WO2016051511A1 - 分塊工程や精整工程を省略しても熱間圧延後の表面性状に優れた熱間圧延用チタン鋳片およびその製造方法 - Google Patents
分塊工程や精整工程を省略しても熱間圧延後の表面性状に優れた熱間圧延用チタン鋳片およびその製造方法 Download PDFInfo
- Publication number
- WO2016051511A1 WO2016051511A1 PCT/JP2014/076103 JP2014076103W WO2016051511A1 WO 2016051511 A1 WO2016051511 A1 WO 2016051511A1 JP 2014076103 W JP2014076103 W JP 2014076103W WO 2016051511 A1 WO2016051511 A1 WO 2016051511A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- slab
- titanium
- hot rolling
- cast
- layer
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/16—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
- C22F1/18—High-melting or refractory metals or alloys based thereon
- C22F1/183—High-melting or refractory metals or alloys based thereon of titanium or alloys based thereon
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D15/00—Casting using a mould or core of which a part significant to the process is of high thermal conductivity, e.g. chill casting; Moulds or accessories specially adapted therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D21/00—Casting non-ferrous metals or metallic compounds so far as their metallurgical properties are of importance for the casting procedure; Selection of compositions therefor
- B22D21/06—Casting non-ferrous metals with a high melting point, e.g. metallic carbides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K15/00—Electron-beam welding or cutting
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F3/00—Changing the physical structure of non-ferrous metals or alloys by special physical methods, e.g. treatment with neutrons
- C22F3/02—Changing the physical structure of non-ferrous metals or alloys by special physical methods, e.g. treatment with neutrons by solidifying a melt controlled by supersonic waves or electric or magnetic fields
Definitions
- the present invention relates to a titanium slab for hot rolling and a method for producing the same, and in particular, titanium capable of maintaining good surface properties after hot rolling even if the partial rolling step and the finishing step are omitted.
- the present invention relates to a slab and a manufacturing method thereof.
- industrial pure titanium uses sponge titanium and titanium scrap obtained by the crawl method as melting raw materials, and is melted by vacuum arc melting (VAR), electron beam melting (EBR), etc., and a large slab (ingot) It was normal to do.
- VAR vacuum arc melting
- EBR electron beam melting
- ingot large slab
- the shape of the slab is limited to a cylindrical slab (billet) in the case of vacuum arc melting, while it can be cast into a rectangular slab, that is, a slab in the case of electron beam melting.
- the surface of the large slabs is subjected to surface cutting as necessary, and then hot rolling or forging is performed. And then processed into a slab having a shape and size suitable for subsequent hot rolling.
- the hot working process by these block rolling or forging is referred to herein as a breakdown process.
- the surface is subjected to hot cutting after being subjected to cutting care for cutting about several mm by cutting. It was normal.
- the slab obtained by applying the electron beam melting-DC slab casting method under vacuum was subjected to surface cutting and then subjected to hot rolling.
- the surface properties of the hot-rolled sheet after hot rolling are not always good. That is, there is a problem in that many large and small cover-like wrinkles extending from a few mm to a length of about 10 mm are generated on the surface of the hot rolled sheet. Such a large number of cover-like ridges on the surface is referred to as a surface ridge here.
- Such surface defects of the hot-rolled sheet are considered to be derived from the coarse cast structure of the cast slab.
- a slab that has not undergone a breakdown process, which is hot working has a cast structure made of coarse crystal grains as cast (as cast), and the surface is subjected to cutting.
- a rough structure exists in the surface layer after cutting, and it is considered that surface flaws are generated on the hot-rolled sheet due to such a rough surface cast structure.
- the surface is affected by the deformation anisotropy within and between the grains due to the coarse grains. Concavities and convexities are formed, and it is considered that a metal is covered on the dents to form surface defects as the subsequent hot rolling progresses. Furthermore, in the titanium alloy, an ⁇ phase is generated in the vicinity of the grain boundary of the old ⁇ crystal grains during the transformation (grain boundary ⁇ phase). In alloy systems that contain a large amount of ⁇ -stabilizing elements such as Al and O, which are often used in titanium alloys, the hot deformation resistance of ⁇ and ⁇ phases is greatly different, and this difference is different during subsequent hot and cold working. It may be the starting point of cracking.
- the titanium slab for hot rolling obtained without going through the breakdown process has been changed to a slab surface layer before hot rolling in order to prevent surface flaws occurring on the surface of the hot rolled sheet after hot rolling.
- Several methods have already been proposed for quality treatment.
- Patent Document 1 the surface of a titanium slab for hot rolling is struck cold with a steel tool having a tip shape with a radius of curvature of 3 to 30 mm or a steel ball with a radius of 3 to 30 mm (plasticity).
- a predetermined plastic strain is applied cold to the surface layer of the titanium slab with the steel tool or steel ball as described above, so that the surface layer is recrystallized during the subsequent hot rolling.
- a fine structure Accordingly, it is possible to prevent the occurrence of dents due to the coarse structure as described above. Therefore, even if the breakdown process is omitted, it is possible to reduce the surface defects of the hot rolled plate.
- the surface of the titanium slab for hot rolling is increased by high frequency induction heating, arc heating, plasma heating, electron beam heating, laser heating, and the like.
- a method has been proposed in which only the surface layer is melted over a depth of 1 mm or more and rapidly cooled and re-solidified by applying energy.
- the melting point of titanium is naturally a temperature equal to or higher than the ⁇ transformation point, as the surface is melted, a heat-affected region (base material side) below the molten layer on the surface (base material side)
- the HAZ) layer is also heated to the ⁇ transformation point or higher to undergo ⁇ transformation.
- the surface layer of the titanium slab for hot rolling is melted to smooth the surface, and then the molten layer is rapidly cooled and solidified by heat removal from the base material side.
- the molten layer and the HAZ layer become a fine transformation structure (usually a fine acicular structure).
- the surface layer thus refined is recrystallized in the initial stage of the subsequent hot rolling to form a granular structure (equiaxial grain structure) having a fine and irregular orientation. For this reason, it has been possible to some extent to prevent the formation of dents due to the coarse structure and eliminate the surface flaws of the hot-rolled sheet after hot rolling.
- Patent Document 2 surface flaws of the hot-rolled sheet may not be prevented at a practical level, and the cause is unknown and improvement has been demanded.
- the present invention does not require the surface layer modification treatment as shown in Patent Document 1, further improves the invention disclosed in Patent Document 2, omits the breakdown step, and after the subsequent hot rolling Titanium slab for hot rolling that prevents surface flaws from occurring on the surface of the hot-rolled sheet at a practical level, thereby improving the productivity of titanium hot-rolled sheet production and reducing costs. It is an object to provide a manufacturing method thereof.
- the cooling after heating the surface of the slab by heating means with a high energy density such as an electron beam to melt only the surface layer is usually performed by removing heat from the base material side.
- the thinner the molten layer the smaller the heat input per unit area of the slab surface (hereinafter, the unit area refers to 1 cm 2 with respect to the heat input), so the cooling rate immediately after heating increases.
- the cooled and solidified surface layer (melt resolidified layer) has a finer structure, and the surface layer structure when heated for hot rolling is further refined. It is also possible to reliably suppress the occurrence of dents and surface defects on the hot-rolled sheet at the initial stage of rolling.
- the melting depth is shallow, defects such as voids and wrinkles derived from casting that exist at a certain depth from the surface may not disappear. That is, in order to sufficiently refine the structure of the surface layer by re-solidification after melting, the melting depth is about several millimeters, and it is heated to the ⁇ region or more below the melting point formed below the melting portion by melting. It was experimentally confirmed that it was necessary to make the texture modification layer of the melt depth + ⁇ HAZ combined with the microstructure layer ( ⁇ HAZ layer) formed in this way to be 5 mm or more.
- melt depth + ⁇ HAZ When there is a portion with a shallow melt depth, the structure of melt depth + ⁇ HAZ is likely to be refined, but on the other hand, in addition to the problem of (1), it is caused by the coarse cast structure existing in the lower layer whose structure has been modified It was confirmed that cracks were generated starting from the dents and the surface defects of the hot-rolled sheet were generated. In order to prevent this phenomenon, it has been found that the structure modification layer of melt depth + ⁇ HAZ can be prevented by setting it to 5 mm or more. (3) On the other hand, it has been found that it is very expensive to completely modify the entire surface of the slab surface to be rolled. However, it has also been found that the occurrence of surface flaws at the time of hot rolling can be eliminated by caring the surface of the hot-rolled sheet, and the merit of cost reduction of decomposition rolling and forging can be fully enjoyed.
- the electron beam irradiation output and irradiation conditions (such as how to overlap the molten beads) are controlled.
- hot-rolling slab surface melting so that the shape of the entire microstructured layer formed by electron beam irradiation is in a specific range, dents and hot-rolled sheet surface defects that occur in the initial stage of hot rolling are used. It has been found that it can be surely prevented at a certain level, and the occurrence of surface flaws in the hot-rolled sheet after the subsequent hot rolling can be reliably suppressed, and the present invention has been made.
- the gist of the present invention is as follows.
- a titanium cast for hot rolling made of titanium On the surface that becomes the rolled surface, it has a structure refined layer consisting of fine grains than the mother layer formed by melting and resolidifying, The thickness of the microstructured layer is 5 mm or more and less than 9 mm, and the proportion of crystal grains having a grain size of 1 mm or more at a position 1/2 of the average thickness of the microstructure is less than 15%.
- Titanium cast for rolling [2] The titanium cast for hot rolling according to [1], which is made of industrial pure titanium or a titanium alloy.
- the electron beam irradiation is performed while continuously moving the electron beam irradiation gun in a direction parallel to the surface of the slab material. Production method.
- the present invention severe irregularities that existed in the cast skin after casting are eliminated by melting and smoothed, and at the same time, defects such as internal voids originating at the time of casting disappear, and coarse The cast structure has also disappeared. Moreover, the outermost surface is a microstructured layer by reheating and rapid cooling. Therefore, when the titanium slab for hot rolling according to the present invention is subjected to hot rolling, it is possible to prevent generation of flaws derived from casting and surface flaws due to internal voids at the same time, Occurrence of a concave portion at the initial stage of hot rolling due to insufficient miniaturization and generation of a surface flaw of the hot rolled plate can be reliably prevented in advance.
- the inner microstructured layer heated to the melting and ⁇ transformation point or higher when melted and re-solidified has a microstructured layer in the range of 5 mm or more and less than 9 mm, even between the molten beads. It has a sufficient thickness, and voids existing at a position of about several mm from the vicinity of the surface are sufficiently eliminated.
- the layer is made of a sufficiently fine structure by the rapid quenching effect due to heat removal from the base material by not deepening the melting. For this reason, it is possible to reliably prevent the occurrence of a concave portion at the initial stage of hot rolling and the occurrence of surface flaws on the hot rolled plate due to insufficient structure refinement.
- each above-mentioned action can be obtained even if it is a cast piece in a state that does not go through a breakdown process such as partial rolling or forging, which is hot working after casting, and the surface is not cut in advance.
- a so-called black skin slab as cast can also be obtained.
- the slab material is cast by a DC slab casting method, or a molten metal obtained by an electron beam melting method is cast by a DC slab casting method. Any of those having a cast surface as cast may be used.
- a rectangular slab was obtained without going through a breakdown process consisting of block rolling or forging, and its melting method is not particularly limited, but an electron beam melting method or a plasma arc melting method. Etc. are applicable.
- the electron beam melting method since melting is performed in a high vacuum, the inside of the voids remaining in the vicinity of the surface of the slab after melting becomes a vacuum, so that there is an advantage that the voids are pressure-bonded and made harmless during hot rolling.
- the plasma arc melting method can be melted in a low vacuum atmosphere, there is an advantage that an alloy element having a high vapor pressure can be easily added when producing a titanium alloy, and the optimum melting method is selected depending on the component system to be melted appropriately. Just do it.
- the titanium slab for hot rolling according to the present invention has a flat surface, few internal microvoids immediately below the surface, and an extremely fine structure on the outermost surface. Therefore, when it is subjected to hot rolling, it is possible to stably prevent a concave portion on the surface in the initial stage of hot rolling or surface flaws on the hot rolled sheet at a practical level. . And such an effect can be acquired even if it uses the slab which has not passed through the breakdown processes, such as partial rolling and forging, as a slab of the raw material for manufacturing the titanium slab for hot rolling. As a result, the breakdown process can be omitted, and the cost can be significantly reduced as compared with the prior art.
- FIG. 1 schematically shows each step of an overall process in a method for producing a titanium cast piece for hot rolling according to an embodiment of the present invention.
- FIG. 1 also shows an example of a manufacturing process of a rectangular titanium cast piece as a material as a pre-process.
- FIG. 2 shows the outline of the raw material (rectangular titanium cast) provided for the embodiment of the method for producing a titanium cast for hot rolling according to the present invention, and at the same time, shows the state of electron beam irradiation on the rectangular titanium cast. Show.
- FIG. 3 has shown transition of the cross-sectional condition of the surface vicinity of the rectangular titanium cast piece by each process in one Embodiment of the manufacturing method shown in FIG.
- a raw material for melting industrial pure titanium for example, a titanium sponge obtained by a crawl method, titanium scrap, A mother alloy made of titanium or a compound of an additive element as a raw material of the titanium alloy is melted by a predetermined amount in the hearth by electron beam melting.
- the obtained molten titanium is placed in a water-cooled copper mold for DC slab casting, that is, in a water-cooled copper mold that is open at the top and bottom and has a rectangular horizontal section (including the case where chamfers are formed at the corners). Pour hot water continuously.
- the slab solidified in the mold is continuously drawn downward, and thus a rectangular shape (slab shape) having a shape, size and thickness suitable for hot rolling, width and length as cast.
- a titanium slab is obtained.
- a chamfer is also given to the corner portion of the slab so as to be widely referred to as “rectangle”.
- the atmosphere at the time of melting in the hearth by the electron beam heating and casting is kept in a vacuum.
- industrial pure titanium includes JIS standard 1 to 4 types, corresponding ASTM standard Grades 1 to 4, and DIN standard 3.7025 industrial pure titanium. That is, the industrial pure titanium targeted in the present invention is, in mass%, C: 0.1% or less, H: 0.015% or less, O: 0.4% or less, N: 0.07% or less, It can be said that Fe: 0.5% or less and the balance Ti. Furthermore, some platinum group elements are added to these, and a high corrosion resistance alloy called ASTM (improved) pure titanium (ASTM Grade 7, 11, 16, 26, 13, 30, 33 or JIS species corresponding thereto) In the present invention, titanium materials containing a small amount of various elements are also treated as being included in industrial pure titanium.
- ASTM improved
- titanium alloys are usually formed into plate materials by hot rolling or cold rolling, and products having shapes such as wires and rods are also manufactured.
- the titanium alloy an ⁇ -type titanium alloy, an ⁇ + ⁇ -type titanium alloy, or a ⁇ -type titanium alloy is applicable. Therefore, in this invention, the component composition of a titanium alloy is not specifically limited.
- the rectangular titanium slab as a raw material may be basically obtained by any melting method or any casting method.
- the effect of the present invention can be exhibited most effectively by melting raw materials such as titanium sponge and titanium scrap under vacuum by an electron beam melting method or a plasma arc melting method, and the titanium melt is then converted into a DC slab under vacuum.
- It is a titanium slab cast into a rectangle (slab shape) having a long rectangular cross section by a casting method. According to such a DC slab casting method, a rectangular titanium slab having a shape and size suitable for hot rolling can be easily obtained. Therefore, a hot break such as ingot rolling or forging can be obtained. The down process can be omitted.
- the dimensions of the rectangular titanium slab are not particularly limited as long as it can be directly subjected to hot rolling.
- the rectangular titanium cast piece has a thickness of about 150 mm to 280 mm, a length of about 3 m to 10 m, and a width of 600 mm. It may be about ⁇ 1500 mm.
- the cast titanium slab is not limited to a rectangle (slab shape), and includes billets and blooms.
- the rectangular titanium slab obtained by DC slab casting as described above is subjected to the surface heat treatment step and the cooling step in this order as shown in FIG.
- the rectangular titanium slab is supplied to each process as it is, without undergoing a breakdown process by hot working such as ingot rolling or forging, of the slab for manufacturing a titanium hot rolled sheet.
- a raw material for production it means that the material is as cast and is used for each process. Therefore, the rectangular titanium slab, which is the raw material of the titanium slab for hot rolling, has a rough asperity derived from casting as a surface property, and also has a rough cast structure and a depth of several millimeters from the surface portion.
- many defects such as voids derived from casting exist. Needless to say, there is no problem even with a method of dissolving the surface after passing through a cutting process for cleaning the surface of the slab, and a smoother surface is easily obtained.
- each step described below excludes a front end surface (lower end surface corresponding to a casting start surface) and a rear end surface (upper end surface corresponding to a casting end surface) at the time of DC slab casting out of the outer surface of the rectangular titanium cast piece.
- a front end surface lower end surface corresponding to a casting start surface
- a rear end surface upper end surface corresponding to a casting end surface
- each step is performed on the wide two surfaces 10A and 10B including at least the chamfer 11.
- each step may also be performed for the surfaces 10C and 10D on the edge side.
- the respective steps for the two surfaces 10C and 10D on the edge side may be performed again after the respective steps for the wide two surfaces 10A and 10B to be hot-rolled surfaces are completed.
- each step for the two surfaces 10C and 10D on the edge side is omitted.
- the rectangular titanium slab obtained by electron beam melting and DC slab casting is used as it is for the surface heat treatment process.
- the surface heat treatment step is performed on two outer surfaces of the rectangular titanium cast slab 10 which are at least two rolled surfaces (surfaces in contact with the hot rolling roll) in the hot rolling step.
- 10A and 10B an electron beam is irradiated to melt only the surface layer on the surface.
- the surface 10A is one of the two surfaces 10A and 10B.
- the area of the electron beam irradiation region 14 by one electron beam irradiation gun 12 on the surface 10A of the rectangular cast 10 is compared with the total area of the surface 10A to be irradiated.
- the electron beam irradiation gun 12 is moved continuously or the rectangular cast 10 is moved continuously over the entire surface 10A to be irradiated.
- electron beam irradiation is performed.
- the shape and area of this irradiation area can be adjusted by adjusting the focus of the electron beam or by using an electromagnetic lens to oscillate a small beam at a high frequency (oscillation Oscillation) to form a beam bundle. can do.
- the moving direction of the electron beam irradiation gun is not particularly limited, it is generally continuous along the length direction (usually the casting direction D) or the width direction (usually the direction perpendicular to the casting direction D) of the rectangular slab 10. Then, the irradiation region 14 is continuously irradiated in a band shape with a width W (in the case of a circular beam or beam bundle, a diameter W).
- the electron beam irradiation is performed in a belt shape while continuously moving the irradiation gun 12 in the reverse direction (or the same direction) in the adjacent unirradiated belt region.
- a plurality of irradiation guns may be used to simultaneously perform electron beam irradiation on a plurality of regions.
- FIG. 2 the case where a rectangular beam is continuously moved along the length direction (usually casting direction D) of the rectangular cast slab 10 is shown.
- FIG. 10A the surface (surface 10A) of the rectangular titanium cast piece 10 is irradiated with an electron beam by such a surface heat treatment step and the surface is heated to a temperature equal to or higher than the melting point of titanium (usually about 1670 ° C.), FIG. As shown on the left side of the center, the surface layer of the surface 10A of the rectangular titanium slab 10 is melted at the maximum depth corresponding to the amount of heat input. However, the depth from the direction perpendicular to the irradiation direction of the electron beam is not constant as shown in FIG. 4A, and the central portion of the electron beam irradiation has the greatest depth and goes to the band-shaped end. The lower the thickness, the lower the convex shape.
- the melting depth becomes shallower toward the end of the belt, the voids existing at the surface layer of several mm cannot be eliminated, and cracks are generated starting from these voids during hot rolling. A concave portion is formed on the surface, and surface flaws are generated. Moreover, when the melting depth becomes shallow, it is influenced by the coarse casting structure of the lower layer, and causes surface flaws during hot rolling. For that purpose, when irradiating the adjacent unexposed band-like region, it is necessary to make the method of superimposing the electron beam with the already irradiated region appropriate.
- the irradiation gun is continuously moved when the adjacent unirradiated part is irradiated in the reverse direction (or the same direction) in the shape of the melted part or the belt-like region, and the center position of the electron beam is required. This is performed by irradiating the electron beam in a band shape while shifting it only by a distance. This overlap amount is expressed by the distance between the adjacent belt-like portion and the electron beam, and is desirably 5 mm or more and less than 20 mm.
- the overlap amount When the overlap amount is smaller than 5 mm, the shape of the melted portion becomes smoother, and even at the band-shaped end portion, it is melted to a sufficient depth, so that the gap can be removed, but already when the adjacent untreated portion is melted Most of the irradiated part rises to a high temperature due to thermal effects. If it does so, the fine structure formed by the melt resolidification process will coarsen, and the abundance of the crystal grain of 1 mm or more will increase. On the other hand, if it is 20 mm or more, the overlap amount is small, and the gap at the end of the belt-like end remains without being sufficiently removed.
- the melting depth up to a sufficient depth can be ensured even at the belt-like end portion (minimum portion) as shown in FIG. .
- the cooling rate due to heat removal from the base material becomes slow, and sufficient microstructural refinement described later cannot be achieved.
- the total depth of the molten layer 16 and the ⁇ transformation layer 18 by the surface heat treatment is within a range of 5 mm or more and less than 9 mm, so It is possible to achieve both suppression of disappearance and coarsening of the structure of the belt-like central portion.
- the thickness (depth) of the molten layer 16 is not particularly limited.
- the total of the molten layer 16 and the ⁇ transformation layer 18 may be the above-mentioned depth, and it is usually desirable that the molten layer 16 be in the range of 2 to 3 mm.
- the electron beam irradiation conditions are selected so that the heat input is such that the above melt depth is obtained.
- the required heat input varies depending on the thickness (heat capacity) of the slab, the base material temperature, the cooling condition on the base material side, etc., so the heat input for obtaining the above melt thickness is generally determined.
- the heat input per unit area per 1 cm 2 ) may be about 30 to 150 J.
- the electron beam irradiation conditions that affect the amount of heat input per unit area include the output and beam diameter of the irradiation gun, and the gun movement speed when irradiating while moving the irradiation gun continuously as described above ( (Irradiation position moving speed) etc., and these may be set appropriately to ensure the above heat input.
- the surface of the rectangular titanium slab is irradiated with an electron beam, and after performing the surface heat treatment process, the cooling process is performed by using stainless steel, copper, aluminum, etc.
- a rectangular titanium slab is placed on a water-cooled base made of a heat conductive material (metal) so that the temperature of the rectangular titanium slab does not increase as a whole due to irradiation with an electron beam. Then, after the surface heat treatment step is performed, the heat removal from the base material side proceeds immediately and the cooling step is performed. Thereby, the effect of the present invention can be further enhanced.
- the surface of the rectangular titanium slab melted by the electron beam irradiation is flattened by the surface tension, and the rough unevenness of the casting surface is eliminated.
- the melt-resolidified layer obtained by cooling and solidifying the melt layer is a layer with less surface irregularities and less internal voids.
- a coarse cast structure disappears by melting, and a fine structure is generated by solidification in the subsequent cooling process and further transformation from the ⁇ phase to the ⁇ phase.
- This cooling and solidification is performed by heat removal from the base material side, but the cooling rate by heat removal from the base material side is considerably large, and therefore the structure after solidification and transformation becomes fine.
- the ⁇ -transformed layer is heated to a temperature higher than the ⁇ -transformation point, and then cooled at a large cooling rate due to heat removal from the base material side to reversely transform into the ⁇ -phase and become a HAZ layer.
- the HAZ layer also has a fine structure.
- the molten layer + HAZ layer may not be uniformly formed on the entire surface of the melted and re-solidified slab, and a coarse structure may partially remain. Even in this case, if the proportion of crystal grains of 1 mm or more in the portion of the average thickness of the molten layer + HAZ layer is less than 15%, even if surface defects after hot rolling occur, there are very few. There is a level that can be sufficiently handled by surface care.
- the ratio of crystal grains of 1 mm or more is the number ratio in a portion of 1 ⁇ 2 of the average thickness of the molten layer + HAZ layer. Therefore, after performing the modification treatment, the cross section can be observed with an optical microscope and measured by measuring the grain size and the number of crystal grains in a half of the average thickness of the molten layer + HAZ layer. it can.
- the reason why the coarse structure remains is unclear, but can be estimated as follows. The size of the structure formed in the melted and resolidified layer is determined by heat input at the melted portion and heat removal from the base material.
- the heat removal state from the slab changes, and in some cases, relatively coarse crystal grains are formed.
- the part once melted may rise to a high temperature region below the ⁇ transformation point due to the heat effect from other parts when melting. If so, the relatively coarse crystal grains may further grow and form coarse crystal grains of 1 mm or more.
- hot rolling is performed to obtain a hot rolled sheet having a desired thickness.
- the hot rolling method is not particularly limited, but in the case of a thin hot-rolled sheet product, coil rolling is usually applied.
- the hot rolled plate thickness is not particularly limited, but is usually about 3 mm to 8 mm.
- the hot rolling conditions are not particularly limited, but, as with normal titanium hot rolling, the temperature is from 720 ° C. to 920 ° C. for industrial pure titanium, and 60 just below the ⁇ transformation point for ⁇ -type and ⁇ + ⁇ -type titanium alloys. Heating may be performed for about minutes to 420 minutes, hot rolling may be started at a temperature within the range, and hot rolling may be terminated at a temperature equal to or higher than room temperature depending on the capability of the rolling mill.
- the rectangular titanium slab obtained by electron beam melting-DC slab casting is left in a state as it is, that is, without undergoing a breakdown process by hot working such as block rolling or forging.
- a raw material for manufacturing a titanium cast for rolling it is a raw material as cast and is used for each step.
- a raw material having a cast surface (cast surface having a so-called black-skinned surface, which has severe irregularities derived from casting on the surface and has many surface defects such as voids in the surface layer portion) is used. ing.
- the effect of the present invention can be most effectively exerted when applied to such an as-cast slab.
- Test numbers 1 to 7 shown in Table 1 (Table 1A and Table 1B), Test numbers 8 to 21 shown in Table 2 (Table 2A and Table 2B), Test numbers shown in Table 3 (Table 3A and Table 3B)
- Table 1A and Table 1B Test numbers 1 to 7 shown in Table 1
- Table 2A and Table 2B Test numbers 8 to 21 shown in Table 2
- Table 3 Test numbers shown in Table 3
- Electron beam is irradiated in the longitudinal direction by moving the slab to the DC slab of JIS type 1 pure titanium produced by DC casting of JIS type 1 pure titanium slab having a cross section of 1220 mm width x 270 mm thickness x 7000 mm length by electron beam melting. And the electron beam irradiation was performed to the whole rolling surface by repeating the process of reciprocating this. Irradiation was also applied to the side of the slab. These slabs were inserted into a furnace at 820 ° C. and then heated for about 240 minutes.
- a 5 mm thick hot rolled sheet coil was produced by a continuous hot rolling strip mill, and a continuous pickling line made of nitric hydrofluoric acid was passed through. The surface was cut by about 50 ⁇ m per side. Thereafter, both plate surfaces were visually observed, and the number of surface defects was measured. The number of surface defects was the average of the number of surface defects generated in a 1 m square frame, observed by 10 to 15 visual fields. Further, if the plate or length does not reach 1 m, the surface area of the hot-rolled sheet was observed in terms such that 1 m 2, which was the number of 1 m 2 per surface defects.
- Test Nos. 1, 2, 3, 4, and 5 are all examples of the present invention, and as shown in Tables 1A and 1B, the form of the surface layer portion defined in the present invention (structure refinement layer) After the heat treatment equivalent to hot rolling and heating, a structure composed of the crystal grain size defined in the present invention is exhibited, the surface defects after hot rolling are small, and the acceptable line is exceeded.
- Test Nos. 6 and 7 are comparative examples that do not satisfy the form and construction conditions of the surface layer part defined in the present invention, and these have many surface defects after hot rolling as shown in Table 1A and Table 1B. The surface state of the hot-rolled sheet was unacceptable.
- Test Nos. 8 to 12 are various JIS grade or ASTM grade industrial pure titanium or modified pure titanium (low low) produced by DC casting of JIS class 1 pure titanium slab having a cross section of 1220 mm wide x 270 mm thick x 7000 mm long by electron beam melting. The entire surface of the rolling surface was irradiated with an electron beam by repeating the process of irradiating an electron beam in the longitudinal direction by moving the slab with respect to the DC slab of titanium alloy) and reciprocating the electron beam. Irradiation was also applied to the side of the slab. Test Nos.
- 13 to 18 have a cross section of 950 mm wide ⁇ 220 mm thick ⁇ 5000 mm long titanium slab produced by DC casting by electron beam melting, and the slab is moved to move the electron beam in the longitudinal direction. Irradiation and reciprocation were repeated to irradiate the entire rolling surface with electron beam. Irradiation was also applied to the side of the slab.
- Test Nos. 19 to 21 are directed to an electron beam in the longitudinal direction by moving a slab with respect to a titanium slab made of DC slab cast by plasma arc melting of a titanium slab having a cross section of 950 mm wide ⁇ 250 mm thick ⁇ 4500 mm long. Irradiation and reciprocation were repeated to irradiate the entire rolling surface with electron beam.
- Test number 8 is JIS type 2 pure titanium
- test number 9 is JIS type 3 pure titanium
- test number 10 is JIS type 4 pure titanium
- test number 11 is ASTM Gr. 17 titanium alloy
- test number 12 is ASTM Gr. 13 titanium alloys.
- Test Nos. 11 and 12 are modified pure titanium, which is a titanium alloy to which an alloy element is added, but is added in a small amount and is treated in the same manner as pure titanium.
- Test number 13 is a titanium alloy of Ti-1Fe-0.35O
- test number 14 is a titanium alloy of Ti-5Al-1Fe
- test number 15 is a titanium alloy of Ti-5Al-1Fe-0.25Si
- test number 16 is a titanium alloy of Ti-3Al-2.5V
- test number 17 is titanium of Ti-4.5Al-2Mo-1.6V-0.5Fe-0.3Si-0.03C (ASTM Gr.35) Alloy
- test number 18 is Ti-4.5Al-2Fe-2Mo-3V
- test number 19 is Ti-1Cu
- test number 20 is Ti-1Cu-0.5Nb
- test number 21 is Ti-1Cu- 1Sn-0.3Si-0.2Nb.
- Test No. 22 is a slab made by DC casting of a JIS type 1 pure titanium slab having a cross section of 1000 mm width ⁇ 190 mm thickness ⁇ 5000 mm length by electron beam melting, and test number 18 is a JIS type 1 cross section of 950 mm width ⁇ 165 mm thickness ⁇ 4500 mm length
- a slab obtained by DC casting of pure titanium slab by electron beam melting, test number 24 is a slab having the same dimensions as test number 22 and DC slab casting by plasma arc melting. For these slabs, the surface heat treatment was performed on the front side surface, and then the slab was inverted, and the first stage surface layer heat treatment was performed on the back side surface.
Landscapes
- Mechanical Engineering (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Thermal Sciences (AREA)
- Physics & Mathematics (AREA)
- Metal Rolling (AREA)
- Welding Or Cutting Using Electron Beams (AREA)
- Continuous Casting (AREA)
- Chemical Kinetics & Catalysis (AREA)
Abstract
Description
(1)溶融深さが浅い場合、表面からある程度の深さの位置に存在する、鋳造に由来する空隙や皺などの欠陥は消滅しないことがある。すなわち、溶融後の再凝固によって表面層の組織を充分に微細化させるためには、溶融深さは数mm程度、溶融により溶融部よりも下部に形成されるβ域以上融点未満まで加熱されることで形成する微細組織層(βHAZ層)を合わせた溶融深さ+βHAZの組織改質層を5mm以上とすることが必要であることが実験的に確認された。即ち、溶融深さが浅くなると空隙は消滅せず、そのため熱延時にこれらの空隙が起点となってクラックが発生し、表面に凹部が生じ、表面疵が発生すること推測された。
(2)電子ビームなどの高エネルギーを1方向に移動させながら照射することで鋳片の表面を加熱して表面層のみを溶融させるため、照射部と母材部の境界近傍(溶融ビード端部)では溶融深さが非常に浅くなる。溶融深さが浅い部分が存在した場合、溶融深さ+βHAZの組織が細粒化されやすいが、一方で(1)の問題以外に、組織改質された下層に存在する粗大な鋳造組織に起因した凹みを起点としてクラックが発生して、熱延板の表面疵を発生させていることが確認できた。この現象を防止するためには、溶融深さ+βHAZの組織改質層を5mm以上とすることで防止できることが分かった。
(3)一方で、鋳片表面の圧延される面の全てを完全に組織改質することは多大なコストが必要となることが分かった。しかし、多少の熱延時の表面疵の発生は、熱延板表面の手入れを行うことによって解消でき、分解圧延や鍛造のコスト削減のメリットを十分に享受できることも分かった。
溶融深さを深くしようとした場合、より高エネルギー密度をもって表面層を溶融させなければならない。しかしながらその場合には、前述の場合とは逆に、単位面積当たりの入熱量が大きくなって、加熱直後の母材側からの抜熱による冷却速度が小さくなる。そのため、冷却されて凝固した表面層(溶融再凝固層)の組織は充分に微細化されず、その後に熱間圧延のための加熱を施した時の表面層の組織も十分に微細化されず、その結果、熱延初期に発生する凹みや熱延板の表面疵が充分には低減されなくなってしまう。この現象を防止するためには、溶融深さ+βHAZの組織改質層を9mm以下に抑制する必要があることが分かった。
[1]
チタンからなる熱間圧延用チタン鋳片であって、
圧延面となる表面に、溶融させ再凝固させたことにより形成された母層よりも微細粒からなる組織微細化層を有し、
前記組織微細化層の厚みが深さ5mm以上、9mm未満で、且つ前記微細組織の平均厚さの1/2の位置における粒径が1mm以上の結晶粒の割合が15%未満である、熱間圧延用チタン鋳片。
[2]
工業用純チタンもしくはチタン合金からなる、[1]に記載の熱間圧延用チタン鋳片。
[3]
チタンからなる鋳片素材において、熱間圧延の圧延面となる表面を電子ビーム照射によって加熱して、表面から深さ5mm以上、9mm未満までの領域をβ変態点以上に加熱する表層加熱処理工程と、表層加熱処理工程後、β変態点より低い温度に冷却する冷却工程を有する、[1]もしくは[2]に記載の熱間圧延用チタン鋳片の製造方法。
[4]
前記表層加熱処理工程において、電子ビームの照射ガンを、鋳片素材の表面と平行な方向に連続的に移動させながら電子ビーム照射を行なう、[3]に記載の熱間圧延用チタン鋳片の製造方法。
[5]
前記冷却工程が、鋳片素材の母材側からの抜熱によって行われる、[3]に記載の熱間圧延用チタン鋳片の製造方法。
[6]
前記鋳片素材が、DCスラブ鋳造法によって鋳造したものである、[3]に記載の熱間圧延用チタン鋳片の製造方法。
[7]
前記鋳片素材が、鋳造ままの鋳肌を有する、[3]に記載の熱間圧延用チタン鋳片の製造方法。
すなわち、溶融されて再凝固した際に溶融およびβ変態点以上まで加熱された内側組織微細化層は、その組織微細化層が5mm以上、9mm未満の範囲にあり、溶融ビード間であっても充分な厚みを有していて、表面近傍から数mm程度の位置に存在していた空隙を充分に消滅されている。
一方、溶融を深くし過ぎないことで母材からの抜熱による高速の急冷効果によって、充分に微細な組織からなる層となっている。そのため、組織微細化の不充分に起因する熱延初期の凹部の発生や熱延板の表面疵の発生をも、確実に防止することができる。
そして上述の各作用は、鋳造後に熱間加工である分塊圧延や鍛造などのブレークダウン工程を経ない状態の鋳片であっても得ることができ、しかも表面に予め切削加工を施していない鋳造ままのいわゆる黒皮の鋳片でも得ることができる。
本発明の熱間圧延用チタン鋳片を製造するに当たっては、図1に前工程として示しているように、工業用純チタンの溶解原料、例えばクロール法によって得られたチタンスポンジや、チタンスクラップ、チタン合金の原料となるチタンや添加元素の化合物からなる母合金を、ハース内において電子ビーム溶解によって所定量だけ溶解する。得られたチタン溶湯を、DCスラブ鋳造用の水冷銅鋳型、すなわち上下が開放されていて水平断面が矩形状(角部にチャンファーが形成されている場合を含む)をなす水冷銅鋳型内に連続的に注湯する。さらにその鋳型内で凝固された鋳片を下方に連続的に引き抜き、これによって、鋳造したままの形状、寸法で熱間圧延に適した厚み、幅、および長さを有する矩形(スラブ状)のチタン鋳片を得る。このように、鋳片の角部にチャンファーが付与されている場合も広く「矩形」と称することとしている。なお上記の電子ビーム加熱によるハースでの溶解および鋳造時の雰囲気は真空に保たれる。
前述のように、電子ビーム溶解とDCスラブ鋳造によって得られた矩形チタン鋳片は、そのまま、表層加熱処理工程に供される。この表層加熱処理工程は、図2に示しているように、矩形チタン鋳片10の外表面のうち、少なくとも熱間圧延工程での圧延面(熱延ロールに接する面)となる幅広な2面10A,10Bについて、電子ビームを照射して、その面における表面層のみを溶融させる工程である。ここでは先ずその2面10A,10Bのうちの一方の面10Aについて実施するものとする。
しかし、前記の溶融層+HAZ層は、溶融再凝固させた鋳片表面全体に均一に形成されない場合があり、一部は粗大な組織が残存する場合がある。この場合においても、溶融層+HAZ層の平均厚さの1/2の部分における1mm以上の結晶粒の割合が15%未満であれば、熱延後の表面欠陥は発生したとしても、極わずかであり表面手入れで十分対応可能なレベルである。
ここで、1mm以上の結晶粒の割合は、溶融層+HAZ層の平均厚さの1/2の部分における個数割合である。そのため、改質処理を施した後、断面を光学顕微鏡にて観察し、溶融層+HAZ層の平均厚さの1/2の部分における結晶粒の粒径および個数を測定することで測定することができる。
前記の粗大組織が残存する理由は不明ではあるが、以下のように推測できる。
溶融再凝固層に形成する組織の大きさは、溶融部の入熱や母材からの抜熱により決まる。鋳造ままのスラブ表層には皺等の凹凸が多数存在するため、このような凹凸を有する表層部を溶融すると、スラブからの抜熱状態が変化し、場合によっては、比較的粗大な結晶粒を有する部位が発生する。さらに、一度溶融された部位が、他の部位を溶融時にそこからの熱影響によりβ変態点以下の高温域まで上昇する場合がある。そうなると、比較的粗大な結晶粒は更に粒成長をし1mm以上の粗大な結晶粒を形成する場合がある。
断面が1220mm幅×270mm厚×7000mm長のJIS1種純チタンスラブを電子ビーム溶解によりDC鋳造し製造したJIS1種純チタンのDCスラブに対し、スラブを移動させることで、長手方向に電子ビームを照射し、これを往復させる工程を繰り返すことによって、圧延面全面に電子ビーム照射を行った。スラブの側面にも照射を実施した。
これらスラブは、820℃の炉に挿入後、約240分加熱し、連続熱間圧延ストリップミルにて5mm厚の熱延板コイルを製造し、硝フッ酸からなる連続酸洗ラインを通板し、片面あたり約50μm溶削した。その後、両方の板面を目視観察し、表面疵の数を測定した。なお、表面疵の数は1m四方の枠の中に表面疵が発生した個数を、10~15視野観察し、その平均とした。また、板や長さが1mに達しない場合は、観察した熱延板の表面積が1m2となるように換算し、それを1m2当たり表面疵の数とした。
なおここで、熱延板表面疵の評価基準としては、表面疵の数が1m2当たり0.3個以下を合格とし、1m2当たり0.3個を越える場合を不合格と評価した。この評価基準は、後述する各試験番号8~22においても同様である。
試験番号1、2、3、4、5は、いずれも本発明の実施例であって、表1A、表1Bに示すように、いずれも本発明で規定した表層部の形態(組織微細化層の最大及び最小厚み差)を有し、熱延加熱相当熱処理後には、本発明で規定した結晶粒径からなる組織を呈し、熱延後の表面疵も少なく、合格ラインを越えている。
一方、試験番号6、7は、本発明で規定した表層部の形態や施工条件を満たしていない比較例であり、これらは表1A、表1Bに示すように熱延後の表面疵が多く、熱延板の表面状態は不合格であった。
試験番号8~12は断面が1220mm幅×270mm厚×7000mm長のJIS1種純チタンスラブを電子ビーム溶解によりDC鋳造し製造した様々なJISグレードまたはASTMグレードの工業用純チタンまたはモディファイド純チタン(低合金チタン)のDCスラブに対し、スラブを移動させることで、長手方向に電子ビームを照射し、これを往復させる工程を繰り返すことで、圧延面全面に電子ビーム照射を行った。スラブの側面にも照射を実施した。
試験番号13~18は断面が950mm幅×220mm厚×5000mm長のチタンスラブを電子ビーム溶解によりDC鋳造し製造したチタン合金のDCスラブに対し、スラブを移動させることで、長手方向に電子ビームを照射し、これを往復させる工程を繰り返すことで、圧延面全面に電子ビーム照射を行った。スラブの側面にも照射を実施した。
試験番号19~21は、断面が950mm幅×250mm厚×4500mm長のチタンスラブをプラズマアーク溶解によりDCスラブ鋳造したチタン合金のDCスラブに対し、スラブを移動させることで、長手方向に電子ビームを照射し、これを往復させる工程を繰り返すことで、圧延面全面に電子ビーム照射を行った。スラブの側面にも照射を実施した。
試験番号8は、JIS2種純チタン、試験番号9は、JIS3種純チタン、試験番号10は、JIS4種純チタン、試験番号11は、ASTM Gr.17のチタン合金、試験番号12は、ASTM Gr.13のチタン合金である。試験番号11、12は、合金元素を添加したチタン合金であるが添加量は僅かであり、純チタンに準ずる扱いをされるモディファイド純チタンである。
試験番号13は、Ti-1Fe-0.35Oのチタン合金、試験番号14は、Ti-5Al-1Feのチタン合金、試験番号15は、Ti-5Al-1Fe-0.25Siのチタン合金、試験番号16は、Ti-3Al-2.5Vのチタン合金、試験番号17は、Ti-4.5Al-2Mo-1.6V-0.5Fe-0.3Si-0.03C(ASTM Gr.35)のチタン合金、試験番号18は、Ti-4.5Al-2Fe-2Mo-3V、試験番号19は、Ti-1Cu、試験番号20は、Ti-1Cu-0.5Nb、試験番号21は、Ti-1Cu-1Sn-0.3Si-0.2Nbである。
これらスラブに対し、表層加熱処理を表側の面に実施し、その後スラブを反転させて、裏側の面に表層加熱処理を実施した。しかる後に、側面にも同様の電子ビーム照射を行った。
これらスラブは、820℃の炉に挿入後、約240分加熱し、連続熱間圧延ストリップミルにて5mm厚の熱延板コイルを製造し、硝フッ酸からなる連続酸洗ラインを通板し、片面あたり約50μm溶削した。その後、両方の板面を目視観察し、表面疵の数を測定した。
これらの試験番号8~21の例は、いずれも本発明の実施例であり、表2A、表2Bに示すようにいずれも本発明で規定した表層部の形態を有し、熱延加熱相当熱処理後には、本願発明で規定した結晶粒径からなる組織を呈し、熱延後の表面疵も少なく、合格ラインを達成している。
試験番号22は、断面が1000mm幅×190mm厚×5000mm長のJIS1種純チタンスラブを電子ビーム溶解によりDC鋳造した鋳片、試験番号18は、断面が950mm幅×165mm厚×4500mm長のJIS1種純チタンスラブを電子ビーム溶解によりDC鋳造した鋳片、試験番号24は、試験番号22と同じ寸法で、プラズマアーク溶解によりDCスラブ鋳造した鋳片である。
これらスラブに対し、表層加熱処理を表側の面に実施し、その後スラブを反転させて、裏側の面に第1段目表層加熱処理を実施した。しかる後に、側面にも同様の電子ビーム照射を行った。その際、照射条件を種々変化させた。
これらスラブは、820℃の炉に挿入後、約240分加熱し、連続熱間圧延ストリップミルにて5mm厚の熱延板コイルを製造し、硝フッ酸からなる連続酸洗ラインを通板し、片面あたり約50μm溶削した。その後、両方の板面を目視観察し、表面疵の数を測定した。
これらの試験番号22~24では、試験番号1などと比べ、寸法が小さいため熱容量も小さく、そのため冷却速度が遅くなる傾向があるが、本願発明で規定した結晶粒径からなる組織を呈し、熱延後の表面疵も少なく、合格ラインを達成している。
Claims (7)
- チタンからなる熱間圧延用チタン鋳片であって、
圧延面となる表面に、溶融させ再凝固させたことにより形成された母層よりも微細粒からなる組織微細化層を有し、
前記組織微細化層の厚みが深さ5mm以上、9mm未満で、且つ前記微細組織の平均厚さの1/2の位置における粒径が1mm以上の結晶粒の割合が15%未満である、熱間圧延用チタン鋳片。 - 工業用純チタンもしくはチタン合金からなる、請求項1に記載の熱間圧延用チタン鋳片。
- チタンからなる鋳片素材において、熱間圧延の圧延面となる表面を電子ビーム照射によって加熱して、表面から深さ5mm以上、9mm未満までの領域をβ変態点以上に加熱する表層加熱処理工程と、表層加熱処理工程後、β変態点より低い温度に冷却する冷却工程を有する、請求項1もしくは請求項2に記載の熱間圧延用チタン鋳片の製造方法。
- 前記表層加熱処理工程において、電子ビームの照射ガンを、鋳片素材の表面と平行な方向に連続的に移動させながら電子ビーム照射を行なう、請求項3に記載の熱間圧延用チタン鋳片の製造方法。
- 前記冷却工程が、鋳片素材の母材側からの抜熱によって行われる、請求項3に記載の熱間圧延用チタン鋳片の製造方法。
- 前記鋳片素材が、DCスラブ鋳造法によって鋳造したものである、請求項3に記載の熱間圧延用チタン鋳片の製造方法。
- 前記鋳片素材が、鋳造ままの鋳肌を有する、請求項3に記載の熱間圧延用チタン鋳片の製造方法。
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/513,856 US10570492B2 (en) | 2014-09-30 | 2014-09-30 | Titanium cast product for hot rolling having excellent surface properties after hot rolling even when slabbing step and finishing step are omitted, and method for producing same |
CN201480082160.3A CN106715005B (zh) | 2014-09-30 | 2014-09-30 | 即使省略初轧工序、精整工序,热轧后的表面性状也优异的热轧用钛铸坯及其制造方法 |
UAA201702957A UA115957C2 (uk) | 2014-09-30 | 2014-09-30 | Титановий литий виріб для гарячої прокатки, який має чудові поверхневі властивості після гарячої прокатки, навіть при відсутності стадії обтиснення і стадії чистової обробки, і спосіб його виробництва |
KR1020177008239A KR101953042B1 (ko) | 2014-09-30 | 2014-09-30 | 분괴 공정이나 정정 공정을 생략하여도 열간 압연 후의 표면 성상이 우수한 열간 압연용 티타늄 주조편 및 그 제조 방법 |
EP14903062.9A EP3178584A4 (en) | 2014-09-30 | 2014-09-30 | Cast titanium slab for use in hot rolling and exhibiting excellent surface properties after hot rolling, even when omitting blooming and purifying steps, and method for producing same |
EA201790499A EA029618B1 (ru) | 2014-09-30 | 2014-09-30 | Титановое литое изделие для горячей прокатки, имеющее превосходные поверхностные свойства после горячей прокатки даже при отсутствии стадии обжатия и стадии чистовой обработки, и способ его производства |
JP2014549245A JP5888432B1 (ja) | 2014-09-30 | 2014-09-30 | 分塊工程や精整工程を省略しても熱間圧延後の表面性状に優れた熱間圧延用チタン鋳片およびその製造方法 |
PCT/JP2014/076103 WO2016051511A1 (ja) | 2014-09-30 | 2014-09-30 | 分塊工程や精整工程を省略しても熱間圧延後の表面性状に優れた熱間圧延用チタン鋳片およびその製造方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2014/076103 WO2016051511A1 (ja) | 2014-09-30 | 2014-09-30 | 分塊工程や精整工程を省略しても熱間圧延後の表面性状に優れた熱間圧延用チタン鋳片およびその製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016051511A1 true WO2016051511A1 (ja) | 2016-04-07 |
Family
ID=55530460
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/076103 WO2016051511A1 (ja) | 2014-09-30 | 2014-09-30 | 分塊工程や精整工程を省略しても熱間圧延後の表面性状に優れた熱間圧延用チタン鋳片およびその製造方法 |
Country Status (8)
Country | Link |
---|---|
US (1) | US10570492B2 (ja) |
EP (1) | EP3178584A4 (ja) |
JP (1) | JP5888432B1 (ja) |
KR (1) | KR101953042B1 (ja) |
CN (1) | CN106715005B (ja) |
EA (1) | EA029618B1 (ja) |
UA (1) | UA115957C2 (ja) |
WO (1) | WO2016051511A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019082352A1 (ja) * | 2017-10-26 | 2019-05-02 | 日本製鉄株式会社 | チタン熱間圧延板の製造方法 |
WO2019155553A1 (ja) * | 2018-02-07 | 2019-08-15 | 日本製鉄株式会社 | チタン合金材 |
WO2022185409A1 (ja) * | 2021-03-02 | 2022-09-09 | 日本製鉄株式会社 | 熱間加工用α+β型チタン合金鋳塊 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20210012639A (ko) * | 2019-07-26 | 2021-02-03 | 주식회사 포스코 | 티타늄 슬라브 및 그 제조방법 |
KR20230057535A (ko) | 2021-10-21 | 2023-05-02 | 한국생산기술연구원 | Fcc 상이 균일 분산된 적층 성형 타이타늄 소재부품 제조 방법 및 적층 성형 타이타늄 소재 부품 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007332420A (ja) * | 2006-06-15 | 2007-12-27 | Nippon Steel Corp | チタン材の製造方法および熱間圧延用素材 |
WO2012144561A1 (ja) * | 2011-04-22 | 2012-10-26 | 新日本製鐵株式会社 | 熱間圧延用チタンスラブおよびその製造方法 |
WO2014163089A1 (ja) * | 2013-04-01 | 2014-10-09 | 新日鐵住金株式会社 | 熱間圧延用チタン鋳片およびその製造方法 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4690875A (en) * | 1984-01-12 | 1987-09-01 | Degussa Electronics Inc., Materials Division | High vacuum cast ingots |
JPS6256561A (ja) * | 1985-09-06 | 1987-03-12 | Honda Motor Co Ltd | TiまたはTi合金の表面硬化方法 |
US7617863B2 (en) * | 2006-08-11 | 2009-11-17 | Rti International Metals, Inc. | Method and apparatus for temperature control in a continuous casting furnace |
EA020258B1 (ru) | 2009-02-09 | 2014-09-30 | Ниппон Стил Корпорейшн | Титановая плоская заготовка для горячей прокатки, способ ее получения и способ ее прокатки |
WO2010090352A1 (ja) | 2009-02-09 | 2010-08-12 | 新日本製鐵株式会社 | 熱間圧延用チタン素材およびその製造方法 |
CN103348029B (zh) | 2011-02-10 | 2016-03-30 | 新日铁住金株式会社 | 疲劳强度优异的耐磨损性钛合金构件 |
-
2014
- 2014-09-30 US US15/513,856 patent/US10570492B2/en active Active
- 2014-09-30 KR KR1020177008239A patent/KR101953042B1/ko active IP Right Grant
- 2014-09-30 UA UAA201702957A patent/UA115957C2/uk unknown
- 2014-09-30 JP JP2014549245A patent/JP5888432B1/ja active Active
- 2014-09-30 EP EP14903062.9A patent/EP3178584A4/en not_active Withdrawn
- 2014-09-30 CN CN201480082160.3A patent/CN106715005B/zh active Active
- 2014-09-30 EA EA201790499A patent/EA029618B1/ru not_active IP Right Cessation
- 2014-09-30 WO PCT/JP2014/076103 patent/WO2016051511A1/ja active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007332420A (ja) * | 2006-06-15 | 2007-12-27 | Nippon Steel Corp | チタン材の製造方法および熱間圧延用素材 |
WO2012144561A1 (ja) * | 2011-04-22 | 2012-10-26 | 新日本製鐵株式会社 | 熱間圧延用チタンスラブおよびその製造方法 |
WO2014163089A1 (ja) * | 2013-04-01 | 2014-10-09 | 新日鐵住金株式会社 | 熱間圧延用チタン鋳片およびその製造方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3178584A4 * |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019082352A1 (ja) * | 2017-10-26 | 2019-05-02 | 日本製鉄株式会社 | チタン熱間圧延板の製造方法 |
KR20200070358A (ko) * | 2017-10-26 | 2020-06-17 | 닛폰세이테츠 가부시키가이샤 | 티탄 열간 압연판의 제조 방법 |
JPWO2019082352A1 (ja) * | 2017-10-26 | 2020-10-22 | 日本製鉄株式会社 | チタン熱間圧延板の製造方法 |
KR102332457B1 (ko) * | 2017-10-26 | 2021-12-01 | 닛폰세이테츠 가부시키가이샤 | 티탄 열간 압연판의 제조 방법 |
EA039472B1 (ru) * | 2017-10-26 | 2022-01-31 | Ниппон Стил Корпорейшн | Способ производства горячекатаной титановой плиты |
WO2019155553A1 (ja) * | 2018-02-07 | 2019-08-15 | 日本製鉄株式会社 | チタン合金材 |
CN111655880A (zh) * | 2018-02-07 | 2020-09-11 | 日本制铁株式会社 | 钛合金材料 |
JPWO2019155553A1 (ja) * | 2018-02-07 | 2020-11-19 | 日本製鉄株式会社 | チタン合金材 |
CN111655880B (zh) * | 2018-02-07 | 2021-11-02 | 日本制铁株式会社 | 钛合金材料 |
WO2022185409A1 (ja) * | 2021-03-02 | 2022-09-09 | 日本製鉄株式会社 | 熱間加工用α+β型チタン合金鋳塊 |
Also Published As
Publication number | Publication date |
---|---|
CN106715005A (zh) | 2017-05-24 |
JP5888432B1 (ja) | 2016-03-22 |
JPWO2016051511A1 (ja) | 2017-04-27 |
KR101953042B1 (ko) | 2019-02-27 |
EA029618B1 (ru) | 2018-04-30 |
CN106715005B (zh) | 2018-12-11 |
EP3178584A1 (en) | 2017-06-14 |
KR20170047332A (ko) | 2017-05-04 |
EP3178584A4 (en) | 2018-03-14 |
UA115957C2 (uk) | 2018-01-10 |
US20170283928A1 (en) | 2017-10-05 |
EA201790499A1 (ru) | 2017-06-30 |
US10570492B2 (en) | 2020-02-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5754559B2 (ja) | 熱間圧延用チタン鋳片およびその製造方法 | |
JP4414983B2 (ja) | チタン材の製造方法および熱間圧延用素材 | |
JP5888432B1 (ja) | 分塊工程や精整工程を省略しても熱間圧延後の表面性状に優れた熱間圧延用チタン鋳片およびその製造方法 | |
JP5220115B2 (ja) | 熱間圧延用チタンスラブ、その溶製方法および圧延方法 | |
JP5168434B2 (ja) | 熱間圧延用チタンスラブおよびその製造方法 | |
JP2014233753A (ja) | 分塊工程や精整工程を省略しても熱間圧延後の表面性状に優れた工業用純チタンインゴットおよびその製造方法 | |
WO2014163086A1 (ja) | 熱間圧延用チタン鋳片およびその製造方法 | |
JP6075384B2 (ja) | 熱間圧延用チタン鋳片およびその製造方法 | |
WO2016152678A1 (ja) | 冷間圧延用圧延板の製造方法、及び純チタン板の製造方法 | |
JP6075387B2 (ja) | 表面疵の発生し難い熱間圧延用チタン鋳片およびその製造方法 | |
JP6171836B2 (ja) | 熱間圧延用チタン合金スラブおよびその製造方法 | |
WO2016051482A1 (ja) | 熱間圧延用チタン鋳片およびその製造方法 | |
JP7017505B2 (ja) | 純チタン板の製造方法 | |
JP6075386B2 (ja) | 表面疵の発生し難い熱間圧延用チタン鋳片およびその製造方法 | |
JP2019093439A (ja) | チタン材の熱間圧延方法 | |
JP2006239750A (ja) | マグネシウム合金の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2014549245 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14903062 Country of ref document: EP Kind code of ref document: A1 |
|
REEP | Request for entry into the european phase |
Ref document number: 2014903062 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2014903062 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15513856 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 20177008239 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 201790499 Country of ref document: EA Ref document number: A201702957 Country of ref document: UA |
|
NENP | Non-entry into the national phase |
Ref country code: DE |