / or superimposed, the superposition can be done according to one or angle (s) adapted (s).
  • Placement can be achieved by Automated Fiber Placement (AFP) or by filament winding, pultrusion, braiding, 3D printer.
  • AFP Automated Fiber Placement
  • the placement can be done on a support or mold.
  • Figure 1 is a schematic representation of an installation according to the invention.
  • FIGS 2, 3 and 4 are schematic representations of different calibration devices according to the invention.
  • FIG. 5 is a schematic representation of a ribbon produced by the standard method by bath impregnation.
  • Figure 6 is a schematic representation of a ribbon produced by a first embodiment of the invention.
  • Figure 7 is a schematic representation of a ribbon produced by a second embodiment of the invention.
  • Figures 8 and 9 are graphs showing the width measurements made every 1 m of tape as a function of the footage in m produced.
  • Figure 10 is a schematic cross-sectional representation of a ribbon having bundles of filaments.
  • the numeral 1 denotes a wick coil 2, for example a wick of carbon filaments.
  • This coil is mounted on a spindle (not shown), provided with an adjustable brake.
  • a first bar 3 is parallel to the axis of the coil 1 and oriented at 90 ° to the direction of travel of the wick 2, the latter sliding from left to right on the first bar because of the slitting of the coil of supply 2.
  • a second bar 4 is located below the first, oriented at 90 ° relative to the previous and perpendicular to the machine axis. A series of seven docking bars is shown.
  • a calibration device 7 has a groove through which the wick passes, which is calibrated to the desired width.
  • a scarf 8 is disposed later, this scarf being designed to pinch the wick 2 and force it to move in the opposite direction to the supply reel.
  • a laser device for measuring the width of the wick is shown under 9. Two metal bars 10 and 1 1 connected to the ground are in contact for one, 10, of the lower face of the wick, for the other , 1 1, of its upper face. These bars apply some pressure on the wick.
  • an electrostatic powdering unit comprising two powdering guns 13, fed with fluidized polymer powder from a fluidization device (not shown).
  • One of the guns has its spray nozzle oriented towards one side of the wick, the other toward the other side of the wick.
  • the unit is controllable to ensure the continuous removal of a predetermined amount of thermoplastic or thermosetting material on the wick 2 which scrolls inside the enclosure.
  • the numeral 14 designates two infrared furnaces, preferably short or medium, located one behind the other, which are controlled by temperature and this control is power.
  • the wick impregnated with molten polymer then passes into a cooled calender.
  • the shell has two rollers and a device for adjusting the pressure exerted by the rollers on the wick which passes between them.
  • the wick then passes into a calibration device 16 which will be described with reference to FIGS. 2-4.
  • a Laser Wavelength Measuring Device is shown at 17, which is connected to a computer or processor for recording the width and calculating the standard deviation. The device performs punctual measurements, at regular intervals, according to the desire of the user.
  • the ribbon 18 itself is formed.
  • the ribbon is then taken over by a ribbon winding device, comprising two return rollers 19 and 20 and a storage spool 21 mounted on a spindle (not shown) rotated.
  • the active surfaces (in contact with the wick or ribbon) of the elements 4, 5, 7, 8, 14, 15, and 16 are perfectly aligned on the machine axis, so that the wick, then the ribbon when it is formed, does not undergo lateral movement or in sensible height.
  • Figure 2 a first embodiment of a calibration device that can be used, in particular as a device 16 in the installation of Figure 1. It comprises a plate 22 hollowed with a groove 23 formed of a flared portion 24 and a straight portion 25.
  • the width of the groove is equal to the width of the ribbon to be produced.
  • the numeral 26 denotes a wheel having a planar surface of revolution slightly smaller in width than that of the rectilinear portion 25 of the groove in which it is inserted in part.
  • a device (not shown), for example a vernier, allows to perform this operation. This adjusts the pressure on the wick.
  • FIG 3 there is the same plate 22.
  • a wheel 27 having a groove 28 peripheral flat bottom, whose width is equal to the width of the ribbon to produce.
  • the wick 2 passes to the bottom of the groove 23, then into the groove 28 of the roller 27, which comes to apply pressure on it.
  • a device for example vernier, not shown, allows to position the flat bottom of the groove in height relative to the machine axis to adjust the pressure exerted on the wick.
  • a succession of three rollers 29 is used, each having a flat bottom peripheral groove 30 whose width is equal to the width of the ribbon to be produced.
  • the first and third wheels are placed above the machine axis, the second below.
  • the wick 2 passes in contact with the bottoms of the grooves 30, in the lower part of the first wheel, then in the upper part of the second, and finally in the lower part of the third.
  • a device for example a vernier, not shown, makes it possible to position the flat bottom of the grooves in height with respect to the machine axis in order to adjust the pressure exerted on the bit.
  • the carbon fiber wick is heated before spreading to a width of between 8 mm and 12 mm by loading, at a post-loading tension of between 4.5 kg and 2.5 kg.
  • the fibers then pass through a groove 10 mm wide, then into the scarf that pulls the fiber. Before entering the dust box, the fiber passes into contact with two grounded bars.
  • the dusting step is carried out using a SAMES installation comprising a fluidization tank, 2 guns and a control unit. To obtain the target powder rate, only one gun is used, its settings are reported in the following table:
  • the pressure of the fluidization tank is set at 2 bars, which makes it possible to have a uniform and regular fluidization regime.
  • the polymer is melted by passing the ribbon under two SOPARA infrared ribbon radials (IR average), set between 50% and 70% of their power.
  • IR average SOPARA infrared ribbon radials
  • Calibration is carried out by first calendering the ribbon and then passing it through a groove with a nominal width of 6.35 mm +/- 0.05 mm.
  • the measurement of the width is performed by a Mike Model 91 1 LASER (measurement accuracy of 0.003 m), the data collected every 1 m during the production of a 1000 m coil is shown in Figure 8.
  • the average width of the ribbon is 6.37 mm with a standard deviation of 0.04 mm.
  • the winding takes place in tension, at a speed between 15 m / min and 20 m / min with a SAHM winder.
  • Figure 6 is a schematic view of the surface of the ribbons observed at 0.6x3 magnification binocular magnification.
  • the reference numeral 104 denotes the polymer coating, relatively continuous, and leaving the carbon filaments appear on discrete areas designated by the numerals 105.
  • Example 2 obtaining a carbon / PEEK tape with a polymer mass ratio of 34% and width 6.35 mm using the installation of Figure 1.
  • the carbon fiber wick is heated before spreading to a width of between 5 mm and 8 mm by insertion, at a post-loading tension of between 4.5 kg and 2.5 kg.
  • the fibers then pass into a throat 8 mm wide, then into the scarf that pulls the fiber.
  • the fiber Before entering the dust box, the fiber passes into contact with two grounded bars.
  • the dusting step is carried out as in Example 1.
  • the pressure of the fluidization tank is set at 2 bars, which makes it possible to have a uniform and regular fluidization regime.
  • the polymer is melted by passing the ribbon under the two infrared radials SOPARA lamp (length of 75 cm and a power of 3 kW each), set between 50% and 70% of their power.
  • Calibration is carried out by first calendering the ribbon and then passing it through a groove with a nominal width of 6.35 mm +/- 0.05 mm.
  • the average width is 6.16 mm with a standard deviation of 0.13 mm.
  • the winding takes place in tension, at a speed between 5 m / min and 20 m / min with a SAHM winder.
  • Figure 7 is a schematic view of the surface of the ribbons observed with a 0.6x3 magnification binocular magnifier.
  • the reference numeral 106 denotes the carbon filaments and this time, the polymer remained on the surface does not form a quasi-continuous coating, but discrete areas 107.
  • FIG. 5 shows what is obtained by the standard impregnation method by immersion in a bath.
  • Reference numeral 101 denotes continuous zones of polymer at the surface
  • reference numeral 102 denotes discrete clusters of polymer
  • reference numeral 103 denotes bare filaments.
  • Example 3 Production of a composite article
  • An Automated Fiber Placement (AFP) robot is programmed to deposit the ribbon according to Example 1 or Example 2 on a support, until forming the blank of the part to be manufactured.
  • the robot places the ribbon edge to edge to form a fold, then superimposes another fold on the previous one, the superposition can be done according to one or angle (s) adapted (s), according to the production program of the draft .
  • the blank formed is then placed according to a first sub-example in an oven and according to a second sub-example in an autoclave.
  • the consolidation is completed and the consolidated composite part is obtained.
  • Example 4 Production of a filament bundle ribbon
  • a bar with circumferential grooves is installed, the grooves having a width which depends on the width of the beams concerned; typically, this width may be between about 0.25 and about 2 mm.
  • the tape is brought into contact with this bar, permanently or intermittently, to ensure the separation of the wick into bundles.
  • the first powdering gun projects the powder on the wick separated into bundles, especially immediately downstream of the bar.
  • the second gun is placed a little downstream, including a few centimeters further, in a location where the beams have moved closer.
  • the impregnated product resulting from this implementation is characterized by a distribution of the filaments in the form of bundles 108 with a width of between 200 ⁇ m and 6000 ⁇ m and a height of between 50 ⁇ m and 250 ⁇ m, of which spacing (polymer zone 109) is between 25 ⁇ and 100 ⁇ .
  • this product retains a thin sheath 1 10 of polymer with a thickness between 25 ⁇ and 100 ⁇ .
  • This product has a strong cohesion in the transverse direction to the filaments. Its surface condition may be similar to that observed with the hollow product.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Reinforced Plastic Materials (AREA)
  • Moulding By Coating Moulds (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Working Measures On Existing Buildindgs (AREA)

Abstract

Procédé et installation de fabrication d'un ruban de filaments de renfort imprégné par une matrice polymère, ruban qui présente une largeur constante sur toute sa longueur, dans lequel les filaments s'étendent selon une direction parallèle à la longueur du ruban, à partir d'une mèche de filaments issue d'une bobine d'alimentation, le procédé comprenant des étapes et unités permettant de gérer la tension de dévidage de la mèche, de guider la mèche sur l'axe machine, de gérer la largeur de la mèche, de déposer le polymère sur la mèche par poudrage électrostatique, avec un taux massique de polymère d'environ 20 % à environ 75 %, de fondre le polymère, de calibrer le ruban en largeur et en épaisseur et de recueillir le ruban sur la bobine de stockage.

Description

Mèches poudrées par procédé électrostatique
La présente invention concerne le domaine technique des composites à renfort continu à matrice organique thermoplastique ou thermodurcissable. Elle concerne plus particulièrement les semi-produits utilisés dans la fabrication de matériaux composites par placement de fibre automatisé (AFP : Automated Fibre Placement) ou par enroulement filamentaire, pultrusion, tressage, imprimante 3D. Ces composites sont destinés aux procédés « indirect », ce qui signifie que toute la matrice organique du composite final se trouve déjà sur le semi-produit. Une fois la dépose du ruban effectuée sur le support un obtient une préforme qui contient un certain pourcentage de porosité en fonction des paramètres de dépose. Enfin, en fonction du taux de porosité visé dans la pièce finale et de la qualité de la préforme, l'étape de consolidation de la pièce est réalisée en autoclave ou en étuve.
Dans les domaines aéronautique, pétrolier ou automobile il devient impératif d'automatiser les procédés de fabrication afin de gagner en productivité, en précision et donc en qualité afin de rester compétitif dans ces secteurs très concurrentiels. Par ailleurs ces secteurs nécessitent des produits de haute qualité avec des propriétés mécaniques généralement élevées. L'utilisation de fibre de carbone et notamment d'unidirectionnels permet d'atteindre les cahiers des charges. Cependant, le paramètre primordial pour ces applications, une fois le cahier des charges rempli, est la qualité. En effet, en aéronautique, toutes les pièces de structure sont contrôlées aux différentes étapes de fabrication, les coûts des non-qualités peuvent alors être très importants. Par ailleurs, le prix des matériaux hautes performances utilisés, comme le carbone et les polymères à haute Tg, nécessite d'avoir un taux de déchet très faible pour être compétitif. Enfin, pour diminuer les temps d'arrêt machine, le conditionnement des semi-produits doit être optimisé, cela passe notamment par l'utilisation de bobines de grandes longueur ne contenant aucun défauts à écarter lors de la dépose. C'est pour répondre à ces exigences que les semi-produits selon l'invention ont été développés.
Ce type de produit est généralement obtenu en plusieurs étapes qui peuvent être réalisées séparément ou en ligne. La première étape consiste à obtenir une nappe de carbone unidirectionnelle formée de plusieurs mèches de carbone. Une fois les filaments alignés et la masse surfacique de carbone ajustée, la nappe est plongée dans une dispersion de polymère en phase liquide, c'est la phase d'imprégnation. Une fois les filaments chargés de polymère, la nappe est chauffée afin de faire fondre ce polymère et d'évacuer la phase liquide. Enfin, une fois la nappe consolidée, elle est découpée en ruban de largeur contrôlée, puis enroulée sur des bobines. Les inconvénients majeurs de ce procédé est que la découpe fait que des filaments peuvent dépasser des bords du ruban et que, si la découpe n'est pas parfaitement parallèle aux filaments, ces derniers ne sont pas rigoureusement orientés dans la direction longitudinale du ruban.
EP 1 007 309 décrit la production de rubans continus par imprégnation de mèches de fils en matériau inorganique, type carbone ou verre, dans un bain de polymère avec application d'un cisaillement. Ce procédé vise la production de ruban pour le procédé indirect, avec un taux de polymère allant de 25 à 75 % en poids. L'exemple 1 décrit le passage d'une mèche de fils de verre dans un bain d'imprégnation, puis dans une filière de section rectangulaire de dimensions 0,64 cm x 0,023 cm, pour produire un ruban ayant ces dimensions. Il s'agit donc d'un procédé d'imprégnation par voie fondue dont la vitesse de production est limitée (une vitesse atteignant 1676 cm/min est mentionnée), dans lequel l'imprégnation dépend directement de la viscosité du polymère et qui ne permet pas de travailler avec tous les types de polymères. De plus, ce procédé ne permet pas d'avoir des bobines de grande longueur (supérieure à 100 m) sans faire d'épissure ou « splice », ce qui gendre des discontinuités du renfort et donc potentiellement une diminution des propriétés mécaniques. D'autres inconvénients sont le coût énergétique d'élimination de l'eau ou du solvant et l'impact écologique en cas d'utilisation de solvant.
Un objectif de l'invention est de produire et proposer un ruban de renfort de grande longueur d'un seul tenant, sans découpe et sans épissure, pouvant atteindre la longueur de la mèche de la bobine d'alimentation, par exemple pouvant atteindre et dépasser les 1000 mètres, tout en ayant une largeur très régulière pouvant être caractérisée par un très faible écart-type et/ou une bonne gestion de la répartition du polymère.
Un autre objectif de l'invention est de produire et proposer un tel ruban avec un taux contrôlé de polymère.
Un autre objectif de l'invention est de produire et proposer un tel ruban dont les filaments constitutifs sont rigoureusement parallèles à la direction longitudinale du ruban.
Un objectif de l'invention est donc de proposer un procédé permettant de fabriquer un tel ruban en continu.
Un autre objectif de l'invention est de produire et proposer un tel ruban qui soit souple, notamment dont la souplesse peut facilement être ajustée, et de préférence qui soit non cassant.
Un autre objectif encore de l'invention est de produire et proposer un tel ruban à un coût compétitif.
Ces objectifs sont atteints par un procédé de production de ruban en continu à partir d'une mèche de filaments. La présente invention a pour objet un procédé de fabrication d'un ruban de filaments de renfort, imprégné par une matrice polymère thermoplastique ou thermodurcissable, ruban qui présente une largeur constante sur toute sa longueur, dans lequel les filaments s'étendent selon une direction parallèle à la longueur du ruban. Ce procédé peut s'appliquer au traitement d'une mèche issue d'une bobine d'alimentation ou, simultanément et parallèlement de plusieurs (2 ou plus) mèches issues d'autant de bobines d'alimentation. Les bobines d'alimentation peuvent être notamment d'un type couramment utilisé, le plus couramment une bobine croisée (la mèche est enroulée avec un trancannage et de manière croisée) ou éventuellement une bobine avec simple trancannage.
Ce procédé est notamment caractérisé en ce qu'il comprend, pour chaque mèche (une ou plusieurs mèches pouvant être traitées simultanément), les étapes de fabrication suivantes, depuis une bobine d'alimentation en mèche jusqu'à une bobine de stockage de ruban:
a) gestion de la tension entre la bobine d'alimentation et la bobine de stockage, b) guidage de la mèche de manière à obtenir une mèche se déplaçant en translation sur une ligne coïncidant avec un axe longitudinal dit axe machine s'étendant jusqu'à proximité de la bobine de stockage,
c) éventuellement étalement transverse de la mèche à une largeur prédéterminée supérieure à la largeur du ruban,
d) gestion de la largeur de la mèche,
e) éventuellement traction de la mèche, de préférence par pincement ou foulardage, f) mise à la masse de la mèche,
g) dépôt du polymère sous forme de poudre sur la mèche, par poudrage électrostatique, de préférence avec un taux massique de polymère d'environ 20 % à environ 75 %, obtention d'un ruban imprégné,
h) fusion ou ramollissement du polymère,
i) calibration en largeur et en épaisseur du ruban,
j) éventuellement mesure de la largeur et/ou de l'épaisseur du ruban,
k) bobinage du ruban sur la bobine de stockage.
Selon l'invention, une mèche est définie comme étant constituée d'un ensemble de filaments (ou fibres) et comporte d'environ 1 000 à environ 80 000 filaments, de préférence d'environ 3 000 et environ 24 000 filaments. Les mèches utilisées dans le cadre de l'invention sont, de préférence, en une matière choisie parmi le carbone, les céramiques, les verres, les silices, les basaltes, et les aramides, ou encore tout autre matériau utilisé dans le domaine des matériaux composites, par exemple les filaments ou fibres métalliques, les filaments pouvant être d'origine naturelle ou synthétique. Le carbone est particulièrement préféré. Les céramiques utilisables sont notamment le carbure de silicium et les oxydes réfractaires, par exemple, alumine et zircone. La mèche de départ peut se présenter sous une forme déjà aplatie ou plus ou moins ronde. Généralement, les mèches sont présentées en bobines de mèche plate bobinée croisé. Dans un mode de réalisation préféré, on utilise des mèches de carbone comprenant d'environ 1 000 à environ 80 000 filaments, de préférence d'environ 3 000 et environ 24 000 filaments.
On appelle ruban le composite plat formé de la mèche et du polymère thermoplastique ou thermodurcissable. En fin de fabrication, ce ruban est avantageusement stocké sur bobine ou support directement utilisable sur les robots de dépose. Le bobinage peut être du type fil à fil (le ruban est enroulé bord à bord, ce mode est préféré) ou du type croisé.
Les filaments constitutifs de la mèche ou du ruban sont de préférence continus. Les filaments utilisés présentent en général une section droite transversale sensiblement circulaire (filaments ronds) ou, de préférence, sensiblement parallélépipédique ou elliptique (filaments plats). Les mèches présentent des largeurs irrégulières, comme décrit dans le tableau ci-dessous, donnant la largeur des mèches de carbone en fonction du nombre de filaments et de leur titre.
Figure imgf000005_0001
On peut utiliser tout type de fil de carbone. De préférence, on peut utiliser des fils Haute Résistance (HR) dont le module en traction est compris entre 220 et 241 GPa et dont la contrainte à la rupture en traction est comprise entre 2450 et 4830 MPa, des fils de Module Intermédiaire (IM) dont le module en traction est compris entre 242 et 300 GPa et dont la contrainte à la rupture en traction est comprise entre 3450 et 6400 MPa et des fils Haut Module (HM) dont le module en traction est compris entre 345 et 600 GPa et dont la contrainte à la rupture en traction est comprise entre 3450 et 5520 MPa (voir ASM Handbook, ISBN 0-87170-703-9, ASM International 2001 ).
En a), on dit que l'on gère ou ajuste la tension entre les deux bobines, ce qui signifie que la mèche et le ruban qui en découle de manière continue sont maintenus sous tension entre la bobine d'alimentation et la bobine de stockage. La tension tout au long de la ligne et du procédé peut varier selon les étapes et dispositifs que la mèche, puis le ruban traversent. Cette tension peut notamment être comprise et varier entre environ 5 et environ 50 N. Le guidage de la mèche à l'étape b) permet son alignement précis dans l'axe machine. L'étape de guidage peut notamment supprimer le trancannage de la mèche et/ou éliminer les mouvements latéraux liés au débobinage d'une mèche enroulée croisée sur la bobine d'alimentation. Le guidage peut utiliser notamment au moins un jeu d'au moins deux barreaux orientés de manière à pouvoir ramener la mèche issue de la bobine d'alimentation sur une ligne ou trajectoire parfaitement alignée sur l'axe machine (le positionnement dans l'axe inclut le positionnement à une hauteur déterminée, qui est celle de l'axe machine), au moins jusqu'au refroidissement du ruban imprégné. On peut utiliser par exemple un jeu de deux barreaux à 90°. Le premier barreau est parallèle à l'axe de la bobine, orienté à 90° par rapport au sens de défilement de la mèche, cette dernière glissant de gauche à droite sur le premier barreau à cause du trancannage de la bobine d'alimentation. Ce premier barreau permet de régler l'alignement de la mèche dans le reste du procédé. Il permet aussi de forcer la mèche à s'aplatir, notamment, mais pas seulement, dans le cas d'une mèche initiale ronde. Ensuite, la mèche passe au contact du second barreau situé en dessous du premier, orienté à 90° par rapport au précédent et perpendiculairement à l'axe machine, et qui permet de garder la mèche plate et d'ajuster la hauteur de la mèche pour la suite du procédé.
Suivant une première modalité, la mèche a d'origine une largeur constamment supérieure à la largeur du ruban final.
Suivant une deuxième modalité, la largeur de la mèche est constamment ou ponctuellement égale, proche ou inférieure à la largeur du ruban final. On prévoit dans ce cas l'étalement de la mèche à l'étape c). La mèche ramenée dans l'axe machine est étalée transversalement. L'étalement transverse de la mèche se fait à largeur supérieure à la largeur nominale du ruban. Cette étape garantit que la mèche, au fur et à mesure de sa soumission à cette étape, a toujours une largeur supérieure à la largeur nominale du ruban final. Pour ce faire, on peut notamment faire passer la mèche dans un dispositif d'embarrage, comprenant un ou plusieurs éléments d'embarrage, tels que des barreaux d'embarrage, qui permettent d'étaler la mèche pour que sa largeur soit toujours supérieure à la largeur nominale du ruban final. On peut notamment utiliser des barreaux ayant un diamètre compris entre environ 10 mm et environ 100 mm. De préférence, les barreaux ont une surface peu abrasive, par exemple chrome, aluminium ou céramique. Afin d'obtenir la largeur désirée il est possible de chauffer les barreaux et/ou de les faire vibrer, ce qui accentue l'étalement.
On gère ou ajuste en d) la largeur de la mèche, ce qui signifie que la largeur de la mèche est diminuée à une valeur prédéterminée par le passage dans un dispositif de calibration. Dans le cas de la mèche étalée en c), on ramène la largeur à une valeur prédéterminée, notamment comprise entre la largeur d'étalement maximum et la largeur nominale du ruban final. Pour effectuer cette gestion de largeur, on peut notamment faire passer la mèche dans une gorge qui calibre la mèche à la largeur désirée. Notamment, la largeur après étalement est d'environ 1 ,5 à environ 4,5, par exemple d'environ 2 à environ 3 fois la largeur nominale du ruban final. Par exemple, la largeur de calibration est d'environ 10 mm à environ 29 mm pour un nominal du ruban de 6,35 mm environ. En aval de cette étape, à un moment de son parcours dans lequel la mèche est sous forte tension (il peut y avoir une tension allant jusqu'à 5 kg par mèche), il est préférable à l'étape e) de tracter la mèche afin de maintenir sa largeur et d'appliquer à la mèche un mouvement d'avancement en direction de la bobine de stockage. Cette étape peut notamment se faire à l'aide d'un dispositif permettant de pincer la mèche et à la forcer à se mouvoir dans la direction opposée à la bobine d'alimentation. On peut notamment utiliser un foulard ou dispositif analogue.
Le travail réalisé sur la mèche jusqu'à présent permet de travailler avec des mèches initiales de qualités très différentes, ayant par exemple une largeur variable, de garantir un taux de poudre régulier et d'améliorer significativement la dispersion de largeur du ruban final.
Une étape de mesure de la largeur peut être réalisée avec un laser, comme il sera décrit plus loin.
La vitesse de défilement de la mèche et du ruban peut être notamment comprise entre environ 5 et environ 50 m/min, notamment entre environ 10 et environ 40 m/min, typiquement entre environ 15 et environ 35 m/min. Cette vitesse est adaptée aux différentes étapes, en particulier à l'étape de poudrage.
La mise à la masse f) de la mèche, pour permettre le poudrage électrostatique, est avantageusement réalisée le plus près possible du poudrage, donc juste en amont de cette étape.
L'étape g) de poudrage détermine la répartition de la matrice dans le ruban final ainsi que le taux fibre/matrice dans le produit composite final. De préférence, on utilise un procédé de poudrage électrostatique. La mèche est mise à la masse, notamment en passant au contact d'un ou de plusieurs barreaux mis à la masse, par exemple un ou plusieurs barreaux d'embarrage.
Cette étape de poudrage comprend une première étape de fluidisation à sec. La fluidisation consiste à faire passer un gaz entre des particules de polymère de petite taille. Lorsque le frottement du gaz crée une force suffisante pour compenser le poids de toutes les particules du lit, on dit que le lit de particules est fluidisé. L'utilisation du lit fluidisé sec permet de déposer des quantités de poudre plus importantes et de travailler avec plus de poudre par rapport aux pots à pression.
