WO2016047749A1 - 光ファイバ - Google Patents

光ファイバ Download PDF

Info

Publication number
WO2016047749A1
WO2016047749A1 PCT/JP2015/077080 JP2015077080W WO2016047749A1 WO 2016047749 A1 WO2016047749 A1 WO 2016047749A1 JP 2015077080 W JP2015077080 W JP 2015077080W WO 2016047749 A1 WO2016047749 A1 WO 2016047749A1
Authority
WO
WIPO (PCT)
Prior art keywords
refractive index
optical fiber
core
cladding portion
outer peripheral
Prior art date
Application number
PCT/JP2015/077080
Other languages
English (en)
French (fr)
Inventor
北村 隆之
祥 遠藤
岸 達也
遼 丸山
Original Assignee
株式会社フジクラ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フジクラ filed Critical 株式会社フジクラ
Priority to CN201580051163.5A priority Critical patent/CN107111055B/zh
Priority to JP2016509795A priority patent/JP6306690B2/ja
Priority to EP15843671.7A priority patent/EP3185056A4/en
Publication of WO2016047749A1 publication Critical patent/WO2016047749A1/ja
Priority to US15/467,264 priority patent/US9772444B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • G02B6/03616Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference
    • G02B6/03622Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 2 layers only
    • G02B6/03627Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 2 layers only arranged - +
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02004Optical fibres with cladding with or without a coating characterised by the core effective area or mode field radius
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • G02B6/03616Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference
    • G02B6/03638Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 3 layers only
    • G02B6/0365Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 3 layers only arranged - - +
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/02Pure silica glass, e.g. pure fused quartz
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/08Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant
    • C03B2201/12Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant doped with fluorine
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/20Doped silica-based glasses doped with non-metals other than boron or fluorine
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/10Internal structure or shape details
    • C03B2203/22Radial profile of refractive index, composition or softening point
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/10Internal structure or shape details
    • C03B2203/22Radial profile of refractive index, composition or softening point
    • C03B2203/23Double or multiple optical cladding profiles

