WO2019159719A1 - 光ファイバ - Google Patents

光ファイバ Download PDF

Info

Publication number
WO2019159719A1
WO2019159719A1 PCT/JP2019/003616 JP2019003616W WO2019159719A1 WO 2019159719 A1 WO2019159719 A1 WO 2019159719A1 JP 2019003616 W JP2019003616 W JP 2019003616W WO 2019159719 A1 WO2019159719 A1 WO 2019159719A1
Authority
WO
WIPO (PCT)
Prior art keywords
wavelength
less
value
radius
optical fiber
Prior art date
Application number
PCT/JP2019/003616
Other languages
English (en)
French (fr)
Inventor
遼 丸山
Original Assignee
株式会社フジクラ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フジクラ filed Critical 株式会社フジクラ
Priority to US16/956,131 priority Critical patent/US11048039B2/en
Priority to CN201980006104.4A priority patent/CN111527430B/zh
Priority to JP2020500393A priority patent/JP7134219B2/ja
Priority to EP19755250.8A priority patent/EP3754393A4/en
Publication of WO2019159719A1 publication Critical patent/WO2019159719A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/028Optical fibres with cladding with or without a coating with core or cladding having graded refractive index
    • G02B6/0281Graded index region forming part of the central core segment, e.g. alpha profile, triangular, trapezoidal core
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02214Optical fibres with cladding with or without a coating tailored to obtain the desired dispersion, e.g. dispersion shifted, dispersion flattened
    • G02B6/02219Characterised by the wavelength dispersion properties in the silica low loss window around 1550 nm, i.e. S, C, L and U bands from 1460-1675 nm
    • G02B6/02266Positive dispersion fibres at 1550 nm
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02214Optical fibres with cladding with or without a coating tailored to obtain the desired dispersion, e.g. dispersion shifted, dispersion flattened
    • G02B6/0228Characterised by the wavelength dispersion slope properties around 1550 nm
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • G02B6/03616Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference
    • G02B6/03622Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 2 layers only
    • G02B6/03627Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 2 layers only arranged - +
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02004Optical fibres with cladding with or without a coating characterised by the core effective area or mode field radius

Definitions

  • the present invention relates to an optical fiber. This application claims priority on February 13, 2018 based on Japanese Patent Application No. 2018-023228 for which it applied to Japan, and uses the content for it here.
  • Patent Document 1 discloses an optical fiber having a depressed layer having a refractive index smaller than that of the clad between the core and the clad.
  • the mode field diameter is maintained by optimizing the relative refractive index difference ⁇ ⁇ of the depressed layer relative to the cladding and the ratio r1 / r2 of the core radius r1 to the outer radius r2 of the depressed layer.
  • the bending loss is ITU-T (International Telecommunication Union Telecommunication Standardization Sector) recommendation G. 657. It is described that an optical fiber satisfying A1 can be realized.
  • optical fibers are required to further reduce bending loss while keeping a zero dispersion wavelength and a chromatic dispersion value at 1.55 ⁇ m (hereinafter referred to as “wavelength dispersion characteristics”) within a predetermined range.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to further reduce bending loss while keeping the wavelength dispersion characteristic within a predetermined range in an optical fiber having a depressed layer.
  • an optical fiber includes a core, a depressed layer surrounding the core, and a cladding surrounding the depressed layer, and the refractive index distribution of the core has an index ⁇ .
  • the ratio r1 / r2 of the core radius r1 to the depressed layer outer radius r2 is set to be not less than 0.35 and not more than 0.60, and a cable cut of 22 m
  • the off wavelength ⁇ cc is less than 1.26 ⁇ m, and the mode field diameter at the wavelength of 1.31 ⁇ m is larger than 8.6 ⁇ m and smaller than 9.5 ⁇ m.
  • bending loss in an optical fiber having a depressed layer, bending loss can be further reduced while keeping the wavelength dispersion characteristic within a predetermined range.
  • the optical fiber 1 is a cylindrical structure whose main component is silica glass.
  • the optical fiber 1 includes a core 11 having a circular cross section, a depressed layer 12 having an annular cross section surrounding the core 11, and a clad 13 having an annular cross section surrounding the depressed layer 12.
  • An alternate long and short dash line L illustrated in FIG. 1A is a central axis of the optical fiber 1 (hereinafter referred to as a central axis L).
  • the radius of the core 11 is represented by r1
  • the outer peripheral radius of the depressed layer 12 (radius of the outer peripheral surface)
  • the outer peripheral radius of the cladding 13 is represented by r3.
  • the inner peripheral radius (radius of the inner peripheral surface) of the depressed layer 12 is r1
  • the inner peripheral radius of the clad 13 is r2.