On utilise de préférence un ou plusieurs pistolets ou buses de poudrage électrostatique utilisant le principe de décharge corona. Cela consiste à appliquer une haute différence de potentiel entre la pointe du pistolet et la pièce à recouvrir, qui est reliée à la masse. Le champ électrique au niveau de la pointe accélère les électrons du milieu environnant par la force de Coulomb et ionise les molécules présentent dans l'air. Par effet d'avalanche, on obtient un procédé auto-entretenu qui rend le milieu environnant conducteur. Les particules de poudre traversant ce milieu ionisé se chargent par accumulation d'électrons à leur surface. Elles sont alors entraînées par le champ électrique en direction de la mèche qui est reliée à la masse. Pour les mèches de filaments non conductrices, on rend la surface conductrice avant poudrage par brumisation, métallisation ou utilisation d'un polymère conducteur.
Dans le cadre de cette invention le dépôt de la poudre se fait via l'utilisation d'un ou deux pistolet(s) sur lesquels une buse, de préférence plate, est montée. Ce type d'installation permet de créer un nuage de poudre autour de la mèche qui est elle-même reliée à la terre. La poudre qui se situe autour de la fibre se trouve alors attirée par la mèche modifiant sa trajectoire pour créer une fine couche de dépôt tout autour de la mèche. De préférence, un pistolet est disposé au-dessus de la mèche, l'autre au-dessous.
Le pilotage des pistolets se fait via une centrale qui permet de piloter indépendant les deux pistolets. Les paramètres qu'il est possible de régler sont :
- Pression d'injection : elle permet d'acheminer la poudre du lit fluidisé au pistolet - Pression de dilution : pression supplémentaire qui permet de diluer la poudre dans le tuyau qui mène au pistolet
- Tension et intensité : ces deux paramètres permettent de contrôler la tension et l'intensité dégagée au niveau de la cathode.
Le réglage de ces paramètres permet d'ajuster le taux de poudre déposé sur la fibre et la régularité du dépôt. Les réglages sont à adapter pour chaque couple mèche/matrice.
Eventuellement on divise le ruban de carbone en plusieurs faisceaux de filaments lors du poudrage. L'utilisation de cette option rend préférable qu'une première passe de poudrage soit réalisée à l'aplomb ou au voisinage de la mèche séparée en faisceaux, et qu'une seconde passe de poudrage soit réalisée un peu plus loin, à un endroit de la ligne où le ruban est de nouveau réuni (les faisceaux contigus ayant alors eu tendance à se rapprocher les uns des autres pour tendre vers la structure de ruban telle qu'elle était avant la séparation en faisceaux, à ceci près que du polymère a été déposé dont une partie peut séparer, plus ou moins distinctement, les faisceaux contigus), afin de garantir le gainage de la mèche. Le nombre de faisceaux et la manière de les obtenir sont abordés plus loin. Plus de détails de ce mode de réalisation sont donnés à l'exemple 4.
Une fois la poudre déposée sur le fil, on parle ensuite de ruban, qui est donc constitué d'un renfort fibreux orienté dans le sens longitudinal imprégné d'une matrice polymérique. La longueur d'une bobine de ruban peut être égale ou sensiblement égale à la bobine dont le fil est issu, sans limite de longueur du fil.
Le taux massique de matrice polymérique appliqué sur la mèche étalée peut être notamment compris entre environ 20, 25 ou 30 % et environ 75%, notamment entre environ 20, 25 ou 30 % et environ 50% et plus particulièrement entre environ 30% et environ 40%. Ce taux particulièrement élevé permet d'utiliser le ruban dans le procédé indirect. Ce taux peut atteindre des valeurs importantes, supérieures à 30 ou 40 %, tout en étant souple et bien consolidé, comme on le verra plus loin.
Au stade de l'imprégnation de la mèche, le polymère qui imprègne la fibre se trouve sous forme de poudre dont les grains ont un diamètre notamment compris entre environ 10 μηι et environ 300 μηι et préférentiellement entre environ 30 μηι et environ 200 μηι.
Le procédé peut être appliqué à tout type de poudre fluidisable ayant un point de ramollissement permettant une accroche à la mèche lors du poudrage. Parmi ces poudres on peut citer plus particulièrement les polymères thermoplastiques et thermodurcissables suivants : les polyamides (notamment PA6, PAI2, PAU, PA6,6, PA 6,10, PA 6,12), les copolyamides (CoPA), les polyamides-bloc éther ou ester (PEBAX, PEBA), les polyphtalamides (PPA), les polyesters (notamment polyéthylène téréphtalate -PET-, polybutylène téréphtalate - PBT-), les copolyesters (CoPE), les polyuréthanes thermoplastiques (TPU), les polyacétales (POM, ...), les polyoléfines (notamment PP, HDPE, LDPE, LLDPE), les polyéthersulfones (PES), les polysulfones (PSU,...), les polyphénylènes sulfones (PPSU,...), les polyétheréthercétones (PEEK), les polyéthercétonecétone (PEKK), le poly(sulfure de phénylène) (PPS), les polyétherimides (PEI), les polyimides thermoplastiques, les polymères à cristaux liquides (LCP), les phénoxys, les copolymères à blocs tels que les copolymères styrène-butadiene-méthylméthacrylate (SBM), les copolymères méthylméthacrylate-acrylate de butyl-méthylméthacrylate (MAM) et leurs mélanges, les époxy, le bismaleimide, les polymères phénoliques.
Selon une caractéristique de l'invention, le matériau thermoplastique est un matériau thermoplastique. En premier lieu, il peut s'agir d'un matériau thermoplastique haute performance c'est-à-dire ayant un point de fusion et ou une température de transformation supérieur ou égal à 280°C. Il peut être notamment choisi parmi les PEEK, les PPS, les PEKK, les PEI, ou un mélange d'au moins deux d'entre eux.
L'invention est compatible avec l'utilisation de polymères thermodurcissables sous forme de poudre ayant une température de ramollissement inférieure à leur température de réticulation. Ce type de poudre est obtenu par formulation de polymère thermodurcissable non réticulé et permet d'obtenir un ruban avec un taux de polymère thermodurcissable non réticulé compris entre 20, 25 ou 30% et 75%. Ce ruban peut alors être utilisé dans un procédé de placement de fibre automatisé ou d'enroulement filamentaire, où la réticulation sera activée une fois la température de réticulation atteinte. Ce ruban imprégné de polymère thermodurcissable permet de réaliser des pièces composites sans étape d'injection ou d'infusion après placement du ruban et permet également un stockage d'une durée illimité à température ambiante. A l'étape h), la fusion ou ramollissement de la poudre peut notamment s'effectuer en passant dans un ou plusieurs, notamment 2, fours, de préférence des fours infrarouge court ou moyen, juste après l'étape de poudrage. La régulation du ou des fours se fait de préférence en puissance pour une meilleure stabilité du procédé. Là encore, les réglages sont à adapter pour chaque couple mèche/matrice mais aussi en fonction de la vitesse de défilement et du taux de poudre visé. La température appliquée au polymère est en tous cas supérieure à son point de fusion (e.g. pour les polymères semi-cristallins) ou suffisante pour passer le polymère pulvérulent à l'état visqueux permettant l'imprégnation. Pour le PEEK, la température peut notamment être comprise entre 300 et 450 °C, plus particulièrement entre 350 et 450°C.
La calibration du ruban à l'étape i) à une largeur cible est une caractéristique déterminante puisque, par exemple, les variations de largeur entraînent des non-qualités au moment de la dépose automatisée du ruban par les robots de dépose pour former. Une largeur trop faible génère des « gap » alors qu'une largeur trop importante génère des « overlap » et des bourrages au niveau de la tête de dépose.
Pour obtenir une dispersion en largeur faible il est nécessaire d'avoir un alignement du fil parfait avant calandrage, ce qui est assuré tout au long du procédé et au stade du calibrage. On peut ainsi prévoir, en amont de la fusion, un alignement du ruban pour le faire coïncider avec l'axe machine et en particulier avec le dispositif de calibration situé en aval. On peut ainsi utiliser un plusieurs barreaux, notamment obliques.
De préférence, à l'étape i), on peut calandrer le ruban. Ce calandrage peut permettre l'alignement sur l'axe machine ou y contribuer. Surtout, le calandrage permet d'assurer l'imprégnation de la mèche par le matériau thermoplastique ou thermodurcissable, qui se trouve encore à l'état fondu. De préférence la calandre est refroidie. La température du matériau à ce stade peut lui permettre d'être suffisamment fluide pour pouvoir être mis en forme. Le calandrage peut être réalisé en faisant passer le ruban entre au moins deux rouleaux refroidis dont il est possible de réguler la pression et la température. Dans ce dispositif, le calandrage permet de faire pénétrer plus ou moins la matrice dans le ruban mais aussi, éventuellement, d'étaler le ruban.
Le taux d'imprégnation rend compte de la répartition de la matrice dans le sens transverse du ruban. Un taux d'imprégnation faible revient à avoir, selon un mode de réalisation, un ruban creux avec une répartition du polymère uniquement en périphérie de la mèche (e.g. de carbone), formant ainsi une gaine de polymère (ou couche continue) qui protège les filaments et garantit une très grande souplesse au ruban. En d'autres termes, on a une proportion réduite de filaments pris dans la matrice polymérique. Dans ce mode de réalisation, la pression de calandrage est de préférence inférieure à 1 bar, typiquement elle est comprise entre environ 0,1 et environ 0,9 bar, notamment entre environ 0,1 et environ 0,6 bar. Ce type de produit est particulièrement intéressant pour le drapage de formes complexes avec des rayons de courbure très faibles.
Au contraire, un taux d'imprégnation élevé correspondra, selon un autre mode de réalisation, à un ruban où le polymère est réparti de manière sensiblement uniforme entre les filaments (e.g. de carbone) dans le sens de la largeur et de l'épaisseur. Dans ce cas, le polymère protège les filaments du ruban par une gaine, mais elle ne forme alors pas forcément une couche extérieure continue comme dans le cas précédent. On a cependant une proportion élevée de filaments pris dans la matrice polymérique. Dans ce mode de réalisation, la pression de calandrage est de préférence supérieure ou égale à 1 bar, typiquement elle est comprise entre environ 1 et environ 4 bar. En augmentant le taux d'imprégnation, on empêche le glissement des filaments les uns contre les autres, ce qui diminue la flexibilité de celui-ci.
Selon l'invention, le paramètre de température peut être suivi en continu par la mesure de température, par exemple à l'aide d'un pyromètre infrarouge, en sortie de four et/ou avant le calandrage.
Le calandrage assure une première calibration, notamment en épaisseur, du ruban. L'étape i) peut comprendre une calibration en largeur du ruban par passage dans un dispositif de calibration transversale ou en largeur, ou de calibration à la fois en largeur et en épaisseur. De préférence, l'étape i) comprend, d'une part, le calandrage et, d'autre part, la calibration en largeur, ou, en largeur et en épaisseur.
De préférence, on calibre à la fois dans le sens transverse et en épaisseur. On peut notamment calibrer à l'aide d'au moins deux formes de calibration, notamment gorges, antagonistes. La calibration est avantageusement réglée à la largeur nominale souhaitée pour le ruban. Différents modes de réalisation seront décrits plus loin.
Le refroidissement s'effectue progressivement entre la sortie du four et le bobinage. Il n'est pas indispensable de prévoir un dispositif de refroidissement. On a vu que le calandrage à l'étape de calibration i) est réalisée à une température suffisante, e.g. comprise entre la température de transition vitreuse et le point de fusion du polymère semi-cristallin. Avant le bobinage, la température atteinte est telle que le polymère n'est plus déformable, par exemple elle est inférieure à la température de transition vitreuse Tg du polymère semi- cristallin.
La largeur et/ou l'épaisseur du ruban peut être mesurée en j) en continu, de préférence avec son écart-type, lors de la fabrication du ruban en utilisant la méthode suivante. En aval de sa calibration et en amont de son stockage sur bobine, on effectue des mesures ponctuelles de largeur et/ou d'épaisseur tous les x cm (par exemple tous les 50 cm ou tous les 1 mètres) à l'aide d'un Laser, les données sont traitées par une unité de traitement informatique ou un ordinateur recueillant les valeurs de largeurs et calculant l'écart-type. On utilise avantageusement un laser formé d'un émetteur émettant une ligne de lumière laser et un récepteur comportant une ligne de cellules réceptrices. L'émetteur est placé d'un côté du ruban, face à l'une de ses faces planes si l'on mesure la largeur. Le récepteur est placé de l'autre côté du ruban, face à son autre face plane toujours pour la mesure de largeur. L'ombre du ruban projetée sur le récepteur permet de connaître la largeur (ou l'épaisseur) avec une grande précision.
Le bobinage à l'étape k) consiste à enrouler le ruban sur des supports de préférence compatibles avec les robots de dépose automatisés. Il peut s'effectuer de deux façon différentes : en tension ou en vitesse. Pour le bobinage en tension la broche portant la bobine de stockage adapte sa vitesse de rotation en fonction de l'information de tension du ruban, par exemple remontée par un bras danseur. Ce type de bobinage permet d'avoir un bobinage très propre et ne nécessite pas d'asservissement de vitesse avec le dispositif, tel que le foulard, qui tracte le ruban en début de ligne. Dans le cas d'un bobinage en vitesse, la vitesse de la broche est entrée en consigne, il faut alors asservir le bobinoir et le dispositif d'entraînement tel que le foulard afin d'éviter tout problème de tension dû à la différence de vitesse entre les deux appareils. Un bobinage en tension est préféré.
Le bobinage et donc la vitesse de production du ruban peut être comprise entre environ 5 et environ 50 m/min, notamment entre environ 10 et environ 40 m/min, typiquement entre environ 15 et environ 35 m/min.
Le procédé décrit dans l'invention permet de réaliser un ruban aussi bien à partir d'une seule mèche qu'à partir de plusieurs (2 ou plus) mèches.
Dans un mode de réalisation, on augmente la masse surfacique de carbone. Pour cela, au moins deux, de préférence deux, rubans de carbone sont superposés afin d'obtenir une masse surfacique donnée. Par exemple, deux rubans de carbone de 12K 800tex calibrés à 6,35 mm sont superposés afin d'obtenir une masse surfacique de 2 x 126 = 252g/m2. L'association des deux fils peut se faire avant poudrage au niveau de l'étalement ou après poudrage, une fois le polymère fondu. Dans les deux cas il est nécessaire de reproduire les éléments de dévidage et de guidage décrit plus tôt. Ensuite, dans le premier cas, le mélange des filaments des deux fils se fait tout au long des embarrages utilisés pour étalés les fils. La suite de la ligne n'est pas modifiée, seul le réglage du poudrage électrostatique et la puissance des fours doivent être ajustés. Dans le cas où l'assemblage est effectué après poudrage le guidage des deux fils poudrés doit être adapté avant calibration, le reste de la ligne restant inchangé.
Un autre objet de l'invention est le ruban susceptible d'être produit par le procédé de l'invention. Conformément à l'invention, on produit un ruban de renfort continu formé de filaments de matériau inorganique unidirectionnels, substantiellement uniformément revêtu et/ou substantiellement imprégné à cœur d'un polymère thermoplastique ou thermodurcissable à un taux massique compris entre environ 20, 25 ou 30% et environ 75%, notamment entre environ 20, 25 ou 30 % et environ 50% et plus particulièrement entre environ 30% et environ 40%. Le ruban est de largeur constante prédéterminée et contrôlée, avec de préférence un écart type compris entre 0,02 et 0,15 mm, de préférence entre 0,02 et 0,05 (bornes incluses), sur une longueur d'un seul tenant (sans épissure) supérieure ou égale à 100, 500, 1000 ou 5000 m, ou plus encore. On a en réalité cet écart-type sur toute la longueur de ruban produite à partir d'une longueur de mèche continue d'alimentation. A partir d'une bobine de x mètres de mèche, on produit un ruban de longueur sensiblement égale avec la largeur et l'écart-type conformes. Cet écart-type est typiquement mesuré comme décrit ci-dessus par mesure Laser. Le ruban est par ailleurs continu sur toute sa longueur, sans couper de filament et d'un seul tenant, à savoir sans épissure ou « splice ». Ses filaments constitutifs sont sensiblement parallèles à la direction longitudinale du ruban (ou parfaitement alignés dans le sens longitudinal). Ce produit est destiné aux procédés indirects de réalisation de pièces composites, à partir d'un ou plusieurs rubans. Le ruban a une largeur constante, qui peut être notamment comprise entre environ 2 mm et environ 75 mm et plus particulièrement entre environ 5 mm et environ 10 mm. Le taux de matériau thermoplastique ou thermodurcissable peut atteindre des valeurs importantes, supérieures à 30 ou 40 %, tout en étant souple et bien consolidé, comme on le verra plus loin. L'écart-type est calculé en utilisant la formule suivante :
