WO2016056165A1 - Cmp研磨剤及びその製造方法、並びに基板の研磨方法 - Google Patents

Cmp研磨剤及びその製造方法、並びに基板の研磨方法 Download PDF

Info

Publication number
WO2016056165A1
WO2016056165A1 PCT/JP2015/004360 JP2015004360W WO2016056165A1 WO 2016056165 A1 WO2016056165 A1 WO 2016056165A1 JP 2015004360 W JP2015004360 W JP 2015004360W WO 2016056165 A1 WO2016056165 A1 WO 2016056165A1
Authority
WO
WIPO (PCT)
Prior art keywords
polishing
cmp
film
abrasive
substrate
Prior art date
Application number
PCT/JP2015/004360
Other languages
English (en)
French (fr)
Inventor
光人 高橋
Original Assignee
信越化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越化学工業株式会社 filed Critical 信越化学工業株式会社
Priority to US15/511,095 priority Critical patent/US10297461B2/en
Priority to CN201580054292.XA priority patent/CN106795422B/zh
Priority to KR1020177009454A priority patent/KR102394717B1/ko
Publication of WO2016056165A1 publication Critical patent/WO2016056165A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/20Compounds containing only rare earth metals as the metal element
    • C01F17/206Compounds containing only rare earth metals as the metal element oxide or hydroxide being the only anion
    • C01F17/224Oxides or hydroxides of lanthanides
    • C01F17/235Cerium oxides or hydroxides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/02Polishing compositions containing abrasives or grinding agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/04Aqueous dispersions
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/06Other polishing compositions
    • C09G1/08Other polishing compositions based on wax
    • C09G1/10Other polishing compositions based on wax based on mixtures of wax and natural or synthetic resin
    • C09G1/12Other polishing compositions based on wax based on mixtures of wax and natural or synthetic resin mixtures of wax and silicon-containing polycondensates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1409Abrasive particles per se
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1454Abrasive powders, suspensions and pastes for polishing
    • C09K3/1463Aqueous liquid suspensions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F3/00Brightening metals by chemical means
    • C23F3/04Heavy metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/30625With simultaneous mechanical treatment, e.g. mechanico-chemical polishing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/31051Planarisation of the insulating layers
    • H01L21/31053Planarisation of the insulating layers involving a dielectric removal step
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/32115Planarisation
    • H01L21/3212Planarisation by chemical mechanical polishing [CMP]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/76224Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using trench refilling with dielectric materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer

Definitions

  • the present invention relates to a CMP abrasive and a method for producing the same, and a substrate polishing method using the CMP abrasive.
  • Such wide-area planarization technologies include polyimide coating technology, etch back technology for metals and insulation films, reflow technology for metals and insulation films, and chemical mechanical polishing (CMP) technology. It has been known.
  • CMP is a method in which a slurry containing abrasive particles is put on a substrate and polished using a polishing pad attached to a polishing apparatus. At this time, the abrasive particles mechanically polish the surface under pressure from the polishing apparatus, and the chemical components contained in the slurry chemically react with the surface of the substrate to chemically remove the surface portion of the substrate. .
  • slurry used for CMP there are various types of slurry used for CMP depending on the type and characteristics of the film to be polished.
  • abrasive particles used there are silica (SiO 2 ), ceria (CeO 2 ), alumina (Al 2 O 3 ), titania (TiO 2 ), zirconia (ZrO 2 ), etc., which are selected according to the film to be polished. Can be used.
  • a silica-based slurry has been generally studied as a CMP slurry for planarizing an insulating film such as a silicon oxide film.
  • the silica-based slurry is produced by growing silica particles by thermal decomposition of silicon tetrachloride and adjusting the pH with an alkali solution containing no alkali metal such as ammonia.
  • Ceria slurry is also used as a CMP slurry for inorganic insulating films such as silicon oxide films. Since ceria particles have a lower hardness than silica particles and alumina particles, defects such as scratches are hardly generated on the surface of the film after polishing. In addition, ceria particles are known as strong oxidizers and have chemically active properties, so ceria slurry is useful for CMP polishing for inorganic insulating films such as silicon oxide films.
  • Patent Document 1 and Patent Document 2 disclose ceria slurries used for CMP polishing.
  • STI Shallow Trench Isolation
  • a process using a silicon nitride film as a hard mask is performed. After forming a silicon nitride film on the substrate, a trench is formed in a predetermined region of the silicon nitride film and the substrate, a silicon oxide film is formed so as to fill the trench, and then the silicon oxide film is polished to obtain an element isolation film Is formed. At this time, the silicon oxide film is polished until the silicon nitride film is exposed using a dry ceria slurry capable of ensuring a high polishing selectivity between the silicon oxide film and the silicon nitride film.
  • a polysilicon film may be used as a polishing stopper film.
  • the polysilicon film has a lower hardness than the silicon nitride film, there is a problem that defects such as scratches (scratch defects) are likely to occur on the surface of the polysilicon film after CMP polishing.
  • scratches scratches
  • Wet ceria has a polyhedral structure compared to dry ceria, and can improve scratch defects as compared to dry ceria, but it is useful as the circuit dimensions of semiconductor devices are further miniaturized. Scratch defects generated in the process become a more serious problem, and further improvement is required.
  • Patent Document 3 discloses a method for improving scratch defects by using fine tetravalent metal hydroxide particles as abrasive grains.
  • the scratch defect is improved by reducing the abrasive grains, there is a problem that the polishing rate is lowered.
  • Patent Document 4 discloses a slurry containing polyoxyethylene amine ether as a polysilicon polishing finish
  • Patent Document 5 has cationized polyvinyl alcohol, amino sugar, or a derivative thereof, and amino sugar.
  • a slurry containing at least one saccharide selected from the group consisting of polysaccharides and derivatives thereof is disclosed.
  • these slurries do not have a sufficient protection function for the polysilicon film, and there is a problem in the cleanability after CMP polishing, and improvement is required.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a CMP abrasive that can reduce polishing scratches caused by polishing in the CMP process and has high polishing selectivity.
  • a CMP abrasive comprising abrasive particles, a protective agent, and water
  • the protective agent provides a CMP abrasive that is a silsesquioxane polymer having a polar group.
  • polishing scratches can be reduced in the CMP process, and the abrasive has high polishing selectivity.
  • the abrasive particles are preferably wet ceria particles. If the abrasive particles are wet ceria particles, the generation of abrasive scratches can be further reduced.
  • the said silsesquioxane polymer is a water-soluble silsesquioxane polymer which has any one or both of a sulfo group and a carboxy group as a polar group.
  • a protective film can be more effectively formed with respect to the polishing stopper film by a sulfo group or a carboxy group, so that the polishing selectivity is higher.
  • the said silsesquioxane polymer is mix
  • the protective film can be sufficiently formed with respect to the polishing stopper film, so that the polishing selectivity is higher.
  • the CMP abrasive is preferably a CMP abrasive for polishing an insulating film. Since the CMP abrasive
  • the pH of the CMP abrasive is 3 or more and 7 or less. If it is such pH, it will become CMP abrasive
  • the insulating film on the polishing stopper film formed on the substrate is supplied to the polishing pad for polishing the substrate, which is affixed on the surface plate, while supplying the CMP abrasive.
  • a method for polishing a substrate in which the insulating film is polished by relatively moving the substrate and the surface plate while pressing against a polishing pad and applying pressure.
  • the polishing stopper film is a polysilicon film and the insulating film is a silicon oxide film.
  • the polishing method of the present invention is particularly suitable for polishing an insulating film of a substrate having a silicon oxide film as an insulating film and a polysilicon film as a polishing stopper film. Ratio can be obtained, and the occurrence of defects such as scratches on the polished surface can be further reduced.
  • a method for producing the above CMP abrasive comprising a step of adding a silsesquioxane polymer synthesized by hydrolysis and polycondensation reaction of a polar group-containing organic trialkoxysilane monomer as the protective agent.
  • a high polishing selectivity can be obtained in the CMP process, and highly accurate CMP polishing can be performed. Further, the generation of scratches on the polished surface of the substrate can be suppressed.
  • a water-soluble silsesquioxane polymer having a polar group such as a sulfo group or a carboxy group is used as a protective agent when performing CMP polishing on a substrate in which the insulating film is a silicon oxide film and the polishing stopper film is a polysilicon film.
  • polishing agent of this invention included as is used higher polishing selectivity can be obtained, suppressing generation
  • the inventor of the present invention can reduce polishing scratches by the action of the silsesquioxane polymer contained as a protective agent in the case of the CMP abrasive of the present invention, and the silsesquioxane polymer
  • the present inventors have found that high polishing selectivity can be obtained by the action of the polar group possessed by the present invention.
  • the present invention is a CMP abrasive comprising abrasive particles, a protective agent, and water
  • the protective agent is a CMP abrasive that is a silsesquioxane polymer having a polar group.
  • a substrate in which the insulating film is a silicon oxide film and the polishing stopper film is a polysilicon film is polished. Will be described as an example.
  • the above-mentioned effect is about the interaction with the silsesquioxane polymer (polar group) on the silicon oxide film and the interaction with the silsesquioxane polymer (polar group) on the polysilicon film. Due to the difference, it is presumed that a high polishing selectivity of the silicon oxide film to the polysilicon film can be obtained.
  • FIG. 1 shows the relationship of the zeta potential to the pH of the silicon oxide film and the polysilicon film.
  • the polysilicon film has a more positive potential than the silicon oxide film in the range of pH 3 to pH 7. Therefore, the silsesquioxane polymer having a negatively polarized sulfo group or carboxy group (polar group) effectively interacts with the polysilicon film having a more positive potential, thereby producing a silsesquioxane polymer.
  • the oxane polymer serves as a protective film for the polysilicon film, hinders polishing of the polysilicon film, and causes a difference in polishing rate with respect to the silicon oxide film.
  • abrasive particles condense between the abrasive grain surfaces during polishing, or between the silicon oxide removed from the silicon oxide film as the film to be polished and the abrasive grains.
  • the grains become larger and the larger grains cause scratch defects due to the polishing action.
  • the silsesquioxane polymer is added, the above-mentioned large-sized abrasive grains are captured by the polymer network formed by the silsesquioxane polymer, and the large-sized abrasive grains contact the film to be polished. Therefore, it is presumed that the occurrence of scratch defects can be suppressed.
  • polishing agent of this invention contains an abrasive particle, a protective agent, and water, and contains the silsesquioxane polymer which has a polar group as said protective agent.
  • the abrasive particles contained in the CMP abrasive of the present invention are not particularly limited, but are preferably wet ceria particles if the object to be polished is a silicon oxide film.
  • Wet ceria particles are preferable in that particles having a large secondary particle size are not generated and have a polyhedral structure, and therefore polishing scratches such as micro scratches can be improved.
  • the average particle size of the wet ceria particles is preferably in the range of 5 nm to 200 nm, more preferably in the range of 20 nm to 100 nm, and still more preferably in the range of 40 nm to 70 nm. With such an average particle size, the average particle size of the wet ceria particles is not too small, and the polishing rate for the film to be polished is not too low. Moreover, since the average particle diameter of the wet ceria particles is not too large, the generation of polishing scratches such as micro scratches can be suppressed.
  • the blending amount of the abrasive particles is not particularly limited, but is preferably 0.1 parts by mass or more and 100 parts by mass or more with respect to 100 parts by mass of the CMP abrasive from the viewpoint of obtaining a suitable polishing rate for the insulating film. More preferred is 1 part by mass or more. Further, the upper limit of the blending amount of the abrasive particles is preferably 20 parts by mass or less, more preferably 10 parts by mass or less, and still more preferably 5 parts by mass or less from the viewpoint that the storage stability of the CMP abrasive can be further increased.
  • wet precipitation method As a method for producing wet ceria particles, a method (wet precipitation method) in which wet ceria particles are produced by mixing and heating with a basic solution using cerium salt as a precursor substance is preferable.
  • this manufacturing method will be specifically described.
  • a cerium salt which is a precursor of wet ceria particles, is mixed with ultrapure water to produce a cerium aqueous solution.
  • the cerium salt and the ultrapure water can be mixed, for example, in a ratio of 2: 1 to 4: 1.
  • the cerium salt at least one of a Ce (III) salt and a Ce (IV) salt can be used. That is, at least one Ce (III) salt is mixed with ultrapure water, or at least one Ce (IV) salt is mixed with ultrapure water, or at least one Ce (III) salt and at least One Ce (IV) salt can be mixed with ultrapure water.
  • Ce (III) salt examples include cerium (III) chloride, cerium (III) fluoride, cerium (III) sulfate, cerium nitrate (III), cerium carbonate (III), cerium perchlorate (III), bromide. Cerium (III), cerium sulfide (III), cerium iodide (III), cerium oxalate (III), cerium acetate (III), and the like can be used.
  • Ce (IV) salt for example, cerium sulfate (IV), ammonium cerium nitrate (IV), cerium hydroxide (IV) and the like can be used.
  • cerium (III) nitrate is particularly preferable as the Ce (III) salt
  • ammonium cerium (IV) nitrate is particularly preferable as the Ce (IV) salt.
  • an acidic solution can be mixed to stabilize a cerium aqueous solution produced by mixing with ultrapure water.
  • the acidic solution and the cerium solution can be mixed at a ratio of 1: 1 to 1: 100.
  • the acidic solution that can be used here include hydrogen peroxide, nitric acid, acetic acid, hydrochloric acid, and sulfuric acid.
  • the pH of the cerium solution mixed with the acidic solution can be adjusted to 0.01, for example.
  • a basic solution is produced separately from the cerium solution.
  • the basic solution ammonia, sodium hydroxide, potassium hydroxide or the like can be used, and it is mixed with ultrapure water and diluted to an appropriate concentration.
  • a dilution ratio a basic substance and ultrapure water can be diluted at a ratio of 1: 1 to 1: 100.
  • the diluted basic solution can be adjusted to a pH of 11 to 13, for example.
  • the diluted basic solution is transferred to the reaction vessel, it is stirred for, for example, 5 hours or less under an inert gas atmosphere such as nitrogen, argon, or helium.
  • an inert gas atmosphere such as nitrogen, argon, or helium.
  • a cerium aqueous solution is mixed with the diluted basic solution at a speed of 0.1 L or more per second, for example.
  • heat treatment is performed at a predetermined temperature.
  • the heat treatment temperature at this time can be 100 ° C. or less, for example, 60 ° C. or more and 100 ° C. or less, and the heat treatment time can be 2 hours or more, for example, 2 hours to 10 hours.
  • the rate of temperature increase from room temperature to the heat treatment temperature can be 0.2 ° C. to 1 ° C. per minute, preferably 0.5 ° C. per minute.
  • the mixed solution subjected to the heat treatment is cooled to room temperature.
  • wet ceria particles having a primary particle size of, for example, 100 nm or less can be produced.
  • wet ceria particles are prepared by heating a mixture of a cerium salt aqueous solution as a precursor and a diluted basic solution at an appropriate temperature increase rate and heating at an appropriate range of heat treatment temperature. Then, the cerium salt in the mixed solution reacts in the temperature rising process to generate ceria (CeO 2 ) fine nuclei, and the crystal can be grown around these fine nuclei, for example, 5 nm to It can be produced with 100 nm crystal particles.
  • polishing agent of this invention contains the silsesquioxane polymer which has a polar group as a protective agent, It is characterized by the above-mentioned. By including such a protective agent, polishing scratches can be reduced and a CMP polishing agent having high polishing selectivity can be obtained.
  • the polar group of the silsesquioxane polymer is polarized and interacts with a polishing stopper film such as a polysilicon film, thereby forming a protective film on the surface of the polishing stopper film.
  • a polishing stopper film such as a polysilicon film
  • the polishing rate ratio of the polishing target film to the polishing stopper film can be increased.
  • silsesquioxane polymer having such a polar group a water-soluble silsesquioxane polymer having either or both of a sulfo group and a carboxy group as the polar group is preferable.
  • a protective film can be more effectively formed with respect to the polishing stopper film by a sulfo group or a carboxy group, so that the polishing selectivity is higher.
  • polishing agent becomes favorable because the solubility to water improves.
  • the silsesquioxane polymer having a polar group can be synthesized, for example, by hydrolysis and polycondensation reaction of a polar group-containing organic trialkoxysilane monomer.
  • Examples of polar group-containing organic trialkoxysilane monomers used in the synthesis include the following.
  • Examples of the monomer in which the polar group becomes a sulfo group include mercapto group-containing organotrialkoxysilane, which is a substituent that forms a sulfo group by an oxidation reaction under basic conditions.
  • Examples of the mercapto group-containing organic trialkoxysilane monomer include 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyltriethoxysilane, and 11-mercaptoundecyltrimethoxysilane. Among these, 3-mercaptopropyltrimethoxysilane is used. This is particularly preferable from the viewpoint of reactivity.
  • Examples of the monomer in which the polar group becomes a carboxy group include cyano group-containing organic trialkoxysilane, which is a substituent that forms a carboxy group by hydrolysis under basic conditions.
  • Examples of the cyano group-containing organic trialkoxysilane monomer include 2-cyanoethyltrimethoxysilane, 2-cyanoethyltriethoxysilane, 3-cyanopropyltrimethoxysilane, 3-cyanopropyltriethoxysilane, and 11-cyanoundecyltrimethoxysilane.
  • 2-cyanoethyltrimethoxysilane is particularly preferable from the viewpoint of reactivity.
  • the polar group of the silsesquioxane polymer used as a protective agent in the present invention is not limited to the above-mentioned sulfo group or carboxy group, the type of the film to be polished, the type of polishing stopper film, a combination thereof, etc. It can be selected as appropriate according to the conditions.
  • the blending amount of the silsesquioxane polymer having a polar group is preferably 0.1 parts by mass or more and 1 part by mass or less with respect to 100 parts by mass of the CMP abrasive. With such a blending amount, a protective film can be sufficiently formed with respect to the polishing stopper film, so that a CMP abrasive having higher polishing selectivity can be obtained.
  • the water used in the CMP abrasive of the present invention is not particularly limited, and pure water, ultrapure water, or the like may be used.
  • the amount of water is not particularly limited, but is preferably 80 parts by mass or more and 99.8 parts by mass or less, and more preferably 90 parts by mass or more and 99 parts by mass or less with respect to 100 parts by mass of the CMP abrasive.
  • polishing agent of this invention can mix
  • additives can include anionic surfactants and amino acids that can convert the surface potential of the abrasive particles to a negative value.
  • anionic surfactant examples include monoalkyl sulfates, alkyl polyoxyethylene sulfates, alkylbenzene sulfonates, monoalkyl phosphates, lauryl sulfates, polycarboxylic acids, polyacrylates, polymethacrylates, etc. Is mentioned.
  • amino acids include arginine, lysine, aspartic acid, glutamic acid, asparagine, glutamine, histidine, proline, tyrosine, serine, tryptophan, threonine, glycine, alanine, methionine, cysteine, phenylalanine, leucine, valine, and isoleucine.
  • the compounding quantity of an additive shall be 0.01 mass part or more and 0.1 mass part or less with respect to 1 mass part of abrasive particles. Moreover, it is more preferable to set it as 0.02 mass part or more and 0.06 mass part or less with respect to 1 mass part of abrasive particles.
  • the blending amount is 0.01 parts by mass or more with respect to 1 part by mass of the abrasive particles, a decrease in dispersion stability of the CMP abrasive can be suppressed.
  • the pH of the CMP abrasive of the present invention is preferably in the range of 3.0 or more and 7.0 or less from the viewpoint of excellent storage stability and polishing rate of the CMP abrasive.
  • the lower limit of the pH affects the dispersion stability of the abrasive, and is preferably 4.0 or more, more preferably 6.0 or more.
  • the upper limit of pH affects the polishing rate and is preferably 7.0 or less. If the pH is 7.0 or less, the polishing rate of the polysilicon film does not increase rapidly due to basicity, and the polishing selectivity of the silicon oxide film to the polysilicon film does not decrease.
  • inorganic acids such as hydrochloric acid, nitric acid, sulfuric acid and phosphoric acid
  • acids such as organic acids such as formic acid, acetic acid, citric acid and oxalic acid, ammonia, sodium hydroxide
  • a base such as potassium hydroxide or tetramethylammonium hydroxide (TMAH) may be added.
  • the CMP polishing agent of the present invention has high polishing selectivity and can polish the insulating film with high precision, and therefore can be suitably used particularly for polishing the insulating film.
  • polishing agent of this invention should just mix and manufacture the above abrasive particles, a protective agent, water, and an additive as needed. At this time, if it is produced by a method including a step of adding a silsesquioxane polymer synthesized by hydrolysis and polycondensation reaction of a polar group-containing organic trialkoxysilane monomer, the above-described CMP abrasive of the present invention can be obtained. It can be manufactured reliably. Further, after mixing, ultrasonic dispersion or filtration using a filter may be performed.
  • the single-side polishing apparatus can be a single-side polishing apparatus 6 including a surface plate 3 to which a polishing pad 4 is attached, an abrasive supply mechanism 5, a polishing head 2, and the like.
  • the substrate W is held by the polishing head 2
  • the CMP polishing agent 1 of the present invention is supplied from the polishing agent supply mechanism 5 onto the polishing pad 4, and the surface plate 3 and the polishing head 2 are connected. Polishing is performed by rotating the substrate W and bringing the surface of the substrate W into sliding contact with the polishing pad 4.
  • polishing pad non-woven fabric, polyurethane foam, porous resin, etc. can be used. Further, during the polishing, it is preferable to continuously supply the CMP abrasive 1 with the abrasive supply mechanism 5 equipped with a pump or the like so that the pad surface is always covered with the abrasive.
  • the polishing method according to the present invention polishes the insulating film on the polishing stopper film formed on the substrate W while supplying the CMP polishing agent 1 of the present invention onto the polishing pad 4 attached on the surface plate 3.
  • the insulating film is polished by relatively moving the substrate W and the surface plate 3 while pressing against the pad 4 and applying pressure.
  • the substrate W to be polished is a substrate related to semiconductor element manufacturing, for example, a substrate in which an insulating film and a polishing stopper film are formed on a semiconductor substrate on which an STI pattern, a wiring pattern, etc. are formed. It is done.
  • the film to be polished is an insulating film formed on these patterns, and examples thereof include a silicon oxide film.
  • An example of the polishing stopper film is a polysilicon film.
  • the polishing method using the CMP abrasive of the present invention is particularly suitable for polishing a substrate whose polishing stopper film on the lower side (base substrate side) such as an insulating film made of silicon oxide or the like is a polysilicon film.
  • a substrate a NAND flash memory device substrate can be used.
  • polishing agent of this invention is applied to the CMP process of this NAND flash memory element substrate is demonstrated.
  • a plurality of trenches are formed by etching the base substrate 10 from a conductive film 30 and a tunnel oxide film 20 in a predetermined region to a predetermined depth, and the trenches are buried.
  • An insulating film 40 is formed so as to be formed.
  • the conductive film 30 can be formed of a polysilicon film or the like to be a floating gate, and in this case, also serves as a polishing stopper film.
  • the insulating film 40 is formed of an oxide film-based material.
  • examples of such an insulating film include a BPSG film, a PSG film, an HDP film, a TEOS film, a USG film, a PETEOS film, and a HARP film.
  • PVD method, CVD method, MOCVD method, ALD method etc. are mentioned, for example.
  • Examples of the base substrate 10 include a silicon substrate.
  • the CMP polishing slurry of the present invention is used.
  • polishing the insulating film 40 until the conductive film 30 is exposed the insulating film 40 is polished and removed to form the STI isolation film 50 as shown in FIG.
  • the polishing selection ratio of the insulating film 40 to the conductive film 30 is preferably 10 or more. If the polishing selection ratio is 10 or more, there is a difference in the polishing speed between the insulating film 40 and the conductive film 30, so that it is easy to detect the polishing stop position, and the insulating film 40 and the conductive film 30 are excessively polished. And the occurrence of defects can be suppressed. Therefore, such a polishing selection ratio is more suitable for the formation of the STI separation film. According to the present invention, the polishing selection ratio of the insulating film to the conductive film can be set to 90 or more, for example.
  • the insulating film 40 As described above, by applying the CMP abrasive containing the silsesquioxane polymer having a polar group to the CMP polishing of the insulating film 40 when the conductive film 30 is applied to the polishing stopper film, the insulating film 40 For example, if the present invention is applied to STI formation, an STI film with few defects such as polishing scratches can be formed.
  • a silicon substrate on which a silicon oxide film (SiO 2 film) was formed by plasma CVD was set on the polishing head of the single-side polishing apparatus shown in FIG. 2 with the surface of the silicon oxide film facing down.
  • a polishing pad (IC1000 / SubaIV CMP pad: Dowchemical) was supplied while supplying a polishing load of 6 psi (pound per square inch), a rotating speed of the surface plate and the polishing head at 70 rpm, and the prepared CMP abrasive at 100 mL / min. And polishing was performed for 60 seconds. After polishing, the substrate was removed from the polishing head, washed with pure water, further subjected to ultrasonic cleaning, and dried at 80 ° C.
  • the polishing rate was calculated by measuring the change in film thickness before and after polishing with a spectroscopic ellipsometer. Similarly, the polishing rate was calculated by polishing a silicon substrate on which a polysilicon film (Poly-Si film) was formed by low-pressure CVD under the same conditions and measuring the change in film thickness before and after polishing. Further, the number of polishing scratches generated on the polished polysilicon film surface was determined by a scanning electron microscope.
  • Example 1 500 g of ceria particles, 15 g of a silsesquioxane polymer having a sulfo group as a polar group, and 5,000 g of pure water are mixed, subjected to ultrasonic dispersion for 60 minutes with stirring, and then filtered through a 0.5 ⁇ m filter. was further diluted to prepare a CMP abrasive having a ceria particle concentration of 1% by mass and a silsesquioxane polymer concentration of 0.15% by mass. The resulting CMP abrasive had a pH of 6.3.
  • Zeta-APS manufactured by Matec
  • Example 2 A CMP abrasive was prepared by the same procedure as in Example 1 except that a silsesquioxane polymer having a carboxy group as a polar group was added instead of a silsesquioxane polymer having a sulfo group as a polar group.
  • the resulting CMP abrasive had a pH of 6.5.
  • the average particle size was 0.11 ⁇ m.
  • Example 1 A CMP abrasive was prepared by the same procedure as in Example 1 except that no silsesquioxane polymer was added. The pH of the obtained CMP abrasive was 6.0. As a result of measuring the particle size distribution with an ultrasonic attenuation type particle size distribution meter (Zeta-APS: manufactured by Matec), the average particle size was 0.11 ⁇ m.
  • Example 2 A CMP abrasive was prepared by the same procedure as in Example 1 except that polymethacrylic acid ammonium salt was added instead of the silsesquioxane polymer.
  • the pH of the obtained ceria abrasive was 6.6.
  • the average particle size was 0.10 ⁇ m.
  • the above substrate was set in a polishing apparatus, and CMP polishing was performed for 60 seconds under the above polishing conditions using the CMP abrasive prepared in Examples and Comparative Examples.
  • the polishing rate of the silicon oxide film and the polysilicon film was calculated by measuring the change in film thickness before and after polishing. The results are shown in Table 1.
  • the numbers in the table are average values of five substrates subjected to CMP polishing in the examples and comparative examples.
  • the present invention is not limited to the above embodiment.
  • the above-described embodiment is an exemplification, and the present invention has any configuration that has substantially the same configuration as the technical idea described in the claims of the present invention and that exhibits the same effects. Are included in the technical scope.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

 本発明は、研磨粒子、保護剤、及び水を含むCMP研磨剤であって、前記保護剤は、極性基を有するシルセスキオキサンポリマーであることを特徴とするCMP研磨剤である。これにより、CMP工程において、研磨によって発生する研磨傷を低減でき、かつ高い研磨選択性を有するCMP研磨剤が提供される。

Description

CMP研磨剤及びその製造方法、並びに基板の研磨方法
 本発明は、CMP研磨剤及びその製造方法、並びに前記CMP研磨剤を用いた基板の研磨方法に関する。
 半導体大規模集積回路の集積度の向上、高性能化のためには高密度化が必要であり、高密度化に対応するため配線パターンの微細化に伴う加工線幅の低減、及び配線の多層化が要求されている。このような多層配線構造は、導電膜や絶縁膜の成膜とエッチングを数回にわたって繰り返し形成されるため、表面の段差が大きくなる傾向にある。一方で、配線のパターニングのために用いるレジストの焦点深度は、配線の微細化に伴って浅くなる傾向にあり、表面の段差がパターニングに及ぼす影響が大きくなり問題視されている。このような背景から、パターニングを容易に行うために表面の段差を解消することができる広域的な平坦化が必要とされている。
 このような広域的な平坦化技術として、ポリイミド等の樹脂のコーティング技術、金属及び絶縁膜に対するエッチバック技術、金属及び絶縁膜に対するリフロー技術、そして、化学機械的研磨(Chemical Mechanical Polishing;CMP)技術が知られている。
 CMPは、研磨粒子が含まれているスラリーを基板上に投入し研磨装置に装着された研磨パッドを使用して研磨を行う方法である。このとき、研磨粒子は研磨装置からの圧力を受けて機械的に表面を研磨し、スラリーに含まれる化学成分は基板の表面を化学的に反応させて、基板の表面部位を化学的に除去する。
 一般に、CMPに用いられるスラリーは、研磨対象膜の種類や特性によって多様な種類がある。使用される研磨粒子としては、シリカ(SiO)、セリア(CeO)、アルミナ(Al)、チタニア(TiO)、ジルコニア(ZrO)などがあり、研磨対象膜に応じて選択的に使用することができる。
 従来、酸化ケイ素膜等の絶縁膜を平坦化するためのCMP用スラリーとして、シリカ系のスラリーが一般的に検討されている。シリカ系のスラリーは、シリカ粒子を四塩化ケイ素の熱分解により粒成長させ、アンモニア等のアルカリ金属を含まないアルカリ溶液でpH調整を行って製造している。
 また、酸化ケイ素膜等の無機絶縁膜のCMP用スラリーとして、セリアスラリーも使用されている。セリア粒子は、シリカ粒子やアルミナ粒子に比べ硬度が低いため、研磨後の膜表面にキズ等の欠陥が発生し難く有用とされている。また、セリア粒子は強酸化剤として知られており、化学的に活性な性質を有しているため、セリアスラリーは酸化ケイ素膜等の無機絶縁膜用のCMP研磨に有用とされている。CMP研磨に使用するセリアスラリーに関しては、特許文献1及び特許文献2に開示されている。
 従来のSTI(Shallow Trench Isolation)を形成する工程においては、窒化ケイ素膜をハードマスクとする工程が実施される。基板上に窒化ケイ素膜を形成した後、窒化ケイ素膜と基板の所定領域にトレンチを形成し、トレンチが埋め立てされるように酸化ケイ素膜を形成した後、酸化ケイ素膜を研磨して素子分離膜が形成される。このとき、酸化ケイ素膜と窒化ケイ素膜の高い研磨選択比を確保することができる乾式セリアスラリーを用いて、窒化ケイ素膜が露出するまで酸化ケイ素膜を研磨する。
 その一方では、窒化ケイ素膜をハードマスクとして用いる代わりにポリシリコン膜を研磨停止膜として利用する場合がある。この場合、ポリシリコン膜は窒化ケイ素膜に比べ硬度が低いため、CMP研磨後のポリシリコン膜表面に傷等の欠陥(スクラッチ欠陥)が発生しやすくなる問題がある。CMP研磨後のポリシリコン膜表面に傷等の欠陥が生じると、微細なトランジスタや配線の断線不良や短絡不良等が発生する。湿式セリアは乾式セリアに比べて多面体構造を有しており、乾式セリアに比べてスクラッチ欠陥を改善することができ有用であるが、半導体デバイスの回路寸法がより微細化されるのに伴い、CMP工程で発生するスクラッチ欠陥は一層深刻な問題となり、更なる改善が要求されている。
 そこで、スクラッチ欠陥を低減する方法として、特許文献3では、微小な4価の金属水酸化物粒子を砥粒として使用することで、スクラッチ欠陥を改善する方法が開示されている。しかしながら、このような方法では砥粒を小さくすることによりスクラッチ欠陥は改善されるものの、その一方で研磨速度が低下するという問題がある。
 また、半導体デバイスの回路寸法がより微細化することで、スクラッチ欠陥の他に研磨選択比の不足が問題となってくる。酸化ケイ素膜とポリシリコン膜の研磨選択比が低い研磨剤を使用してCMP研磨を行った場合、研磨停止膜であるポリシリコン膜が過剰に研磨されてしまう問題があり、改善が要求されている。
 例えば、特許文献4では、ポリシリコン研磨仕上げ剤としてポリオキシエチレンアミンエーテルを含有したスラリーが開示されており、特許文献5では、カチオン化ポリビニルアルコールと、アミノ糖、又はその誘導体、アミノ糖を持つ多糖類、及びその誘導体からなる群より選ばれる少なくとも一種の糖類を含有したスラリーが開示されている。しかし、これらのスラリーはポリシリコンの膜の保護機能が十分ではなく、また、CMP研磨後の洗浄性に問題があり改善が必要とされる。
特開平08-022970号公報 特開平10-106994号公報 特開2012-084906号報 特表2011-529269号報 特許第4894981号
 本発明は、上記事情に鑑みてなされたもので、CMP工程において、研磨によって発生する研磨傷を低減でき、かつ高い研磨選択性を有するCMP研磨剤を提供することを目的とする。
 上記課題を解決するために、本発明では、
 研磨粒子、保護剤、及び水を含むCMP研磨剤であって、
 前記保護剤は、極性基を有するシルセスキオキサンポリマーであるCMP研磨剤を提供する。
 このようなCMP研磨剤であれば、CMP工程において、研磨傷を低減でき、かつ高い研磨選択性を有する研磨剤となる。
 またこのとき、前記研磨粒子が、湿式セリア粒子であることが好ましい。
 研磨粒子が湿式セリア粒子であれば、研磨傷の発生をより低減することができる。
 このとき、前記シルセスキオキサンポリマーが、極性基としてスルホ基及びカルボキシ基のいずれか又は両方を有する水溶性シルセスキオキサンポリマーであることが好ましい。
 このようなシルセスキオキサンポリマーであれば、スルホ基やカルボキシ基によって、研磨停止膜に対してより効果的に保護膜を形成することができるため、より研磨選択性が高いものとなる。
 またこのとき、前記シルセスキオキサンポリマーが、前記CMP研磨剤100質量部に対して0.1質量部以上1質量部以下で配合されたものであることが好ましい。
 このような配合量であれば、研磨停止膜に対して十分に保護膜を形成することができるため、より研磨選択性が高いものとなる。
 またこのとき、前記CMP研磨剤は、絶縁膜研磨用のCMP研磨剤であることが好ましい。
 本発明のCMP研磨剤は、高い研磨選択性を有し、絶縁膜を精度よく研磨できるため、特に絶縁膜の研磨に好適に用いることができる。
 またこのとき、前記CMP研磨剤のpHが、3以上7以下であることが好ましい。
 このようなpHであれば、より保存安定性や研磨速度に優れたCMP研磨剤となる。
 また、本発明では、定盤上に貼られた、基板を研磨するための研磨パッド上に、上記のCMP研磨剤を供給しながら、前記基板に形成された研磨停止膜上の絶縁膜を前記研磨パッドに押し当て加圧しつつ、前記基板と前記定盤とを相対的に動かすことで前記絶縁膜を研磨する基板の研磨方法を提供する。
 本発明のCMP研磨剤を使用した基板の研磨方法であれば、絶縁膜の研磨停止膜に対する高い研磨選択比を得ることができ、研磨停止膜を過剰に研磨してしまうことがなく精度の高い研磨が可能となる。また、基板の研磨面に傷等の欠陥が発生することがほとんどない。
 このとき、前記研磨停止膜をポリシリコン膜とし、前記絶縁膜を酸化ケイ素膜とすることが好ましい。
 本発明の研磨方法は、特に、絶縁膜として酸化ケイ素膜を、研磨停止膜としてポリシリコン膜を有する基板の絶縁膜を研磨する場合に好適であり、酸化ケイ素膜のポリシリコン膜に対する高い研磨選択比が得られ、更に、研磨面における傷等の欠陥の発生をより一層低減できる。
 また、本発明では、上記のCMP研磨剤の製造方法であって、
 前記保護剤として、極性基含有有機トリアルコキシシランモノマーの加水分解と重縮合反応により合成されたシルセスキオキサンポリマーを添加する工程を含むCMP研磨剤の製造方法を提供する。
 このような製造方法であれば、CMP工程において、研磨傷を低減でき、かつ高い研磨選択性を有するCMP研磨剤を確実に製造することができる。
 以上のように、本発明のCMP研磨剤であれば、CMP工程において、高い研磨選択比を得ることができ、精度の高いCMP研磨を実施することができる。更に基板の研磨面における傷の発生を抑制することができる。
 また、特に、絶縁膜が酸化ケイ素膜、研磨停止膜がポリシリコン膜である基板のCMP研磨を行う際に、スルホ基やカルボキシ基等の極性基を有する水溶性シルセスキオキサンポリマーを保護剤として含む本発明のCMP研磨剤を用いると、研磨傷の発生を抑制しながら、より高い研磨選択比を得ることができる。
ポリシリコン膜と酸化ケイ素膜のpHに対するゼータ電位を示す図である。 本発明の研磨方法において使用できる片面研磨装置の一例を示した概略図である。 導電膜を研磨停止膜とした半導体素子の断面図である。 本発明のCMP研磨剤により絶縁膜をCMP研磨した後の半導体素子の断面図である。
 以下、本発明について実施の形態を説明するが、本発明はこれに限定されるものではない。
 上述のように、CMP工程において、研磨によって発生する研磨傷を低減でき、かつ高い研磨選択性を有するCMP研磨剤の開発が求められていた。
 本発明者は、上記課題について鋭意検討を重ねた結果、本発明のCMP研磨剤であれば、保護剤として含まれるシルセスキオキサンポリマーの作用によって研磨傷を低減でき、またシルセスキオキサンポリマーが有する極性基の作用によって高い研磨選択性が得られることを見出し、本発明をなすに至った。
 即ち、本発明は、研磨粒子、保護剤、及び水を含むCMP研磨剤であって、
 前記保護剤は、極性基を有するシルセスキオキサンポリマーであるCMP研磨剤である。
 ここで、本発明の効果の1つである、高い研磨速度比(研磨選択比)が得られる機構について、絶縁膜が酸化ケイ素膜、研磨停止膜がポリシリコン膜である基板の研磨を行う場合を例に挙げて説明する。
 本発明者の知見によれば、上記効果は酸化ケイ素膜に対するシルセスキオキサンポリマー(極性基)との相互作用と、ポリシリコン膜に対するシルセスキオキサンポリマー(極性基)との相互作用に程度差があるために、酸化ケイ素膜のポリシリコン膜に対する高い研磨選択比が得られるものと推測される。
 図1に酸化ケイ素膜とポリシリコン膜のpHに対するゼータ電位の関係を示す。図1を参照すると、ポリシリコン膜は、pH3~pH7の範囲においては、酸化ケイ素膜に比べてよりプラス側の電位を有していることがわかる。従って、マイナスに分極しているシルセスキオキサンポリマーのスルホ基やカルボキシ基(極性基)が、よりプラス側の電位を有しているポリシリコン膜に効果的に相互作用することで、シルセスキオキサンポリマーがポリシリコン膜に対する保護膜となり、ポリシリコン膜の研磨を阻害し、酸化ケイ素膜に対して研磨速度に差が生じると考えられる。
 また、CMP研磨過程においては、研磨粒子(砥粒)が研磨中に砥粒表面間で縮合したり、被研磨膜である酸化ケイ素膜から除去された酸化ケイ素と砥粒間で縮合したりして大粒子化し、この大粒子化した砥粒が研磨作用によりスクラッチ欠陥を発生させる恐れがある。これに対し、シルセスキオキサンポリマーを添加すると、上記の大粒子化した砥粒をシルセスキオキサンポリマーが形成する高分子ネットワークで捕獲し、大粒子化した砥粒の被研磨膜への接触を抑制できるため、スクラッチ欠陥の発生を抑制できるものと推測される。
 以下、本発明のCMP研磨剤及びその製造方法、並びに本発明のCMP研磨剤を用いた基板の研磨方法について、より詳細に説明する。
<CMP研磨剤>
 本発明のCMP研磨剤は、研磨粒子、保護剤、及び水を含み、前記保護剤として、極性基を有するシルセスキオキサンポリマーを含むものである。
[研磨粒子]
 本発明のCMP研磨剤に含まれる研磨粒子としては、特に限定されないが、被研磨対象が酸化ケイ素膜であれば、湿式セリア粒子であることが好ましい。湿式セリア粒子は、2次粒径が大きな粒子が生成されず、多面体構造を持っているため、マイクロスクラッチ等の研磨傷を改善できる点で好ましい。
 本発明において、湿式セリア粒子の平均粒径は、5nm~200nmの範囲が好ましく、より好ましくは20nm~100nm、更に好ましくは40nm~70nmの範囲である。このような平均粒径であれば、湿式セリア粒子の平均粒径が小さすぎず、研磨対象膜に対する研磨速度が低くなり過ぎない。また、湿式セリア粒子の平均粒径が大きすぎないので、マイクロスクラッチ等の研磨傷の発生を抑制できる。
 研磨粒子の配合量は、特に限定されないが、絶縁膜に対する好適な研磨速度が得られる点から、CMP研磨剤100質量部に対して0.1質量部以上が好ましく、0.5質量部以上がより好ましく、1質量部以上が更に好ましい。また、研磨粒子の配合量の上限としては、CMP研磨剤の保存安定性をより高くできる点から、20質量部以下が好ましく、10質量部以下がより好ましく、5質量部以下が更に好ましい。
 湿式セリア粒子の製造方法としては、セリウム塩を前駆体物質として、塩基性溶液と混合・加熱処理することにより湿式セリア粒子を製造する方法(湿式沈殿法)が好ましい。以下、具体的にこの製造方法について説明する。
 まず、湿式セリア粒子の前駆体であるセリウム塩を超純水と混合してセリウム水溶液を製造する。セリウム塩と超純水は、例えば2:1~4:1の割合で混合することができる。ここでセリウム塩としては、Ce(III)塩、及びCe(IV)塩の少なくともいずれかを利用することができる。つまり、少なくとも一つのCe(III)塩を超純水と混合するか、又は、少なくとも一つのCe(IV)塩を超純水と混合するか、又は、少なくとも一つのCe(III)塩と少なくとも一つのCe(IV)塩を超純水と混合することができる。
 Ce(III)塩としては、例えば塩化セリウム(III)、フッ化セリウム(III)、硫酸セリウム(III)、硝酸セリウム(III)、炭酸セリウム(III)、過塩素酸セリウム(III)、臭化セリウム(III)、硫化セリウム(III)、ヨウ化セリウム(III)、シュウ酸セリウム(III)、酢酸セリウム(III)などを用いることができる。
 Ce(IV)塩としては、例えば硫酸セリウム(IV)、硝酸アンモニウムセリウム(IV)、水酸化セリウム(IV)などを用いることができる。
 これらの中でも、Ce(III)塩としては硝酸セリウム(III)が、Ce(IV)塩として硝酸アンモニウムセリウム(IV)が使いやすさの面で特に好適である。
 更に、超純水と混合して製造されたセリウム水溶液の安定化のために酸性溶液を混合することができる。ここで、酸性溶液とセリウム溶液は、1:1~1:100の割合で混合することができる。ここで使用できる酸性溶液としては、過酸化水素、硝酸、酢酸、塩酸、硫酸などが挙げられる。酸性溶液と混合されたセリウム溶液は、pHを例えば0.01に調整することができる。
 ここで、セリウム溶液とは別に塩基性溶液を製造する。塩基性溶液としては、アンモニア、水酸化ナトリウム、水酸化カリウムなどを使用することができ、超純水と混合して適切な濃度に希釈して使用される。希釈する割合としては、塩基性物質と超純水を1:1~1:100の割合で希釈することができる。希釈された塩基性溶液は、pHを例えば11~13に調整することができる。
 次に、希釈された塩基性溶液を反応容器に移した後、窒素、アルゴン、ヘリウムなどの不活性ガス雰囲気下で、例えば5時間以下攪拌を行う。そして、希釈された塩基性溶液にセリウム水溶液を、例えば毎秒0.1L以上の速度で混合する。そして引き続き、所定の温度で熱処理を行う。このときの熱処理温度は、100℃以下、例えば60℃以上100℃以下とすることができ、熱処理時間は、2時間以上、例えば2時間~10時間とすることができる。また、常温から熱処理温度までの昇温速度は、毎分0.2℃~1℃、好ましくは毎分0.5℃とすることができる。
 最後に、熱処理を実施した混合溶液を、室温まで冷却する。このような過程を経て、1次粒径が例えば100nm以下の湿式セリア粒子を製造することができる。
 以上のように、湿式セリア粒子は、前駆体であるセリウム塩水溶液と希釈された塩基性溶液の混合液を、適切な昇温速度で昇温して、適切な範囲の熱処理温度で加熱することで、昇温過程で混合液内のセリウム塩が反応して、セリア(CeO)の微細核が生成され、これらの微細核を中心に結晶を成長させて製造することができ、例えば5nm~100nmの結晶粒子で製造することができる。
[保護剤]
 本発明のCMP研磨剤は、保護剤として極性基を有するシルセスキオキサンポリマーを含有することを特徴とする。このような保護剤を含むことで、研磨傷を低減できるとともに、高い研磨選択性を有するCMP研磨剤となる。
 より具体的には、シルセスキオキサンポリマーが有する極性基が分極し、ポリシリコン膜等の研磨停止膜と相互作用することにより、研磨停止膜の表面に保護膜が形成され、この保護膜によって研磨が阻害されることで、研磨対象膜と研磨停止膜の研磨速度に差が生じ、研磨対象膜の研磨停止膜に対する研磨速度比を高くすることができる。
 また、CMP研磨工程中に大粒子化した研磨粒子をシルセスキオキサンポリマーが形成する高分子ネットワークで捕獲し、大粒子化した研磨粒子が被研磨膜に接触するのを抑制できるため、スクラッチ欠陥の発生を抑制することができる。
 このような極性基を有するシルセスキオキサンポリマーとしては、極性基としてスルホ基及びカルボキシ基のいずれか又は両方を有する水溶性シルセスキオキサンポリマーが好ましい。このようなシルセスキオキサンポリマーであれば、スルホ基やカルボキシ基によって、研磨停止膜に対してより効果的に保護膜を形成することができるため、より研磨選択性が高いものとなる。また、水への溶解性が向上することで、CMP研磨剤中での分散性が良好なものとなる。
 極性基を有するシルセスキオキサンポリマーは、例えば極性基含有有機トリアルコキシシランモノマーの加水分解と重縮合反応によって合成することができる。
 合成に使用される極性基含有有機トリアルコキシシランモノマーとしては、例えば以下のようなものを例示できる。
 極性基がスルホ基になるモノマーとしては、塩基性条件下での酸化反応によりスルホ基を形成する置換基であるメルカプト基含有有機トリアルコキシシランが挙げられる。メルカプト基含有有機トリアルコキシシランモノマーとしては、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルトリエトキシシラン、11-メルカプトウンデシルトリメトキシシランが挙げられ、これらの中でも3-メルカプトプロピルトリメトキシシランが反応性の面から特に好適である。
 極性基がカルボキシ基になるモノマーとしては、塩基性条件下での加水分解によりカルボキシ基を形成する置換基であるシアノ基含有有機トリアルコキシシランが挙げられる。シアノ基含有有機トリアルコキシシランモノマーとしては、2-シアノエチルトリメトキシシラン、2-シアノエチルトリエトキシシラン、3-シアノプロピルトリメトキシシラン、3-シアノプロピルトリエトキシシラン、11-シアノウンデシルトリメトキシシランが挙げられ、これらの中でも2-シアノエチルトリメトキシシランが反応性の面から特に好適である。
 なお、もちろん本発明において保護剤として用いられるシルセスキオキサンポリマーの極性基は、上記のスルホ基やカルボキシ基に限定されるものではなく、研磨対象膜や研磨停止膜の種類、これらの組み合わせ等に応じて適宜選択することができる。
 極性基を有するシルセスキオキサンポリマーの配合量は、CMP研磨剤100質量部に対して0.1質量部以上1質量部以下とすることが好ましい。このような配合量であれば、研磨停止膜に対して十分に保護膜を形成することができるため、より研磨選択性が高いCMP研磨剤とすることができる。
[水]
 本発明のCMP研磨剤に用いられる水としては、特に限定されず、純水や超純水等を用いればよい。また、水の配合量は、特に限定されないが、CMP研磨剤100質量部に対して80質量部以上99.8質量部以下が好ましく、90質量部以上99質量部以下がより好ましい。
[その他の添加剤]
 本発明のCMP研磨剤は、上記の必須成分のほかに、例えば研磨特性を調整する添加剤などを配合することができる。
 このような添加剤としては、研磨粒子の表面電位をマイナスに転換できるアニオン性界面活性剤やアミノ酸を含むことができる。
 アニオン性界面活性剤としては、例えばモノアルキル硫酸塩、アルキルポリオキシエチレン硫酸塩、アルキルベンゼンスルホン酸塩、モノアルキルリン酸塩、ラウリル硫酸塩、ポリカルボン酸、ポリアクリル酸塩、ポリメタクリル酸塩等が挙げられる。
 アミノ酸としては、例えばアルギニン、リシン、アスパラギン酸、グルタミン酸、アスパラギン、グルタミン、ヒスチジン、プロリン、チロシン、セリン、トリプトファン、トレオニン、グリシン、アラニン、メチオニン、システイン、フェニルアラニン、ロイシン、バリン、イソロイシン等が挙げられる。
 これらの添加剤を使用する場合、添加剤の配合量は、研磨粒子1質量部に対して0.01質量部以上0.1質量部以下とすることが好ましい。また、研磨粒子1質量部に対して0.02質量部以上0.06質量部以下とすることがより好ましい。
 配合量が研磨粒子1質量部に対して0.01質量部以上であれば、CMP研磨剤の分散安定性の低下を抑制できる。また、研磨粒子1質量部に対して0.1質量部以下であれば、研磨対象膜の研磨を阻害することなく、研磨速度が低下するといった問題が発生することがない。従って、このような配合量に調整すれば、研磨を阻害することなく、CMP研磨剤の分散安定性を向上させることができる。
 本発明のCMP研磨剤のpHは、CMP研磨剤の保存安定性や、研磨速度に優れる点で、3.0以上7.0以下の範囲にあることが好ましい。pHの下限値は研磨剤の分散安定性に影響し、4.0以上であることが好ましく、より好ましくは6.0以上であることが好ましい。また、pHの上限値は研磨速度に影響し、7.0以下であることが好ましい。pH7.0以下であれば塩基性に起因してポリシリコン膜の研磨速度が急激に増加することがなく、酸化ケイ素膜のポリシリコン膜に対する研磨選択比が低下することがない。
 また、CMP研磨剤のpHを調整するために、塩酸、硝酸、硫酸、リン酸等の無機酸、ギ酸、酢酸、クエン酸、シュウ酸等の有機酸等の酸や、アンモニア、水酸化ナトリウム、水酸化カリウム、テトラメチルアンモニウムヒドロキシド(TMAH)等の塩基を添加してもよい。
 本発明のCMP研磨剤は、高い研磨選択性を有し、絶縁膜を精度よく研磨できるため、特に絶縁膜の研磨に好適に用いることができる。
<CMP研磨剤の製造方法>
 本発明のCMP研磨剤は、上述のような研磨粒子、保護剤、水、及び必要に応じて添加剤を混合して製造すればよい。なお、このとき、極性基含有有機トリアルコキシシランモノマーの加水分解と重縮合反応により合成されたシルセスキオキサンポリマーを添加する工程を含む方法で製造すれば、上述の本発明のCMP研磨剤を確実に製造することができる。
 また、混合後、超音波分散やフィルターを用いたろ過などを行ってもよい。
<研磨方法>
 次に、本発明のCMP研磨剤を使用した基板の研磨方法について説明する。以下では、半導体基板の片面をCMP研磨する場合を例に挙げて説明する。
 片面研磨装置は、例えば図2に示すように、研磨パッド4が貼り付けられた定盤3と、研磨剤供給機構5と、研磨ヘッド2等から構成された片面研磨装置6とすることができる。
 このような片面研磨装置6では、研磨ヘッド2で基板Wを保持し、研磨剤供給機構5から研磨パッド4上に本発明のCMP研磨剤1を供給するとともに、定盤3と研磨ヘッド2をそれぞれ回転させて基板Wの表面を研磨パッド4に摺接させることにより研磨を行う。
 研磨パッドとしては、不織布、発泡ポリウレタン、多孔質樹脂等が使用できる。また、研磨を実施している間は、常にパッド表面が研磨剤で覆われているように、ポンプ等を備えた研磨剤供給機構5で連続的にCMP研磨剤1を供給することが好ましい。
 そして、本発明における研磨方法は、定盤3上に貼られた、研磨パッド4上に本発明のCMP研磨剤1を供給しながら、基板Wに形成された研磨停止膜上の絶縁膜を研磨パッド4に押し当て加圧しつつ、基板Wと定盤3とを相対的に動かすことで絶縁膜を研磨する。
 ここで研磨対象となる基板Wとしては、半導体素子製造に関係する基板であり、例えばSTIパターン、配線パターン等が形成された半導体基板上に、絶縁膜及び研磨停止膜が形成された基板が挙げられる。研磨対象の膜はこれらパターン上に形成された絶縁膜であり、例えば酸化ケイ素膜等が挙げられる。また、研磨停止膜としてはポリシリコン膜等が挙げられる。このような半導体基板上に形成された絶縁膜を、本発明のCMP研磨剤で研磨することで、半導体基板の表面を平坦な面とすることができる。
 本発明のCMP研磨剤を使用した研磨方法は、酸化ケイ素等からなる絶縁膜等の研磨対象膜の下側(ベース基板側)の研磨停止膜がポリシリコン膜である基板の研磨に対して特に好適に使用でき、このような基板として、NANDフラッシュメモリー素子基板が挙げられる。以下では、このNANDフラッシュメモリー素子基板のCMP工程に、本発明のCMP研磨剤を適用した場合を説明する。
 例えばNANDフラッシュメモリー素子基板は、図3に示すように、所定領域の導電膜30、トンネル酸化膜20からベース基板10を所定の深さまでエッチングして複数のトレンチが形成され、そしてトレンチが埋め立てされるように絶縁膜40が形成されている。ここで、導電膜30はフローティングゲートとなるポリシリコン膜等で形成されているものとでき、この場合では研磨停止膜としての役割も果たす。
 絶縁膜40は酸化膜系の物質により形成されており、このような絶縁膜としては、例えばBPSG膜、PSG膜、HDP膜、TEOS膜、USG膜、PETEOS膜、HARP膜等が挙げられる。また、絶縁膜40の形成方法としては、例えばPVD法、CVD法、MOCVD法、ALD法等が挙げられる。
 また、ベース基板10としては、例えばシリコン基板等が挙げられる。
 図3に示すような、トレンチに絶縁膜40が埋め込まれたベース基板10を有するNANDフラッシュメモリー素子基板を、図2に示すような研磨装置内にセットした後、本発明のCMP研磨剤を用いて導電膜30が露出するまで絶縁膜40を研磨することで、図4に示すように、絶縁膜40が研磨除去されSTI分離膜50が形成される。
 このとき、絶縁膜40の導電膜30に対する研磨選択比が10以上であることが好ましい。研磨選択比が10以上であれば、絶縁膜40と導電膜30の研磨速度に差があるため研磨停止位置の検出が容易となり、絶縁膜40及び導電膜30に対して過剰研磨してしまうことがなく、欠陥の発生を抑制できる。従って、このような研磨選択比であれば、上記STI分離膜の形成により好適となる。そして、本発明であれば、この絶縁膜の導電膜に対する研磨選択比を例えば90以上とすることができる。
 以上のように、極性基を有するシルセスキオキサンポリマーを含むCMP研磨剤を、研磨停止膜に導電膜30が適用された場合の、絶縁膜40のCMP研磨に適用することで、絶縁膜40の導電膜30に対する高い研磨選択比が得られ、例えばSTI形成において本発明を適応すれば、研磨傷等の欠陥の少ないSTI膜の形成が可能となる。
 以下、実施例及び比較例を示し、本発明を具体的に説明するが、本発明は下記の実施例に制限されるものではない。
(湿式セリアの合成)
 1,000gの硝酸セリウム六水和物(Ce(NO・6HO)を純水250gに溶解した溶液に、硝酸100gを混合してセリウム(III)溶液を得た。次いで、1gの硝酸二アンモニウムセリウム((NHCe(NO)を純水500gに溶解してセリウム(IV)溶液を得た。引き続き、セリウム(III)溶液とセリウム(IV)溶液を混合してセリウム混合液を得た。
 次に、反応容器に純水4,000gを窒素ガス雰囲気下で滴下し、続いて1,000gのアンモニア水を反応容器に滴下し、攪拌して塩基性溶液を得た。
 次に、セリウム混合液を反応容器に滴下し塩基性溶液と混合し攪拌して、窒素ガス雰囲気下で80℃まで加熱した。8時間熱処理を行い、セリア粒子を含有した混合溶液を得た。
 セリア粒子を含有した混合液を室温まで冷却後、混合液に硝酸を滴下し、混合液のpHを4以下の酸性に調整して反応を終結させた。混合液中のセリア粒子を沈殿させた後、純水により数回洗浄及び遠心分離を繰り返し洗浄し、最終的にセリア粒子を得た。
(シルセスキオキサンポリマーの合成)
 3-メルカプトプロピルトリメトキシシラン、2-シアノエチルトリメトキシシランをそれぞれ加水分解/縮合し、スルホ基を有するシルセスキオキサンポリマー、カルボキシ基を有するシルセスキオキサンポリマーを合成した。
(CMP研磨剤の調製)
 上記の方法で合成したセリア粒子、シルセスキオキサンポリマー、及び純水を混合し、攪拌しながら超音波分散を60分行った。得られたスラリーを0.5μmフィルターでろ過し、純水で希釈することでCMP研磨剤を調製した。
(絶縁膜研磨)
 図2に示した片面研磨装置の研磨ヘッドに、プラズマCVD法で酸化ケイ素膜(SiO膜)を形成したシリコン基板を、酸化ケイ素膜の表面を下にしてセットした。そして、研磨加重6psi(pound per square inch)、定盤及び研磨ヘッドの回転速度を70rpm、上記調製したCMP研磨剤を毎分100mLで供給しながら、研磨パッド(IC1000/SubaIV CMPパッド:Dowchemical)を用いて、60秒間研磨を実施した。研磨終了後、基板を研磨ヘッドから取り外し、純水で洗浄後更に超音波洗浄を行い、乾燥器を使用し80℃で乾燥させた。その後、分光エリプソメーターにより、研磨前後の膜厚変化を測定することで研磨速度を算出した。同様に、低圧CVD法でポリシリコン膜(Poly-Si膜)を形成したシリコン基板を同条件で研磨し、研磨前後の膜厚変化を測定することで研磨速度を算出した。また、走査型電子顕微鏡により、研磨後のポリシリコン膜表面に発生した研磨傷の個数を求めた。
[実施例1]
 セリア粒子500g、極性基としてスルホ基を有するシルセスキオキサンポリマー15g、純水5,000gを混合し、攪拌しながら超音波分散を60分行った後、0.5μmフィルターでろ過し、純水で更に希釈してセリア粒子濃度が1質量%、シルセスキオキサンポリマー濃度が0.15質量%のCMP研磨剤を調製した。
 得られたCMP研磨剤のpHは6.3であった。粒度分布を超音波減衰式粒度分布計(Zeta-APS:Matec製)で測定した結果、平均粒子径は0.10μmであった。
[実施例2]
 極性基としてスルホ基を有するシルセスキオキサンポリマーの代わりに極性基としてカルボキシ基を有するシルセスキオキサンポリマーを添加した以外は、実施例1と同様な手順によりCMP研磨剤を調製した。
 得られたCMP研磨剤のpHは6.5であった。粒度分布を超音波減衰式粒度分布計(Zeta-APS:Matec製)で測定した結果、平均粒子径が0.11μmであった。
[比較例1]
 シルセスキオキサンポリマーを添加しない以外は、実施例1と同様な手順によりCMP研磨剤を調製した。
 得られたCMP研磨剤のpHは6.0であった。粒度分布を超音波減衰式粒度分布計(Zeta-APS:Matec製)で測定した結果、平均粒子径が0.11μmであった。
[比較例2]
 シルセスキオキサンポリマーの代わりに、ポリメタクリル酸アンモニウム塩を添加した以外は、実施例1と同様な手順によりCMP研磨剤を調製した。
 得られたセリア研磨剤のpHは6.6であった。粒度分布を超音波減衰式粒度分布計(Zeta-APS:Matec製)で測定した結果、平均粒子径が0.10μmであった。
 上記基板を研磨装置にセットし、実施例及び比較例で調製したCMP研磨剤を用いて、上記研磨条件にて60秒間CMP研磨を行った。研磨前後の膜厚変化を測定することで、酸化ケイ素膜及びポリシリコン膜の研磨速度を算出した。結果を表1に示す。なお、表中の数字は実施例及び比較例でCMP研磨した基板5枚の平均値である。
Figure JPOXMLDOC01-appb-T000001
 表1に示されるように、保護剤として極性基を有するシルセスキオキサンポリマーを含む実施例1、2のCMP研磨剤を用いてCMP研磨を行った場合には、絶縁膜(酸化ケイ素膜)の研磨停止膜(ポリシリコン膜)に対する研磨選択比が90以上であり、比較例と比べて非常に高い研磨選択比が得られた。また、研磨傷の発生がなく、研磨傷の数についても比較例と比べて大きく低減されていた。
 一方、保護剤を添加しない比較例1のCMP研磨剤を用いてCMP研磨を行った場合は、ポリシリコン膜に対する研磨選択比が小さく、また、研磨傷の発生も多い結果となった。
 更に、保護剤としてシルセスキオキサンポリマーの代わりに、ポリメタクリル酸アンモニウム塩を使用した比較例2のCMP研磨剤を用いてCMP研磨を行った場合は、ポリシリコン膜に対する研磨選択比の向上や研磨傷の低減効果は多少あるものの、実施例のCMP研磨剤には大きく劣る結果となった。
 以上のように、本発明のCMP研磨剤によりポリシリコン膜を研磨停止膜としたCMP研磨を行うことで、ポリシリコン膜に対する高い研磨選択比が得られ、研磨傷の発生を少なく研磨できることが明らかとなった。
 なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。

Claims (9)

  1.  研磨粒子、保護剤、及び水を含むCMP研磨剤であって、
     前記保護剤は、極性基を有するシルセスキオキサンポリマーであることを特徴とするCMP研磨剤。
  2.  前記研磨粒子が、湿式セリア粒子であることを特徴とする請求項1に記載のCMP研磨剤。
  3.  前記シルセスキオキサンポリマーが、極性基としてスルホ基及びカルボキシ基のいずれか又は両方を有する水溶性シルセスキオキサンポリマーであることを特徴とする請求項1又は請求項2に記載のCMP研磨剤。
  4.  前記シルセスキオキサンポリマーが、前記CMP研磨剤100質量部に対して0.1質量部以上1質量部以下で配合されたものであることを特徴とする請求項1から請求項3のいずれか一項に記載のCMP研磨剤。
  5.  前記CMP研磨剤は、絶縁膜研磨用のCMP研磨剤であることを特徴とする請求項1から請求項4のいずれか一項に記載のCMP研磨剤。
  6.  前記CMP研磨剤のpHが、3以上7以下であることを特徴とする請求項1から請求項5のいずれか一項に記載のCMP研磨剤。
  7.  定盤上に貼られた、基板を研磨するための研磨パッド上に、請求項1から請求項6のいずれか一項に記載のCMP研磨剤を供給しながら、前記基板に形成された研磨停止膜上の絶縁膜を前記研磨パッドに押し当て加圧しつつ、前記基板と前記定盤とを相対的に動かすことで前記絶縁膜を研磨することを特徴とする基板の研磨方法。
  8.  前記研磨停止膜をポリシリコン膜とし、前記絶縁膜を酸化ケイ素膜とすることを特徴とする請求項7に記載の基板の研磨方法。
  9.  請求項1から請求項6のいずれか一項に記載のCMP研磨剤の製造方法であって、
     前記保護剤として、極性基含有有機トリアルコキシシランモノマーの加水分解と重縮合反応により合成されたシルセスキオキサンポリマーを添加する工程を含むことを特徴とするCMP研磨剤の製造方法。
PCT/JP2015/004360 2014-10-09 2015-08-28 Cmp研磨剤及びその製造方法、並びに基板の研磨方法 WO2016056165A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/511,095 US10297461B2 (en) 2014-10-09 2015-08-28 CMP polishing agent, manufacturing method thereof, and method for polishing substrate
CN201580054292.XA CN106795422B (zh) 2014-10-09 2015-08-28 化学机械抛光研磨剂及其制造方法、以及基板的研磨方法
KR1020177009454A KR102394717B1 (ko) 2014-10-09 2015-08-28 Cmp 연마제 및 그 제조방법, 그리고 기판의 연마방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-208014 2014-10-09
JP2014208014A JP6170027B2 (ja) 2014-10-09 2014-10-09 Cmp研磨剤及びその製造方法、並びに基板の研磨方法

Publications (1)

Publication Number Publication Date
WO2016056165A1 true WO2016056165A1 (ja) 2016-04-14

Family

ID=55652809

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/004360 WO2016056165A1 (ja) 2014-10-09 2015-08-28 Cmp研磨剤及びその製造方法、並びに基板の研磨方法

Country Status (5)

Country Link
US (1) US10297461B2 (ja)
JP (1) JP6170027B2 (ja)
KR (1) KR102394717B1 (ja)
CN (1) CN106795422B (ja)
WO (1) WO2016056165A1 (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6243791B2 (ja) * 2014-05-09 2017-12-06 信越化学工業株式会社 Cmp研磨剤及びその製造方法、並びに基板の研磨方法
JP2017228576A (ja) * 2016-06-20 2017-12-28 日立化成株式会社 研磨液及び研磨方法
JP6748010B2 (ja) * 2017-03-21 2020-08-26 太陽誘電株式会社 弾性波デバイスの製造方法
CN107841288A (zh) * 2017-12-12 2018-03-27 戚明海 Cmp研磨剂及其制造方法
CN107828374A (zh) * 2017-12-12 2018-03-23 戚明海 一种新型cmp研磨剂及其制造方法
JP7106907B2 (ja) * 2018-03-19 2022-07-27 昭和電工マテリアルズ株式会社 構造体及びその製造方法
KR20210149744A (ko) * 2019-03-28 2021-12-09 닛산 가가쿠 가부시키가이샤 막형성용 조성물
CN111087930A (zh) * 2019-12-23 2020-05-01 长江存储科技有限责任公司 一种化学机械抛光研磨剂的制备方法及化学机械抛光方法
CN112680185A (zh) * 2021-01-04 2021-04-20 上海晖研材料科技有限公司 一种表面改性的二氧化硅作为磨粒的应用
CN112778970B (zh) * 2021-01-04 2022-05-10 上海晖研材料科技有限公司 一种制备表面改性的氧化铈颗粒及含其的抛光液的方法
CN112680186A (zh) * 2021-01-04 2021-04-20 上海晖研材料科技有限公司 一种表面改性的二氧化硅及含其的磨料组合物的制备方法
CN112680187A (zh) * 2021-01-04 2021-04-20 上海晖研材料科技有限公司 一种表面改性的二氧化硅及含其的磨料组合物

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005186584A (ja) * 2003-12-26 2005-07-14 Lintec Corp ハードコートフィルム
JP2007009080A (ja) * 2005-06-30 2007-01-18 Nagase Chemtex Corp 光学コーティング組成物
JP2007084799A (ja) * 2005-08-24 2007-04-05 Toray Fine Chemicals Co Ltd オキセタニル基を有するシリコーン共重合体
JP2010510157A (ja) * 2006-11-20 2010-04-02 エルジー・ケム・リミテッド 有機溶媒を用いた酸化セリウム粉末の製造方法及びこの粉末を含むcmpスラリー
WO2013093556A1 (en) * 2011-12-21 2013-06-27 Basf Se Method for manufacturing cmp composition and application thereof
US20130178064A1 (en) * 2012-01-09 2013-07-11 Korea University Research And Business Foundation Polishing slurry and chemical mechanical planarization method using the same
US20130244433A1 (en) * 2012-03-14 2013-09-19 Cabot Microelectronics Corporation Cmp compositions selective for oxide and nitride with high removal rate and low defectivity

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3278532B2 (ja) 1994-07-08 2002-04-30 株式会社東芝 半導体装置の製造方法
JPH10106994A (ja) 1997-01-28 1998-04-24 Hitachi Chem Co Ltd 酸化セリウム研磨剤及び基板の研磨法
JP4366735B2 (ja) * 1998-11-05 2009-11-18 Jsr株式会社 重合体粒子を含有する研磨剤
US6646348B1 (en) * 2000-07-05 2003-11-11 Cabot Microelectronics Corporation Silane containing polishing composition for CMP
KR101094662B1 (ko) 2008-07-24 2011-12-20 솔브레인 주식회사 폴리실리콘 연마정지제를 함유하는 화학 기계적 연마조성물
CN102473622B (zh) 2009-10-22 2013-10-16 日立化成株式会社 研磨剂、浓缩一液式研磨剂、二液式研磨剂以及基板研磨方法
EP2479686B1 (en) * 2011-01-24 2014-09-17 AOL Inc. Systems and methods for analyzing and clustering search queries

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005186584A (ja) * 2003-12-26 2005-07-14 Lintec Corp ハードコートフィルム
JP2007009080A (ja) * 2005-06-30 2007-01-18 Nagase Chemtex Corp 光学コーティング組成物
JP2007084799A (ja) * 2005-08-24 2007-04-05 Toray Fine Chemicals Co Ltd オキセタニル基を有するシリコーン共重合体
JP2010510157A (ja) * 2006-11-20 2010-04-02 エルジー・ケム・リミテッド 有機溶媒を用いた酸化セリウム粉末の製造方法及びこの粉末を含むcmpスラリー
WO2013093556A1 (en) * 2011-12-21 2013-06-27 Basf Se Method for manufacturing cmp composition and application thereof
US20130178064A1 (en) * 2012-01-09 2013-07-11 Korea University Research And Business Foundation Polishing slurry and chemical mechanical planarization method using the same
US20130244433A1 (en) * 2012-03-14 2013-09-19 Cabot Microelectronics Corporation Cmp compositions selective for oxide and nitride with high removal rate and low defectivity

Also Published As

Publication number Publication date
US10297461B2 (en) 2019-05-21
JP2016076676A (ja) 2016-05-12
CN106795422B (zh) 2019-10-11
CN106795422A (zh) 2017-05-31
KR102394717B1 (ko) 2022-05-06
JP6170027B2 (ja) 2017-07-26
KR20170065533A (ko) 2017-06-13
US20170278718A1 (en) 2017-09-28

Similar Documents

Publication Publication Date Title
JP6170027B2 (ja) Cmp研磨剤及びその製造方法、並びに基板の研磨方法
JP4053165B2 (ja) 研磨用組成物およびそれを用いた研磨方法
US8574330B2 (en) Chemical mechanical polishing aqueous dispersion and chemical mechanical polishing method for semiconductor device
JP4853287B2 (ja) Cmp研磨剤及び基板の研磨方法
JP3457144B2 (ja) 研磨用組成物
CN102822308B (zh) 研磨剂、研磨方法及半导体集成电路装置的制造方法
US8262435B2 (en) Chemical mechanical polishing aqueous dispersion, chemical mechanical polishing method, and chemical mechanical polishing aqueous dispersion preparation kit
KR102366907B1 (ko) Cmp 연마제 및 그 제조 방법, 그리고 기판의 연마 방법
JP5326492B2 (ja) Cmp用研磨液、基板の研磨方法及び電子部品
TWI679272B (zh) 研磨用組成物及使用其之研磨方法
KR100600429B1 (ko) 산화세륨을 포함하는 cmp용 슬러리
JP5585220B2 (ja) Cmp研磨液及びこのcmp研磨液を用いた研磨方法
JP2001351882A (ja) 研磨剤
JP2001007059A (ja) Cmp研磨剤及び基板の研磨方法
JP2009266882A (ja) 研磨剤、これを用いた基体の研磨方法及び電子部品の製造方法
JP2001310256A (ja) 半導体用基板の研磨方法
JP2002097459A (ja) 研磨剤
JP2011243789A (ja) Cmp用研磨液及びこれを用いた研磨方法
JP2007154156A (ja) 金属酸化物微粒子、研磨材、これを用いる研磨方法及び半導体装置の製造方法
JP2001351883A (ja) 半導体絶縁膜層用研磨剤
JP6627283B2 (ja) 研磨液及び研磨方法
JP2023156988A (ja) 半導体工程用組成物及びそれを用いた半導体素子の研磨方法
JP2007153728A (ja) 金属酸化物微粒子、研磨材、これを用いる基板の研磨方法及び半導体装置の製造方法
JP2017210497A (ja) Cmp用研磨液及びこれを用いた研磨方法
JP2001348564A (ja) 研磨剤

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15848852

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15511095

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20177009454

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15848852

Country of ref document: EP

Kind code of ref document: A1