  • the core 11 is a region having a higher refractive index than that of the clad 13 to which an updopant (an additive for increasing the refractive index) such as germanium is added.
  • the depressed layer 12 is a region having a refractive index lower than that of the clad 13 to which a downdopant such as fluorine (additive for reducing the refractive index) is added.
  • FIG. 1B is a graph showing an example of the refractive index distribution of the optical fiber 1 shown in FIG. 1A.
  • the horizontal axis in FIG. 1B indicates the distance from the central axis L (hereinafter referred to as radius r).
  • the vertical axis in FIG. 1B indicates the value of the refractive index n in the portion corresponding to the radius r.
  • n1 is a refractive index (maximum refractive index) on the central axis L
  • ⁇ + is a relative refractive index difference of the central portion of the core 11 with respect to the clad 13.
  • the ⁇ power distribution gradually approaches a step-type refractive index distribution in which the refractive index is constant.
  • the refractive index of the depressed layer 12 is approximated by a uniform distribution as shown in FIG. 1B.
  • the refractive index of the cladding 13 is approximated by a uniform distribution as shown in FIG. 1B.
  • nd ⁇ n2 ⁇ n1 holds among the maximum refractive index n1 of the core 11, the refractive index nd of the depressed layer 12, and the refractive index n2 of the cladding 13.
  • a relative refractive index difference ⁇ + at the center of the core 11 with respect to the cladding 13 is used.
  • the relative refractive index difference ⁇ ⁇ of the depressed layer 12 with respect to the cladding 13 is used instead of the refractive index nd of the depressed layer 12.
  • the refractive index distribution of the optical fiber 1 is uniquely determined from the constants ⁇ , ⁇ + , ⁇ ⁇ , r1, r2.
  • these five constants are referred to as “structural parameters” of the optical fiber 1.
  • the actual refractive index distribution n ′ (r) of the optical fiber 1 may not match the ideal refractive index distribution n (r) shown in FIG. 1B.
  • the structural parameters ⁇ , ⁇ +, ⁇ , r1, and r2 can be defined for the refractive index distribution n ′ (r) of the actual optical fiber 1 according to the following procedure (Step 1 to Step 5).
  • the actual refractive index distribution n ′ (r) of the optical fiber 1 is an ideal refractive index distribution n (r) determined from the structural parameters ⁇ , ⁇ +, ⁇ , r1, r2 defined according to the following procedure. It is approximated with high accuracy.
  • Step 1 In the refractive index distribution n ′ (r) of the actual optical fiber 1, an average value in a range where the refractive index of the cladding 13 is substantially constant is obtained, and the average value is set as the refractive index n2 of the cladding 13.
  • the average value of n (r) in r in the range of 5.5 to 6.5 times the value of r0 described later is used.
  • Step 2 Determine the core area to be approximated by the ⁇ power distribution.
  • n ′ (r) it often occurs that n (r) gradually changes with respect to r at the boundary between the core and the depressed layer. For example, at this boundary, n (r) may gradually decrease as r increases. This is considered to be due to thermal diffusion of elements such as Ge and F doped in silica glass in the process of manufacturing a preform (base material) using the VAD method, for example.
  • n (r) may gradually decrease as r increases. This is considered to be due to thermal diffusion of elements such as Ge and F doped in silica glass in the process of manufacturing a preform (base material) using the VAD method, for example.
  • the core region excluding the core / depressed layer boundary it can be approximated with high accuracy.
  • r is obtained to obtain the minimum value of the first derivative dn ′ (r) / dr of r of n ′ (r), and this is defined as r0.
  • r0 the minimum value of the first derivative dn ′ (r) / dr of r of n ′ (r)
  • r0 the minimum value of the first derivative dn ′ (r) / dr of r of n ′ (r)
  • r0 the minimum value of the first derivative dn ′ (r) / dr of r of n ′ (r)
  • n (r) is intentionally set so as to change gently with respect to r at the boundary between the core and the depressed layer by producing a base material using the CVD method (Chemical Vapor Deposition method). Even so, the configuration of the present application including the fitting method can be applied.
  • n2 the minimum r that obtains n2 (that is, the average value of n (r0 ⁇ 5.5) to n (r0 ⁇ 6.5)) is obtained, and that r is defined as r1.
  • sampling points are taken at predetermined intervals of r0 ⁇ 5.5 ⁇ r ⁇ r0 ⁇ 6.5, and an average value of n ′ (r) at each sampling point is calculated.
  • the predetermined interval is not particularly limited, but is, for example, a value smaller than 0.5 ⁇ m or 0.5 ⁇ m.
  • the average value of the refractive index distribution n ′ (r) of the actual optical fiber 1 is obtained, and this average value is set as the refractive index nd of the depressed layer 12.
  • the method for obtaining the average value include a method of taking sampling points at predetermined intervals such that r4 ⁇ r ⁇ r2 and calculating an average value of n ′ (r) at each sampling point.
  • the predetermined interval is not particularly limited, but is, for example, a value smaller than 0.5 ⁇ m or 0.5 ⁇ m.
  • FIG. 2 The graph shown by the solid line in FIG. 2 is a simulation of the actual refractive index distribution n ′ (r).
  • FIG. 2B shows a refractive index distribution when r0 ⁇ r1.
  • certain structural parameters ⁇ , ⁇ + , ⁇ ⁇ , r1, r2 are determined.
  • an ideal refractive index distribution n (r) having the structural parameters ⁇ , ⁇ + , ⁇ ⁇ , r1, r2 is plotted, a graph indicated by a dotted line in FIG. 2 is obtained. According to FIG.
  • the actual refractive index distribution n ′ (r) is an ideal refractive index distribution n (r) having structural parameters ⁇ , ⁇ + , ⁇ ⁇ , r1, r2 determined according to the above procedure. Thus, it is confirmed that the approximation is performed with high accuracy.
  • the mode field diameter (MFD) of the optical fiber is defined in IEC60793-1-45.
  • the fiber cutoff wavelength and cable cutoff wavelength, which are defined as effective cutoff wavelengths of optical fibers, are defined in IEC60793-1-44.
  • the chromatic dispersion and bending loss of optical fibers are defined in IEC60793-1-44 and IEC60793-1-47.
  • the cut-off wavelength indicates the minimum wavelength at which the higher-order mode (in this specification, the LP11 mode) is sufficiently attenuated. Specifically, it is the minimum wavelength at which the loss in the higher-order mode is 19.3 dB.
  • the cutoff wavelength includes a fiber cutoff wavelength and a cable cutoff wavelength. It can be measured by the measurement method described in 650.
  • Zero-dispersion wavelength refers to the wavelength at which the value of chromatic dispersion becomes zero.
  • chromatic dispersion is the sum of material dispersion and waveguide dispersion.
  • the zero dispersion slope refers to the rate of change of chromatic dispersion with respect to the wavelength at the zero dispersion wavelength.
  • FIG. 3A shows how the zero dispersion wavelength ZDW (Zero Dispersion Wavelength) and the bending loss change when the MFD, the cable cutoff wavelength, and the value of ⁇ are constant and the value of ⁇ ⁇ is changed. It is the shown graph.
  • FIG. 3B shows how the value of chromatic dispersion and bending loss at a wavelength of 1.55 ⁇ m change when the value of ⁇ ⁇ is changed while the value of MFD, cable cutoff wavelength, and ⁇ are constant. It is a graph. 3A and 3B, the MFD is 9.05 ⁇ m, the cable cutoff wavelength is 1.21 ⁇ m, and ⁇ is 3.5. The horizontal axes of FIGS.
  • ZDW Zero Dispersion Wavelength
  • 3A and 3B indicate the value of the above-described relative refractive index difference ⁇ ⁇ .
  • the second vertical axis in FIG. 3A indicates the value of ZDW.
  • the second vertical axis in FIG. 3B indicates the value of chromatic dispersion at a wavelength of 1.55 ⁇ m.
  • the bending loss decreases as the absolute value of ⁇ ⁇ increases (toward the left side of the graph).
  • the value of ZDW decreases.
  • the value of ZDW is set to ITU-T Recommendation G. 652 or G.I. It can be considered that the value falls below 1.300 ⁇ m, which is the lower limit defined by 657.
  • FIG. 3B as the absolute value of ⁇ ⁇ increases (toward the left side of the graph), the bending loss decreases, but the value of chromatic dispersion at a wavelength of 1.55 ⁇ m increases.
  • both the ZDW and the chromatic dispersion value of 1.55 ⁇ m wavelength are ITU-T Recommendation G. 652. D or G. It is conceivable that the standard range defined by 657, “the value of chromatic dispersion at a ZDW of 1.300 ⁇ m or more and a wavelength of 1.55 ⁇ m is 18.6 ps / km / nm or less”, is excluded. In other words, the bending loss and the wavelength dispersion characteristic are in a so-called trade-off relationship, and if the absolute value of ⁇ ⁇ is simply increased to reduce the bending loss, the desired wavelength dispersion characteristic may not be obtained. I understand.
  • FIG. 4A is a graph showing how ZDW and bending loss change when the value of ⁇ is changed while the values of MFD, cable cutoff wavelength, and ⁇ ⁇ are constant.
  • FIG. 4B shows how the value of chromatic dispersion and bending loss at a wavelength of 1.55 ⁇ m change when the value of ⁇ is changed while the values of MFD, cable cutoff wavelength, and ⁇ ⁇ are constant. It is a graph. 4A and 4B, the MFD is 9.05 ⁇ m, the cable cutoff wavelength is 1.21 ⁇ m, and ⁇ ⁇ is ⁇ 0.02%.
  • 4A and 4B indicate the value of the index ⁇ related to the ⁇ power distribution (the refractive index distribution of the core 11) described above.
  • the first vertical axis and the second vertical axis in FIGS. 4A and 4B are the same as those in FIGS. 3A and 3B.
  • the value of ⁇ has little influence on the magnitude of bending loss.
  • the value of ZDW can be increased by decreasing the value of ⁇ .
  • the value of chromatic dispersion at a wavelength of 1.55 ⁇ m can be reduced. 3A, FIG. 3B, FIG. 4A, and FIG. 4B described above can be arranged, the bending loss can be reduced by increasing the absolute value of ⁇ ⁇ .
  • the chromatic dispersion characteristics that deteriorate as the absolute value of ⁇ ⁇ is increased can be improved within a desired range by decreasing the value of ⁇ . That is, by setting both values of ⁇ ⁇ and ⁇ within an appropriate range, it is possible to further reduce the bending loss while maintaining the wavelength dispersion characteristics within the standard.
  • the following conditions (1) to (5) are satisfied as optical fiber characteristics other than bending loss.
  • the zero dispersion wavelength ZDW is 1.300 ⁇ m or more and 1.324 ⁇ m or less
  • the zero dispersion slope is 0.073 ps / km / nm 2 or more and 0.092 ps / km / nm 2 or less
  • the chromatic dispersion value at 1.55 ⁇ m is 18.6 ps / It is recommended to use km / nm or less.
  • the zero dispersion wavelength is 1.305 ⁇ m or more and 1.319 ⁇ m or less (that satisfies the above condition (2)), and the chromatic dispersion value at a wavelength of 1.55 ⁇ m is 18.0 ps / km / nm or less (that is, the above conditions) It is required to design an optical fiber that satisfies (4).
  • Example 1 shows Examples 1 to 27 in which the structural parameters are in the range of 1.0 ⁇ ⁇ ⁇ 2.9, 0.35 ⁇ r1 / r2 ⁇ 0.60, 0.05% ⁇
  • the MAC values shown in Tables 1 and 2 below are values obtained by dividing the MFD value at the wavelength of 1.31 ⁇ m by the cable cutoff wavelength ⁇ cc.
  • Examples 1 to 27 satisfy the above condition (1) because the MFD value at the wavelength of 1.31 ⁇ m is 8.63 to 9.13 ⁇ m, which satisfies 0.03 ⁇ m with respect to the lower limit value and 0.03 ⁇ m with respect to the upper limit value. It has a margin of 0.37 ⁇ m. Since the value of ZDW (zero dispersion wavelength) is 1.305 to 1.317 ⁇ m, the above condition (2) is satisfied, and there is a margin of 0.002 ⁇ m with respect to the upper limit value.
  • the above condition (3) is satisfied, and there is a margin of 0.016 ps / km / nm 2 with respect to the lower limit value.
  • the above condition (4) is satisfied.
  • the value of ⁇ cc (cable cutoff wavelength) is 1.202 to 1.255 ⁇ m, the above condition (5) is satisfied.
  • Comparative Examples 1 to 4 will be described with reference to Table 2. Comparative Examples 1 and 2 satisfy 1.0 ⁇ ⁇ ⁇ 2.9, but do not satisfy 0.05% ⁇
  • Comparative Example 2 and Comparative Example 4 the value of chromatic dispersion at a wavelength of 1.55 ⁇ m exceeds 18.0 ps / km / nm, and the condition (4) is not satisfied. From the comparison between Examples 1 to 27 and Comparative Examples 1 to 4, in order to satisfy the condition (A) while satisfying the conditions (1) to (4), 0.05% ⁇
  • the value of ⁇ is preferably 1.0 or more.
  • a CVD method Chemical Vapor Deposition method
  • a so-called central dip may be formed.
  • the central dip refers to a portion where the refractive index is lowered at the center of the core.
  • ZDW zero dispersion wavelength
  • the value of ⁇ should be 1.0 or more. Is preferred.
  • the refractive index sharply increases toward the center of the core, which is easily affected by the central dip. For this reason, in reality, it is not easy to manufacture an optical fiber having a value of ⁇ of less than 1.0.
  • it is preferable to satisfy ⁇ 0.15% and 1.0 ⁇ ⁇ ