WO2016052495A1 - シリコーン樹脂、uv-led用封止材組成物、硬化物及びuv-led用封止材 - Google Patents

シリコーン樹脂、uv-led用封止材組成物、硬化物及びuv-led用封止材 Download PDF

Info

Publication number
WO2016052495A1
WO2016052495A1 PCT/JP2015/077492 JP2015077492W WO2016052495A1 WO 2016052495 A1 WO2016052495 A1 WO 2016052495A1 JP 2015077492 W JP2015077492 W JP 2015077492W WO 2016052495 A1 WO2016052495 A1 WO 2016052495A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicone resin
group
atom
silane compound
fluorine atom
Prior art date
Application number
PCT/JP2015/077492
Other languages
English (en)
French (fr)
Inventor
建太朗 増井
中園 明子
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to KR1020177009115A priority Critical patent/KR20170063676A/ko
Priority to JP2016552057A priority patent/JPWO2016052495A1/ja
Priority to US15/515,804 priority patent/US20170298187A1/en
Priority to EP15847058.3A priority patent/EP3202821A1/en
Priority to CN201580053207.8A priority patent/CN106795288A/zh
Publication of WO2016052495A1 publication Critical patent/WO2016052495A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/22Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen
    • C08G77/24Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen halogen-containing groups
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/56Materials, e.g. epoxy or silicone resin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/06Preparatory processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • C08L83/08Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/54Encapsulations having a particular shape

Definitions

  • the present invention relates to a silicone resin, a UV-LED encapsulant composition using the silicone resin, a cured product, and a UV-LED encapsulant.
  • Patent Document 1 discloses a cured product of a curable composition for optical materials obtained by blending a liquid addition-curable silicone rubber composition with a siloxane oligomer having a fluoroalkyl group and / or silane. . And since the said composition has the favorable defoaming property at the time of the manufacture, and is excellent in transparency etc., it is disclosed that the hardened
  • the present invention has been made in view of such circumstances, and an object thereof is to provide a silicone resin in which deterioration due to an oxidation reaction is sufficiently suppressed.
  • the present invention is a condensate of a silane compound, and a fluorine atom-containing silane compound formed by bonding a fluoroalkyl group having one or more fluorine atoms to a silicon atom to the condensed silane compound.
  • a silicone resin is provided.
  • the fluorine atom-containing silane compound is represented by the following general formula (1), and among the condensed silane compounds, the ratio of the fluorine atom-containing silane compound is 52% by mass or more. Some are preferred.
  • R 1 n SiX 1 4-n (1) (In the formula, n is 1 or 2; R 1 is a partially fluorinated alkyl group having 1 to 20 carbon atoms; X 1 is an alkoxy group, a chlorine atom, a bromine atom, or an iodine atom.)
  • the silicone resin of the present invention is preferably such that the fluorine atom-containing silane compound is represented by the following general formula (2), and the functional number of the silicone resin is 3.0 or less.
  • R 2 m SiX 2 4-m (2) (Wherein m is 1 or 2; R 2 is a perfluoroalkyl group having 1 to 20 carbon atoms; and X 2 is an alkoxy group, a chlorine atom, a bromine atom, or an iodine atom.)
  • the silicone resin of the present invention preferably has 1 to 3 carbon atoms in the fluoroalkyl group of the fluorine atom-containing silane compound.
  • the present invention also provides a UV-LED encapsulant composition containing the silicone resin.
  • the present invention also provides a cured product obtained by heating the silicone resin.
  • the present invention also provides a UV-LED sealing material obtained by heating the silicone resin.
  • a condensate of a silane compound is a silicone resin containing a structural unit derived from a fluorine atom-containing silane compound in which a fluoroalkyl group having at least one fluorine atom is bonded to a silicon atom.
  • the structural unit derived from the fluorine atom-containing silane compound is a structural unit derived from a compound represented by the following general formula (1), and the fluorine atom-containing silane with respect to the total mass of the condensate of the silane compound Silicone resin as described in [1] whose content rate of the structural unit derived from a compound is 52 mass% or more.
  • R 1 n SiX 1 4-n (1) (Wherein n is 1 or 2; R 1 is a partially fluorinated alkyl group having 1 to 20 carbon atoms; X 1 is an alkoxy group, a chlorine atom, a bromine atom, or an iodine atom.) [3
  • the structural unit derived from the fluorine atom-containing silane compound is a structural unit derived from a compound represented by the following general formula (2), and the average functionality of the silicone resin is 3.0 or less. Silicone resin.
  • R 2 m SiX 2 4-m (2) (Wherein m is 1 or 2; R 2 is a perfluoroalkyl group having 1 to 20 carbon atoms; X 2 is an alkoxy group, a chlorine atom, a bromine atom, or an iodine atom)
  • a UV-LED encapsulant composition comprising the silicone resin according to any one of [1] to [4] and other components.
  • a sealing material for UV-LED comprising a cured product of the silicone resin according to any one of [1] to [4].
  • a silicone resin in which deterioration due to an oxidation reaction is sufficiently suppressed is provided.
  • the silicone resin according to one embodiment of the present invention is a condensate of a silane compound, and the condensate of the silane compound is a fluorine atom-containing silane formed by bonding a fluoroalkyl group having at least one fluorine atom to a silicon atom. It is a condensate containing a structural unit derived from a compound.
  • the silicone resin has a structure in which the main chain is composed of a condensate of a silane compound, and the fluoroalkyl group is bonded to part or all of the silicon atoms constituting the main chain. When the silicone resin has such a structure, the silicone resin and its cured product are sufficiently prevented from being deteriorated by an oxidation reaction.
  • the condensate of the silane compound only needs to be a condensate containing at least a constituent unit derived from the fluorine atom-containing silane compound, and may be a condensate consisting of only a constituent unit derived from the fluorine atom-containing silane compound, or the fluorine It may be a condensate of a structural unit derived from an atom-containing silane compound and a structural unit derived from another silane compound.
  • silane compound means the silane compound with which it uses for condensation in order to comprise the above-mentioned silicone resin unless there is particular notice.
  • the “structural unit derived from a silane compound” means a structural unit (also referred to as a repeating unit) in which the silane compound is derivatized for condensation in the condensate obtained by condensing the silane compound.
  • the fluorine atom-containing silane compound used in the condensate of the silane compound and the other silane compound may be each one kind, two kinds or more, and when there are two kinds or more, the combination and ratio are arbitrary. Can be set.
  • the number of fluorine atoms in the fluoroalkyl group is not particularly limited within a range determined by the number of carbon atoms of the fluoroalkyl group, and may be one or more, That's all. That is, the fluoroalkyl group may be a partially fluorinated alkyl group or a perfluoroalkyl group. When the fluoroalkyl group is a partially fluorinated alkyl group, the bonding position of the fluorine atom is not particularly limited.
  • the “partially fluorinated alkyl group” is a fluoroalkyl group in which at least one hydrogen atom of an alkyl group is substituted with a fluorine atom, and all the hydrogen atoms are substituted with fluorine atoms.
  • the alkyl group in the fluoroalkyl group is preferably an alkyl group having 1 to 3 carbon atoms, and examples thereof include a methyl group, an ethyl group, and a propyl group.
  • the silicone resin is an organic polymer having a siloxane bond as a main chain, and the functional number is represented by the average functional number of a compound (polyorganosiloxane) represented by the following general composition formula (F3).
  • F3 general composition formula
  • R 11 to R 16 are each independently a hydrocarbon group such as an alkyl group or a phenyl group, or a halogen atom.
  • R 11 to R 16 are halogen atoms, these atoms are regarded as oxygen atoms in the above formula (F3) and the functional number is counted.
  • the alkyl groups of R 11 to R 16 are each independently preferably an alkyl group having 1 to 3 carbon atoms, and specific examples include a methyl group, an ethyl group, a propyl group, and a butyl group.
  • halogen atoms for R 11 to R 16 a fluorine atom is preferable independently.
  • the repeating unit constituting the polyorganosiloxane represented by the formula (F3) is monofunctional [R 11 R 12 R 13 SiO 1/2 ] (triorganosylhemioxane), bifunctional [R 14 R]. 15 SiO 2/2 ] (diorganosiloxane), trifunctional [R 16 SiO 3/2 ] (organosilsesquioxane), and tetrafunctional [SiO 4/2 ] (silicate).
  • the functional number of the polyorganosiloxane is determined by the constituent ratio of the repeating unit.
  • the average functional number of the polyorganosiloxane can be calculated by the following formula (F4).
  • Average functional number (2 ⁇ D + 3 ⁇ T + 4 ⁇ Q) / (D + T + Q) (F4)
  • a typical bifunctional thermosetting silicone resin has only a repeating unit of (R 14 R 15 SiO 2/2 ) in the formula (F3), that is, a diorganosiloxane structure (—O—Si (R 14 ) (R 15 ) —O—) only, and the functional number (that is, average functional number) in this case is 2.0.
  • the weight average molecular weight of the silicone resin is preferably 100 to 500,000, and more preferably 200 to 100,000.
  • a value generally measured by a gel permeation chromatography (GPC) method can be used. Specifically, after the polymer sample to be measured is dissolved in a soluble solvent, it is passed along with the mobile phase solution through a column using a filler having many pores, and the molecular weight is measured in the column. Are detected by using a differential refractometer, UV meter, viscometer, light scattering detector or the like as a detector. In general, the weight average molecular weight is expressed in terms of standard polystyrene. The weight average molecular weight in this specification is a value represented by this standard polystyrene conversion value.
  • the column to be used may be appropriately selected according to the assumed weight average molecular weight.
  • a structural unit derived from the fluorine atom-containing silane compound may be abbreviated as a compound represented by the following general formula (1) (hereinafter referred to as “fluorine atom-containing silane compound (1)”). .) Is a silicone resin that is a structural unit derived from, and the proportion of the structural unit derived from the fluorine-containing silane compound (1) is 52 masses with respect to the total mass of the condensate containing the structural unit derived from the silane compound. % Or more and 100 mass% or less (in this specification, it may be referred to as “silicone resin (1)”).
  • R 1 n SiX 1 4-n (1) (In the formula, n is 1 or 2; R 1 is a partially fluorinated alkyl group having 1 to 20 carbon atoms; X 1 is an alkoxy group, a chlorine atom, a bromine atom, or an iodine atom.)
  • R 1 is a partially fluorinated alkyl group having 1 to 20 carbon atoms.
  • the alkyl group in which a hydrogen atom is substituted with a fluorine atom may be linear, branched or cyclic, and when it is cyclic, monocyclic and polycyclic Either is acceptable.
  • the linear or branched alkyl group in which a hydrogen atom is substituted with a fluorine atom has 1 to 20 carbon atoms, and the alkyl group itself includes a methyl group, an ethyl group, n- Propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, n-pentyl group, isopentyl group, neopentyl group, tert-pentyl group, 1-methylbutyl group, n-hexyl group, 2-methylpentyl group, 3-methylpentyl group, 2,2-dimethylbutyl group, 2,3-dimethylbutyl group, n-heptyl group, 2-methylhexyl group, 3-methylhexyl group, 2,2-dimethyl Pentyl group, 2,3-dimethylpentyl group, 2,4-dimethylpentyl group, 3,
  • the cyclic alkyl group in which a hydrogen atom is substituted with a fluorine atom has 3 to 20 carbon atoms, and the alkyl group itself includes a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, and the like.
  • linear, branched, and cyclic alkyl groups substituting the hydrogen atom of the cyclic alkyl group, among the above groups exemplified as the alkyl group in which the hydrogen atom is substituted with a fluorine atom
  • linear and branched alkyl groups having 1 to 17 carbon atoms and cyclic alkyl groups having 3 to 17 carbon atoms are preferably, for example, a methyl group, an ethyl group, or a propyl group.
  • the position of the carbon atom to which the fluorine atom is bonded is not particularly limited, but the carbon atom is deteriorated due to the oxidation reaction of the silicone resin.
  • the carbon atom to which the fluorine atom is bonded is produced by the manufacture of a fluorine atom-containing silane compound (1) or commercially available product.
  • the partially fluorinated alkyl group is away from the carbon atom bonded to the silicon atom, and the terminal of the terminal opposite to the carbon atom bonded to the silicon atom as the partially fluorinated alkyl group is preferred. More preferably, it is a carbon atom.
  • the partially fluorinated alkyl group for R 1 preferably has 1 to 15 carbon atoms, more preferably 1 to 10 carbon atoms, particularly preferably 1 to 6 carbon atoms. Most preferred. Specifically, a trifluoropropyl group is preferable.
  • X 1 is an alkoxy group, a chlorine atom, a bromine atom or an iodine atom.
  • the alkoxy group in X 1 may be linear, branched or cyclic, and the alkyl group bonded to the oxygen atom may be monocyclic or polycyclic.
  • the alkoxy group in X 1 linear, branched and cyclic alkyl groups mentioned as the alkyl group of the group in which the hydrogen atom in R 1 is substituted with a fluorine atom are bonded to the oxygen atom
  • the monovalent group formed can be illustrated.
  • linear, branched, and cyclic alkoxy groups corresponding to the shape of the alkyl group will be described more specifically.
  • the linear or branched alkoxy group preferably has 1 to 20 carbon atoms, and examples of the alkoxy group include methoxy group, ethoxy group, n-propoxy group, isopropoxy group, n-butoxy group.
  • the cyclic alkoxy group preferably has 3 to 20 carbon atoms.
  • the alkoxy group include a cyclopropyloxy group, a cyclobutyloxy group, a cyclopentyloxy group, a cyclohexyloxy group, a cycloheptyloxy group, Examples include octyloxy group, cyclononyloxy, cyclodecyloxy group, norbornyloxy group, isobornyloxy group, 1-adamantyloxy group, 2-adamantyloxy group, and tricyclodecyloxy group.
  • Examples include one in which one or more hydrogen atoms of the alkoxy group are substituted with a linear, branched or cyclic alkyl group. Among the above, a cyclohexyl group and a cyclopentyl group are preferable.
  • Examples of the alkyl group substituting the hydrogen atom of the cyclic alkoxy group include linear, branched, and cyclic examples of the alkyl group per se in which the hydrogen atom in R 1 is substituted with a fluorine atom.
  • linear and branched alkyl groups having 1 to 17 carbon atoms and cyclic alkyl groups having 3 to 17 carbon atoms can be mentioned.
  • the alkoxy group for X 1 preferably has 1 to 15 carbon atoms, more preferably 1 to 10 carbon atoms, particularly preferably 1 to 5 carbon atoms, and most preferably 1 to 3 carbon atoms. preferable. Specifically, a methyl group and an ethyl group are preferable.
  • n means the number of bonds of R 1 to one silicon atom (Si), and is 1 or 2 here.
  • the number of bonds of X 1 to one silicon atom (Si) is represented by “4-n”, and the value is 2 or 3.
  • Examples of commercially available products available for the fluorine atom-containing silane compound (1) include trichloro (1H, 1H, 2H, 2H-tridecafluoro-n-octyl) silane, trichloro (1H, 1H, 2H, 2H-hepta Decafluorodecyl) silane, trimethoxy (3,3,3-trifluoropropyl) silane, triethoxy-1H, 1H, 2H, 2H-heptadecafluorodecylsilane, trimethoxy (1H, 1H, 2H, 2H-heptadecafluorodecyl) ) Silane, trimethoxy (1H, 1H, 2H, 2H-nonafluorohexyl) silane, trichloro (1H, 1H, 2H, 2H-tridecafluoro-n-octyl) silane and the like.
  • trimethoxy (3,3,3-trifluoropropyl) silane it is preferable that a larger amount of trimethoxy (3,3,3-trifluoropropyl) silane is contained than other fluorine-containing silanes.
  • the amount of trimethoxy (3,3,3-trifluoropropyl) silane is large, the heating time for obtaining a cured product described later tends to be shortened.
  • a fluorine atom containing silane compound (1) is obtained by a well-known method.
  • a compound having a structure in which a fluoroalkyl group is bonded to a silicon atom via an ethylene group (—CH 2 CH 2 —) a fluoroalkene having a vinyl group (—CH ⁇ CH 2 ) at the molecular end, It can be obtained by performing a hydrosilylation reaction in which a compound having a Si—H bond is reacted in the presence of a platinum catalyst.
  • the silicone resin (1) is a resin in which the content of the structural unit derived from the fluorine atom-containing silane compound (1) is 52% by mass or more with respect to the total mass of the condensate of the silane compound, and the ratio is 55% by mass. % Or more of resin is preferable, and 60% by mass or more of resin is more preferable.
  • the ratio of the structural unit derived from the fluorine atom-containing silane compound (1) is equal to or higher than the lower limit value, the effect of suppressing deterioration due to the oxidation reaction of the silicone resin (1) and the cured product thereof becomes higher.
  • the upper limit value of the proportion of the structural unit derived from the fluorine atom-containing silane compound (1) is not particularly limited, and is 100% by mass with respect to the total mass of the condensate of the silane compound, that is, the condensed silane compound.
  • All the structural units derived may be structural units derived from the fluorine atom-containing silane compound (1). That is, the silicone resin (1) is a resin in which the content ratio of the structural unit derived from the fluorine atom-containing silane compound (1) is 52% by mass or more and 100% by mass or less with respect to the total mass of the condensate of the silane compound.
  • the ratio is preferably 55% by mass or more and 100% by mass or less, and more preferably 60% by mass or more and 100% by mass or less.
  • the structural unit derived from the fluorine atom-containing silane compound (1) is represented by the following general formula (1 ′).
  • silicone resin (2) As another preferable example of the silicone resin, a structural unit derived from the fluorine atom-containing silane compound is represented by the following general formula (2) (hereinafter abbreviated as “fluorine atom-containing silane compound (2)”). And a resin whose average functional number is 3.0 or less (in this specification, sometimes referred to as “silicone resin (2)”). Is mentioned.
  • R 2 m SiX 2 4-m (2) (Wherein m is 1 or 2; R 2 is a perfluoroalkyl group having 1 to 20 carbon atoms; and X 2 is an alkoxy group, a chlorine atom, a bromine atom, or an iodine atom.)
  • R 2 is a perfluoroalkyl group having 1 to 20 carbon atoms, which may be linear, branched or cyclic, and when it is cyclic, monocyclic and polycyclic Any of an annular shape may be used.
  • the perfluoroalkyl group in R 2 is represented by the general formula “C 1 F 21 + 1 (wherein l is an integer of 1 to 20)”.
  • the partially fluorinated alkyl in R 1 Examples of the group include groups in which all hydrogen atoms are substituted with fluorine atoms.
  • the perfluoroalkyl group for R 2 preferably has 1 to 15 carbon atoms, more preferably 1 to 10 carbon atoms, particularly preferably 1 to 5 carbon atoms. Is most preferred. Specifically, a trifluoromethyl group, a pentafluoroethyl group, and a trifluoropropyl group are preferable.
  • X 2 is an alkoxy group, a chlorine atom, a bromine atom or an iodine atom, and examples thereof include the same groups as X 1 in the fluorine atom-containing silane compound (1).
  • m means the number of bonds of R 2 to one silicon atom (Si), and is 1 or 2 here.
  • the number of bonds of X 2 to one silicon atom (Si) is represented by “4-m”, and the value is 2 or 3.
  • Trifluoromethyltrichlorosilane Trifluoromethyltrimethoxysilane, trifluoromethyltriethoxysilane, perfluoroethyltrichlorosilane, perfluoroethyltrimethoxysilane, perfluoroethyltriethoxysilane, perfluoropropyltrichlorosilane, perfluoropropyltri Methoxysilane, perfluoropropyltriethoxysilane, perfluoropentyltrichlorosilane, perfluoropentyltrimethoxysilane, perfluoropentyltriethoxysilane, perfluorooctyltrichlorosilane, perfluorooctyltrimethoxysilane, perfluorooctyltriethoxysilane, etc.
  • trifluoromethyltrimethoxysilane trifluoromethyltriethoxysilane, perfluoroethyltrimethoxysilane, perfluoroethyltriethoxysilane, perfluoropropyltrimethoxysilane, and perfluoropropyltriethoxysilane are preferable.
  • the silicone resin (2) has an average functionality of 2.0 or more and 3.0 or less, and the value calculated by the formula (F4) is 2.0 or more and 3.0 or less.
  • the fluorine atom-containing silane compound (2) can be produced according to a known method.
  • “Journal of Organometallic Chemistry, 316 (1986) 41” discloses a method for producing a fluorine atom-containing silane compound (2) using a phosphorus compound as shown by the following formula.
  • JP-A-9-53022 discloses a method for producing a fluorine atom-containing silane compound (2) using a Grignard reagent, as shown by the following formula.
  • Angew. Chem. Int. Ed., 53, 5206 discloses a method for producing a fluorine atom-containing silane compound (2) using a lithium compound as shown in the following formula. .
  • the production method shown here is an example, and the production method of the fluorine atom-containing silane compound (2) is not limited thereto.
  • the fluorine atom containing silane compound (2) which is not mentioned here can be manufactured with reference to the method mentioned here.
  • the silicone resin (2) is preferably a resin in which the content of the structural unit derived from the fluorine atom-containing silane compound (2) is 10% by mass or more with respect to the total mass of the condensate of the silane compound, and 20% by mass or more.
  • the resin is more preferably 30% by mass or more.
  • the upper limit value of the proportion of the structural unit derived from the fluorine atom-containing silane compound (2) is not particularly limited, and is 100% by mass with respect to the total mass of the condensate of the silane compound, that is, the condensed silane compound. May be all structural units derived from the fluorine atom-containing silane compound (2). That is, the silicone resin (2) is a resin in which the content of the structural unit derived from the fluorine atom-containing silane compound (2) is 10% by mass or more and 100% by mass or less with respect to the total mass of the condensate of the silane compound. The resin is preferably 20% by mass or more and 100% by mass or less, more preferably 30% by mass or more and 100% by mass or less.
  • the structural unit derived from the fluorine atom-containing silane compound (2) is represented by the following general formula (2 ′).
  • the oxidation reaction of the silicone resin starts from the extraction of a hydrogen atom from the carbon atom as shown in the formula (i), and the carbon atom and the silicon as shown in the formula (ii) and the formula (iii). It is thought that the process proceeds by breaking the bond between the atoms. On the other hand, it is considered that deterioration due to the oxidation reaction of the silicone resin can be suppressed by suppressing any one reaction represented by the above formulas (i) to (iii).
  • ⁇ E1 was about 59 kcal / mol
  • ⁇ E2 was about ⁇ 68 kcal / mol
  • ⁇ E3 was about ⁇ 16 kcal / mol
  • the result of this quantum chemical calculation is shown in FIG.
  • the reaction heat ⁇ E1 is increased as described above, and is usually substituted with a fluorine atom.
  • a perfluoroalkyl group substituted with a fluorine atom is more preferable.
  • a fluorinated methyl group in the case of a fluorinated methyl group, the most preferred group is a trifluoromethyl group (—CF 3 ), the next preferred group is a difluoromethyl group (—CF 2 H), and then A preferred group is a fluoromethyl group (—CFH 2 ).
  • a fluorinated alkyl group is bonded to a silicon atom, ⁇ E1> ⁇ E2 and ⁇ E1> ⁇ E3 are satisfied regardless of the number of hydrogen atoms substituted with fluorine atoms.
  • the fluorinated alkyl group bonded to the silicon atom is a partially fluorinated alkyl group
  • the carbon atom to which the fluorine atom is bonded in the partially fluorinated alkyl group is closer to the carbon atom closer to the silicon atom.
  • a carbon atom directly bonded to (i.e., adjacent to) the silicon atom is more preferable.
  • the most preferred group is a 1-fluoropropyl group (—CFHCH 2 CH 3 )
  • the next preferred group is a 2-fluoropropyl group (—CH 2 CFHCH 3 ).
  • the next preferred group is a 3-fluoropropyl group (—CH 2 CH 2 CFH 2 ).
  • the fluorinated alkyl group bonded to the silicon atom is a partially fluorinated alkyl group
  • the group having the same number of fluorine atoms in the partially fluorinated alkyl group more fluorine atoms are present in carbon atoms closer to the silicon atom.
  • Groups in which atoms are bonded are preferred.
  • the most preferred is a 1,1,2-trifluoroethyl group (—CF 2 CFH 2 )
  • the next preferred group is 1,2,2-triethyl.
  • the next preferred group is a 2,2,2-trifluoroethyl group (—CH 2 CF 3 ).
  • both the fluorine atom-containing silane compound (1) and the fluorine atom-containing silane compound (2) are suitable for use for the purpose of suppressing deterioration due to the oxidation reaction of the silicone resin. Since the silicone resin (1), the silicone resin (2), and their cured products are condensates of such monomers, deterioration due to an oxidation reaction is suppressed.
  • the silicone resin include a bond between a silicon atom and a carbon atom (Si—C bond). As such a Si—C bond, this Si—C bond is used.
  • the heat of reaction when the bond is radically cleaved by the oxidation reaction is greater than the heat of reaction when the bond between the silicon atom and carbon atom (Si—C bond) of “SiCH 3 ” is radically cleaved by the oxidation reaction.
  • Examples thereof include resins having at least one large bond (hereinafter sometimes abbreviated as “hard-cleavable Si—C bond”).
  • Si—C bond that is, a hardly cleavable Si—C bond
  • silicone resin is a bond between a fluoroalkyl group and a silicon atom.
  • the fluoroalkyl group As an example of the above, the fluorine atom-containing silane compound (1) or the partially fluorinated alkyl group in the structural unit derived from the compound (1) and the fluorine atom-containing silane compound (2) or the compound (2) A perfluoroalkyl group in the structural unit is exemplified.
  • the ratio of the number of the hardly cleavable Si—C bonds to the total number of Si—C bonds is preferably 10% or more and 100% or less, and preferably 20% or more and 100% or less. More preferred.
  • the silane compound which is a monomer constituting the silicone resin as the silane compound which is a monomer constituting the silicone resin, one kind of silane compound is used alone, or two or more kinds of silane compounds are used in a target ratio to cause a condensation (polycondensation) reaction. Can be manufactured. When two or more silane compounds are used in combination, the combination and ratio can be arbitrarily set.
  • the condensation reaction can be performed by the same method as in the case of conventional silicone resins, except that the raw materials used are different.
  • the monomer (that is, the silane compound) necessary for the constitution of the silicone resin is used in the presence of an acidic aqueous solution or a basic aqueous solution, if necessary, using a solvent such as 2-propanol, methyl isobutyl ketone, preferably 40
  • the silicone resin can be obtained by reacting at a temperature of ⁇ 130 ° C., preferably for 1 hour to 48 hours. After the reaction, after performing post-treatment such as washing as necessary, the target product may be taken out, and the target product may be used as it is without taking out the target product.
  • the manufacturing method of the silicone resin is not limited to the method shown here.
  • the silicone resin and its cured product are sufficiently suppressed from being deteriorated by an oxidation reaction, and the cured product is suitable for use in applications that require resistance to an oxidation reaction during ultraviolet light irradiation, for example.
  • cured material has remarkable tolerance with respect to irradiation of the deep ultraviolet light whose wavelength range is 200 nm or more and 300 nm or less.
  • the silicone resin and the cured product having such characteristics are suitable for application to a sealing material of a semiconductor light emitting element, and particularly, for example, application to a sealing material of UV (ultraviolet) -LED (light emitting diode). Is preferred.
  • ⁇ Silicone resin composition, cured product> The silicone resin can be cured by heating, whereby a cured product is obtained.
  • a silicone resin composition containing the silicone resin and other components other than the silicone resin may be used and cured.
  • the silicone resin content in the silicone resin composition may be appropriately adjusted according to the use of the composition, but is usually 60% by mass or more based on the total mass of the silicone resin composition. It is preferably 70% by mass or more.
  • the said silicone resin composition is a composition containing the said silicone resin and other components other than the said silicone resin,
  • the said other component can be arbitrarily selected according to the objective.
  • one type of component may be used alone, or two or more types of components may be used in combination. When two or more types of components are used in combination, the combination and ratio can be arbitrarily set.
  • Preferred examples of the other component include a curing catalyst, a silane coupling agent, inorganic particles, a phosphor, a modifying silicone compound, an antifoaming agent, and a solvent.
  • the content of the other component in the silicone resin composition may be appropriately adjusted according to the use of the composition, but is usually 5% by mass or more based on the total mass of the silicone resin composition. 40 mass% or less, preferably 10 mass% or more and 30 mass% or less.
  • the curing catalyst is not particularly limited as long as it is a catalyst that can accelerate the condensation reaction of the silicone resin.
  • curing catalysts include inorganic acids such as hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid compounds or derivatives thereof; organic acids such as formic acid, acetic acid, oxalic acid, citric acid, propionic acid, butyric acid, lactic acid, succinic acid; water Alkaline compounds such as ammonium oxide, tetramethylammonium hydroxide, tetraethylammonium hydroxide; as metal components tin (Sn), zinc (Zn), iron (Fe), titanium (Ti), zirconium (Zr), bismuth (Bi) , Organic complexes or organic acid salts containing one or more metals selected from the group consisting of hafnium (Hf), yttrium (Y), aluminum (Al), boron (B) and gallium (Ga) And organo
  • the curing catalyst is preferably the organometallic compound containing tin, titanium, zinc, zirconium, hafnium, or gallium because of its high reaction activity. Further, the curing catalyst has little electrode corrosion and light absorption when used in a light-emitting device, has an appropriate catalytic activity, and does not easily cause unnecessary cleavage degradation of the polysiloxane chain. Therefore, zirconium, hafnium, or gallium is used. The organometallic compound containing is particularly preferred.
  • organometallic compound containing tin examples include tetraalkyltin, dialkyltin oxide, and dialkyltin dicarbonate.
  • dialkyltin dicarbonate the alkyl group and the carboxylic acid preferably have 1 to 10 carbon atoms.
  • organometallic compound containing titanium examples include tetraalkoxytitanium, tetraalkoxytitanium oligomer, titanium acetylacetonate, and the like.
  • the number of carbon atoms of the alkyl group in the tetraalkoxytitanium and the tetraalkoxytitanium oligomer is preferably 3-8.
  • organometallic compound containing zinc examples include zinc triacetylacetonate, zinc stearate, bis (acetylacetonato) zinc (II) (monohydrate) and the like.
  • organometallic compound containing zirconium examples include zirconium tetraacetylacetonate, zirconium dibutoxydiacetylacetonate, zirconium tetraalkoxide, zirconyl (2-ethylhexanoate), zirconium (2-ethylhexanoate) and the like. Can be mentioned.
  • the number of carbon atoms in the alkyl group in zirconium tetraalkoxide is preferably 3-8.
  • organometallic compound containing hafnium examples include compounds in which the metal species is replaced with hafnium in the organometallic compound containing zirconium (for example, hafnium tetraacetylacetonate).
  • organometallic compound containing gallium examples include gallium triacetylacetonate, gallium trialkoxide, gallium octoate, gallium laurate, gallium acetate, and the like.
  • the number of carbon atoms in the alkyl group in gallium trialkoxide is preferably 2-8.
  • the inorganic acid or derivative thereof is preferably a phosphoric acid catalyst (phosphoric acid compound) from the viewpoint of compatibility with the silicone component and curing acceleration.
  • phosphoric acid compound examples include compounds represented by the following general formulas (Z1) and (Z2).
  • M is a counter cation; * is another atom or atomic group; z is an integer of 0 to 2; and when there are a plurality of M, the plurality of M are the same as each other. However, when there are a plurality of *, the plurality of * may be the same as or different from each other.
  • Examples of the M counter cation include a hydrogen ion.
  • Examples of other atoms or atomic groups of the above * include atoms or atomic groups represented by the general formulas “OG” and “G” (wherein G is a monovalent organic group).
  • Examples of the monovalent organic group include a methyl group, an ethyl group, a methoxy group, and an ethoxy group.
  • examples of the phosphoric acid compound include phosphoric acid, phosphorous acid, phosphoric acid ester, phosphorous acid ester, and the like.
  • the curing catalyst may be blended in the silicone resin composition in a state diluted with an organic solvent or a silicone monomer or a silicone oligomer that is easily compatible with the silicone resin composition in order to be blended with the silicone resin composition at a predetermined concentration.
  • the silicone monomer and the silicone oligomer do not correspond to any of the above-described fluorine atom-containing silane compound (1) and fluorine atom-containing silane compound (2).
  • the said curing catalyst may be used individually by 1 type, may use 2 or more types together, and when using 2 or more types together, the combination and ratio can be set arbitrarily.
  • the curing catalyst may be used in combination with a reaction accelerator or reaction inhibitor.
  • the content of the curing catalyst in the silicone resin composition can be appropriately adjusted in consideration of the heating temperature during the curing reaction, the reaction time, the type of the curing catalyst, and the like.
  • the content is preferably 0.001 to 3.0% by mass, more preferably 0.001 to 1.5% by mass with respect to the content of the silicone resin.
  • the content of the curing catalyst in the silicone resin composition is preferably 0.001 to 0.5 in terms of metal atoms with respect to the content of the silicone resin.
  • the mass can be set to mass%, more preferably 0.003 to 0.2 mass%.
  • the content of the organometallic compound can be measured by high frequency inductively coupled plasma (ICP) analysis of the metal component.
  • the content of the curing catalyst in the silicone resin composition is preferably 0.1 to 3.0% by mass with respect to the content of the silicone resin.
  • the content can be 0.2 to 1.5% by mass.
  • the curing catalyst may be blended in the silicone resin composition immediately before the curing reaction, or may be blended in advance with the silicone resin composition together with components other than the curing catalyst.
  • the silane coupling agent improves the adhesion between the cured product and the application target (semiconductor light emitting device, package, etc.).
  • the silane coupling agent are selected from the group consisting of ethenyl group (vinyl group), epoxy group, styryl group, (meth) acryl group, amino group, ureido group, mercapto group, sulfide group and isocyanate group.
  • the silane coupling agent which has 1 type (s) or 2 or more types is mentioned, Among these, the coupling agent which has an epoxy group or a mercapto group is preferable.
  • silane coupling agents examples include 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3- Examples thereof include glycidoxypropylmethyldiethoxysilane, 3-glycidoxypropyltriethoxysilane, 3-mercaptopropylmethyldimethoxysilane, and 3-mercaptopropyltrimethoxysilane.
  • (meth) acrylic group is a concept that encompasses both acrylic and methacrylic groups.
  • the content of the silane coupling agent in the silicone resin composition is preferably 0.0001 to 1.0 parts by mass, more preferably 0.001 to 0.00 parts per 100 parts by mass of the solid content of the silicone resin composition. 5 parts by mass.
  • the silane coupling agent can be used by blending with the silicone resin composition, but the surface of the application object (semiconductor light emitting device, package, etc.) of the main cured product of the silicone resin composition is previously coated and dipped.
  • the silicone resin composition may be formed by potting or the like and then cured.
  • the cured product can increase the intensity of light from a semiconductor light emitting element, for example.
  • the inorganic particles have a function of scattering light in the cured product (that is, a sealing material) to effectively excite the phosphor; a function of preventing the phosphor from being precipitated in the silicone resin composition; A function of adjusting the viscosity of the resin composition; a function of improving the light scattering property, the refractive index, the dimensional stability, and the mechanical strength of the cured product (that is, the sealing material).
  • the inorganic particles include oxides such as silicon, titanium, zirconium, aluminum, iron or zinc; carbon black; barium titanate; calcium silicate; calcium carbonate.
  • the inorganic particles are preferably silicon oxide, titanium oxide, or aluminum oxide.
  • silicon oxide or aluminum oxide is preferable. More preferably, it is a product.
  • Examples of the shape of the inorganic particles include a substantially spherical shape, a plate shape, a column shape, a needle shape, a whisker shape, and a fiber shape.
  • the material of the inorganic particles may be only one type, two or more types, and in the case of two or more types, the combination and ratio can be arbitrarily set.
  • the inorganic particles preferably include inorganic particles having a particle size of 2 or more. Inorganic particles having an average primary particle size of 100 to 500 nm and inorganic particles having an average primary particle size of less than 100 nm. It is more preferable to include at least two kinds. By including two or more kinds of inorganic particles having different average particle diameters of primary particles, the excitation efficiency of the phosphor due to light scattering is further improved in the cured product (sealing material), and the precipitation prevention effect of the phosphor is improved. More improved.
  • the average particle diameter of the primary particles is determined by, for example, an image imaging method in which particles are directly observed with an electron microscope or the like. More specifically, a dispersion in which inorganic particles to be measured are sufficiently dispersed in an arbitrary solvent by ultrasonic irradiation or the like is dropped onto a slide glass or the like, or dried, or an adhesive surface of an adhesive tape
  • the average particle size of the primary particles is determined by observing with a scanning electron microscope (SEM), a transmission electron microscope (TEM), etc. what is attached by an operation such as sprinkling inorganic particles directly on Diameter is required.
  • SEM scanning electron microscope
  • TEM transmission electron microscope
  • the projected area of the inorganic particles may be obtained, and the diameter of a circle corresponding to this area may be obtained to obtain the particle diameter.
  • the particle diameter may be obtained for 100 or more (preferably 100) particles, and the average particle diameter may be obtained by arithmetic averaging.
  • the content of the inorganic particles in the silicone resin composition is not particularly limited.
  • the content is preferably 0.01 to 10% by mass, more preferably 0.1 to 5% by mass with respect to the content of the silicone resin. %.
  • the phosphor is not particularly limited, and examples thereof include a red phosphor that emits fluorescence in the wavelength range of 570 to 700 nm, a green phosphor that emits fluorescence in the range of 490 to 570 nm, and fluorescence in the range of 420 to 480 nm.
  • a blue phosphor is exemplified.
  • a plurality of types of phosphors may be used in combination depending on brightness and chromaticity.
  • the content of the phosphor of the silicone resin composition is not particularly limited, and is appropriately determined in consideration of the characteristics of the object to be applied, such as the light amount of the semiconductor light emitting element and the chromaticity and brightness required for the semiconductor light emitting device. Can be adjusted.
  • the inorganic particles and the phosphor are blended in the silicone resin composition, since the phosphor easily settles, the inorganic particles are added in advance, and then the phosphor is added to obtain the silicone resin composition. It is preferable that this composition is promptly used for sealing an application object (semiconductor light-emitting element or the like).
  • the content of the phosphor in the silicone resin composition is not particularly limited.
  • the content is preferably 1 to 50% by mass, more preferably 5 to 40% by mass with respect to the content of the silicone resin. Can do.
  • the modifying silicone compound is a silicone compound that does not correspond to the silicone resin, and examples thereof include dimethyl silicone oil, amino silicone, and epoxy silicone, and normal commercial products can be used. By using the modifying silicone compound, for example, flexibility can be imparted to the cured product.
  • the content of the modifying silicone compound in the silicone resin composition is preferably 0.1 to 20 parts by mass (solid content), more preferably 0.1 to 100 parts by mass of the solid content of the silicone resin composition. 5 to 10 parts by mass.
  • the antifoaming agent suppresses the generation of bubbles when the silicone resin composition is mixed.
  • the content of the antifoaming agent in the silicone resin composition is preferably 0.01 to 3 parts by mass (solid content), more preferably 0.01 to 1 with respect to 100 parts by mass of the solid content of the silicone resin composition. Part by mass.
  • solvent The said solvent is not specifically limited, For example, various solvents, such as an organic solvent, can be used.
  • the said solvent may be used individually by 1 type, may use 2 or more types together, and when using 2 or more types together, the combination and ratio can be set arbitrarily.
  • the components other than the solvent can be mixed from the point that each component can be mixed more uniformly and the stability of the subsequent resin solution can be improved.
  • the solvent is once dissolved in an organic solvent having high volatility and solubility and then replaced with another solvent. Specifically, first, one or more components are put into an organic solvent having high volatility (hereinafter sometimes abbreviated as “organic solvent P”) and heated to a temperature near the boiling point of the organic solvent P. And dissolve by stirring. Next, an operation of adding one or more components as necessary and dissolving the same is repeated at least once.
  • organic solvent P organic solvent having high volatility
  • solvent Q a solvent having a lower volatility than the organic solvent P
  • solvent Q a solvent having a lower volatility than the organic solvent P
  • the solvent remaining without being removed by the solvent used when synthesizing each component, water remaining unreacted, etc. are simultaneously removed at the time of solvent replacement, and the resin solution Improves stability.
  • the organic solvent P is preferably an organic solvent having a boiling point of less than 100 ° C.
  • organic solvent P include ketones such as acetone and methyl ethyl ketone; alcohols such as methanol, ethanol, 1-propanol and 2-propanol; aliphatic hydrocarbons such as hexane, heptane and cyclohexane; aromatics such as benzene. Hydrocarbons; esters such as methyl acetate and ethyl acetate; ethers such as dimethyl ether and tetrahydrofuran.
  • the solvent Q is preferably an organic solvent having a boiling point of 100 ° C. or higher.
  • solvent Q include ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monoisopropyl ether, ethylene glycol monobutyl ether, ethylene glycol monohexyl ether, ethylene glycol monoethyl hexyl ether, ethylene glycol monophenyl ether, Ethylene glycol monobenzyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monoisopropyl ether, diethylene glycol monobutyl ether, diethylene glycol monohexyl ether, diethylene glycol monoethyl hexyl ether, diethylene glycol monophenyl ether, diethylene glycol Monobenzyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monoisoprop
  • the solvent is preferably selected so that the boiling point of the silicone resin composition, which is usually a liquid composition, is preferably 40 to 250 ° C., more preferably 100 to 230 ° C.
  • the content of the solvent (e.g., solvent Q) in the silicone resin composition is not particularly limited and may be appropriately adjusted according to the purpose, but is generally based on the total mass of the silicone resin composition, It is preferable that it is 10 mass% or more and 30 mass% or less.
  • the silicone resin composition for example, the resin solution obtained by the production of the silicone resin may be used as it is after being subjected to post-treatment such as washing as necessary.
  • the silicone resin composition can be produced by blending the silicone resin and other components other than the silicone resin.
  • the blending method at this time is not particularly limited, and the order of addition of each component, the mixing method after the addition, and the like can be arbitrarily adjusted.
  • the mixing method may be appropriately selected from known methods such as a method of mixing by rotating a stirrer or a stirring blade; a method of mixing using a mixer, a bead mill, etc .; a method of mixing by irradiating ultrasonic waves, etc. Good.
  • a preferable blending method in the case of using the organic solvent P and the solvent Q is as described above.
  • the silicone resin composition reflects the characteristics of the silicone resin contained in the silicone resin composition and is suitable for application to a sealing material for semiconductor light emitting devices.
  • a sealing material for semiconductor light emitting devices For example, UV (ultraviolet) -LED (light emitting diode) sealing Particularly suitable for application to a material (as a sealing material composition for UV-LED). That is, one side of the sealing composition for UV-LED that is one embodiment of the present invention contains the silicone resin and other components other than the silicone resin, The other component is at least one selected from the group consisting of a curing catalyst, a silane coupling agent, inorganic particles, a phosphor, a modifying silicone compound, an antifoaming agent, and a solvent. It is a stopping material composition.
  • the content of the silicone resin is 60% by mass or more and 95% by mass or less based on the total mass of the UV-LED encapsulant composition.
  • the content of the other component is preferably 70% by mass or more and 90% by mass or less based on the total mass of the UV-LED sealing material composition, The sum total of the content of the silicone resin and the content of the other components does not exceed 100% by mass.
  • the cured product can be produced by heating and curing the silicone resin or the silicone resin composition.
  • the heating temperature at the time of curing can be, for example, 40 to 250 ° C., and the heating time can be, for example, 1 to 24 hours, but is not limited thereto.
  • the heating at the time of curing removes the solvent and water in the silicone resin composition, and in order to control the speed of the condensation reaction of the silicone resin, for example, the heating temperature is increased stepwise to cure stepwise. May be performed.
  • the specific gravity of the cured product is preferably 1.0 to 1.4, and more preferably 1.1 to 1.3.
  • the specific gravity of the cured product is generally determined from the volume and mass. When the shape of the cured product is indeterminate, it can be measured by using a commercially available specific gravity measuring device by Archimedes method.
  • One aspect of the present invention is a cured product of the silicone resin or silicone resin composition.
  • Another aspect is a cured product obtained by heating the silicone resin or silicone resin composition at 40 to 250 ° C. for 1 to 24 hours.
  • the cured product has a specific gravity of 1.0 to 1.4.
  • the cured product has the following characteristics. That is, when the transmittance of light having a wavelength of 400 nm and 350 nm after heating a cured product having a thickness of 1 mm for 60 hours in an oven at 200 ° C. is compared with the same transmittance before heating, the change in the transmittance The rate is within 10%.
  • the cured product has the following characteristics.
  • the cured product has the following characteristics. That is, when the cured product is heated to 100 ° C. on a hot plate and then irradiated with UV light having a wavelength of 350 nm for 50 hours, the peak intensity of the infrared absorption spectrum derived from Si—CH / derived from Si—O—Si.
  • the peak intensity of the infrared absorption spectrum and the peak intensity of the infrared absorption spectrum derived from Si—CH before the heating and UV irradiation / the rate of change of the peak intensity of the infrared absorption spectrum derived from Si—O—Si is within 10%. It is.
  • the cured product is adequately suppressed as a sealing material for semiconductor light-emitting elements because deterioration due to an oxidation reaction is sufficiently suppressed, and crack generation, alteration, decomposition, and the like are suppressed.
  • a sealing material for UV (ultraviolet) -LED (light emitting diode) is particularly suitable as a sealing material for UV (ultraviolet) -LED (light emitting diode).
  • One aspect of the present invention is a UV-LED sealing material containing a cured product of the silicone resin or the silicone resin composition.
  • Another aspect of the present invention is a UV-LED sealing material comprising a cured product obtained by heating the silicone resin or the silicone resin composition at 40 to 250 ° C. for 1 to 24 hours.
  • the sealing material has a specific gravity of 1.0 to 1.4.
  • a semiconductor light emitting device using the cured product as a sealing material As an example of a semiconductor light emitting device using the cured product as a sealing material, a substrate, a semiconductor light emitting element disposed on the substrate, a sealing portion provided to cover the surface of the semiconductor light emitting element, The semiconductor light-emitting element is surrounded and sealed by the substrate and the sealing portion, and a material containing the cured product is exemplified as a forming material of the sealing portion, and the sealing A material for forming the stopper is preferably made of the cured product.
  • the semiconductor light emitting device is preferably a semiconductor light emitting device in which a semiconductor light emitting element is sealed with a cured product of the silicone resin composition (that is, a sealing material composition for a semiconductor light emitting element). That is, one side surface of the semiconductor light emitting device according to the present invention comprises a substrate, a semiconductor light emitting element disposed on the substrate, and a sealing portion of the semiconductor light emitting element, The semiconductor light emitting device is sealed by surrounding the semiconductor light emitting device with the substrate and the sealing portion, The sealing portion is a semiconductor light emitting device including a cured product of the silicone resin or a cured product of the silicone resin composition.
  • FIG. 1 is a cross-sectional view schematically showing an example of the semiconductor light emitting device.
  • the semiconductor light emitting device 100 shown here includes a substrate 110, a semiconductor light emitting element 120 disposed on the substrate 110, and a sealing portion 130 that seals the semiconductor light emitting element 120.
  • the sealing part 130 uses the sealing material for semiconductor light emitting elements which is the hardened
  • the semiconductor light emitting device 120 is covered and sealed with the substrate 110 and the sealing portion 130 and is isolated from the outside air.
  • the sealing portion 130 includes a cured product of the silicone resin or a cured product of the silicone resin composition.
  • the sealing unit 130 does not have a discontinuous surface in a direction perpendicular to the substrate 110.
  • the presence or absence of a discontinuous surface can be determined, for example, by performing X-ray CT measurement. In the X-ray CT measurement, since the scattering intensity varies depending on the electron density, if there is a discontinuous surface of the material, this is observed as shading on the CT image.
  • the sealing portion 130 is formed using the silicone resin, the resistance to oxidation reaction is sufficiently high, and the occurrence of cracks, alteration, decomposition, and the like are suppressed, and the sealing effect of the semiconductor light emitting element is extremely high. high.
  • the sealing portion 130 has high light transmittance and high light extraction efficiency, and has sufficiently high resistance to an oxidation reaction, thereby suppressing a decrease in light transmittance and coloring over time. .
  • a preferable example of the semiconductor light emitting device is a UV light emitting device.
  • THF tetrahydrofuran
  • cured material of the silicone resin in a following example and a comparative example is computable by a following formula using each measured value on the following conditions.
  • Example 3 In a 1 L flask equipped with a stirrer, reflux tube, dropping funnel and nitrogen gas bubbling device, methyl isobutyl ketone (300 g), methyltrimethoxysilane (34.1 g, 0.25 mol), and trimethoxy (3,3 , 3-trifluoropropyl) silane (54.6 g, 0.25 mol) is charged, and ion-exchanged water (36 g) is subsequently added dropwise thereto at room temperature.
  • methyl isobutyl ketone 300 g
  • methyltrimethoxysilane 34.1 g, 0.25 mol
  • trimethoxy (3,3 , 3-trifluoropropyl) silane 54.6 g, 0.25 mol
  • Example 4 To a 1 L flask equipped with a stirrer, reflux tube, dropping funnel and nitrogen gas bubbling device was added methyl isobutyl ketone (300 g), methyltrimethoxysilane (51.1 g, 0.375 mol), and trimethoxy (3,3 , 3-trifluoropropyl) silane (27.3 g, 0.125 mol) is charged, and ion-exchanged water (36 g) is subsequently added dropwise thereto at room temperature.
  • methyl isobutyl ketone 300 g
  • methyltrimethoxysilane 51.1 g, 0.375 mol
  • trimethoxy (3,3 , 3-trifluoropropyl) silane 27.3 g, 0.125 mol
  • Example 6 In a 1 L flask equipped with a stirrer, reflux tube, dropping funnel and nitrogen gas bubbling device, methyl isobutyl ketone (300 g), methyltrimethoxysilane (17.0 g, 0.125 mol), and trifluoromethyltrimethoxy were added. Silane (71.3 g, 0.375 mol) is charged, and ion-exchanged water (36 g) is subsequently added dropwise thereto at room temperature.
  • Example 7 In a 1 L flask equipped with a stirrer, reflux tube, dropping funnel and nitrogen gas bubbling device, methyl isobutyl ketone (300 g), methyltrimethoxysilane (34.1 g, 0.25 mol), and trifluoromethyltrimethoxy were added. Silane (47.5 g, 0.25 mol) is charged, and ion-exchanged water (36 g) is subsequently added dropwise thereto at room temperature.
  • Example 8 In a 1 L flask equipped with a stirrer, reflux tube, dropping funnel and nitrogen gas bubbling device, methyl isobutyl ketone (300 g), methyltrimethoxysilane (51.1 g, 0.375 mol), and trifluoromethyltrimethoxy were added. Silane (23.8 g, 0.125 mol) is charged, and ion-exchanged water (36 g) is subsequently added dropwise thereto at room temperature.
  • Example 9 In a 1 L flask equipped with a stirrer, reflux tube, dropping funnel and nitrogen gas bubbling device, methyl isobutyl ketone (300 g), di (trifluoromethyl) dimethoxysilane (28.5 g, 0.125 mol), and tri Fluoromethyltrimethoxysilane (71.3 g, 0.375 mol) is charged, and ion-exchanged water (36 g) is subsequently added dropwise thereto at room temperature.
  • methyl isobutyl ketone 300 g
  • di (trifluoromethyl) dimethoxysilane 28.5 g, 0.125 mol
  • tri Fluoromethyltrimethoxysilane 71.3 g, 0.375 mol
  • Example 10 To a 1 L flask equipped with a stirrer, reflux tube, dropping funnel and nitrogen gas bubbling device was added methyl isobutyl ketone (300 g), di (trifluoromethyl) dimethoxysilane (57.0 g, 0.25 mol), and tri Fluoromethyltrimethoxysilane (47.5 g, 0.25 mol) is charged, and ion-exchanged water (36 g) is subsequently added dropwise thereto at room temperature.
  • methyl isobutyl ketone 300 methyl isobutyl ketone
  • di (trifluoromethyl) dimethoxysilane 57.0 g, 0.25 mol
  • tri Fluoromethyltrimethoxysilane 47.5 g, 0.25 mol
  • Example 11 To a 1 L flask equipped with a stirrer, reflux tube, dropping funnel and nitrogen gas bubbling device was added methyl isobutyl ketone (300 g), di (trifluoromethyl) dimethoxysilane (85.6 g, 0.375 mol), and tri Fluoromethyltrimethoxysilane (23.8 g, 0.125 mol) is charged, and ion-exchanged water (36 g) is subsequently added dropwise thereto at room temperature.
  • methyl isobutyl ketone 300 g
  • di (trifluoromethyl) dimethoxysilane 85.6 g, 0.375 mol
  • tri Fluoromethyltrimethoxysilane 23.8 g, 0.125 mol
  • the weight average molecular weight of the silicone resin X1 was 5100 as measured under GPC measurement condition 1 shown below. Moreover, the weight average molecular weight of the silicone resin X2 was 2100 as measured under GPC measurement conditions 2 shown below.
  • the area of signals derived from silicon atoms (A3 silicon atoms) in which three oxygen atoms bonded to silicon atoms are bonded is represented by silicone resin X1. And 50% from the mixing ratio of the silicone resin X2.
  • the silicone resin composition (about 5 g) is put into an aluminum cup, heated from room temperature to 150 ° C. at a rate of 5 ° C./min in an oven, and further kept at 150 ° C. for 4 hours.
  • a cured product of the silicone resin composition was obtained.
  • the specific gravity of the obtained cured product was 1.18.
  • a1, a2, a3 and a4 are integers indicating the number of units of each repeating unit.
  • the cured product of the silicone resin and silicone resin composition obtained above can be evaluated for oxidation resistance by evaluating heat resistance and light resistance by the following methods.
  • the cured product is heat-treated by being left in an oven at 200 ° C. for 60 hours, then taken out, cooled to room temperature, and again measured for light transmittance at wavelengths of 400 nm and 350 nm. Then, the light transmittance and the appearance of the cured product before and after the heat treatment are compared.
  • the cured product of the condensate or silicone resin composition is obtained from the solution of the condensate (polymer) or the silicone resin composition in the same manner as in the evaluation of heat resistance, and the wavelengths of the cured product are 400 nm and 350 nm. Measure the light transmittance at.
  • the cured product was irradiated with UV light (230 to 450 nm) for 100 hours using a UV irradiation device “SP-9” manufactured by Ushio Electric Co., Ltd., and again at wavelengths of 400 nm and 350 nm. Measure the light transmittance. Then, the light transmittance and the appearance of the cured product before and after the light irradiation treatment are compared.
  • the cured product of the silicone resin obtained in each of the above examples has the same light as that before the heat treatment at any wavelength of 400 nm and 350 nm after the heat treatment at 200 ° C. It shows transmittance, and the appearance after heat treatment is the same as before heat treatment, and there is no discoloration, and it can be confirmed that the heat resistance is excellent.
  • the cured product of the silicone resin composition of the comparative example showed a light transmittance completely different from that before the heat treatment at any wavelength of 400 nm and 350 nm after the heat treatment at 200 ° C. Appearance is greatly different before and after heat treatment, and it is transparent before heat treatment, but it can be confirmed that it is inferior in heat resistance because it has turned yellow after heat treatment.
  • the cured product of the silicone resin obtained in each of the above examples has a light transmittance equal to that before the light irradiation treatment at any wavelength of 400 nm and 350 nm after the light irradiation treatment.
  • the appearance after the light irradiation treatment is the same as that before the light irradiation treatment, and there is no discoloration, and it can be confirmed that the light resistance is excellent.
  • the cured product of the silicone resin composition of the comparative example showed a light transmittance completely different from that before the light irradiation treatment at any wavelength of 400 nm and 350 nm after the light irradiation treatment.
  • Appearance differs greatly between before and after the treatment, and it is transparent before the light irradiation treatment, but it can be confirmed that the light resistance is inferior because it has turned yellow after the light irradiation treatment.
  • the cured silicone resin obtained in each of the above examples is sufficiently suppressed from being deteriorated by the oxidation reaction.
  • this solution (0.46 g) was put into an aluminum cup, heated from room temperature to 40 ° C. at 5 ° C./min in an oven, allowed to stand at 40 ° C. for 10 minutes, and then 100 ° C. to 3 ° C. The mixture was heated at 100 ° C. for 5 hours, then heated to 150 ° C. at 3 ° C./minute, and allowed to stand at 150 ° C. for 5 hours to obtain a cured product of the condensate (polymer). .
  • the cured product of the silicone resin obtained in each of the above Examples was irradiated with light compared to the cured product of the silicone resin composition of Comparative Example 2. It can be confirmed that after the treatment, the change from Si—CH bond to Si—O—Si bond is small, and the light resistance is excellent. As described above, the cured silicone resin obtained in each of the above examples is sufficiently suppressed from being deteriorated by the oxidation reaction.
  • the present invention is extremely useful industrially because it can be used for a semiconductor light emitting device, particularly a UV-LED sealing material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Silicon Polymers (AREA)
  • Led Device Packages (AREA)

Abstract

 シラン化合物の縮合物であり、このシラン化合物の縮合物は、フッ素原子を少なくとも1個有するフルオロアルキル基がケイ素原子に結合してなるフッ素原子含有シラン化合物由来の構成単位を含む、シリコーン樹脂。

Description

シリコーン樹脂、UV-LED用封止材組成物、硬化物及びUV-LED用封止材
 本発明は、シリコーン樹脂、並びに前記シリコーン樹脂を用いたUV-LED用封止材組成物、硬化物及びUV-LED用封止材に関する。
 本願は、2014年10月3日に、日本に出願された特願2014-205230号に基づき優先権を主張し、その内容をここに援用する。
 シリコーン樹脂は、安定性が高く、電気絶縁性を有することから、電気・電子機器、光学機器及びこれらの部材等の保護材料として汎用されている。そして、シリコーン樹脂の構成成分を調節することにより、シリコーン樹脂の特性を改善することが種々検討されている。
 例えば、特許文献1には、液状の付加硬化型シリコーンゴム組成物に、フルオロアルキル基を有するシロキサンオリゴマー及び/又はシランを配合してなる光学材料用硬化性組成物の硬化物が開示されている。そして、前記組成物がその製造時の脱泡性が良好で透明性等に優れることから、その硬化物は、屈折率等を損なうことなく、良好な光学特性を有することが開示されている。
特開2005-36155号公報
 一方で、従来のシリコーン樹脂は、空気中での使用によって、酸素によると考えられる酸化反応が原因で劣化することが知られている。しかし、これに対して十分に有効な対策は、これまでに為されていないという問題点がある。
 本発明はこのような事情に鑑みてなされたものであり、酸化反応による劣化が十分に抑制されたシリコーン樹脂を提供することを課題とする。
上記課題を解決するため、本発明は、シラン化合物の縮合物であり、縮合した前記シラン化合物に、フッ素原子を1個以上有するフルオロアルキル基がケイ素原子に結合してなるフッ素原子含有シラン化合物が含まれる、シリコーン樹脂を提供する。
 本発明のシリコーン樹脂は、前記フッ素原子含有シラン化合物が下記一般式(1)で表されるものであり、縮合した前記シラン化合物のうち、前記フッ素原子含有シラン化合物の割合が52質量%以上であるものが好ましい。
 R SiX 4-n ・・・・(1)
(式中、nは1又は2であり;Rは炭素原子数1~20の部分フッ素化アルキル基であり;Xはアルコキシ基、塩素原子、臭素原子又はヨウ素原子である。)
 本発明のシリコーン樹脂は、前記フッ素原子含有シラン化合物が下記一般式(2)で表されるものであり、前記シリコーン樹脂の官能数が3.0以下であるものが好ましい。
 R SiX 4-m ・・・・(2)
(式中、mは1又は2であり;Rは炭素原子数1~20のパーフルオロアルキル基であり;Xはアルコキシ基、塩素原子、臭素原子又はヨウ素原子である。)
 本発明のシリコーン樹脂は、前記フッ素原子含有シラン化合物のフルオロアルキル基における炭素原子数が1~3であるものが好ましい。
 また、本発明は、前記シリコーン樹脂を含有する、UV-LED用封止材組成物を提供する。
 また、本発明は、前記シリコーン樹脂を加熱して得られた硬化物を提供する。
 また、本発明は、前記シリコーン樹脂を加熱して得られた、UV-LED用封止材を提供する。
 即ち、本願発明は以下の態様を含む。
[1]シラン化合物の縮合物であり、
前記シラン化合物の縮合物は、フッ素原子を少なくとも1個有するフルオロアルキル基がケイ素原子に結合してなるフッ素原子含有シラン化合物由来の構成単位を含む、シリコーン樹脂。
[2]前記フッ素原子含有シラン化合物由来の構成単位が下記一般式(1)で表される化合物由来の構成単位であり、前記シラン化合物の縮合物の総質量に対して、前記フッ素原子含有シラン化合物由来の構成単位の含有割合が、52質量%以上である、[1]に記載のシリコーン樹脂。
 R SiX 4-n ・・・・(1)
(式中、nは1又は2であり;Rは炭素原子数1~20の部分フッ素化アルキル基であり;Xはアルコキシ基、塩素原子、臭素原子又はヨウ素原子である。)[3]前記フッ素原子含有シラン化合物由来の構成単位が下記一般式(2)で表される化合物由来の構成単位であり、前記シリコーン樹脂の平均官能数が3.0以下である、[1]に記載のシリコーン樹脂。
 R SiX 4-m ・・・・(2)
(式中、mは1又は2であり;Rは炭素原子数1~20のパーフルオロアルキル基であり;Xはアルコキシ基、塩素原子、臭素原子又はヨウ素原子である。)[4] 前記フッ素原子含有シラン化合物由来の構成単位のフルオロアルキル基における炭素原子数が1~3である、[1]~[3]のいずれか一つに記載のシリコーン樹脂。[5][1]~[4]のいずれか一つに記載のシリコーン樹脂と、その他の成分と、を含有する、UV-LED用封止材組成物。
[6][1]~[4]のいずれか一つに記載のシリコーン樹脂の硬化物。[7][1]~[4]のいずれか一つに記載のシリコーン樹脂の硬化物を含む、UV-LED用封止材。
 本発明によれば、酸化反応による劣化が十分に抑制されたシリコーン樹脂が提供される。
式「-O-Si(-CH)(-O-)-O-」で表される基における酸化反応の各段階における反応熱の量子化学計算結果を示すグラフである。 Si-C結合を有する各基の前記Cに結合している水素原子又はフッ素原子を引き抜く反応における、反応熱の量子化学計算結果を示すグラフである。 本発明の一実施形態であるシリコーン樹脂を用いた半導体発光装置の一例を模式的に示す断面図である。
<シリコーン樹脂>
 本発明の一実施形態であるシリコーン樹脂は、シラン化合物の縮合物であり、前記シラン化合物の縮合物は、フッ素原子を少なくとも1個有するフルオロアルキル基がケイ素原子に結合してなるフッ素原子含有シラン化合物由来の構成単位を含む縮合物である。
 前記シリコーン樹脂は、主鎖がシラン化合物の縮合物で構成され、この主鎖を構成するケイ素原子の一部又は全部に、前記フルオロアルキル基が結合した構造を有する。前記シリコーン樹脂がこのような構造を有することで、前記シリコーン樹脂とその硬化物は、酸化反応による劣化が十分に抑制される。
 前記シラン化合物の縮合物は、少なくとも前記フッ素原子含有シラン化合物由来の構成単位を含んだ縮合物であればよく、前記フッ素原子含有シラン化合物由来の構成単位のみからなる縮合物でもよいし、前記フッ素原子含有シラン化合物由来の構成単位とそれ以外のシラン化合物由来の構成単位との縮合物であってもよい。
 なお、本明細書においては、単なる「シラン化合物」との記載は、特に断りのない限り、上述のシリコーン樹脂を構成するために縮合に供するシラン化合物を意味する。
 本明細書において、「シラン化合物由来の構成単位」とは、前記シラン化合物が縮合した縮合物において、前記シラン化合物が縮合のために誘導化された構成単位(繰り返し単位ともいう)を意味する。
 前記シラン化合物の縮合物に用いられる前記フッ素原子含有シラン化合物とそれ以外のシラン化合物は、それぞれ1種のみでもよいし、2種以上でもよく、2種以上である場合、その組み合わせ及び比率は任意に設定できる。
 前記フッ素原子含有シラン化合物において、前記フルオロアルキル基中のフッ素原子の数は、前記フルオロアルキル基の炭素原子数によって決定される範囲内において、特に限定されず、1個以上でもよいし、2個以上でもよい。すなわち、前記フルオロアルキル基は、部分フッ素化アルキル基でもよし、パーフルオロアルキル基でもよい。前記フルオロアルキル基が部分フッ素化アルキル基である場合、フッ素原子の結合位置は特に限定されない。なお、本明細書において、「部分フッ素化アルキル基」とは、アルキル基の少なくとも1個の水素原子がフッ素原子で置換されてなるフルオロアルキル基で、すべての水素原子がフッ素原子で置換されてなるパーフルオロアルキル基以外のフッ素化アルキル基、すなわち、少なくとも1個の水素原子を有するフルオロアルキル基を意味する。
 前記フルオロアルキル基におけるアルキル基としては、炭素数1~3のアルキル基が好ましく、例えば、メチル基、エチル基、プロピル基が挙げられる。
 前記シリコーン樹脂は、シロキサン結合を主鎖とする有機性重合体であり、その官能数は、以下に示す一般組成式(F3)で表される化合物(ポリオルガノシロキサン)の平均官能数で示すことができる。
 (R111213SiO1/2(R1415SiO2/2(R16SiO3/2(SiO4/2 …(F3)
 式中、R11~R16はそれぞれ独立して、アルキル基、フェニル基等の炭化水素基又はハロゲン原子である。R11~R16がハロゲン原子である場合、これらの原子は、上記式(F3)における酸素原子と見なして官能数をカウントする。
 また、M、D、T及びQは0以上1未満であり、M+D+T+Q=1を満足する数である。
 R11~R16のアルキル基としては、それぞれ独立して、炭素数1~3のアルキル基が好ましく、具体的には、メチル基、エチル基、プロピル基、ブチル基が挙げられる。
 R11~R16のハロゲン原子としては、それぞれ独立してフッ素原子が好ましい。
 前記式(F3)で表されるポリオルガノシロキサンを構成する繰り返し単位は、一官能型[R111213SiO1/2](トリオルガノシルヘミオキサン)、二官能型[R1415SiO2/2](ジオルガノシロキサン)、三官能型[R16SiO3/2](オルガノシルセスキオキサン)、四官能型[SiO4/2](シリケート)であり、これら4種の繰り返し単位の構成比率によって、ポリオルガノシロキサンとしての官能数が定まる。
 すなわち、前記ポリオルガノシロキサンの平均官能数は、下記式(F4)によって算出できる。
 平均官能数=(2×D+3×T+4×Q)/(D+T+Q) …(F4)
 例えば、典型的な二官能熱硬化性シリコーン樹脂は、前記式(F3)において、(R1415SiO2/2)の繰り返し単位のみ、すなわち、ジオルガノシロキサン構造(-O-Si(R14)(R15)-O-)のみからなるポリオルガノシロキサンであり、この場合の官能数(すなわち、平均官能数)は2.0である。
 前記シリコーン樹脂の重量平均分子量は、100~500000であることが好ましく、200~100000であることがより好ましい。
 重量平均分子量は、一般的にゲルパーメーションクロマトグラフィー(GPC)法により測定した値を用いることができる。具体的には、測定対象の高分子サンプルを可溶性の溶媒に溶解させた後、細孔(ポア)が数多く存在する充てん剤を用いたカラム内に移動相溶液と共に通液し、カラム内で分子量の大小によって分離させ、それを示差屈折率計やUV計、粘度計、光散乱検出器等を検出器として用いて検出する。重量平均分子量は、標準ポリスチレン換算値で表示することが一般的である。本明細書における重量平均分子量は、この標準ポリスチレン換算値で表示された値である。使用するカラムは、想定される重量平均分子量にしたがって適宜選択すればよい。
[シリコーン樹脂(1)]
 前記シリコーン樹脂の好ましい例としては、前記フッ素原子含有シラン化合物由来の構成単位が下記一般式(1)で表される化合物(以下、「フッ素原子含有シラン化合物(1)」と略記することがある。)由来の構成単位であるシリコーン樹脂であり、前記シラン化合物由来の構成単位を含む縮合物の総質量に対して、前記フッ素原子含有シラン化合物(1)由来の構成単位の割合が、52質量%以上、100質量%以下であるシリコーン樹脂(本明細書においては、「シリコーン樹脂(1)」と称することがある。)が挙げられる。
 R SiX 4-n ・・・・(1)
(式中、nは1又は2であり;Rは炭素原子数1~20の部分フッ素化アルキル基であり;Xはアルコキシ基、塩素原子、臭素原子又はヨウ素原子である。)
 フッ素原子含有シラン化合物(1)において、Rは炭素原子数1~20の部分フッ素化アルキル基である。
 Rにおける前記部分フッ素化アルキル基で、水素原子がフッ素原子で置換されているアルキル基は、直鎖状、分岐鎖状及び環状のいずれでもよく、環状である場合、単環状及び多環状のいずれでもよい。
 水素原子がフッ素原子で置換されている、直鎖状又は分岐鎖状の前記アルキル基は、炭素原子数が1~20であり、前記アルキル基それ自体としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、tert-ペンチル基、1-メチルブチル基、n-ヘキシル基、2-メチルペンチル基、3-メチルペンチル基、2,2-ジメチルブチル基、2,3-ジメチルブチル基、n-ヘプチル基、2-メチルヘキシル基、3-メチルヘキシル基、2,2-ジメチルペンチル基、2,3-ジメチルペンチル基、2,4-ジメチルペンチル基、3,3-ジメチルペンチル基、3-エチルペンチル基、2,2,3-トリメチルブチル基、n-オクチル基、イソオクチル基、2-エチルヘキシル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、オクタデシル基、ノナデシル基、イコシル基が例示できる。
 上記の中でも、メチル基、エチル基、プロピル基、ブチル基が好ましい。
 水素原子がフッ素原子で置換されている、環状の前記アルキル基は、炭素数が3~20であり、前記アルキル基それ自体としては、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、シクロノニル基、シクロデシル基、ノルボルニル基、イソボルニル基、1-アダマンチル基、2-アダマンチル基、トリシクロデシル基が例示でき、さらに、これら環状のアルキル基の少なくとも1個の水素原子が、直鎖状、分岐鎖状又は環状のアルキル基で置換された基が例示できる。
 ここで、前記環状アルキル基の水素原子を置換している直鎖状、分岐鎖状及び環状のアルキル基としては、水素原子がフッ素原子で置換されているアルキル基として例示した上記の基のうち、炭素原子数が1~17の直鎖状及び分岐鎖状のアルキル基、並びに炭素原子数が3~17の環状のアルキル基が挙げられる。
 前記炭素原子数が1~17の直鎖状及び分岐鎖状のアルキル基それ自体としては、例えば、メチル基、エチル基、プロピル基が好ましい。
 Rにおける前記部分フッ素化アルキル基で、炭素原子数が2以上である場合、フッ素原子が結合している炭素原子の位置は特に限定されないが、前記炭素原子は、シリコーン樹脂の酸化反応による劣化の抑制効果がより高い点では、部分フッ素化アルキル基としてケイ素原子に結合している炭素原子であるか、この炭素原子に近いほど好ましく、部分フッ素化アルキル基としてケイ素原子に結合している炭素原子であることがより好ましい。
 一方、Rにおける前記部分フッ素化アルキル基で、炭素原子数が2以上である場合、フッ素原子が結合している炭素原子は、フッ素原子含有シラン化合物(1)の製造又は市販品の入手が容易である点では、部分フッ素化アルキル基としてケイ素原子に結合している炭素原子から離れているほど好ましく、部分フッ素化アルキル基としてケイ素原子に結合している炭素原子とは反対側の末端の炭素原子であることがより好ましい。
 Rにおける前記部分フッ素化アルキル基は、炭素原子数が1~15であることがより好ましく、1~10であることがさらに好ましく、1~6であることが特に好ましく、1~3であることが最も好ましい。具体的には、トリフルオロプロピル基であることが好ましい。
 フッ素原子含有シラン化合物(1)において、Xはアルコキシ基、塩素原子、臭素原子又はヨウ素原子である。
 Xにおける前記アルコキシ基は、酸素原子に結合しているアルキル基が、直鎖状、分岐鎖状及び環状のいずれでもよく、環状である場合、単環状及び多環状のいずれでもよい。
 Xにおける前記アルコキシ基としては、Rにおいて水素原子がフッ素原子で置換されている基のアルキル基それ自体として挙げた、直鎖状、分岐鎖状及び環状のアルキル基が、酸素原子に結合してなる1価の基が例示できる。
 以下、このようなアルキル基の形状に対応した、直鎖状、分岐鎖状及び環状のアルコキシ基について、より具体的に説明する。
 直鎖状又は分岐鎖状の前記アルコキシ基は、炭素原子数が1~20であることが好ましく、前記アルコキシ基としては、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、イソブトキシ基、sec-ブトキシ基、tert-ブトキシ基、n-ペンチルオキシ基、イソペンチルオキシ基、ネオペンチルオキシ基、tert-ペンチルオキシ基、1-メチルブチルオキシ基、n-ヘキシルオキシ基、2-メチルペンチルオキシ基、3-メチルペンチルオキシ基、2,2-ジメチルブチルオキシ基、2,3-ジメチルブチルオキシ基、n-ヘプチルオキシ基、2-メチルヘキシルオキシ基、3-メチルヘキシルオキシ基、2,2-ジメチルペンチルオキシ基、2,3-ジメチルペンチルオキシ基、2,4-ジメチルペンチルオキシ基、3,3-ジメチルペンチルオキシ基、3-エチルペンチルオキシ基、2,2,3-トリメチルブチルオキシ基、n-オクチルオキシ基、イソオクチルオキシ基、2-エチルヘキシルオキシ基、ノニルオキシ基、デシルオキシ基、ウンデシルオキシ基、ドデシルオキシ基、トリデシルオキシ基、テトラデシルオキシ基、ペンタデシルオキシ基、ヘキサデシルオキシ基、ヘプタデシルオキシ基、オクタデシルオキシ基、ノナデシルオキシ基、イコシルオキシ基が例示できる。上記の中でも、メチル基、エチル基が好ましい。
 環状の前記アルコキシ基は、炭素原子数が3~20であることが好ましく、前記アルコキシ基としては、シクロプロピルオキシ基、シクロブチルオキシ基、シクロペンチルオキシ基、シクロヘキシルオキシ基、シクロヘプチルオキシ基、シクロオクチルオキシ基、シクロノニルオキシ、シクロデシルオキシ基、ノルボルニルオキシ基、イソボルニルオキシ基、1-アダマンチルオキシ基、2-アダマンチルオキシ基、トリシクロデシルオキシ基が例示でき、さらに、これら環状のアルコキシ基の1個以上の水素原子が、直鎖状、分岐鎖状又は環状のアルキル基で置換されたものが例示できる。上記の中でも、シクロヘキシル基、シクロペンチル基が好ましい。
 環状のアルコキシ基の水素原子を置換している前記アルキル基としては、Rにおいて水素原子がフッ素原子で置換されている基のアルキル基それ自体として挙げた、直鎖状、分岐鎖状及び環状のアルキル基のうち、炭素原子数が1~17の直鎖状及び分岐鎖状のアルキル基、並びに炭素原子数が3~17の環状のアルキル基が挙げられる。
 Xにおける前記アルコキシ基は、炭素原子数が1~15であることがより好ましく、1~10であることがさらに好ましく、1~5であることが特に好ましく、1~3であることが最も好ましい。具体的には、メチル基、エチル基であることが好ましい。
 フッ素原子含有シラン化合物(1)において、nはRの1個のケイ素原子(Si)への結合数を意味し、ここでは1又は2である。そして、Xの1個のケイ素原子(Si)への結合数は「4-n」で表され、その値は2又は3である。
 フッ素原子含有シラン化合物(1)で入手可能な市販品の例としては、トリクロロ(1H,1H,2H,2H-トリデカフルオロ-n-オクチル)シラン、トリクロロ(1H,1H,2H,2H-ヘプタデカフルオロデシル)シラン、トリメトキシ(3,3,3-トリフルオロプロピル)シラン、トリエトキシ-1H,1H,2H,2H-ヘプタデカフルオロデシルシラン、トリメトキシ(1H,1H,2H,2H-ヘプタデカフルオロデシル)シラン、トリメトキシ(1H,1H,2H,2H-ノナフルオロヘキシル)シラン、トリクロロ(1H,1H,2H,2H-トリデカフルオロ-n-オクチル)シラン等が挙げられる。中でもトリメトキシ(3,3,3-トリフルオロプロピル)シランを他のフッ素含有シランよりも多く含むことが好ましい。トリメトキシ(3,3,3-トリフルオロプロピル)シランが多いと、後述する硬化物を得る際の加熱時間を短縮できる傾向にある。
 また、フッ素原子含有シラン化合物(1)は公知の方法で得られる。例えば、ケイ素原子にエチレン基(-CHCH-)を介してフルオロアルキル基が結合した構造を有する化合物であれば、分子末端にビニル基(-CH=CH)を有するフルオロアルケンを、Si-H結合を有する化合物とプラチナ触媒存在下で反応させるヒドロシリル化反応を行うことによって得られる。
 シリコーン樹脂(1)は、前記シラン化合物の縮合物の総質量に対して、フッ素原子含有シラン化合物(1)由来の構成単位の含有割合が52質量%以上の樹脂であり、前記割合が55質量%以上の樹脂が好ましく、60質量%以上の樹脂がより好ましい。フッ素原子含有シラン化合物(1)由来の構成単位の前記割合が前記下限値以上であることで、シリコーン樹脂(1)及びその硬化物の酸化反応による劣化の抑制効果がより高くなる。一方、フッ素原子含有シラン化合物(1)由来の構成単位の前記割合の上限値は、特に限定されず、前記シラン化合物の縮合物の総質量に対して100質量%、すなわち、縮合した前記シラン化合物由来の構成単位がすべてフッ素原子含有シラン化合物(1)由来の構成単位であってもよい。
 すなわち、シリコーン樹脂(1)は、前記シラン化合物の縮合物の総質量に対して、フッ素原子含有シラン化合物(1)由来の構成単位の含有割合が52質量%以上、100質量%以下の樹脂であり、前記割合が55質量%以上、100質量%以下の樹脂であることが好ましく、60質量%以上、100質量%以下の樹脂であることがより好ましい。
 本発明の1つの側面において、フッ素原子含有シラン化合物(1)由来の構成単位は、下記一般式(1’)で表される。
Si(-O-)4-n ・・・・(1’)
(式中、n及びRは前記と同じ意味を有する)
[シリコーン樹脂(2)]
 前記シリコーン樹脂の好ましい他の例としては、前記フッ素原子含有シラン化合物由来の構成単位が下記一般式(2)で表される化合物(以下、「フッ素原子含有シラン化合物(2)」と略記することがある。)由来の構成単位である樹脂であり、前記シリコーン樹脂の平均官能数が3.0以下である樹脂(本明細書においては、「シリコーン樹脂(2)」と称することがある。)が挙げられる。 R SiX 4-m ・・・・(2)
(式中、mは1又は2であり;Rは炭素原子数1~20のパーフルオロアルキル基であり;Xはアルコキシ基、塩素原子、臭素原子又はヨウ素原子である。)
 フッ素原子含有シラン化合物(2)において、Rは炭素原子数1~20のパーフルオロアルキル基であり、直鎖状、分岐鎖状及び環状のいずれでもよく、環状である場合、単環状及び多環状のいずれでもよい。
 Rにおけるパーフルオロアルキル基は、一般式「C2l+1(式中、lは1~20の整数である。)」で表されるものであり、例えば、Rにおける前記部分フッ素化アルキル基において、水素原子がすべてフッ素原子で置換された基が挙げられる。
 Rにおける前記パーフルオロアルキル基は、炭素原子数が1~15であることがより好ましく、1~10であることがさらに好ましく、1~5であることが特に好ましく、1~3であることが最も好ましい。具体的には、トリフルオロメチル基、ペンタフルオロエチル基、トリフルオロプロピル基が好ましい。
 フッ素原子含有シラン化合物(2)において、Xはアルコキシ基、塩素原子、臭素原子又はヨウ素原子であり、フッ素原子含有シラン化合物(1)におけるXと同じ基が挙げられる。
 フッ素原子含有シラン化合物(2)において、mはRの1個のケイ素原子(Si)への結合数を意味し、ここでは1又は2である。そして、Xの1個のケイ素原子(Si)への結合数は「4-m」で表され、その値は2又は3である。
 フッ素原子含有シラン化合物(2)として、より具体的には、
 トリフルオロメチルトリクロロシラン、トリフルオロメチルトリメトキシシラン、トリフルオロメチルトリエトキシシラン、パーフルオロエチルトリクロロシラン、パーフルオロエチルトリメトキシシラン、パーフルオロエチルトリエトキシシラン、パーフルオロプロピルトリクロロシラン、パーフルオロプロピルトリメトキシシラン、パーフルオロプロピルトリエトキシシラン、パーフルオロペンチルトリクロロシラン、パーフルオロペンチルトリメトキシシラン、パーフルオロペンチルトリエトキシシラン、パーフルオロオクチルトリクロロシラン、パーフルオロオクチルトリメトキシシラン、パーフルオロオクチルトリエトキシシラン等のmが1のフッ素原子含有シラン化合物(2);
ジ(トリフルオロメチル)ジクロロシラン、ジ(トリフルオロメチル)ジメトキシシラン、ジ(トリフルオロメチル)ジエトキシシラン、ジ(パーフルオロエチル)ジクロロシラン、ジ(パーフルオロエチル)ジメトキシシラン、ジ(パーフルオロエチル)ジエトキシシラン、ジ(パーフルオロプロピル)ジクロロシラン、ジ(パーフルオロプロピル)ジメトキシシラン、ジ(パーフルオロプロピル)ジエトキシシラン、ジ(パーフルオロペンチル)ジクロロシラン、ジ(パーフルオロペンチル)ジメトキシシラン、ジ(パーフルオロペンチル)ジエトキシシラン、ジ(パーフルオロオクチル)ジクロロシラン、ジ(パーフルオロオクチル)ジメトキシシラン、ジ(パーフルオロオクチル)ジエトキシシラン等のmが2のフッ素原子含有シラン化合物(2);
が例示できるが、フッ素原子含有シラン化合物(2)はこれらに限定されない。
 上記の中では、トリフルオロメチルトリメトキシシラン、トリフルオロメチルトリエトキシシラン、パーフルオロエチルトリメトキシシラン、パーフルオロエチルトリエトキシシラン、パーフルオロプロピルトリメトキシシラン、パーフルオロプロピルトリエトキシシランが好ましい。
 シリコーン樹脂(2)は、平均官能数が2.0以上、3.0以下であり、前記式(F4)によって算出される値が、2.0以上、3.0以下となる。
 フッ素原子含有シラン化合物(2)は、公知の方法に従って製造できる。
 例えば、「Journal of Organometallic Chemitry,316(1986)41」には、下記式で示すように、リン化合物を用いてフッ素原子含有シラン化合物(2)を製造する方法が開示されている。
Figure JPOXMLDOC01-appb-C000001
 また、例えば、「特開平9-53022号公報」には、下記式で示すように、グリニヤール(Grignard)試薬を用いてフッ素原子含有シラン化合物(2)を製造する方法が開示されている。
Figure JPOXMLDOC01-appb-C000002
 また、例えば、「Angew. Chem. Int. Ed.,53,5206」には、下記式で示すように、リチウム化合物を用いてフッ素原子含有シラン化合物(2)を製造する方法が開示されている。
Figure JPOXMLDOC01-appb-C000003
 ただし、ここで示す製造方法は一例であり、フッ素原子含有シラン化合物(2)の製造方法は、これらに限定されない。一方で、ここで挙げられていないフッ素原子含有シラン化合物(2)は、ここで挙げた方法を参考にして製造することができる。
 シリコーン樹脂(2)としては、前記シラン化合物の縮合物の総質量に対して、フッ素原子含有シラン化合物(2)由来の構成単位の含有割合が10質量%以上の樹脂が好ましく、20質量%以上の樹脂がより好ましく、30質量%以上の樹脂がよりさらに好ましい。フッ素原子含有シラン化合物(2)由来の構成単位の前記割合が前記下限値以上であることで、シリコーン樹脂(2)及びその硬化物の酸化反応による劣化の抑制効果がより高くなる。一方、フッ素原子含有シラン化合物(2)由来の構成単位の前記割合の上限値は、特に限定されず、前記シラン化合物の縮合物の総質量に対して100質量%、すなわち、縮合した前記シラン化合物がすべてフッ素原子含有シラン化合物(2)由来の構成単位であってもよい。
 すなわち、シリコーン樹脂(2)としては、前記シラン化合物の縮合物の総質量に対して、フッ素原子含有シラン化合物(2)由来の構成単位の含有割合が10質量%以上、100質量%以下の樹脂が好ましく、20質量%以上、100質量%以下の樹脂がより好ましく、30質量%以上、100質量%以下の樹脂がよりさらに好ましい。
 本発明の1つの側面において、フッ素原子含有シラン化合物(2)由来の構成単位は下記一般式(2’)で表される。
 R Si(-O-)4-m ・・・・(2’)
(式中、m及びRは前記と同じ意味を有する。)
 従来のシリコーン樹脂において、劣化の原因となる酸化反応は、以下のようにラジカルの発生と反応を介して進行すると推測される。
 すなわち、下記式(i)で示すように、シリコーン樹脂中の「SiCH」からは「SiCH・」が生じる。さらに、この「SiCH・」からは、下記式(ii)で示すように、「SiCH・」を介して「SiO・」が生じ、また、下記式(iii)で示すように、「SiCHO・」を介して「Si・」が生じる。そして、下記式(iv)で示すように、これら「SiO・」と「Si・」が反応して、主鎖の構造が変化し、シリコーン樹脂が劣化すると考えられる。なお、下記式(i)~(iv)において、ケイ素原子の一部の結合は省略している。
 SiCH + O → SiCH・ + HO・ ・・・・(i)
 SiCH・ + O → SiCH・ → SiO・ + CHO ・・・・(ii)
 2(SiCH・) + O → 2(SiCHO・) → 2Si・ + 2CHO ・・・・(iii)
 SiO・ + Si・ → SiOSi ・・・・(iv)
 したがって、例えば、耐光性試験の前後でシリコーン樹脂の赤外吸収スペクトルを測定し、Si-CH結合に由来する1260~1270cm-1のピーク強度とSi-O-Si結合に由来する950~1180cm-1のピーク強度とを比較することにより、シリコーン樹脂の酸化反応による劣化を評価することができる。
 すなわち、光照射の前後で、前者のピーク強度が減少し、後者のピーク強度が増加するほどシリコーン樹脂の耐光性は低く、それらのピーク強度の変化が小さいほどシリコーン樹脂の耐光性は高いと評価できる。
 このように、シリコーン樹脂の酸化反応は、式(i)で示すように、炭素原子からの水素原子の引き抜きが起点となり、式(ii)及び式(iii)で示すように、炭素原子とケイ素原子との間の結合が開裂することで、進行すると考えられる。
 一方で、シリコーン樹脂の酸化反応による劣化は、前記式(i)~式(iii)で示されるいずれか一つの反応を抑制することで、抑制できると考えられる。そこで、まず、式「-O-Si(-CH)(-O-)-O-」で表される基における前記酸化反応を想定し、前記式(i)の反応の反応熱ΔE1、前記式(ii)の反応の反応熱ΔE2、及び前記式(iii)の反応の反応熱ΔE3を、下記条件でそれぞれ量子化学計算により求めた。ここで、ΔE1、ΔE2及びΔE3は、それぞれの反応における、反応後の化合物の生成熱の総和と反応前の化合物の生成熱の総和との差で表すことができる。この量子化学計算の結果を図1に示す。
 図1に示すように、ΔE1は約59kcal/モル、ΔE2は約-68kcal/モル、ΔE3は約-16kcal/モルであり、ΔE1>ΔE3>ΔE2であった。
(反応熱ΔE1、ΔE2及びΔE3の量子化学計算の条件)
 量子化学計算には、プログラムGaussian09 Revisopn A02を使用し、構造最適化計算を行い、生成熱を求めた。量子化学計算法は、密度汎関数法(Density Functional Theory)を採用し、汎関数にはB3LYPを採用した。また、基底関数として、6-311G*を採用した。
 上記結果から、シリコーン樹脂の酸化反応による劣化を抑制するためには、式(i)の反応を抑制することが最も有効であると考えられる。
 式(i)の反応、すなわち、炭素原子からの水素原子の引き抜きを抑制する方法の例としては、水素原子をあらかじめフッ素原子で置換しておく方法が挙げられる。
 ここで、上述の式「-O-Si(-CH)(-O-)-O-」で表される基の反応熱ΔE1(ここでは、別途「ΔE1(TH)」と記載することもある。)と同様に、量子化学計算により、式「-O-Si(-CH-O-」で表される基の反応熱ΔE1(DH)、式「-O-Si(-CF)(-O-)-O-」で表される基の反応熱ΔE1(TF)、式「-O-Si(-CF-O-」で表される基の反応熱ΔE1(DF)を算出した。この量子化学計算の結果を図2に示す。
 図2は、ΔE1(TF)>ΔE1(TH)、ΔE1(DF)>ΔE1(DH)であり、「-CF」のフッ素原子は「-CH」の水素原子よりも、炭素原子との結合が切断されにくいことを示した。
 ここまでは、一例として、「SiCH」の1個の水素原子がフッ素原子で置換された例を示しているが、例えば、「SiCHCH」、「SiCHCHCH」等の、ケイ素原子にアルキル基が結合した基として「SiCH」以外の基において、1個の水素原子がフッ素原子で置換された場合にも、上記と同様の反応熱の関係となる。また、「SiCH」、「SiCHCH」、「SiCHCHCH」等の、ケイ素原子にアルキル基が結合した基において、1個ではなく2個以上の水素原子がフッ素原子で置換された場合にも、上記と同様の反応熱の関係となる。
 すなわち、ケイ素原子にアルキル基が結合した基においては、少なくとも1個の水素原子がフッ素原子で置換された場合に、上記のように反応熱ΔE1が大きくなり、通常は、フッ素原子で置換された水素原子の数が多いほど、反応熱が大きくなる。したがって、反応熱を大きくするためには、ケイ素原子に結合しているフッ素化アルキル基は、フッ素原子の数は少なくとも1個であればよいが、その個数が多いほど好ましく、すべての水素原子がフッ素原子で置換されたパーフルオロアルキル基であることがより好ましい。この観点では、例えば、フッ素化メチル基の場合、最も好ましい基はトリフルオロメチル基(-CF)であり、その次に好ましい基はジフルオロメチル基(-CFH)であり、その次に好ましい基はフルオロメチル基(-CFH)である。なお、ケイ素原子にフッ素化アルキル基が結合している場合、フッ素原子で置換された水素原子の数によらず、ΔE1>ΔE2、及びΔE1>ΔE3となる。
 また、ケイ素原子に結合しているフッ素化アルキル基が部分フッ素化アルキル基である場合、前記部分フッ素化アルキル基において、フッ素原子が結合している炭素原子は、前記ケイ素原子に近い炭素原子ほど好ましく、前記ケイ素原子に直接結合している(すなわち、隣接している)炭素原子がより好ましい。この観点では、例えば、モノフルオロプロピル基の場合、最も好ましい基は1-フルオロプロピル基(-CFHCHCH)であり、その次に好ましい基は2-フルオロプロピル基(-CHCFHCH)であり、その次に好ましい基は3-フルオロプロピル基(-CHCHCFH)である。
 また、ケイ素原子に結合しているフッ素化アルキル基が部分フッ素化アルキル基である場合、前記部分フッ素化アルキル基でフッ素原子の数が同じ基では、前記ケイ素原子により近い炭素原子により多くのフッ素原子が結合している基が好ましい。この観点では、例えば、トリフルオロエチル基の場合、最も好ましいのは1,1,2-トリフルオロエチル基(-CFCFH)であり、その次に好ましい基は1,2,2-トリフルオロエチル基(-CFHCFH)であり、その次に好ましい基は2,2,2-トリフルオロエチル基(-CHCF)である。
 これらの結果からも示唆されるように、上述のフッ素原子含有シラン化合物(1)及びフッ素原子含有シラン化合物(2)はいずれも、シリコーン樹脂の酸化反応による劣化を抑制する目的での使用に好適なモノマーであり、シリコーン樹脂(1)及びシリコーン樹脂(2)並びにこれらの硬化物は、このようなモノマーの縮合物であることで、酸化反応による劣化が抑制される。
 上述のような反応熱の観点では、前記シリコーン樹脂の好ましい例としては、ケイ素原子及び炭素原子間の結合(Si-C結合)を有し、このようなSi-C結合として、このSi-C結合が酸化反応によりラジカル的に開裂する時の反応熱が、「SiCH」のケイ素原子及び炭素原子間の結合(Si-C結合)が酸化反応によりラジカル的に開裂するときの反応熱よりも大きい結合(以下、「難開裂性Si-C結合」と略記することがある)を少なくとも1個有する樹脂が挙げられる。そして、前記シリコーン樹脂のこのようなSi-C結合(すなわち、難開裂性Si-C結合)の例としては、フルオロアルキル基とケイ素原子との間の結合が挙げられ、このときのフルオロアルキル基の例としては、上述のフッ素原子含有シラン化合物(1)、又は前記化合物(1)由来の構成単位における部分フッ素化アルキル基と、フッ素原子含有シラン化合物(2)又は前記化合物(2)由来の構成単位におけるパーフルオロアルキル基が挙げられる。
 前記シリコーン樹脂において、Si-C結合の総数に対する前記難開裂性Si-C結合の数の割合は、10%以上、100%以下であることが好ましく、20%以上、100%以下であることがより好ましい。
 前記シリコーン樹脂は、これを構成するためのモノマーである前記シラン化合物として、1種のシラン化合物を単独で、又は2種以上のシラン化合物を目的とする比率で用い、縮合(重縮合)反応させることで製造できる。前記シラン化合物を2種以上併用する場合、その組み合わせ及び比率は任意に設定できる。
 縮合反応は、用いる原料が異なる点以外は、従来のシリコーン樹脂の場合と同じ方法で行うことができる。
 例えば、前記シリコーン樹脂の構成に必要なモノマー(すなわち、前記シラン化合物)を、酸性水溶液又は塩基性水溶液の共存下、必要に応じて2-プロパノール、メチルイソブチルケトン等の溶媒を用い、好ましくは40~130℃の温度で、好ましくは1時間~48時間反応させることで、前記シリコーン樹脂が得られる。反応後は、必要に応じて洗浄等の後処理を行ってから、目的物を取り出せばよく、目的物を取り出さずにそのまま目的とする用途に用いてもよい。
 ただし、前記シリコーン樹脂の製造方法はここに示す方法に限定されない。
 前記シリコーン樹脂とその硬化物は、酸化反応による劣化が十分に抑制され、前記硬化物は、例えば、紫外光照射時の酸化反応に対して耐性が求められる用途での利用に好適である。なかでも、波長域が200nm以上、300nm以下の深紫外光の照射に対して、前記硬化物は顕著な耐性を有する。
 このような特性を有する前記シリコーン樹脂及び硬化物は、半導体発光素子の封止材への適用に好適であり、例えば、UV(紫外)-LED(発光ダイオード)の封止材への適用に特に好適である。
<シリコーン樹脂組成物、硬化物>
 前記シリコーン樹脂は、加熱により硬化させることができ、これにより硬化物が得られる。
 前記硬化物を得るためには、前記シリコーン樹脂と、前記シリコーン樹脂以外の他の成分とを含有するシリコーン樹脂組成物を用いて、これを硬化させればよい。
 前記シリコーン樹脂組成物中のシリコーン樹脂の含有量は、この組成物の用途に応じて適宜調節すればよいが、通常は、前記シリコーン樹脂組成物の総質量に対して、60質量%以上であることが好ましく、70質量%以上であることがより好ましい。
[他の成分]
 前記シリコーン樹脂組成物は、前記シリコーン樹脂と、前記シリコーン樹脂以外の他の成分とを含有する組成物であり、前記他の成分は目的に応じて任意に選択できる。
 前記他の成分は、1種類の成分を単独で用いてもよいし、2種類以上の成分を併用してもよく、2種類以上の成分を併用する場合、その組み合わせ及び比率は任意に設定できる。
 前記他の成分として好ましい例としては、硬化触媒、シランカップリング剤、無機粒子、蛍光体、改質用シリコーン化合物、消泡剤、溶媒等が挙げられる。
 前記シリコーン樹脂組成物中の前記他の成分の含有量は、この組成物の用途に応じて適宜調節すればよいが、通常は、前記シリコーン樹脂組成物の総質量に対して、5質量%以上、40質量%以下であることが好ましく、10質量%以上、30質量%以下であることがより好ましい。
(硬化触媒)
 前記硬化触媒は、シリコーン樹脂の縮合反応を促進し得る触媒であれば特に限定されない。
 硬化触媒の例としては、塩酸、硫酸、硝酸、リン酸系化合物等の無機酸又はその誘導体;ギ酸、酢酸、シュウ酸、クエン酸、プロピオン酸、酪酸、乳酸、コハク酸等の有機酸;水酸化アンモニウム、水酸化テトラメチルアンモニウム、水酸化テトラエチルアンモニウム等のアルカリ性化合物;金属成分としてスズ(Sn)、亜鉛(Zn)、鉄(Fe)、チタン(Ti)、ジルコニウム(Zr)、ビスマス(Bi)、ハフニウム(Hf)、イットリウム(Y)、アルミニウム(Al)、ホウ素(B)及びガリウム(Ga)からなる群から選択される1種又は2種以上の金属を含む有機錯体又は有機酸塩等の有機金属化合物等が挙げられる。
 前記硬化触媒は、反応活性が高い点から、スズ、チタン、亜鉛、ジルコニウム、ハフニウム、又はガリウムを含む前記有機金属化合物が好ましい。さらに、前記硬化触媒は、発光デバイスに用いる場合に電極腐食や光吸収が少なく、適度な触媒活性を有し、ポリシロキサン鎖の不要な切断劣化が起こりにくい点から、ジルコニウム、ハフニウム、又はガリウムを含む前記有機金属化合物が特に好ましい。
 スズを含む前記有機金属化合物の例としては、テトラアルキルスズ、ジアルキルスズオキサイド、ジアルキルスズジカーボネート等が挙げられる。ジアルキルスズジカーボネートにおいて、前記アルキル基及びカルボン酸の炭素原子数は、1~10であることが好ましい。
 チタンを含む前記有機金属化合物の例としては、テトラアルコキシチタン、テトラアルコキシチタンのオリゴマー、チタンアセチルアセトナート等が挙げられる。テトラアルコキシチタン及びテトラアルコキシチタンのオリゴマーにおけるアルキル基の炭素原子数は、3~8であることが好ましい。
 亜鉛を含む前記有機金属化合物の例としては、亜鉛トリアセチルアセトネート、ステアリン酸亜鉛、ビス(アセチルアセトナト)亜鉛(II)(一水和物)等が挙げられる。
 ジルコニウムを含む前記有機金属化合物の例としては、ジルコニウムテトラアセチルアセトネート、ジルコニウムジブトキシジアセチルアセトネート、ジルコニウムテトラアルコキシド、ジルコニル(2-エチルヘキサノエート)、ジルコニウム(2-エチルヘキサノエート)等が挙げられる。ジルコニウムテトラアルコキシドにおけるアルキル基の炭素原子数は、3~8であることが好ましい。
 ハフニウムを含む前記有機金属化合物の例としては、ジルコニウムを含む前記有機金属化合物において、金属種をハフニウムに代えた化合物(例えば、ハフニウムテトラアセチルアセトネート等)が挙げられる。
 ガリウムを含む前記有機金属化合物の例としては、ガリウムトリアセチルアセトネート、ガリウムトリアルコキシド、ガリウムオクトエート、ガリウムラウレート、酢酸ガリウム等が挙げられる。ガリウムトリアルコキシドにおけるアルキル基の炭素原子数は、2~8であることが好ましい。
 前記無機酸又はその誘導体としては、シリコーン成分との相溶性や硬化促進性の観点から、リン酸系触媒(リン酸系化合物)が好ましい。
 前記リン酸系化合物としては、下記一般式(Z1)及び(Z2)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000004
(式中、Mは対カチオンであり;*は他の原子又は原子団であり;zは0~2の整数であり;Mが複数個である場合、これら複数個のMは、それぞれ互いに同一でも異なっていてもよく、*が複数個である場合、これら複数個の*は、それぞれ互いに同一でも異なっていてもよい。)
 前記Mの対カチオンの例としては、水素イオンが挙げられる。
 前記*の他の原子又は原子団の例としては、一般式「OG」及び「G」(式中、Gは一価の有機基である。)で表される原子又は原子団等が挙げられる。
 前記一価の有機基としては、例えばメチル基、エチル基、メトキシ基、エトキシ基が挙げられる。
 前記リン酸系化合物の例として、より具体的には、リン酸、亜リン酸、リン酸エステル、亜リン酸エステル等が挙げられる。
 前記硬化触媒は、所定の濃度でシリコーン樹脂組成物に配合するために、有機溶媒やシリコーン樹脂組成物に馴染みやすいシリコーンモノマーやシリコーンオリゴマー等により希釈した状態で、シリコーン樹脂組成物に配合してもよい。ここで、前記シリコーンモノマー及びシリコーンオリゴマーは、上述のフッ素原子含有シラン化合物(1)及びフッ素原子含有シラン化合物(2)のいずれにも該当しないものである。
 前記硬化触媒は、1種を単独で用いてもよいし、2種以上を併用してもよく、2種以上を併用する場合、その組み合わせ及び比率は任意に設定できる。
 また、前記硬化触媒は、反応促進剤や反応抑制剤と併用してもよい。
 前記シリコーン樹脂組成物中の硬化触媒の含有量は、硬化反応時の加熱温度、反応時間、硬化触媒の種類等を考慮して、適宜調節できる。例えば、前記シリコーン樹脂の含有量に対して、好ましくは0.001~3.0質量%、より好ましくは0.001~1.5質量%とすることができる。
 前記硬化触媒として前記有機金属化合物を用いる場合、前記シリコーン樹脂組成物中の前記硬化触媒の含有量は、前記シリコーン樹脂の含有量に対して、金属原子換算で好ましくは0.001~0.5質量%、より好ましくは0.003~0.2質量%とすることができる。前記有機金属化合物の含有量は、その金属成分の高周波誘導結合プラズマ(ICP)分析により測定できる。
 前記硬化触媒として前記リン酸系化合物を用いる場合、前記シリコーン樹脂組成物の前記硬化触媒の含有量は、前記シリコーン樹脂の含有量に対して、好ましくは0.1~3.0質量%、より好ましくは0.2~1.5質量%とすることができる。
 前記硬化触媒は、硬化反応を行う直前に前記シリコーン樹脂組成物に配合してもよいし、硬化触媒以外の成分と共にあらかじめ前記シリコーン樹脂組成物に配合しておいてもよい。
(シランカップリング剤)
 前記シランカップリング剤は、本硬化物と適用対象物(半導体発光素子、パッケージ等)との密着性を向上させる。
 前記シランカップリング剤の例としては、エテニル基(ビニル基)、エポキシ基、スチリル基、(メタ)アクリル基、アミノ基、ウレイド基、メルカプト基、スルフィド基及びイソシアネート基からなる群から選択される1種又は2種以上を有するシランカップリング剤が挙げられ、これらの中でも、エポキシ基又はメルカプト基を有するカップリング剤が好ましい。このような好ましいシランカップリング剤の例としては、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシラン、3-メルカプトプロピルメチルジメトキシシラン、3-メルカプトプロピルトリメトキシシランが挙げられる。
 なお、本明細書において、「(メタ)アクリル基」とは、アクリル基及びメタクリル基の両方を包括する概念とする。
 前記シリコーン樹脂組成物のシランカップリング剤の含有量は、シリコーン樹脂組成物の固形分100質量部に対して、好ましくは0.0001~1.0質量部、より好ましくは0.001~0.5質量部である。
 前記シランカップリング剤は、前記シリコーン樹脂組成物に配合して用いることができるが、シリコーン樹脂組成物の本硬化物の適用対象物(半導体発光素子、パッケージ等)の表面に、コーティングや浸漬処理によってあらかじめ付着させておき、その後シリコーン樹脂組成物をポッティング等で形成して、硬化させてもよい。
(無機粒子)
 前記シリコーン樹脂組成物が無機粒子及び蛍光体を含有することにより、前記硬化物(封止材)は、例えば、半導体発光素子からの光の強度を高めることができる。
 前記無機粒子は、前記硬化物(すなわち、封止材)中で光を散乱させて蛍光体を効果的に励起させる機能;蛍光体がシリコーン樹脂組成物中で沈降することを防止する機能;シリコーン樹脂組成物の粘度を調節する機能;前記硬化物(すなわち、封止材)の光散乱性、屈折率、寸法安定性、及び機械的強度を改良する機能等を有する。
 前記無機粒子の例としては、ケイ素、チタン、ジルコニウム、アルミニウム、鉄又は亜鉛等の酸化物;カーボンブラック;チタン酸バリウム;ケイ酸カルシウム;炭酸カルシウム等が挙げられる。これらの中でも、前記無機粒子は、ケイ素の酸化物、チタンの酸化物又はアルミニウムの酸化物であることが好ましく、さらに、UV光の吸収率が低いという点では、ケイ素の酸化物又はアルミニウムの酸化物であることがより好ましい。
 前記無機粒子の形状の例としては、略球状、板状、柱状、針状、ウィスカー状、繊維状等が挙げられる。
 前記無機粒子の材質は1種のみであってもよいし、2種以上であってもよく、2種以上である場合、その組み合わせ及び比率は任意に設定できる。
 また、前記無機粒子は、2以上の粒子径の無機粒子を含むことが好ましく、一次粒子の平均粒子径が100~500nmである無機粒子と、一次粒子の平均粒子径が100nm未満である無機粒子との、少なくとも2種を含むことがより好ましい。一次粒子の平均粒径が異なる2種以上の無機粒子を含むことにより、前記硬化物(封止材)において、光の散乱による蛍光体の励起効率がより向上し、蛍光体の沈降防止効果がより向上する。
 一次粒子の平均粒子径は、例えば、電子顕微鏡等により直接粒子を観察する画像イメージング法等により求められる。より具体的には、測定対象となる無機粒子を任意の溶媒に、超音波の照射等によって充分に分散させた分散液をスライドガラス等に滴下し、乾燥させたもの、又は接着テープの接着面に直接無機粒子を振りかける等の操作によって付着させたものを、走査型電子顕微鏡(SEM)、透過型電子顕微鏡(TEM)等により観察し、その形状から寸法を割り出すことによって、一次粒子の平均粒子径が求められる。このとき、例えば、無機粒子の投影面積を求め、この面積に相当する円の直径を求めて粒子径としてもよい。この場合、例えば、100個以上(好ましくは100個)の粒子について粒子径を求め、算術平均することにより平均粒子径とするとよい。
 前記シリコーン樹脂組成物中の無機粒子の含有量は、特に限定されないが、例えば、前記シリコーン樹脂の含有量に対して、好ましくは0.01~10質量%、より好ましくは0.1~5質量%とすることができる。
(蛍光体)
 前記蛍光体は特に限定されず、その例としては、波長570~700nmの範囲で蛍光を発する赤色蛍光体、490~570nmの範囲で蛍光を発する緑色蛍光体、420~480nmの範囲で蛍光を発する青色蛍光体等が挙げられる。また、明るさや色度によって複数種の蛍光体を併用してもよい。
 前記シリコーン樹脂組成物の蛍光体の含有量は、特に限定されず、半導体発光素子の光量や、半導体発光装置として必要な色度や明るさ等の、適用対象物の特性を考慮して、適宜調節できる。
 前記シリコーン樹脂組成物に前記無機粒子及び蛍光体を配合する場合、蛍光体は沈降し易いため、あらかじめ無機粒子を先に添加しておき、次いで蛍光体を添加してシリコーン樹脂組成物とした後に、この組成物を速やかに適用対象物(半導体発光素子等)の封止に供することが好ましい。
 前記シリコーン樹脂組成物中の蛍光体の含有量は、特に限定されないが、例えば、前記シリコーン樹脂の含有量に対して、好ましくは1~50質量%、より好ましくは5~40質量%とすることができる。
(改質用シリコーン化合物)
 前記改質用シリコーン化合物は、前記シリコーン樹脂に該当しないシリコーン化合物であり、例えば、ジメチルシリコーンオイル、アミノシリコーン、エポキシシリコーンなどが挙げられ、通常の市販品を用いることができる。改質用シリコーン化合物を用いることにより、例えば、前記硬化物に柔軟性を付与できる。
 前記シリコーン樹脂組成物の前記改質用シリコーン化合物の含有量は、シリコーン樹脂組成物の固形分100質量部に対して、好ましくは0.1~20質量部(固形分)、より好ましくは0.5~10質量部である。
(消泡剤)
  前記消泡剤は、前記シリコーン樹脂組成物の混合時に気泡の発生を抑制する。
 前記シリコーン樹脂組成物の消泡剤の含有量は、シリコーン樹脂組成物の固形分100質量部に対して、好ましくは0.01~3質量部(固形分)、より好ましくは0.01~1質量部である。
(溶媒)
 前記溶媒は特に限定されず、例えば、有機溶媒等の各種溶媒を用いることができる。
 前記溶媒は、1種を単独で用いてもよいし、2種以上を併用してもよく、2種以上を併用する場合、その組み合わせ及び比率は任意に設定できる。
 前記シリコーン樹脂組成物の製造時において、各成分を配合する場合には、各成分をより均一に混合でき、かつその後の樹脂溶液の安定性を向上させることができる点から、溶媒以外の成分を一旦揮発性及び溶解性が高い有機溶媒中で溶解させた後、別の溶媒に置換することが好ましい。具体的には、まず、揮発性が高い有機溶媒(以下、「有機溶媒P」と略記することがある。)中に一以上の成分を投入し、有機溶媒Pの沸点付近の温度まで加熱して撹拌することによって溶解させる。次いで、必要に応じてさらに一以上の成分を投入して、同様に溶解させる操作を少なくとも1回繰り返す。その後、有機溶媒Pよりも揮発性が低い溶媒(以下、「溶媒Q」と略記することがある。)を投入し、有機溶媒Pの濃度が1%以下になるまで加熱することによって、有機溶媒Pから溶媒Qへの溶媒置換を行うことができる。その際、より効率的に溶媒置換を行うために、容器内を減圧(例えば、20hPa程度)にした状態で加熱してもよい。
 このような処理を行うことにより、例えば、各成分を合成した際に使用した溶媒で除去しきれずに残存した溶媒や、未反応のまま残った水等が、溶媒置換時に同時に除去され、樹脂溶液の安定性が向上する。
 有機溶媒Pは、沸点が100℃未満の有機溶媒が好ましい。このような有機溶媒Pの例としては、アセトン、メチルエチルケトン等のケトン;メタノール、エタノール、1-プロパノール、2-プロパノール等のアルコール;ヘキサン、ヘプタン、シクロヘキサン等の脂肪族炭化水素;ベンゼン等の芳香族炭化水素;酢酸メチル、酢酸エチル等のエステル;ジメチルエーテル、テトラヒドロフラン等のエーテル等が挙げられる。
 溶媒Qは、沸点が100℃以上の有機溶媒が好ましい。このような溶媒Qの例としては、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノイソプロピルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールモノヘキシルエーテル、エチレングリコールモノエチルヘキシルエーテル、エチレングリコールモノフェニルエーテル、エチレングリコールモノベンジルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノイソプロピルエーテル、ジエチレングリコールモノブチルエーテル、ジエチレングリコールモノヘキシルエーテル、ジエチレングリコールモノエチルヘキシルエーテル、ジエチレングリコールモノフェニルエーテル、ジエチレングリコールモノベンジルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノイソプロピルエーテル、プロピレングリコールモノブチルエーテル、プロピレングリコールモノヘキシルエーテル、プロピレングリコールモノエチルヘキシルエーテル、プロピレングリコールモノフェニルエーテル、プロピレングリコールモノベンジルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノイソプロピルエーテル、ジプロピレングリコールモノブチルエーテル、ジプロピレングリコールモノヘキシルエーテル、ジプロピレングリコールモノエチルヘキシルエーテル、ジプロピレングリコールモノフェニルエーテル、ジプロピレングリコールモノベンジルエーテル等のグリコールエーテル;エチレングリコールモノエチルエーテルアセテート、エチレングリコールモノイソプロピルエーテルアセテート、エチレングリコールモノブチルエーテルアセテート、エチレングリコールモノヘキシルエーテルアセテート、エチレングリコールモノエチルヘキシルエーテルアセテート、エチレングリコールモノフェニルエーテルアセテート、エチレングリコールモノベンジルエーテルアセテート等の、前記グリコールエーテルを酢酸エステル化したグリコールエステル;メチルイソブチルケトン等のケトン等が挙げられる。
 上記の中でも、エチレングリコールモノブチルエーテルアセテート、メチルイソブチルケトンが好ましい。
 前記溶媒は、通常は、液状組成物である前記シリコーン樹脂組成物の沸点が好ましくは40~250℃、より好ましくは100~230℃となるように、選択することが好ましい。
 前記シリコーン樹脂組成物の前記溶媒(例えば、溶媒Q)の含有量は、特に限定されず、目的に応じて適宜調節すればよいが、前記シリコーン樹脂組成物の総質量に対して、通常は、10質量%以上、30質量%以下であることが好ましい。
 前記シリコーン樹脂組成物としては、例えば、前記シリコーン樹脂の製造で得られた樹脂溶液を、必要に応じて洗浄等の後処理を行ってから、そのまま用いてもよい。
[シリコーン樹脂組成物の製造方法]
 前記シリコーン樹脂組成物は、前記シリコーン樹脂と、前記シリコーン樹脂以外の他の成分を配合することで製造できる。
 このときの配合方法は特に限定されず、各成分の添加順及び添加後の混合方法等は、任意に調節できる。例えば、混合方法は、撹拌子又は撹拌翼等を回転させて混合する方法;ミキサー、ビーズミル等を用いて混合する方法;超音波を照射して混合する方法等、公知の方法から適宜選択すればよい。前記有機溶媒P及び溶媒Qを用いる場合の好ましい配合方法は、先に説明したとおりである。
 前記シリコーン樹脂組成物は、これが含有する前記シリコーン樹脂の特性を反映して、半導体発光素子の封止材への適用に好適であり、例えば、UV(紫外)-LED(発光ダイオード)の封止材への適用に(UV-LED用封止材組成物として)特に好適である。
 すなわち、本発明の一実施形態であるUV-LED用封止材組成物の1つの側面は、前記シリコーン樹脂と、前記シリコーン樹脂以外の他の成分と、を含有し、
 前記他の成分は、硬化触媒、シランカップリング剤、無機粒子、蛍光体、改質用シリコーン化合物、消泡剤、及び溶媒からなる群から選択される少なくとも1つである、UV-LED用封止材組成物である。
 さらに、前記UV-LED用封止材組成物は、前記シリコーン樹脂の含有量が、前記UV-LED用封止材組成物の総質量に対して、60質量%以上、95質量%以下であることが好ましく、
 前記他の成分の含有量が、前記UV-LED用封止材組成物の総質量に対して、70質量%以上、90質量%以下であることが好ましく、
 前記シリコーン樹脂の含有量と前記他の成分の含有量の合計は、100質量%を超えない。
[硬化物及びその製造方法]
 前記硬化物は、前記シリコーン樹脂又はシリコーン樹脂組成物を加熱して、硬化させることにより製造できる。
 硬化時の加熱温度は、例えば、40~250℃とすることができ、加熱時間は、例えば、1時間~24時間とすることができるが、これらに限定されない。
 また、硬化時の加熱は、シリコーン樹脂組成物中の溶媒や水を除去し、シリコーン樹脂の縮合反応の速度を制御するために、例えば、加熱温度を段階的に上昇させて、段階的に硬化を行ってもよい。
 前記硬化物の比重は、1.0~1.4であることが好ましく、1.1~1.3であることがより好ましい。
 硬化物の比重は、一般的に体積と質量から求められる。硬化物の形状が不定形である場合には、市販品であるアルキメデス法による比重測定装置を用いることで測定できる。
 本発明の1つの側面は、前記シリコーン樹脂又はシリコーン樹脂組成物の硬化物である。
 別の側面は、前記シリコーン樹脂又はシリコーン樹脂組成物を、40~250℃で、1時間~24時間、加熱して得られた硬化物である。
 本発明のまた別の側面は、前記硬化物の比重が、1.0~1.4である。
 本発明のまた別の側面は、前記硬化物は以下の特性を有する。即ち、厚さ1mmの硬化物を200℃のオーブンの中で60時間加熱した後の波長400nm及び350nmの光の透過率と、前記加熱前の同透過率を比較したとき、前記透過率の変化率が10%以内である。
 本発明のまた別の側面は、前記硬化物は以下の特性を有する。即ち、厚さ1mmの硬化物に波長350nmのUV光を100時間照射した後の波長400nm及び350nmの光の透過率と、前記照射前の同透過率を比較したとき、前記透過率の変化率が10%以内である。
 本発明のまた別の側面は、前記硬化物は以下の特性を有する。即ち、前記硬化物をホットプレート上で100℃に加熱した後、波長350nmのUV光を50時間照射したときの、Si-CHに由来する赤外線吸収スペクトルのピーク強度/Si-O-Siに由来する赤外線吸収スペクトルのピーク強度と、前記加熱及びUV照射前のSi-CHに由来する赤外線吸収スペクトルのピーク強度/Si-O-Siに由来する赤外線吸収スペクトルのピーク強度の変化率が10%以内である。
 前記硬化物は、用いた前記シリコーン樹脂の特性を反映して、酸化反応による劣化が十分に抑制され、クラックの発生、変質、分解等が抑制されるため、半導体発光素子の封止材として好適であり、例えば、UV(紫外)-LED(発光ダイオード)用の封止材として特に好適である。
 本発明の1つの側面は、前記シリコーン樹脂又はシリコーン樹脂組成物の硬化物を含むUV-LED用封止材である。
 本発明の別の側面は、前記シリコーン樹脂又はシリコーン樹脂組成物を、40~250℃で、1時間~24時間、加熱して得られた硬化物からなるUV-LED用封止材である。
 本発明のまた別の側面は、前記封止材の比重が、1.0~1.4である。
<半導体発光装置>
 前記硬化物を封止材として用いた半導体発光装置の例としては、基板と、前記基板上に配置された半導体発光素子と、前記半導体発光素子の表面を覆って設けられた封止部と、を備え、前記半導体発光素子が、前記基板と前記封止部とによって周囲を囲まれて封止されており、前記封止部の形成材料としては前記硬化物を含む材料が挙げられ、前記封止部の形成材料が前記硬化物からなるものが好ましい。
 前記半導体発光装置は、半導体発光素子が、前記シリコーン樹脂組成物(すなわち、半導体発光素子用封止材組成物)の硬化物によって封止されている半導体発光装置が好ましい。
 すなわち、本発明に係る半導体発光装置の1つの側面は、基板と、前記基板上に配置された半導体発光素子と、前記半導体発光素子の封止部と、を備え、
 前記半導体発光素子は、前記基板と前記封止部とによって前記半導体発光素子の周囲を囲まれることによって封止されており、
 前記封止部は、前記シリコーン樹脂の硬化物又は前記シリコーン樹脂組成物の硬化物を含む、半導体発光装置である。
 図1は、前記半導体発光装置の一例を模式的に示す断面図である。
 ここに示す半導体発光装置100は、基板110と、基板110上に配置された半導体発光素子120と、半導体発光素子120を封止する封止部130とを備える。封止部130は、前記シリコーン樹脂組成物の硬化物である半導体発光素子用封止材を形成材料とする。半導体発光素子120は、基板110と封止部130とで覆われて密封され、外気から隔離されている。
 封止部130は、前記シリコーン樹脂の硬化物又はシリコーン樹脂組成物の硬化物を含む。そして、封止部130は、基板110に対して垂直な方向において不連続面を有しない。不連続面の有無は、例えば、X線CT測定を行うことにより判別できる。X線CT測定では、電子密度により散乱強度が異なるため、材料の不連続面があれば、これはCT画像上で濃淡として観測される。
 封止部130は、前記シリコーン樹脂を用いて形成されているため、酸化反応に対する耐性が十分に高く、クラックの発生、変質、分解等が抑制されており、半導体発光素子の封止効果が極めて高い。
 また、封止部130は、光の透過性が高く、光の取出し効率が高いのに加え、酸化反応に対する耐性が十分に高いことで、経時による光の透過性の低下や着色が抑制される。
 前記半導体発光装置の好ましい例としては、UV光発光装置が挙げられる。
 以下、具体的実施例により、本発明についてさらに詳しく説明する。ただし、本発明は、以下に示す実施例に何ら限定されるものではない。なお、以下において、「THF」はテトラヒドロフランを意味する。
 なお、以下の実施例及び比較例におけるシリコーン樹脂の硬化物の比重は、下記条件での各測定値を用いて、下記式により算出できる。
<シリコーン樹脂の硬化物の比重の測定方法>
装置名:アルファーミラージュ社製電子比重計「MDS-300」
使用液体:水
測定温度:24℃
計算式:ρ=A/(A-B)×ρ0
 (式中、ρは硬化物の比重(g/cm)であり;Aは硬化物の空気中での質量(g)であり;Bは硬化物の液体中での質量(g)であり;ρ0は液体の比重(g/cm)である。)
<ケイ素原子に結合したフルオロアルキル基がすべて部分フッ素化アルキル基であるシリコーン樹脂、及びその硬化物の製造>
[実施例1]
 オイルバス内に設置したフラスコ内にトリメトキシ(3,3,3-トリフルオロプロピル)シラン(4.8g、東京化成工業社製)、2-プロパノール(7.1g)、及び脱イオン水(1.0g)を投入し、室温で均一になるまで撹拌した。次いで、ここへ5質量%塩酸水溶液(0.7g)を滴下し、10分間撹拌した後、50℃まで昇温し、50℃で30分間撹拌し、さらに80℃まで昇温し、80℃で18時間撹拌することで、下記式で表される構造を有する縮合物(ポリマー)の溶液を得た。
 次いで、この溶液(0.45g)をアルミニウム製カップ内に投入し、オーブンの中で5℃/分の速度で室温から150℃まで昇温し、150℃で10時間放置することで、前記縮合物(ポリマー)の硬化物を得た。
Figure JPOXMLDOC01-appb-C000005
<ケイ素原子に結合したフルオロアルキル基がすべて部分フッ素化アルキル基であるシリコーン樹脂の製造>
[実施例2]
 撹拌装置、還流管、滴下ロート及び窒素ガスバブリング装置を備えた容量1Lのフラスコに、メチルイソブチルケトン(300g)、メチルトリメトキシシラン(17.0g、0.125モル)、及びトリメトキシ(3,3,3-トリフルオロプロピル)シラン(81.8g、0.375モル)を仕込み、引き続きここへイオン交換水(36g)を常温において滴下する。次いで、反応触媒として塩酸を100ppm添加し、得られた混合物を窒素ガスでバブリングしながらメチルイソブチルケトンの還流温度(118℃)まで加熱して、2時間反応させて縮合物(ポリマー)を得る。この際、還流管に水分定量受器を装備し、縮合反応(ポリマー化反応)により副生した縮合水を除去する。得られた縮合物をイオン交換水で5回洗浄した後、メチルイソブチルケトンをエバポレータで除去し、目的物であるシリコーン樹脂を得る。
Figure JPOXMLDOC01-appb-C000006
[実施例3]
 撹拌装置、還流管、滴下ロート及び窒素ガスバブリング装置を備えた容量1Lのフラスコに、メチルイソブチルケトン(300g)、メチルトリメトキシシラン(34.1g、0.25モル)、及びトリメトキシ(3,3,3-トリフルオロプロピル)シラン(54.6g、0.25モル)を仕込み、引き続きここへイオン交換水(36g)を常温において滴下する。次いで、反応触媒として塩酸を100ppm添加し、得られた混合物を窒素ガスでバブリングしながらメチルイソブチルケトンの還流温度(118℃)まで加熱して、2時間反応させて縮合物(ポリマー)を得る。この際、還流管に水分定量受器を装備し、縮合反応(ポリマー化反応)により副生した縮合水を除去する。得られた縮合物をイオン交換水で5回洗浄した後、メチルイソブチルケトンをエバポレータで除去し、目的物であるシリコーン樹脂を得る。
[実施例4]
 撹拌装置、還流管、滴下ロート及び窒素ガスバブリング装置を備えた容量1Lのフラスコに、メチルイソブチルケトン(300g)、メチルトリメトキシシラン(51.1g、0.375モル)、及びトリメトキシ(3,3,3-トリフルオロプロピル)シラン(27.3g、0.125モル)を仕込み、引き続きここへイオン交換水(36g)を常温において滴下する。次いで、反応触媒として塩酸を100ppm添加し、得られた混合物を窒素ガスでバブリングしながらメチルイソブチルケトンの還流温度(118℃)まで加熱して、2時間反応させて縮合物(ポリマー)を得る。この際、還流管に水分定量受器を装備し、縮合反応(ポリマー化反応)により副生した縮合水を除去する。得られた縮合物をイオン交換水で5回洗浄した後、メチルイソブチルケトンをエバポレータで除去し、目的物であるシリコーン樹脂を得る。
<ケイ素原子に結合したフルオロアルキル基がすべてパーフルオロアルキル基であるシリコーン樹脂の製造>
[実施例5]
 撹拌装置、還流管、滴下ロート及び窒素ガスバブリング装置を備えた容量1Lのフラスコに、メチルイソブチルケトン(300g)、及びトリフルオロメチルトリメトキシシラン(95g、0.5モル)を仕込み、引き続きここへイオン交換水(36g)を常温において滴下する。次いで、反応触媒として塩酸を100ppm添加し、得られた混合物を窒素ガスでバブリングしながらメチルイソブチルケトンの還流温度(118℃)まで加熱して、2時間反応させて縮合物(ポリマー)を得る。この際、還流管に水分定量受器を装備し、縮合反応(ポリマー化反応)により副生した縮合水を除去する。得られた縮合物をイオン交換水で5回洗浄した後、メチルイソブチルケトンをエバポレータで除去し、目的物であるシリコーン樹脂を得る。
Figure JPOXMLDOC01-appb-C000007
[実施例6]
 撹拌装置、還流管、滴下ロート及び窒素ガスバブリング装置を備えた容量1Lのフラスコに、メチルイソブチルケトン(300g)、メチルトリメトキシシラン(17.0g、0.125モル)、及びトリフルオロメチルトリメトキシシラン(71.3g、0.375モル)を仕込み、引き続きここへイオン交換水(36g)を常温において滴下する。次いで、反応触媒として塩酸を100ppm添加し、得られた混合物を窒素ガスでバブリングしながらメチルイソブチルケトンの還流温度(118℃)まで加熱して、2時間反応させて縮合物(ポリマー)を得る。この際、還流管に水分定量受器を装備し、縮合反応(ポリマー化反応)により副生した縮合水を除去する。得られた縮合物をイオン交換水で5回洗浄した後、メチルイソブチルケトンをエバポレータで除去し、目的物であるシリコーン樹脂を得る。
Figure JPOXMLDOC01-appb-C000008
[実施例7]
 撹拌装置、還流管、滴下ロート及び窒素ガスバブリング装置を備えた容量1Lのフラスコに、メチルイソブチルケトン(300g)、メチルトリメトキシシラン(34.1g、0.25モル)、及びトリフルオロメチルトリメトキシシラン(47.5g、0.25モル)を仕込み、引き続きここへイオン交換水(36g)を常温において滴下する。次いで、反応触媒として塩酸を100ppm添加し、得られた混合物を窒素ガスでバブリングしながらメチルイソブチルケトンの還流温度(118℃)まで加熱して、2時間反応させて縮合物(ポリマー)を得る。この際、還流管に水分定量受器を装備し、縮合反応(ポリマー化反応)により副生した縮合水を除去する。得られた縮合物をイオン交換水で5回洗浄した後、メチルイソブチルケトンをエバポレータで除去し、目的物であるシリコーン樹脂を得る。
[実施例8]
 撹拌装置、還流管、滴下ロート及び窒素ガスバブリング装置を備えた容量1Lのフラスコに、メチルイソブチルケトン(300g)、メチルトリメトキシシラン(51.1g、0.375モル)、及びトリフルオロメチルトリメトキシシラン(23.8g、0.125モル)を仕込み、引き続きここへイオン交換水(36g)を常温において滴下する。次いで、反応触媒として塩酸を100ppm添加し、得られた混合物を窒素ガスでバブリングしながらメチルイソブチルケトンの還流温度(118℃)まで加熱して、2時間反応させて縮合物(ポリマー)を得る。この際、還流管に水分定量受器を装備し、縮合反応(ポリマー化反応)により副生した縮合水を除去する。得られた縮合物をイオン交換水で5回洗浄した後、メチルイソブチルケトンをエバポレータで除去し、目的物であるシリコーン樹脂を得る。
[実施例9]
 撹拌装置、還流管、滴下ロート及び窒素ガスバブリング装置を備えた容量1Lのフラスコに、メチルイソブチルケトン(300g)、ジ(トリフルオロメチル)ジメトキシシラン(28.5g、0.125モル)、及びトリフルオロメチルトリメトキシシラン(71.3g、0.375モル)を仕込み、引き続きここへイオン交換水(36g)を常温において滴下する。次いで、反応触媒として塩酸を100ppm添加し、得られた混合物を窒素ガスでバブリングしながらメチルイソブチルケトンの還流温度(118℃)まで加熱して、2時間反応させて縮合物(ポリマー)を得る。この際、還流管に水分定量受器を装備し、縮合反応(ポリマー化反応)により副生した縮合水を除去する。得られた縮合物をイオン交換水で5回洗浄した後、メチルイソブチルケトンをエバポレータで除去し、目的物であるシリコーン樹脂を得る。
Figure JPOXMLDOC01-appb-C000009
[実施例10]
 撹拌装置、還流管、滴下ロート及び窒素ガスバブリング装置を備えた容量1Lのフラスコに、メチルイソブチルケトン(300g)、ジ(トリフルオロメチル)ジメトキシシラン(57.0g、0.25モル)、及びトリフルオロメチルトリメトキシシラン(47.5g、0.25モル)を仕込み、引き続きここへイオン交換水(36g)を常温において滴下する。次いで、反応触媒として塩酸を100ppm添加し、得られた混合物を窒素ガスでバブリングしながらメチルイソブチルケトンの還流温度(118℃)まで加熱して、2時間反応させて縮合物(ポリマー)を得る。この際、還流管に水分定量受器を装備し、縮合反応(ポリマー化反応)により副生した縮合水を除去する。得られた縮合物をイオン交換水で5回洗浄した後、メチルイソブチルケトンをエバポレータで除去し、目的物であるシリコーン樹脂を得る。
[実施例11]
 撹拌装置、還流管、滴下ロート及び窒素ガスバブリング装置を備えた容量1Lのフラスコに、メチルイソブチルケトン(300g)、ジ(トリフルオロメチル)ジメトキシシラン(85.6g、0.375モル)、及びトリフルオロメチルトリメトキシシラン(23.8g、0.125モル)を仕込み、引き続きここへイオン交換水(36g)を常温において滴下する。次いで、反応触媒として塩酸を100ppm添加し、得られた混合物を窒素ガスでバブリングしながらメチルイソブチルケトンの還流温度(118℃)まで加熱して、2時間反応させて縮合物(ポリマー)を得る。この際、還流管に水分定量受器を装備し、縮合反応(ポリマー化反応)により副生した縮合水を除去する。得られた縮合物をイオン交換水で5回洗浄した後、メチルイソブチルケトンをエバポレータで除去し、目的物であるシリコーン樹脂を得る。
[比較例1]
 下記一般式(A)で表されるシリコーン樹脂X1と、下記一般式(B)で表されるシリコーン樹脂X2とを、シリコーン樹脂X1:シリコーン樹脂X2=1:4(質量比)の比率で混合し、そこに白金を含む触媒を加えて、シリコーン樹脂組成物を得た。なお、シリコーン樹脂X1の重量平均分子量は、以下に示すGPC測定条件1での測定で5100であった。また、シリコーン樹脂X2の重量平均分子量は、以下に示すGPC測定条件2での測定で2100であった。
 得られたシリコーン樹脂組成物の、ケイ素原子由来の全シグナルのうち、ケイ素原子と結合した酸素原子が3つ結合しているケイ素原子(A3ケイ素原子)に由来するシグナルの面積は、シリコーン樹脂X1とシリコーン樹脂X2との混合比から50%と算出された。
 次いで、シリコーン樹脂組成物(約5g)をアルミニウム製カップ内に投入し、オーブンの中で5℃/分の速度で室温から150℃まで昇温し、さらに150℃で4時間保温することで、シリコーン樹脂組成物の硬化物を得た。得られた硬化物の比重は1.18であった。
Figure JPOXMLDOC01-appb-C000010
(式中、a1、a2、a3及びa4は、各繰り返し単位の単位数を示す整数である。)
Figure JPOXMLDOC01-appb-C000011
(式中、b1、b2、b3及びb4は、各繰り返し単位の単位数を示す整数である。)
<シリコーン樹脂のGPCの測定条件>
(GPC測定条件1)
装置:東ソー社製「HLC-8220」
カラム:TSKgel Multipore HXL-M×3+Guardcolumn-MP(XL)
流量:1.0mL/min、
検出条件:RI(ポラリティー+)
濃度:100mg+5mL(THF)
注入量:100μL
カラム温度:40℃
溶離液:THF
(GPC測定条件2)
装置:東ソー社製「HLC-8220」
カラム:TSKgel G2000HHR×2+G1000HHR×2
流量:1.0mL/min、
検出条件:RI(ポラリティー-)
濃度:100mg+5mL(THF)
注入量:200μL
カラム温度:40℃
溶離液:THF
<シリコーン樹脂の硬化物の評価>
 上記で得られたシリコーン樹脂、シリコーン樹脂組成物の硬化物は、下記方法によって耐熱性及び耐光性を評価することで、耐酸化性を評価できる。
(耐熱性の評価)
 各実施例及び比較例で得られた縮合物(ポリマー)の溶液又はシリコーン樹脂組成物を用いて、その使用量を、得られる硬化物の厚さが1mmとなるように調節して、アルミニウム製カップ内に投入し、オーブンの中で5℃/分の速度で室温から150℃まで昇温し、150℃で10時間放置することで、前記縮合物(ポリマー)又はシリコーン樹脂組成物の硬化物を得る。
 次いで、得られた硬化物をアルミニウム製カップ内から取り出し、この硬化物の波長400nm及び350nmでの光の透過率を測定する。
 次いで、この硬化物を200℃のオーブンの中で60時間放置することで加熱処理した後、取り出して室温まで冷却し、再度波長400nm及び350nmでの光の透過率を測定する。
 そして、加熱処理前後の硬化物の光の透過率と外観を比較する。
(耐光性の評価)
 上記の耐熱性の評価の場合と同じ方法で、縮合物(ポリマー)の溶液又はシリコーン樹脂組成物から、前記縮合物又はシリコーン樹脂組成物の硬化物を得て、この硬化物の波長400nm及び350nmでの光の透過率を測定する。
 次いで、この硬化物に対して、ウシオ電機社製UV照射装置「SP-9」を用いてUV光(230~450nm)を100時間照射することで光照射処理した後、再度波長400nm及び350nmでの光の透過率を測定する。
 そして、前記光照射処理前後の硬化物の光の透過率と外観を比較する。
 上記の耐熱性の評価により、上記の各実施例で得られたシリコーン樹脂の硬化物は、200℃での加熱処理後において、400nm及び350nmのいずれの波長でも、加熱処理前と同等の光の透過率を示し、また加熱処理後の外観は加熱処理前と同じで変色の無い状態であり、耐熱性に優れることが確認できる。
 これに対して、比較例のシリコーン樹脂組成物の硬化物は、200℃での加熱処理後において、400nm及び350nmのいずれの波長でも、加熱処理前とは全く異なる光の透過率を示し、また加熱処理前後で外観は大きく異なり、加熱処理前は透明であるが、加熱処理後は黄色く変色していることで、耐熱性に劣ることが確認できる。
 上記の耐光性の評価により、上記の各実施例で得られたシリコーン樹脂の硬化物は、光照射処理後において、400nm及び350nmのいずれの波長でも、光照射処理前と同等の光の透過率を示し、また光照射処理後の外観は光照射処理前と同じで変色の無い状態であり、耐光性に優れることが確認できる。
 これに対して、比較例のシリコーン樹脂組成物の硬化物は、光照射処理後において、400nm及び350nmのいずれの波長でも、光照射処理前とは全く異なる光の透過率を示し、また光照射処理前後で外観は大きく異なり、光照射処理前は透明であるが、光照射処理後は黄色く変色していることで、耐光性に劣ることが確認できる。
 このように、上記の各実施例で得られたシリコーン樹脂の硬化物は、酸化反応による劣化が十分に抑制されている。
<ケイ素原子に結合したフルオロアルキル基がすべて部分フッ素化アルキル基であるシリコーン樹脂、及びその硬化物の製造>
[実施例12]
 オイルバス内に設置したフラスコ内に、トリメトキシ(3,3,3-トリフルオロプロピル)シラン(2.5g、東京化成工業社製)と、トリメトキシ(1H,1H,2H,2H-ノナフルオロヘキシル)シラン(2.5g、東京化成工業社製)と、リン酸15%と下記一般式(D)で表されるアルコキシシラン(n=3~7の正数)との混合物(0.25g)と、を投入し、室温で5分間撹拌し縮合物溶液を得た。
 次いで、この溶液(0.46g)をアルミニウム製カップ内に投入し、オーブンの中で室温から40℃まで5℃/分で昇温し、40℃で10分間放置した後、100℃まで3℃/分で昇温し、100℃で5時間保持した後、3℃/分で150℃まで昇温し、150℃で5時間放置することで、前記縮合物(ポリマー)の硬化物を得た。仕込み重量から計算されるXとYはX=63,Y=37である。
Figure JPOXMLDOC01-appb-C000012
[実施例13]
 オイルバス内に設置したフラスコ内に、トリメトキシ(3,3,3-トリフルオロプロピル)シラン(3.8g、東京化成工業社製)と、トリメトキシ(1H,1H,2H,2H-ノナフルオロヘキシル)シラン(1.3g、東京化成工業社製)と、リン酸15%と下記一般式(D)で表されるアルコキシシラン(n=3~7の正数)との混合物(0.25g)と、を投入し、室温で5分間撹拌し縮合物溶液を得た。
 次いで、この溶液(0.46g)をアルミニウム製カップ内に投入し、オーブンの中で室温から40℃まで5℃/分で昇温し、40℃で10分間放置した後、100℃まで3℃/分で昇温し、100℃で5時間保持した後、3℃/分で150℃まで昇温し、150℃で5時間放置することで、前記縮合物(ポリマー)の硬化物を得た。仕込み重量から計算されるXとYはX=84,Y=16である。
Figure JPOXMLDOC01-appb-C000013
[比較例2]
 オイルバス内に設置したフラスコ内に、下記表1の繰り返し構造を有するシリコーン樹脂186質量部と、100質量部のイソプロピルアルコールを投入し、液温が85℃になるまで昇温攪拌して前記樹脂を充分に溶解させた。次いで、下記表2の繰り返し構造を有するシリコーン樹脂18質量部と表1のシリコーン樹脂及び表2のシリコーン樹脂とも異なる市販のシリコーン樹脂2重量部を投入し、1時間以上攪拌し溶解させた。
 その後、得られた樹脂組成物に、65質量部の酢酸2ブトキシエチルと、シランカップリング剤としての0.05質量部の3-グリシドキシプロピルトリメトキシシランを加えた後、エバポレーターにセットし、前記樹脂組成物の温度が70℃、圧力が4kPaAの条件に放置し、前記樹脂組成物中のイソプロピルアルコール濃度が1質量%以下になるまでイソプロピルアルコールを留去し、シリコーン樹脂組成物を得た。
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
 得られたシリコーン樹脂組成物100質量部に対し、リン酸15%と上記一般式(D)で表されるアルコキシシラン(n=3~7の正数)との混合物を、2質量部加え、室温で均一になるまで撹拌し、この溶液(0.46g)をアルミニウム製カップ内に投入し、オーブンの中で室温から40℃まで5℃/分で昇温し、40℃で10分間放置した後、100℃まで3℃/分で昇温し、100℃で5時間保持した後、3℃/分で150℃まで昇温し、150℃で5時間放置することで硬化物を得た。
(耐光性の評価)
 前記縮合物又はシリコーン樹脂組成物の硬化物の赤外吸収スペクトルを測定する。
 次いでホットプレート上で100℃に加熱した、この硬化物に対して、ウシオ電機社製UV照射装置「SP-9」を用いてUV光(230~450nm)を50時間照射することで光照射処理した後、再度赤外吸収スペクトルを測定する。
 そして、前記光照射処理前後の硬化物のSi-CHに由来する1260~1270cm-1のピーク強度とSi-O-Siに由来する950~1180cm-1のピーク強度を比較する。結果を表3に示す。
Figure JPOXMLDOC01-appb-T000016
 上記の耐光性の評価により、上記の各実施例(実施例12及び実施例13)で得られたシリコーン樹脂の硬化物は、比較例2のシリコーン樹脂組成物の硬化物に比べて、光照射処理後においてSi-CH結合からSi-O-Si結合への変化の少ない状態であり、耐光性に優れることが確認できる。
 このように、上記の各実施例で得られたシリコーン樹脂の硬化物は、酸化反応による劣化が十分に抑制されている。
 本発明は、半導体発光素子、特にUV-LEDの封止材に利用可能であるので、産業上極めて有用である。
 100・・・半導体発光装置、110・・・基板、120・・・半導体発光素子、130・・・封止部

Claims (7)

  1.  シラン化合物の縮合物であり、
     前記シラン化合物の縮合物は、フッ素原子を少なくとも1個有するフルオロアルキル基がケイ素原子に結合してなるフッ素原子含有シラン化合物由来の構成単位を含む、シリコーン樹脂。
  2.  前記フッ素原子含有シラン化合物由来の構成単位が下記一般式(1)で表される化合物由来の構成単位であり、前記シラン化合物の縮合物の総質量に対して、前記フッ素原子含有シラン化合物由来の構成単位の含有割合が、52質量%以上である、請求項1に記載のシリコーン樹脂。
     R SiX 4-n ・・・・(1)
    (式中、nは1又は2であり;Rは炭素原子数1~20の部分フッ素化アルキル基であり;Xはアルコキシ基、塩素原子、臭素原子又はヨウ素原子である。)
  3.  前記フッ素原子含有シラン化合物由来の構成単位が下記一般式(2)で表される化合物由来の構成単位であり、前記シリコーン樹脂の平均官能数が3.0以下である、請求項1に記載のシリコーン樹脂。
     R SiX 4-m ・・・・(2)
    (式中、mは1又は2であり;Rは炭素原子数1~20のパーフルオロアルキル基であり;Xはアルコキシ基、塩素原子、臭素原子又はヨウ素原子である。)
  4.  前記フッ素原子含有シラン化合物由来の構成単位のフルオロアルキル基における炭素原子数が1~3である、請求項1~3のいずれか一項に記載のシリコーン樹脂。
  5.  請求項1~4のいずれか一項に記載のシリコーン樹脂と、その他の成分と、を含有する、UV-LED用封止材組成物。
  6.  請求項1~4のいずれか一項に記載のシリコーン樹脂の硬化物。
  7.  請求項1~4のいずれか一項に記載のシリコーン樹脂の硬化物を含む、UV-LED用封止材。
PCT/JP2015/077492 2014-10-03 2015-09-29 シリコーン樹脂、uv-led用封止材組成物、硬化物及びuv-led用封止材 WO2016052495A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020177009115A KR20170063676A (ko) 2014-10-03 2015-09-29 실리콘 수지, uv-led용 밀봉재 조성물, 경화물 및 uv-led용 밀봉재
JP2016552057A JPWO2016052495A1 (ja) 2014-10-03 2015-09-29 シリコーン樹脂、uv−led用封止材組成物、硬化物及びuv−led用封止材
US15/515,804 US20170298187A1 (en) 2014-10-03 2015-09-29 Silicone resin, encapsulating material composition for uv-led, cured product and encapsulating material for uv-led
EP15847058.3A EP3202821A1 (en) 2014-10-03 2015-09-29 Silicone resin, sealing material composition for uv-led, cured product and sealing material for uv-led
CN201580053207.8A CN106795288A (zh) 2014-10-03 2015-09-29 硅酮树脂、uv‑led用密封材料组合物、固化物和uv‑led用密封材料

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-205230 2014-10-03
JP2014205230 2014-10-03

Publications (1)

Publication Number Publication Date
WO2016052495A1 true WO2016052495A1 (ja) 2016-04-07

Family

ID=55630522

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/077492 WO2016052495A1 (ja) 2014-10-03 2015-09-29 シリコーン樹脂、uv-led用封止材組成物、硬化物及びuv-led用封止材

Country Status (7)

Country Link
US (1) US20170298187A1 (ja)
EP (1) EP3202821A1 (ja)
JP (1) JPWO2016052495A1 (ja)
KR (1) KR20170063676A (ja)
CN (1) CN106795288A (ja)
TW (1) TW201627356A (ja)
WO (1) WO2016052495A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020050695A (ja) * 2018-09-25 2020-04-02 横浜ゴム株式会社 光半導体封止用組成物、光半導体装置、オルガノポリシロキサン
US11118716B2 (en) 2017-03-03 2021-09-14 Ina Acquisition Corp. Curing device for curing a pipe liner

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107674209A (zh) * 2017-10-27 2018-02-09 惠州市佳的利实业有限公司 一种氟硅树脂及其制备方法
WO2020045997A1 (ko) * 2018-08-28 2020-03-05 주성원 봉지재 조성물, 봉지재, 그 제조방법 및 전자 소자 패키지
CN109608641A (zh) * 2018-11-26 2019-04-12 江苏艾森半导体材料股份有限公司 用于led封装胶的含氟梯形有机硅树脂
CN110174364B (zh) * 2019-05-20 2021-08-20 国网陕西省电力公司电力科学研究院 一种基于朗伯比尔定律的复合绝缘子无损检测装置及方法
CN113540275A (zh) * 2021-07-16 2021-10-22 彼博股份有限公司 一种曲面多形态集成光伏模块及其封装方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11292971A (ja) * 1998-04-10 1999-10-26 Mitsubishi Electric Corp 高純度シリコーンラダーポリマーおよびその製造方法
WO2009101753A1 (ja) * 2008-02-14 2009-08-20 Lintec Corporation ポリオルガノシロキサン化合物からなる成形材料、封止材及び光素子封止体
JP2013010881A (ja) * 2011-06-30 2013-01-17 Shin-Etsu Chemical Co Ltd 付加硬化型シリコーン組成物及び光学素子
JP2014118520A (ja) * 2012-12-18 2014-06-30 Shin Etsu Chem Co Ltd 付加硬化型シリコーン組成物及び光学素子

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1792963A4 (en) * 2004-08-27 2010-04-21 Central Glass Co Ltd TREATMENT AGENTS AND METHOD FOR PRODUCING FILMS WITH GOOD ROLLING BEHAVIOR OF WATER DROPS
KR100981575B1 (ko) * 2006-07-10 2010-09-10 주식회사 엘지화학 오염 제거가 용이한 디스플레이 반사 방지용 코팅 조성물
CN102702532B (zh) * 2012-05-31 2014-08-20 中科院广州化学有限公司 一种有机硅杂化树脂及其功率led封装材料的制备方法与应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11292971A (ja) * 1998-04-10 1999-10-26 Mitsubishi Electric Corp 高純度シリコーンラダーポリマーおよびその製造方法
WO2009101753A1 (ja) * 2008-02-14 2009-08-20 Lintec Corporation ポリオルガノシロキサン化合物からなる成形材料、封止材及び光素子封止体
JP2013010881A (ja) * 2011-06-30 2013-01-17 Shin-Etsu Chemical Co Ltd 付加硬化型シリコーン組成物及び光学素子
JP2014118520A (ja) * 2012-12-18 2014-06-30 Shin Etsu Chem Co Ltd 付加硬化型シリコーン組成物及び光学素子

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11118716B2 (en) 2017-03-03 2021-09-14 Ina Acquisition Corp. Curing device for curing a pipe liner
JP2020050695A (ja) * 2018-09-25 2020-04-02 横浜ゴム株式会社 光半導体封止用組成物、光半導体装置、オルガノポリシロキサン
JP7181035B2 (ja) 2018-09-25 2022-11-30 シーカ・ハマタイト株式会社 光半導体封止用組成物、光半導体装置、オルガノポリシロキサン

Also Published As

Publication number Publication date
TW201627356A (zh) 2016-08-01
CN106795288A (zh) 2017-05-31
JPWO2016052495A1 (ja) 2017-07-13
EP3202821A1 (en) 2017-08-09
KR20170063676A (ko) 2017-06-08
US20170298187A1 (en) 2017-10-19

Similar Documents

Publication Publication Date Title
WO2016052495A1 (ja) シリコーン樹脂、uv-led用封止材組成物、硬化物及びuv-led用封止材
TWI680152B (zh) 表面改質金屬氧化物粒子分散液及其製造方法、表面改質金屬氧化物粒子-矽酮樹脂複合組成物、表面改質金屬氧化物粒子-矽酮樹脂複合物、光學構件以及發光裝置
CN101910318B (zh) 硅氧烷类树脂组合物
JP5492000B2 (ja) 光学用透明シロキサン樹脂組成物
US9651821B2 (en) Surface-modified metal oxide particle material, dispersion liquid, silicone resin composition, silicone resin composite body, optical semiconductor light emitting device, lighting device, and liquid crystal imaging device
CN106661425B (zh) 硅酮系密封材料组合物及半导体发光装置
JP2007270056A (ja) 金属酸化物微粒子含有ポリシロキサン組成物およびその製造方法
JP2007277505A (ja) 酸化物微粒子分散体およびその製造方法
KR20150097783A (ko) 금속 산화물 나노 입자와 실세스퀴옥산 중합체의 복합체 및 그의 제조 방법, 및 그 복합체를 사용하여 제조한 복합 재료
JP2011088765A (ja) 反射防止強化ガラスの製造方法
JP2011173738A (ja) 透明焼成体
TW201410742A (zh) 硬化性有機聚矽氧烷組成物、其製造方法、有機聚矽氧烷硬化物之製造方法、有機聚矽氧烷之縮合方法、光半導體密封體、及有機聚矽氧烷之縮合觸媒
KR101339772B1 (ko) 광경화 투명 수지 조성물
KR20110084601A (ko) 엘이디 봉지재용 실록산 수지 조성물
JP6293433B2 (ja) シリコーン樹脂組成物
JP6670046B2 (ja) 硬化性樹脂組成物、樹脂硬化物、および半導体装置
JP2009173757A (ja) ジルコニア含有シリコーン樹脂組成物
WO2015111229A1 (ja) シリコーン樹脂液状組成物
JP2011136857A (ja) 疎水性酸化ジルコニウム粒子、その製造方法および該疎水性酸化ジルコニウム粒子含有樹脂組成物ならびに樹脂硬化物膜付基材
JP2007277073A (ja) 酸化物微粒子分散体およびその製造方法
KR20110129587A (ko) 저유전율 실록산 보호막 조성물
WO2018062513A1 (ja) Led用封止材組成物
JP2016098245A (ja) ポリシルセスキオキサン液体及びその製造方法、led封止用組成物、led封止材、及び半導体発光装置
JPWO2014203951A1 (ja) 金属酸化物膜形成用組成物及び金属酸化物膜
WO2011125646A1 (ja) 硬化性樹脂組成物および発光装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15847058

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016552057

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15515804

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015847058

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015847058

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20177009115

Country of ref document: KR

Kind code of ref document: A