Figure imgf000013_0001
avec n=nombre de mesures ; x = valeur moyenne de x ; xt = valeur de x pour n=i.
La largeur du ruban peut être mesurée avec son écart-type en continu lors de la fabrication du ruban en utilisant la méthode décrite supra, qui permet d'obtenir l'écart-type sur la longueur totale du ruban ou sur une fraction. En dehors de la ligne de production, pour caractériser un ruban conforme à l'invention, on peut procéder de la même manière, en déroulant le ruban et en effectuant des mesures de largeur ponctuelles, par exemple tous les 1 m par la mesure laser.
L'invention a aussi pour objet un ruban continu imprégné et/ou consolidé formé de filaments de matériau inorganique unidirectionnels, de préférence en carbone, uniformément revêtu et/ou imprégné à cœur d'un polymère thermoplastique ou thermodurcissable, comprenant un taux de polymère compris entre environ 20, 25 ou 30% et environ 75%, notamment entre environ 20, 25 ou 30% et environ 50% en poids et de préférence entre environ 30% et environ 40% en poids, par rapport au poids du ruban. Ce ruban peut se présenter notamment sous les trois formes qui vont être décrites, à savoir creuse, imprégnée et substantiellement consolidée à cœur, imprégnée et substantiellement consolidée à cœur avec faisceaux de filaments. Le ruban a une largeur constante, notamment avec un écart- type compris entre 0,02 et 0,15 mm, de préférence entre 0,02 et 0,05 mm (bornes incluses). La largeur de ce ruban peut être notamment comprise entre environ 2 mm et environ 75 mm et plus particulièrement entre environ 5 mm et environ 10 mm. Dans un mode de réalisation, le ruban a une largeur moyenne dans la spécification 6,35 mm ± 0,15 mm avec un écart-type compris entre 0,02 et 0,05 mm, de préférence sur une longueur d'un seul tenant, celle de la mèche de départ, notamment supérieure ou égale à 100, 500, 1000 ou 5000 m. On peut ainsi avoir, par exemple, un ruban de largeur moyenne 6,35 mm avec un écart-type compris entre 0,02 et 0,05 mm.
Dans un premier mode de réalisation, le ruban est imprégné et consolidé en périphérie, y compris sur ses deux bords longitudinaux (ou arêtes longitudinales), le matériau thermoplastique ou thermodurcissable imprégnant les filaments à la périphérie formant une gaine substantiellement continue, y compris le long des bords du ruban. De préférence, ce ruban a un état de surface particulier, correspondant au fait qu'il est recouvert en totalité ou en majeure partie par du polymère fondu ou ramolli qui forme sensiblement un continuum de polymère d'un bout à l'autre du ruban dans le sens de la largeur et dans le sens de la longueur, comme illustré à titre d'exemple à la figure 6. L'épaisseur moyenne de polymère en surface (couche externe) peut être comprise avantageusement entre environ 10 et environ 100 μηι, de préférence entre environ 25 et environ 100 μηι. Le ruban comprend une certaine proportion de filaments non imprégnés de polymère (pris dans le polymère) à son intérieur. Cette proportion peut notamment représenter d'environ 20, 25 ou 30 à environ 50 % du total des filaments du ruban (ceci peut se déterminer par analyse des surfaces imprégnées et non imprégnées par traitement d'image de coupes à grossissement adéquat ; l'observation au microscope ou toute autre dispositif d'imagerie numérique (appareil photo, caméra, etc.) permet de distinguer les zones de fibres nues des zones de fibres imprégnées et prises dans le polymère, ainsi que les zones de polymère substantiellement ou totalement dépourvues de filaments)). Ce ruban est dit creux, dans la mesure où le cœur du ruban est formé de filaments non imprégnés, le cœur étant de ce fait non imprégné ou non consolidé.
Dans un deuxième mode de réalisation, le ruban est imprégné et/ou substantiellement consolidé à cœur, c'est-à-dire qu'il comprend une proportion élevée de filaments imprégnés de polymère à son intérieur. Cette proportion peut notamment représenter d'environ 80 à environ 100 % du total des filaments du ruban. De préférence, ce ruban a un état de surface particulier, correspondant au fait qu'il est recouvert en partie de polymère fondu ou ramolli, formant des phases discontinues d'un bout à l'autre du ruban dans le sens de sa largeur et dans le sens de sa longueur, comme illustré à titre d'exemple à la figure 7. Ce ruban est dit imprégné à cœur. Suivant un mode de réalisation, la proportion de filaments pris dans le polymère est comprise entre 80 % et 99, 98, 97, 96, 95 ou 90%. Des intervalles typiques sont de 90 à 100%, notamment de 95 à 100%. L'épaisseur moyenne de polymère en surface (couche externe) peut être comprise avantageusement entre environ 10 et environ 100 μηι, de préférence entre environ 25 et environ 100 μηι.
Selon une modalité particulière de ce ruban imprégné et substantiellement imprégné à cœur, les filaments sont distribués sous la forme de faisceaux. Les filaments s'étendent dans la direction longitudinale du ruban sous forme d'au moins deux faisceaux de filaments séparés et recouverts par du polymère. Les faisceaux sont notamment plus ou moins individualisés sur le plan transverse. On comprendra aisément que le nombre de faisceaux peut être adapté en fonction de la largeur du ruban. On peut prévoir typiquement de 2 à 50, notamment de 5 à 50, de préférence de 10 à 30 faisceaux. Les faisceaux sont notamment séparés les uns des autres par le polymère seul ou contenant éventuellement des filaments épars. Le produit imprégné peut se caractériser par une répartition des filaments sous forme de faisceaux d'une largeur comprise entre environ 200μηι et environ 6000μηι et une hauteur comprise entre environ 50μηι et environ 250μηι dont l'espacement est compris entre environ 25μηι et environ 100μηι. Les faisceaux de fibre sont totalement ou partiellement imprégnés de polymère afin de former un ruban qui possède une forte cohésion dans le sens transversal aux fibres. De plus, ce produit conserve une fine gaine (couche externe) de polymère. L'épaisseur moyenne de polymère en surface peut être comprise avantageusement entre environ 10 et environ 100 μηι, de préférence entre environ 25 et environ 100 μηι.
La mesure du taux d'imprégnation peut être réalisée par analyse d'image (utilisation de micrioscope ou d'appareil photo ou de caméra numérique, notamment), d'une coupe transversale du ruban, en divisant la surface du ruban imprégnée par le polymère par la surface totale du produit (surface imprégnée + surface des porosités). Afin d'obtenir une image de bonne qualité il est préférable d'enrober le ruban découpé dans son sens transversal dans une résine de polissage standard et de polir avec un protocole standard permettant l'observation de l'échantillon au microscope grossissement fois 6 au minimum. Concernant les taux d'imprégnation, typiquement : produit creux : d'environ 30% à environ 70% et préférentiellement d'environ 40% à environ 60% ; produit imprégné : d'environ 70% à environ 100% et préférentiellement d'environ 90 à environ 98% ; produit imprégné avec structure faisceaux : d'environ 70% à environ 100% et préférentiellement d'environ 90 à environ 100%.
La mesure d'épaisseur de la gaine de polymère est effectuée par les mêmes outils, notamment à l'aide d'un microscope à partir d'une coupe transversale du ruban (la préparation de l'échantillon est identique à celui destiné à la mesure du taux d'imprégnation).
La souplesse du ruban peut être caractérisée par un rigidimètre Taber Model 150D (Taber Industries, North Tonawanda, New York, USA) conformément à la norme NF ISO 2493-2 (Partie 2 : Testeur Taber). Toutes les mesures sont effectuées avec le calibre n°1 , dit de sensibilité extrême, l'angle de flexion utilisé est de 7,5° et la moyenne de la plaquette de référence est de 88,3TSU (Taber Stiffness Unit) pour un nominal de 88TSU.
La rigidité Taber du ruban creux avec une masse de 250 UT (Unité Taber) est comprise entre environ 5 TSU et environ 25 TSU et plus précisément entre environ 10 TSU et environ 20 TSU.
Avec ce même dispositif, la rigidité du ruban imprégné à cœur est comprise entre environ 45 TSU et environ 65 TSU et plus précisément entre environ 50 TSU et environ 60 TSU. La même mesure peut être effectuée avec une masse de 500UT sur le ruban imprégné à cœur, la rigidité Taber est alors comprise entre environ 20 TSU et environ 40 TSU et plus précisément entre environ 25TSU et environ 35TSU.
Ceci est à comparer avec la rigidité Taber d'un ruban obtenu par imprégnation standard (bain d'imprégnation), qui est typiquement comprise entre environ 65 TSU et environ 85 TSU et plus précisément entre environ 70 TSU et environ 80 TSU.
Un ruban selon l'invention avec une proportion de filaments pris dans la matrice polymérique inférieur à 100% a la particularité remarquable de ne pas se rompre lorsque celui-ci est replié sur lui-même, contrairement aux rubans obtenus par imprégnation standard en phase liquide. Sans vouloir être lié à la théorie, on pense qu'une proportion de filaments, notamment de carbone, qui ne sont pas enchâssés dans la matrice, peuvent glisser les uns sur les autres lors de la déformation du ruban. Le ruban selon l'invention ayant une proportion de filaments pris dans la matrice polymérique inférieure à 100%, de préférence inférieure ou égale à 99, 98, 97, 96, 95 ou 90%, ne rompt pas lors d'un pliage, ce qui n'est pas le cas des rubans obtenus par imprégnation standard qui peuvent casser lorsqu'ils sont repliés sur eux-mêmes. Il résulte de ceci que les rubans selon l'invention ont une capacité de pliage inégalée, avec un rayon de courbure très réduit.
L'invention aussi pour objet une installation permettant de mettre en œuvre le procédé selon l'invention et produire un ruban selon l'invention. Cette installation comprend notamment les éléments suivants.
a) Au moins une broche porte bobine avec frein.
b) Un dispositif de dé-trancannage et/ou d'alignement du fil dans l'axe machine ; en variante, si l'on dispose d'une bobine d'alimentation de mèche sans trancannage, le dispositif est un dispositif d'alignement du fil dans l'axe machine ; le dispositif peut par exemple comporter un jeu de deux barreaux à 90°, un premier barreau parallèle à l'axe de la bobine, orienté à environ 90° par rapport au sens de défilement de la mèche sortant de la bobine, et un second barreau situé en dessous du premier, orienté à environ 90° par rapport au précédent et perpendiculairement à l'axe machine, comme décrit supra. c) éventuellement un dispositif d'étalement transverse de mèche, notamment un dispositif d'embarrage fonctionnant sur le principe de l'application d'une tension sur la mèche provoquant l'étalement transverse des filaments, notamment du type comportant au moins 1 , de préférence plusieurs (typiquement de 2 à 7) barreaux perpendiculaire à l'axe machine et dont au moins 1 est situé au-dessus ou au-dessous de cet axe machine (ce qui permet d'imposer une tension à la mèche, provoquant son ouverture) ; les barreaux peuvent notamment avoir un diamètre compris entre environ 10 mm et environ 100 mm ; ils ont de préférence une surface peu abrasive, par exemple en chrome, aluminium ou céramique ; ils peuvent être chauffés et/ou être vibrants ; ils peuvent avoir une forme cylindrique, ovale ou elliptique régulière ou à section non constante, ils peuvent être rectilignes ou cintrés, ils peuvent être freinés ou non
d) Un dispositif de calibration en largeur, permettant de gérer ou ajuster la largeur de la mèche. Ce dispositif peut notamment comprendre une pièce munie d'une gorge ramenant les filaments de la mèche à la largeur de la gorge. La largeur de la gorge peut être avantageusement déterminée par la largeur du ruban à produire, par exemple, la largeur de calibration (ou de la gorge) est de 1 ,5 à 4,5, notamment de 2 à 3 fois la largeur nominale du ruban final.
e) Eventuellement un dispositif de pincement et de traction de la mèche, comportant de préférence deux rouleaux dont l'un au moins est entraîné en rotation, par exemple un foulard ou dispositif analogue, permettant de pincer la mèche afin de maintenir sa largeur et d'appliquer à la mèche un mouvement d'avancement en direction de la bobine de stockage ; le foulard ou dispositif analogue peut notamment comporter au moins deux rouleaux disposé l'un au-dessus de l'autre, l'un au moins d'entre eux est déplaçable en direction de l'autre afin d'appliquer une pression à un matériau, en l'occurrence la mèche, qui passerait entre eux, et dont l'un au moins est entraîné en rotation.
f) Eventuellement un dispositif de mesure de la largeur de la mèche, notamment un laser, comme décrit supra.
g) Au moins une pièce métallique (de préférence en métal bon conducteur de l'électricité et de surface non abrasive) mise à la masse. Cette pièce métallique peut être avantageusement placée le plus près possible du poudreur qui va être décrit. Il peut s'agir d'un ou de plusieurs (typiquement 2) barreaux métalliques.
h) Au moins un poudreur électrostatique ou dispositif de poudrage électrostatique. De préférence le poudreur comporte un fluidiseur ou dispositif de fluidisation à sec avec une enceinte de stockage de poudre maintenue à l'état fluidisé. De préférence il comporte une enceinte de poudrage dans laquelle sont disposés un ou plusieurs pistolets ou buses de poudrage électrostatique utilisant le principe de décharge corona. Les pistolest ou buses sont raccordées à l'enceinte de stockage de poudre fluidisée par des tubulures. De préférence, le poudreur comprend une centrale de pilotage du ou des pistolets, permettant de régler notamment la pression d'injection, la pression de dilution, la tension et l'intensité dégagée au niveau de la cathode. Des détails de fonctionnement sont donnés supra.
i) Eventuellement un système de division du ruban de carbone en plusieurs faisceaux de filaments sous le dispositif de poudrage. Ce système de division du ruban initial peut être fait en utilisant un peigne ou tout autre élément rainuré (par exemple barreau dont la surfece présente des filets ou rainures s'étendabnt sur la circonférence du barreau) permettant la séparation des filaments de manière régulière (exemples de nombre de faisceaux ci-dessus, et donc de rainures ou analogues). L'objectif est de déposer la poudre au cœur du ruban afin d'augmenter le taux d'imprégnation.
L'utilisation de ce dispositif de division rend préférable que le premier pistolet de poudrage soit placé à l'aplomb ou au voisinage du ruban séparé en faisceaux, donc à l'aplomb ou au voisinage du dispositif de séparation ou immédiatement en aval, et que le second se trouve plus loin en aval dans le dispositif de poudrage, à un endroit où les faisceaux se sont rapprochés, ce deuxième pistolet permettant le gainage du ruban. L'emplaceement précis au sein du poudreur est facilement déterminable.
j) Au moins une unité de chauffage telle qu'un four. De préférence, on utilise un ou des fours à infrarouge court ou moyen. La régulation du ou des fours se fait de préférence en puissance. Leur puissance est adaptée au polymère mis en œuvre.
k) Eventuellement, un dispositif d'alignement du ruban pour le faire coïncider avec l'axe machine et en particulier avec le calibreur qui va être décrit. On peut ainsi utiliser un ou plusieurs barreaux, notamment obliques.
I) Eventuellement, une calandre. De préférence la calandre est refroidie. La pression appliquée par la calandre est de préférence ajustable.
m) Un dispositif de calibration dans le sens transverse et en épaisseur. Il peut notamment comprendre au moins deux formes de calibration, notamment gorges, antagonistes, c'est-à-dire que l'une de formes vient agir au contact d'une première face du ruban, l'autre au contact de l'autre face du ruban. La largeur des formes est avantageusement réglée à la largeur nominale souhaitée pour le ruban. Dans un mode de réalisation, une première gorge est évasée au début, puis a une largeur nominale égale à la largeur nominale souhaitée pour le ruban final, par exemple de 6,35 mm. Cette gorge est en contact avec la face inférieure ou supérieure du ruban. Une seconde gorge est en contact avec l'autre face du ruban, elle a aussi une largeur nominale égale à la largeur nominale souhaitée pour le ruban final, par exemple de 6,35 mm. Cette gorge peut par exemple être usinée sur une roulette. Les deux gorges doivent être parfaitement alignées et peuvent par exemple être montées sur des verniers qui permettent un réglage très fin de leur position, l'une par rapport à l'autre mais aussi par rapport au défilement du ruban. Différents modes de réalisation seront décrits dans les exemples.
n) Eventuellement, un dispositif de mesure de la largeur du ruban, notamment un laser, comme décrit supra et dans les exemples. Ce dispositif de mesure peut être de préférence relié à un ordinateur ou processeur programmé pour régler la cadence de mesure (par exemple tous les x cm, e.g. tous les 50 cm ou tous les 1 mètre), enregistrer les valeurs mesurées tout au long de la production d'une bobine de ruban et/ou calculer l'écart-type. o) Au moins une broche porte bobine de stockage. De préférence, cette broche est décalée par rapport à l'axe machine dans le sens de la hauteur, par exemple par un ou plusieurs (typiquement 2) barreaux de renvoi. Cette broche peut faire partie d'un dispositif de bobinage classique, permettant de bobiner croisé ou fil à fil, par exemple. La broche peut notamment être asservie en vitesse ou en tension.
Suivant une caractéristique préférée, les éléments b), c), d), e), g), h), i), j), k) et I), de préférence aussi n), sont alignés sur l'axe machine de manière que la mèche, puis le ruban ne subisse pas de mouvement de déplacement latéral sensible. De préférence encore, les éléments e), g), h), i), j), et k), de préférence aussi d) sont parfaitement alignés sur l'axe machine, de manière que la mèche, puis le ruban ne subisse pas de mouvement de déplacement latéral ou en hauteur sensible Le dispositif d'embarrage c) est quant à lui de préférence disposé de manière que l'entrée et la sortie de la mèche se fasse en étant parfaitement alignée sur l'axe machine, latéralement et de préférence aussi en hauteur.
Des dispositifs d'entraînement sont prévus. Ils comprennent des dispositifs pour entraîner en rotation la broche du dispositif de bobinage du ruban formé. Ils comprennent aussi le foulard ou analogue en e). Ces dispositifs d'entraînement peuvent avantageusement être asservis, permettant de gérer la tension de la mèche, puis du ruban, tout au long de la ligne de production.
L'installation peut comprendre plusieurs lignes de production permettant de produire simultanément plusieurs rubans à partir de plusieurs mèches.
L'invention concerne également les pièces ou articles composites fabriqués à partir d'un ruban conforme à l'invention ou produit selon le procédé de l'invention. Ces pièces ou articles sont formés en tout ou partie de ruban, la pièce ou article ayant été consolidée à chaud, par exemple en autoclave ou en étuve, après placement du ruban pour en former l'ébauche. Dans un mode de réalisation, la pièce ou article est formée exclusivement ou principalement de ruban selon l'invention ou produit selon le procédé de l'invention.
L'invention concerne aussi l'utilisation d'un ruban selon l'invention pour la fabrication d'un article ou pièce composite, et un tel procédé de fabrication, comprenant le placement du ruban pour former une ébauche, puis la consolidation de la pièce ou article à chaud, notamment en autoclave ou en étuve. Le ruban peut être placé bord à bord et/ou superposé, la superposition pouvant se faire suivant un ou des angle(s) adapté(s). Le placement peut être réalisé par placement de fibre automatisé (AFP : Automated Fibre Placement) ou par enroulement filamentaire, pultrusion, tressage, imprimante 3D. Le placement peut se faire sur un support ou moule.
L'invention va être maintenant décrite plus en détail à l'aide de modes de réalisation pris à titre d'exemple non limitatif et se référant au dessin dans lequel :
La figure 1 est une représentation schématique d'une installation selon l'invention.
Les figures 2, 3 et 4 sont des représentations schématiques de différents dispositifs de calibration selon l'invention.
- La figure 5 est une représentation schématique d'un ruban produit par le procédé standard par imprégnation en bain.
La figure 6 est une représentation schématique d'un ruban produit par un premier mode de réalisation de l'invention.
La figure 7 est une représentation schématique d'un ruban produit par un deuxième mode de réalisation de l'invention.
Les Figures 8 et 9 sont des graphes représentant les mesures de largeur effectuées tous les 1 m de ruban en fonction du métrage en m produit. La Figure 10 est une représentation schématique en coupe transversale d'un ruban comportant des faisceaux de filaments.
Le repère numérique 1 désigne une bobine de mèche 2, par exemple de mèche de filaments de carbone. Cette bobine est montée sur une broche (non représentée), munie d'un frein ajustable. Un premier barreau 3 est parallèle à l'axe de la bobine 1 et orienté à 90° par rapport au sens de défilement de la mèche 2, cette dernière glissant de gauche à droite sur le premier barreau à cause du trancannage de la bobine d'alimentation 2. Ensuite, un second barreau 4 est situé en dessous du premier, orienté à 90° par rapport au précédent et perpendiculairement à l'axe machine. Une série de sept barreaux d'embarrage est représentée. Quatre d'entre eux référencés 5 sont disposés de manière que la mèche les tangente à leur partie supérieure, les trois autres référencés 6 étant placés en dessous de l'axe machine et amenant la mèche à tangenter leur partie inférieure en lui appliquant une contrainte telle que la mèche est étalée en largeur. Un dispositif de calibration 7 présente une gorge dans laquelle passe la mèche, laquelle y est calibrée à la largeur désirée. Un foulard 8 est disposé à la suite, ce foulard étant conçu pour pincer la mèche 2 et la forcer à se mouvoir dans la direction opposée à la bobine d'alimentation. Un dispositif à Laser de mesure de la largeur de la mèche est représenté sous 9. Deux barreaux métalliques 10 et 1 1 reliés à la terre sont au contact pour l'un, 10, de la face inférieure de la mèche, pour l'autre, 1 1 , de sa face supérieure. Ces barreaux appliquent une certaine pression sur la mèche. En 12, on a représenté une unité de poudrage électrostatique comprenant deux pistolets 13 de poudrage, alimentés en poudre fluidisée de polymère provenant d'un dispositif de fluidisation non représenté. L'un des pistolets a sa buse de pulvérisation orientée en direction d'une face de la mèche, l'autre en direction de l'autre face de la mèche. L'unité est pilotable pour assurer la dépose en continu d'une quantité déterminée de matériau thermoplastique ou thermodurcissable sur la mèche 2 qui défile à l'intérieur de l'enceinte.
Le repère numérique 14 désigne deux fours à infra-rouge, de préférence court ou moyen, situés l'un derrière l'autre, qui sont pilotés en température et ce pilotage se fait en puissance. La mèche imprégnée de polymère fondu passe ensuite dans une calandre 15 refroidie. La calandre comporte deux rouleaux et un dispositif de réglage de la pression exercée par les rouleaux sur la mèche qui passe entre eux. La mèche passe ensuite dans un dispositif de calibration 16 dont on décrira des exemples au regard des figures 2-4. Un dispositif à Laser de mesure de la largeur du ruban est représenté sous 17, il est connecté à un ordinateur ou processeur permettant l'enregistrement de la largeur et de calcul de l'écart- type. Le dispositif effectue des mesures ponctuelles, à intervalles réguliers, selon le désir de l'utilisateur. Au stade du passage devant le dispositif à Laser, le ruban 18 proprement dit est formé. Le ruban est ensuite pris en charge par un dispositif de bobinage de ruban, comprenant deux galets de renvoi 19 et 20 et une bobine de stockage 21 montée sur une broche (non représentée) entraînée en rotation.
Suivant une caractéristique importante, les surfaces actives (au contact de la mèche ou du ruban) des éléments 4, 5, 7, 8, 14, 15, et 16 sont parfaitement alignés sur l'axe machine, de manière que la mèche, puis le ruban lorsqu'il est formé, ne subisse pas de mouvement latéral ou en hauteur sensible.
A la Figure 2 est représenté un premier mode de réalisation d'un dispositif de calibration pouvant être utilisé, notamment comme dispositif 16 dans l'installation de la Figure 1 . Il comprend une platine 22 creusée d'une gorge 23 formée d'une partie évasée 24 et d'une partie rectiligne 25. La largeur de la gorge est égale à la largeur du ruban à produire. Le repère numérique 26 désigne une roulette ayant une surface de révolution plane de largeur légèrement inférieure à celle de la partie rectiligne 25 de la gorge dans laquelle elle vient s'insérer en partie. En fonctionnement, on comprend que la mèche passe au fond de la gorge 23 et la roulette vient appliquer une pression sur elle à l'intérieur de la partie 25 de la gorge 23. Un dispositif (non représenté), par exemple un vernier, permet d'effectuer cette opération. Ceci permet de régler la pression exercée sur la mèche.
A la Figure 3, on retrouve la même platine 22. A la place de la roulette 26, on dispose en aval de la platine, une roulette 27 comportant une gorge 28 périphérique à fond plat, dont la largeur est égale à la largeur du ruban à produire. En fonctionnement, on comprend que la mèche 2 passe au fond de la gorge 23, puis dans la gorge 28 de la roulette 27, laquelle vient appliquer une pression sur elle. Un dispositif, par exemple vernier, non représenté, permet de positionner le fond plat de la gorge en hauteur par rapport à l'axe machine afin de régler la pression exercée sur la mèche.
A la Figure 4, on utilise une succession de trois roulettes 29 comportant chacune une gorge 30 périphérique à fond plat, dont la largeur est égale à la largeur du ruban à produire. Les première et troisième roulettes sont placées au-dessus de l'axe machine, la deuxième au-dessous. En fonctionnement, on comprend que la mèche 2 passe au contact des fonds des gorges 30, à la partie inférieur de la première roulette, puis à la partie supérieure de la deuxième, enfin à la partie inférieure de la troisième. Un dispositif, par exemple vernier, non représenté permet de positionner le fond plat des gorges en hauteur par rapport à l'axe machine afin de régler la pression exercée sur la mèche.
Exemple 1 : obtention d'un ruban carbone/PEEK avec un taux massique de polymère de 34% et de largeur 6,35 mm en utilisant l'installation de la Figure 1 .
On part d'une mèche plate de filaments de carbone HR HTS45 E23 de Toho Tenax, titre compris entre 810 tex et 780 tex, largeur de mèche variant entre 3 et 7 mm, enroulée croisée.
Poudre PEEK 150PB de chez Victrex, granulométrie di0 = 30 μηι, d5o = 60 μηι, d90 = 100 μπι.
On chauffe la mèche de fibre de carbone avant de l'étaler à une largeur comprise entre 8 mm et 12 mm par embarrage, sous une tension après embarrage comprise entre 4,5 kg et 2,5 kg. Les fibres passent ensuite dans une gorge de 10 mm de large, puis dans le foulard qui permet de tracter la fibre. Avant d'entrer dans la cabine de poudrage la fibre passe au contact de deux barreaux reliés à la terre.
L'étape de poudrage est réalisée à l'aide d'une installation SAMES comprenant un bac de fluidisation, 2 pistolets et une centrale de pilotage. Pour obtenir le taux de poudre visé, un seul pistolet est utilisé, ses réglages sont reportés dans le tableau suivant :
Figure imgf000022_0001
La pression du bac de fluidisation est réglée à 2 bars, ce qui permet d'avoir un régime de fluidisation homogène et régulier.
Ensuite, la fusion du polymère s'effectue en faisant passer le ruban sous deux radians infrarouges à ruban (IR moyen) SOPARA, réglés entre 50% et 70% de leur puissance. Il s'agit de radians IR à ruban de la marque SOPARA d'une longueur de 75cm et d'une puissance de 2,3kW chacun.
La calibration s'effectue en calandrant dans un premier temps le ruban, puis en le faisant passer dans une gorge de largeur nominale 6,35 mm +/- 0,05 mm.
La mesure de la largeur est effectuée par un LASER Mike Model 91 1 (précision de mesure de 0,003 m), les données collectées tous les 1 m durant la production d'une bobine de 1000 m sont représentées à la Figure 8.
La largeur moyenne du ruban est de 6,37 mm avec un écart-type de 0,04 mm.
Le bobinage s'effectue en tension, à une vitesse comprise entre 15 m/min et 20 m/min avec un bobinoir SAHM.
La Figure 6 est une vue schématique de la surface des rubans observés à la loupe binoculaire grossissement 0,6x3. Le repère numérique 104 désigne le revêtement de polymère, relativement continu, et ne laissant apparaître les filaments de carbone que sur des zones discrètes désignées par les repères numériques 105.
Exemple 2 : obtention d'un ruban carbone/PEEK avec un taux massique de polymère de 34% et de largeur 6,35 mm en utilisant l'installation de la Figure 1 .
On part d'une mèche ronde de filaments de carbone HM M46JB 12K 50B Toray, titre de 445 tex, largeur de mèche variant entre 2 et 5 mm, enroulée croisée.
Poudre PEEK 150PB de chez Victrex, granulométrie di0 = 30 μηι, d5o = 60 μηι, d90 = 100 μπι.
On chauffe la mèche de fibre de carbone avant de l'étaler à une largeur comprise entre 5 mm et 8 mm par embarrage, sous une tension après embarrage comprise entre 4,5 kg et 2,5 kg. Les fibres passent ensuite dans une gorge de 8 mm de large, puis dans le foulard qui permet de tracter la fibre. Avant d'entrer dans la cabine de poudrage la fibre passe au contact de deux barreaux reliés à la terre.
L'étape de poudrage est réalisée comme à l'exemple 1 . La pression du bac de fluidisation est réglée à 2 bars, ce qui permet d'avoir un régime de fluidisation homogène et régulier. Ensuite, la fusion du polymère s'effectue en faisant passer le ruban sous les deux radians infrarouges à lampe SOPARA (longueur de 75 cm et d'une puissance de 3 kW chacun), réglés entre 50% et 70% de leur puissance.
La calibration s'effectue en calandrant dans un premier temps le ruban, puis en le faisant passer dans une gorge de largeur nominale 6,35 mm +/- 0,05 mm.
La mesure de la largeur est effectuée par le LASER Mike, comme à l'exemple 1 , les données collectées tous les 1 m durant la production d'une bobine de 150 m sont représentées à la Figure 9.
La largeur moyenne est de 6,16 mm avec un écart-type de 0,13 mm. Le bobinage s'effectue en tension, à une vitesse comprise entre 5 m/min et 20 m/min avec un bobinoir SAHM.
La Figure 7 est une vue schématique de la surface des rubans observés à la loupe binoculaire grossissement 0,6x3. Le repère numérique 106 désigne les filaments de carbone et cette fois, le polymère resté en surface ne forme pas un revêtement quasi continu, mais des zones discrètes 107.
Par comparaison aux Figures 6 et 7, la Figure 5 montre ce que l'on obtient par le procédé d'imprégnation standard par immersion dans un bain. Le repère numérique 101 désigne des zones continues de polymère en surface, le repère 102 désigne des amas discrets de polymère et le repère 103 désigne des filaments nus.
Exemple 3 : Production d'un article composite
Un robot de placement de fibre automatisé (AFP : Automated Fibre Placement) est programmé pour déposer le ruban selon l'exemple 1 ou selon l'exemple 2 sur un support, jusqu'à former l'ébauche de la pièce à fabriquer. Le robot place le ruban bord à bord pour former ainsi un pli, puis superpose un autre pli sur le précédent, la superposition pouvant se faire suivant un ou des angle(s) adapté(s), selon le programme de production de l'ébauche. L'ébauche formée est ensuite placée selon un premier sous-exemple dans une étuve et selon un deuxième sous-exemple dans un autoclave. La consolidation est conduite à son terme et la pièce composite consolidée est obtenue.
Des pièces composites ont été formées avec succès à partir de ruban selon l'exemple 1 .
Exemple 4 : Production d'un ruban à faisceaux de filaments
Dans le dispositif de poudrage 12, on installe un barreau à rainures circonférentielles, les rainures ayant une largeur qui dépend de la largeur des faisceaux visée ; typiquement, cette largeur peut être comprise entre environ 0,25 et environ 2 mm. Le ruban est amené au contact de ce barreau, de manière permanente ou intermittente, pour assurer la séparation de la mèche en faisceaux. Le premier pistolet de poudrage projette la poudre sur la mèche séparée en faisceaux, notamment immédiatement en aval du barreau. Le deuxième pistolet est disposé un peu en aval, notamment quelques centimètres plus loin, en un emplacement ou les faisceaux se sont rapprochés.
Le produit imprégné issu de cette mise en œuvre, visible de manière schématique à la Figure 10, se caractérise par une répartition des filaments sous forme de faisceaux 108 d'une largeur comprise entre 200μηι et 6000μηι et une hauteur comprise entre 50μηι et 250μηι dont l'espacement (zone de polymère 109) est compris entre 25μηι et 100μηι. De plus, ce produit conserve une fine gaine 1 10 de polymère d'une épaisseur comprise entre 25μηι et 100μηι. Ce produit présente une forte cohésion dans le sens transversal aux filaments. Son état de surface peut être similauire à celui observé avec le produit creux.

