WO2016056570A1 - 樹脂組成物及びフィルム - Google Patents

樹脂組成物及びフィルム Download PDF

Info

Publication number
WO2016056570A1
WO2016056570A1 PCT/JP2015/078399 JP2015078399W WO2016056570A1 WO 2016056570 A1 WO2016056570 A1 WO 2016056570A1 JP 2015078399 W JP2015078399 W JP 2015078399W WO 2016056570 A1 WO2016056570 A1 WO 2016056570A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
resin composition
content
mol
group
Prior art date
Application number
PCT/JP2015/078399
Other languages
English (en)
French (fr)
Inventor
勝啓 高藤
加藤 雅己
容子 森
Original Assignee
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クラレ filed Critical 株式会社クラレ
Priority to JP2016553126A priority Critical patent/JP6093490B2/ja
Priority to EP15849157.1A priority patent/EP3205693B1/en
Priority to ES15849157T priority patent/ES2822925T3/es
Priority to US15/517,749 priority patent/US10336872B2/en
Priority to CN201580054589.6A priority patent/CN107109014B/zh
Publication of WO2016056570A1 publication Critical patent/WO2016056570A1/ja
Priority to US16/377,482 priority patent/US20190233600A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D65/00Wrappers or flexible covers; Packaging materials of special type or form
    • B65D65/38Packaging materials of special type or form
    • B65D65/46Applications of disintegrable, dissolvable or edible materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/17Amines; Quaternary ammonium compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/17Amines; Quaternary ammonium compounds
    • C08K5/19Quaternary ammonium compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/41Compounds containing sulfur bound to oxygen
    • C08K5/42Sulfonic acids; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L29/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical; Compositions of hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Compositions of derivatives of such polymers
    • C08L29/02Homopolymers or copolymers of unsaturated alcohols
    • C08L29/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2329/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Derivatives of such polymer
    • C08J2329/02Homopolymers or copolymers of unsaturated alcohols
    • C08J2329/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids

Definitions

  • the present invention relates to a resin composition containing a modified polyvinyl alcohol containing a specific acrylamide unit and a specific amine compound, and a film composed of this resin composition.
  • Polyvinyl alcohol (hereinafter sometimes abbreviated as “PVA”) is known as a water-soluble synthetic polymer, and has superior strength characteristics, film-forming properties, etc. compared to other synthetic polymers. It is widely used in applications such as paper processing, fiber processing, adhesives, emulsion polymerization and suspension polymerization stabilizers, inorganic binders, and films.
  • the water-soluble film can be cited as an application of the above film.
  • various chemicals such as agricultural chemicals, laundry detergents, bleaching agents, toiletry products, industrial chemicals, etc. have been sealed and packaged in units of water-soluble films (unit packaging), and when used, they remain in their packaging form in water.
  • a method is used in which the contents are dissolved or dispersed in water together with the packaging film.
  • the advantages of this unit packaging are that it can be used without direct contact with hazardous chemicals during use, that a certain amount of contents are packed, so there is no need to measure it during use, and the use of containers that contain chemicals For example, the subsequent processing is unnecessary.
  • Partially saponified unmodified PVA is used instead of PVA having a high degree of conversion.
  • the water-soluble film using this partially saponified unmodified PVA has features such that it is easily dissolved in cold water and has excellent mechanical strength.
  • Patent Document 1 discloses a water-soluble film formed by forming a PVA film containing an oxyalkylene group, a sulfonic acid group or a cationic group.
  • Patent Document 2 discloses a water-soluble film made of a composition containing a modified PVA having a monomer unit containing a carboxy group and / or a sulfonic acid group and a polyhydric alcohol.
  • Patent Document 3 discloses a cold water-soluble film containing a modified PVA having vinyl alcohol units and 2-acrylamido-2-methylpropanesulfonic acid units.
  • Patent Document 4 discloses a PVA film in which an amino acid is contained in PVA.
  • the present invention has been made based on the above-described circumstances, and is capable of forming a film excellent in cold water solubility, mechanical strength, and chemical resistance, and a film composed of this resin composition.
  • the purpose is to provide.
  • the inventors of the present invention contain a modified PVA containing a specific acrylamide unit and a specific amine compound, and the content of the specific amine compound is in a specific range.
  • the present invention has been completed.
  • the present invention made in order to solve the above-mentioned problems is a modified PVA containing a monomer unit represented by the following formula (I) (hereinafter also referred to as “monomer unit (I)”) (hereinafter referred to as “modified”).
  • PVA (A) a monomer unit represented by the following formula (I)
  • II monomer unit
  • B amine compound
  • It is a resin composition whose content of a compound (B) is 0.01 mass part or more and 1 mass part or less.
  • R 1 is, .R 2 is the linear or branched alkyl group having 1 to 8 carbon atoms, or is, -R 3 -SO 3 - X + , -R 3 - N + (R 4 ) 3 Cl - or a hydrogen atom
  • R 3 is a linear or branched alkanediyl group having 1 to 10 carbon atoms
  • X + is a hydrogen atom
  • R 4 is a linear or branched alkyl group having 1 to 5 carbon atoms, and a plurality of R 4 may be the same or different.
  • R 5 is, -R 3 '-SO 3 - X +', -R 3 '-N + (R 4') 3 Cl - is a hydrogen atom or .R 3 'is carbon A linear or branched alkanediyl group having a number of 1 to 10.
  • X + ′ is a hydrogen atom, a metal atom or an ammonium group
  • R 4 ′ is a linear or branched group having 1 to 5 carbon atoms.
  • a plurality of R 4 ′ may be the same or different.
  • the resin composition contains a modified PVA (A) containing a specific acrylamide unit and a specific amine compound (B), and the content of the amine compound (B) is within the specific range described above.
  • a film excellent in solubility, mechanical strength and chemical resistance can be formed.
  • the reason why the resin composition contains the amine compound (B) has the above-mentioned effect is not necessarily clear, but for example, hydrolysis of an amide group that may occur when the modified PVA (A) comes into contact with a drug. It is thought to be due to the inhibitory action and the pH buffering action of the amine compound (B).
  • the viscosity average polymerization degree of the modified PVA (A) is preferably from 300 to 3,000, and the saponification degree is preferably from 82 mol% to 99.5 mol%.
  • the viscosity average polymerization degree and saponification degree are measured by the method described in JIS-K6726-1994.
  • the content of the monomer unit (I) with respect to the total monomer units of the modified PVA (A) is preferably 0.05 mol% or more and 10 mol% or less.
  • the modified PVA (A) may further include a structural unit represented by the following formula (III) (hereinafter also referred to as “structural unit (III)”).
  • structural unit (III) As a content rate of the said structural unit (III) with respect to all the monomer units of modified PVA (A), 0.001 mol% or more and 0.5 mol% or less are preferable.
  • R 6 is a hydrogen atom or a linear or branched alkyl group having 1 to 8 carbon atoms.
  • the modified PVA (A) contains the specific structural unit (III) at the specific content, a film further excellent in cold water solubility, mechanical strength, and chemical resistance can be formed.
  • the present invention includes a film composed of the resin composition. Since the said film is comprised from the said resin composition, it is excellent in cold water solubility, mechanical strength, and chemical resistance.
  • the resin composition of the present invention can form a film having excellent cold water solubility, mechanical strength, and chemical resistance. Therefore, the resin composition and film of the present invention are suitably used for packaging materials for various chemicals such as garment detergents, bleaches, and agricultural chemicals.
  • the resin composition of the present invention contains a modified PVA (A) and an amine compound (B).
  • the resin composition may contain an optional component in addition to the modified PVA (A) and the amine compound (B).
  • each component will be described.
  • Modified PVA (A) The modified PVA (A) contained in the resin composition contains a monomer unit (I) represented by the following formula (I) and usually further contains a vinyl alcohol unit.
  • the modified PVA (A) preferably further includes a structural unit (III) represented by the formula (III) described later.
  • the modified PVA (A) may further contain other monomer units.
  • the “structural unit” is a partial structure contained in the modified PVA (A) and is derived from one or more monomers.
  • “Monomer unit” refers to a structural unit derived from one monomer.
  • the monomer unit (I) is a monomer unit represented by the following formula (I).
  • R 1 is a hydrogen atom or a linear or branched alkyl group having 1 to 8 carbon atoms.
  • R 2 is, -R 3 -SO 3 - X + , -R 3 -N + (R 4) 3 Cl - is or a hydrogen atom.
  • R 3 is a linear or branched alkanediyl group having 1 to 10 carbon atoms.
  • X + is a hydrogen atom, a metal atom or an ammonium group.
  • R 4 is a linear or branched alkyl group having 1 to 5 carbon atoms. A plurality of R 4 may be the same or different.
  • Examples of the linear or branched alkyl group having 1 to 8 carbon atoms represented by R 1 include, for example, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, tert- Examples thereof include a butyl group and an n-pentyl group.
  • R 1 is preferably a hydrogen atom and a methyl group, more preferably a hydrogen atom, from the viewpoint of ease of synthesis of the modified PVA (A).
  • the direction is not particularly limited.
  • R 3 is preferably —C (CH 3 ) 2 —CH 2 — and —CH 2 —CH 2 —CH 2 —.
  • R 3 is —C (CH 3 ) 2 —CH 2 —
  • when expressed together with —C ( ⁇ O) NH— adjacent to R 3 —C ( ⁇ O) NH—C (CH 3 ) 2
  • the orientation of R 3 as described above is preferably —CH 2 —.
  • the R 3 is -C (CH 3) 2 -CH 2 -
  • the R 2 when it is, -C (CH 3) 2 -CH 2 -SO 3 - X +, and -C (CH 3 ) 2 —CH 2 —N + (R 4 ) 3 Cl — is preferred.
  • Examples of the metal atom represented by X + include an alkali metal atom (lithium atom, sodium atom, potassium atom and the like), an alkaline earth metal atom (calcium atom and the like), and the like.
  • ammonium group represented by X + examples include a tetramethylammonium group, a tetraethylammonium group, a tetrapropylammonium group, NH 4 , a monomethylammonium group, a dimethylammonium group, and a trimethylammonium group.
  • the above X + is preferably a hydrogen atom or an alkali metal atom, more preferably a hydrogen atom or a sodium atom.
  • Examples of the linear or branched alkyl group having 1 to 5 carbon atoms represented by R 4 include, for example, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec- Examples thereof include a butyl group and an n-pentyl group. Of these, a methyl group is preferred.
  • the content rate of monomer unit (I) with respect to all the monomer units of modified PVA (A) 0.05 mol% is preferred, 0.10 mol% is more preferred, and 0.15 mol% is preferred. Further preferred.
  • an upper limit of the content rate of monomer unit (I) 10 mol% is preferable, 8 mol% is more preferable, and 7 mol% is further more preferable.
  • total monomer units refers to the total of monomer units constituting the modified PVA (A).
  • n is an integer of 1 or more.
  • the above total is calculated assuming that there are two monomer units per structural unit (III). .
  • the structural unit (III) is a structural unit represented by the following formula (III).
  • the modified PVA (A) preferably further contains the structural unit (III).
  • modified PVA (A) further contains structural unit (III)
  • the film which is excellent in cold water solubility, mechanical strength, and chemical resistance can be formed.
  • R 6 is a hydrogen atom or a linear or branched alkyl group having 1 to 8 carbon atoms.
  • Examples of the linear or branched alkyl group having 1 to 8 carbon atoms represented by R 6 include groups similar to those exemplified as R 1 above.
  • R 6 is preferably a hydrogen atom and a methyl group, more preferably a hydrogen atom.
  • modified PVA (A) contains structural unit (III), as a minimum of the content rate of structural unit (III) with respect to all the monomer units of modified PVA (A), 0.001 mol% is preferable, and 0. 005 mol% is more preferable, 0.01 mol% is further more preferable, and 0.02 mol% is especially preferable.
  • an upper limit of the content rate of structural unit (III) 0.5 mol% is preferable, 0.4 mol% is more preferable, 0.2 mol% is further more preferable.
  • the structural unit (III) is formed by a reaction between the vinyl alcohol unit and the monomer unit (I). That is, a value obtained by doubling the content of the structural unit (III) corresponds to the content of the monomer unit forming the structural unit (III).
  • a minimum of the content rate of the monomer unit which forms specific structural unit (III) it is 0.002 mol% normally, 0.01 mol% is preferable, 0.02 mol% is more preferable, 0 0.04 mol% is more preferable.
  • the upper limit of the content is usually 1 mol%, preferably 0.8 mol%, and more preferably 0.4 mol%.
  • Each content of the monomer unit (I) and the structural unit (III) can be determined by 1 H-NMR measurement of the modified PVA (A). Specifically, it can be determined by dissolving modified PVA (A) in D 2 O and measuring it at 80 ° C. using a 600 MHz 1 H-NMR measuring apparatus.
  • the monomer unit derived from vinyl (vinyl acetate unit) is included and the modified PVA (A) contains sodium acetate as an impurity
  • the content and structural unit of the monomer unit (I) are as follows. The content of (III) can be determined.
  • a represents a peak area of 2.8 ppm to 3.1 ppm derived from Ha of the structural unit (III ′).
  • a value obtained by dividing the peak area of 1.45 ppm to 1.55 ppm derived from 6 Hb of AMPS units by 6 is b.
  • a peak area of 4.5 ppm to 5.4 ppm derived from Hc of vinyl acetate units is defined as c.
  • a value obtained by dividing a peak area of 1.9 ppm to 2.0 ppm derived from three protons of sodium acetate by 3 is defined as d.
  • a peak area derived from 0.2 ppm to 2.8 ppm of methylene group is defined as A.
  • the content of the monomer unit (I) and the content of the structural unit (III) are respectively calculated using the following equations.
  • Content of monomer unit (I) (mol%) b ⁇ 100 / (2 ⁇ a + b + c + e)
  • Content of structural unit (III) (mol%) a ⁇ 100 / (2 ⁇ a + b + c + e)
  • the content rate of the monomer unit which forms structural unit (III) can also be calculated using following Formula.
  • Content of monomer units forming the structural unit (III) (mol%) 2 ⁇ a ⁇ 100 / (2 ⁇ a + b + c + e)
  • the structural unit (III) is formed from two monomer units. Therefore, the sum of the content of the monomer unit (I), the content of the monomer unit forming the structural unit (III), and the content of other monomer units is usually 100 mol%. However, the sum of the content of the monomer unit (I), the content of the structural unit (III), and the content of other monomer units is usually less than 100 mol%.
  • the modified PVA (A) includes, for example, a vinyl ester monomer and a monomer that gives the monomer unit (I) (for example, H 2 C ⁇ C (R 1 ) —C ( ⁇ O) NH—R 2 etc.)
  • the vinyl ester copolymer obtained by copolymerizing can be produced by saponification using an alkali catalyst or an acid catalyst in an alcohol solution.
  • the structural unit (III) can be formed by reacting the hydroxyl group of the vinyl alcohol unit obtained by saponifying the vinyl ester unit with the amide group of the monomer unit (I).
  • vinyl ester monomer examples include vinyl formate, vinyl acetate, vinyl propionate, vinyl valelate, vinyl caprate, vinyl laurate, vinyl stearate, vinyl benzoate, vinyl pivalate, vinyl versatate and the like. It is done. Of these, vinyl acetate is preferred.
  • Examples of the method for copolymerizing the vinyl ester monomer and the monomer that gives the monomer unit (I) include known methods such as bulk polymerization, solution polymerization, suspension polymerization, and emulsion polymerization. Can be mentioned. Among these methods, a bulk polymerization method performed without a solvent and a solution polymerization method performed using a solvent such as alcohol are preferable, and a solution polymerization method in which polymerization is performed in the presence of a lower alcohol is more preferable in terms of enhancing the effect of the present invention. preferable.
  • the lower alcohol is preferably an alcohol having 3 or less carbon atoms, more preferably methanol, ethanol, n-propanol and isopropanol, and further preferably methanol.
  • Examples of the initiator used in the polymerization reaction include 2,2′-azobisisobutyronitrile, 2,2′-azobis (2,4-dimethylvaleronitrile), 2,2′-azobis (4-methoxy).
  • Known initiators such as azo initiators such as -2,4-dimethylvaleronitrile) and organic peroxide initiators such as benzoyl peroxide and n-propyl peroxycarbonate.
  • a copolymerizable monomer is further copolymerized within the range in which the effects of the present invention are not impaired.
  • monomers include ⁇ -olefins such as ethylene, propylene, 1-butene, isobutene and 1-hexene; acrylamide derivatives such as N-methylacrylamide and N-ethylacrylamide; N-methylmethacrylamide, N- Methacrylamide derivatives such as ethyl methacrylamide; vinyl ethers such as methyl vinyl ether, ethyl vinyl ether, n-propyl vinyl ether, isopropyl vinyl ether, n-butyl vinyl ether; ethylene glycol vinyl ether, 1,3-propanediol vinyl ether, 1,4-butanediol vinyl ether Hydroxyl group-containing vinyl ethers such as allyl acetate;
  • the modified PVA (A) can be obtained by saponifying the vinyl ester copolymer obtained by the above-mentioned method, for example, in an alcohol solvent, followed by drying.
  • the water content of the saponification raw material solution used for saponification the resin temperature of the modified PVA (A) at the time of drying and the drying time should be in a specific range as described later. preferable.
  • the saponification raw material solution can be prepared by adding a small amount of water to the solution containing the vinyl ester copolymer and the solvent obtained in the copolymerization step.
  • the moisture content of the saponification raw material solution obtained 1 mass% is preferable and 1.2 mass% is more preferable.
  • the upper limit of the water content of the obtained saponification raw material solution is preferably 2% by mass, and more preferably 1.8% by mass.
  • the water content is less than the lower limit, lactonization tends to proceed, and therefore the content of the structural unit (III) tends to be too high.
  • the water content exceeds the upper limit ring opening of the lactone structure is likely to proceed, and thus formation of the structural unit (III) tends to be suppressed.
  • Examples of the solvent that can be used in the saponification reaction include methanol, methyl acetate, dimethyl sulfoxide, diethyl sulfoxide, dimethylformamide, and the like. Of these solvents, methanol is preferred.
  • an alkaline substance is usually used as the catalyst for the saponification reaction of the vinyl ester copolymer.
  • the alkaline substance include alkali metal hydroxides such as potassium hydroxide and sodium hydroxide, alkali metal alkoxides such as sodium methoxide, and the like.
  • 0.002 is preferable by the molar ratio with respect to the vinyl ester unit of a vinyl ester copolymer, and 0.004 is more preferable.
  • the upper limit of the amount of the catalyst used is preferably 0.2 and more preferably 0.1 in terms of the molar ratio of the vinyl ester copolymer to the vinyl ester unit.
  • the saponification catalyst may be added all at once in the initial stage of the saponification reaction, or a part thereof may be added in the initial stage of the saponification reaction, and the rest may be added in the middle of the saponification reaction. .
  • the lower limit of the temperature of the saponification reaction is preferably 5 ° C, more preferably 20 ° C.
  • the upper limit of the temperature of the saponification reaction is preferably 80 ° C, more preferably 70 ° C.
  • the upper limit of the saponification reaction time is preferably 10 hours and more preferably 5 hours.
  • the saponification reaction can be carried out by either a batch system or a continuous system. After completion of the saponification reaction, the remaining catalyst may be neutralized as necessary. Examples of the neutralizing agent that can be used include organic acids such as acetic acid and lactic acid, and ester compounds such as methyl acetate.
  • a step of washing the modified PVA (A) may be provided as necessary after saponification.
  • a solution containing a lower alcohol such as methanol as a main component and further containing water and / or an ester such as methyl acetate which is the same as that produced in the saponification step can be used.
  • the modified PVA (A) can be obtained by drying the modified PVA (A) after washing.
  • hot air drying using a cylindrical dryer is preferable.
  • the upper limit of the resin temperature of the modified PVA (A) during drying is preferably 125 ° C, more preferably 118 ° C, and even more preferably 115 ° C.
  • the upper limit of the drying time is preferably 5 hours, and more preferably 4 hours.
  • the lower limit of the viscosity average degree of polymerization of the modified PVA (A) is preferably 300, more preferably 400, and even more preferably 500.
  • the upper limit of the viscosity average polymerization degree of the modified PVA (A) is preferably 3,000, more preferably 2,500, and still more preferably 2,000.