Definitions

  • the present invention relates to an optical fiber.
  • This application claims priority based on Japanese Patent Application No. 2014-195937 and Japanese Patent Application No. 2014-195938 filed on September 26, 2014, the contents of which are incorporated herein by reference.
  • ITU-T Recommendation G a standard for standard single mode optical fiber (S-SMF).
  • S-SMF standard single mode optical fiber
  • a trench type refractive index profile is adopted.
  • a trench-type refractive index distribution having a low refractive index portion at a position away from the core in the cladding portion, light confinement in the core can be improved and bending loss can be reduced (for example, patents) Reference 2).
  • B. Products conforming to B2 and G. 657. There are products that comply with B3. Further, G.C. corresponds to a bending radius of 7.5 mm. 657. Other optical characteristics comply with G.B3 while complying with B3. 657. Some products comply with the A series standards.
  • a hole is formed in the cladding part.
  • An optical fiber for example, a hole assisted fiber (HAF) in which holes are formed along the longitudinal direction of the optical fiber at a position away from the core in the clad portion, or light having a fine structure composed of a large number of independent voids
  • a fiber for example, Corning Corporation, ClearCurve (registered trademark)
  • ClearCurve registered trademark
  • G.C. 657 There are products that comply with B3.
  • an optical fiber having a high refractive index of the core can reduce bending loss.
  • the mode field diameter decreases, and the connection loss with the S-SMF increases.
  • An optical fiber having a trench-type refractive index distribution needs to form a plurality of layers having different refractive indexes, which complicates the manufacturing process of the base material.
  • the manufacturing process of an optical fiber with holes is complicated as compared with an optical fiber having a solid structure.
  • advanced spinning technology is required, it is not easy to manufacture.
  • This invention is made
  • the present inventor has found that the bending loss is reduced without reducing the mode field diameter. We found a refractive index distribution that can be reduced.
  • the present invention has been made on the basis of the above knowledge, and by adopting the refractive index distribution, it is possible to achieve both suppression of connection loss and reduction of bending loss when connected to another optical fiber.
  • 1st aspect of this invention is an optical fiber, Comprising: The core and the clad
  • the said clad is the inner clad part adjacent to the said core at least,
  • the core has a refractive index of ⁇ 1 and a maximum refractive index of ⁇ 1max, and the inner cladding portion has a refractive index of ⁇ 2 and a minimum refractive index. Is ⁇ 2 min, the refractive index of the outer cladding portion is ⁇ 3, and the refractive indexes of the core, the inner cladding portion, and the outer cladding portion have the relationship shown in the equations (1) and (2). .
  • the outer peripheral radius r1 of the core, the outer peripheral radius r2 of the inner clad part, and the outer peripheral radius r3 of the outer clad part have the relationship shown in the equations (3) and (4).
  • the cable cutoff wavelength ⁇ cc satisfies the formula (5).
  • the mode field diameter at the wavelength of 1310 nm satisfies the formula (6).
  • the refractive indexes of the core, the inner clad part, and the outer clad part have a relationship represented by the formulas (1A) and (2A): Is preferred.
  • ⁇ 1max further satisfies 0.33% ⁇ ⁇ 1max ⁇ 0.40%.
  • an increase in loss at a wavelength of 1550 nm when wound around a mandrel having a diameter of 15 mm is 0.25 dB or less.
  • the increase in loss at a wavelength of 1625 nm when the mandrel is wound 10 times is preferably 1.0 dB or less.
  • the outer cladding portion is made of pure silica glass, and the inner cladding portion is silica glass to which fluorine is added. It is good also as composition which consists of.
  • the outer cladding portion is made of pure silica glass
  • the inner cladding portion is silica glass to which chlorine is added. It is good also as composition which consists of.
  • the inner cladding portion is preferably made of, for example, silica glass to which fluorine (F) is added when ⁇ 2 ⁇ 3, and when ⁇ 2> ⁇ 3, for example, chlorine (Cl) is added. It is preferable that it consists of the made silica glass.
  • a seventh aspect of the present invention is an optical fiber comprising a core and a clad formed on an outer peripheral side of the core, wherein the clad is at least an inner clad portion adjacent to the core, and the inner clad portion. And a core having a refractive index of ⁇ 1 and a maximum refractive index of ⁇ 1max, the inner cladding having a trench portion adjacent to the outer circumferential side of the trench portion and an outer cladding portion formed on the outer circumferential side of the trench portion.
  • the portion has a refractive index of ⁇ 2, the minimum refractive index is ⁇ 2 min, the trench portion has a refractive index of ⁇ 3, the minimum refractive index of ⁇ 3 min, and the outer cladding portion has a refractive index of ⁇ 4.
  • the refractive indexes of the core, the inner clad part, the trench part, and the outer clad part have a relationship represented by equations (11) to (13). ⁇ 1max> ⁇ 2> ⁇ 3min (11), ⁇ 1max> ⁇ 4> ⁇ 3min (12), 0.01% ⁇ ( ⁇ 4- ⁇ 3min) ⁇ 0.03% (13).
  • the outer peripheral radius r1 of the core, the outer peripheral radius r2 of the inner clad part, the outer peripheral radius r3 of the trench part, and the outer peripheral radius r4 of the outer clad part have the relationships shown in equations (14) to (16).
  • the cable cutoff wavelength ⁇ cc satisfies the equation (17).
  • the mode field diameter at the wavelength of 1310 nm satisfies Expression (18). 8.6 ⁇ m ⁇ mode field diameter ⁇ 9.5 ⁇ m (18).
  • an increase in loss at a wavelength of 1550 nm when wound around a mandrel having a diameter of 15 mm is 0.25 dB or less and is wound around the mandrel for 10 turns.
  • the increase in loss at a wavelength of 1625 nm is preferably 1.0 dB or less.
  • the outer cladding portion is preferably made of pure silica glass, and the trench portion is made of silica glass to which fluorine is added. Is preferred.
  • the present invention by adjusting the difference in refractive index between the trench portion and the outer cladding portion, the ratio of the outer peripheral radius of the core, the inner cladding portion, and the trench portion, and the like, Connection loss when connected to a fiber (for example, a normal single mode optical fiber (S-SMF)) can be suppressed, and bending loss can be reduced. Furthermore, according to one embodiment of the present invention, since the conventional manufacturing method can be used without greatly changing, the manufacturing is easy and the manufacturing cost can be reduced.
  • a fiber for example, a normal single mode optical fiber (S-SMF)
  • FIG. 1 shows a schematic configuration of an optical fiber 10 according to the first embodiment of the present invention.
  • the optical fiber 10 includes a core 1 disposed in the center, and a clad 4 provided concentrically with the core 1 on the outer peripheral side of the core 1.
  • the clad 4 has at least an inner clad part 2 adjacent to the outer peripheral side of the core 1 and an outer clad part 3 formed on the outer peripheral side of the inner clad part 2.
  • FIG. 2A schematically shows the refractive index distribution of the optical fiber 10.
  • the refractive index of the core 1 is ⁇ 1, and the maximum refractive index is ⁇ 1max.
  • the refractive index of the inner cladding portion 2 is ⁇ 2, and the minimum refractive index is ⁇ 2min.
  • the maximum refractive index ⁇ 1max of the core 1 is the refractive index of the core 1 that is maximum in the radial range from the center of the core 1 to the outer periphery.
  • the refractive index ⁇ 1 is equal to the maximum refractive index ⁇ 1max in the entire range.
  • the minimum refractive index ⁇ 2min of the inner cladding portion 2 is the refractive index of the inner cladding portion 2 that is the smallest in the radial range from the inner periphery to the outer periphery of the inner cladding portion 2.
  • the refractive index ⁇ 2 is equal to the minimum refractive index ⁇ 2min over the entire range.
  • the following formula (1) is established. ⁇ 1max> ⁇ 2min and ⁇ 1max> ⁇ 3 (1)
  • the maximum refractive index ⁇ 1max of the core 1 is set to be larger than the minimum refractive index ⁇ 2min of the inner cladding portion 2 and the refractive index ⁇ 3 of the outer cladding portion 3.
  • the minimum refractive index ⁇ 2 min of the inner cladding portion 2 is set to be smaller than the refractive index ⁇ 3 of the outer cladding portion 3.
  • Equation (2) means that the absolute value of the difference between the minimum refractive index ⁇ 2min of the inner cladding portion 2 and the refractive index ⁇ 3 of the outer cladding portion 3 exceeds 0.01% and is less than 0.03%. To do.
  • the bending loss may not be sufficiently reduced.
  • the absolute value of the difference between ⁇ 2min and ⁇ 3 is too large, the mode field diameter becomes small, resulting in a large connection loss when connected to another optical fiber (for example, a normal single mode optical fiber (S-SMF)).
  • S-SMF normal single mode optical fiber
  • the bending loss can be reduced by setting the absolute value of the difference between ⁇ 2min and ⁇ 3 to a range exceeding 0.01%.
  • the absolute value of the difference between ⁇ 2min and ⁇ 3 to less than 0.03%, the mode field diameter (MFD) can be optimized and the connection loss when connected to another optical fiber can be kept low.
  • the following expression (1A) is established regarding the magnitude relationship among ⁇ 1max, ⁇ 2min, and ⁇ 3.
  • ⁇ 1max> ⁇ 3> ⁇ 2min (1A) As shown in Expression (1A), the maximum refractive index ⁇ 1max of the core 1 is set to be larger than the refractive index ⁇ 3 of the outer cladding portion 3.
  • the refractive index ⁇ 3 of the outer cladding part 3 is set larger than the minimum refractive index ⁇ 2min of the inner cladding part 2.
  • Equation (2A) means that the difference between the refractive index ⁇ 3 of the outer cladding portion 3 and the minimum refractive index ⁇ 2min of the inner cladding portion 2 is more than 0.01% and less than 0.03%.
  • the outer peripheral radii of the core 1, the inner cladding part 2, and the outer cladding part 3 are r1, r2, and r3, respectively. Between the outer peripheral radii r1 to r3 of the core 1, the inner cladding part 2, and the outer cladding part 3, there is a relationship represented by the following equation (3). r1 ⁇ r2 ⁇ r3 (3)
  • the ratio r1 / r2 between the outer peripheral radius r1 of the core 1 and the outer peripheral radius r2 of the inner cladding portion 2 is in the range shown in the following equation (4). 0.2 ⁇ r1 / r2 ⁇ 0.5 (4)
  • r1 / r2 If r1 / r2 is too small, the mode field diameter becomes small, and there is a possibility that the connection loss when connected to another optical fiber (for example, S-SMF) becomes large. On the other hand, if r1 / r2 is too large, bending loss may increase.
  • the optical fiber 10 by setting r1 / r2 to be 0.2 or more, the mode field diameter can be optimized and the connection loss when connecting to another optical fiber can be kept low. By making r1 / r2 0.5 or less, bending loss can be reduced.
  • the optical fiber 10 has a cable cutoff wavelength ⁇ cc (that is, a 22 m cutoff wavelength ⁇ c 22m ) of 1260 nm or less. That is, the following formula (5) is established. ⁇ cc ⁇ 1260 nm (5) As a result, ITU-T Recommendation G. 652 can be satisfied.
  • the cutoff wavelength ⁇ cc is, for example, ITU-T Recommendation G. It can be measured by the measurement method described in 650.
  • the optical fiber 10 is set such that the mode field diameter (MFD) at a wavelength of 1310 nm is 8.6 ⁇ m or more and 9.5 ⁇ m or less by adjusting the refractive index and the outer radius. That is, the following equation (6) is established. 8.6 ⁇ m ⁇ MFD ⁇ 9.5 ⁇ m (6) By setting the mode field diameter within this range, connection loss when connected to another optical fiber (for example, S-SMF) can be kept low.
  • the optical fiber 10 has an ITU-T G.D. It satisfies the provisions of 652.
  • the optical fiber 10 preferably has a loss increase of 0.25 dB or less at a wavelength of 1550 nm when it is wound 10 times on a cylindrical mandrel having a diameter of 15 mm. Further, the increase in loss at a wavelength of 1625 nm when wound around a cylindrical mandrel having a diameter of 15 mm 10 times is preferably 1.0 dB or less.
  • the core 1 can be made of silica glass whose refractive index is increased by adding a dopant such as germanium (Ge).
  • the inner cladding portion 2 can be made of silica glass whose refractive index is lowered by adding a dopant such as fluorine (F).
  • the inner cladding portion 2 may be made of silica glass whose refractive index is increased by adding a dopant such as chlorine (Cl).
  • the outer cladding part 3 can be comprised, for example with a pure silica glass.
  • the outer cladding portion 3 may adjust the refractive index by adding a dopant (eg, Ge, F, etc.).
  • Each layer constituting the optical fiber 10 can be formed by a known method such as an MCVD method, a PCVD method, a VAD method, an OVD method, or a combination thereof.
  • the optical fiber preform can be manufactured as follows.
  • a glass deposition layer serving as the inner cladding portion 2 is formed inside a silica glass tube serving as the outer cladding portion 3 (for example, a glass tube made of pure silica glass) using a raw material containing a dopant such as fluorine (F). .
  • the refractive index of the inner cladding part 2 can be adjusted by the amount of dopant added.
  • a glass deposition layer to be the core 1 is formed inside the glass deposition layer using a raw material containing a dopant such as germanium (Ge).
  • the core 1 can also be formed using the core rod produced separately.
  • the silica glass tube on which the glass deposition layer is formed is made into an optical fiber preform through processes such as transparency and solidification. By drawing this optical fiber preform, the optical fiber 10 shown in FIG. 1 is obtained.
  • the CVD method is preferable in that the refractive index distribution can be accurately adjusted by adding a dopant.
  • the VAD method and the OVD method are also applicable.
  • the VAD method and the OVD method have an advantage of high productivity.
  • the difference in refractive index between the inner cladding portion 2 and the outer cladding portion 3 is in the above range (see formula (2)), and the ratio of the outer peripheral radius between the core 1 and the inner cladding portion 2 is in the above range (formula). (Refer to (4)), the connection loss when connecting to another optical fiber can be kept low, and the bending loss can be reduced.
  • the present inventor has found that the bending loss can be reduced without reducing the mode field diameter.
  • a refractive index distribution that can be reduced.
  • the conventional manufacturing method for example, a normal S-SMF manufacturing method
  • the refractive indexes of the part 2 and the outer cladding part 3 can be adjusted easily and accurately.
  • the difference in refractive index between the inner cladding portion 2 and the outer cladding portion 3 is small, there are few restrictions based on the manufacturing method. For example, not only the CVD method suitable for adjusting the refractive index distribution but also a VAD method and an OVD method can be employed. Therefore, the optical fiber 10 can be easily manufactured, and the manufacturing cost can be kept low.
  • the optical fiber 10 has a small difference in refractive index between the inner cladding portion 2 and the outer cladding portion 3, the amount of dopant such as fluorine (F) and chlorine (Cl) for forming the inner cladding portion 2 can be reduced.
  • the source gas (for example, SiF 4 ) used for doping such as fluorine (F) is expensive, the source cost can be suppressed and the manufacturing cost can be reduced by reducing the dopant addition amount.