Claims

Revendications
1 . Procédé de fabrication d'un ruban de filaments de renfort imprégné par une matrice polymère thermoplastique ou thermodurcissable, ruban qui présente une largeur constante sur toute sa longueur, dans lequel les filaments s'étendent selon une direction parallèle à la longueur du ruban, à partir d'une mèche de filaments issue d'une bobine d'alimentation, le procédé comprenant les étapes suivantes, depuis une bobine d'alimentation en mèche jusqu'à une bobine de stockage de ruban imprégné et consolidé: a) gestion de la tension entre la bobine d'alimentation et la bobine de stockage, b) guidage de la mèche de manière à obtenir une mèche se déplaçant en translation sur une ligne coïncidant avec un axe longitudinal dit axe machine s'étendant jusqu'à proximité de la bobine de stockage,
c) éventuellement étalement transverse de la mèche à une largeur prédéterminée supérieure à la largeur nominale du ruban,
d) gestion de la largeur de la mèche,
e) éventuellement traction de la mèche, de préférence par pincement ou foulardage, f) mise à la masse de la mèche,
g) dépôt du polymère sous forme de poudre sur la mèche, par poudrage électrostatique, avec un taux massique de polymère d'environ 20 % à environ 75 %, obtention d'un ruban imprégné,
h) fusion ou ramollissement du polymère,
i) calibration en largeur et en épaisseur du ruban,
j) éventuellement mesure de la largeur du ruban,
k) bobinage du ruban sur la bobine de stockage.
2. Procédé selon la revendication 1 , dans lequel le poudrage électrostatique est effectué avec une poudre de polymère maintenue sous la forme d'un lit fluidisé, puis déposée au moyen d'un ou de plusieurs pistolets de poudrage électrostatique.
3. Procédé selon la revendication 1 ou 2, dans lequel à l'étape de calibration h), on calandre le ruban, puis on le calibre transversalement.
4. Procédé selon la revendication 3, dans lequel on calandre à l'aide d'une calandre refroidie.
5. Procédé selon la revendication 3 ou 4, dans lequel on calibre à la fois dans le sens transverse et en épaisseur.
6. Procédé selon la revendication 5, dans lequel on calibre à l'aide d'au moins deux gorges antagonistes ou d'au moins une gorge et une surface plane antagoniste.
7. Procédé selon l'une des revendications précédentes, dans lequel on calibre à la largeur nominale souhaitée pour le ruban.
8. Procédé selon l'une des revendications précédentes, dans lequel on effectue l'étalement transverse c) de la mèche à une largeur prédéterminée supérieure à la largeur nominale du ruban, par étalement de la mèche, puis on calibre la mèche à une valeur prédéterminée.
9. Procédé selon l'une des revendications précédentes, dans lequel, à l'étape g), on sépare le ruban en faisceaux et l'on effectue un premier poudrage sur le ruban séparé en faisceaux, puis on laisse les faisceaux se réunir avant de procéder à un deuxième poudrage.
10. Ruban continu imprégné ou consolidé formé de fibres de matériau inorganique unidirectionnelles, de préférence en carbone, revêtu et/ou imprégné à cœur d'un polymère thermoplastique ou thermodurcissable, comprenant un taux de polymère compris entre environ 30% et environ 75%, notamment entre environ 30% et environ 50% et plus particulièrement entre environ 30% et environ 40%, par rapport au poids du ruban, et ayant une largeur constante notamment comprise entre environ 2 mm et environ 75 mm et plus particulièrement entre environ 5 mm et environ 10 mm, avec un écart-type compris entre 0,02 et 0,15 mm, de préférence entre 0,02 et 0,05 mm, de préférence sur une longueur d'un seul tenant supérieure ou égale à 100, 500, 1000 ou 5000 m.
1 1 . Ruban selon la revendication 10, caractérisé en ce qu'il a une largeur moyenne d'environ 6,35 mm avec un écart-type compris entre 0,02 et 0,05 mm, de préférence sur une longueur d'un seul tenant supérieure ou égale à 100, 500, 1000 ou 5000 m.
12. Ruban continu formé de fibres de matériau inorganique unidirectionnelles, de préférence en carbone, imprégné d'un polymère thermoplastique ou thermodurcissable, comprenant un taux de polymère compris entre environ 25% et environ 75%, notamment entre environ 25% et environ 50% et plus particulièrement entre environ 30% et environ 40%, par rapport au poids du ruban, comprenant à son intérieur des filaments qui ne sont pas pris dans le polymère de préférence à hauteur de 20, 25 ou 30 à environ 50 % du total des filaments du ruban et le polymère forme une gaine continue extérieure.
13. Ruban continu formé de fibres de matériau inorganique unidirectionnelles, de préférence en carbone, imprégné à cœur d'un polymère thermoplastique ou thermodurcissable, comprenant un taux de polymère compris entre environ 25% et environ 75%, notamment entre environ 25% et environ 50% et plus particulièrement entre environ 30% et environ 40%, par rapport au poids du ruban, dans lequel les filaments s'étendent dans la direction longitudinale du ruban sous forme d'au moins deux faisceaux de filaments séparés et recouverts par du polymère.
14. Ruban selon l'une quelconque des revendications 9 à 13, caractérisé en ce que la rigidité Taber du ruban avec le calibre n°1 , une masse de 250 UT et un angle de 7,5° est comprise entre environ 5 TSU et environ 25 TSU, de préférence entre environ 10 TSU et environ 20 TSU, conformément à la norme NF ISO 2493-2 (Partie 2 : Testeur Taber).
15. Ruban selon la revendication 9, 1 1 ou 14, caractérisé en ce que de 80 % à 99, 98, 97, 96, 95 ou 90% des filaments sont pris dans le polymère et gainés par celui-ci.
16. Ruban selon l'une quelconque des revendications 9, 1 1 , 14 et 15, caractérisé en ce que la rigidité Taber du ruban avec le calibre n°1 , une masse de 250 UT et un angle de 7,5° est comprise entre environ 45 TSU et environ 65 TSU, de préférence entre environ 50 TSU et environ 60 TSU, conformément à la norme NF ISO 2493-2 (Partie 2 : Testeur Taber).
17. Pièce composite consolidée, comportant un ruban selon l'une quelconque des revendications 9 à 16 ou produit par le procédé selon l'une quelconque des revendications 1 à 8.
18. Installation permettant de mettre en œuvre le procédé selon l'une des revendications 1 à 8 ou pour produire un ruban selon l'une des revendications 9 à 16, caractérisée en ce qu'elle comprend :
a) au moins une broche porte bobine avec frein.
b) un dispositif de dé-trancannage et d'alignement du fil dans l'axe machine c) éventuellement un dispositif d'étalement transverse,
d) un dispositif de calibration en largeur,
e) éventuellement un dispositif de pincement et de traction,
f) éventuellement un dispositif de mesure de la largeur de la mèche,
g) au moins une pièce métallique mise à la masse,
h) au moins un poudreur électrostatique,
i) au moins un four,
j) éventuellement, un dispositif d'alignement du ruban pour le faire coïncider avec l'axe machine,
k) éventuellement, une calandre,
I) un dispositif de calibration dans le sens transverse et en épaisseur, m) éventuellement, un dispositif de mesure de la largeur du ruban,
n) au moins une broche porte bobine de stockage.
19. Installation selon la revendication 18, caractérisée en ce que le poudreur comporte un fluidiseur à sec et un ou plusieurs pistolets ou buses de poudrage électrostatique utilisant le principe de décharge corona.
PCT/EP2015/074734 2014-10-24 2015-10-26 Mèches poudrées par procédé électrostatique WO2016062896A1 (fr)

Priority Applications (13)

Application Number Priority Date Filing Date Title
CA2965448A CA2965448C (fr) 2014-10-24 2015-10-26 Meches poudrees par procede electrostatique
BR112017008256-0A BR112017008256B1 (pt) 2014-10-24 2015-10-26 Fitas contínuas, método para fabricar uma fita, parte de compósito consolidada e instalação
MX2017005352A MX2017005352A (es) 2014-10-24 2015-10-26 Hebras pulverizadas mediante metodo electrostatico.
RU2017113762A RU2703213C9 (ru) 2014-10-24 2015-10-26 Стренги, покрытые порошком электростатическим способом
JP2017521566A JP6730270B2 (ja) 2014-10-24 2015-10-26 静電的方法により駆動されるストランド
US15/521,473 US10538015B2 (en) 2014-10-24 2015-10-26 Strands powdered by electrostatic method
CN201580062689.3A CN107107395B (zh) 2014-10-24 2015-10-26 通过静电方法粉化的股线
EP15785102.3A EP3209473B1 (fr) 2014-10-24 2015-10-26 Mèches poudrées par procédé électrostatique
ES15785102T ES2859728T3 (es) 2014-10-24 2015-10-26 Hebras recubiertas con polvo por procedimiento electrostático
CN202011079562.1A CN112454736B (zh) 2014-10-24 2015-10-26 一种连续带
DK15785102.3T DK3209473T3 (da) 2014-10-24 2015-10-26 Bundter, der er pulvercoatet med en elektrostatisk fremgangsmåde
IL251752A IL251752B (en) 2014-10-24 2017-04-18 Strands dusted by an electrostatic method
US16/731,927 US11518068B2 (en) 2014-10-24 2019-12-31 Strands powdered by electrostatic method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1460259A FR3027546B1 (fr) 2014-10-24 2014-10-24 Meches poudrees par procede electrostatique
FR1460259 2014-10-24

