WO2016051511A1 - 分塊工程や精整工程を省略しても熱間圧延後の表面性状に優れた熱間圧延用チタン鋳片およびその製造方法 - Google Patents

分塊工程や精整工程を省略しても熱間圧延後の表面性状に優れた熱間圧延用チタン鋳片およびその製造方法 Download PDF

Info

Publication number
WO2016051511A1
WO2016051511A1 PCT/JP2014/076103 JP2014076103W WO2016051511A1 WO 2016051511 A1 WO2016051511 A1 WO 2016051511A1 JP 2014076103 W JP2014076103 W JP 2014076103W WO 2016051511 A1 WO2016051511 A1 WO 2016051511A1
Authority
WO
WIPO (PCT)
Prior art keywords
slab
titanium
hot rolling
cast
layer
Prior art date
Application number
PCT/JP2014/076103
Other languages
English (en)
French (fr)
Inventor
知徳 國枝
吉紹 立澤
森 健一
藤井 秀樹
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to US15/513,856 priority Critical patent/US10570492B2/en
Priority to CN201480082160.3A priority patent/CN106715005B/zh
Priority to UAA201702957A priority patent/UA115957C2/uk
Priority to KR1020177008239A priority patent/KR101953042B1/ko
Priority to EP14903062.9A priority patent/EP3178584A4/en
Priority to EA201790499A priority patent/EA029618B1/ru
Priority to JP2014549245A priority patent/JP5888432B1/ja
Priority to PCT/JP2014/076103 priority patent/WO2016051511A1/ja
Publication of WO2016051511A1 publication Critical patent/WO2016051511A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon
    • C22F1/183High-melting or refractory metals or alloys based thereon of titanium or alloys based thereon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D15/00Casting using a mould or core of which a part significant to the process is of high thermal conductivity, e.g. chill casting; Moulds or accessories specially adapted therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D21/00Casting non-ferrous metals or metallic compounds so far as their metallurgical properties are of importance for the casting procedure; Selection of compositions therefor
    • B22D21/06Casting non-ferrous metals with a high melting point, e.g. metallic carbides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K15/00Electron-beam welding or cutting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F3/00Changing the physical structure of non-ferrous metals or alloys by special physical methods, e.g. treatment with neutrons
    • C22F3/02Changing the physical structure of non-ferrous metals or alloys by special physical methods, e.g. treatment with neutrons by solidifying a melt controlled by supersonic waves or electric or magnetic fields

Definitions

  • the present invention relates to a titanium slab for hot rolling and a method for producing the same, and in particular, titanium capable of maintaining good surface properties after hot rolling even if the partial rolling step and the finishing step are omitted.
  • the present invention relates to a slab and a manufacturing method thereof.
  • industrial pure titanium uses sponge titanium and titanium scrap obtained by the crawl method as melting raw materials, and is melted by vacuum arc melting (VAR), electron beam melting (EBR), etc., and a large slab (ingot) It was normal to do.
  • VAR vacuum arc melting
  • EBR electron beam melting
  • ingot large slab
  • the shape of the slab is limited to a cylindrical slab (billet) in the case of vacuum arc melting, while it can be cast into a rectangular slab, that is, a slab in the case of electron beam melting.
  • the surface of the large slabs is subjected to surface cutting as necessary, and then hot rolling or forging is performed. And then processed into a slab having a shape and size suitable for subsequent hot rolling.
  • the hot working process by these block rolling or forging is referred to herein as a breakdown process.
  • the surface is subjected to hot cutting after being subjected to cutting care for cutting about several mm by cutting. It was normal.
  • the slab obtained by applying the electron beam melting-DC slab casting method under vacuum was subjected to surface cutting and then subjected to hot rolling.
  • the surface properties of the hot-rolled sheet after hot rolling are not always good. That is, there is a problem in that many large and small cover-like wrinkles extending from a few mm to a length of about 10 mm are generated on the surface of the hot rolled sheet. Such a large number of cover-like ridges on the surface is referred to as a surface ridge here.
  • Such surface defects of the hot-rolled sheet are considered to be derived from the coarse cast structure of the cast slab.
  • a slab that has not undergone a breakdown process, which is hot working has a cast structure made of coarse crystal grains as cast (as cast), and the surface is subjected to cutting.
  • a rough structure exists in the surface layer after cutting, and it is considered that surface flaws are generated on the hot-rolled sheet due to such a rough surface cast structure.
  • the surface is affected by the deformation anisotropy within and between the grains due to the coarse grains. Concavities and convexities are formed, and it is considered that a metal is covered on the dents to form surface defects as the subsequent hot rolling progresses. Furthermore, in the titanium alloy, an ⁇ phase is generated in the vicinity of the grain boundary of the old ⁇ crystal grains during the transformation (grain boundary ⁇ phase). In alloy systems that contain a large amount of ⁇ -stabilizing elements such as Al and O, which are often used in titanium alloys, the hot deformation resistance of ⁇ and ⁇ phases is greatly different, and this difference is different during subsequent hot and cold working. It may be the starting point of cracking.
  • the titanium slab for hot rolling obtained without going through the breakdown process has been changed to a slab surface layer before hot rolling in order to prevent surface flaws occurring on the surface of the hot rolled sheet after hot rolling.
  • Several methods have already been proposed for quality treatment.
  • Patent Document 1 the surface of a titanium slab for hot rolling is struck cold with a steel tool having a tip shape with a radius of curvature of 3 to 30 mm or a steel ball with a radius of 3 to 30 mm (plasticity).
  • a predetermined plastic strain is applied cold to the surface layer of the titanium slab with the steel tool or steel ball as described above, so that the surface layer is recrystallized during the subsequent hot rolling.
  • a fine structure Accordingly, it is possible to prevent the occurrence of dents due to the coarse structure as described above. Therefore, even if the breakdown process is omitted, it is possible to reduce the surface defects of the hot rolled plate.
  • the surface of the titanium slab for hot rolling is increased by high frequency induction heating, arc heating, plasma heating, electron beam heating, laser heating, and the like.
  • a method has been proposed in which only the surface layer is melted over a depth of 1 mm or more and rapidly cooled and re-solidified by applying energy.
  • the melting point of titanium is naturally a temperature equal to or higher than the ⁇ transformation point, as the surface is melted, a heat-affected region (base material side) below the molten layer on the surface (base material side)
  • the HAZ) layer is also heated to the ⁇ transformation point or higher to undergo ⁇ transformation.
  • the surface layer of the titanium slab for hot rolling is melted to smooth the surface, and then the molten layer is rapidly cooled and solidified by heat removal from the base material side.
  • the molten layer and the HAZ layer become a fine transformation structure (usually a fine acicular structure).
  • the surface layer thus refined is recrystallized in the initial stage of the subsequent hot rolling to form a granular structure (equiaxial grain structure) having a fine and irregular orientation. For this reason, it has been possible to some extent to prevent the formation of dents due to the coarse structure and eliminate the surface flaws of the hot-rolled sheet after hot rolling.
  • Patent Document 2 surface flaws of the hot-rolled sheet may not be prevented at a practical level, and the cause is unknown and improvement has been demanded.
  • the present invention does not require the surface layer modification treatment as shown in Patent Document 1, further improves the invention disclosed in Patent Document 2, omits the breakdown step, and after the subsequent hot rolling Titanium slab for hot rolling that prevents surface flaws from occurring on the surface of the hot-rolled sheet at a practical level, thereby improving the productivity of titanium hot-rolled sheet production and reducing costs. It is an object to provide a manufacturing method thereof.
  • the cooling after heating the surface of the slab by heating means with a high energy density such as an electron beam to melt only the surface layer is usually performed by removing heat from the base material side.
  • the thinner the molten layer the smaller the heat input per unit area of the slab surface (hereinafter, the unit area refers to 1 cm 2 with respect to the heat input), so the cooling rate immediately after heating increases.
  • the cooled and solidified surface layer (melt resolidified layer) has a finer structure, and the surface layer structure when heated for hot rolling is further refined. It is also possible to reliably suppress the occurrence of dents and surface defects on the hot-rolled sheet at the initial stage of rolling.
  • the melting depth is shallow, defects such as voids and wrinkles derived from casting that exist at a certain depth from the surface may not disappear. That is, in order to sufficiently refine the structure of the surface layer by re-solidification after melting, the melting depth is about several millimeters, and it is heated to the ⁇ region or more below the melting point formed below the melting portion by melting. It was experimentally confirmed that it was necessary to make the texture modification layer of the melt depth + ⁇ HAZ combined with the microstructure layer ( ⁇ HAZ layer) formed in this way to be 5 mm or more.
  • melt depth + ⁇ HAZ When there is a portion with a shallow melt depth, the structure of melt depth + ⁇ HAZ is likely to be refined, but on the other hand, in addition to the problem of (1), it is caused by the coarse cast structure existing in the lower layer whose structure has been modified It was confirmed that cracks were generated starting from the dents and the surface defects of the hot-rolled sheet were generated. In order to prevent this phenomenon, it has been found that the structure modification layer of melt depth + ⁇ HAZ can be prevented by setting it to 5 mm or more. (3) On the other hand, it has been found that it is very expensive to completely modify the entire surface of the slab surface to be rolled. However, it has also been found that the occurrence of surface flaws at the time of hot rolling can be eliminated by caring the surface of the hot-rolled sheet, and the merit of cost reduction of decomposition rolling and forging can be fully enjoyed.
  • the electron beam irradiation output and irradiation conditions (such as how to overlap the molten beads) are controlled.
  • hot-rolling slab surface melting so that the shape of the entire microstructured layer formed by electron beam irradiation is in a specific range, dents and hot-rolled sheet surface defects that occur in the initial stage of hot rolling are used. It has been found that it can be surely prevented at a certain level, and the occurrence of surface flaws in the hot-rolled sheet after the subsequent hot rolling can be reliably suppressed, and the present invention has been made.
  • the gist of the present invention is as follows.
  • a titanium cast for hot rolling made of titanium On the surface that becomes the rolled surface, it has a structure refined layer consisting of fine grains than the mother layer formed by melting and resolidifying, The thickness of the microstructured layer is 5 mm or more and less than 9 mm, and the proportion of crystal grains having a grain size of 1 mm or more at a position 1/2 of the average thickness of the microstructure is less than 15%.
  • Titanium cast for rolling [2] The titanium cast for hot rolling according to [1], which is made of industrial pure titanium or a titanium alloy.
  • the electron beam irradiation is performed while continuously moving the electron beam irradiation gun in a direction parallel to the surface of the slab material. Production method.
  • the present invention severe irregularities that existed in the cast skin after casting are eliminated by melting and smoothed, and at the same time, defects such as internal voids originating at the time of casting disappear, and coarse The cast structure has also disappeared. Moreover, the outermost surface is a microstructured layer by reheating and rapid cooling. Therefore, when the titanium slab for hot rolling according to the present invention is subjected to hot rolling, it is possible to prevent generation of flaws derived from casting and surface flaws due to internal voids at the same time, Occurrence of a concave portion at the initial stage of hot rolling due to insufficient miniaturization and generation of a surface flaw of the hot rolled plate can be reliably prevented in advance.
  • the inner microstructured layer heated to the melting and ⁇ transformation point or higher when melted and re-solidified has a microstructured layer in the range of 5 mm or more and less than 9 mm, even between the molten beads. It has a sufficient thickness, and voids existing at a position of about several mm from the vicinity of the surface are sufficiently eliminated.
  • the layer is made of a sufficiently fine structure by the rapid quenching effect due to heat removal from the base material by not deepening the melting. For this reason, it is possible to reliably prevent the occurrence of a concave portion at the initial stage of hot rolling and the occurrence of surface flaws on the hot rolled plate due to insufficient structure refinement.
  • each above-mentioned action can be obtained even if it is a cast piece in a state that does not go through a breakdown process such as partial rolling or forging, which is hot working after casting, and the surface is not cut in advance.
  • a so-called black skin slab as cast can also be obtained.
  • the slab material is cast by a DC slab casting method, or a molten metal obtained by an electron beam melting method is cast by a DC slab casting method. Any of those having a cast surface as cast may be used.
  • a rectangular slab was obtained without going through a breakdown process consisting of block rolling or forging, and its melting method is not particularly limited, but an electron beam melting method or a plasma arc melting method. Etc. are applicable.
  • the electron beam melting method since melting is performed in a high vacuum, the inside of the voids remaining in the vicinity of the surface of the slab after melting becomes a vacuum, so that there is an advantage that the voids are pressure-bonded and made harmless during hot rolling.
  • the plasma arc melting method can be melted in a low vacuum atmosphere, there is an advantage that an alloy element having a high vapor pressure can be easily added when producing a titanium alloy, and the optimum melting method is selected depending on the component system to be melted appropriately. Just do it.
  • the titanium slab for hot rolling according to the present invention has a flat surface, few internal microvoids immediately below the surface, and an extremely fine structure on the outermost surface. Therefore, when it is subjected to hot rolling, it is possible to stably prevent a concave portion on the surface in the initial stage of hot rolling or surface flaws on the hot rolled sheet at a practical level. . And such an effect can be acquired even if it uses the slab which has not passed through the breakdown processes, such as partial rolling and forging, as a slab of the raw material for manufacturing the titanium slab for hot rolling. As a result, the breakdown process can be omitted, and the cost can be significantly reduced as compared with the prior art.
  • FIG. 1 schematically shows each step of an overall process in a method for producing a titanium cast piece for hot rolling according to an embodiment of the present invention.
  • FIG. 1 also shows an example of a manufacturing process of a rectangular titanium cast piece as a material as a pre-process.
  • FIG. 2 shows the outline of the raw material (rectangular titanium cast) provided for the embodiment of the method for producing a titanium cast for hot rolling according to the present invention, and at the same time, shows the state of electron beam irradiation on the rectangular titanium cast. Show.
  • FIG. 3 has shown transition of the cross-sectional condition of the surface vicinity of the rectangular titanium cast piece by each process in one Embodiment of the manufacturing method shown in FIG.
  • a raw material for melting industrial pure titanium for example, a titanium sponge obtained by a crawl method, titanium scrap, A mother alloy made of titanium or a compound of an additive element as a raw material of the titanium alloy is melted by a predetermined amount in the hearth by electron beam melting.
  • the obtained molten titanium is placed in a water-cooled copper mold for DC slab casting, that is, in a water-cooled copper mold that is open at the top and bottom and has a rectangular horizontal section (including the case where chamfers are formed at the corners). Pour hot water continuously.
  • the slab solidified in the mold is continuously drawn downward, and thus a rectangular shape (slab shape) having a shape, size and thickness suitable for hot rolling, width and length as cast.
  • a titanium slab is obtained.
  • a chamfer is also given to the corner portion of the slab so as to be widely referred to as “rectangle”.
  • the atmosphere at the time of melting in the hearth by the electron beam heating and casting is kept in a vacuum.
  • industrial pure titanium includes JIS standard 1 to 4 types, corresponding ASTM standard Grades 1 to 4, and DIN standard 3.7025 industrial pure titanium. That is, the industrial pure titanium targeted in the present invention is, in mass%, C: 0.1% or less, H: 0.015% or less, O: 0.4% or less, N: 0.07% or less, It can be said that Fe: 0.5% or less and the balance Ti. Furthermore, some platinum group elements are added to these, and a high corrosion resistance alloy called ASTM (improved) pure titanium (ASTM Grade 7, 11, 16, 26, 13, 30, 33 or JIS species corresponding thereto) In the present invention, titanium materials containing a small amount of various elements are also treated as being included in industrial pure titanium.
  • ASTM improved
  • titanium alloys are usually formed into plate materials by hot rolling or cold rolling, and products having shapes such as wires and rods are also manufactured.
  • the titanium alloy an ⁇ -type titanium alloy, an ⁇ + ⁇ -type titanium alloy, or a ⁇ -type titanium alloy is applicable. Therefore, in this invention, the component composition of a titanium alloy is not specifically limited.
  • the rectangular titanium slab as a raw material may be basically obtained by any melting method or any casting method.
  • the effect of the present invention can be exhibited most effectively by melting raw materials such as titanium sponge and titanium scrap under vacuum by an electron beam melting method or a plasma arc melting method, and the titanium melt is then converted into a DC slab under vacuum.
  • It is a titanium slab cast into a rectangle (slab shape) having a long rectangular cross section by a casting method. According to such a DC slab casting method, a rectangular titanium slab having a shape and size suitable for hot rolling can be easily obtained. Therefore, a hot break such as ingot rolling or forging can be obtained. The down process can be omitted.
  • the dimensions of the rectangular titanium slab are not particularly limited as long as it can be directly subjected to hot rolling.
  • the rectangular titanium cast piece has a thickness of about 150 mm to 280 mm, a length of about 3 m to 10 m, and a width of 600 mm. It may be about ⁇ 1500 mm.
  • the cast titanium slab is not limited to a rectangle (slab shape), and includes billets and blooms.
  • the rectangular titanium slab obtained by DC slab casting as described above is subjected to the surface heat treatment step and the cooling step in this order as shown in FIG.
  • the rectangular titanium slab is supplied to each process as it is, without undergoing a breakdown process by hot working such as ingot rolling or forging, of the slab for manufacturing a titanium hot rolled sheet.
  • a raw material for production it means that the material is as cast and is used for each process. Therefore, the rectangular titanium slab, which is the raw material of the titanium slab for hot rolling, has a rough asperity derived from casting as a surface property, and also has a rough cast structure and a depth of several millimeters from the surface portion.
  • many defects such as voids derived from casting exist. Needless to say, there is no problem even with a method of dissolving the surface after passing through a cutting process for cleaning the surface of the slab, and a smoother surface is easily obtained.
  • each step described below excludes a front end surface (lower end surface corresponding to a casting start surface) and a rear end surface (upper end surface corresponding to a casting end surface) at the time of DC slab casting out of the outer surface of the rectangular titanium cast piece.
  • a front end surface lower end surface corresponding to a casting start surface
  • a rear end surface upper end surface corresponding to a casting end surface
  • each step is performed on the wide two surfaces 10A and 10B including at least the chamfer 11.
  • each step may also be performed for the surfaces 10C and 10D on the edge side.
  • the respective steps for the two surfaces 10C and 10D on the edge side may be performed again after the respective steps for the wide two surfaces 10A and 10B to be hot-rolled surfaces are completed.
  • each step for the two surfaces 10C and 10D on the edge side is omitted.
  • the rectangular titanium slab obtained by electron beam melting and DC slab casting is used as it is for the surface heat treatment process.
  • the surface heat treatment step is performed on two outer surfaces of the rectangular titanium cast slab 10 which are at least two rolled surfaces (surfaces in contact with the hot rolling roll) in the hot rolling step.
  • 10A and 10B an electron beam is irradiated to melt only the surface layer on the surface.
  • the surface 10A is one of the two surfaces 10A and 10B.
  • the area of the electron beam irradiation region 14 by one electron beam irradiation gun 12 on the surface 10A of the rectangular cast 10 is compared with the total area of the surface 10A to be irradiated.
  • the electron beam irradiation gun 12 is moved continuously or the rectangular cast 10 is moved continuously over the entire surface 10A to be irradiated.
  • electron beam irradiation is performed.
  • the shape and area of this irradiation area can be adjusted by adjusting the focus of the electron beam or by using an electromagnetic lens to oscillate a small beam at a high frequency (oscillation Oscillation) to form a beam bundle. can do.
  • the moving direction of the electron beam irradiation gun is not particularly limited, it is generally continuous along the length direction (usually the casting direction D) or the width direction (usually the direction perpendicular to the casting direction D) of the rectangular slab 10. Then, the irradiation region 14 is continuously irradiated in a band shape with a width W (in the case of a circular beam or beam bundle, a diameter W).
  • the electron beam irradiation is performed in a belt shape while continuously moving the irradiation gun 12 in the reverse direction (or the same direction) in the adjacent unirradiated belt region.
  • a plurality of irradiation guns may be used to simultaneously perform electron beam irradiation on a plurality of regions.
  • FIG. 2 the case where a rectangular beam is continuously moved along the length direction (usually casting direction D) of the rectangular cast slab 10 is shown.
  • FIG. 10A the surface (surface 10A) of the rectangular titanium cast piece 10 is irradiated with an electron beam by such a surface heat treatment step and the surface is heated to a temperature equal to or higher than the melting point of titanium (usually about 1670 ° C.), FIG. As shown on the left side of the center, the surface layer of the surface 10A of the rectangular titanium slab 10 is melted at the maximum depth corresponding to the amount of heat input. However, the depth from the direction perpendicular to the irradiation direction of the electron beam is not constant as shown in FIG. 4A, and the central portion of the electron beam irradiation has the greatest depth and goes to the band-shaped end. The lower the thickness, the lower the convex shape.
  • the melting depth becomes shallower toward the end of the belt, the voids existing at the surface layer of several mm cannot be eliminated, and cracks are generated starting from these voids during hot rolling. A concave portion is formed on the surface, and surface flaws are generated. Moreover, when the melting depth becomes shallow, it is influenced by the coarse casting structure of the lower layer, and causes surface flaws during hot rolling. For that purpose, when irradiating the adjacent unexposed band-like region, it is necessary to make the method of superimposing the electron beam with the already irradiated region appropriate.
  • the irradiation gun is continuously moved when the adjacent unirradiated part is irradiated in the reverse direction (or the same direction) in the shape of the melted part or the belt-like region, and the center position of the electron beam is required. This is performed by irradiating the electron beam in a band shape while shifting it only by a distance. This overlap amount is expressed by the distance between the adjacent belt-like portion and the electron beam, and is desirably 5 mm or more and less than 20 mm.
  • the overlap amount When the overlap amount is smaller than 5 mm, the shape of the melted portion becomes smoother, and even at the band-shaped end portion, it is melted to a sufficient depth, so that the gap can be removed, but already when the adjacent untreated portion is melted Most of the irradiated part rises to a high temperature due to thermal effects. If it does so, the fine structure formed by the melt resolidification process will coarsen, and the abundance of the crystal grain of 1 mm or more will increase. On the other hand, if it is 20 mm or more, the overlap amount is small, and the gap at the end of the belt-like end remains without being sufficiently removed.
  • the melting depth up to a sufficient depth can be ensured even at the belt-like end portion (minimum portion) as shown in FIG. .
  • the cooling rate due to heat removal from the base material becomes slow, and sufficient microstructural refinement described later cannot be achieved.
  • the total depth of the molten layer 16 and the ⁇ transformation layer 18 by the surface heat treatment is within a range of 5 mm or more and less than 9 mm, so It is possible to achieve both suppression of disappearance and coarsening of the structure of the belt-like central portion.
  • the thickness (depth) of the molten layer 16 is not particularly limited.
  • the total of the molten layer 16 and the ⁇ transformation layer 18 may be the above-mentioned depth, and it is usually desirable that the molten layer 16 be in the range of 2 to 3 mm.
  • the electron beam irradiation conditions are selected so that the heat input is such that the above melt depth is obtained.
  • the required heat input varies depending on the thickness (heat capacity) of the slab, the base material temperature, the cooling condition on the base material side, etc., so the heat input for obtaining the above melt thickness is generally determined.
  • the heat input per unit area per 1 cm 2 ) may be about 30 to 150 J.
  • the electron beam irradiation conditions that affect the amount of heat input per unit area include the output and beam diameter of the irradiation gun, and the gun movement speed when irradiating while moving the irradiation gun continuously as described above ( (Irradiation position moving speed) etc., and these may be set appropriately to ensure the above heat input.
  • the surface of the rectangular titanium slab is irradiated with an electron beam, and after performing the surface heat treatment process, the cooling process is performed by using stainless steel, copper, aluminum, etc.
  • a rectangular titanium slab is placed on a water-cooled base made of a heat conductive material (metal) so that the temperature of the rectangular titanium slab does not increase as a whole due to irradiation with an electron beam. Then, after the surface heat treatment step is performed, the heat removal from the base material side proceeds immediately and the cooling step is performed. Thereby, the effect of the present invention can be further enhanced.
  • the surface of the rectangular titanium slab melted by the electron beam irradiation is flattened by the surface tension, and the rough unevenness of the casting surface is eliminated.
  • the melt-resolidified layer obtained by cooling and solidifying the melt layer is a layer with less surface irregularities and less internal voids.
  • a coarse cast structure disappears by melting, and a fine structure is generated by solidification in the subsequent cooling process and further transformation from the ⁇ phase to the ⁇ phase.
  • This cooling and solidification is performed by heat removal from the base material side, but the cooling rate by heat removal from the base material side is considerably large, and therefore the structure after solidification and transformation becomes fine.
  • the ⁇ -transformed layer is heated to a temperature higher than the ⁇ -transformation point, and then cooled at a large cooling rate due to heat removal from the base material side to reversely transform into the ⁇ -phase and become a HAZ layer.
  • the HAZ layer also has a fine structure.
  • the molten layer + HAZ layer may not be uniformly formed on the entire surface of the melted and re-solidified slab, and a coarse structure may partially remain. Even in this case, if the proportion of crystal grains of 1 mm or more in the portion of the average thickness of the molten layer + HAZ layer is less than 15%, even if surface defects after hot rolling occur, there are very few. There is a level that can be sufficiently handled by surface care.
  • the ratio of crystal grains of 1 mm or more is the number ratio in a portion of 1 ⁇ 2 of the average thickness of the molten layer + HAZ layer. Therefore, after performing the modification treatment, the cross section can be observed with an optical microscope and measured by measuring the grain size and the number of crystal grains in a half of the average thickness of the molten layer + HAZ layer. it can.
  • the reason why the coarse structure remains is unclear, but can be estimated as follows. The size of the structure formed in the melted and resolidified layer is determined by heat input at the melted portion and heat removal from the base material.
  • the heat removal state from the slab changes, and in some cases, relatively coarse crystal grains are formed.
  • the part once melted may rise to a high temperature region below the ⁇ transformation point due to the heat effect from other parts when melting. If so, the relatively coarse crystal grains may further grow and form coarse crystal grains of 1 mm or more.
  • hot rolling is performed to obtain a hot rolled sheet having a desired thickness.
  • the hot rolling method is not particularly limited, but in the case of a thin hot-rolled sheet product, coil rolling is usually applied.
  • the hot rolled plate thickness is not particularly limited, but is usually about 3 mm to 8 mm.
  • the hot rolling conditions are not particularly limited, but, as with normal titanium hot rolling, the temperature is from 720 ° C. to 920 ° C. for industrial pure titanium, and 60 just below the ⁇ transformation point for ⁇ -type and ⁇ + ⁇ -type titanium alloys. Heating may be performed for about minutes to 420 minutes, hot rolling may be started at a temperature within the range, and hot rolling may be terminated at a temperature equal to or higher than room temperature depending on the capability of the rolling mill.
  • the rectangular titanium slab obtained by electron beam melting-DC slab casting is left in a state as it is, that is, without undergoing a breakdown process by hot working such as block rolling or forging.
  • a raw material for manufacturing a titanium cast for rolling it is a raw material as cast and is used for each step.
  • a raw material having a cast surface (cast surface having a so-called black-skinned surface, which has severe irregularities derived from casting on the surface and has many surface defects such as voids in the surface layer portion) is used. ing.
  • the effect of the present invention can be most effectively exerted when applied to such an as-cast slab.
  • Test numbers 1 to 7 shown in Table 1 (Table 1A and Table 1B), Test numbers 8 to 21 shown in Table 2 (Table 2A and Table 2B), Test numbers shown in Table 3 (Table 3A and Table 3B)
  • Table 1A and Table 1B Test numbers 1 to 7 shown in Table 1
  • Table 2A and Table 2B Test numbers 8 to 21 shown in Table 2
  • Table 3 Test numbers shown in Table 3
  • Electron beam is irradiated in the longitudinal direction by moving the slab to the DC slab of JIS type 1 pure titanium produced by DC casting of JIS type 1 pure titanium slab having a cross section of 1220 mm width x 270 mm thickness x 7000 mm length by electron beam melting. And the electron beam irradiation was performed to the whole rolling surface by repeating the process of reciprocating this. Irradiation was also applied to the side of the slab. These slabs were inserted into a furnace at 820 ° C. and then heated for about 240 minutes.
  • a 5 mm thick hot rolled sheet coil was produced by a continuous hot rolling strip mill, and a continuous pickling line made of nitric hydrofluoric acid was passed through. The surface was cut by about 50 ⁇ m per side. Thereafter, both plate surfaces were visually observed, and the number of surface defects was measured. The number of surface defects was the average of the number of surface defects generated in a 1 m square frame, observed by 10 to 15 visual fields. Further, if the plate or length does not reach 1 m, the surface area of the hot-rolled sheet was observed in terms such that 1 m 2, which was the number of 1 m 2 per surface defects.
  • Test Nos. 1, 2, 3, 4, and 5 are all examples of the present invention, and as shown in Tables 1A and 1B, the form of the surface layer portion defined in the present invention (structure refinement layer) After the heat treatment equivalent to hot rolling and heating, a structure composed of the crystal grain size defined in the present invention is exhibited, the surface defects after hot rolling are small, and the acceptable line is exceeded.
  • Test Nos. 6 and 7 are comparative examples that do not satisfy the form and construction conditions of the surface layer part defined in the present invention, and these have many surface defects after hot rolling as shown in Table 1A and Table 1B. The surface state of the hot-rolled sheet was unacceptable.
  • Test Nos. 8 to 12 are various JIS grade or ASTM grade industrial pure titanium or modified pure titanium (low low) produced by DC casting of JIS class 1 pure titanium slab having a cross section of 1220 mm wide x 270 mm thick x 7000 mm long by electron beam melting. The entire surface of the rolling surface was irradiated with an electron beam by repeating the process of irradiating an electron beam in the longitudinal direction by moving the slab with respect to the DC slab of titanium alloy) and reciprocating the electron beam. Irradiation was also applied to the side of the slab. Test Nos.
  • 13 to 18 have a cross section of 950 mm wide ⁇ 220 mm thick ⁇ 5000 mm long titanium slab produced by DC casting by electron beam melting, and the slab is moved to move the electron beam in the longitudinal direction. Irradiation and reciprocation were repeated to irradiate the entire rolling surface with electron beam. Irradiation was also applied to the side of the slab.
  • Test Nos. 19 to 21 are directed to an electron beam in the longitudinal direction by moving a slab with respect to a titanium slab made of DC slab cast by plasma arc melting of a titanium slab having a cross section of 950 mm wide ⁇ 250 mm thick ⁇ 4500 mm long. Irradiation and reciprocation were repeated to irradiate the entire rolling surface with electron beam.
  • Test number 8 is JIS type 2 pure titanium
  • test number 9 is JIS type 3 pure titanium
  • test number 10 is JIS type 4 pure titanium
  • test number 11 is ASTM Gr. 17 titanium alloy
  • test number 12 is ASTM Gr. 13 titanium alloys.
  • Test Nos. 11 and 12 are modified pure titanium, which is a titanium alloy to which an alloy element is added, but is added in a small amount and is treated in the same manner as pure titanium.
  • Test number 13 is a titanium alloy of Ti-1Fe-0.35O
  • test number 14 is a titanium alloy of Ti-5Al-1Fe
  • test number 15 is a titanium alloy of Ti-5Al-1Fe-0.25Si
  • test number 16 is a titanium alloy of Ti-3Al-2.5V
  • test number 17 is titanium of Ti-4.5Al-2Mo-1.6V-0.5Fe-0.3Si-0.03C (ASTM Gr.35) Alloy
  • test number 18 is Ti-4.5Al-2Fe-2Mo-3V
  • test number 19 is Ti-1Cu
  • test number 20 is Ti-1Cu-0.5Nb
  • test number 21 is Ti-1Cu- 1Sn-0.3Si-0.2Nb.
  • Test No. 22 is a slab made by DC casting of a JIS type 1 pure titanium slab having a cross section of 1000 mm width ⁇ 190 mm thickness ⁇ 5000 mm length by electron beam melting, and test number 18 is a JIS type 1 cross section of 950 mm width ⁇ 165 mm thickness ⁇ 4500 mm length
  • a slab obtained by DC casting of pure titanium slab by electron beam melting, test number 24 is a slab having the same dimensions as test number 22 and DC slab casting by plasma arc melting. For these slabs, the surface heat treatment was performed on the front side surface, and then the slab was inverted, and the first stage surface layer heat treatment was performed on the back side surface.

Landscapes

  • Mechanical Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Metal Rolling (AREA)
  • Welding Or Cutting Using Electron Beams (AREA)
  • Continuous Casting (AREA)
  • Chemical Kinetics & Catalysis (AREA)

Abstract

 工業用純チタンもしくはチタン合金からなる熱間圧延用チタン鋳片であって、圧延面となる表面において、溶融再凝固処理により最表面に形成した針状組織からなる組織微細化層を有し、前記組織微細化層の厚みが深さ5mm以上、9mm未満である。本発明による熱間圧延用チタン鋳片は、表面が平坦でしかも表面直下の内部の微小空隙も少なく、しかも最表面は著しく微細な組織となっている。熱間圧延に供した場合、熱延初期に表面に凹部が発生したり、熱延板に表面疵が発生したりすることを、実用的なレベルで安定して防止することができる。

Description

分塊工程や精整工程を省略しても熱間圧延後の表面性状に優れた熱間圧延用チタン鋳片およびその製造方法
 本発明は、熱間圧延用チタン鋳片およびその製造方法に関するものであり、特に、分塊圧延工程や精整工程を省略しても熱間圧延後の表面性状を良好に保つことができるチタン鋳片およびその製造方法に関する。
 一般に工業用純チタンは、クロール法によって得られたスポンジチタンやチタンスクラップを溶解原料とし、真空アーク溶解(VAR)や電子ビーム溶解(EBR)などによって溶解して、大型の鋳片(インゴット)とすることが通常であった。ここで、鋳片形状としては、真空アーク溶解の場合は円柱状の鋳片(ビレット)に限られ、一方電子ビーム溶解の場合は矩形状の鋳片、すなわちスラブに鋳造することができる。
 さらにこのような大型鋳片を素材としてチタン薄板などのチタン材を製造するに当たっては、大型鋳片に対し、必要に応じて表面の切削手入れを行なってから、熱間において分塊圧延もしくは鍛造を施して、その後の熱間圧延に適した形状、寸法のスラブに加工する。これらの分塊圧延もしくは鍛造による熱間加工工程を、ここではブレークダウン工程と称している。そしてさらにブレークダウン後のスラブの表面に形成されている酸化物層や酸素濃化層を除去するため、表面を切削加工によって数mm程度削る切削手入れを施した後、熱間圧延に供するのが通常であった。
 しかしながら、このような従来の一般的な手法では、大型鋳片から熱間圧延に適した形状、寸法に加工するための分塊圧延もしくは鍛造によるブレークダウン工程に多大な時間とコストを要し、これがチタン薄板製造の生産性向上、コストダウンに対する大きなネックとなっていた。
 ところで、最近に至り、スラブ状の鋳片を鋳造する方法として、前述のような大型インゴット鋳造に代え、電子ビーム溶解によりハース内で溶解したチタン溶湯を、真空雰囲気に保持された水冷銅鋳型内に連続的に注入し、かつその水冷銅鋳型内で凝固した部分を鋳型の下端側から連続的に引き抜き、所定長さのスラブ状鋳片を得る、DCスラブ鋳造法(ダイレクトキャスト法)が採用された。このDCスラブ鋳造法によって、比較的薄いスラブ状鋳片、すなわちそのまま熱間圧延に供することが可能な形状、寸法を有するチタン鋳片を製造する技術が確立されつつある。
 このような電子ビーム溶解―真空下でのDCスラブ鋳造法を適用すれば、従来必要とされていたブレークダウン工程を省略することが可能となり、その結果、チタン薄板製造の生産性を向上させ、製造コストを低減することが可能となる。しかしながら、真空下でのDCスラブ鋳造によって得られたスラブも、鋳造したままの鋳片の表面層は、凹凸が激しくかつ欠陥が多い。このような鋳片をそのまま熱間圧延に供すれば、熱間圧延上がりの板(熱延板)の表面性状が悪くなるため、前述のように大型インゴットからのブレークダウン工程を適用した場合と同様に、表面に切削加工を施してから熱間圧延に供さざるを得ないのが実状である。したがって材料の歩留まりが低下し、また切削加工の手間、コストを要するため、未だ改善の要望が強かったのが実情である。
 さらに、上述のように電子ビーム溶解―真空下でのDCスラブ鋳造法を適用して得られたスラブ(ブレークダウン工程省略)に、表面切削加工を施してから熱間圧延に供した場合であっても、熱間圧延後の熱延板の表面性状は必ずしも良好とはならないという問題がある。すなわち、熱延板表面に、数mmから10mm程度の長さにまで及ぶ大小の被さり状の疵が多数発生するという問題がある。このような表面の多数の被さり状の疵を、ここでは表面疵と称することとしている。このような熱延板の表面疵は、鋳造したスラブの粗大鋳造組織に由来すると考えられる。すなわち、熱間加工であるブレークダウン工程を経ていないスラブは、鋳造のまま(as cast;“鋳造まま”)の粗大な結晶粒からなる鋳造組織を有しており、その表面に切削加工を施しても、切削後の表面層には粗大な組織が存在しているのであり、このような粗大な表面の鋳造組織に起因して、熱延板に表面疵が発生すると考えられる。
 ここで、粗大な鋳造組織に起因して熱延板に表面疵が発生する具体的要因としては、粗大な結晶粒に起因して粒内および結晶粒間の変形異方性の影響により表面に凹凸が生じ、その後の熱延の進行に伴い、この凹み上に金属が被さって表面疵となると考えられる。さらに、チタン合金では変態時に旧β結晶粒の粒界近傍にα相が生成(粒界α相)する。チタン合金でよく用いられるAlやOなどのα安定化元素を多量に含む合金系では、α相とβ相の熱間変形抵抗が大きく異なり、この差が後の熱間、冷間加工時の割れの起点になることもある。
 ところでブレークダウン工程を経ずに得られた熱間圧延用チタンスラブについて、熱間圧延後の熱延板表面に生じる表面疵の発生を防止するために、熱間圧延前にスラブ表面層に改質処理を施しておく方法が、既にいくつか提案されている。
 例えば、特許文献1においては、熱間圧延用チタンスラブの表面を、曲率半径が3~30mmの先端形状を有する鋼製工具、もしくは半径が3~30mmの鋼球によって、冷間で叩き(塑性加工し)、これによって、うねりの輪郭曲線要素の平均高さが0.2~1.5mm、平均長さが3~15mmのディンプルを付与することが提案されている。この提案の方法では、上述のような鋼製工具もしくは鋼球によってチタンスラブの表面層に冷間で所定の塑性歪みを付与しておくことによって、その後の熱間圧延時において表面層を再結晶させ、微細組織を生成させる。これによって、前述のような粗大組織に起因する凹みの発生を防止することが可能であり、したがってブレークダウン工程を省略しても、熱延版の表面疵を軽減することが可能である。
 また特許文献2においては、熱間圧延用チタンスラブの表面、とりわけ熱間圧延時における圧延面となる側の表面に、高周波誘導加熱、アーク加熱、プラズマ加熱、電子ビーム加熱及びレーザー加熱などによって高エネルギーを与えて、その表面層のみを、1mm以上の深さにわたって溶融させ、直ちに急冷再凝固させる方法が提案されている。なおこの提案の方法の場合、チタンの融点は当然にβ変態点以上の温度であるから、表面を溶融させるに伴って、表面の溶融層よりも下側(母材側)の熱影響領域(HAZ)層も、β変態点以上に加熱されて、β変態することになる。そしてこの提案の方法では、熱間圧延用チタンスラブの表面層が溶融することによって、表面が平滑化され、さらにその後に母材側からの抜熱によって溶融層が急冷されて凝固し、同時に下側のHAZ層(β相)が急冷されることによって、溶融層およびHAZ層が、微細な変態組織(通常は微細針状組織)となる。そしてこのようにして微細化された表面層は、その後の熱間圧延の初期において再結晶して、微細で不規則な方位を有する粒状の組織(等軸粒組織)となる。そのため、粗大組織に起因する凹みの発生を防止し、熱間圧延後の熱延板の表面疵をも解消することがある程度可能であった。しかし、特許文献2に開示された発明においては、熱延板の表面疵を実用的なレベルで防止できない場合がありその原因は不明で、改善が求められていた。
国際公開2010/090352 特開2007-332420号公報
 本発明は、特許文献1に示されるような表面層改質処理を必要とせずに、特許文献2に開示された発明を更に改善し、ブレークダウン工程を省略し、その後の熱間圧延後の熱延板表面に表面疵が生じることを実用的なレベルで防止し、これによってチタン熱延板製造の生産性を向上させ、かつコストダウンを図り得るようにした熱間圧延用チタン鋳片、およびその製造方法を提供することを課題としている。
 上述の課題を解決するため、前述の特許文献2に示される表面層改質技術について、鋭意実験・検討を重ねたところ、次のような知見を得た。
 すなわち、電子ビームなどの高エネルギー密度の加熱手段によって鋳片の表面を加熱して、表面層のみを溶融させた後の冷却は、母材側からの抜熱によって行なわれるのが通常である。この際、溶融層の厚みが薄いほど、鋳片表面の単位面積当たりの入熱量(以下、入熱量に関して単位面積とは1cmを指す)が少ないため、加熱直後の冷却速度が大きくなり、そのため冷却されて凝固した表面層(溶融再凝固層)は、より微細な組織となり、その後に熱間圧延のための加熱を施した時の表面層の組織も、より微細化され、その結果、熱延初期に発生する凹みや熱延板の表面疵の発生も確実に抑えることが可能となる。
 しかし、溶融層の厚みが薄いと以下の問題があることが分かった。
(1)溶融深さが浅い場合、表面からある程度の深さの位置に存在する、鋳造に由来する空隙や皺などの欠陥は消滅しないことがある。すなわち、溶融後の再凝固によって表面層の組織を充分に微細化させるためには、溶融深さは数mm程度、溶融により溶融部よりも下部に形成されるβ域以上融点未満まで加熱されることで形成する微細組織層(βHAZ層)を合わせた溶融深さ+βHAZの組織改質層を5mm以上とすることが必要であることが実験的に確認された。即ち、溶融深さが浅くなると空隙は消滅せず、そのため熱延時にこれらの空隙が起点となってクラックが発生し、表面に凹部が生じ、表面疵が発生すること推測された。
(2)電子ビームなどの高エネルギーを1方向に移動させながら照射することで鋳片の表面を加熱して表面層のみを溶融させるため、照射部と母材部の境界近傍(溶融ビード端部)では溶融深さが非常に浅くなる。溶融深さが浅い部分が存在した場合、溶融深さ+βHAZの組織が細粒化されやすいが、一方で(1)の問題以外に、組織改質された下層に存在する粗大な鋳造組織に起因した凹みを起点としてクラックが発生して、熱延板の表面疵を発生させていることが確認できた。この現象を防止するためには、溶融深さ+βHAZの組織改質層を5mm以上とすることで防止できることが分かった。
(3)一方で、鋳片表面の圧延される面の全てを完全に組織改質することは多大なコストが必要となることが分かった。しかし、多少の熱延時の表面疵の発生は、熱延板表面の手入れを行うことによって解消でき、分解圧延や鍛造のコスト削減のメリットを十分に享受できることも分かった。
 一方、溶融深さを深くした場合は、以下の問題があることも分かった。
 溶融深さを深くしようとした場合、より高エネルギー密度をもって表面層を溶融させなければならない。しかしながらその場合には、前述の場合とは逆に、単位面積当たりの入熱量が大きくなって、加熱直後の母材側からの抜熱による冷却速度が小さくなる。そのため、冷却されて凝固した表面層(溶融再凝固層)の組織は充分に微細化されず、その後に熱間圧延のための加熱を施した時の表面層の組織も十分に微細化されず、その結果、熱延初期に発生する凹みや熱延板の表面疵が充分には低減されなくなってしまう。この現象を防止するためには、溶融深さ+βHAZの組織改質層を9mm以下に抑制する必要があることが分かった。
 このような新規な知見をベースとして本発明者らが鋭意実験・検討を重ねた結果、特許文献2に示される表面改質技術の問題点が明らかになり、をさらに改良することによって、熱延初期に発生する凹みや熱延板の表面疵を十分に抑制し得ることを見出し、熱延初期に発生する凹みや熱延板の表面疵を実用的なレベルで抑制し得ることを見い出した。
 すなわち、熱間圧延用スラブの素材となる鋳片の表面層を、電子ビーム照射によって溶融、再凝固させる際に、電子ビーム照射出力や照射条件(溶融ビードの重ね合わせ方など)をコントロールし、電子ビーム照射により形成され組織微細化層全体の形状を特定の範囲になるように熱間圧延用スラブ表面の溶解を行うことにより、熱延初期に発生する凹みや熱延板の表面疵を実用的なレベルで確実に防止でき、その後の熱間圧延後の熱延板における表面疵の発生を確実に抑制し得ることを見出し、本発明をなすに至ったのである。
 本発明の要旨とするところは、以下のとおりである。
[1]
 チタンからなる熱間圧延用チタン鋳片であって、
 圧延面となる表面に、溶融させ再凝固させたことにより形成された母層よりも微細粒からなる組織微細化層を有し、
 前記組織微細化層の厚みが深さ5mm以上、9mm未満で、且つ前記微細組織の平均厚さの1/2の位置における粒径が1mm以上の結晶粒の割合が15%未満である、熱間圧延用チタン鋳片。
[2]
 工業用純チタンもしくはチタン合金からなる、[1]に記載の熱間圧延用チタン鋳片。
[3]
 チタンからなる鋳片素材において、熱間圧延の圧延面となる表面を電子ビーム照射によって加熱して、表面から深さ5mm以上、9mm未満までの領域をβ変態点以上に加熱する表層加熱処理工程と、表層加熱処理工程後、β変態点より低い温度に冷却する冷却工程を有する、[1]もしくは[2]に記載の熱間圧延用チタン鋳片の製造方法。
[4]
 前記表層加熱処理工程において、電子ビームの照射ガンを、鋳片素材の表面と平行な方向に連続的に移動させながら電子ビーム照射を行なう、[3]に記載の熱間圧延用チタン鋳片の製造方法。
[5]
 前記冷却工程が、鋳片素材の母材側からの抜熱によって行われる、[3]に記載の熱間圧延用チタン鋳片の製造方法。
[6]
 前記鋳片素材が、DCスラブ鋳造法によって鋳造したものである、[3]に記載の熱間圧延用チタン鋳片の製造方法。
[7]
 前記鋳片素材が、鋳造ままの鋳肌を有する、[3]に記載の熱間圧延用チタン鋳片の製造方法。
 このような本発明によれば、鋳造後の鋳肌に存在していた激しい凹凸が溶融によって解消されて平滑化され、同時に鋳造時に由来する内部空隙などの欠陥が消滅しており、また粗大な鋳造組織も消失している。しかも、最表面は、再加熱・急冷による組織微細化層とされている。そのため、本発明の熱間圧延用チタン鋳片を熱間圧延に供した際には、鋳造時に由来する皺や内部空隙に起因する表面疵の発生を未然に防止することができると同時に、組織微細化の不充分に起因する熱延初期の凹部の発生や熱延板の表面疵の発生をも、確実に未然に防止することができる。
 すなわち、溶融されて再凝固した際に溶融およびβ変態点以上まで加熱された内側組織微細化層は、その組織微細化層が5mm以上、9mm未満の範囲にあり、溶融ビード間であっても充分な厚みを有していて、表面近傍から数mm程度の位置に存在していた空隙を充分に消滅されている。
 一方、溶融を深くし過ぎないことで母材からの抜熱による高速の急冷効果によって、充分に微細な組織からなる層となっている。そのため、組織微細化の不充分に起因する熱延初期の凹部の発生や熱延板の表面疵の発生をも、確実に防止することができる。
 そして上述の各作用は、鋳造後に熱間加工である分塊圧延や鍛造などのブレークダウン工程を経ない状態の鋳片であっても得ることができ、しかも表面に予め切削加工を施していない鋳造ままのいわゆる黒皮の鋳片でも得ることができる。
 また本発明の熱間圧延用チタン鋳片の製造方法において、前記鋳片素材が、DCスラブ鋳造法によって鋳造したもの、電子ビーム溶解法によって得られた溶湯を、DCスラブ鋳造法によって鋳造したもの、鋳造ままの鋳肌を有するもの、の何れでも構わない。このような矩形鋳片は、分塊圧延もしくは鍛造からなるブレークダウン工程を経ずに得られたものであり、その溶解法は特に限定するものではないが、電子ビーム溶解法やプラズマアーク溶解法などが適用可能である。電子ビーム溶解法においては、高真空中の溶解であるため、溶解後にスラブ表面付近に残存する空隙内部が真空となるから、熱間圧延時に、その空隙を圧着して無害化しやすい利点がある。一方、プラズマアーク溶解法においては、低真空雰囲気で溶解できるため、チタン合金を製造する際、蒸気圧の高い合金元素を添加しやすい利点があり、適宜溶解する成分系によって最適な溶解方法を選択すれば良い。
 本発明による熱間圧延用チタン鋳片は、表面が平坦でしかも表面直下の内部の微小空隙も少なく、しかも最表面は著しく微細な組織となっている。したがってそれを熱間圧延に供した場合、熱延初期に表面に凹部が発生したり、熱延板に表面疵が発生したりすることを、実用的なレベルで安定して防止することができる。そしてこのような効果は、熱間圧延用チタン鋳片を製造するための素材の鋳片として、分塊圧延や鍛造などのブレークダウン工程を経ていない鋳片を用いても得ることができる。そのためブレークダウン工程を省くことが可能となって、従来よりも格段にコストダウンを図ることが可能となる。
本発明の熱間圧延用チタン鋳片の製造方法の実施形態のフローを示す略解図である。 本発明の熱間圧延用チタン鋳片の製造方法の実施形態に供される素材(矩形チタン鋳片)の一例の概要とそれに対する電子ビーム照射状況を示す模式的な斜視図である。 本発明の熱間圧延用チタン鋳片の製造方法の実施形態において素材の矩形チタン鋳片の表面層の推移の一例を段階的に示す模式的断面図である。 本発明の熱間圧延用チタン鋳片の表面付近の電子ビーム照射方向から垂直方向の断面組織の一例を示す模式図である。 本発明の熱間圧延用チタン鋳片の表層部分における微細化層と鋳造凝固組織を示す断面観察写真である。
 以下に、本発明の実施形態について、図面を参照して詳細に説明する。
 図1は、本発明の一実施形態にかかる熱間圧延用チタン鋳片の製造方法における全体的なプロセスの各工程を概略的に示している。なおこの図1においては、前工程として、素材となる矩形チタン鋳片の製造工程の一例をも併せて示している。また図2は、本発明の熱間圧延用チタン鋳片の製造方法の実施形態に供される素材(矩形チタン鋳片)の概要を示すと同時に、その矩形チタン鋳片に対する電子ビーム照射状況を示している。さらに図3は、図1に示した製造方法の一実施形態における、各工程による矩形チタン鋳片の表面近傍の断面状況の推移を示している。
[前工程]
 本発明の熱間圧延用チタン鋳片を製造するに当たっては、図1に前工程として示しているように、工業用純チタンの溶解原料、例えばクロール法によって得られたチタンスポンジや、チタンスクラップ、チタン合金の原料となるチタンや添加元素の化合物からなる母合金を、ハース内において電子ビーム溶解によって所定量だけ溶解する。得られたチタン溶湯を、DCスラブ鋳造用の水冷銅鋳型、すなわち上下が開放されていて水平断面が矩形状(角部にチャンファーが形成されている場合を含む)をなす水冷銅鋳型内に連続的に注湯する。さらにその鋳型内で凝固された鋳片を下方に連続的に引き抜き、これによって、鋳造したままの形状、寸法で熱間圧延に適した厚み、幅、および長さを有する矩形(スラブ状)のチタン鋳片を得る。このように、鋳片の角部にチャンファーが付与されている場合も広く「矩形」と称することとしている。なお上記の電子ビーム加熱によるハースでの溶解および鋳造時の雰囲気は真空に保たれる。
 ここで工業用純チタンとは、JIS規格の1種~4種、およびそれに対応するASTM規格のGrade1~4、DIN規格の3・7025で規定される工業用純チタンを含むものとする。すなわち、本発明で対象とする工業用純チタンは、質量%で、C:0.1%以下、H:0.015%以下、O:0.4%以下、N:0.07%以下、Fe:0.5%以下、残部Tiからなるもの、と言うことができる。さらに、これらに若干の白金族元素を添加し、モディファイド(改良)純チタンと呼ばれている高耐食性合金(ASTM Grade 7、11、16、26、13、30、33あるいはこれらに対応するJIS種や更に種々の元素を少量含有させたチタン材)も、本発明では、工業用純チタンに含まれるものとして扱う。
 また、チタン合金は、通常、熱間圧延や冷間圧延により板材に成形されたり、線材や棒材などの形状の製品も製造されている。ここでチタン合金とは、α型チタン合金、あるいはα+β型チタン合金、β型チタン合金が適用可能である。よって、本発明では、チタン合金の成分組成はとくに限定するものではない。
 なお、本発明の熱間圧延用チタン鋳片を製造するに当たって、その素材となる矩形チタン鋳片は、基本的には、任意の溶解法、任意の鋳造法によって得られたものであれば良い。本発明の効果を最も有効に発揮させ得るのは、電子ビーム溶解法やプラズマアーク溶解法によってチタンスポンジやチタンスクラップなどの原料を真空下で溶解させ、そのチタン溶湯を、真空下でのDCスラブ鋳造法によって、断面が長矩形状をなす矩形(スラブ状)に鋳造したチタン鋳片である。このようなDCスラブ鋳造法によれば、熱間圧延に適した形状、寸法の断面矩形状の矩形チタン鋳片を容易に得ることができ、そのため分塊圧延や鍛造などの熱間でのブレークダウン工程を省略することができるのである。
 また矩形チタン鋳片の寸法は、そのまま熱間圧延に供し得る寸法であれば特に限定されない。熱間圧延としてコイル圧延を適用し、板厚3mm~8mm程度の熱延コイル薄中板を製造する場合、矩形チタン鋳片としては、厚み150mm~280mm程度、長さ3m~10m程度、幅600mm~1500mm程度とすれば良い。
 更に、熱間圧延用に供されるビレット、ブルーム等も圧延面に相当する部分を、本発明の様に熱処理を行って熱間圧延を行っても同様な効果が発揮される。素材となるチタン鋳片は、矩形(スラブ状)に限らず、ビレット、ブルームも含まれる。
 前述のようにしてDCスラブ鋳造によって得られた矩形チタン鋳片に対しては、そのままの状態で、図1に示すように表層加熱処理工程、冷却工程の順に供される。ここで、矩形チタン鋳片が、そのままの状態で各工程に供されるとは、分塊圧延や鍛造などの熱間加工によるブレークダウン工程を経ることなく、チタン熱間圧延板製造用スラブの製造のための素材として、鋳造まま(as cast)の材料で、各工程に供されることを意味する。したがって熱間圧延用チタン鋳片の素材となる矩形チタン鋳片は、表面性状として鋳造に由来する粗大な凹凸を有すると同時に、粗大な鋳造組織を有し、かつ表面部から数mm程度の深さまでの部分には、鋳造に由来する空隙などの欠陥が多数存在したものとなっているのが通常である。なお言うまでもないことであるが、スラブ表面の手入れのための切削工程を経た後に、表面を溶解する方法でも問題なく、より平滑な面が得られやすい。
 また以下に述べる各工程は、矩形チタン鋳片の外表面のうち、DCスラブ鋳造時の先端面(鋳造開始面に相当する下端面)および後端面(鋳造終了面に相当する上端面)を除く4面のうち、少なくとも熱間圧延工程での圧延面(熱延ロールに接する面)となる2面(すなわち幅広な2面)について施される。なおチャンファーを有する矩形鋳片の場合、チャンファー面は上記の広幅な2面の一部をなすものとする。
 具体的には、例えば図2に示しているように、チャンファー11を有する矩形チタン鋳片10においては、その鋳造方向(DCスラブ鋳造における鋳片引き抜き方向)Dに沿った4面10A~10Dのうちの幅広な2面10A、10B(チャンファー11を含む面)が、熱間圧延時における圧延面となる。そこで、少なくともそのチャンファー11を含む幅広な2面10A、10Bについて、各工程を実施する。
 さらに、鋳造方向Dに沿った4面10A~10Dのうちの幅広な2面(熱間圧延時における圧延面となる面)10A、10Bのみならず、幅狭の2面(熱間圧延時におけるエッジ側となる面)10C、10Dについても,各工程を実施しても良い。その場合のエッジ側の2面10C、10Dについての各工程は、熱延面となる幅広な2面10A、10Bについての各工程が終了してから、改めて実施してもよい。但し本実施形態では、説明の簡略化のため、エッジ側の2面10C、10Dについての各工程については省略している。
[表層加熱処理工程]~[冷却工程]
 前述のように、電子ビーム溶解とDCスラブ鋳造によって得られた矩形チタン鋳片は、そのまま、表層加熱処理工程に供される。この表層加熱処理工程は、図2に示しているように、矩形チタン鋳片10の外表面のうち、少なくとも熱間圧延工程での圧延面(熱延ロールに接する面)となる幅広な2面10A,10Bについて、電子ビームを照射して、その面における表面層のみを溶融させる工程である。ここでは先ずその2面10A,10Bのうちの一方の面10Aについて実施するものとする。
 ここで、図2に示しているように、矩形鋳片10の面10Aに対する一基の電子ビーム照射ガン12による電子ビームの照射領域14の面積は、照射すべき面10Aの全面積と比較して格段に小さいのが通常である、そこで実際には、電子ビーム照射ガン12を連続的に移動させながら、あるいは、矩形鋳片10を連続的に移動させながら、照射すべき面10Aの全体に電子ビーム照射を行なうのが通常である。この照射領域は、電子ビームの焦点を調整することによって、あるいは電磁レンズを使用して小ビームを高周波数で振動(オシレーション Oscillation)させてビーム束を形成させることによって、その形状や面積を調整することができる。そして本実施形態の説明では、図2中の矢印Aで示しているように、電子ビーム照射ガン12を連続的に移動させるものとして、以下の説明を進める。なお電子ビーム照射ガンの移動方向は特に限定されないが、一般には矩形鋳片10の長さ方向(通常は鋳造方向D)または幅方向(通常は鋳造方向Dと垂直な方向)に沿って連続的に移動させ、前記照射領域14の幅W(円形ビームまたはビーム束の場合は、直径W)で連続的に帯状に照射する。さらにその隣の未照射の帯状領域について逆方向(もしくは同方向)に照射ガン12を連続的に移動させながら帯状に電子ビーム照射を行なう。また場合によっては複数の照射ガンを用いて、同時に複数の領域について同時に電子ビーム照射を行なっても良い。図2では、矩形鋳片10の長さ方向(通常は鋳造方向D)に沿って矩形ビームを連続的に移動させる場合を示している。
 このような表層加熱処理工程によって矩形チタン鋳片10の表面(面10A)に電子ビームを照射して、その表面をチタンの融点(通常は1670℃程度)以上の温度に加熱すれば、図3の中央左寄りに示すように、矩形チタン鋳片10の面10Aの表面層が、入熱量に応じた深さだけ最大溶融される。しかしながら、電子ビームの照射方向に対して垂直方向からの深さは図4(a)に示すように一定ではなく、電子ビーム照射の中央部が最も深さが大きくなり、帯状の端部に行くほどその厚みが減少する下に凸の湾曲形状となる。またその溶融層16よりも鋳片内部側の領域も、電子ビーム照射による熱影響によって温度上昇し、純チタンのβ変態点以上の温度となった部分(熱影響層=HAZ層)がβ相に変態する。このように表層加熱処理工程での電子ビーム照射による熱影響によってβ相に変態した領域も、溶融層16の形状と同様に下に凸の湾曲形状となる。
 このように帯状の端部になるほど溶融深さが浅くなってしまうと表層数mm位置に存在する空隙を消滅させることができず、そのため熱延時にこれらの空隙が起点となってクラックが発生し、表面に凹部が生じ、表面疵が発生する。また、溶融深さが浅くなることによって、下層の粗大な鋳造組織の影響を受け、熱延時の表面疵発生の原因となる。そのためには、隣の未照射の帯状領域を照射する際に、既に照射済みの領域との電子ビームの重ね合わせ方を適正にする必要がある。電子ビームの重ね合わせは、隣の未照射部を溶融部の形状や帯状領域を逆方向(もしくは同方向)に照射する際に照射ガンを連続的に移動させ、電子ビームの中心位置を必要量だけずらしながら帯状に電子ビーム照射することで行なう。この重ね合わせ量は、隣の帯状部と電子ビームとの距離で表し、5mm以上、20mm未満にすることが望ましい。重ね合わせ量が5mmより小さくなると、溶融部の形状はより滑らかとなり、帯状の端部においても十分な深さまで溶融されるため、空隙を除去できるが、隣の未処理部を溶融した際に既に照射した部位の大部分が熱影響により高温まで上昇してしまう。そうすると、溶融再凝固処理により形成した微細組織が粗大化してしまい、1mm以上の結晶粒の存在量が多くなってしまう。一方、20mm以上としてしまうと、重ね合わせ量が少なく帯状の端部の空隙が十分に除去されずに残存してしまう。重ね合わせ量を5mm以上20mm未満とすることで図4(b)に示すように帯状の端部(最小部)においても十分な深さまでの溶融深さを担保し、空隙を除去することができる。しかしながら、溶融深さを深くしすぎると、母材からの抜熱による冷却速度が遅くなり、後述する十分な組織の微細化ができない。電子ビームの照射方向に対し垂直方向において、表層加熱処理工による溶融層16およびβ変態層18の深さの合計が、5mm以上9mm未満の範囲内であることで、帯状の端部の空隙の消失および帯状の中央部の組織粗大化の抑制を両立できる。なお、溶融層16の厚み(深さ)は特に限定しない。溶融層16とβ変態層18の合計が前記深さとなればよく、通常、溶融層16は2~3mmの範囲内とすることが望ましい。
 電子ビーム照射による溶融深さには、主として入熱量が関係するから、上記の溶融深さが得られるような入熱量となるように、電子ビーム照射条件を選定する。実際には、鋳片の厚み(熱容量)や、母材温度、母材側の冷却条件などによっても必要な入熱量は異なるから、上記の溶融厚みを得るための入熱量は一概には決められないが、通常は、単位面積当たり(1cm当たり)の入熱量を、30~~150J程度とすれば良い。またここで、単位面積当たりの入熱量に影響する電子ビーム照射条件としては、照射ガンの出力およびビーム径、さらに前述のように照射ガンを連続的に移動させながら照射する場合のガン移動速度(照射位置移動速度)などがあり、これらを適切に設定して上記の入熱量を確保すればよい。
 なお、特に図示はしていないが、矩形チタン鋳片の表面に対する電子ビームの照射を行なって、表層加熱処理工程を実施した後に、冷却工程を実施するに当たっては、ステンレス鋼、銅、アルミなどの熱伝導材料(金属)からなる水冷基台上に矩形チタン鋳片を載置しておき、電子ビームの照射によって矩形チタン鋳片が全体的に温度上昇しないようにする。そして、表層加熱処理工程が実施された後に、直ちに母材側からの抜熱が急速に進行して冷却工程が実施されるようにする。これにより、本発明の効果をさらに高めることができる。
 上述のような表層加熱処理工程から冷却工程にかけてのプロセスにおいて、電子ビーム照射によって溶融した矩形チタン鋳片の表面は、表面張力によって平坦化され、鋳肌表面の粗大な凹凸が解消される。また表面の溶融によって、その表面の内部に存在していた鋳造由来の空隙も消失する。したがって溶融層を冷却凝固させた溶融再凝固層は、表面の凹凸が少なく、かつ内部の空隙も少ない層となる。また溶融によって粗大な鋳造組織が消失し、その後の冷却過程での凝固、さらにβ相からα相への変態によって微細な組織が生成される。この冷却・凝固は、母材側からの抜熱によって行われるが、母材側からの抜熱による冷却速度はかなり大きく、そのため、凝固、変態後の組織は微細となる。
 またβ変態層は、β変態点より高い温度に加熱された後、母材側からの抜熱による大きい冷却速度で冷却されてα相に逆変態しHAZ層となる。このため、HAZ層も、微細な組織となる。
 しかし、前記の溶融層+HAZ層は、溶融再凝固させた鋳片表面全体に均一に形成されない場合があり、一部は粗大な組織が残存する場合がある。この場合においても、溶融層+HAZ層の平均厚さの1/2の部分における1mm以上の結晶粒の割合が15%未満であれば、熱延後の表面欠陥は発生したとしても、極わずかであり表面手入れで十分対応可能なレベルである。
 ここで、1mm以上の結晶粒の割合は、溶融層+HAZ層の平均厚さの1/2の部分における個数割合である。そのため、改質処理を施した後、断面を光学顕微鏡にて観察し、溶融層+HAZ層の平均厚さの1/2の部分における結晶粒の粒径および個数を測定することで測定することができる。
 前記の粗大組織が残存する理由は不明ではあるが、以下のように推測できる。
 溶融再凝固層に形成する組織の大きさは、溶融部の入熱や母材からの抜熱により決まる。鋳造ままのスラブ表層には皺等の凹凸が多数存在するため、このような凹凸を有する表層部を溶融すると、スラブからの抜熱状態が変化し、場合によっては、比較的粗大な結晶粒を有する部位が発生する。さらに、一度溶融された部位が、他の部位を溶融時にそこからの熱影響によりβ変態点以下の高温域まで上昇する場合がある。そうなると、比較的粗大な結晶粒は更に粒成長をし1mm以上の粗大な結晶粒を形成する場合がある。
 以上のようにして得られた熱間圧延用チタン鋳片、すなわち矩形チタン鋳片に対して改質処理を施した熱間圧延用チタン鋳片の表層部分における微細化層と内側微細化層と鋳造凝固組織を示す断面観察写真を図5に示す。
 このようにして得られた熱間圧延用チタン鋳片を実際に使用するに当たっては、熱間圧延を施して所望の板厚の熱延板とする。熱間圧延の方式は特に限定されないが、薄板熱延板製品とする場合、コイル圧延を適用するのが通常である。またその場合の熱延上がり板厚は特に限定されないが、通常は3mm~8mm程度である。熱間圧延条件は特に限定されないが、通常のチタン熱間圧延と同様に、工業用純チタンであれば720℃から920℃に、α型やα+β型チタン合金であればβ変態点直下に60分~420分程度加熱し、その範囲内の温度で熱間圧延を開始して、圧延機の能力に応じて、室温以上の温度で熱間圧延を終了させれば良い。
 なお以上の実施形態では、電子ビーム溶解―DCスラブ鋳造によって得られた矩形チタン鋳片を、そのままの状態、すなわち分塊圧延や鍛造などの熱間加工によるブレークダウン工程を経ることなく、熱間圧延用チタン鋳片を製造するための素材として、鋳造まま(as cast)の素材で、各工程に供することとしている。すなわち、鋳造ままの鋳肌(表面に鋳造に由来する激しい凹凸が存在し、表層部に多数の空隙等の鋳造欠陥を有し、いわゆる黒皮状態の表面からなる鋳肌)を有する素材を用いている。本発明の効果は、このような鋳造ままの鋳片に適用した場合に最も有効に発揮することができるが、場合によっては、鋳肌表面の凹凸や表面近くの空隙を除去するために、最表面から数mm程度までの層を切削加工によって除去した場合、すなわちいわゆる白皮が現れた状態の鋳片に対して適用することも許容される。さらに、鋳造後に溶解炉や冷却炉を解放し鋳片を大気中に取り出す際に、高温で取り出したがために表面に生成する酸素富化層(最大1mm程度)の全体あるいは一部を切削加工によって除去して、いわゆる半白皮とした鋳片に適用することも許容される。
 以下に、表1(表1Aおよび表1B)に示す試験番号1~7、表2(表2Aおよび表2B)に示す試験番号8~21、表3(表3Aおよび表3B)に示す試験番号22~24の実験にもとづいて、本発明の実施例を、従来法による参考例(=分塊スラブ)、比較例(本発明の処理をまったく実施しない比較例、および本発明の条件を外れた処理を行った比較例)とともに説明する。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
〔試験番号1~7(表1A、表1B)〕
 断面が1220mm幅×270mm厚×7000mm長のJIS1種純チタンスラブを電子ビーム溶解によりDC鋳造し製造したJIS1種純チタンのDCスラブに対し、スラブを移動させることで、長手方向に電子ビームを照射し、これを往復させる工程を繰り返すことによって、圧延面全面に電子ビーム照射を行った。スラブの側面にも照射を実施した。
 これらスラブは、820℃の炉に挿入後、約240分加熱し、連続熱間圧延ストリップミルにて5mm厚の熱延板コイルを製造し、硝フッ酸からなる連続酸洗ラインを通板し、片面あたり約50μm溶削した。その後、両方の板面を目視観察し、表面疵の数を測定した。なお、表面疵の数は1m四方の枠の中に表面疵が発生した個数を、10~15視野観察し、その平均とした。また、板や長さが1mに達しない場合は、観察した熱延板の表面積が1mとなるように換算し、それを1m当たり表面疵の数とした。
 なおここで、熱延板表面疵の評価基準としては、表面疵の数が1m当たり0.3個以下を合格とし、1m当たり0.3個を越える場合を不合格と評価した。この評価基準は、後述する各試験番号8~22においても同様である。
 試験番号1、2、3、4、5は、いずれも本発明の実施例であって、表1A、表1Bに示すように、いずれも本発明で規定した表層部の形態(組織微細化層の最大及び最小厚み差)を有し、熱延加熱相当熱処理後には、本発明で規定した結晶粒径からなる組織を呈し、熱延後の表面疵も少なく、合格ラインを越えている。
 一方、試験番号6、7は、本発明で規定した表層部の形態や施工条件を満たしていない比較例であり、これらは表1A、表1Bに示すように熱延後の表面疵が多く、熱延板の表面状態は不合格であった。
〔試験番号8~21(表2A、表2B)〕
 試験番号8~12は断面が1220mm幅×270mm厚×7000mm長のJIS1種純チタンスラブを電子ビーム溶解によりDC鋳造し製造した様々なJISグレードまたはASTMグレードの工業用純チタンまたはモディファイド純チタン(低合金チタン)のDCスラブに対し、スラブを移動させることで、長手方向に電子ビームを照射し、これを往復させる工程を繰り返すことで、圧延面全面に電子ビーム照射を行った。スラブの側面にも照射を実施した。
 試験番号13~18は断面が950mm幅×220mm厚×5000mm長のチタンスラブを電子ビーム溶解によりDC鋳造し製造したチタン合金のDCスラブに対し、スラブを移動させることで、長手方向に電子ビームを照射し、これを往復させる工程を繰り返すことで、圧延面全面に電子ビーム照射を行った。スラブの側面にも照射を実施した。
 試験番号19~21は、断面が950mm幅×250mm厚×4500mm長のチタンスラブをプラズマアーク溶解によりDCスラブ鋳造したチタン合金のDCスラブに対し、スラブを移動させることで、長手方向に電子ビームを照射し、これを往復させる工程を繰り返すことで、圧延面全面に電子ビーム照射を行った。スラブの側面にも照射を実施した。
 試験番号8は、JIS2種純チタン、試験番号9は、JIS3種純チタン、試験番号10は、JIS4種純チタン、試験番号11は、ASTM Gr.17のチタン合金、試験番号12は、ASTM Gr.13のチタン合金である。試験番号11、12は、合金元素を添加したチタン合金であるが添加量は僅かであり、純チタンに準ずる扱いをされるモディファイド純チタンである。
 試験番号13は、Ti-1Fe-0.35Oのチタン合金、試験番号14は、Ti-5Al-1Feのチタン合金、試験番号15は、Ti-5Al-1Fe-0.25Siのチタン合金、試験番号16は、Ti-3Al-2.5Vのチタン合金、試験番号17は、Ti-4.5Al-2Mo-1.6V-0.5Fe-0.3Si-0.03C(ASTM Gr.35)のチタン合金、試験番号18は、Ti-4.5Al-2Fe-2Mo-3V、試験番号19は、Ti-1Cu、試験番号20は、Ti-1Cu-0.5Nb、試験番号21は、Ti-1Cu-1Sn-0.3Si-0.2Nbである。
 これらスラブに対し、表層加熱処理を表側の面に実施し、その後スラブを反転させて、裏側の面に表層加熱処理を実施した。しかる後に、側面にも同様の電子ビーム照射を行った。
 これらスラブは、820℃の炉に挿入後、約240分加熱し、連続熱間圧延ストリップミルにて5mm厚の熱延板コイルを製造し、硝フッ酸からなる連続酸洗ラインを通板し、片面あたり約50μm溶削した。その後、両方の板面を目視観察し、表面疵の数を測定した。
 これらの試験番号8~21の例は、いずれも本発明の実施例であり、表2A、表2Bに示すようにいずれも本発明で規定した表層部の形態を有し、熱延加熱相当熱処理後には、本願発明で規定した結晶粒径からなる組織を呈し、熱延後の表面疵も少なく、合格ラインを達成している。
〔試験番号22~24(表3A、表3B)〕
 試験番号22は、断面が1000mm幅×190mm厚×5000mm長のJIS1種純チタンスラブを電子ビーム溶解によりDC鋳造した鋳片、試験番号18は、断面が950mm幅×165mm厚×4500mm長のJIS1種純チタンスラブを電子ビーム溶解によりDC鋳造した鋳片、試験番号24は、試験番号22と同じ寸法で、プラズマアーク溶解によりDCスラブ鋳造した鋳片である。
 これらスラブに対し、表層加熱処理を表側の面に実施し、その後スラブを反転させて、裏側の面に第1段目表層加熱処理を実施した。しかる後に、側面にも同様の電子ビーム照射を行った。その際、照射条件を種々変化させた。
 これらスラブは、820℃の炉に挿入後、約240分加熱し、連続熱間圧延ストリップミルにて5mm厚の熱延板コイルを製造し、硝フッ酸からなる連続酸洗ラインを通板し、片面あたり約50μm溶削した。その後、両方の板面を目視観察し、表面疵の数を測定した。
 これらの試験番号22~24では、試験番号1などと比べ、寸法が小さいため熱容量も小さく、そのため冷却速度が遅くなる傾向があるが、本願発明で規定した結晶粒径からなる組織を呈し、熱延後の表面疵も少なく、合格ラインを達成している。

Claims (7)

  1.  チタンからなる熱間圧延用チタン鋳片であって、
     圧延面となる表面に、溶融させ再凝固させたことにより形成された母層よりも微細粒からなる組織微細化層を有し、
     前記組織微細化層の厚みが深さ5mm以上、9mm未満で、且つ前記微細組織の平均厚さの1/2の位置における粒径が1mm以上の結晶粒の割合が15%未満である、熱間圧延用チタン鋳片。
  2.  工業用純チタンもしくはチタン合金からなる、請求項1に記載の熱間圧延用チタン鋳片。
  3.  チタンからなる鋳片素材において、熱間圧延の圧延面となる表面を電子ビーム照射によって加熱して、表面から深さ5mm以上、9mm未満までの領域をβ変態点以上に加熱する表層加熱処理工程と、表層加熱処理工程後、β変態点より低い温度に冷却する冷却工程を有する、請求項1もしくは請求項2に記載の熱間圧延用チタン鋳片の製造方法。
  4.  前記表層加熱処理工程において、電子ビームの照射ガンを、鋳片素材の表面と平行な方向に連続的に移動させながら電子ビーム照射を行なう、請求項3に記載の熱間圧延用チタン鋳片の製造方法。
  5.  前記冷却工程が、鋳片素材の母材側からの抜熱によって行われる、請求項3に記載の熱間圧延用チタン鋳片の製造方法。
  6.  前記鋳片素材が、DCスラブ鋳造法によって鋳造したものである、請求項3に記載の熱間圧延用チタン鋳片の製造方法。
  7.  前記鋳片素材が、鋳造ままの鋳肌を有する、請求項3に記載の熱間圧延用チタン鋳片の製造方法。
PCT/JP2014/076103 2014-09-30 2014-09-30 分塊工程や精整工程を省略しても熱間圧延後の表面性状に優れた熱間圧延用チタン鋳片およびその製造方法 WO2016051511A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
US15/513,856 US10570492B2 (en) 2014-09-30 2014-09-30 Titanium cast product for hot rolling having excellent surface properties after hot rolling even when slabbing step and finishing step are omitted, and method for producing same
CN201480082160.3A CN106715005B (zh) 2014-09-30 2014-09-30 即使省略初轧工序、精整工序,热轧后的表面性状也优异的热轧用钛铸坯及其制造方法
UAA201702957A UA115957C2 (uk) 2014-09-30 2014-09-30 Титановий литий виріб для гарячої прокатки, який має чудові поверхневі властивості після гарячої прокатки, навіть при відсутності стадії обтиснення і стадії чистової обробки, і спосіб його виробництва
KR1020177008239A KR101953042B1 (ko) 2014-09-30 2014-09-30 분괴 공정이나 정정 공정을 생략하여도 열간 압연 후의 표면 성상이 우수한 열간 압연용 티타늄 주조편 및 그 제조 방법
EP14903062.9A EP3178584A4 (en) 2014-09-30 2014-09-30 Cast titanium slab for use in hot rolling and exhibiting excellent surface properties after hot rolling, even when omitting blooming and purifying steps, and method for producing same
EA201790499A EA029618B1 (ru) 2014-09-30 2014-09-30 Титановое литое изделие для горячей прокатки, имеющее превосходные поверхностные свойства после горячей прокатки даже при отсутствии стадии обжатия и стадии чистовой обработки, и способ его производства
JP2014549245A JP5888432B1 (ja) 2014-09-30 2014-09-30 分塊工程や精整工程を省略しても熱間圧延後の表面性状に優れた熱間圧延用チタン鋳片およびその製造方法
PCT/JP2014/076103 WO2016051511A1 (ja) 2014-09-30 2014-09-30 分塊工程や精整工程を省略しても熱間圧延後の表面性状に優れた熱間圧延用チタン鋳片およびその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/076103 WO2016051511A1 (ja) 2014-09-30 2014-09-30 分塊工程や精整工程を省略しても熱間圧延後の表面性状に優れた熱間圧延用チタン鋳片およびその製造方法

Publications (1)

Publication Number Publication Date
WO2016051511A1 true WO2016051511A1 (ja) 2016-04-07

Family

ID=55530460

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/076103 WO2016051511A1 (ja) 2014-09-30 2014-09-30 分塊工程や精整工程を省略しても熱間圧延後の表面性状に優れた熱間圧延用チタン鋳片およびその製造方法

Country Status (8)

Country Link
US (1) US10570492B2 (ja)
EP (1) EP3178584A4 (ja)
JP (1) JP5888432B1 (ja)
KR (1) KR101953042B1 (ja)
CN (1) CN106715005B (ja)
EA (1) EA029618B1 (ja)
UA (1) UA115957C2 (ja)
WO (1) WO2016051511A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019082352A1 (ja) * 2017-10-26 2019-05-02 日本製鉄株式会社 チタン熱間圧延板の製造方法
WO2019155553A1 (ja) * 2018-02-07 2019-08-15 日本製鉄株式会社 チタン合金材
WO2022185409A1 (ja) * 2021-03-02 2022-09-09 日本製鉄株式会社 熱間加工用α+β型チタン合金鋳塊

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210012639A (ko) * 2019-07-26 2021-02-03 주식회사 포스코 티타늄 슬라브 및 그 제조방법
KR20230057535A (ko) 2021-10-21 2023-05-02 한국생산기술연구원 Fcc 상이 균일 분산된 적층 성형 타이타늄 소재부품 제조 방법 및 적층 성형 타이타늄 소재 부품

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007332420A (ja) * 2006-06-15 2007-12-27 Nippon Steel Corp チタン材の製造方法および熱間圧延用素材
WO2012144561A1 (ja) * 2011-04-22 2012-10-26 新日本製鐵株式会社 熱間圧延用チタンスラブおよびその製造方法
WO2014163089A1 (ja) * 2013-04-01 2014-10-09 新日鐵住金株式会社 熱間圧延用チタン鋳片およびその製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4690875A (en) * 1984-01-12 1987-09-01 Degussa Electronics Inc., Materials Division High vacuum cast ingots
JPS6256561A (ja) * 1985-09-06 1987-03-12 Honda Motor Co Ltd TiまたはTi合金の表面硬化方法
US7617863B2 (en) * 2006-08-11 2009-11-17 Rti International Metals, Inc. Method and apparatus for temperature control in a continuous casting furnace
EA020258B1 (ru) 2009-02-09 2014-09-30 Ниппон Стил Корпорейшн Титановая плоская заготовка для горячей прокатки, способ ее получения и способ ее прокатки
WO2010090352A1 (ja) 2009-02-09 2010-08-12 新日本製鐵株式会社 熱間圧延用チタン素材およびその製造方法
CN103348029B (zh) 2011-02-10 2016-03-30 新日铁住金株式会社 疲劳强度优异的耐磨损性钛合金构件

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007332420A (ja) * 2006-06-15 2007-12-27 Nippon Steel Corp チタン材の製造方法および熱間圧延用素材
WO2012144561A1 (ja) * 2011-04-22 2012-10-26 新日本製鐵株式会社 熱間圧延用チタンスラブおよびその製造方法
WO2014163089A1 (ja) * 2013-04-01 2014-10-09 新日鐵住金株式会社 熱間圧延用チタン鋳片およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3178584A4 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019082352A1 (ja) * 2017-10-26 2019-05-02 日本製鉄株式会社 チタン熱間圧延板の製造方法
KR20200070358A (ko) * 2017-10-26 2020-06-17 닛폰세이테츠 가부시키가이샤 티탄 열간 압연판의 제조 방법
JPWO2019082352A1 (ja) * 2017-10-26 2020-10-22 日本製鉄株式会社 チタン熱間圧延板の製造方法
KR102332457B1 (ko) * 2017-10-26 2021-12-01 닛폰세이테츠 가부시키가이샤 티탄 열간 압연판의 제조 방법
EA039472B1 (ru) * 2017-10-26 2022-01-31 Ниппон Стил Корпорейшн Способ производства горячекатаной титановой плиты
WO2019155553A1 (ja) * 2018-02-07 2019-08-15 日本製鉄株式会社 チタン合金材
CN111655880A (zh) * 2018-02-07 2020-09-11 日本制铁株式会社 钛合金材料
JPWO2019155553A1 (ja) * 2018-02-07 2020-11-19 日本製鉄株式会社 チタン合金材
CN111655880B (zh) * 2018-02-07 2021-11-02 日本制铁株式会社 钛合金材料
WO2022185409A1 (ja) * 2021-03-02 2022-09-09 日本製鉄株式会社 熱間加工用α+β型チタン合金鋳塊

Also Published As

Publication number Publication date
CN106715005A (zh) 2017-05-24
JP5888432B1 (ja) 2016-03-22
JPWO2016051511A1 (ja) 2017-04-27
KR101953042B1 (ko) 2019-02-27
EA029618B1 (ru) 2018-04-30
CN106715005B (zh) 2018-12-11
EP3178584A1 (en) 2017-06-14
KR20170047332A (ko) 2017-05-04
EP3178584A4 (en) 2018-03-14
UA115957C2 (uk) 2018-01-10
US20170283928A1 (en) 2017-10-05
EA201790499A1 (ru) 2017-06-30
US10570492B2 (en) 2020-02-25

Similar Documents

Publication Publication Date Title
JP5754559B2 (ja) 熱間圧延用チタン鋳片およびその製造方法
JP4414983B2 (ja) チタン材の製造方法および熱間圧延用素材
JP5888432B1 (ja) 分塊工程や精整工程を省略しても熱間圧延後の表面性状に優れた熱間圧延用チタン鋳片およびその製造方法
JP5220115B2 (ja) 熱間圧延用チタンスラブ、その溶製方法および圧延方法
JP5168434B2 (ja) 熱間圧延用チタンスラブおよびその製造方法
JP2014233753A (ja) 分塊工程や精整工程を省略しても熱間圧延後の表面性状に優れた工業用純チタンインゴットおよびその製造方法
WO2014163086A1 (ja) 熱間圧延用チタン鋳片およびその製造方法
JP6075384B2 (ja) 熱間圧延用チタン鋳片およびその製造方法
WO2016152678A1 (ja) 冷間圧延用圧延板の製造方法、及び純チタン板の製造方法
JP6075387B2 (ja) 表面疵の発生し難い熱間圧延用チタン鋳片およびその製造方法
JP6171836B2 (ja) 熱間圧延用チタン合金スラブおよびその製造方法
WO2016051482A1 (ja) 熱間圧延用チタン鋳片およびその製造方法
JP7017505B2 (ja) 純チタン板の製造方法
JP6075386B2 (ja) 表面疵の発生し難い熱間圧延用チタン鋳片およびその製造方法
JP2019093439A (ja) チタン材の熱間圧延方法
JP2006239750A (ja) マグネシウム合金の製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014549245

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14903062

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2014903062

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014903062

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15513856

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20177008239

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 201790499

Country of ref document: EA

Ref document number: A201702957

Country of ref document: UA

NENP Non-entry into the national phase

Ref country code: DE