  • the viscosity average polymerization degree is not more than the above upper limit, the solution viscosity or melt viscosity of the resin composition can be maintained in an appropriate range, the workability is improved, and the cold water solubility of the obtained film is improved. improves.
  • the viscosity average degree of polymerization of the modified PVA (A) is measured by the method described in JIS-K6726-1994.
  • the lower limit of the degree of saponification of the modified PVA (A) is preferably 82 mol%, more preferably 84 mol%, and even more preferably 86 mol%.
  • the upper limit of the degree of saponification of the modified PVA (A) is preferably 99.5 mol%, more preferably 99.4 mol%, still more preferably 99.3 mol%.
  • the productivity of the modified PVA (A) or film is improved.
  • the degree of saponification of the modified PVA (A) is measured by the method described in JIS-K6726-1994.
  • the lower limit of the content of the modified PVA (A) in the resin composition is preferably 30% by mass, more preferably 50% by mass, and even more preferably 70% by mass.
  • 99 mass% is preferable, 95 mass% is more preferable, and 90 mass% is further more preferable.
  • the amine compound (B) contained in the resin composition is a compound represented by the following formula (II).
  • R 5 is, -R 3 '-SO 3 - X +', -R 3 '-N + (R 4') 3 Cl - is or a hydrogen atom.
  • R 3 ′ is a linear or branched alkanediyl group having 1 to 10 carbon atoms.
  • X + ′ is a hydrogen atom, a metal atom or an ammonium group.
  • R 4 ′ is a linear or branched alkyl group having 1 to 5 carbon atoms. A plurality of R 4 ′ may be the same or different.
  • Examples of the linear or branched alkanediyl group having 1 to 10 carbon atoms represented by R 3 ′ include groups similar to those exemplified as R 3 in the above formula (I).
  • R 3 ′ is preferably a linear or branched alkanediyl group having 1 to 6 carbon atoms.
  • R 3 ′ is more preferably —C (CH 3 ) 2 —CH 2 — or —CH 2 —CH 2 —CH 2 —.
  • R 3 ′ is —C (CH 3 ) 2 —CH 2 —, it is expressed as H 2 N—C (CH 3 ) 2 —CH 2 — together with H 2 N— adjacent to the above R 3 ′.
  • Such R 3 ′ orientation is preferred.
  • the R 3 ' is -C (CH 3) 2 -CH 2 -
  • the R 5 when it is, -C (CH 3) 2 -CH 2 -SO 3 - X +', and -C ( CH 3 ) 2 —CH 2 —N + (R 4 ′) 3 Cl — is preferred.
  • Examples of the metal atom and ammonium group represented by X + ′ include those similar to the metal atom and ammonium group exemplified as X + in the above formula (I).
  • a hydrogen atom and an alkali metal atom are preferable, and a hydrogen atom and a sodium atom are more preferable.
  • Examples of the linear or branched alkyl group having 1 to 5 carbon atoms represented by R 4 ′ include groups similar to those exemplified as R 4 in the above formula (I). Of these, a methyl group is preferred.
  • an amine compound (B) As a minimum of content of an amine compound (B), it is 0.01 mass part with respect to 100 mass parts of modified PVA (A), 0.02 mass part is preferred, 0.03 mass part is still more preferred, 0.1 parts by mass is particularly preferable. On the other hand, as an upper limit of content of an amine compound (B), it is 1 mass part with respect to 100 mass parts of modified PVA (A), 0.8 mass part is preferable, and 0.5 mass part is more preferable. When the content of the amine compound (B) is less than the above lower limit, the cold water solubility becomes insufficient. On the other hand, when the content exceeds the upper limit, mechanical strength and the like are insufficient.
  • the resin composition may be composed only of the modified PVA (A) and the amine compound (B).
  • the modified PVA (A) and the amine compound (B) for example, saccharides, plasticizers, inorganic It may further contain a filler, other additives and the like.
  • saccharide examples include monosaccharides such as glucose, oligosaccharides, polysaccharides, and chain sugar alcohols.
  • polysaccharide examples include starch, cellulose, chitin, chitosan, hemicellulose, carboxymethylcellulose, methylcellulose, hydroxymethylcellulose, pectin, pullulan, agar, alginic acid, carrageenan, dextrin, and trehalose. More than seeds can be used.
  • Examples of the chain sugar alcohol include tetrites having 4 carbon atoms such as trait and erythritol, pentites having 5 carbon atoms such as arabit and xylit, and hexits having 6 carbon atoms such as glycit, mannitol, and sorbit. It is done.
  • the resin composition contains the above saccharides, thereby improving the cold water solubility of the resulting film, increasing the boric acid ion resistance, and particularly a chemical (chlorine) that degrades the modified PVA (A) after chemical packaging. It is possible to suppress a decrease in the solubility of cold water after packaging a system substance or the like).
  • starch is preferred.
  • raw starch such as corn and potato, processed starch (dextrin, oxidized starch, etherified starch, cationized starch, etc.) etc. can be used, for example.
  • the resulting film has a significant decrease in mechanical properties such as film strength, but it is used for the resin composition.
  • the modified PVA (A) to be obtained has a characteristic that it is excellent in compatibility with saccharides, particularly starch, it can contain a large amount of saccharides.
  • sugar as a minimum of content of the said saccharide
  • the upper limit of the saccharide content is preferably 100 parts by mass, more preferably 90 parts by mass, and still more preferably 80 parts by mass.
  • the content of the saccharide is at least the above lower limit, the cold water solubility of the resulting film is improved.
  • the content of the saccharide is not more than the above upper limit, the impact resistance at low temperature of the obtained film is improved.
  • a water-soluble film is required to have strength and toughness that can withstand use in a hot and humid region or a cold region, and particularly needs impact resistance at a low temperature.
  • the resin composition contains a plasticizer, the impact resistance at low temperatures can be improved, the glass transition point of the film can be lowered, and the solubility in water can be improved.
  • the plasticizer is not particularly limited as long as it is generally used as a plasticizer for PVA.
  • glycerin diglycerin, diethylene glycol, triethylene glycol, propylene glycol, dipropylene glycol, trimethylolpropane, pentaerythritol.
  • Polyhydric alcohols such as 1,3-butanediol; polyethers such as polyethylene glycol and polypropylene glycol; polyvinylamides such as polyvinylpyrrolidone; amide compounds such as N-methylpyrrolidone and dimethylacetamide; glycerin, pentaerythritol,
  • polyethers such as polyethylene glycol and polypropylene glycol
  • polyvinylamides such as polyvinylpyrrolidone
  • amide compounds such as N-methylpyrrolidone and dimethylacetamide
  • glycerin pentaerythritol
  • the compound which added ethylene oxide to polyhydric alcohols, such as sorbitol, water, etc. are mentioned, These can use 1 type (s) or 2 or more types.
  • glycerin, diglycerin, diethylene glycol, triethylene glycol, propylene glycol, dipropylene glycol, trimethylolpropane, polyethylene glycol and polyvinylpyrrolidone are preferable from the viewpoint of improving cold water solubility. From the viewpoint of suppressing a decrease in the cold water solubility of the film due to out, glycerin, diglycerin, trimethylolpropane, polyethylene glycol and polyvinylpyrrolidone are more preferable.
  • the number average molecular weight of the polyethylene glycol as the plasticizer is not particularly limited, but is 100 or more and 1,000 from the viewpoint of compatibility with the modified PVA (A) and the suppression of cold water solubility due to bleeding out. The following is preferred.
  • the weight average molecular weight of the polyvinylpyrrolidone as the plasticizer is not particularly limited, but is preferably 1,000 or more and 20,000 or less from the viewpoint of compatibility with the modified PVA (A).
  • the said resin composition contains the said plasticizer
  • 1 mass part is preferable with respect to 100 mass parts of modified PVA (A), and 10 mass parts is more preferable.
  • an upper limit of content of the said plasticizer 50 mass parts is preferable with respect to 100 mass parts of modified PVA (A), and 40 mass parts is more preferable.
  • the content of the plasticizer is equal to or more than the lower limit, the above-described effect due to the inclusion of the plasticizer can be sufficiently exhibited.
  • the content of the plasticizer is not more than the above upper limit, bleeding out of the plasticizer is suppressed, and the blocking resistance of the obtained film is improved.
  • the plasticizer in the ratio of 20 mass parts or more with respect to 100 mass parts of modified PVA (A) from the point of the dissolution rate with respect to the water of the film obtained.
  • the plasticizer may be contained in a proportion of 40 parts by mass or less with respect to 100 parts by mass of the modified PVA (A). From the viewpoint of improving the cold water solubility of the obtained film, the higher the plasticizer content, the more preferable. Further, the higher the plasticizer content, the lower the heat seal temperature, and the productivity at the time of film bag production. Tend to improve.
  • the plasticizer is preferably contained in such a proportion that the heat seal temperature of the obtained film is 170 ° C. or less, and more preferably contained in a proportion such that it is 160 ° C. or less.
  • the content of the plasticizer tends to affect the strength and Young's modulus of the resulting film, the content of the plasticizer may be adjusted in consideration of the strength and Young's modulus.
  • inorganic filler examples include silica, calcium carbonate, aluminum hydroxide, aluminum oxide, titanium oxide, diatomaceous earth, barium sulfate, calcium sulfate, zeolite, zinc oxide, silicic acid, silicate, mica, magnesium carbonate, kaolin, halloysite, pyrone.
  • examples include clay and talc such as phylite and sericite. Two or more of these may be used in combination.
  • the average particle diameter of the said inorganic filler 1 micrometer is preferable from a viewpoint of blocking resistance of the film obtained.
  • the upper limit of the average particle diameter is preferably 10 ⁇ m from the viewpoint of dispersibility in the resin composition.
  • the average particle size is about 1 ⁇ m to 7 ⁇ m. It is preferable to use an inorganic filler having a size.
  • the said resin composition contains the said inorganic filler, from a viewpoint of blocking resistance of the film obtained, as a minimum of content of the said inorganic filler, it is 0.5 with respect to 100 mass parts of modified PVA (A). Part by mass is preferable, 0.7 part by mass is more preferable, and 1 part by mass is more preferable.
  • the upper limit of the content of the inorganic filler is preferably 20 parts by mass, more preferably 15 parts by mass, 10 parts by mass is more preferable.
  • the resin composition may further contain other additives such as a colorant, a fragrance, a bulking agent, an antifoaming agent, a release agent, an ultraviolet absorber, and a surfactant as necessary.
  • a colorant such as a fragrance, a bulking agent, an antifoaming agent, a release agent, an ultraviolet absorber, and a surfactant as necessary.
  • the said resin composition contains the said surfactant, as content of the said surfactant, the peelability of metal surfaces, such as a die and a drum of a film forming apparatus, and the formed film and film stock solution is improved. From a viewpoint of making it, 0.01 mass part or more and 5 mass parts or less are preferable with respect to 100 mass parts of modified PVA (A).
  • the resin composition has a high water-solubility such as PVA, polyacrylamide, polyacrylic acid or a salt thereof, which is different from the modified PVA (A), as long as it does not impair the effects of the present invention. It may contain molecules. Furthermore, the resin composition may further contain an alkali metal salt such as sodium acetate. When the resin composition contains the alkali metal salt, the content of the alkali metal salt in terms of metal element is, for example, 0.1 parts by mass or more and 5 parts by mass with respect to 100 parts by mass of the modified PVA (A). It is as follows.
  • the resin composition can be prepared by mixing the above-described modified PVA (A), amine compound (B) and optional components as required. Specifically, for example, these components can be prepared by a known method such as a method in which these components are dissolved or dispersed in a solvent in a stirring tank, and then the solvent is removed if necessary, and a method of melt kneading in an extruder. it can.
  • Form of resin composition There is no restriction
  • the present invention includes a film composed of the resin composition. Since the said film is comprised from the said resin composition, it is excellent in cold water solubility, mechanical strength, and chemical resistance. Therefore, the film is suitably used as a packaging material for various chemicals such as clothing detergents, bleaches, and agricultural chemicals.
  • the lower limit of the average thickness of the film is preferably 10 ⁇ m, more preferably 20 ⁇ m, and even more preferably 30 ⁇ m.
  • the upper limit of the average thickness of the film is preferably 200 ⁇ m, more preferably 150 ⁇ m, and still more preferably 120 ⁇ m.
  • strength of a film improves more that the average thickness of the said film is more than the said minimum.
  • a film can be manufactured at lower cost as the average thickness of the said film is below the said upper limit.
  • the surface of the film is roll-mated as necessary, or a powder for preventing blocking such as silica or starch is applied to the film, or an embossing treatment is performed. can do.
  • the surface of the film can be formed into a roll mat by forming fine irregularities on a roll that comes into contact with the film before drying at the time of film formation.
  • the embossing treatment can be generally performed by nipping between an embossing roll and a rubber roll while applying heat and pressure after the film is formed.
  • the application of powder has a large anti-blocking effect, it may not be used depending on the application of the film. Therefore, as a method for preventing blocking, roll matting and embossing are preferable, and the anti-blocking effect is large. Therefore, roll matting is more preferable.
  • the lower limit of the tensile strength of the film is preferably 2.0 kg / cm 2, more preferably 2.1 kg / cm 2, further preferably 2.2 kg / cm 2.
  • the upper limit of the tensile breaking strength of the film is not particularly limited, but is, for example, 5.0 kg / cm 2 .
  • the lower limit of the Young's modulus of the film it is preferably 2.0 kg / mm 2, more preferably 2.1 kg / mm 2, 2.2 kg / Mm 2 is more preferable.
  • the upper limit of the Young's modulus of the film is not particularly limited, but is, for example, 5.0 kg / mm 2 .
  • the degree of cold water solubility of the film is the time until the film is completely dissolved when the cold water solubility is measured by the method described later in the Examples section (provided that the average thickness of the film is not 50 ⁇ m). Is preferably less than 40 seconds, more preferably less than 30 seconds, and less than 25 seconds as the time converted when the average thickness of the film is 50 ⁇ m according to the following formula (1). More preferably it is.
  • the manufacturing method of the said film is not specifically limited, It can manufacture by well-known methods, such as a casting method and a melt extrusion method.
  • a casting method for example, a melt extrusion method.
  • the amine compound (B) and optional components are dissolved in an aqueous solvent (for example, water) as desired, the resulting solution is placed on a smooth casting surface, and the aqueous solvent evaporates.
  • the aqueous solvent water is preferable.
  • the casting surface may be a smooth and hard material such as steel, aluminum, glass, polymer (for example, polyolefin, polyethylene, polyamide, polyvinyl chloride, polycarbonate, polyhalocarbon, etc.).
  • the evaporation rate of the aqueous solvent can be increased by heating the casting surface or exposing the deposited solution to, for example, heated air or infrared rays.
  • the casting surface may be flat or cylindrical, such as a standard (drum-type) industrial film production casting machine. The film is then obtained by oven drying.
  • Polymerization degree and saponification degree of PVA The polymerization degree and saponification degree of PVA (including modified PVA) were determined by the method described in JIS-K6726-1994.
  • the Young's modulus is 2.0 kg / mm 2 or more and the tensile breaking strength is 2.0 kg / cm 2 or more. It was determined as “A” (good). Furthermore, the case where the Young's modulus was less than 2.0 kg / mm 2 or the tensile fracture strength was less than 2.0 kg / cm 2 was determined as “B” (bad).
  • the polymerization solution was taken out from the polymerization tank, and methanol vapor was introduced into this polymerization solution to remove unreacted vinyl acetate, thereby obtaining a methanol solution (concentration 35%) of modified polyvinyl acetate (modified PVAc).
  • a modified PVAc / methanol solution (concentration: 32% by mass) (saponification raw material solution) having a water content of 1.0% by mass obtained by adding methanol and water to the methanol solution of the modified PVAc is fed at 4,700 L / hr,
  • a sodium hydroxide / methanol solution (concentration 4% by mass) (saponification catalyst solution) was fed at 248 L / hr (molar ratio of sodium hydroxide to vinyl acetate units in the modified PVAc 0.015).
  • the fed saponification raw material solution and saponification catalyst solution were mixed using a static mixer. The obtained mixture was placed on a belt and kept at a temperature of 40 ° C. for 18 minutes to allow the saponification reaction to proceed.
  • the gel obtained by the saponification reaction was pulverized and drained.
  • the obtained modified PVA powder (resin content) was continuously supplied to the dryer at a rate of 600 kg / hr (resin temperature 105 ° C.). The average residence time of the powder in the dryer was 5 hours. Thereafter, pulverization was performed to obtain modified PVA (PVA-1).
  • the obtained (PVA-1) had a viscosity average polymerization degree of 1,500, a saponification degree of 88 mol%, a monomer unit (I) content of 3.0 mol%, and a structural unit (III) content of The rate was less than 0.001 mol%.
  • PVA (PVA-2 to PVA-11) was synthesized by the same method as PVA-1, except that the conditions were changed to those shown in Table 1.
  • the content of structural unit (III) in PVA-3 was 0.10 mol%.
  • Example 1 Based on 100 parts by mass of the synthesized PVA-1, 15 parts by mass of glycerin as a plasticizer, 10 parts by mass of etherified starch as a saccharide, 5 parts by mass of talc having an average particle diameter of 3 ⁇ m as an inorganic filler, in terms of sodium element 0.8 parts by mass of sodium acetate and water were added, and the amine compound (B) shown in Table 2 was further added to prepare a uniform 5% by mass aqueous solution (water content 95% by mass).
  • a film having an average thickness of 50 ⁇ m composed of the product was prepared. The obtained film was heat-treated at 100 ° C. for 10 minutes.
  • Example 2 to 7 A film was produced in the same manner as in Example 1 except that the conditions were changed to those shown in Table 2.
  • the resin composition of the present invention can form a film having excellent cold water solubility, mechanical strength and chemical resistance. Therefore, the resin composition and film of the present invention are suitably used for packaging materials for various chemicals such as garment detergents, bleaches, and agricultural chemicals.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Wrappers (AREA)

Abstract

 本発明は、冷水溶解性、機械的強度及び耐薬品性に優れるフィルムを形成可能な樹脂組成物の提供を目的とする。本発明は、下記式(I)で表される単量体単位を含む変性ポリビニルアルコール、及び下記式(II)で表されるアミン化合物を含有し、上記変性ポリビニルアルコール100質量部に対する上記アミン化合物の含有量が、0.01質量部以上1質量部以下である樹脂組成物である。式(I)中、Rは、水素原子又は炭素数1~8の直鎖状若しくは分岐状のアルキル基である。Rは、-R-SO 、-R-N(RCl又は水素原子である。Rは、炭素数1~10の直鎖状又は分岐状のアルカンジイル基である。Xは、水素原子、金属原子又はアンモニウム基である。Rは、炭素数1~5の直鎖状又は分岐状のアルキル基である。式(II)中、Rは、-R'-SO '、-R'-N(R')Cl又は水素原子である。

Description

樹脂組成物及びフィルム
 本発明は、特定のアクリルアミド単位を含む変性ポリビニルアルコールと特定のアミン化合物とを含有する樹脂組成物、及びこの樹脂組成物から構成されるフィルムに関する。
 ポリビニルアルコール(以下、「PVA」と略記することがある)は水溶性の合成高分子として知られており、他の合成高分子と比べて強度特性、造膜性等に優れているため、例えば紙加工、繊維加工、接着剤、乳化重合及び懸濁重合用の安定剤、無機物のバインダー、フィルム等の用途に広範囲に用いられている。
 上記フィルムの用途としては水溶性フィルムが挙げられる。近年、農薬、洗濯用洗剤、漂白剤、トイレタリー製品、工業用薬品等をはじめとする各種薬品類を一定量ずつ水溶性フィルムにより密封包装して(ユニット包装)、使用時にその包装形態のまま水中に投入し、内容物を包装フィルムごと水に溶解又は分散させて使用する方法が行われるようになってきている。このユニット包装の利点は、使用時に危険な薬品に直接触れることなく使用できること、内容物の一定量が包装されているために使用時に計量する必要がないこと、薬品を包装している容器の使用後の処理が不要であること等である。
 ところで、PVAはケン化度が高くなるに従って結晶性が増し、冷水に溶解しない結晶部分の割合が増すため、ユニット包装用等の冷水溶解性フィルムの用途には、完全ケン化タイプと言われるケン化度の高いPVAではなく、部分ケン化無変性PVAが用いられている。この部分ケン化無変性PVAを用いた水溶性フィルムは、冷水に溶解し易く、機械的強度が優れる等の特長を有している。
 従来の部分ケン化無変性PVAフィルムは、これにアルカリ性又は酸性の物質を包装した場合、保存中に部分ケン化無変性PVAフィルム中に残存するアセトキシ基のケン化が起こり、結晶化が進んでフィルムが不溶化し易いという不都合がある。さらに、部分ケン化無変性PVAフィルムは、これに農薬や殺菌剤等の塩素含有化合物を包装して長期間放置した場合、フィルムが着色したり硬化したりすると共に、水溶性が経時的に低下して水に不溶化又は難溶化するため、薬品がフィルムに包装されたままの状態で水に溶解又は分散し難くなるという不都合がある。
 このような課題を解決するものとして、特許文献1には、オキシアルキレン基、スルホン酸基又はカチオン性基を含有するPVAを製膜してなる水溶性フィルムが開示されている。特許文献2にはカルボキシ基及び/又はスルホン酸基を含有する単量体単位を有する変性PVA及び多価アルコールを含む組成物からなる水溶性フィルムが開示されている。特許文献3には、ビニルアルコール単位及び2-アクリルアミド-2-メチルプロパンスルホン酸単位を有する変性PVAを含有する冷水溶解性フィルムが開示されている。特許文献4には、PVAにアミン酸を含有させたPVAフィルムが開示されている。
 しかし近年では、作業性、環境保護等の観点から、冷水溶解性、機械的強度及び耐薬品性の要求特性を同時に満たす水溶性フィルムが求められている。これに対し、上記従来のPVAを含む樹脂組成物から構成される水溶性フィルムは、これらの要求特性を十分満足できていない。
特開昭63-168437号公報 特開2005-139240号公報 特表2008-542520号公報 特開平6-240091号公報
 本発明は、上述のような事情に基づいてなされたものであり、冷水溶解性、機械的強度及び耐薬品性に優れるフィルムを形成可能な樹脂組成物、並びにこの樹脂組成物から構成されるフィルムの提供を目的とする。
 本発明者らは上記の課題を解決するために鋭意検討した結果、特定のアクリルアミド単位を含む変性PVA及び特定のアミン化合物を含有し、この特定のアミン化合物の含有量が特定範囲である樹脂組成物が、冷水溶解性、機械的強度及び耐薬品性に優れるフィルムを形成できることを見出し、当該知見に基づいてさらに検討を重ねた結果、本発明を完成するに至った。
 上記課題を解決するためになされた本発明は、下記式(I)で表される単量体単位(以下、「単量体単位(I)」ともいう)を含む変性PVA(以下、「変性PVA(A)」ともいう)、及び下記式(II)で表されるアミン化合物(以下、「アミン化合物(B)」ともいう)を含有し、上記変性PVA(A)100質量部に対する上記アミン化合物(B)の含有量が、0.01質量部以上1質量部以下である樹脂組成物である。
Figure JPOXMLDOC01-appb-C000004
(式(I)中、Rは、水素原子又は炭素数1~8の直鎖状若しくは分岐状のアルキル基である。Rは、-R-SO 、-R-N(RCl又は水素原子である。Rは、炭素数1~10の直鎖状又は分岐状のアルカンジイル基である。Xは、水素原子、金属原子又はアンモニウム基である。Rは、炭素数1~5の直鎖状又は分岐状のアルキル基である。複数のRは、同一でも異なっていてもよい。)
Figure JPOXMLDOC01-appb-C000005
(式(II)中、Rは、-R’-SO ’、-R’-N(R’)Cl又は水素原子である。R’は、炭素数1~10の直鎖状又は分岐状のアルカンジイル基である。X’は、水素原子、金属原子又はアンモニウム基である。R’は、炭素数1~5の直鎖状又は分岐状のアルキル基である。複数のR’は、同一でも異なっていてもよい。)
 当該樹脂組成物は、特定のアクリルアミド単位を含む変性PVA(A)と特定のアミン化合物(B)とを含有し、かつこのアミン化合物(B)の含有量を上記特定範囲とすることで、冷水溶解性、機械的強度及び耐薬品性に優れるフィルムを形成することができる。当該樹脂組成物がアミン化合物(B)を含有することで上記効果を奏する理由については、必ずしも明確ではないが、例えば変性PVA(A)が薬剤と接した際に起こりうるアミド基の加水分解の阻害作用と、アミン化合物(B)のpH緩衝作用とによるものと考えられる。
 上記変性PVA(A)の粘度平均重合度としては300以上3,000以下、ケン化度としては82モル%以上99.5モル%以下が好ましい。上記変性PVA(A)の粘度平均重合度及びケン化度を上記範囲とすることで、冷水溶解性、機械的強度及び耐薬品性により優れるフィルムを形成することができる。なお、上記粘度平均重合度及びケン化度は、JIS-K6726-1994に記載の方法により測定される。
 上記変性PVA(A)の全単量体単位に対する単量体単位(I)の含有率としては、0.05モル%以上10モル%以下が好ましい。単量体単位(I)の含有率を上記特定範囲とすることで、冷水溶解性、機械的強度及び耐薬品性により優れるフィルムを形成することができる。
 上記変性PVA(A)が下記式(III)で表される構造単位(以下、「構造単位(III)」ともいう)をさらに含むとよい。変性PVA(A)の全単量体単位に対する上記構造単位(III)の含有率としては、0.001モル%以上0.5モル%以下が好ましい。
Figure JPOXMLDOC01-appb-C000006
(式(III)中、Rは、水素原子又は炭素数1~8の直鎖状若しくは分岐状のアルキル基である。)
 上記変性PVA(A)が上記特定の構造単位(III)を上記特定含有率で含むことで、冷水溶解性、機械的強度及び耐薬品性にさらに優れるフィルムを形成することができる。
 本発明は、当該樹脂組成物から構成されるフィルムを含む。当該フィルムは、当該樹脂組成物から構成されるので、冷水溶解性、機械的強度及び耐薬品性に優れる。
 以上説明したように、本発明の樹脂組成物は、冷水溶解性、機械的強度及び耐薬品性に優れるフィルムを形成することができる。従って、本発明の樹脂組成物及びフィルムは、衣料用洗剤、漂白剤、農薬等の各種薬品の包装材に好適に用いられる。
<樹脂組成物>
 本発明の樹脂組成物は、変性PVA(A)及びアミン化合物(B)を含有する。当該樹脂組成物は、変性PVA(A)及びアミン化合物(B)以外に、任意成分を含有してもよい。以下、各成分について説明する。
(変性PVA(A))
 当該樹脂組成物に含有される変性PVA(A)は、下記式(I)で表される単量体単位(I)を含み、通常ビニルアルコール単位をさらに含む。変性PVA(A)は、後述する式(III)で表される構造単位(III)をさらに含むことが好ましい。また、変性PVA(A)は、さらに他の単量体単位を含んでいてもよい。ここで「構造単位」とは、当該変性PVA(A)に含まれる部分構造であって、1又は複数の単量体に由来するものをいう。「単量体単位」とは、1の単量体に由来する構造単位をいう。
[単量体単位(I)]
 単量体単位(I)は、下記式(I)で表される単量体単位である。
Figure JPOXMLDOC01-appb-C000007
 上記式(I)中、Rは、水素原子又は炭素数1~8の直鎖状若しくは分岐状のアルキル基である。Rは、-R-SO 、-R-N(RCl又は水素原子である。Rは、炭素数1~10の直鎖状又は分岐状のアルカンジイル基である。Xは、水素原子、金属原子又はアンモニウム基である。Rは、炭素数1~5の直鎖状又は分岐状のアルキル基である。複数のRは、同一でも異なっていてもよい。
 上記Rで表される炭素数1~8の直鎖状若しくは分岐状のアルキル基としては、例えばメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基、n-ペンチル基等が挙げられる。
 上記Rとしては、変性PVA(A)の合成容易性等の観点から水素原子及びメチル基が好ましく、水素原子がより好ましい。
 上記Rで表される炭素数1~10の直鎖状又は分岐状のアルカンジイル基としては、例えば-CH-、-CH(CH)-、-CH-CH-、-CH(CH)-CH-、-CH(CHCH)-CH-、-CH(CH)-CH(CH)-、-C(CH-CH-、-C(CH-CH(CH)-、-CH-CH-CH-、-CH-CH-CH-CH-等が挙げられ、上記Rが非対称である場合において、その向きは特に制限されない。
 上記Rとしては、-C(CH-CH-及び-CH-CH-CH-が好ましい。上記Rが-C(CH-CH-である場合、上記Rに隣接する-C(=O)NH-と共に表記すると-C(=O)NH-C(CH-CH-となるような上記Rの向きが好ましい。つまり、上記Rが-C(CH-CH-である場合の上記Rとしては、-C(CH-CH-SO 、及び-C(CH-CH-N(RClが好ましい。
 上記Xで表される金属原子としては、例えばアルカリ金属原子(リチウム原子、ナトリウム原子、カリウム原子等)、アルカリ土類金属原子(カルシウム原子等)などが挙げられる。
 上記Xで表されるアンモニウム基としては、例えばテトラメチルアンモニウム基、テトラエチルアンモニウム基、テトラプロピルアンモニウム基、NH、モノメチルアンモニウム基、ジメチルアンモニウム基、トリメチルアンモニウム基等が挙げられる。
 得られるフィルムの冷水溶解性の観点から、上記Xとしては、水素原子及びアルカリ金属原子が好ましく、水素原子及びナトリウム原子がより好ましい。
 上記Rで表される炭素数1~5の直鎖状又は分岐状のアルキル基としては、例えばメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、n-ペンチル基等が挙げられる。これらのうち、メチル基が好ましい。
 変性PVA(A)の全単量体単位に対する単量体単位(I)の含有率の下限としては、0.05モル%が好ましく、0.10モル%がより好ましく、0.15モル%がさらに好ましい。一方、単量体単位(I)の含有率の上限としては、10モル%が好ましく、8モル%がより好ましく、7モル%がさらに好ましい。単量体単位(I)の含有率が上記範囲にあることで、冷水溶解性、機械的強度及び耐薬品性により優れるフィルムを形成することができる。ここで「全単量体単位」とは、当該変性PVA(A)を構成する単量体単位の合計をいう。但し、上記合計の算出では、1個の構造単位がn個の単量体単位によって形成されている場合、上記1個の構造単位につきn個の単量体単位が存在するものとして計算する(nは、1以上の整数)。例えば、後述する構造単位(III)は、2個の単量体単位により形成されるため、1個の構造単位(III)につき2個の単量体単位が存在するものとして上記合計を計算する。
[構造単位(III)]
 構造単位(III)は、下記式(III)で表される構造単位である。変性PVA(A)は、構造単位(III)をさらに含むことが好ましい。変性PVA(A)が構造単位(III)をさらに含むことで、冷水溶解性、機械的強度及び耐薬品性により優れるフィルムを形成することができる。
Figure JPOXMLDOC01-appb-C000008
 上記式(III)中、Rは、水素原子又は炭素数1~8の直鎖状若しくは分岐状のアルキル基である。
 上記Rで表される炭素数1~8の直鎖状若しくは分岐状のアルキル基としては、例えば上記Rとして例示したものと同様の基等が挙げられる。
 上記Rとしては、水素原子及びメチル基が好ましく、水素原子がより好ましい。
 変性PVA(A)が構造単位(III)を含む場合、変性PVA(A)の全単量体単位に対する構造単位(III)の含有率の下限としては、0.001モル%が好ましく、0.005モル%がより好ましく、0.01モル%がさらに好ましく、0.02モル%が特に好ましい。一方、構造単位(III)の含有率の上限としては、0.5モル%が好ましく、0.4モル%がより好ましく、0.2モル%がさらに好ましい。構造単位(III)の含有率を上記範囲とすることで、冷水溶解性、機械的強度及び耐薬品性にさらに優れるフィルムを形成することができる。
 後述の通り、構造単位(III)は、ビニルアルコール単位と単量体単位(I)との反応により形成される。つまり、上述の構造単位(III)の含有率を2倍した値が、構造単位(III)を形成する単量体単位の含有率に相当する。具体的な構造単位(III)を形成する単量体単位の含有率の下限としては、通常0.002モル%であり、0.01モル%が好ましく、0.02モル%がより好ましく、0.04モル%がさらに好ましい。一方、上記含有率の上限としては、通常1モル%であり、0.8モル%が好ましく、0.4モル%がより好ましい。構造単位(III)を形成する単量体単位の含有率を上記範囲とすることで、構造単位(III)の含有率を上述の範囲に調整することができる。
 単量体単位(I)及び構造単位(III)の各含有率は、変性PVA(A)のH-NMR測定により求めることができる。具体的には、変性PVA(A)をDOに溶解させ、600MHzのH-NMR測定装置を用いて80℃で測定することにより求めることができる。例えば、変性PVA(A)が単量体単位(I)として下記式(I’)で表される2-アクリルアミド-2-メチルプロパンスルホン酸ナトリウム(AMPS)に由来する単量体単位(AMPS単位)を含み、構造単位(III)として下記式(III’)で表される構造単位(構造単位(III’))を含み、後述するビニルエステル単位として下記式(IV’)で表される酢酸ビニルに由来する単量体単位(酢酸ビニル単位)を含み、且つ、変性PVA(A)が不純物として酢酸ナトリウムを含有する場合、以下の方法により単量体単位(I)の含有率及び構造単位(III)の含有率を求めることができる。
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
 まず、構造単位(III’)のHaに由来する2.8ppm~3.1ppmのピーク面積をaとする。次に、AMPS単位の6つのHbに由来する1.45ppm~1.55ppmのピーク面積を6で除した値をbとする。さらに、酢酸ビニル単位のHcに由来する4.5ppm~5.4ppmのピーク面積をcとする。そして、酢酸ナトリウムの3つのプロトンに由来する1.9ppm~2.0ppmのピーク面積を3で除した値をdとする。また、0.2ppm~2.8ppmのメチレン基由来のピーク面積をAとする。上記構造単位a~d中の0.2ppm~2.8ppmにケミカルシフトを有するプロトンの数及びAの値から、次式を用いてビニルアルコール単位の1つのプロトン当たりのピーク面積eを算出する。
  e=[A-a×4-b×9-c×5-d×3]/2
 続いて、a~eの値から、次式を用いて単量体単位(I)の含有率及び構造単位(III)の含有率をそれぞれ算出する。
 単量体単位(I)の含有率(モル%)=b×100/(2×a+b+c+e)
 構造単位(III)の含有率(モル%)=a×100/(2×a+b+c+e)
 なお、次式を用いて構造単位(III)を形成する単量体単位の含有率も算出できる。
 構造単位(III)を形成する単量体単位の含有率(モル%)=2×a×100/(2×a+b+c+e)
 上述の通り、構造単位(III)は、2個の単量体単位から形成される。そのため、単量体単位(I)の含有率と、構造単位(III)を形成する単量体単位の含有率と、その他の単量体単位の含有率との合計は通常100モル%となるが、単量体単位(I)の含有率と、構造単位(III)の含有率と、その他の単量体単位の含有率との合計は通常100モル%を下回る。
(変性PVA(A)の製造方法)
 変性PVA(A)は、例えばビニルエステル単量体と単量体単位(I)を与える単量体(例えばHC=C(R)-C(=O)NH-R等)とを共重合させて得られるビニルエステル共重合体を、アルコール溶液中でアルカリ触媒又は酸触媒を用いてケン化することにより製造することができる。構造単位(III)は、ビニルエステル単位をケン化して得られるビニルアルコール単位が有する水酸基と、単量体単位(I)が有するアミド基とを反応させることにより形成することができる。
 上記ビニルエステル単量体としては、例えばギ酸ビニル、酢酸ビニル、プロピオン酸ビニル、バレリン酸ビニル、カプリン酸ビニル、ラウリン酸ビニル、ステアリン酸ビニル、安息香酸ビニル、ピバリン酸ビニル、バーサチック酸ビニル等が挙げられる。これらのうち、酢酸ビニルが好ましい。
 ビニルエステル単量体と単量体単位(I)を与える単量体とを共重合させる方法としては、例えば塊状重合法、溶液重合法、懸濁重合法、乳化重合法等の公知の方法が挙げられる。これらの方法のうち、無溶媒で行う塊状重合法及びアルコール等の溶媒を用いて行う溶液重合法が好ましく、本発明の効果を高める点では、低級アルコールの存在下で重合する溶液重合法がより好ましい。上記低級アルコールとしては、炭素数3以下のアルコールが好ましく、メタノール、エタノール、n-プロパノール及びイソプロパノールがより好ましく、メタノールがさらに好ましい。塊状重合法や溶液重合法で重合反応を行うにあたって、反応の方式は回分式及び連続式のいずれの方式も採用することができる。
 重合反応に使用される開始剤としては、例えば2,2’-アゾビスイソブチロニトリル、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)等のアゾ系開始剤;過酸化ベンゾイル、n-プロピルパーオキシカーボネート等の有機過酸化物系開始剤などの公知の開始剤が挙げられる。重合反応を行う際の重合温度については特に制限はないが、5℃以上200℃以下の範囲が適当である。
 ビニルエステル単量体と単量体単位(I)を与える単量体とを共重合させる際には、本発明の効果が損なわれない範囲内で、さらに共重合可能な単量体を共重合させることができる。このような単量体としては、エチレン、プロピレン、1-ブテン、イソブテン、1-ヘキセン等のα-オレフィン;N-メチルアクリルアミド、N-エチルアクリルアミド等のアクリルアミド誘導体;N-メチルメタクリルアミド、N-エチルメタクリルアミド等のメタクリルアミド誘導体;メチルビニルエーテル、エチルビニルエーテル、n-プロピルビニルエーテル、イソプロピルビニルエーテル、n-ブチルビニルエーテル等のビニルエーテル;エチレングリコールビニルエーテル、1,3-プロパンジオールビニルエーテル、1,4-ブタンジオールビニルエーテル等のヒドロキシ基含有ビニルエーテル;アリルアセテート;プロピルアリルエーテル、ブチルアリルエーテル、ヘキシルアリルエーテル等のアリルエーテル;オキシアルキレン基を有する単量体;酢酸イソプロペニル;3-ブテン-1-オール、4-ペンテン-1-オール、5-ヘキセン-1-オール、7-オクテン-1-オール、9-デセン-1-オール、3-メチル-3-ブテン-1-オール等のヒドロキシ基含有α-オレフィン;ビニルトリメトキシシラン、ビニルメチルジメトキシシラン、ビニルジメチルメトキシシラン、ビニルトリエトキシシラン、ビニルメチルジエトキシシラン、ビニルジメチルエトキシシラン、3-(メタ)アクリルアミドプロピルトリメトキシシラン、3-(メタ)アクリルアミドプロピルトリエトキシシラン等のシリル基を有する単量体などが挙げられる。これらの単量体の使用量の上限としては、その使用される目的及び用途等によっても異なるが、共重合に用いられる全単量体に対して20モル%が好ましく、10モル%がより好ましい。
 上述の方法により得られたビニルエステル共重合体を、例えばアルコール溶媒中でケン化し、続いて乾燥を行うことで変性PVA(A)を得ることができる。変性PVA(A)を得るためには、特にケン化に供するケン化原料溶液の含水率、乾燥時の変性PVA(A)の樹脂温度及び乾燥時間を後述するような特定の範囲にすることが好ましい。
 上記共重合工程で得られたビニルエステル共重合体及び溶媒を含有する溶液に、さらに少量の水を添加することによりケン化原料溶液を調製することができる。得られるケン化原料溶液の含水率の下限としては、1質量%が好ましく、1.2質量%がより好ましい。一方、得られるケン化原料溶液の含水率の上限としては、2質量%が好ましく、1.8質量%がより好ましい。上記含水率が上記下限未満の場合はラクトン化が進行しやすいため、構造単位(III)の含有率が高くなりすぎる傾向にある。一方、上記含水率が上記上限を超える場合、ラクトン構造の開環が進行しやすいため、構造単位(III)の形成が抑制される傾向にある。
 ケン化反応に用いることができる溶媒としては、例えばメタノール、酢酸メチル、ジメチルスルホキシド、ジエチルスルホキシド、ジメチルホルムアミド等が挙げられる。これらの溶媒のうち、メタノールが好ましい。
 ビニルエステル共重合体のケン化反応の触媒としては、通常アルカリ性物質が用いられる。上記アルカリ性物質としては、例えば水酸化カリウム、水酸化ナトリウム等のアルカリ金属の水酸化物、ナトリウムメトキシド等のアルカリ金属アルコキシド等が挙げられる。上記触媒の使用量の下限としては、ビニルエステル共重合体のビニルエステル単位に対するモル比で、0.002が好ましく、0.004がより好ましい。一方、上記触媒の使用量の上限としては、ビニルエステル共重合体のビニルエステル単位に対するモル比で、0.2が好ましく、0.1がより好ましい。ケン化触媒は、ケン化反応の初期に一括して添加してもよいし、あるいはケン化反応の初期に一部を添加し、残りをケン化反応の途中で追加して添加してもよい。
 ケン化反応の温度の下限としては、5℃が好ましく、20℃がより好ましい。一方、ケン化反応の温度の上限としては、80℃が好ましく、70℃がより好ましい。ケン化反応の時間の下限としては、5分間が好ましく、10分間がより好ましい。一方、ケン化反応の時間の上限としては、10時間が好ましく、5時間がより好ましい。ケン化反応は、回分式及び連続式のいずれの方式によっても行うことができる。ケン化反応の終了後に、必要に応じて、残存する触媒を中和してもよい。使用可能な中和剤としては、例えば酢酸、乳酸等の有機酸、酢酸メチル等のエステル化合物などが挙げられる。
 ケン化後に必要に応じて変性PVA(A)を洗浄する工程を設けてもよい。洗浄液としては、メタノール等の低級アルコールを主成分とし、さらに水及び/又はケン化工程において生成するものと同じ酢酸メチル等のエステルを含有する溶液を用いることができる。
 続いて、洗浄後の変性PVA(A)を乾燥することにより変性PVA(A)を得ることができる。具体的な乾燥方法としては、円筒乾燥機を使用した熱風乾燥が好ましい。乾燥時の変性PVA(A)の樹脂温度の下限としては、100℃が好ましく、105℃がより好ましい。一方、乾燥時の変性PVA(A)の樹脂温度の上限としては、125℃が好ましく、118℃がより好ましく、115℃がさらに好ましい。また、乾燥時間の下限としては、2時間が好ましく、3時間がより好ましい。一方、乾燥時間の上限としては、5時間が好ましく、4時間がより好ましい。乾燥時の条件を上記範囲にすることにより、最終的に得られる変性PVA(A)における構造単位(III)の含有率を、好ましい範囲に調整することができる。
 変性PVA(A)の粘度平均重合度の下限としては、300が好ましく、400がより好ましく、500がさらに好ましい。一方、変性PVA(A)の粘度平均重合度の上限としては、3,000が好ましく、2,500がより好ましく、2,000がさらに好ましい。変性PVA(A)の粘度平均重合度が上記下限以上であると、得られるフィルムの機械的強度が向上する。一方、粘度平均重合度が上記上限以下であると、当該樹脂組成物の溶液粘度又は溶融粘度を適度な範囲に維持することができ作業性が向上し、また、得られるフィルムの冷水溶解性が向上する。変性PVA(A)の粘度平均重合度は、JIS-K6726-1994に記載の方法により測定される。
 変性PVA(A)のケン化度の下限としては、82モル%が好ましく、84モル%がより好ましく、86モル%がさらに好ましい。一方、変性PVA(A)のケン化度の上限としては、99.5モル%が好ましく、99.4モル%がより好ましく、99.3モル%がさらに好ましい。変性PVA(A)のケン化度が上記下限以上であると、得られるフィルムの形態安定性が向上し、また、得られるフィルムにアルカリ性物質又は酸性物質を包装して保管する場合におけるフィルムの冷水溶解性が向上する。一方、ケン化度が上記上限以下であると、変性PVA(A)やフィルムの生産性が向上する。変性PVA(A)のケン化度はJIS-K6726-1994に記載の方法により測定される。
 当該樹脂組成物における変性PVA(A)の含有率の下限としては、30質量%が好ましく、50質量%がより好ましく、70質量%がさらに好ましい。一方、上記含有率の上限としては、99質量%が好ましく、95質量%がより好ましく、90質量%がさらに好ましい。
(アミン化合物(B))
 当該樹脂組成物が含有するアミン化合物(B)は、下記式(II)で表される化合物である。
Figure JPOXMLDOC01-appb-C000012
 上記式(II)中、Rは、-R’-SO ’、-R’-N(R’)Cl又は水素原子である。R’は、炭素数1~10の直鎖状又は分岐状のアルカンジイル基である。X’は、水素原子、金属原子又はアンモニウム基である。R’は、炭素数1~5の直鎖状又は分岐状のアルキル基である。複数のR’は、同一でも異なっていてもよい。
 上記R’で表される炭素数1~10の直鎖状又は分岐状のアルカンジイル基としては、例えば上記式(I)のRとして例示したものと同様の基等が挙げられる。
 上記R’としては、炭素数1~6の直鎖状又は分岐状のアルカンジイル基が好ましい。このように、上記R’が炭素数1~6の直鎖状又は分岐状のアルカンジイル基であることで、当該樹脂組成物から形成されるフィルムの耐薬品性を特に良好なものとすることができる。上記R’としては、-C(CH-CH-又は-CH-CH-CH-がより好ましい。上記R’が-C(CH-CH-である場合、上記R’に隣接するHN-と共に表記するとHN-C(CH-CH-となるような上記R’の向きが好ましい。つまり、上記R3’が-C(CH-CH-である場合の上記Rとしては、-C(CH-CH-SO ’、及び-C(CH-CH-N(R’)Clが好ましい。
 上記X’で表される金属原子及びアンモニウム基としては、例えば上記式(I)の上記Xとして例示した金属原子及びアンモニウム基と同様のもの等が挙げられる。
 上記X’としては、水素原子及びアルカリ金属原子が好ましく、水素原子及びナトリウム原子がより好ましい。
 上記R’で表される炭素数1~5の直鎖状又は分岐状のアルキル基としては、例えば上記式(I)の上記Rとして例示したものと同様の基等が挙げられる。これらのうち、メチル基が好ましい。
 アミン化合物(B)の含有量の下限としては、変性PVA(A)100質量部に対して、0.01質量部であり、0.02質量部が好ましく、0.03質量部がさらに好ましく、0.1質量部が特に好ましい。一方、アミン化合物(B)の含有量の上限としては、変性PVA(A)100質量部に対して1質量部であり、0.8質量部が好ましく、0.5質量部がより好ましい。アミン化合物(B)の含有量が上記下限未満であると、冷水溶解性が不十分となる。一方、上記含有量が上記上限を超えると、機械的強度等が不十分となる。
(任意成分)
 当該樹脂組成物は、変性PVA(A)、及びアミン化合物(B)のみから構成されていてもよいが、変性PVA(A)、及びアミン化合物(B)以外に、例えば糖類、可塑剤、無機フィラー、他の添加剤等をさらに含有していてもよい。
[糖類]
 上記糖類としては、例えばグルコース等の単糖類、オリゴ糖、多糖類、鎖状糖アルコール等が挙げられる。上記多糖類としては、例えば澱粉、セルロース、キチン、キトサン、ヘミセルロース、カルボキシメチルセルロース、メチルセルロース、ヒドロキシメチルセルロース、ペクチン、プルラン、寒天、アルギン酸、カラギーナン、デキストリン、トレハロース等が挙げられ、これらのうち1種又は2種以上を用いることができる。上記鎖状糖アルコールとしては、例えばトレイット、エリトリット等の炭素数4のテトリット類、アラビット、キシリット等の炭素数5のペンチット類、グリシット、マンニット、ソルビット等の炭素数6のヘキシット類等が挙げられる。当該樹脂組成物は、上記糖類を含有することにより、得られるフィルムの冷水溶解性を高めたり、耐ホウ酸イオン性を高めたり、薬品包装後、特に変性PVA(A)を劣化させる薬品(塩素系物質等)を包装した後の冷水溶解性の低下を抑制することができる。これらの糖類のうち、澱粉が好ましい。澱粉としては、例えばトウモロコシ、馬鈴薯等の生澱粉、加工澱粉(デキストリン、酸化澱粉、エーテル化澱粉、カチオン化澱粉等)などを用いることができる。
 一般に、PVAと糖類とは相溶性が悪いため、糖類を多量に樹脂組成物に含有させた場合、得られるフィルムはフィルム強度等の機械的物性が大幅に低下するが、当該樹脂組成物に用いられる変性PVA(A)は糖類、特に澱粉との相溶性に優れるという特徴を有するので、糖類を多量に含有させることができる。当該樹脂組成物が上記糖類を含有する場合、変性PVA(A)100質量部に対する上記糖類の含有量の下限としては、1質量部が好ましく、2質量部がより好ましく、3質量部がさらに好ましい。一方、上記糖類の含有量の上限としては、100質量部が好ましく、90質量部がより好ましく、80質量部がさらに好ましい。上記糖類の含有量が上記下限以上であると、得られるフィルムの冷水溶解性が向上する。一方、上記糖類の含有量が上記上限以下であると、得られるフィルムの低温での耐衝撃性が向上する。
[可塑剤]
 一般に、水溶性フィルムには、高温多湿の地域や寒冷地での使用にも耐え得るような強度やタフネスが要求され、特に低温での耐衝撃性が必要とされる。当該樹脂組成物は、可塑剤を含有することで、低温での耐衝撃性を向上させたり、フィルムのガラス転移点を下げたり、水に対する溶解性を向上させたりすることができる。
 上記可塑剤としては、PVAの可塑剤として一般に用いられているものであれば特に制限はなく、例えばグリセリン、ジグリセリン、ジエチレングリコール、トリエチレングリコール、プロピレングリコール、ジプロピレングリコール、トリメチロールプロパン、ペンタエリスリトール、1,3-ブタンジオール等の多価アルコール類;ポリエチレングリコール、ポリプロピレングリコール等のポリエーテル類;ポリビニルピロリドン等のポリビニルアミド類;N-メチルピロリドン、ジメチルアセトアミド等のアミド化合物;グリセリン、ペンタエリスリトール、ソルビトール等の多価アルコールにエチレンオキサイドを付加した化合物や水などが挙げられ、これらは1種又は2種以上を用いることができる。これらの可塑剤の中でも、冷水溶解性を向上させる観点から、グリセリン、ジグリセリン、ジエチレングリコール、トリエチレングリコール、プロピレングリコール、ジプロピレングリコール、トリメチロールプロパン、ポリエチレングリコール及びポリビニルピロリドンが好ましく、可塑剤のブリードアウトによるフィルムの冷水溶解性低下を抑制する観点から、グリセリン、ジグリセリン、トリメチロールプロパン、ポリエチレングリコール及びポリビニルピロリドンがより好ましい。
 上記可塑剤としての上記ポリエチレングリコールの数平均分子量としては、特に制限はないが、変性PVA(A)との相溶性及びブリードアウトによる冷水溶解性の低下を抑制する観点から、100以上1,000以下が好ましい。上記可塑剤としての上記ポリビニルピロリドンの重量平均分子量としては、特に制限はないが、変性PVA(A)との相溶性の点から1,000以上20,000以下が好ましい。
 当該樹脂組成物が上記可塑剤を含有する場合、上記可塑剤の含有量の下限としては、変性PVA(A)100質量部に対して1質量部が好ましく、10質量部がより好ましい。一方、上記可塑剤の含有量の上限としては、変性PVA(A)100質量部に対して50質量部が好ましく、40質量部がより好ましい。上記可塑剤の含有量が上記下限以上であることにより、上記可塑剤を含有することによる上記効果を十分に発揮させることができる。一方、上記可塑剤の含有量が上記上限以下であることにより、上記可塑剤のブリードアウトが抑制され、得られるフィルムの耐ブロッキング性が向上する。また、得られるフィルムの水に対する溶解速度の点から、変性PVA(A)100質量部に対して上記可塑剤を20質量部以上の割合で含有するとよい。一方、得られるフィルムのコシ(製袋機等の工程通過性)の観点からは、変性PVA(A)100質量部に対して上記可塑剤を40質量部以下の割合で含有するとよい。得られるフィルムの冷水溶解性を向上させる観点からは、上記可塑剤の含有量は多いほど好ましく、さらに、上記可塑剤の含有量が多いほどヒートシール温度が低下し、フィルム製袋時の生産性が向上する傾向がある。特に、得られるフィルムのヒートシール温度が170℃以下となるような割合で上記可塑剤を含有することが好ましく、160℃以下となるような割合で上記可塑剤を含有することがさらに好ましい。また、上記可塑剤の含有量は、得られるフィルムの強度やヤング率の大きさに影響を与えやすいため、上記強度及びヤング率も考慮して上記可塑剤の含有量を調整するとよい。
[無機フィラー]
 上記無機フィラーとしては、例えばシリカ、炭酸カルシウム、水酸化アルミニウム、酸化アルミニウム、酸化チタン、珪藻土、硫酸バリウム、硫酸カルシウム、ゼオライト、酸化亜鉛、珪酸、珪酸塩、マイカ、炭酸マグネシウム、カオリン、ハロイサイト、パイロフィライト、セリサイト等のクレー、タルク等が挙げられる。これらのうち2種以上を併用してもよい。上記無機フィラーの平均粒子径の下限としては、得られるフィルムの耐ブロッキング性の観点から、1μmが好ましい。一方、上記平均粒子径の上限としては、当該樹脂組成物への分散性の点から、10μmが好ましい。上記無機フィラーを含有することにより発現するフィルムの耐ブロッキング性と、当該樹脂組成物への上記無機フィラーの分散性との両方の要求特性を満足させるには、平均粒子径が1μm~7μm程度の大きさの無機フィラーを用いることが好ましい。
 当該樹脂組成物が上記無機フィラーを含有する場合、得られるフィルムの耐ブロッキング性の観点から、上記無機フィラーの含有量の下限としては、変性PVA(A)100質量部に対して、0.5質量部が好ましく、0.7質量部がより好ましく、1質量部がさらに好ましい。一方、当該樹脂組成物への上記無機フィラーの分散性及び得られるフィルムの冷水溶解性の観点から、上記無機フィラーの含有量の上限としては、20質量部が好ましく、15質量部がより好ましく、10質量部がさらに好ましい。
[他の添加剤]
 当該樹脂組成物は、さらに必要に応じて、着色剤、香料、増量剤、消泡剤、剥離剤、紫外線吸収剤、界面活性剤等の他の添加剤を適宜含有してもよい。当該樹脂組成物が上記界面活性剤を含有する場合、上記界面活性剤の含有量としては、製膜装置のダイスやドラム等の金属表面と、製膜したフィルムやフィルム原液との剥離性を向上させる観点から、変性PVA(A)100質量部に対して、0.01質量部以上5質量部以下が好ましい。また、当該樹脂組成物は、必要に応じて、本発明の効果を損なわない範囲内で、変性PVA(A)とは異なる種類のPVA、ポリアクリルアミド、ポリアクリル酸又はその塩等の水溶性高分子を含有してもよい。さらに、当該樹脂組成物は、酢酸ナトリウム等のアルカリ金属塩をさらに含有してもよい。当該樹脂組成物が上記アルカリ金属塩を含有する場合、上記アルカリ金属塩の金属元素換算の含有量としては、変性PVA(A)100質量部に対して、例えば0.1質量部以上5質量部以下である。
(樹脂組成物の調製)
 当該樹脂組成物は、上述した変性PVA(A)、アミン化合物(B)及び必要に応じてさらに任意成分を混合することにより調製することができる。具体的には、例えばこれらの成分を撹拌槽中で溶媒に溶解又は分散させ、必要に応じてその後溶媒を除去する方法、押出機中で溶融混練する方法等の公知の方法で調製することができる。
(樹脂組成物の形態)
 当該樹脂組成物の形態に特に制限はなく、例えば粉末状、チップ状、塊状、溶液状等が挙げられる。また、後述するフィルムや、あるいは各種立体形状等の成形体の形態であってもよい。
<フィルム>
 本発明は、当該樹脂組成物から構成されるフィルムを含む。当該フィルムは、当該樹脂組成物から構成されるので、冷水溶解性、機械的強度及び耐薬品性に優れる。従って、当該フィルムは、衣料用洗剤、漂白剤、農薬等の各種薬品の包装材として好適に用いられる。
 フィルムの強度と冷水溶解性とのバランスの観点から、当該フィルムの平均厚みの下限としては、10μmが好ましく、20μmがより好ましく、30μmがさらに好ましい。当該フィルムの平均厚みの上限としては、200μmが好ましく、150μmがより好ましく、120μmがさらに好ましい。当該フィルムの平均厚みが上記下限以上であると、フィルムの強度がより向上する。一方、当該フィルムの平均厚みが上記上限以下であると、より低コストでフィルムを製造することができる。
 当該フィルムの耐ブロッキング性を向上させるために、必要に応じて、当該フィルム表面をロールマット化したり、シリカや澱粉等のブロッキング防止用の粉体を当該フィルムに塗布したり、エンボス処理を行ったりすることができる。当該フィルム表面のロールマット化は、製膜時に乾燥前の当該フィルムが接するロールに微細な凹凸を形成しておくことにより施すことができる。エンボス処理は、一般にフィルムが形成された後で、熱や圧力を加えながらエンボスロールとゴムロールとでニップすることにより行うことができる。粉体の塗布はブロッキング防止の効果が大きいが、当該フィルムの用途によっては使用できないことがあるため、ブロッキング防止の方法としては、ロールマット化及びエンボス処理が好ましく、ブロッキング防止効果の大きさの点からロールマット化がより好ましい。
 当該フィルムの実用性の観点からは、当該フィルムの引張破断強度の下限としては、2.0kg/cmが好ましく、2.1kg/cmがより好ましく、2.2kg/cmがさらに好ましい。一方、当該フィルムの引張破断強度の上限としては、特に限定されないが、例えば5.0kg/cmである。また、当該フィルムの製袋機等の工程通過性の観点からは、当該フィルムのヤング率の下限としては、2.0kg/mmが好ましく、2.1kg/mmがより好ましく、2.2kg/mmがさらに好ましい。一方、当該フィルムのヤング率の上限としては、特に限定されないが、例えば5.0kg/mmである。
 当該フィルムの冷水溶解性の程度としては、実施例の欄において後述する方法で冷水溶解性を測定した際の当該フィルムが完全に溶解するまでの時間(但し、当該フィルムの平均厚みが50μmでない場合には、下記式(1)に従って当該フィルムの平均厚みが50μmである場合に換算した時間)としては、40秒未満であることが好ましく、30秒未満であることがより好ましく、25秒未満であることがさらに好ましい。
 換算した時間(秒) = (50/フィルムの平均厚み(μm)) × 測定された時間(秒)・・・(1)
(フィルムの製造方法)
 当該フィルムの製造方法は特に限定されるものではなく、キャスト法、溶融押し出し法等の公知の方法により製造できる。例えば、変性PVA(A)とアミン化合物(B)と所望により任意成分とを水性溶媒(例えば水)に溶解し、得られる溶液を平滑な流延面に載置し、水性溶媒が蒸発した後、流延面から剥離すると、透明で均一な本発明のフィルムが得られる。上記水性溶媒としては、水が好ましい。上記流延面は、スチール、アルミニウム、ガラス、ポリマー(例えばポリオレフィン、ポリエチレン、ポリアミド、ポリ塩化ビニル、ポリカーボネート、ポリハロカーボン等)などのように、平滑で硬質の材料であればよい。上記水性溶媒の蒸発速度は、上記流延面を加熱するか、沈着した溶液を例えば加熱空気か赤外線に曝すことにより高めることができる。上記流延面は平らなものでもよいし、例えば標準(ドラム型)の工業用のフィルム製造用流延機のように、円筒形のものであってもよい。当該フィルムは、次いでオーブン乾燥することで得られる。
 以下、実施例を用いて本発明を更に具体的に説明する。以下において「部」及び「%」は特に断りのない限り質量基準を意味する。「重合度」は「粘度平均重合度」を意味する。
[PVAの重合度及びケン化度]
 PVA(変性PVAを含む)の重合度及びケン化度は、JIS-K6726-1994に記載の方法により求めた。
[単量体単位(I)の含有率]
 変性PVAにおける単量体単位(I)の含有率は、H-NMRを用いた方法に準じて求めた。
[構造単位(III)の含有率]
 変性PVAにおける構造単位(III)の含有率は、H-NMRを用いた方法に準じて求めた。
[フィルムの冷水溶解性の評価方法]
 10℃の恒温バスにマグネティックスターラーを設置した。1リットルの蒸留水を入れた1リットルのガラスビーカーを上記恒温バスに入れ、5cmの回転子を用いて250rpmで撹拌を行った。上記ビーカー内の蒸留水が10℃になった後、冷水溶解性の測定を次のように行った。すなわち、フィルムを40mm×40mmの正方形に切り、これをスライドマウントにはさみ、10℃の撹拌している上記水中に浸漬してフィルムの溶解状態を観察し、フィルムが完全に溶解するまでの時間(秒数)を測定した。冷水溶解性は、フィルムが完全に溶解するまでの時間が40秒未満の場合を「A」(良好)と判定し、40秒以上の場合を「B」(不良)と判定した。
[耐薬品性の評価方法]
 フィルムから10cm×15cmの袋を作り、内部に薬品としてのボルドー剤と珪藻土との混合物(質量比1:3)40gを入れ、140℃で熱シールして密封した。この包装体をさらにアルミニウムにポリエチレンをラミネートしたフィルムで包み、熱シールすることにより二重に密封包装し、薬品を密封した包装体から水や可塑剤が飛散しないようにした。これを長期保存の促進試験として、40℃の恒温器に入れて放置し、4週間後に取り出して、包装していたフィルムの冷水溶解性を上述の方法にて測定し、薬品包装前との経時変化を調べた。耐薬品性は、促進試験前後においてフィルムが完全に溶解するまでの時間の差が5秒未満の場合を「A」(良好)と判定し、5秒以上の場合を「B」(不良)と判定した。
[ヤング率及び引張破断強度の測定方法(機械的強度)]
 幅10mmのフィルムを、20℃、65%RHの雰囲気のもとで1週間調湿した後、オートグラフで引張り試験を行った。チャック間隔は50mm、引張り速度は500mm/minとした。ヤング率が2.2kg/mm以上であり、かつ引張破断強度が2.2kg/cm以上の場合を「AA」(特に良好)と判定した。また、ヤング率及び引張破断強度の少なくとも一方が上述の基準値未満であるが、ヤング率が2.0kg/mm以上であり、かつ引張破断強度が2.0kg/cm以上である場合を「A」(良好)と判定した。さらに、ヤング率が2.0kg/mm未満であるか、又は引張破断強度が2.0kg/cm未満である場合を「B」(不良)と判定した。
[変性PVA(A)の合成]
(PVA-1の合成)
 還流冷却器、原料供給ライン、反応液取出ライン、温度計、窒素導入口及び撹拌翼を備えた重合槽(連続重合装置)を用いた。この重合槽に酢酸ビニル(VAM)(656L/hr)、メタノール(MeOH)(41L/hr)、変性種として2-アクリルアミド-2-メチルプロパンスルホン酸ナトリウム(AMPS)の20質量%メタノール溶液(146L/hr)、及び2,2’-アゾビス(4-メトキシ-2,4-ジメトキシバレロニトリル)(AMV)の2質量%メタノール溶液(23L/hr)を定量ポンプを用いて連続的に供給した。その後、重合槽内の液面が一定になるように重合槽から重合液を連続的に取り出した。このとき、重合槽から取り出される重合液中の酢酸ビニルの重合率が40%になるよう調整した。重合槽の滞留時間は4時間であった。重合槽から取り出される重合液の温度は63℃であった。重合槽から重合液を取り出し、この重合液にメタノール蒸気を導入することで未反応の酢酸ビニルの除去を行い、変性ポリ酢酸ビニル(変性PVAc)のメタノール溶液(濃度35%)を得た。
 上記変性PVAcのメタノール溶液にメタノール及び水を添加してなる含水率1.0質量%の変性PVAc/メタノール溶液(濃度32質量%)(ケン化原料溶液)を4,700L/hrでフィードし、水酸化ナトリウム/メタノール溶液(濃度4質量%)(ケン化触媒溶液)を248L/hrでフィードした(変性PVAc中の酢酸ビニル単位に対する水酸化ナトリウムのモル比0.015)。フィードされたケン化原料溶液及びケン化触媒溶液はスタティックミキサーを用いて混合した。得られた混合物をベルト上に載置し、40℃の温度条件下で18分保持して、ケン化反応を進行させた。ケン化反応により得られたゲルを粉砕し、脱液した。得られた変性PVA粉末(樹脂分)を連続的に600kg/hrの速度で乾燥機に供給した(樹脂温度105℃)。乾燥機内の粉体の平均滞留時間は5時間であった。その後、粉砕を行い、変性PVA(PVA-1)を得た。得られた(PVA-1)の粘度平均重合度は1,500、ケン化度は88モル%、単量体単位(I)の含有率は3.0モル%、構造単位(III)の含有率は0.001モル%未満であった。
(PVA-2~PVA-11の合成)
 表1に記載した条件に変更したこと以外は、PVA-1と同様の方法により、PVA(PVA-2~PVA-11)を合成した。なお、PVA-3における構造単位(III)の含有率は0.10モル%であった。
Figure JPOXMLDOC01-appb-T000013
<フィルムの作製>
(実施例1)
 上記合成したPVA-1の100質量部に対し、可塑剤としてグリセリンを15質量部、糖類としてエーテル化澱粉を10質量部、無機フィラーとして平均粒子径3μmのタルクを5質量部、ナトリウム元素換算で酢酸ナトリウムを0.8質量部、及び水を添加し、さらに表2に示すアミン化合物(B)を添加して均一な5質量%水溶液(含水率95質量%)を調製した。この水溶液をポリエステルフィルム上に流延して室温で乾燥した後、ポリエステルフィルムから剥離することにより、100質量部のPVA-1に対してアミン化合物(B)を0.50質量部含有する樹脂組成物から構成される平均厚み50μmのフィルムを作製した。得られたフィルムに100℃で10分間熱処理を行った。
(実施例2~7及び比較例1~4)
 表2に示す条件に変更したこと以外は実施例1と同様にしてフィルムを作製した。
 得られた各フィルムについて、上記した方法によりフィルムの冷水溶解性、耐薬品性並びに機械的強度(ヤング率及び強度)を測定又は評価した。結果を表2に示した。
Figure JPOXMLDOC01-appb-T000014
 表2の結果から、特定のアクリルアミド単位を含む変性PVA(A)及び特定のアミン化合物(B)を含有し、アミン化合物(B)の含有量が特定範囲の樹脂組成物から構成されるフィルムは冷水溶解性、耐薬品性、及び機械的強度に優れることが分かる。一方、単量体単位(I)を含まない未変性のPVAを用いた場合(比較例1)には得られるフィルムの冷水溶解性及び耐薬品性が低下し、アミン化合物(B)を添加しない場合(比較例2)には耐薬品性が低下し、アミン化合物(B)の含有量が上記特定範囲外である場合(比較例3及び4)には得られるフィルムの冷水溶解性及び機械的強度が低下した。
 本発明の樹脂組成物は、冷水溶解性、機械的強度及び耐薬品性に優れるフィルムを形成することができる。従って、本発明の樹脂組成物及びフィルムは、衣料用洗剤、漂白剤、農薬等の各種薬品の包装材に好適に用いられる。

Claims (5)

  1.  下記式(I)で表される単量体単位を含む変性ポリビニルアルコール、及び
     下記式(II)で表されるアミン化合物
    を含有し、
     上記変性ポリビニルアルコール100質量部に対する上記アミン化合物の含有量が、0.01質量部以上1質量部以下である樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
    (式(I)中、Rは、水素原子又は炭素数1~8の直鎖状若しくは分岐状のアルキル基である。Rは、-R-SO 、-R-N(RCl又は水素原子である。Rは、炭素数1~10の直鎖状又は分岐状のアルカンジイル基である。Xは、水素原子、金属原子又はアンモニウム基である。Rは、炭素数1~5の直鎖状又は分岐状のアルキル基である。複数のRは、同一でも異なっていてもよい。)
    Figure JPOXMLDOC01-appb-C000002
    (式(II)中、Rは、-R’-SO ’、-R’-N(R’)Cl又は水素原子である。R’は、炭素数1~10の直鎖状又は分岐状のアルカンジイル基である。X’は、水素原子、金属原子又はアンモニウム基である。R’は、炭素数1~5の直鎖状又は分岐状のアルキル基である。複数のR’は、同一でも異なっていてもよい。)
  2.  上記変性ポリビニルアルコールの粘度平均重合度が300以上3,000以下、ケン化度が82モル%以上99.5モル%以下である請求項1に記載の樹脂組成物。
  3.  上記変性ポリビニルアルコールの全単量体単位に対する上記式(I)で表される単量体単位の含有率が0.05モル%以上10モル%以下である請求項1又は請求項2に記載の樹脂組成物。
  4.  上記変性ポリビニルアルコールが下記式(III)で表される構造単位をさらに含み、上記変性ポリビニルアルコールの全単量体単位に対する上記構造単位の含有率が0.001モル%以上0.5モル%以下である請求項1、請求項2又は請求項3に記載の樹脂組成物。
    Figure JPOXMLDOC01-appb-C000003
    (式(III)中、Rは、水素原子又は炭素数1~8の直鎖状若しくは分岐状のアルキル基である。)
  5.  請求項1から請求項4のいずれか1項に記載の樹脂組成物から構成されるフィルム。
PCT/JP2015/078399 2014-10-09 2015-10-06 樹脂組成物及びフィルム WO2016056570A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2016553126A JP6093490B2 (ja) 2014-10-09 2015-10-06 樹脂組成物及びフィルム
EP15849157.1A EP3205693B1 (en) 2014-10-09 2015-10-06 Resin composition and film
ES15849157T ES2822925T3 (es) 2014-10-09 2015-10-06 Composición de resina y película
US15/517,749 US10336872B2 (en) 2014-10-09 2015-10-06 Resin composition and film
CN201580054589.6A CN107109014B (zh) 2014-10-09 2015-10-06 树脂组合物和膜
US16/377,482 US20190233600A1 (en) 2014-10-09 2019-04-08 Resin composition and film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-208314 2014-10-09
JP2014208314 2014-10-09

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/517,749 A-371-Of-International US10336872B2 (en) 2014-10-09 2015-10-06 Resin composition and film
US16/377,482 Continuation US20190233600A1 (en) 2014-10-09 2019-04-08 Resin composition and film

Publications (1)

Publication Number Publication Date
WO2016056570A1 true WO2016056570A1 (ja) 2016-04-14

Family

ID=55653181

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/078399 WO2016056570A1 (ja) 2014-10-09 2015-10-06 樹脂組成物及びフィルム

Country Status (8)

Country Link
US (2) US10336872B2 (ja)
EP (1) EP3205693B1 (ja)
JP (1) JP6093490B2 (ja)
CN (1) CN107109014B (ja)
ES (1) ES2822925T3 (ja)
HU (1) HUE051754T2 (ja)
TW (1) TWI659971B (ja)
WO (1) WO2016056570A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020138442A1 (ja) * 2018-12-28 2020-07-02 株式会社クラレ 水溶性フィルムおよび包装体

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106795236B (zh) 2014-10-09 2020-05-15 株式会社可乐丽 改性聚乙烯醇、树脂组合物和膜
JP7258420B2 (ja) * 2019-01-18 2023-04-17 株式会社ディスコ レーザーダイシング用保護膜剤、レーザーダイシング用保護膜剤の製造方法及びレーザーダイシング用保護膜剤を用いた被加工物の加工方法
CN112708003A (zh) * 2019-10-24 2021-04-27 中国石油化工股份有限公司 改性聚乙烯醇
CN112707976A (zh) * 2019-10-24 2021-04-27 中国石油化工股份有限公司 改性聚乙烯醇
CN114426752B (zh) * 2020-10-14 2024-02-09 中国石油化工股份有限公司 聚乙烯醇树脂组合物及膜
CN114426623B (zh) * 2020-10-14 2024-02-09 中国石油化工股份有限公司 改性聚乙烯醇及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0688003A (ja) * 1992-09-07 1994-03-29 Kao Corp ポリビニルアルコール系フィルム
JPH0940834A (ja) * 1995-07-28 1997-02-10 Unitika Chem Kk ポリビニルアルコール系フィルム
JPH0977947A (ja) * 1995-09-14 1997-03-25 Unitika Chem Kk 冷水易溶性フィルム
JPH09272773A (ja) * 1996-04-05 1997-10-21 Kuraray Co Ltd 水溶性のフィルム
JPH11222546A (ja) * 1997-06-11 1999-08-17 Kuraray Co Ltd 水溶性フィルム
JP2001106854A (ja) * 1999-10-08 2001-04-17 Kuraray Co Ltd 樹脂組成物および水溶性フィルム
JP2005139240A (ja) * 2003-11-04 2005-06-02 Japan Vam & Poval Co Ltd 水溶性フィルムおよび個別包装材
JP2008542521A (ja) * 2005-06-07 2008-11-27 セラニーズ・インターナショナル・コーポレーション 耐ホウ酸塩フィルム

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4144388A (en) * 1976-12-14 1979-03-13 Mitsui Petrochemical Industries, Ltd. Film-forming and thermocurable vinyl alcohol-substituted acrylamide copolymers and process for production thereof
JPH0627205B2 (ja) 1986-12-27 1994-04-13 日本合成化学工業株式会社 アルカリ性物質包装用のポリビニルアルコ−ルフイルム
JP2502252B2 (ja) 1993-02-18 1996-05-29 アイセロ化学株式会社 ポリビニルアルコ―ル系フィルム
JPH09272774A (ja) * 1996-04-05 1997-10-21 Kuraray Co Ltd 酸性物質包装用水溶性フィルム
EP0884352B1 (en) 1997-06-11 2001-09-05 Kuraray Co., Ltd. Water-soluble film
CA2291217C (en) 1998-12-09 2004-09-21 Kuraray Co., Ltd. Vinyl alcohol polymer and its composition
TWI240724B (en) 2001-12-17 2005-10-01 Kuraray Co Polyvinyl alcohol film and polarizing film
CN100462392C (zh) * 2001-12-27 2009-02-18 日本合成化学工业株式会社 聚乙烯醇类薄膜
US7786229B2 (en) 2003-07-11 2010-08-31 Sekisui Specialty Chemicals America, Llc Vinyl alcohol copolymers for use in aqueous dispersions and melt extruded articles
US6818709B1 (en) 2003-07-11 2004-11-16 Celanese International Corporation Production of vinyl alcohol copolymers
CN101203551B (zh) * 2005-06-16 2011-09-28 日本合成化学工业株式会社 水溶性膜
TWI548655B (zh) 2012-10-22 2016-09-11 積水特殊化學美國有限責任公司 用於嚴苛化學品包裝的聚乙烯吡咯啶酮(pvp)共聚物

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0688003A (ja) * 1992-09-07 1994-03-29 Kao Corp ポリビニルアルコール系フィルム
JPH0940834A (ja) * 1995-07-28 1997-02-10 Unitika Chem Kk ポリビニルアルコール系フィルム
JPH0977947A (ja) * 1995-09-14 1997-03-25 Unitika Chem Kk 冷水易溶性フィルム
JPH09272773A (ja) * 1996-04-05 1997-10-21 Kuraray Co Ltd 水溶性のフィルム
JPH11222546A (ja) * 1997-06-11 1999-08-17 Kuraray Co Ltd 水溶性フィルム
JP2001106854A (ja) * 1999-10-08 2001-04-17 Kuraray Co Ltd 樹脂組成物および水溶性フィルム
JP2005139240A (ja) * 2003-11-04 2005-06-02 Japan Vam & Poval Co Ltd 水溶性フィルムおよび個別包装材
JP2008542521A (ja) * 2005-06-07 2008-11-27 セラニーズ・インターナショナル・コーポレーション 耐ホウ酸塩フィルム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3205693A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020138442A1 (ja) * 2018-12-28 2020-07-02 株式会社クラレ 水溶性フィルムおよび包装体
JPWO2020138442A1 (ja) * 2018-12-28 2021-11-04 株式会社クラレ 水溶性フィルムおよび包装体
JP7217295B2 (ja) 2018-12-28 2023-02-02 株式会社クラレ 水溶性フィルムおよび包装体

Also Published As

Publication number Publication date
TWI659971B (zh) 2019-05-21
US20190233600A1 (en) 2019-08-01
EP3205693A4 (en) 2018-05-09
HUE051754T2 (hu) 2021-03-29
US20170306112A1 (en) 2017-10-26
JPWO2016056570A1 (ja) 2017-04-27
EP3205693B1 (en) 2020-09-16
ES2822925T3 (es) 2021-05-05
JP6093490B2 (ja) 2017-03-08
CN107109014A (zh) 2017-08-29
US10336872B2 (en) 2019-07-02
TW201619220A (zh) 2016-06-01
EP3205693A1 (en) 2017-08-16
CN107109014B (zh) 2019-10-18

Similar Documents

Publication Publication Date Title
JP6093491B2 (ja) 変性ポリビニルアルコール、樹脂組成物及びフィルム
US10508160B2 (en) Modified polyvinyl alcohol and water-soluble film
JP6093490B2 (ja) 樹脂組成物及びフィルム
KR100428525B1 (ko) 수용성 수지 조성물 및 수용성 필름
JP3913601B2 (ja) 水溶性フィルム
JP4772238B2 (ja) 塩素含有化合物包装用水溶性フィルム
JP4540809B2 (ja) 水溶性樹脂組成物および水溶性フィルム
JP4570742B2 (ja) 水溶性フィルム
JP4832687B2 (ja) 酸性物質包装用水溶性フィルム
JP4675531B2 (ja) アルカリ性物質包装用水溶性フィルム
JP3938536B2 (ja) 包装体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15849157

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016553126

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15517749

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015849157

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015849157

Country of ref document: EP