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/521,473 A-371-Of-International US10538015B2 (en) 2014-10-24 2015-10-26 Strands powdered by electrostatic method
US16/731,927 Division US11518068B2 (en) 2014-10-24 2019-12-31 Strands powdered by electrostatic method

Publications (1)

Publication Number Publication Date
WO2016062896A1 true WO2016062896A1 (fr) 2016-04-28

Family

ID=52007209

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2015/074734 WO2016062896A1 (fr) 2014-10-24 2015-10-26 Mèches poudrées par procédé électrostatique

Country Status (14)

Country Link
US (2) US10538015B2 (fr)
EP (1) EP3209473B1 (fr)
JP (2) JP6730270B2 (fr)
CN (2) CN112454736B (fr)
BR (1) BR112017008256B1 (fr)
CA (1) CA2965448C (fr)
DK (1) DK3209473T3 (fr)
ES (1) ES2859728T3 (fr)
FR (1) FR3027546B1 (fr)
IL (1) IL251752B (fr)
MX (1) MX2017005352A (fr)
PT (1) PT3209473T (fr)
RU (1) RU2703213C9 (fr)
WO (1) WO2016062896A1 (fr)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018001682A (ja) * 2016-07-06 2018-01-11 三菱重工業株式会社 引抜成形材料の製造方法及び引抜成形材料の製造装置
WO2018115736A1 (fr) 2016-12-22 2018-06-28 Arkema France Procédé de fabrication d'un matériau fibreux pré-imprégné de polymère thermoplastique en lit fluidise
WO2018115738A1 (fr) 2016-12-22 2018-06-28 Arkema France Procédé de fabrication d'un matériau fibreux pré-imprégné de polymère thermoplastique sous forme de poudre sèche
WO2018115737A1 (fr) 2016-12-22 2018-06-28 Arkema France Procede de fabrication d'un materiau fibreux pre-impregne de polymere thermoplastique sous forme de poudre
WO2018115739A1 (fr) 2016-12-22 2018-06-28 Arkema France Procede de fabrication d'un materiau fibreux pre-impregne de polymere thermoplastique par projection
WO2018234436A1 (fr) 2017-06-22 2018-12-27 Arkema France Materiau fibreux impregne de polymere thermoplastique
WO2018234439A1 (fr) 2017-06-22 2018-12-27 Arkema France Procede de fabrication d'un materiau fibreux impregne de polymere thermoplastique
WO2018234434A1 (fr) 2017-06-22 2018-12-27 Arkema France Procede de fabrication d'un materiau fibreux impregne de polymere thermoplastique
WO2019180370A1 (fr) 2018-03-23 2019-09-26 Arkema France MATERIAU FIBREUX IMPREGNE DE POLYMERE THERMOPLASTIQUE D'EPAISSEUR INFERIEURE OU EGALE A 100µM ET SON PROCEDE DE PREPARATION
EP3670127A1 (fr) 2018-12-18 2020-06-24 Arkema France Procede de fabrication d'un materiau fibreux impregne de polymere thermoplastique
WO2020128296A1 (fr) * 2018-12-20 2020-06-25 Arkema France Materiau fibreux impregne de polymere thermoplastique de masse moleculaire et de viscosite optimum et son procede de preparation
CN111993683A (zh) * 2020-04-17 2020-11-27 北京化工大学 一种连续纤维增强热塑性树脂粉末浸渍装置及浸渍方法
US11571839B2 (en) 2018-03-23 2023-02-07 Arkema France Web of impregnated fibrous material, production method thereof and use of same for the production of three-dimensional composite parts

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10847780B2 (en) * 2016-09-16 2020-11-24 Pacesetter, Inc. Battery electrode and methods of making
FR3072672B1 (fr) * 2017-10-24 2019-11-08 Safran Ceramics Installation pour le depot d'une meche chargee mise en forme
US11400684B2 (en) 2017-12-22 2022-08-02 Sabic Global Technologies B.V. Tape of a plurality of sheathed continuous multifilament strands
CN108340599B (zh) * 2018-02-13 2020-03-13 山东节点新材料科技有限公司 一种连续纤维制作热塑性预浸料的工艺及方法
EP3670128B1 (fr) * 2018-12-18 2022-07-20 Arkema France Procede de fabrication d'un materiau fibreux pre-impregne de polymere thermoplastique en lit fluidise
DE102019107555A1 (de) * 2019-03-25 2020-10-01 Technische Universität Dresden Verfahren und Vorrichtung zur Herstellung und Ablage eines textilen Bewehrungsstrangs für ein Betonteil
CN112831871B (zh) * 2021-01-08 2021-12-21 杭州恒岳新材料有限公司 涤纶混纺纱线及其生产工艺

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000079614A (ja) 1998-07-10 2000-03-21 Toray Ind Inc トウプリプレグパッケ―ジおよびその製造方法
EP1007309A1 (fr) 1997-07-09 2000-06-14 Balmer, R. Charles Procede de pre-impregnation a la resine et preimpregnes ainsi obtenus
US20080020193A1 (en) * 2006-07-24 2008-01-24 Jang Bor Z Hybrid fiber tows containning both nano-fillers and continuous fibers, hybrid composites, and their production processes
DE102006057603A1 (de) * 2006-11-27 2008-06-05 Deutsches Zentrum für Luft- und Raumfahrt e.V. Verfahren und Vorrichtung zur Herstellung von harzbeschichteten und/oder harzgetränkten Fasergebilden, Fasergebilde und Sammlung von Fasergebilden und Verwendung von Fasergebilden
JP2008291170A (ja) 2007-05-28 2008-12-04 Teijin Techno Products Ltd 繊維強化テープ及びその製造方法
FR2939069A1 (fr) * 2008-11-28 2010-06-04 Hexcel Reinforcements Nouveau materiau intermediaire de largeur constante pour la realisation de pieces composites par procede direct.

Family Cites Families (82)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4284679A (en) 1978-11-06 1981-08-18 Lockheed Corporation Filled resin coated tape
GB2048971A (en) * 1979-02-24 1980-12-17 Fibremesh Ltd Plastic Reinforced Mesh
FR2516441A1 (fr) * 1981-11-18 1983-05-20 Spie Batignolles Procede de fabrication de profiles en resine thermoplastique chargee de fibres, installation pour la mise en oeuvre, profiles obtenus et leur utilisation
US5560922A (en) 1986-05-30 1996-10-01 Rutgers, The State University Of New Jersey Transdermal absorption dosage unit using a polyacrylate adhesive polymer and process
US4900499A (en) 1988-01-14 1990-02-13 Phillips Petroleum Company Molding process for forming a tape of long reinforcement
FR2639867B1 (fr) * 1988-12-06 1991-05-17 Behar Isaac Procede d'estampage d'un materiau composite thermoplastique
US5171630A (en) 1989-04-17 1992-12-15 Georgia Tech Research Corporation Flexible multiply towpreg
US5296064A (en) 1989-04-17 1994-03-22 Georgia Tech Research Corp. Flexible multiply towpreg tape from powder fusion coated towpreg and method for production thereof
US5094883A (en) * 1989-04-17 1992-03-10 Georgia Tech Research Corporation Flexible multiply towpreg and method of production therefor
US5302419A (en) * 1989-04-17 1994-04-12 Georgia Tech Research Corporation Towpregs from recycled plastics by powder fusion coating and method of production therefor
US5019427A (en) 1989-04-24 1991-05-28 Phillips Petroleum Company Apparatus and process for improved thermoplastic prepreg materials
US5364657A (en) 1990-04-06 1994-11-15 The University Of Akron Method of depositing and fusing polymer particles onto moistened continuous filaments
US5057338A (en) 1990-05-16 1991-10-15 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Process for application of powder particles to filamentary materials
WO1992015404A1 (fr) 1991-03-01 1992-09-17 S.L. Electrostatic Technology, Inc. Procede de depot de poudre pour revetement electrostatique, en vue de produire des stratifies pour plaquettes a circuits imprimes et similaires
IT1254197B (it) 1992-02-06 1995-09-14 Donegani Guido Ist Procedimento per la preparazione di corpi formati in polimeri termoplastici rinforzati con fibra lunga
US5369192A (en) 1993-06-28 1994-11-29 Minnesota Mining And Manufacturing Company Binder resin for resin transfer molding preforms
JPH0797465A (ja) * 1993-08-05 1995-04-11 Mitsui Toatsu Chem Inc プリプレグ及び積層構造体
IT1271002B (it) 1994-09-06 1997-05-26 Enichem Spa Procedimento per la preparazione di un filamento composito termoplastico flessibile contenente fibre continue
US5756206A (en) 1995-03-15 1998-05-26 Custom Composite Materials, Inc. Flexible low bulk pre-impregnated tow
CA2312467C (fr) 1995-03-15 2004-02-03 Applied Fiber Systems, Ltd. Etoupe preimpregnee peu volumineuse flexible
JPH09136976A (ja) 1995-11-15 1997-05-27 Mitsubishi Rayon Co Ltd トウプリプレグ及びその製造方法
US6139942A (en) 1997-02-06 2000-10-31 Cytec Technology, Inc. Resin composition, a fiber reinforced material having a partially impregnated resin and composites made therefrom
FR2761380B1 (fr) 1997-03-28 1999-07-02 Europ Propulsion Procede et machine pour la realisation de nappes fibreuses multiaxiales
DE19733133A1 (de) 1997-07-31 1999-02-04 Wacker Chemie Gmbh Pulverförmige, vernetzbare Textilbinder-Zusammensetzung
JP3100567B2 (ja) * 1997-09-08 2000-10-16 旭ファイバーグラス株式会社 長繊維強化熱可塑性樹脂成形材料
US6096669A (en) 1997-10-28 2000-08-01 Gkn Westland Aerospace Inc. Unidirectional fiber-random mat preform
ATE237444T1 (de) * 1998-01-16 2003-05-15 Neopreg Ag Verfahren zum beschichten von fasern
ATE236772T1 (de) 1998-02-20 2003-04-15 Arova Schaffhausen Ag Herstellung von unidirektional faserverstärkten thermoplasten
DE19827475A1 (de) 1998-06-19 1999-12-23 Wacker Chemie Gmbh Faserbindepulver-Zusammensetzung zur Verwendung für die Verfestigung von Fasermaterialien
PT102494A (pt) 2000-07-14 2002-01-30 Univ Do Minho Maquina para producao em continuo de mechas de fibras pre-impregnadas com termoplastico em po
US6503856B1 (en) 2000-12-05 2003-01-07 Hexcel Corporation Carbon fiber sheet materials and methods of making and using the same
US20020187346A1 (en) 2001-06-04 2002-12-12 Adzima Leonard J. Powder coated roving for making structural composite
CN1219283C (zh) * 2001-08-07 2005-09-14 北京大恒鼎芯科技有限公司 可视音带的图文数据生成和编码方法及图文数据播放装置
US7087296B2 (en) * 2001-11-29 2006-08-08 Saint-Gobain Technical Fabrics Canada, Ltd. Energy absorbent laminate
JP3631994B2 (ja) * 2001-11-29 2005-03-23 旭ファイバーグラス株式会社 長繊維強化熱可塑性樹脂シートおよび該シートにより補強された複合成形体
ES2223022T3 (es) 2001-12-20 2005-02-16 Epo Gmbh Material preimpregnado.
JP2004027078A (ja) 2002-06-27 2004-01-29 Toray Ind Inc トウプリプレグの製造方法及び製造装置
JP2004090352A (ja) 2002-08-30 2004-03-25 Toray Ind Inc トウプリプレグの製造方法及びその製造装置
FR2851566B1 (fr) 2003-02-26 2007-05-11 Hexcel Fabrics Renfort fibreux utile comme agent ignifugeant, son procede de fabrication et son utilisation
US20040219855A1 (en) 2003-05-02 2004-11-04 Tsotsis Thomas K. Highly porous interlayers to toughen liquid-molded fabric-based composites
US20050048280A1 (en) 2003-08-29 2005-03-03 Stamper Rodney Gene Apparatus and process for making a tape useful as a tire cap ply
DE102004046745B4 (de) 2004-09-27 2008-04-24 Atotech Deutschland Gmbh Verfahren zur lösungsmittelfreien Herstellung einer faserverstärkten, mit Harz beschichteten Folie und Verwendung derselben
US7803438B2 (en) 2004-09-30 2010-09-28 Ansell Healthcare Products Llc Polymeric shell adherently supported by a liner and a method of manufacture
DE102004059883A1 (de) 2004-12-10 2006-06-14 Brandenburger Patentverwertung Gbr (Vertretungsberechtigte Gesellschafter Herr Joachim Brandenburger Herstellung eines harzgetränkten Faserschlauches zur Innenauskleidung von Kanälen und Rohrleitungen
JP4983105B2 (ja) * 2005-06-15 2012-07-25 東レ株式会社 撚り線材の連続製造方法
US7858172B2 (en) 2006-05-25 2010-12-28 Mitsubishi Engineering-Plastics Corporation Fiber-reinforced thermoplastic resin molded article
JP2008007682A (ja) * 2006-06-30 2008-01-17 Toray Ind Inc エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料
WO2008056755A1 (fr) 2006-11-09 2008-05-15 Teijin Chemicals Ltd. Matériau composite et procédé servant à produire celui-ci
CN101679605A (zh) 2007-04-17 2010-03-24 赫克赛尔公司 具有改善性能的预浸渍的复合材料
US7998565B2 (en) 2008-03-31 2011-08-16 Sanyo Chemical Industries, Ltd. Binder for glass chopped strand mats
FR2945549B1 (fr) 2009-05-12 2012-07-27 Arkema France Substrat fibreux, procede de fabrication et utilisations d'un tel substrat fibreux.
US20110129608A1 (en) 2009-11-30 2011-06-02 Adzima Leonard J Methods of applying matrix resins to glass fibers
JP5494375B2 (ja) * 2010-09-10 2014-05-14 東レ株式会社 複合強化繊維束の製造方法およびそれを用いた成形材料
FR2967371B1 (fr) 2010-11-17 2014-04-25 Arkema France Procede de fabrication de materiau fibreux pre-impregne de polymere thermodurcissable
AU2011335297B2 (en) 2010-12-02 2014-10-02 Toho Tenax Europe Gmbh Uni-directional fibre preform having slivers and consisting of reinforcing fibre bundles, and a composite material component
JP2012167252A (ja) 2011-01-27 2012-09-06 Toray Ind Inc 細幅プリプレグの製造方法、および繊維強化プラスチック
FR2975939B1 (fr) * 2011-06-01 2014-05-09 Hexcel Reinforcements Ruban voile presentant une resistance au delaminage amelioree
EP2955006B1 (fr) 2011-06-03 2018-11-14 Cytec Technology Corp. Methode d'utilisation d'un agent de remplissage de rayon revêtu de résine
EP2725055B1 (fr) * 2011-06-24 2017-10-11 Toray Industries, Inc. Matière de moulage, procédé de moulage l'utilisant, procédé de fabrication d'une matière de moulage et procédé de fabrication d'une matière composite renforcée par des fibres
JP5749108B2 (ja) * 2011-07-26 2015-07-15 ダイセルポリマー株式会社 繊維巻きテープを使用した継ぎ目部材及びその製造方法
CN102950780B (zh) 2011-08-19 2016-06-29 辽宁辽杰科技有限公司 一种连续纤维增强热塑性树脂预浸带的制备装置及其应用
FR2981653B1 (fr) 2011-10-25 2014-08-22 Arkema France Materiau composite thermoplastique renforce de fibres synthetiques et procede de fabrication
JP2013100616A (ja) * 2011-11-08 2013-05-23 Toray Monofilament Co Ltd 長繊維強化熱可塑性モノフィラメント及びその製造方法、並びに繊維製品及びその製造方法
CA3046599C (fr) 2011-12-20 2020-04-14 Cytec Industries Inc. Matiere fibreuse seche pour une infusion de resine ulterieure
CN104039873B (zh) * 2012-01-10 2017-02-08 东丽株式会社 碳纤维增强聚丙烯片材及其成型品
KR20130085163A (ko) 2012-01-19 2013-07-29 전북대학교산학협력단 연속상 탄소섬유가 함침된 열가소성 수지 테이프의 성형방법
DE102012204345A1 (de) 2012-03-19 2013-09-19 Sgl Carbon Se Bandförmiger faserverstärkter Verbundwerkstoff und ein Verfahren zur Herstellung desselben
CN102615839A (zh) 2012-03-27 2012-08-01 华东理工大学 连续纤维增强热塑性预浸带编织物及其板材的制备方法
FR2988639B1 (fr) 2012-04-02 2014-06-13 Hexcel Reinforcements Materiau aux proprietes de conductivite ameliorees pour la realisation de pieces composites en association avec une resine
GB201223032D0 (en) 2012-12-20 2013-02-06 Cytec Ind Inc Method for forming shaped preform
JP2014122449A (ja) * 2012-12-21 2014-07-03 Teijin Ltd 拡幅ストランドの製造方法
US20140377556A1 (en) 2013-06-25 2014-12-25 Hexcel Corporation Method for making a discontinuous fiber molding compound
DE102013218639A1 (de) 2013-09-17 2015-03-19 Bayerische Motoren Werke Aktiengesellschaft Verfahren zur Herstellung eines Faserverbundhalbzeuges sowie Faserverbundhalbzeug
FR3017329B1 (fr) 2014-02-13 2016-07-29 Arkema France Procede de fabrication d'un materiau fibreux pre-impregne de polymere thermoplastique en lit fluidise
CN103978696B (zh) 2014-05-12 2016-08-24 东华大学 一种连续功能化碳纤维增强热塑性树脂基预浸带的制备工艺
CN103963319B (zh) 2014-05-29 2016-06-15 上海飞机制造有限公司 一种复合材料加筋壁板的预浸料/树脂膜熔渗共固化成型方法
US20150343747A1 (en) 2014-05-29 2015-12-03 Ticona Llc Polyethylene composite members and methods for forming the same
US10583615B2 (en) 2014-06-30 2020-03-10 Cytec Industries Inc. Dry fibrous tape for manufacturing preform
CN104058777B (zh) 2014-07-09 2015-09-09 四川创越炭材料有限公司 一种炭纤维硬质保温毡的半连续化生产方法
CN104924487B (zh) 2015-04-30 2017-11-07 山东大学 一种热塑性碳纤维预浸料的制备系统和制备方法
CN105061995B (zh) 2015-07-29 2017-11-17 中国科学院山西煤炭化学研究所 碳纤维/环氧树脂预浸料及其制法
CN105885072B (zh) 2016-06-13 2019-09-10 吉林大学 一种单向连续纤维增强树脂基复合材料预浸料及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1007309A1 (fr) 1997-07-09 2000-06-14 Balmer, R. Charles Procede de pre-impregnation a la resine et preimpregnes ainsi obtenus
JP2000079614A (ja) 1998-07-10 2000-03-21 Toray Ind Inc トウプリプレグパッケ―ジおよびその製造方法
US20080020193A1 (en) * 2006-07-24 2008-01-24 Jang Bor Z Hybrid fiber tows containning both nano-fillers and continuous fibers, hybrid composites, and their production processes
DE102006057603A1 (de) * 2006-11-27 2008-06-05 Deutsches Zentrum für Luft- und Raumfahrt e.V. Verfahren und Vorrichtung zur Herstellung von harzbeschichteten und/oder harzgetränkten Fasergebilden, Fasergebilde und Sammlung von Fasergebilden und Verwendung von Fasergebilden
JP2008291170A (ja) 2007-05-28 2008-12-04 Teijin Techno Products Ltd 繊維強化テープ及びその製造方法
FR2939069A1 (fr) * 2008-11-28 2010-06-04 Hexcel Reinforcements Nouveau materiau intermediaire de largeur constante pour la realisation de pieces composites par procede direct.

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"ASM Handbook", 2001, ASM INTERNATIONAL
TORAYCA: "Torayca, Quality Carbon Fibers", TORAY COMPOSITES AMERICA, INC., 1 May 2001 (2001-05-01), XP055762318

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018001682A (ja) * 2016-07-06 2018-01-11 三菱重工業株式会社 引抜成形材料の製造方法及び引抜成形材料の製造装置
US11396145B2 (en) 2016-07-06 2022-07-26 Mitsubishi Heavy Industries, Ltd. Method and device for producing pultruded material
FR3061069A1 (fr) * 2016-12-22 2018-06-29 Arkema France Procede de fabrication d'un materiau fibreux pre-impregne de polymere thermoplastique sous forme de poudre seche
WO2018115737A1 (fr) 2016-12-22 2018-06-28 Arkema France Procede de fabrication d'un materiau fibreux pre-impregne de polymere thermoplastique sous forme de poudre
WO2018115739A1 (fr) 2016-12-22 2018-06-28 Arkema France Procede de fabrication d'un materiau fibreux pre-impregne de polymere thermoplastique par projection
FR3061067A1 (fr) * 2016-12-22 2018-06-29 Arkema France Procede de fabrication d'un materiau fibreux pre-impregne de polymere thermoplastique par projection
WO2018115738A1 (fr) 2016-12-22 2018-06-28 Arkema France Procédé de fabrication d'un matériau fibreux pré-imprégné de polymère thermoplastique sous forme de poudre sèche
FR3061068A1 (fr) * 2016-12-22 2018-06-29 Arkema France Procede de fabrication d'un materiau fibreux pre-impregne de polymere thermoplastique sous forme de poudre
US11945135B2 (en) 2016-12-22 2024-04-02 Arkema France Process for manufacturing a fibrous material pre-impregnated with thermoplastic polymer in powder form
KR102585419B1 (ko) 2016-12-22 2023-10-05 아르끄마 프랑스 분말 형태의 열가소성 폴리머로 예비 함침된 섬유성 재료를 제조하기 위한 방법
US11413832B2 (en) 2016-12-22 2022-08-16 Arkema France Fluidized-bed process for manufacturing a fibrous material preimpregnated with thermoplastic polymer
KR20190095292A (ko) * 2016-12-22 2019-08-14 아르끄마 프랑스 분말 형태의 열가소성 폴리머로 예비 함침된 섬유성 재료를 제조하기 위한 방법
WO2018115736A1 (fr) 2016-12-22 2018-06-28 Arkema France Procédé de fabrication d'un matériau fibreux pré-imprégné de polymère thermoplastique en lit fluidise
EP3558612B1 (fr) 2016-12-22 2022-05-11 Arkema France Procede de fabrication d'un materiau fibreux pre-impregne de polymere thermoplastique sous forme de poudre
US10675785B2 (en) 2017-06-22 2020-06-09 Arkema France Fibrous material impregnated with thermoplastic polymer
WO2018234434A1 (fr) 2017-06-22 2018-12-27 Arkema France Procede de fabrication d'un materiau fibreux impregne de polymere thermoplastique
WO2018234436A1 (fr) 2017-06-22 2018-12-27 Arkema France Materiau fibreux impregne de polymere thermoplastique
US11938656B2 (en) 2017-06-22 2024-03-26 Arkema France Method for manufacturing a fibrous material impregnated with thermoplastic polymer
WO2018234439A1 (fr) 2017-06-22 2018-12-27 Arkema France Procede de fabrication d'un materiau fibreux impregne de polymere thermoplastique
EP3617254A1 (fr) 2017-06-22 2020-03-04 Arkema France Materiau fibreux impregne de polymere thermoplastique
EP3940021A1 (fr) 2017-06-22 2022-01-19 Arkema France Materiau fibreux impregne de polymere thermoplastique
WO2019180370A1 (fr) 2018-03-23 2019-09-26 Arkema France MATERIAU FIBREUX IMPREGNE DE POLYMERE THERMOPLASTIQUE D'EPAISSEUR INFERIEURE OU EGALE A 100µM ET SON PROCEDE DE PREPARATION
US11571839B2 (en) 2018-03-23 2023-02-07 Arkema France Web of impregnated fibrous material, production method thereof and use of same for the production of three-dimensional composite parts
EP3670127A1 (fr) 2018-12-18 2020-06-24 Arkema France Procede de fabrication d'un materiau fibreux impregne de polymere thermoplastique
WO2020126995A1 (fr) 2018-12-18 2020-06-25 Arkema France Procede de fabrication d'un materiau fibreux impregne de polymere thermoplastique
EP3670130A1 (fr) 2018-12-18 2020-06-24 Arkema France Procede de fabrication d'un materiau fibreux impregne de polymere thermoplastique
FR3090450A1 (fr) * 2018-12-20 2020-06-26 Arkema France Materiau fibreux impregne de polymere thermoplastique de masse moleculaire et de viscosite optimum et son procede de preparation
WO2020128296A1 (fr) * 2018-12-20 2020-06-25 Arkema France Materiau fibreux impregne de polymere thermoplastique de masse moleculaire et de viscosite optimum et son procede de preparation
CN111993683A (zh) * 2020-04-17 2020-11-27 北京化工大学 一种连续纤维增强热塑性树脂粉末浸渍装置及浸渍方法

Also Published As

Publication number Publication date
JP7245186B2 (ja) 2023-03-23
US11518068B2 (en) 2022-12-06
IL251752B (en) 2020-11-30
IL251752A0 (en) 2017-06-29
CA2965448C (fr) 2023-04-18
CN112454736B (zh) 2022-09-23
FR3027546A1 (fr) 2016-04-29
US20200139587A1 (en) 2020-05-07
MX2017005352A (es) 2018-01-09
RU2703213C9 (ru) 2019-11-25
JP2020090103A (ja) 2020-06-11
PT3209473T (pt) 2021-04-22
US20170334094A1 (en) 2017-11-23
JP2017533983A (ja) 2017-11-16
BR112017008256B1 (pt) 2022-04-05
CN112454736A (zh) 2021-03-09
JP6730270B2 (ja) 2020-07-29
DK3209473T3 (da) 2021-04-26
CN107107395A (zh) 2017-08-29
ES2859728T3 (es) 2021-10-04
EP3209473A1 (fr) 2017-08-30
RU2703213C2 (ru) 2019-10-15
EP3209473B1 (fr) 2021-03-03
CN107107395B (zh) 2021-01-08
RU2017113762A3 (fr) 2019-04-22
CA2965448A1 (fr) 2016-04-28
BR112017008256A2 (pt) 2018-01-02
US10538015B2 (en) 2020-01-21
FR3027546B1 (fr) 2017-07-21
RU2017113762A (ru) 2018-10-23

Similar Documents

Publication Publication Date Title
EP3209473B1 (fr) Mèches poudrées par procédé électrostatique
EP3656549B1 (fr) Materiau intermediaire de largeur constante pour la realisation de pieces composites par procede direct
JP6450773B2 (ja) 流動床内での熱可塑性ポリマー予備含浸繊維材料の生産方法
JP2017077723A (ja) 複合部品を付加製造するためのシステム及び方法
EP2480400B1 (fr) Dispositif et procédé pour le drapage automatisé de composites
JP2017074773A (ja) 複合部品を付加製造するためのシステム及び方法
US10626235B2 (en) Flexible composite prepreg materials
FR2975939A1 (fr) Ruban voile presentant une resistance au delaminage amelioree
FR3061067A1 (fr) Procede de fabrication d'un materiau fibreux pre-impregne de polymere thermoplastique par projection
CN109641372B (zh) 处理纤维的方法、处理纤维的设备和由此获得的经处理纤维制成的带
FR2999973A1 (fr) Procede de realisation de preformes a partir de fibres munies d'un liant et machine correspondante
JP2004142165A (ja) 圧縮成形用材料
JPWO2020040155A1 (ja) プリプレグの製造方法、プリプレグテープの製造方法および繊維強化複合材料の製造方法
JP2004143226A (ja) 圧縮成形用材料
EP4117878B1 (fr) Matériau de renfort à fils de carbone torsadés pour la constitution de pièces composites, procédés et utilisation
EP4304847A1 (fr) Nouveaux matériaux de renfort à base de fils torsadés s et z, adaptés à la constitution de pièces composites, procédés et utilisation
Duvall et al. In-situ composite manufacture using an electrostatic powder spray process and filament winding

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15785102

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 251752

Country of ref document: IL

ENP Entry into the national phase

Ref document number: 2017521566

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017113762

Country of ref document: RU

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2965448

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015785102

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: MX/A/2017/005352

Country of ref document: MX

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112017008256

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112017008256

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20170420