WO2016056481A1 - ドレン回収装置 - Google Patents

ドレン回収装置 Download PDF

Info

Publication number
WO2016056481A1
WO2016056481A1 PCT/JP2015/078042 JP2015078042W WO2016056481A1 WO 2016056481 A1 WO2016056481 A1 WO 2016056481A1 JP 2015078042 W JP2015078042 W JP 2015078042W WO 2016056481 A1 WO2016056481 A1 WO 2016056481A1
Authority
WO
WIPO (PCT)
Prior art keywords
drain
header tank
pipe
gas
recovery
Prior art date
Application number
PCT/JP2015/078042
Other languages
English (en)
French (fr)
Inventor
藤川雄一
杉江悠一
Original Assignee
株式会社テイエルブイ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社テイエルブイ filed Critical 株式会社テイエルブイ
Priority to JP2016553080A priority Critical patent/JPWO2016056481A1/ja
Publication of WO2016056481A1 publication Critical patent/WO2016056481A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22DPREHEATING, OR ACCUMULATING PREHEATED, FEED-WATER FOR STEAM GENERATION; FEED-WATER SUPPLY FOR STEAM GENERATION; CONTROLLING WATER LEVEL FOR STEAM GENERATION; AUXILIARY DEVICES FOR PROMOTING WATER CIRCULATION WITHIN STEAM BOILERS
    • F22D11/00Feed-water supply not provided for in other main groups
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22DPREHEATING, OR ACCUMULATING PREHEATED, FEED-WATER FOR STEAM GENERATION; FEED-WATER SUPPLY FOR STEAM GENERATION; CONTROLLING WATER LEVEL FOR STEAM GENERATION; AUXILIARY DEVICES FOR PROMOTING WATER CIRCULATION WITHIN STEAM BOILERS
    • F22D11/00Feed-water supply not provided for in other main groups
    • F22D11/02Arrangements of feed-water pumps
    • F22D11/06Arrangements of feed-water pumps for returning condensate to boiler
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • F24H1/10Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/16Arrangements for water drainage 

Definitions

  • the technology disclosed herein relates to a drain recovery device that temporarily collects and recovers drainage generated by gas condensation in a gas-using device in a header tank.
  • Patent Document 1 discloses a drain collection device that temporarily collects and collects drain (condensate) generated by gas condensation in a gas-using device (heat exchanger) in a header tank.
  • This drain recovery device includes a header tank and a supply system that supplies the drain of the header tank to the user side.
  • the supply system includes a liquid pumping device (drain pumping pump).
  • drain pumping pump In the liquid pressure feeding device, the inflow side is connected to the header tank via a pipe, and the pressure-feeding side (outflow side) is connected to the piping toward the use side.
  • gas (steam) is supplied, the gas dissipates heat to the object (water) and condenses, and the object (water) is heated.
  • the drain recovery device the drain generated in the gas using device flows into the header tank and is stored, and the drain in the header tank flows into the liquid pumping device and is pumped to the use side.
  • An object of the present invention is to provide a drain recovery device capable of continuously performing an operation of inflowing drain into a tank (operation of discharging drain from a gas-using device).
  • the drain recovery device disclosed herein includes a recovery pipe, a header tank, a supply system, and a drain discharge pipe.
  • tube is connected to the gas use apparatus which gas is supplied and condenses.
  • the header tank is provided in a lower position than the gas using device and is connected to the recovery pipe, and is a sealed type in which drain generated by the condensation of the gas in the gas using equipment flows through the recovery pipe.
  • the supply system is connected to the header tank and supplies the drain of the header tank to the use side.
  • the drain discharge pipe has an inlet end that opens to an upper portion in the header tank, and an outlet end that is open to the atmosphere.
  • a drain discharge pipe is provided at the top of the header tank. For this reason, even if the drainage of the header tank increases due to the supply system function (supply function) being stopped for some reason, the drain can be automatically discharged through the drain discharge pipe.
  • the drain of the header tank is discharged from the drain discharge pipe, and the discharged amount of the drain can be allowed to flow from the gas using device to the header tank.
  • the amount of drain that flows into the header tank from the gas using device can be discharged from the drain discharge pipe. Therefore, it is possible to continuously perform the drain inflow operation from the gas using device to the header tank (the drain discharging operation from the gas using device). As a result, it is possible to prevent a decrease in capacity (a decrease in heating capacity) caused by an increase in the amount of drain in the gas-using device.
  • FIG. 1 is a piping system diagram illustrating a schematic configuration of a steam system according to an embodiment.
  • FIG. 2 is a perspective view illustrating a schematic configuration of a drain recovery system according to the embodiment.
  • FIG. 3 is a cross-sectional view showing a schematic configuration of the liquid pumping apparatus.
  • FIG. 4 is a piping system diagram illustrating a schematic configuration of the steam system according to the embodiment.
  • the steam system 1 of the present embodiment is provided in a thermal power plant and is for heating a fuel gas (LPG: liquefied petroleum gas) supplied to a gas turbine with steam.
  • a gas turbine is driven by fuel gas, thereby generating power.
  • the steam system 1 includes a steam use system 2 and a drain recovery system 10.
  • the drain collection system 10 constitutes a drain collection device.
  • the steam use system 2 includes a heat exchanger 3 that is a gas use device (steam use device).
  • the heat exchanger 3 is configured such that vapor, which is a gas, dissipates heat and condenses on an object (in this embodiment, LPG), and the object is heated.
  • the heat exchanger 3 is a so-called shell-type heat exchanger, and an internal flow path 3a is formed in the internal space.
  • the heat exchanger 3 is connected to a steam supply basket 4 and an LPG inflow pipe 6 and outflow pipe 7.
  • the supply rod 4 is connected to one end (inlet end) of the internal flow path 3a, and for example, steam generated by a boiler (not shown) is supplied to the internal flow path 3a.
  • the supply rod 4 is provided with a supply valve 5 for adjusting the flow rate of the steam.
  • the inflow pipe 6 and the outflow pipe 7 communicate with the internal space of the heat exchanger 3, respectively.
  • the vapor of the internal flow path 3a dissipates heat to the liquid LPG flowing in from the inflow pipe 6, whereby the liquid LPG is heated and vaporized (becomes gaseous LPG).
  • the steam is condensed by releasing heat to the LPG and becomes drain (condensed water). That is, in the heat exchanger 3, the LPG is heated (latent heat heating) by the latent heat of condensation of the steam.
  • the LPG heated by the heat exchanger 3 is supplied from the outflow pipe 7 to the gas turbine.
  • the drain recovery system 10 includes a header tank 11, a recovery pipe 15, a supply system 20, and an emergency discharge system 40, and temporarily drains (condensed water) generated by condensation of steam in the heat exchanger 3. It is stored in the header tank 11 and collected.
  • the recovery pipe 15 is connected to the internal flow path 3 a of the heat exchanger 3 and the header tank 11, and causes the drain generated in the heat exchanger 3 to flow down to the header tank 11. Specifically, one end (inflow end) of the recovery pipe 15 is connected to the other end (outflow end) of the internal flow path 3 a of the heat exchanger 3, and the other end (outflow end) is connected to the top 12 of the header tank 11.
  • the header tank 11 is a sealed container, and drainage flows from the recovery pipe 15 and is stored.
  • the header tank 11 is provided at a position lower than the heat exchanger 3.
  • the supply system 20 is connected to the header tank 11 and supplies the drain stored in the header tank 11 to the use side (for example, a boiler water supply tank).
  • the supply system 20 includes a liquid pumping device 21, an inflow pipe 22, a pumping pipe 23, an air supply pipe 24, and an exhaust pipe 25.
  • the inflow pipe 22 has one end (inflow end) connected to the bottom 13 of the header tank 11 and the other end (outflow end) connected to the liquid pumping device 21.
  • the inflow pipe 22 is provided with an on-off valve 31 and a check valve 32 in order from the header tank 11 side.
  • the check valve 32 allows only a drain flow from the header tank 11 toward the liquid pumping device 21.
  • the pumping pipe 23 has one end (inflow end) connected to the liquid pumping device 21 and the other end (outflow end) connected to the use side.
  • the pressure feeding pipe 23 is provided with a check valve 33 and an on-off valve 34 in order from the liquid pressure feeding device 21 side.
  • the check valve 33 allows only a drain flow from the liquid pressure feeding device 21 toward the water supply tank.
  • One end (inflow end) of the air supply pipe 24 is connected to the upstream side of the supply valve 5 in the supply tank 4, and the other end (outflow end) is connected to the liquid pumping device 21.
  • One end (inflow end) of the exhaust pipe 25 is connected to the liquid pumping device 21, and the other end (outflow end) is connected in the middle of an overflow pipe 41 described later, and communicates with the upper part in the header tank 11.
  • the supply pipe 24 and the exhaust pipe 25 are provided with on-off valves 36 and 37, respectively.
  • the drain of the header tank 11 flows in through the inflow pipe 22, and the drained inflow is pumped to the user side through the pressure feeding pipe 23.
  • the steam in the supply tank 4 flows through the air supply pipe 24, while the steam is discharged to the header tank 11 through the exhaust pipe 25.
  • the liquid pumping device 21 includes a sealed casing 51 and also includes a float 52, a float valve 53, a snap mechanism 54, an exhaust valve body 66, and an air supply valve body 69 provided in the casing 51.
  • the casing 51 is formed with an inlet 55, a pressure inlet 56, an air inlet 57 and an exhaust outlet 58 to which the above-described inflow pipe 22, pressure feed pipe 23, air supply pipe 24 and exhaust pipe 25 are connected.
  • the float 52 swings around a fulcrum 59 as it rises and sinks, thereby moving the float valve 53 up and down to open and close the pressure feed port 56.
  • the first lever 61 is displaced up and down around the fulcrum 62 as the float 52 swings.
  • the second lever 63 is provided so as to be rotatable about the fulcrum 62, and a coil spring 64 is attached between the end of the second lever 63 and the end of the first lever 61.
  • An exhaust lifting / lowering rod 65 is connected to the upper portion of the second lever 63, and an exhaust valve body 66 is provided at the tip of the lifting / lowering rod 65.
  • a connecting plate 67 is attached in the middle of the lifting bar 65, and a lifting bar 68 for supplying air is provided above the connecting plate 67.
  • An air supply valve body 69 is provided at the tip of the lift bar 68.
  • the liquid pressure feeding device 21 is closed by the float valve 53 while the air supply port 57 is closed by the air supply valve body 69. And the exhaust port 58 is opened. That is, the two lifting rods 65 and 68 are in a lowered state.
  • the drain of the header tank 11 flows from the inflow port 55 and the steam is discharged from the exhaust port 58.
  • the float valve 53 opens the pressure feed port 56.
  • the two lifting rods 68 are raised by the snap mechanism 54, the exhaust port 58 is closed by the exhaust valve body 66, and the air supply port 57 is opened. If it does so, the vapor
  • the pumping port 56 is closed again, while the exhaust port 58 is opened and the air supply port 57 is closed.
  • liquid pumping apparatus 21 with which the float valve 53 which opens and closes the pumping port 56 was built in was used, the liquid pumping apparatus with which the float valve was not built but the pumping port was always open was used. Is used, a steam trap is provided in the pressure feeding pipe 23.
  • the emergency discharge system 40 automatically discharges the drain from the header tank 11 when the drain of the header tank 11 becomes full due to the stoppage of the function (supply function) of the supply system 20 (emergency). Is. As a factor that causes the function of the supply system 20 to stop, for example, a failure of the liquid pumping device 21 or the check valves 32 and 33 may be cited.
  • the emergency discharge system 40 includes an overflow pipe 41, a steam trap 43, and a check valve 44.
  • the overflow pipe 41 constitutes a drain discharge pipe.
  • the overflow pipe 41 has an inlet end 41a that is one end connected to the top 12 of the header tank 11, and an outlet end 41b that is the other end that is open to the atmosphere. That is, the inlet end 41 a of the overflow pipe 41 is open to the upper part in the header tank 11.
  • the outlet end 41 b of the overflow pipe 41 is disposed at a position lower than the header tank 11. That is, the overflow pipe 41 is at a position where the outlet end 41b is lower than the inlet end 41a.
  • the overflow pipe 41 automatically discharges the drain from the top portion 12 of the header tank 11 when the drain of the header tank 11 becomes full.
  • the steam trap 43 is provided in a portion of the overflow pipe 41 that is lower than the position of the inlet end 41a.
  • the steam trap 43 discharges drain to the downstream side (that is, the outlet end 41b side) due to the pressure difference between the upstream and downstream, and constitutes a drain trap.
  • the check valve 44 is provided in a portion of the overflow pipe 41 that is lower than the position of the inlet end 41a.
  • the check valve 44 is provided on the downstream side of the steam trap 43.
  • the check valve 44 allows only a drain flow from the inlet end 41 a to the outlet end 41 b in the overflow pipe 41.
  • the overflow pipe 41 is provided with an on-off valve 42 on the upstream side of the steam trap 43.
  • an air discharge pipe 26 having an on-off valve 38 is connected to the overflow pipe 41 of the present embodiment.
  • the air discharge pipe 26 has an inlet end connected between the exhaust pipe 25 in the overflow pipe 41 and the on-off valve 42, and an outlet end opened to the atmosphere.
  • the air discharge pipe 26 is for discharging initial air existing in the heat exchanger 3 or the header tank 11 at the start of operation.
  • the drain flows from the heat exchanger 3, while the supply system 20 does not discharge the drain. Therefore, in the header tank 11, the drain liquid level rises and eventually becomes full. In this state, the drain does not flow from the heat exchanger 3 into the header tank 11, and the drain increases in the heat exchanger 3.
  • the drain of the header tank 11 flows out to the overflow pipe 41 due to the water head pressure of the recovery pipe 15 and is discharged to the outside. The amount of drain discharged from the overflow pipe 41 flows into the header tank 11 from the heat exchanger 3 through the recovery pipe 15. Therefore, even if the header tank 11 is full, the drain can be continuously flowed from the heat exchanger 3 to the header tank 11.
  • the overflow pipe 41 is provided in which the inlet end 41a is connected to the top 12 of the header tank 11 and the outlet end 41b is opened to the atmosphere. Therefore, even if the drain of the header tank 11 becomes full by stopping the function of the supply system 20 (supply function), the drain of the header tank 11 can be automatically discharged from the overflow pipe 41. Thereby, the amount of drain discharged from the overflow pipe 41 can be allowed to flow into the header tank 11 from the heat exchanger 3. In other words, the amount of drain flowing into the header tank 11 from the heat exchanger 3 can be automatically discharged from the overflow pipe 41.
  • the drain inflow operation from the heat exchanger 3 to the header tank 11 (the drain discharge operation from the heat exchanger 3) can be continuously performed.
  • a decrease in capacity (a decrease in heating capacity) caused by an increase in the amount of drain in the heat exchanger 3.
  • the necessary supply amount of the fuel gas to the gas turbine can be secured, and thereby the necessary power generation amount of the thermal power plant can be secured.
  • the technology disclosed herein has a high possibility that the function of the supply system 20 having equipment such as the liquid pressure feeding device 21 and the check valves 32 and 33 that cannot be completely avoided as in the above-described embodiment is stopped. Therefore, it is particularly effective for the drain recovery system 10 having such a supply system 20.
  • the outlet end 41b of the overflow pipe 41 is open to the atmosphere, a pressure gradient (the inlet end 41a side is high and the outlet end 41b side is low) can be reliably formed in the overflow pipe 41. Thereby, the drain of the header tank 11 can be easily discharged from the overflow pipe 41.
  • the header tank 11 is provided at a position lower than the heat exchanger 3, the drain of the header tank 11 can be easily discharged from the overflow pipe 41 by the water head pressure due to the height difference.
  • the steam trap 43 is provided in the overflow pipe 41, it is possible to reliably prevent the steam from leaking from the header tank 11 through the overflow pipe 41. Further, since the steam trap 43 is provided at a portion lower than the inlet end 41 a in the overflow pipe 41, the water head pressure can be applied to the upstream side of the steam trap 43. Thereby, since a pressure difference is formed in the upstream and downstream of the steam trap 43, the steam trap 43 can be operated reliably. That is, only the drain can be reliably discharged to the downstream side in the steam trap 43.
  • the check valve 44 is provided in the overflow pipe 41, air can be reliably prevented from flowing into the header tank 11 through the overflow pipe 41 from the outside. Thereby, since it can prevent that air flows in into the heat exchanger 3 from the header tank 11 through the collection
  • the check valve 44 is provided at a portion lower than the inlet end 41 a in the overflow pipe 41, so that the hydraulic head pressure can be applied to the upstream side of the check valve 44. Thereby, since a pressure difference is formed in the upstream and downstream of the check valve 44, the check valve 44 can be opened reliably and the drain can be discharged to the outside.
  • overflow pipe 41 of the above embodiment may have an inlet end 41 a connected to the upper part of the side surface of the header tank 11.
  • the steam trap 43 and the check valve 44 may be omitted.
  • the heat exchanger 3 of the above embodiment may be one in which a gas (gas) other than steam is condensed, or an object to be heated may be other than PLG (fuel gas).
  • the technology disclosed herein is useful for a drain recovery device that temporarily collects drain generated in gas-using equipment and collects it in a header tank.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Jet Pumps And Other Pumps (AREA)

Abstract

 ドレン回収系統(10)(ドレン回収装置)は、ガスが供給されて凝縮する熱交換器(3)(ガス使用機器)に接続される回収管(15)と、熱交換器(3)よりも低い位置に設けられると共に回収管(15)に接続され、熱交換器(3)でガスの凝縮によって発生したドレンが回収管(15)を通じて流入する密閉状のヘッダータンク(11)と、ヘッダータンク(11)に接続され、ヘッダータンク(11)のドレンをその利用側へ供給する供給系統(20)と、入口端(41a)がヘッダータンク(11)内の上部に開口する一方、出口端(41b)が大気に開放されるオーバーフロー管(41)を備えている。

Description

ドレン回収装置
 ここに開示された技術は、ガス使用機器でガスが凝縮して発生したドレンを一時的にヘッダータンクに溜めて回収するドレン回収装置に関する。
 ガス使用機器(熱交換器)においてガスが凝縮して発生したドレン(凝縮水)を一時的にヘッダータンクに溜めて回収するドレン回収装置が、例えば特許文献1に開示されている。このドレン回収装置は、ヘッダータンクと、該ヘッダータンクのドレンを利用側へ供給する供給系統とを備えている。供給系統は、液体圧送装置(ドレン圧送ポンプ)を備えている。液体圧送装置は、流入側が配管を介してヘッダータンクに接続され、圧送側(流出側)には利用側へ向かう配管が接続されている。ガス使用機器では、ガス(蒸気)が供給され、そのガスが対象物(水)に放熱して凝縮し、対象物(水)が加熱される。そして、ドレン回収装置では、ガス使用機器で発生したドレンがヘッダータンクに流入して貯留されると共に、ヘッダータンクのドレンが液体圧送装置に流入して利用側へ圧送される。
特開2009-300016号公報
 ところで、上述した特許文献1のドレン回収装置では、液体圧送装置の故障や配管の詰まり等により供給系統の機能が停止してしまうと、いずれヘッダータンクが満杯となり、ガス使用機器(熱交換器)からヘッダータンクにドレンが流入しなくなる。そうすると、ガス使用機器では、ドレンの量が増加していき、これに伴いガスの供給量が減少する。その結果、ガス使用機器の能力(加熱能力)が著しく低下してしまう。そして、例えば火力発電所においてガスタービンに供給される燃料ガスを加熱するためのガス使用機器の場合、上述した能力(加熱能力)の低下は、すぐさま発電量の低下に繋がり、社会に多大な影響を及ぼしてしまう。
 ここに開示された技術は、かかる事情に鑑みてなされたものであり、その目的は、ヘッダータンクのドレンを利用側へ供給する供給系統の機能が万一停止しても、ガス使用機器からヘッダータンクへのドレンの流入動作(ガス使用機器からのドレンの排出動作)を継続して行うことが可能なドレン回収装置を提供することにある。
 ここに開示されたドレン回収装置は、回収管と、ヘッダータンクと、供給系統と、ドレン排出管とを備えている。上記回収管は、ガスが供給されて凝縮するガス使用機器に接続される。上記ヘッダータンクは、上記ガス使用機器よりも低い位置に設けられると共に上記回収管に接続され、上記ガス使用機器で上記ガスの凝縮によって発生したドレンが上記回収管を通じて流入する密閉状のものである。上記供給系統は、上記ヘッダータンクに接続され、該ヘッダータンクのドレンをその利用側へ供給するものである。上記ドレン排出管は、入口端が上記ヘッダータンク内の上部に開口する一方、出口端が大気に開放されているものである。
 ここに開示されたドレン回収装置によれば、ヘッダータンクの上部にドレン排出管を設けるようにした。そのため、何らかの要因で供給系統の機能(供給機能)が停止することによりヘッダータンクのドレンが増大して満杯になっても、そのドレンをドレン排出管を通じて自動的に排出することができる。これにより、ヘッダータンクが満杯の状態になっても、ヘッダータンクのドレンがドレン排出管から排出されると共に、その排出された量のドレンをガス使用機器からヘッダータンクに流入させることができる。言い換えれば、ガス使用機器からヘッダータンクに流入する量のドレンをドレン排出管から排出させることができる。したがって、ガス使用機器からヘッダータンクへのドレンの流入動作(ガス使用機器からのドレンの排出動作)を継続して行うことができる。その結果、ガス使用機器においてドレンの量が増加することによって生ずる能力低下(加熱能力の低下)を防止することができる。
図1は、実施形態に係る蒸気システムの概略構成を示す配管系統図である。 図2は、実施形態に係るドレン回収系統の概略構成を示す斜視図である。 図3は、液体圧送装置の概略構成を示す断面図である。 図4は、実施形態に係る蒸気システムの概略構成を示す配管系統図である。
 以下、実施形態について図面を参照しながら説明する。なお、以下の実施形態は、本質的に好ましい例示であって、本発明、その適用物、あるいはその用途の範囲を制限することを意図するものではない。
 本実施形態の蒸気システム1は、火力発電所に設けられ、ガスタービンに供給される燃料ガス(LPG:液化石油ガス)を蒸気で加熱するためのものである。火力発電所では、ガスタービンが燃料ガスによって駆動され、これにより発電が行われる。図1および図2に示すように、蒸気システム1は、蒸気使用系統2とドレン回収系統10を備えている。ドレン回収系統10は、ドレン回収装置を構成している。
 蒸気使用系統2は、ガス使用機器(蒸気使用機器)である熱交換器3を備えている。熱交換器3は、ガスである蒸気が対象物(本実施形態では、LPG)に放熱して凝縮し、対象物が加熱されるものである。具体的に、熱交換器3は、いわゆるシェル型の熱交換器であり、内部空間に内部流路3aが形成されている。熱交換器3には、蒸気の供給菅4と、LPGの流入管6および流出管7が接続されている。供給菅4は、内部流路3aの一端(入口端)に接続されており、例えばボイラー(図示省略)で生成された蒸気が内部流路3aに供給される。供給菅4には、蒸気の流量を調整する供給弁5が設けられている。流入管6および流出管7は、それぞれ熱交換器3の内部空間に連通している。
 熱交換器3では、内部流路3aの蒸気が、流入管6から流入した液状のLPGに放熱することにより、液状のLPGが加熱されて気化する(ガス状のLPGになる)。蒸気は、LPGに放熱することで凝縮し、ドレン(凝縮水)になる。つまり、熱交換器3では蒸気の凝縮潜熱によってLPGが加熱(潜熱加熱)される。熱交換器3で加熱されたLPGは、流出管7からガスタービンへ供給される。
 ドレン回収系統10は、ヘッダータンク11と、回収管15と、供給系統20と、非常時排出系統40とを備え、熱交換器3で蒸気の凝縮によって発生したドレン(凝縮水)を一時的にヘッダータンク11に貯留させて回収するものである。
 回収管15は、熱交換器3の内部流路3aとヘッダータンク11とに接続され、熱交換器3で発生したドレンをヘッダータンク11へ流下させるものである。具体的に、回収管15は、一端(流入端)が熱交換器3の内部流路3aの他端(流出端)に接続され、他端(流出端)がヘッダータンク11の頂部12に接続されている。ヘッダータンク11は、密閉容器であり、回収管15からドレンが流入して貯留される。また、ヘッダータンク11は、熱交換器3よりも低い位置に設けられている。
 供給系統20は、ヘッダータンク11に接続されており、該ヘッダータンク11に貯留されているドレンをその利用側(例えば、ボイラーの給水タンク)へ供給するものである。供給系統20は、液体圧送装置21と、流入管22と、圧送管23と、給気管24と、排気管25とを備えている。
 流入管22は、一端(流入端)がヘッダータンク11の底部13に接続され、他端(流出端)が液体圧送装置21に接続されている。流入管22には、ヘッダータンク11側から順に、開閉弁31および逆止弁32が設けられている。逆止弁32は、ヘッダータンク11から液体圧送装置21へ向かうドレンの流れのみを許容する。圧送管23は、一端(流入端)が液体圧送装置21に接続され、他端(流出端)が利用側に接続されている。圧送管23には、液体圧送装置21側から順に、逆止弁33および開閉弁34が設けられている。逆止弁33は、液体圧送装置21から給水タンクへ向かうドレンの流れのみを許容する。
 給気管24は、一端(流入端)が供給菅4における供給弁5の上流側に接続され、他端(流出端)が液体圧送装置21に接続されている。排気管25は、一端(流入端)が液体圧送装置21に接続され、他端(流出端)が後述するオーバーフロー管41の途中に接続されてヘッダータンク11内の上部に連通している。給気管24および排気管25には、それぞれ開閉弁36,37が設けられている。
 液体圧送装置21は、ヘッダータンク11のドレンが流入管22を通じて流入し、その流入したドレンを圧送管23を通じて利用側へ圧送するものである。また、液体圧送装置21は、供給菅4の蒸気が給気管24を通じて流入する一方、蒸気が排気管25を通じてヘッダータンク11に排出される。
 液体圧送装置21の概略構成について図3を参照しながら説明する。液体圧送装置21は、密閉状のケーシング51を備えると共に、該ケーシング51内に設けられるフロート52、フロート弁53、スナップ機構54、排気弁体66および給気弁体69を備えている。ケーシング51には、上述した流入管22、圧送管23、給気管24および排気管25が接続される流入口55、圧送口56、給気口57および排気口58が形成されている。フロート52は、浮き沈みに伴い支点59を中心として揺動することにより、フロート弁53を上下動させて圧送口56を開閉するように構成されている。
 スナップ機構54では、第1レバー61がフロート52の揺動動作に伴い支点62を中心として上下に変位する。また、スナップ機構54では、第2レバー63が支点62を中心として回転自在に設けられ、第2レバー63の端部と第1レバー61の端部との間にコイルバネ64が取り付けられている。第2レバー63の上部には排気用の昇降棒65が連結されており、該昇降棒65の先端に排気弁体66が設けられている。昇降棒65の途中には連設板67が取り付けられており、該連設板67の上方に給気用の昇降棒68が設けられている。この昇降棒68の先端には、給気弁体69が設けられている。
 液体圧送装置21は、ケーシング51内のドレンの液位が低くフロート52が底部13に位置する場合、圧送口56がフロート弁53によって閉じられる一方、給気口57が給気弁体69によって閉じられると共に排気口58が開く。つまり、2つの昇降棒65,68が下降した状態になっている。この状態の液体圧送装置21では、ヘッダータンク11のドレンが流入口55から流入すると共に、蒸気が排気口58から排出される。そして、ケーシング51内の液位の上昇に伴いフロート52が浮上すると、フロート弁53が圧送口56を開く。そして、フロート52が所定位置まで浮上すると、2つの昇降棒68がスナップ機構54によって上昇し、排気口58が排気弁体66によって閉じられると共に給気口57が開く。そうすると、供給菅4の蒸気が給気口57から流入し、その流入した蒸気によってドレンが圧送口56から圧送される。そして、このドレンの圧送に伴い液位が低下してフロート52が所定位置まで下降すると、再び、圧送口56が閉じられる一方、排気口58が開くと共に給気口57が閉じられる。上述した動作が繰り返されることで、ヘッダータンク11のドレンが利用側へ供給される。
 なお、本実施形態の供給系統20では、圧送口56を開閉するフロート弁53が内蔵された液体圧送装置21を用いているが、フロート弁が内蔵されず圧送口が常に開いている液体圧送装置を用いる場合、圧送管23にスチームトラップが設けられる。
 非常時排出系統40は、供給系統20の機能(供給機能)が万一停止することによりヘッダータンク11のドレンが満杯になった場合(非常時)、ヘッダータンク11からドレンを自動的に排出するものである。供給系統20の機能が停止する要因としては、例えば、液体圧送装置21や逆止弁32,33の故障等が挙げられる。
 非常時排出系統40は、オーバーフロー管41と、スチームトラップ43と、逆止弁44とを備えている。オーバーフロー管41は、ドレン排出管を構成している。具体的に、オーバーフロー管41は、一端である入口端41aがヘッダータンク11の頂部12に接続され、他端である出口端41bが大気に開放している。つまり、オーバーフロー管41の入口端41aはヘッダータンク11内の上部に開口している。また、オーバーフロー管41の出口端41bは、ヘッダータンク11よりも低い位置に配置されている。つまり、オーバーフロー管41は出口端41bが入口端41aよりも低い位置にある。オーバーフロー管41は、ヘッダータンク11のドレンが満杯になると、ヘッダータンク11の頂部12からドレンを自動的に排出するものである。
 スチームトラップ43は、オーバーフロー管41における入口端41aの位置よりも低い部分に設けられている。スチームトラップ43は、上下流の圧力差によってドレンを下流側(即ち、出口端41b側)へ排出するものであり、ドレントラップを構成している。逆止弁44は、オーバーフロー管41における入口端41aの位置よりも低い部分に設けられている。逆止弁44は、スチームトラップ43の下流側に設けられている。逆止弁44は、オーバーフロー管41において入口端41aから出口端41bへ向かうドレンの流れのみを許容する。また、オーバーフロー管41には、スチームトラップ43の上流側に開閉弁42が設けられている。
 なお、本実施形態のオーバーフロー管41には、開閉弁38を有する空気排出管26が接続されている。空気排出管26は、入口端がオーバーフロー管41における排気管25と開閉弁42との間に接続され、出口端が大気に開放されている。空気排出管26は、熱交換器3内やヘッダータンク11内に存在する初期の空気を運転開始時に排出するためのものである。
 〈ドレン回収系統の動作〉
 先ず、通常時の動作について説明する。図1に示すように、熱交換器3で蒸気の凝縮によって発生したドレンは、回収管15を流下してヘッダータンク11に流入して貯留される。ヘッダータンク11のドレンは、供給系統20の液体圧送装置21によって利用側へ圧送(供給)される。つまり、ヘッダータンク11では、熱交換器3からドレンが流入すると共に、供給系統20によってドレンが排出される。こうして、通常時のヘッダータンク11ではドレンの液位が概ね一定に維持される。
 次に、供給系統20の機能(供給機能)が停止する非常時の動作について説明する。供給系統20の機能が停止すると、ヘッダータンク11では、熱交換器3からドレンが流入する一方、供給系統20によってドレンが排出されない状態になる。そのため、ヘッダータンク11では、ドレンの液位が上昇して最終的に満杯になる。このままの状態では、熱交換器3からヘッダータンク11にドレンが流入しなくなり、熱交換器3においてドレンが増大してしまう。本実施形態では、ヘッダータンク11が満杯になると、ヘッダータンク11のドレンが回収管15の水頭圧によってオーバーフロー管41に流出し外部へ排出される。そして、オーバーフロー管41から排出された量のドレンが熱交換器3から回収管15を通じてヘッダータンク11に流入する。したがって、ヘッダータンク11が満杯になっても、熱交換器3からヘッダータンク11へドレンを継続して流入させることができる。
 以上のように、上記実施形態のドレン回収系統10によれば、入口端41aがヘッダータンク11の頂部12に接続され、出口端41bが大気に開放されるオーバーフロー管41を設けるようにした。そのため、供給系統20の機能(供給機能)が停止することによりヘッダータンク11のドレンが満杯になっても、ヘッダータンク11のドレンをオーバーフロー管41から自動的に排出することができる。これにより、オーバーフロー管41から排出された量のドレンを熱交換器3からヘッダータンク11に流入させることができる。言い換えれば、熱交換器3からヘッダータンク11に流入する量のドレンをオーバーフロー管41から自動的に排出することができる。したがって、熱交換器3からヘッダータンク11へのドレンの流入動作(熱交換器3からのドレンの排出動作)を継続して行うことができる。その結果、熱交換器3においてドレンの量が増加することによって生ずる能力低下(加熱能力の低下)を防止することができる。これによって、ガスタービンへの燃料ガスの必要供給量を確保することができ、これによって火力発電所の必要発電量を確保することができる。
 また、ここに開示された技術は、上記実施形態のように液体圧送装置21や逆止弁32,33といった故障を完全には回避できない機器を有する供給系統20ではその機能が停止する虞が高くなるので、そのような供給系統20を有するドレン回収系統10に対して特に有効である。
 また、オーバーフロー管41の出口端41bを大気に開放しているため、オーバーフロー管41において圧力勾配(入口端41a側が高く、出口端41b側が低い)を確実に形成することができる。これにより、容易にヘッダータンク11のドレンをオーバーフロー管41から排出することができる。
 また、ヘッダータンク11を熱交換器3よりも低い位置に設けているため、その高低差による水頭圧によってヘッダータンク11のドレンをオーバーフロー管41から容易に排出することができる。
 さらに、上記実施形態によれば、オーバーフロー管41にスチームトラップ43を設けているため、ヘッダータンク11からオーバーフロー管41を通じて蒸気が洩れるのを確実に防止することができる。また、スチームトラップ43はオーバーフロー管41における入口端41aよりも低い部分に設けられているので、スチームトラップ43の上流側に水頭圧を作用させることができる。これにより、スチームトラップ43の上下流に圧力差が形成されるので、確実にスチームトラップ43を動作させることができる。つまり、スチームトラップ43において確実にドレンのみを下流側へ排出させることができる。
 さらに、上記実施形態によれば、オーバーフロー管41に逆止弁44を設けているため、外部からオーバーフロー管41を通じてヘッダータンク11に空気が流入するのを確実に防止することができる。これにより、空気がヘッダータンク11から回収管15を通じて熱交換器3に流入するのを防止することができるので、熱交換器3の能力低下(加熱能力の低下)を防止することができる。また、スチームトラップ43と同様、逆止弁44はオーバーフロー管41における入口端41aよりも低い部分に設けられているので、逆止弁44の上流側に水頭圧を作用させることができる。これにより、逆止弁44の上下流に圧力差が形成されるので、確実に逆止弁44を開くことができ、ドレンを外部へ排出することができる。
 なお、上記実施形態のオーバーフロー管41は、入口端41aがヘッダータンク11における側面の上部に接続されるものであってもよい。
 また、上記実施形態の非常時排出系統40は、スチームトラップ43や逆止弁44を省略するようにしてもよい。
 また、上記実施形態の熱交換器3は、蒸気以外のガス(気体)が凝縮するものであってもよいし、加熱の対象物がPLG(燃料ガス)以外のものであってもよい。
 ここに開示された技術は、ガス使用機器で発生したドレンを一時的にヘッダータンクに溜めて回収するドレン回収装置について有用である。
1    蒸気システム
3    熱交換器(ガス使用機器)
10   ドレン回収系統(ドレン回収装置)
11   ヘッダータンク
15   回収管
20   供給系統
21   液体圧送装置
22   流入管
41   オーバーフロー管(ドレン排出管)
41a  入口端
41b  出口端
43   スチームトラップ(ドレントラップ)
44   逆止弁
 

Claims (4)

  1.  ガスが供給されて凝縮するガス使用機器に接続される回収管と、
     上記ガス使用機器よりも低い位置に設けられると共に上記回収管に接続され、上記ガス使用機器で上記ガスの凝縮によって発生したドレンが上記回収管を通じて流入する密閉状のヘッダータンクと、
     上記ヘッダータンクに接続され、該ヘッダータンクのドレンをその利用側へ供給する供給系統と、
     入口端が上記ヘッダータンク内の上部に開口する一方、出口端が大気に開放されるドレン排出管とを備えている
    ことを特徴とするドレン回収装置。
  2.  請求項1に記載のドレン回収装置において、
     上記ドレン排出管は、上記出口端が上記入口端よりも低い位置に配置される一方、
     上記ドレン排出管における上記入口端の位置よりも低い部分に設けられ、上下流の圧力差によってドレンを下流側へ排出するドレントラップを備えている
    ことを特徴とするドレン回収装置。
  3.  請求項1に記載のドレン回収装置において、
     上記ドレン排出管は、上記出口端が上記入口端よりも低い位置に配置される一方、
     上記ドレン排出管における上記入口端の位置よりも低い部分に設けられ、上記入口端から上記出口端へ向かうドレンの流れのみを許容する逆止弁を備えている
    ことを特徴とするドレン回収装置。
  4.  請求項1乃至3の何れか1項に記載のドレン回収装置において、
     上記供給系統は、上記ヘッダータンクに流入管を介して接続され、該流入管を通じて上記ヘッダータンクのドレンが流入し、その流入したドレンを上記利用側へ圧送する液体圧送装置を備えている
    ことを特徴とするドレン回収装置。
PCT/JP2015/078042 2014-10-08 2015-10-02 ドレン回収装置 WO2016056481A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016553080A JPWO2016056481A1 (ja) 2014-10-08 2015-10-02 ドレン回収装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014207200 2014-10-08
JP2014-207200 2014-10-08

Publications (1)

Publication Number Publication Date
WO2016056481A1 true WO2016056481A1 (ja) 2016-04-14

Family

ID=55653093

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/078042 WO2016056481A1 (ja) 2014-10-08 2015-10-02 ドレン回収装置

Country Status (2)

Country Link
JP (1) JPWO2016056481A1 (ja)
WO (1) WO2016056481A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018080889A (ja) * 2016-11-17 2018-05-24 株式会社テイエルブイ 蒸気加熱装置
JP2018112322A (ja) * 2017-01-06 2018-07-19 株式会社テイエルブイ ドレンポットおよびドレン回収システム
JP2020112286A (ja) * 2019-01-09 2020-07-27 株式会社テイエルブイ 熱回収システム
JP2020128845A (ja) * 2019-02-08 2020-08-27 株式会社テイエルブイ ドレン回収装置
CN113785163A (zh) * 2019-05-03 2021-12-10 庆东纳碧安株式会社 冷凝水捕集装置及其浮体
JP7124250B1 (ja) * 2021-05-28 2022-08-23 株式会社テイエルブイ 熱回収システム
CN115076151A (zh) * 2021-03-12 2022-09-20 中核核电运行管理有限公司 一种核电汽动辅助给水泵及相关系统疏水回收装置
JP7168824B1 (ja) * 2021-05-28 2022-11-09 株式会社テイエルブイ 熱回収システム
WO2022249670A1 (ja) * 2021-05-28 2022-12-01 株式会社テイエルブイ 熱回収システム
WO2022249669A1 (ja) * 2021-05-28 2022-12-01 株式会社テイエルブイ 熱回収システム

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56108006A (en) * 1980-01-31 1981-08-27 Tlv Co Ltd Recovering device for drain
JP2014109398A (ja) * 2012-11-30 2014-06-12 Gastar Corp 熱源機およびドレン中和ユニット

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5589605A (en) * 1978-12-26 1980-07-07 Tlv Co Ltd Condensing pump apparatus
JP4504231B2 (ja) * 2005-03-02 2010-07-14 株式会社東芝 発電プラントの再熱システム
JP5440393B2 (ja) * 2010-05-31 2014-03-12 三浦工業株式会社 蒸気滅菌装置およびその運転制御方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56108006A (en) * 1980-01-31 1981-08-27 Tlv Co Ltd Recovering device for drain
JP2014109398A (ja) * 2012-11-30 2014-06-12 Gastar Corp 熱源機およびドレン中和ユニット

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018080889A (ja) * 2016-11-17 2018-05-24 株式会社テイエルブイ 蒸気加熱装置
JP2018112322A (ja) * 2017-01-06 2018-07-19 株式会社テイエルブイ ドレンポットおよびドレン回収システム
JP2020112286A (ja) * 2019-01-09 2020-07-27 株式会社テイエルブイ 熱回収システム
JP7261015B2 (ja) 2019-01-09 2023-04-19 株式会社テイエルブイ 熱回収システム
JP2020128845A (ja) * 2019-02-08 2020-08-27 株式会社テイエルブイ ドレン回収装置
JP7189792B2 (ja) 2019-02-08 2022-12-14 株式会社テイエルブイ ドレン回収装置
CN113785163A (zh) * 2019-05-03 2021-12-10 庆东纳碧安株式会社 冷凝水捕集装置及其浮体
CN115076151A (zh) * 2021-03-12 2022-09-20 中核核电运行管理有限公司 一种核电汽动辅助给水泵及相关系统疏水回收装置
JP7124250B1 (ja) * 2021-05-28 2022-08-23 株式会社テイエルブイ 熱回収システム
JP7168824B1 (ja) * 2021-05-28 2022-11-09 株式会社テイエルブイ 熱回収システム
WO2022249670A1 (ja) * 2021-05-28 2022-12-01 株式会社テイエルブイ 熱回収システム
WO2022249669A1 (ja) * 2021-05-28 2022-12-01 株式会社テイエルブイ 熱回収システム

Also Published As

Publication number Publication date
JPWO2016056481A1 (ja) 2017-07-20

Similar Documents

Publication Publication Date Title
WO2016056481A1 (ja) ドレン回収装置
JP4994965B2 (ja) 液体圧送装置
JP2020128845A (ja) ドレン回収装置
JP6006980B2 (ja) 復水回収装置
JP2021055965A (ja) ドレン回収装置
JP5335316B2 (ja) 復水回収装置
JP5962251B2 (ja) ドレン回収システム
JP5214325B2 (ja) 復水回収装置
JP5715811B2 (ja) 液体圧送装置
JP2007218471A (ja) 蒸気の廃熱回収及び減圧装置
JP2008045784A (ja) 復水回収装置
JP5940338B2 (ja) 復水回収装置
JP6285278B2 (ja) 液体圧送装置およびガス供給機構
JP6554107B2 (ja) ドレン回収装置
JP3868219B2 (ja) 熱交換器及び熱交換温度制御方法並びに温熱供給装置
WO2016167237A1 (ja) 温水生成装置
JP2011191003A (ja) 廃蒸気回収装置
JP2011191004A (ja) 廃蒸気回収装置
JP5855929B2 (ja) 熱交換器
JP5457893B2 (ja) 廃蒸気回収装置
JP6089934B2 (ja) ドレン回収システム
JP6006979B2 (ja) 復水回収装置
JP2019199878A (ja) ドレントラップおよびドレン回収システム
JP2017003235A (ja) ドレン回収装置
JP6345382B2 (ja) 熱交換器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15848951

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016553080

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15848951

Country of ref document: EP

Kind code of ref document: A1