  • the optical fiber 10 since the optical fiber 10 has a minimum refractive index ⁇ 2min of the inner cladding portion 2 that is smaller than the refractive index ⁇ 3 of the outer cladding portion 3, the optical fiber 10 is well confined in light and reduces bending loss. it can.
  • ⁇ 2 when ⁇ 2 is small, it is preferable in terms of cost, for example, other than the characteristics.
  • a dopant that lowers the refractive index such as fluorine (F)
  • F fluorine
  • the dopant added to the inner cladding portion 2 diffuses into the core portion under a high temperature environment such as a sintering process and a spinning process of the optical fiber preform.
  • Table 1 shows calculation results of characteristics when the parameters shown in FIG. 2A are set.
  • Table 2 shows the calculation results of the characteristics when the parameters of the refractive index distribution when the inner cladding portion shown in FIG. 2B is not provided are set.
  • the cable cutoff wavelength is 1260 nm, which is the upper limit, and it can be seen that the bending loss does not satisfy the G657A1 standard despite the refractive index distribution in which the bending loss is enhanced. From the results of this comparative example, it can be seen that a high-performance optical fiber can be realized by providing the inner cladding portion within an appropriate refractive index range.
  • FIG. 3 shows a schematic configuration of the optical fiber 20 according to the second embodiment of the present invention.
  • the optical fiber 20 includes a core 1 disposed in the center, and a clad 14 provided concentrically with the core 1 on the outer peripheral side of the core 1.
  • the clad 14 has at least an inner clad portion 12 adjacent to the outer peripheral side of the core 1 and an outer clad portion 13 formed on the outer peripheral side of the inner clad portion 12.
  • FIG. 4 schematically shows the refractive index distribution of the optical fiber 20.
  • the refractive index of the core 1 is ⁇ 1, and the maximum refractive index is ⁇ 1max.
  • the refractive index of the inner cladding portion 12 is ⁇ 2, and the minimum refractive index is ⁇ 2min.
  • the following equation (7) is established, as in the optical fiber 10 of the first embodiment. ⁇ 1max> ⁇ 2min and ⁇ 1max> ⁇ 3 (7)
  • the optical fiber 20 differs from the optical fiber 10 of the first embodiment in that the minimum refractive index ⁇ 2min of the inner cladding portion 12 is larger than the refractive index ⁇ 3 of the outer cladding portion 13.
  • the following equation (8) is established, as in the optical fiber 10 of the first embodiment. 0.01% ⁇
  • the mode field diameter (MFD) can be optimized, the connection loss when connected to another optical fiber can be kept low, and the bending loss can be reduced. it can.
  • the optical fiber 20 has a cable cutoff wavelength ⁇ cc (that is, a cutoff wavelength ⁇ c 22m of 22 m ) of 1260 nm or less.
  • the mode field diameter (MFD) at a wavelength of 1310 nm is 8.6 ⁇ m or more and 9.5 ⁇ m or less.
  • the optical fiber 20 preferably has a loss increase of 0.25 dB or less at a wavelength of 1550 nm when it is wound 10 times on a cylindrical mandrel having a diameter of 15 mm. Further, the increase in loss at a wavelength of 1625 nm when wound around a cylindrical mandrel having a diameter of 15 mm 10 times is preferably 1.0 dB or less.
  • the core 1 can be made of silica glass whose refractive index is increased by adding a dopant such as germanium (Ge).
  • the inner cladding part 2 can be made of, for example, pure silica glass.
  • the inner cladding portion 2 may adjust the refractive index by adding a dopant such as chlorine (Cl).
  • the outer cladding part 3 can be comprised, for example with a pure silica glass.
  • the outer clad part 3 may be made of silica glass whose refractive index is lowered by adding a dopant such as fluorine (F).
  • the optical fiber 20 can be manufactured by the MCVD method, the PCVD method, the VAD method, the OVD method, or the like, similarly to the optical fiber 10 of the first embodiment.
  • the optical fiber preform can be manufactured as follows. Using a raw material such as pure silica glass, a glass deposition layer to be the inner cladding portion 2 is formed inside a silica glass tube to be the outer cladding portion 3 (for example, a silica glass tube containing a dopant such as fluorine (F)). . Next, a glass deposition layer to be the core 1 is formed inside the glass deposition layer using a raw material containing a dopant such as germanium (Ge).
  • the core 1 can also be formed using the core rod produced separately.
  • the silica glass tube on which the glass deposition layer is formed is made into an optical fiber preform through processes such as transparency and solidification. By drawing the optical fiber preform, the optical fiber 20 shown in FIG. 3 is obtained.
  • the difference in refractive index between the inner cladding portion 12 and the outer cladding portion 13 is set in the above range, and the ratio of the outer peripheral radius between the core 1 and the inner cladding portion 12 is set in the above range.
  • Connection loss when connected can be kept low, and bending loss can be reduced. Since the optical fiber 20 can be used without greatly changing the conventional manufacturing method, it is easy to manufacture and the manufacturing cost can be kept low.
  • the clads 4 and 14 are composed of two clad parts (an inner clad part and an outer clad part). It may have a layer.
  • FIG. 5 shows a schematic configuration of an optical fiber 30 according to the third embodiment of the present invention.
  • the optical fiber 30 includes a core 21 disposed in the center, and a clad 25 provided concentrically with the core 21 on the outer peripheral side of the core 21.
  • the cladding 25 includes at least an inner cladding portion 22 adjacent to the outer peripheral side of the core 21, a trench portion 23 formed adjacent to the outer peripheral side of the inner cladding portion 22, and an outer portion formed on the outer peripheral side of the trench portion 23. And a clad portion 24.
  • FIG. 6 schematically shows the refractive index distribution of the optical fiber 30.
  • the refractive index of the core 21 is ⁇ 1, and the maximum refractive index is ⁇ 1max.
  • the refractive index of the inner cladding portion 22 is ⁇ 2, and the minimum refractive index is ⁇ 2min.
  • the refractive index of the trench portion 23 is ⁇ 3, and the minimum refractive index is ⁇ 3 min.
  • the refractive index of the outer cladding part 24 is assumed to be ⁇ 4.
  • the maximum refractive index ⁇ 1max of the core 21 is the refractive index of the core 21 that is maximum in the radial range from the center of the core 21 to the outer periphery.
  • the refractive index ⁇ 1 is equal to the maximum refractive index ⁇ 1max over the entire range.
  • the minimum refractive index ⁇ 2min of the inner cladding portion 22 is the refractive index of the inner cladding portion 22 that is the smallest in the radial range from the inner periphery to the outer periphery of the inner cladding portion 22. In the refractive index distribution shown in FIG.
  • the refractive index ⁇ 2 of the inner cladding portion 22 is constant regardless of the radial position, the refractive index ⁇ 2 is equal to the minimum refractive index ⁇ 2min over the entire range.
  • the minimum refractive index ⁇ 3min of the trench portion 23 is the refractive index of the trench portion 23 that is the smallest in the radial range from the inner periphery to the outer periphery of the trench portion 23.
  • the refractive index ⁇ 3 is equal to the minimum refractive index ⁇ 3min over the entire range.
  • the following equation (11) is established. ⁇ 1max> ⁇ 2> ⁇ 3min (11)
  • the maximum refractive index ⁇ 1max of the core 21 is set larger than the refractive index ⁇ 2 of the inner cladding portion 22.
  • the refractive index ⁇ 2 of the inner cladding portion 22 is set to be larger than ⁇ 3 min of the trench portion 23.
  • the following equation (12) is established. ⁇ 1max> ⁇ 4> ⁇ 3min (12) As shown in Expression (12), the maximum refractive index ⁇ 1max of the core 21 is set to be larger than the refractive index ⁇ 4 of the outer cladding portion 24. The refractive index ⁇ 4 of the outer cladding portion 24 is set to be larger than ⁇ 3 min of the trench portion 23.
  • Equation (13) means that the difference between the refractive index ⁇ 4 of the outer cladding portion 24 and the minimum refractive index ⁇ 3min of the trench portion 23 exceeds 0.01% and is less than 0.03%.
  • the bending loss may not be sufficiently reduced.
  • the difference between ⁇ 4 and ⁇ 3min is too small, the bending loss may not be sufficiently reduced.
  • the difference between ⁇ 4 and ⁇ 3min is too large, the mode field diameter becomes small, and there is a possibility that the connection loss when connecting to another optical fiber (for example, a normal single mode optical fiber (S-SMF)) becomes large. is there.
  • the bending loss can be reduced by setting the difference between ⁇ 4 and ⁇ 3min to a range exceeding 0.01%.
  • the difference between ⁇ 4 and ⁇ 3min to be less than 0.03%, the mode field diameter (MFD) can be optimized and the connection loss when connecting to another optical fiber can be kept low.
  • the outer peripheral radii of the core 21, the inner cladding part 22, the trench part 23, and the outer cladding part 24 are r1, r2, r3, and r4, respectively.
  • the ratio r2 / r1 between the outer peripheral radius r2 of the inner cladding part 22 and the outer peripheral radius r1 of the core 21 is in the range shown in the following equation (15). 1 ⁇ r2 / r1 ⁇ 5 (15)
  • r2 / r1 If r2 / r1 is too small, bending loss may increase. On the other hand, if r2 / r1 is too large, the mode field diameter becomes small, and there is a possibility that the connection loss becomes large when connected to another optical fiber (for example, S-SMF). In the optical fiber 30, bending loss can be reduced by setting r2 / r1 to 1 or more. By setting r2 / r1 to 5 or less, the mode field diameter can be optimized and the connection loss when connected to another optical fiber can be kept low.
  • S-SMF optical fiber
  • the ratio r3 / r2 between the outer peripheral radius r3 of the trench part 23 and the outer peripheral radius r2 of the inner cladding part 22 is in the range represented by the following equation (16). 1 ⁇ r3 / r2 ⁇ 2 (16)
  • r3 / r2 If r3 / r2 is too small, bending loss may increase. On the other hand, if r3 / r2 is too large, the mode field diameter becomes small, and the connection loss when connected to another optical fiber (for example, S-SMF) may increase. In the optical fiber 30, by making r3 / r2 greater than 1, bending loss can be reduced. By setting r3 / r2 to 2 or less, the mode field diameter can be optimized and the connection loss when connected to another optical fiber can be kept low.
  • S-SMF optical fiber
  • the optical fiber 30 has a cable cutoff wavelength ⁇ cc of 1260 nm or less. That is, the following formula (17) is established. ⁇ cc ⁇ 1260 nm (17) As a result, ITU-T Recommendation G. 652 can be satisfied.
  • the cutoff wavelength ⁇ cc is, for example, ITU-T Recommendation G. It can be measured by the measurement method described in 650.
  • the optical fiber 30 is set so that the mode field diameter (MFD) at a wavelength of 1310 nm is 8.6 ⁇ m or more and 9.5 ⁇ m or less by adjusting the refractive index and the outer radius. That is, the following formula (18) is established. 8.6 ⁇ m ⁇ MFD ⁇ 9.5 ⁇ m (18) By setting the mode field diameter within this range, connection loss when connected to another optical fiber (for example, S-SMF) can be kept low.
  • the optical fiber 30 has an ITU-T G.D. It satisfies the provisions of 652.
  • the optical fiber 30 preferably has a loss increase of 0.25 dB or less at a wavelength of 1550 nm when it is wound 10 times on a cylindrical mandrel having a diameter of 15 mm. Further, the increase in loss at a wavelength of 1625 nm when wound around a cylindrical mandrel having a diameter of 15 mm 10 times is preferably 1.0 dB or less.
  • the core 21 can be made of silica glass whose refractive index is increased by adding a dopant such as germanium (Ge).
  • the inner cladding portion 22 and the trench portion 23 can be made of silica glass whose refractive index is lowered by adding a dopant such as fluorine (F).
  • the outer cladding portion 24 can be made of, for example, pure silica glass. The outer cladding portion 24 may adjust the refractive index by adding a dopant (eg, Ge, F, etc.).
  • Each layer constituting the optical fiber 30 can be formed by a known method such as an MCVD method, a PCVD method, a VAD method, an OVD method, or a combination thereof.
  • the optical fiber preform can be manufactured as follows.
  • a glass deposition layer to be the trench portion 23 is formed inside a silica glass tube to be the outer cladding portion 24 (for example, a glass tube made of pure silica glass) using a raw material containing a dopant such as fluorine (F).
  • a glass deposition layer to be the inner cladding portion 22 is formed inside the glass deposition layer using a raw material containing a dopant such as fluorine (F).
  • the refractive indexes of the trench portion 23 and the inner cladding portion 22 can be adjusted by the amount of dopant added.
  • a glass deposition layer to be the core 21 is formed inside the glass deposition layer using a raw material containing a dopant such as germanium (Ge).
  • the core 21 can also be formed using a separately prepared core rod.
  • the silica glass tube on which the glass deposition layer is formed is made into an optical fiber preform through processes such as transparency and solidification. By drawing the optical fiber preform, an optical fiber 30 shown in FIG. 5 is obtained.
  • the CVD method is preferable in that the refractive index distribution can be accurately adjusted by adding a dopant.
  • the VAD method and the OVD method can also be applied to manufacture the optical fiber 30.
  • the VAD method and the OVD method have an advantage of high productivity.
  • the difference in refractive index between the trench portion 23 and the outer cladding portion 24 is set to the above-described range (see Expression (13)), and the ratio of the outer peripheral radii of the core 21, the inner cladding portion 22, and the trench portion 23 is set.
  • the present inventor has found that the bending loss can be reduced without reducing the mode field diameter.
  • the optical fiber 30 is technically significant in that it adopts this refractive index distribution to achieve both suppression of connection loss and reduction of bending loss when connected to another optical fiber.
  • the conventional manufacturing method for example, a normal S-SMF manufacturing method
  • the refractive index of the outer cladding part 24 can be adjusted easily and accurately.
  • the difference in refractive index between the trench portion 23 and the outer cladding portion 24 is small, there are few restrictions based on the manufacturing method. For example, not only the CVD method suitable for adjusting the refractive index distribution but also a VAD method and an OVD method can be employed. Therefore, the optical fiber 30 can be easily manufactured, and the manufacturing cost can be kept low.
  • the optical fiber 30 has a small difference in refractive index between the trench portion 23 and the outer cladding portion 24, the amount of dopant such as fluorine (F) for forming the trench portion 23 can be reduced. Since the source gas (for example, SiF 4 ) used for doping such as fluorine (F) is expensive, the source cost can be suppressed and the manufacturing cost can be reduced by reducing the dopant addition amount.
  • the source gas for example, SiF 4
  • the outer radius radii r1 to r4 of the core 21, the inner clad part 22, the trench part 23, and the outer clad part 24 have the relationship shown in the equation (14).
  • r1 ⁇ r2 ⁇ r3 ⁇ r4 (14)
  • the clad 25 includes only the trench part 23 and the outer clad part 24 formed on the outer peripheral side of the trench part 23.
  • the clad 25 includes three layers (an inner clad part, a trench part, and an outer clad part), but the clad may have other layers.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Abstract

 コアとクラッドとを備え、クラッドが内クラッド部と外クラッド部とを有する光ファイバを提供する。コアの屈折率はΔ1、最大屈折率はΔ1maxとする。内クラッド部の屈折率はΔ2、最小屈折率はΔ2minとする。外クラッド部の屈折率はΔ3とする。コア、内クラッド部、外クラッド部の屈折率は、次の式に示す関係がある。Δ1max>Δ2min、かつΔ1max>Δ3、0.01%<|Δ2min-Δ3|<0.03%。コアの外周半径r1、内クラッド部の外周半径r2、および外クラッド部の外周半径r3は次の式に示す関係がある。r1<r2<r3、0.2≦r1/r2≦0.5。ケーブルカットオフ波長λccは1260nm以下となる。波長1310nmにおけるモードフィールド径は8.6μm~9.5μmとなる。

Description

光ファイバ
 本発明は、光ファイバに関する。
 本願は、2014年9月26日に出願された日本国特許出願2014-195937号および日本国特許出願2014-195938号に基づき優先権を主張し、その内容をここに援用する。
 FTTH(Fiber To The Home)の普及に伴い、光ファイバはビルや住宅等の屋内まで敷設されている。これに伴い、曲げを加えたときに生じる過剰損失、いわゆる曲げ損失(マクロベンド損失)を低減した光ファイバが注目を集めている。
 低曲げ損失光ファイバを用いることにより、光ファイバに曲げが印加される際に発生する損失に起因する信号の瞬断の防止や、取り扱いの平易化による敷設コストの低減などが期待されている。
 標準シングルモード光ファイバ(S-SMF)の規格であるITU-T Recommendation G.652に準拠しつつ、標準シングルモード光ファイバに比べて曲げ損失が低減された光ファイバの規格として、ITU-T Recommendation G.657がある。
 曲げ損失の改善手法としては、例えば以下の手法がある。
(1)コアの屈折率を高くする。
 コアの屈折率を高くすることによって、S-SMFに比べてモードフィールド径(MFD)を小さくすることで、コアへの光の閉じ込めを改善することができる。このため、曲げ損失を低減することができる。この場合は、分散をG.652に合わせるために、コア近傍のクラッドの屈折率を低くした、いわゆるデプレスト型の屈折率分布を採用することが好ましい(例えば、特許文献1、非特許文献1を参照)。また、特許文献1では、内層クラッド領域の屈折率を調整することで、MFDおよび曲げ損失の両特性のバランスを保つことが可能であることを示している。
 これらのタイプの光ファイバとしては、曲げ半径15mmまで対応する、G.657.A1に準拠する製品がある。
(2)トレンチ型の屈折率分布を採用する。
 クラッド部の、コアから離れた位置に低屈折率部を有するトレンチ型の屈折率分布を採用することによって、コアへの光の閉じ込めを改善し、曲げ損失を低減することができる(例えば、特許文献2を参照)。
 このタイプの光ファイバとしては、曲げ半径10mmまで対応する、G.657.A2あるいはG.657.B2に準拠する製品や、さらに小さい曲げ半径7.5mmまで対応する、G.657.B3に準拠する製品がある。また、曲げ半径7.5mmまで対応する、G.657.B3に準拠しつつ、その他の光学特性がG.657.Aシリーズの規格に準拠した製品もある。
(3)クラッド部に空孔を形成する。
 クラッド部の、コアから離れた位置に、光ファイバの長手方向に沿う空孔を形成した光ファイバ(例えばホールアシステッドファイバ(HAF))や、独立した多数の空隙からなる微細構造を形成した光ファイバ(例えば、Corning社製、ClearCurve(登録商標))は、コアへの光の閉じ込めを改善することができるため、曲げ損失を低減することができる(例えば、特許文献3、4を参照)。
 このタイプの光ファイバとしては、曲げ半径7.5mmまで対応する、G.657.B3に準拠する製品がある。
日本国特表2013-520711号公報 日本国特開昭63-43107号公報 国際公開第2004/092793号公報 日本国特表2009-543126号公報
K. Okamoto and T. Okoshi,"Computer-aided synthesis of the optimum refractive index profile for a multimode fiber,"IEEE Trans. Microwave Theory Tech., vol. MTT-25, pp.213-221, 1976
 前述の手法において、コアの屈折率を高くした光ファイバは、曲げ損失を小さくすることができる。しかし、これに伴ってモードフィールド径が小径化し、S-SMFとの接続損失が増大する。このため、曲げ損失の低減には限界がある。
 トレンチ型の屈折率分布を有する光ファイバは、屈折率が異なる複数の層を形成する必要があるため、母材の製造工程が複雑化する。
 空孔付きの光ファイバは、中実構造の光ファイバに比べて製造工程が複雑化する。また、高度な紡糸技術が要求されるため、製造が容易とはいえない。
 本発明は、上記事情に鑑みてなされたものであり、接続損失を増大させることなく曲げ損失を低減でき、しかも製造が容易である光ファイバを提供することを課題とする。
 コアに近い部分のクラッドの屈折率が光ファイバの光学特性に大きな影響を与えることは周知であるが、本発明者は、詳細な検討の結果、モードフィールド径を小さくすることなく、曲げ損失を低減できる屈折率分布を見出した。
 本発明は、上記知見に基づいてなされたものであり、上記屈折率分布を採用することにより、他の光ファイバと接続した際の接続損失の抑制と曲げ損失の低減とを両立させている。
 本発明の第1態様は、光ファイバであって、コアと、前記コアの外周側に形成されたクラッドとを備え、前記クラッドは、少なくとも前記コアに隣接した内クラッド部と、前記内クラッド部の外周側に形成された外クラッド部とを有し、前記コアは、屈折率がΔ1であり、最大屈折率がΔ1maxであり、前記内クラッド部は、屈折率がΔ2であり、最小屈折率がΔ2minであり、前記外クラッド部は、屈折率がΔ3であり、前記コア、前記内クラッド部、および前記外クラッド部の屈折率は、式(1)および式(2)に示す関係がある。Δ1max>Δ2min、かつΔ1max>Δ3・・・(1)、0.01%<|Δ2min-Δ3|<0.03%・・・(2)。前記コアの外周半径r1、前記内クラッド部の外周半径r2、および前記外クラッド部の外周半径r3は、式(3)および式(4)に示す関係がある。r1<r2<r3・・・(3)、0.2≦r1/r2≦0.5・・・(4)。ケーブルカットオフ波長λccは、式(5)を満たす。λcc≦1260nm・・・(5)。波長1310nmにおけるモードフィールド径は、式(6)を満たす。8.6μm≦モードフィールド径≦9.5μm・・・(6)。
 本発明の第2態様は、上記第1態様の光ファイバにおいて、前記コア、前記内クラッド部、および前記外クラッド部の屈折率は、式(1A)および式(2A)に示す関係があることが好ましい。Δ1max>Δ3>Δ2min・・・(1A)、0.01%<(Δ3-Δ2min)<0.03%・・・(2A)。
 本発明の第3態様は、上記第2態様の光ファイバにおいて、さらに、Δ1maxが、0.33%≦Δ1max≦0.40%を満たす。
 本発明の第4態様は、上記第1~第3態様のうちいずれか1態様の光ファイバにおいて、直径15mmのマンドレルに10回巻回したときの波長1550nmにおける損失増加は0.25dB以下であり、前記マンドレルに10回巻回したときの波長1625nmにおける損失増加は1.0dB以下であることが好ましい。
 本発明の第5態様は、上記第1~第4態様のうちいずれか1態様の光ファイバにおいて、前記外クラッド部が純粋シリカガラスからなり、前記内クラッド部が、フッ素が添加されたシリカガラスからなる構成としてよい。
 本発明の第6態様は、上記第1~第5態様のうちいずれか1態様の光ファイバにおいて、前記外クラッド部が純粋シリカガラスからなり、前記内クラッド部が、塩素が添加されたシリカガラスからなる構成としてよい。
 また、前記内クラッド部は、Δ2<Δ3となる場合には、例えばフッ素(F)が添加されたシリカガラスからなることが好ましく、Δ2>Δ3となる場合には、例えば塩素(Cl)が添加されたシリカガラスからなることが好ましい。
 本発明の第7態様は、光ファイバであって、コアと、前記コアの外周側に形成されたクラッドとを備え、前記クラッドは、少なくとも前記コアに隣接した内クラッド部と、前記内クラッド部の外周側に隣接したトレンチ部と、前記トレンチ部の外周側に形成された外クラッド部とを有し、前記コアは、屈折率がΔ1であり、最大屈折率がΔ1maxであり、前記内クラッド部は、屈折率がΔ2であり、最小屈折率がΔ2minであり、前記トレンチ部は、屈折率がΔ3であり、最小屈折率がΔ3minであり、前記外クラッド部は、屈折率がΔ4であり、前記コア、前記内クラッド部、前記トレンチ部、および前記外クラッド部の屈折率は、式(11)~式(13)に示す関係がある。Δ1max>Δ2>Δ3min・・・(11)、Δ1max>Δ4>Δ3min・・・(12)、0.01%<(Δ4-Δ3min)<0.03%・・・(13)。前記コアの外周半径r1、前記内クラッド部の外周半径r2、前記トレンチ部の外周半径r3、および前記外クラッド部の外周半径r4は、式(14)~式(16)に示す関係がある。r1≦r2<r3<r4・・・(14)、1≦r2/r1≦5・・・(15)、1<r3/r2≦2・・・(16)。ケーブルカットオフ波長λccは、式(17)を満たす。λcc≦1260nm・・・(17)。波長1310nmにおけるモードフィールド径は、式(18)を満たす。8.6μm≦モードフィールド径≦9.5μm・・・(18)。
 本発明の第8態様は、上記第7態様の光ファイバにおいて、直径15mmのマンドレルに10回巻回したときの波長1550nmにおける損失増加は0.25dB以下であり、前記マンドレルに10回巻回したときの波長1625nmにおける損失増加は1.0dB以下であることが好ましい。
 本発明の第9態様は、上記第7または第8態様の光ファイバにおいて、前記外クラッド部は、純粋シリカガラスからなることが好ましく、前記トレンチ部は、フッ素が添加されたシリカガラスからなることが好ましい。
 上記本発明に係る態様によれば、内クラッド部と外クラッド部の屈折率の差、および、コアと内クラッド部の外周半径の比などを調整することによって、他の光ファイバ(例えば通常のシングルモード光ファイバ(S-SMF))と接続した際の接続損失を低く抑え、かつ曲げ損失を低減できる。
 また、上記本発明の一態様によれば、トレンチ部と外クラッド部の屈折率の差、および、コアと内クラッド部とトレンチ部との外周半径の比などを調整することによって、他の光ファイバ(例えば通常のシングルモード光ファイバ(S-SMF))と接続した際の接続損失を低く抑え、かつ曲げ損失を低減できる。
 さらに、上記本発明の一態様によれば、従来の製造方法を大きく変更せずに利用できるため、製造が容易であり、製造コストを低く抑えることができる。
第1実施形態に係る光ファイバを模式的に示す断面図である。 前図に示す光ファイバの屈折率分布を模式的に示す図である。 比較例の光ファイバの屈折率分布を模式的に示す図である。 第2実施形態に係る光ファイバを模式的に示す断面図である。 前図に示す光ファイバの屈折率分布を模式的に示す図である。 第3実施形態に係る光ファイバを模式的に示す断面図である。 前図に示す光ファイバの屈折率分布を模式的に示す図である。 他の実施形態に係る光ファイバの屈折率分布を模式的に示す図である。
 以下、好適な実施形態に基づき、図面を参照して本発明を説明する。
(第1実施形態)
 図1に、本発明の第1実施形態に係る光ファイバ10の概略構成を示す。
 光ファイバ10は、中心部に配されるコア1と、コア1の外周側にコア1と同心状に設けられたクラッド4とを有する。
 クラッド4は、少なくとも、コア1の外周側に隣接した内クラッド部2と、内クラッド部2の外周側に形成された外クラッド部3とを有する。
 図2Aに、光ファイバ10の屈折率分布を模式的に示す。
 コア1の屈折率をΔ1とし、最大屈折率をΔ1maxとする。
 内クラッド部2の屈折率をΔ2とし、最小屈折率をΔ2minとする。
 外クラッド部3の屈折率をΔ3とする。
 コア1の最大屈折率Δ1maxは、コア1の中心から外周までの径方向範囲において最大となるコア1の屈折率である。図2Aに示す屈折率分布では、コア1の屈折率Δ1は径方向位置にかかわらず一定であるため、屈折率Δ1は全範囲で最大屈折率Δ1maxに等しい。
 内クラッド部2の最小屈折率Δ2minは、内クラッド部2の内周から外周までの径方向範囲において最小となる内クラッド部2の屈折率である。図2Aに示す屈折率分布では、内クラッド部2の屈折率Δ2は径方向位置にかかわらず一定であるため、屈折率Δ2は全範囲で最小屈折率Δ2minに等しい。
 光ファイバ10では、次の式(1)が成り立つ。
 Δ1max>Δ2min、かつΔ1max>Δ3  ・・・(1)
 式(1)に示すように、コア1の最大屈折率Δ1maxは、内クラッド部2の最小屈折率Δ2minおよび外クラッド部3の屈折率Δ3より大きく設定されている。
 また、光ファイバ10では、内クラッド部2の最小屈折率Δ2minは、外クラッド部3の屈折率Δ3より小さく設定されている。
 光ファイバ10では、さらに、次の式(2)が成り立つ。
 0.01%<|Δ2min-Δ3|<0.03%  ・・・(2)
 式(2)は、内クラッド部2の最小屈折率Δ2minと外クラッド部3の屈折率Δ3との差の絶対値が、0.01%を越え、かつ0.03%未満であることを意味する。
 Δ2minとΔ3との差の絶対値が小さすぎると、曲げ損失を十分に低減できないおそれがある。一方、Δ2minとΔ3との差の絶対値が大きすぎると、モードフィールド径が小さくなり、他の光ファイバ(例えば通常のシングルモード光ファイバ(S-SMF))と接続した際の接続損失が大きくなるおそれがある。
 光ファイバ10では、Δ2minとΔ3との差の絶対値を0.01%を越える範囲とすることによって、曲げ損失を低減することができる。また、Δ2minとΔ3との差の絶対値を0.03%未満とすることによって、モードフィールド径(MFD)を適正化し、他の光ファイバと接続した際の接続損失を低く抑えることができる。
 第1実施形態の光ファイバ10では、Δ1maxと、Δ2minと、Δ3との大小関係に関して、次の式(1A)が成り立つ。
 Δ1max>Δ3>Δ2min  ・・・(1A)
 式(1A)に示すように、コア1の最大屈折率Δ1maxは、外クラッド部3の屈折率Δ3より大きく設定されている。
 外クラッド部3の屈折率Δ3は、内クラッド部2の最小屈折率Δ2minより大きく設定されている。
 Δ3がΔ2minより大きいため、上述の式(2)は、次のように記載することができる。
 0.01%<(Δ3-Δ2min)<0.03%  ・・・(2A)
 式(2A)は、外クラッド部3の屈折率Δ3と内クラッド部2の最小屈折率Δ2minとの差が、0.01%を越え、かつ0.03%未満であることを意味する。
 コア1、内クラッド部2および外クラッド部3の外周半径を、それぞれr1、r2、r3とする。
 コア1と内クラッド部2と外クラッド部3との外周半径r1~r3の間には、次の式(3)に示す関係がある。
 r1<r2<r3  ・・・(3)
 コア1の外周半径r1と内クラッド部2の外周半径r2との比r1/r2は、次の式(4)に示す範囲にある。
 0.2≦r1/r2≦0.5  ・・・(4)
 r1/r2が小さすぎると、モードフィールド径が小さくなり、他の光ファイバ(例えばS-SMF)と接続した際の接続損失が大きくなるおそれがある。一方、r1/r2が大きすぎると、曲げ損失が増大するおそれがある。
 光ファイバ10では、r1/r2を0.2以上とすることによって、モードフィールド径を適正化し、他の光ファイバと接続した際の接続損失を低く抑えることができる。r1/r2を0.5以下とすることによって、曲げ損失を低減することができる。
 光ファイバ10は、ケーブルカットオフ波長λcc(すなわち、22mのカットオフ波長λc22m)が1260nm以下とされる。すなわち、次の式(5)が成立する。
 λcc≦1260nm  ・・・(5)
 これによって、ITU-T Recommendation G.652の規定を満足することができる。
 カットオフ波長λccは、例えばITU-T Recommendation G.650に記載の測定法により測定することができる。
 光ファイバ10は、上述の屈折率および外周半径の調整によって、波長1310nmにおけるモードフィールド径(MFD)が、8.6μm以上、かつ9.5μm以下となるように設定される。すなわち、次の式(6)が成立する。
 8.6μm≦MFD≦9.5μm  ・・・(6)
 モードフィールド径をこの範囲にすることによって、他の光ファイバ(例えばS-SMF)と接続した際の接続損失を低く抑えることができる。
 光ファイバ10は、モードフィールド径をこの範囲とすることによって、ITU-T G.652の規定を満たす。
 光ファイバ10は、直径15mmの円筒形のマンドレルに10回巻回したときの波長1550nmにおける損失増加は0.25dB以下となることが好ましい。
 また、直径15mmの円筒形のマンドレルに10回巻回したときの波長1625nmにおける損失増加は1.0dB以下となることが好ましい。
 コア1は、例えばゲルマニウム(Ge)等のドーパントを添加することによって屈折率を高めたシリカガラスで構成することができる。
 内クラッド部2は、例えばフッ素(F)等のドーパントを添加することによって屈折率を低くしたシリカガラスで構成することができる。内クラッド部2は、例えば塩素(Cl)等のドーパントを添加することによって屈折率を高くしたシリカガラスで構成してもよい。
 外クラッド部3は、例えば純粋シリカガラスで構成することができる。外クラッド部3は、ドーパント(例えばGe、Fなど)を添加することによって屈折率を調整してもよい。
 光ファイバ10を構成する各層は、MCVD法、PCVD法、VAD法、OVD法などの公知の方法、またはこれらの組み合わせにより形成することができる。
 例えば、MCVD法を採用する場合には、光ファイバ母材を次のようにして作製することができる。
 外クラッド部3となるシリカガラス管(例えば純粋シリカガラスからなるガラス管)の内側に、例えばフッ素(F)等のドーパントを含む原材料を用いて、内クラッド部2となるガラス堆積層を形成する。内クラッド部2の屈折率はドーパントの添加量によって調整することができる。
 次いで、上記ガラス堆積層の内側に、例えばゲルマニウム(Ge)等のドーパントを含む原材料を用いて、コア1となるガラス堆積層を形成する。なお、コア1は、別途作製したコアロッドを用いて形成することもできる。
 ガラス堆積層が形成されたシリカガラス管は、透明化、中実化などの工程を経て光ファイバ母材とする。この光ファイバ母材を線引きすることによって、図1に示す光ファイバ10を得る。
 CVD法は、ドーパントの添加によって屈折率分布を精度よく調整できる点で好ましい。
 光ファイバ10の製造には、VAD法、OVD法も適用可能である。VAD法、OVD法には、生産性が高いという利点がある。
 光ファイバ10では、内クラッド部2と外クラッド部3の屈折率の差を上記範囲(式(2)を参照)とし、かつコア1と内クラッド部2の外周半径の比を上記範囲(式(4)を参照)とすることによって、他の光ファイバと接続した際の接続損失を低く抑え、かつ曲げ損失を低減できる。
 コアに近い部分のクラッドの屈折率が光ファイバの光学特性に大きな影響を与えることは周知であるが、本発明者は、詳細な検討の結果、モードフィールド径を小さくすることなく、曲げ損失を低減できる屈折率分布を見出した。
 光ファイバ10は、この屈折率分布を採用することにより、他の光ファイバと接続した際の接続損失の抑制と曲げ損失の低減とを両立させている。
 光ファイバ10は、内クラッド部2と外クラッド部3の屈折率の差が小さいため、従来の製造方法(例えば通常のS-SMFの製造方法)を大きく変更することなく利用して、内クラッド部2および外クラッド部3の屈折率を容易に、かつ精度よく調整することができる。
 また、内クラッド部2と外クラッド部3の屈折率の差が小さいため、製造方法に基づく制約が少ない。例えば、屈折率分布の調整に適しているとされるCVD法だけでなく、VAD法、OVD法を採用することもできる。
 従って、光ファイバ10の製造が容易であり、製造コストを低く抑えることができる。
 光ファイバ10は、内クラッド部2と外クラッド部3の屈折率の差が小さいため、内クラッド部2を形成するためのフッ素(F)、塩素(Cl)等のドーパントの添加量を削減できる。
 フッ素(F)等のドープに用いられる原料ガス(例えばSiF)は高価であるため、ドーパント添加量の削減によって、原料コストを抑制し、製造コストを低く抑えることができる。
 光ファイバ10は、図2Aに示すように、内クラッド部2の最小屈折率Δ2minが外クラッド部3の屈折率Δ3より小さいため、コア1への光の閉じ込めが良好であり、曲げ損失を低減できる。
 さらに詳細には、Δ2が小さいと、特性以外の、例えばコストの面でも好ましい。通常、低屈折領域を形成するためには、上記のようなフッ素(F)等の屈折率を下げるドーパントを添加する必要があり、材料費が上昇する。しかし、本願では、フッ素の添加量は非常に微量であるため、コストの抑制が期待できる。加えて、Δ2が小さいと、伝送損失の面でも好ましい。内クラッド部2に添加されたドーパントは、光ファイバのプリフォームの焼結工程および紡糸工程などの高温環境下において、コア部分に拡散する。伝送損失の支配的因子であるレイリ一散乱係数は、ドーパントの含有量の増加に伴って増加するため、フッ素がコア部分へ拡散すると伝送損失が劣化する。しかし、本願では、フッ素の添加量は非常に微量であるため、伝送損失への影響をほとんど考慮する必要がない。
 ここで、図1に示す内クラッド部2の屈折率分布について、シミュレーションした結果を示す。表1は、図2Aに示す各パラメータを設定したときの特性の計算結果である。
Figure JPOXMLDOC01-appb-T000001
 上記計算結果より、Δ2が-0.01%~-0.04%の範囲のとき、Δ1、r2、r1/r2を適切に設定すれば、G657A1に準拠する光ファイバ(波長1310nmにおけるMFDが8.6~9.5μm、ケーブルカットオフ波長λccが1260nm以下、直径15mmのマンドレルに10回巻回したときの波長1550(1625)nmにおける損失増加(曲げ損失)が0.25(1.0)dB以下)を実現できる。すなわち、Δ2が-0.01%~-0.04%の範囲のとき、MFDと曲げ損失の両方を向上させられることがわかった。
 比較例として、内クラッド部を有さない場合の結果を示す。表2は、図2Bに示す内クラッド部を有さない場合の屈折率分布の各パラメータを設定したときの特性の計算結果である。
Figure JPOXMLDOC01-appb-T000002
 比較例では、ケーブルカットオフ波長が上限の1260nmであり、曲げ損失を強化した屈折率分布であるにもかかわらず、曲げ損失がG657A1規格を満たさないことがわかる。この比較例の結果からも、内クラッド部を適切な屈折率の範囲で設けることで、高性能な光ファイバを実現できることがわかる。
(第2実施形態)
 図3に、本発明の第2実施形態に係る光ファイバ20の概略構成を示す。
 光ファイバ20は、中心部に配されるコア1と、コア1の外周側にコア1と同心状に設けられたクラッド14とを有する。
 クラッド14は、少なくとも、コア1の外周側に隣接した内クラッド部12と、内クラッド部12の外周側に形成された外クラッド部13とを有する。
 図4に、光ファイバ20の屈折率分布を模式的に示す。
 コア1の屈折率をΔ1とし、最大屈折率をΔ1maxとする。内クラッド部12の屈折率をΔ2とし、最小屈折率をΔ2minとする。外クラッド部13の屈折率をΔ3とする。
 光ファイバ20では、第1実施形態の光ファイバ10と同様に、次の式(7)が成り立つ。
 Δ1max>Δ2min、かつΔ1max>Δ3  ・・・(7)
 光ファイバ20では、内クラッド部12の最小屈折率Δ2minが、外クラッド部13の屈折率Δ3より大きくされている点で、第1実施形態の光ファイバ10と異なる。
 光ファイバ20では、第1実施形態の光ファイバ10と同様に、次の式(8)が成り立つ。
 0.01%<|Δ2min-Δ3|<0.03%  ・・・(8)
 Δ2minとΔ3との差の絶対値を上記範囲とすることによって、モードフィールド径(MFD)を適正化し、他の光ファイバと接続した際の接続損失を低く抑え、かつ曲げ損失を低減することができる。
 コア1と内クラッド部12と外クラッド部13との外周半径r1~r3の間には、第1実施形態の光ファイバ10と同様に、次の式(9)、(10)に示す関係がある。
 r1<r2<r3  ・・・(9)
 0.2≦r1/r2≦0.5  ・・・(10)
 r1/r2を0.2以上とすることによって、モードフィールド径を適正化し、他の光ファイバと接続した際の接続損失を低く抑え、かつ曲げ損失を低減することができる。
 光ファイバ20は、第1実施形態の光ファイバ10と同様に、ケーブルカットオフ波長λcc(すなわち、22mのカットオフ波長λc22m)が1260nm以下とされる。
 また、波長1310nmにおけるモードフィールド径(MFD)は、8.6μm以上、かつ9.5μm以下とされる。
 光ファイバ20は、直径15mmの円筒形のマンドレルに10回巻回したときの波長1550nmにおける損失増加は0.25dB以下となることが好ましい。また、直径15mmの円筒形のマンドレルに10回巻回したときの波長1625nmにおける損失増加は1.0dB以下となることが好ましい。
 コア1は、例えばゲルマニウム(Ge)等のドーパントを添加することによって屈折率を高めたシリカガラスで構成することができる。
 内クラッド部2は、例えば純粋シリカガラスで構成することができる。内クラッド部2は、例えば塩素(Cl)等のドーパントを添加することによって屈折率を調整してもよい。
 外クラッド部3は、例えば純粋シリカガラスで構成することができる。外クラッド部3は、例えばフッ素(F)等のドーパントを添加することによって屈折率を低くしたシリカガラスで構成してもよい。
 光ファイバ20は、第1実施形態の光ファイバ10と同様に、MCVD法、PCVD法、VAD法、OVD法などにより製造することができる。
 例えば、MCVD法を採用する場合には、光ファイバ母材を次のようにして作製することができる。
 外クラッド部3となるシリカガラス管(例えばフッ素(F)等のドーパントを含むシリカガラス管)の内側に、純粋シリカガラスなどの原材料を用いて、内クラッド部2となるガラス堆積層を形成する。
 次いで、ガラス堆積層の内側に、例えばゲルマニウム(Ge)等のドーパントを含む原材料を用いて、コア1となるガラス堆積層を形成する。なお、コア1は、別途作製したコアロッドを用いて形成することもできる。
 ガラス堆積層が形成されたシリカガラス管は、透明化、中実化などの工程を経て光ファイバ母材とする。この光ファイバ母材を線引きすることによって、図3に示す光ファイバ20を得る。
 光ファイバ20では、内クラッド部12と外クラッド部13の屈折率の差を上記範囲とし、かつコア1と内クラッド部12の外周半径の比を上記範囲とすることによって、他の光ファイバと接続した際の接続損失を低く抑え、かつ曲げ損失を低減できる。
 光ファイバ20は、従来の製造方法を大きく変更せずに利用できるため、製造が容易であり、製造コストを低く抑えることができる。
 以上、本発明の好ましい実施形態を説明したが、これらは本発明の例示であり、追加、省略、置換、およびその他の変更は、本発明の範囲から逸脱することなく行うことができる。
 例えば、図1、図3に示す光ファイバ10,20では、クラッド4,14は2つのクラッド部(内クラッド部および外クラッド部)からなるが、クラッドは、内クラッド部および外クラッド部以外の層を有していてもよい。
(第3実施形態)
 図5に、本発明の第3実施形態に係る光ファイバ30の概略構成を示す。
 光ファイバ30は、中心部に配されるコア21と、コア21の外周側にコア21と同心状に設けられたクラッド25とを有する。
 クラッド25は、少なくとも、コア21の外周側に隣接した内クラッド部22と、内クラッド部22の外周側に隣接して形成されたトレンチ部23と、トレンチ部23の外周側に形成された外クラッド部24とを有する。
 図6に、光ファイバ30の屈折率分布を模式的に示す。
 コア21の屈折率をΔ1とし、最大屈折率をΔ1maxとする。
 内クラッド部22の屈折率をΔ2とし、最小屈折率をΔ2minとする。
 トレンチ部23の屈折率をΔ3とし、最小屈折率をΔ3minとする。
 外クラッド部24の屈折率をΔ4とする。
 コア21の最大屈折率Δ1maxは、コア21の中心から外周までの径方向範囲において最大となるコア21の屈折率である。図6に示す屈折率分布では、コア21の屈折率Δ1は径方向位置にかかわらず一定であるため、屈折率Δ1は全範囲で最大屈折率Δ1maxに等しい。
 内クラッド部22の最小屈折率Δ2minは、内クラッド部22の内周から外周までの径方向範囲において最小となる内クラッド部22の屈折率である。図6に示す屈折率分布では、内クラッド部22の屈折率Δ2は径方向位置にかかわらず一定であるため、屈折率Δ2は全範囲で最小屈折率Δ2minに等しい。
 トレンチ部23の最小屈折率Δ3minは、トレンチ部23の内周から外周までの径方向範囲において最小となるトレンチ部23の屈折率である。図6に示す屈折率分布では、トレンチ部23の屈折率Δ3は径方向位置にかかわらず一定であるため、屈折率Δ3は全範囲で最小屈折率Δ3minに等しい。
 光ファイバ30では、次の式(11)が成り立つ。
 Δ1max>Δ2>Δ3min  ・・・(11)
 式(11)に示すように、コア21の最大屈折率Δ1maxは、内クラッド部22の屈折率Δ2より大きく設定されている。
 内クラッド部22の屈折率Δ2は、トレンチ部23のΔ3minより大きく設定されている。
 光ファイバ30では、さらに、次の式(12)が成り立つ。
 Δ1max>Δ4>Δ3min  ・・・(12)
 式(12)に示すように、コア21の最大屈折率Δ1maxは、外クラッド部24の屈折率Δ4より大きく設定されている。
 外クラッド部24の屈折率Δ4は、トレンチ部23のΔ3minより大きく設定されている。
 光ファイバ30では、さらに、次の式(13)が成り立つ。
 0.01%<(Δ4-Δ3min)<0.03%  ・・・(13)
 式(13)は、外クラッド部24の屈折率Δ4とトレンチ部23の最小屈折率Δ3minとの差が、0.01%を越え、かつ0.03%未満であることを意味する。
 Δ4とΔ3minとの差が小さすぎると、曲げ損失を十分に低減できないおそれがある。一方、Δ4とΔ3minとの差が大きすぎると、モードフィールド径が小さくなり、他の光ファイバ(例えば通常のシングルモード光ファイバ(S-SMF))と接続した際の接続損失が大きくなるおそれがある。
 光ファイバ30では、Δ4とΔ3minとの差を0.01%を越える範囲とすることによって、曲げ損失を低減することができる。また、Δ4とΔ3minとの差を0.03%未満とすることによって、モードフィールド径(MFD)を適正化し、他の光ファイバと接続した際の接続損失を低く抑えることができる。
 コア21、内クラッド部22、トレンチ部23および外クラッド部24の外周半径を、それぞれr1、r2、r3、r4とする。
 コア21と内クラッド部22とトレンチ部23と外クラッド部24との外周半径r1~r4の間には、次の式(14)に示す関係がある。
 r1≦r2<r3<r4  ・・・(14)
 内クラッド部22の外周半径r2とコア21の外周半径r1との比r2/r1は、次の式(15)に示す範囲にある。
 1≦r2/r1≦5  ・・・(15)
 r2/r1が小さすぎると、曲げ損失が増大するおそれがある。一方、r2/r1が大きすぎると、モードフィールド径が小さくなり、他の光ファイバ(例えばS-SMF)と接続した際の接続損失が大きくなるおそれがある。
 光ファイバ30では、r2/r1を1以上とすることによって、曲げ損失を低減することができる。r2/r1を5以下とすることによって、モードフィールド径を適正化し、他の光ファイバと接続した際の接続損失を低く抑えることができる。
 トレンチ部23の外周半径r3と内クラッド部22の外周半径r2との比r3/r2は、次の式(16)に示す範囲にある。
 1<r3/r2≦2  ・・・(16)
 r3/r2が小さすぎると、曲げ損失が増大するおそれがある。一方、r3/r2が大きすぎると、モードフィールド径が小さくなり、他の光ファイバ(例えばS-SMF)と接続した際の接続損失が大きくなるおそれがある。
 光ファイバ30では、r3/r2を1より大きくとすることによって、曲げ損失を低減することができる。r3/r2を2以下とすることによって、モードフィールド径を適正化し、他の光ファイバと接続した際の接続損失を低く抑えることができる。
 光ファイバ30は、ケーブルカットオフ波長λccが1260nm以下とされる。
すなわち、次の式(17)が成立する。
 λcc≦1260nm  ・・・(17)
 これによって、ITU-T Recommendation G.652の規定を満足することができる。
 カットオフ波長λccは、例えばITU-T Recommendation G.650に記載の測定法により測定することができる。
 光ファイバ30は、上述の屈折率および外周半径の調整によって、波長1310nmにおけるモードフィールド径(MFD)が、8.6μm以上、かつ9.5μm以下となるように設定される。すなわち、次の式(18)が成立する。
 8.6μm≦MFD≦9.5μm  ・・・(18)
 モードフィールド径をこの範囲にすることによって、他の光ファイバ(例えばS-SMF)と接続した際の接続損失を低く抑えることができる。
 光ファイバ30は、モードフィールド径をこの範囲とすることによって、ITU-T G.652の規定を満たす。
 光ファイバ30は、直径15mmの円筒形のマンドレルに10回巻回したときの波長1550nmにおける損失増加は0.25dB以下となることが好ましい。
 また、直径15mmの円筒形のマンドレルに10回巻回したときの波長1625nmにおける損失増加は1.0dB以下となることが好ましい。
 コア21は、例えばゲルマニウム(Ge)等のドーパントを添加することによって屈折率を高めたシリカガラスで構成することができる。
 内クラッド部22およびトレンチ部23は、例えばフッ素(F)等のドーパントを添加することによって屈折率を低くしたシリカガラスで構成することができる。
 外クラッド部24は、例えば純粋シリカガラスで構成することができる。外クラッド部24は、ドーパント(例えばGe、Fなど)を添加することによって屈折率を調整してもよい。
 光ファイバ30を構成する各層は、MCVD法、PCVD法、VAD法、OVD法などの公知の方法、またはこれらの組み合わせにより形成することができる。
 例えば、MCVD法を採用する場合には、光ファイバ母材を次のようにして作製することができる。
 外クラッド部24となるシリカガラス管(例えば純粋シリカガラスからなるガラス管)の内側に、例えばフッ素(F)等のドーパントを含む原材料を用いて、トレンチ部23となるガラス堆積層を形成する。
 前記ガラス堆積層の内側に、例えばフッ素(F)等のドーパントを含む原材料を用いて、内クラッド部22となるガラス堆積層を形成する。
 トレンチ部23および内クラッド部22の屈折率はドーパントの添加量によって調整することができる。
 次いで、ガラス堆積層の内側に、例えばゲルマニウム(Ge)等のドーパントを含む原材料を用いて、コア21となるガラス堆積層を形成する。なお、コア21は、別途作製したコアロッドを用いて形成することもできる。
 ガラス堆積層が形成されたシリカガラス管は、透明化、中実化などの工程を経て光ファイバ母材とする。この光ファイバ母材を線引きすることによって、図5に示す光ファイバ30を得る。
 CVD法は、ドーパントの添加によって屈折率分布を精度よく調整できる点で好ましい。
 光ファイバ30の製造には、VAD法、OVD法も適用可能である。VAD法、OVD法には、生産性が高いという利点がある。
 光ファイバ30では、トレンチ部23と外クラッド部24の屈折率の差を前記範囲(式(13)を参照)とし、かつコア21、内クラッド部22、およびトレンチ部23の外周半径の比を前記範囲(式(15)~(17)を参照)とすることによって、他の光ファイバと接続した際の接続損失を低く抑え、かつ曲げ損失を低減できる。
 コアに近い部分のクラッドの屈折率が光ファイバの光学特性に大きな影響を与えることは周知であるが、本発明者は、詳細な検討の結果、モードフィールド径を小さくすることなく、曲げ損失を低減できる屈折率分布を見出した。
 光ファイバ30は、この屈折率分布を採用することにより、他の光ファイバと接続した際の接続損失の抑制と曲げ損失の低減とを両立させた点に技術的意義がある。
 光ファイバ30は、トレンチ部23と外クラッド部24の屈折率の差が小さいため、従来の製造方法(例えば通常のS-SMFの製造方法)を大きく変更することなく利用して、トレンチ部23および外クラッド部24の屈折率を容易に、かつ精度よく調整することができる。
 また、トレンチ部23と外クラッド部24の屈折率の差が小さいため、製造方法に基づく制約が少ない。例えば、屈折率分布の調整に適しているとされるCVD法だけでなく、VAD法、OVD法を採用することもできる。
 従って、光ファイバ30の製造が容易であり、製造コストを低く抑えることができる。
 光ファイバ30は、トレンチ部23と外クラッド部24の屈折率の差が小さいため、トレンチ部23を形成するためのフッ素(F)等のドーパントの添加量を削減できる。
 フッ素(F)等のドープに用いられる原料ガス(例えばSiF)は高価であるため、ドーパント添加量の削減によって、原料コストを抑制し、製造コストを低く抑えることができる。
 上述のように、コア21と内クラッド部22とトレンチ部23と外クラッド部24との外周半径r1~r4の間には、式(14)に示す関係がある。
 r1≦r2<r3<r4  ・・・(14)
 図5および図6に示す光ファイバ30では、r1とr2とr3とは互いに異なる値であるが、本発明は、r1=r2、かつr2≠r3の場合を含む。
 図7は、本発明の他の実施形態の光ファイバの屈折率分布図であり、r1=r2、かつr2≠r3の場合を示す。
 この光ファイバでは、r1とr2とが等しいため、クラッド25は、トレンチ部23と、トレンチ部23の外周側に形成された外クラッド部24のみからなる。
 以上、本発明の好ましい実施形態を説明したが、これらは本発明の例示であり、追加、省略、置換、およびその他の変更は、本発明の範囲から逸脱することなく行うことができる。
 例えば、図5に示す光ファイバ30では、クラッド25は3つの層(内クラッド部、トレンチ部および外クラッド部)からなるが、クラッドは、これら以外の層を有していてもよい。
1、21…コア 2、12、22…内クラッド部 3、13、24…外クラッド部 4、14、25…クラッド 23…トレンチ部 10、20、30…光ファイバ。

Claims (9)

  1.  コアと、前記コアの外周側に形成されたクラッドとを備え、
     前記クラッドは、少なくとも前記コアに隣接した内クラッド部と、前記内クラッド部の外周側に形成された外クラッド部とを有し、
     前記コアは、屈折率がΔ1であり、最大屈折率がΔ1maxであり、
     前記内クラッド部は、屈折率がΔ2であり、最小屈折率がΔ2minであり、
     前記外クラッド部は、屈折率がΔ3であり、
     前記コア、前記内クラッド部、および前記外クラッド部の屈折率は、式(1)および式(2)に示す関係があり、
     Δ1max>Δ2min、かつΔ1max>Δ3  ・・・(1)
     0.01%<|Δ2min-Δ3|<0.03%  ・・・(2)
     前記コアの外周半径r1、前記内クラッド部の外周半径r2、および前記外クラッド部の外周半径r3は、式(3)および式(4)に示す関係があり、
     r1<r2<r3  ・・・(3)
     0.2≦r1/r2≦0.5  ・・・(4)
     ケーブルカットオフ波長λccは、式(5)を満たし、
     λcc≦1260nm  ・・・(5)
     波長1310nmにおけるモードフィールド径は、式(6)を満たす、光ファイバ。
     8.6μm≦モードフィールド径≦9.5μm  ・・・(6)
  2.  前記コア、前記内クラッド部、および前記外クラッド部の屈折率は、式(1A)および式(2A)に示す関係がある、請求項1に記載の光ファイバ。
     Δ1max>Δ3>Δ2min  ・・・(1A)
     0.01%<(Δ3-Δ2min)<0.03%  ・・・(2A)
  3.  さらに、Δ1maxが、0.33%≦Δ1max≦0.40%を満たす、請求項2に記載の光ファイバ。
  4.  直径15mmのマンドレルに10回巻回したときの波長1550nmにおける損失増加は0.25dB以下であり、
     前記マンドレルに10回巻回したときの波長1625nmにおける損失増加は1.0dB以下である、請求項1~3のうちいずれか1項に記載の光ファイバ。
  5.  前記外クラッド部は、純粋シリカガラスからなり、
     前記内クラッド部は、フッ素が添加されたシリカガラスからなることを特徴とする請求項1~4のうちいずれか1項に記載の光ファイバ。
  6.  前記外クラッド部は、純粋シリカガラスからなり、
     前記内クラッド部は、塩素が添加されたシリカガラスからなることを特徴とする請求項1~5のうちいずれか1項に光ファイバ。
  7.  コアと、前記コアの外周側に形成されたクラッドとを備え、
     前記クラッドは、少なくとも前記コアに隣接した内クラッド部と、前記内クラッド部の外周側に隣接したトレンチ部と、前記トレンチ部の外周側に形成された外クラッド部とを有し、
     前記コアは、屈折率がΔ1であり、最大屈折率がΔ1maxであり、
     前記内クラッド部は、屈折率がΔ2であり、最小屈折率がΔ2minであり、
     前記トレンチ部は、屈折率がΔ3であり、最小屈折率がΔ3minであり、
     前記外クラッド部は、屈折率がΔ4であり、
     前記コア、前記内クラッド部、前記トレンチ部、および前記外クラッド部の屈折率は、式(11)~式(13)に示す関係があり、
     Δ1max>Δ2>Δ3min  ・・・(11)
     Δ1max>Δ4>Δ3min  ・・・(12)
     0.01%<(Δ4-Δ3min)<0.03%  ・・・(13)
     前記コアの外周半径r1、前記内クラッド部の外周半径r2、前記トレンチ部の外周半径r3、および前記外クラッド部の外周半径r4は、式(14)~式(16)に示す関係があり、
     r1≦r2<r3<r4  ・・・(14)
     1≦r2/r1≦5  ・・・(15)
     1<r3/r2≦2  ・・・(16)
     ケーブルカットオフ波長λccは、式(17)を満たし、
     λcc≦1260nm  ・・・(17)
     波長1310nmにおけるモードフィールド径は、式(18)を満たす、光ファイバ。
     8.6μm≦モードフィールド径≦9.5μm  ・・・(18)
  8.  直径15mmのマンドレルに10回巻回したときの波長1550nmにおける損失増加は0.25dB以下であり、
     前記マンドレルに10回巻回したときの波長1625nmにおける損失増加は1.0dB以下である、請求項7に記載の光ファイバ。
  9.  前記外クラッド部は、純粋シリカガラスからなり、
     前記トレンチ部は、フッ素が添加されたシリカガラスからなる、請求項7または8に記載の光ファイバ。
PCT/JP2015/077080 2014-09-26 2015-09-25 光ファイバ WO2016047749A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201580051163.5A CN107111055B (zh) 2014-09-26 2015-09-25 光纤
JP2016509795A JP6306690B2 (ja) 2014-09-26 2015-09-25 光ファイバ
EP15843671.7A EP3185056A4 (en) 2014-09-26 2015-09-25 Optical fiber
US15/467,264 US9772444B2 (en) 2014-09-26 2017-03-23 Optical fiber

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014195938 2014-09-26
JP2014-195937 2014-09-26
JP2014-195938 2014-09-26
JP2014195937 2014-09-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/467,264 Continuation US9772444B2 (en) 2014-09-26 2017-03-23 Optical fiber

Publications (1)

Publication Number Publication Date
WO2016047749A1 true WO2016047749A1 (ja) 2016-03-31

Family

ID=55581265

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/077080 WO2016047749A1 (ja) 2014-09-26 2015-09-25 光ファイバ

Country Status (5)

Country Link
US (1) US9772444B2 (ja)
EP (1) EP3185056A4 (ja)
JP (3) JP6306690B2 (ja)
CN (1) CN107111055B (ja)
WO (1) WO2016047749A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019017324A1 (ja) 2017-07-18 2019-01-24 株式会社フジクラ 光ファイバ、及び、その製造方法
WO2019159719A1 (ja) 2018-02-13 2019-08-22 株式会社フジクラ 光ファイバ
US10422948B2 (en) 2017-07-18 2019-09-24 Fujikura Ltd. Optical fiber and method of manufacturing the same
US10422949B2 (en) 2017-07-18 2019-09-24 Fujikura Ltd. Optical fiber and method of manufacturing the same
CN110603468A (zh) * 2017-05-30 2019-12-20 株式会社藤仓 光纤、用于制造光纤的方法和光纤预制体
WO2021187475A1 (ja) * 2020-03-17 2021-09-23 住友電気工業株式会社 光ファイバ

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016047749A1 (ja) * 2014-09-26 2016-03-31 株式会社フジクラ 光ファイバ
US11467335B2 (en) * 2019-07-22 2022-10-11 Corning Incorporated Optical fibers for single mode and few mode vertical-cavity surface-emitting laser-based optical fiber transmission systems

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6343107A (ja) * 1986-08-08 1988-02-24 エィ・テイ・アンド・ティ・コーポレーション 光ファイバ
JP2006133496A (ja) * 2004-11-05 2006-05-25 Furukawa Electric Co Ltd:The 光ファイバおよびそれに用いる光ファイバ母材の製造方法
JP2010501894A (ja) * 2006-08-24 2010-01-21 コーニング インコーポレイテッド アルカリ金属酸化物を含有する光ファイバ
JP2012516473A (ja) * 2009-01-30 2012-07-19 コーニング インコーポレイテッド Ge不含有コアを有する大実効断面積ファイバ
US20130044987A1 (en) * 2011-08-19 2013-02-21 Scott Robertson Bickham Low bend loss optical fiber
JP2013520711A (ja) * 2010-02-26 2013-06-06 コーニング インコーポレイテッド 低曲げ損失光ファイバ
JP2014067020A (ja) * 2012-09-04 2014-04-17 Sumitomo Electric Ind Ltd 光ファイバ

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60231434A (ja) * 1984-04-27 1985-11-18 Furukawa Electric Co Ltd:The 石英系多孔質ガラス母材の熱処理方法
US5504829A (en) 1993-12-27 1996-04-02 Corning Incorporated Optical fiber for soliton transmission and method of making
CA2314961C (en) 1997-12-30 2005-08-09 Ji-Hoon Lee Dispersion shifted optical fiber
EP1364919B1 (en) 1998-11-05 2008-02-13 Shin-Etsu Chemical Co., Ltd. Method for manufacturing a preform and optical fibre from the preform
JP3437484B2 (ja) 1999-03-19 2003-08-18 信越化学工業株式会社 光ファイバプリフォームの製造方法及び装置
JP2000205999A (ja) 1999-01-08 2000-07-28 Fujikura Ltd 光ファイバ測定装置
NL1018338C2 (nl) 2001-06-20 2002-12-30 Draka Fibre Technology Bv Optische vezel.
JP3986842B2 (ja) 2001-07-26 2007-10-03 株式会社フジクラ ノンゼロ分散シフト光ファイバ用光ファイバ母材の製法
KR100419418B1 (ko) 2002-04-03 2004-02-21 삼성전자주식회사 분산 제어 광섬유
KR100506311B1 (ko) 2003-01-20 2005-08-05 삼성전자주식회사 광대역 분산 제어 광섬유
JP3854627B2 (ja) 2003-04-17 2006-12-06 日本電信電話株式会社 空孔付き単一モード光ファイバ
CA2465693A1 (en) * 2003-06-12 2004-12-12 Warner-Lambert Company Llc Pharmaceutical compositions of atorvastatin
CN100476469C (zh) 2004-04-28 2009-04-08 Ls电线有限公司 具有改进的弯曲性能的光纤
EP1777559A4 (en) 2004-08-10 2010-03-24 Fujikura Ltd OPTICAL SINGLE FIBER
WO2006025231A1 (ja) * 2004-08-30 2006-03-09 Fujikura Ltd. シングルモード光ファイバ
JP4268115B2 (ja) 2004-10-28 2009-05-27 古河電気工業株式会社 シングルモード光ファイバ
EP1808717A4 (en) 2004-11-05 2010-03-24 Fujikura Ltd OPTICAL FIBER, TRANSMISSION SYSTEM AND TRANSMISSION SYSTEM WITH SEVERAL WAVELENGTHS
KR100668284B1 (ko) 2004-12-14 2007-01-16 한국전자통신연구원 S밴드 분리형 라만 증폭기를 위한 분산보상광섬유
JP4417286B2 (ja) 2005-04-13 2010-02-17 日本電信電話株式会社 ホーリーファイバおよび光ファイバモジュール
KR100635688B1 (ko) 2005-04-29 2006-10-17 엘에스전선 주식회사 유도 브릴루앙 산란 문턱값이 향상된 광섬유, 이를 이용한광전송선 및 광통신 시스템
JP5410750B2 (ja) 2005-06-15 2014-02-05 コーニング インコーポレイテッド アルミニウムドーパントを含む高sbs閾値光ファイバ
US7764854B2 (en) 2005-12-27 2010-07-27 Ofs Fitel Llc Optical fiber with specialized index profile to compensate for bend-induced distortions
US7406237B2 (en) 2006-02-21 2008-07-29 Corning Incorporated Multiband optical fiber
US7505660B2 (en) 2006-06-30 2009-03-17 Corning Incorporated Microstructured transmission optical fiber
KR20100091710A (ko) * 2009-02-11 2010-08-19 엘에스전선 주식회사 구부림 손실 특성이 개선된 광섬유 제조 방법 및 이 방법으로 제조된 광섬유
US7876990B1 (en) 2009-11-25 2011-01-25 Corning Incorporated Low loss optical fiber
EP2369379B1 (en) 2010-03-17 2015-05-06 Draka Comteq B.V. Fibre optique monomode ayant des pertes par courbures réduites
KR101273801B1 (ko) 2011-10-17 2013-06-11 에쓰이에이치에프코리아 (주) 구부림 손실 강화 광섬유
US8849082B2 (en) * 2011-11-29 2014-09-30 Corning Incorporated Low bend loss optical fiber
US8588569B2 (en) 2011-11-30 2013-11-19 Corning Incorporated Low bend loss optical fiber
US9383511B2 (en) * 2013-05-02 2016-07-05 Corning Incorporated Optical fiber with large mode field diameter and low microbending losses
WO2016047749A1 (ja) * 2014-09-26 2016-03-31 株式会社フジクラ 光ファイバ

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6343107A (ja) * 1986-08-08 1988-02-24 エィ・テイ・アンド・ティ・コーポレーション 光ファイバ
JP2006133496A (ja) * 2004-11-05 2006-05-25 Furukawa Electric Co Ltd:The 光ファイバおよびそれに用いる光ファイバ母材の製造方法
JP2010501894A (ja) * 2006-08-24 2010-01-21 コーニング インコーポレイテッド アルカリ金属酸化物を含有する光ファイバ
JP2012516473A (ja) * 2009-01-30 2012-07-19 コーニング インコーポレイテッド Ge不含有コアを有する大実効断面積ファイバ
JP2013520711A (ja) * 2010-02-26 2013-06-06 コーニング インコーポレイテッド 低曲げ損失光ファイバ
US20130044987A1 (en) * 2011-08-19 2013-02-21 Scott Robertson Bickham Low bend loss optical fiber
JP2014067020A (ja) * 2012-09-04 2014-04-17 Sumitomo Electric Ind Ltd 光ファイバ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3185056A4 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110603468A (zh) * 2017-05-30 2019-12-20 株式会社藤仓 光纤、用于制造光纤的方法和光纤预制体
US11168015B2 (en) 2017-05-30 2021-11-09 Fujikura Ltd. Optical fiber, method for manufacturing optical fiber, and optical fiber preform
WO2019017324A1 (ja) 2017-07-18 2019-01-24 株式会社フジクラ 光ファイバ、及び、その製造方法
US10422948B2 (en) 2017-07-18 2019-09-24 Fujikura Ltd. Optical fiber and method of manufacturing the same
US10422949B2 (en) 2017-07-18 2019-09-24 Fujikura Ltd. Optical fiber and method of manufacturing the same
WO2019159719A1 (ja) 2018-02-13 2019-08-22 株式会社フジクラ 光ファイバ
US11048039B2 (en) 2018-02-13 2021-06-29 Fujikura Ltd. Optical fiber
WO2021187475A1 (ja) * 2020-03-17 2021-09-23 住友電気工業株式会社 光ファイバ
US11774672B2 (en) 2020-03-17 2023-10-03 Sumitomo Electric Industries, Ltd. Optical fiber

Also Published As

Publication number Publication date
US20170192169A1 (en) 2017-07-06
JP2018106199A (ja) 2018-07-05
EP3185056A1 (en) 2017-06-28
JP6527259B2 (ja) 2019-06-05
EP3185056A4 (en) 2018-05-16
JPWO2016047749A1 (ja) 2017-04-27
CN107111055A (zh) 2017-08-29
US9772444B2 (en) 2017-09-26
JP7094915B2 (ja) 2022-07-04
CN107111055B (zh) 2020-02-21
JP6306690B2 (ja) 2018-04-04
JP2019164371A (ja) 2019-09-26

Similar Documents

Publication Publication Date Title
JP7094915B2 (ja) 光ファイバ
JP6155380B2 (ja) 光ファイバ及びその製造方法
JP6393338B2 (ja) 光ファイバおよびその製造方法
WO2011114795A1 (ja) マルチコア光ファイバおよびその製造方法
JP5222752B2 (ja) 光ファイバ
JP2011170347A (ja) 短いカットオフ波長を有するノンゼロ分散シフト光ファイバ
WO2014199922A1 (ja) 光ファイバ
US9599769B2 (en) Hydrogen-resistant optical fiber
JP5557953B2 (ja) 光ファイバ
WO2012128250A1 (ja) 光ファイバ、光ファイバコードおよび光ファイバケーブル
US11714228B2 (en) Optical fiber and method of manufacturing optical fiber
WO2019017324A1 (ja) 光ファイバ、及び、その製造方法
WO2013129050A1 (ja) 光ファイバおよびそれを含む光通信システム
WO2023112968A1 (ja) 光ファイバ
WO2022131161A1 (ja) 光ファイバ、光ファイバの設計方法および光ファイバの製造方法
WO2022181614A1 (ja) 光ファイバ

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016509795

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15843671

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015843671

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015843671

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE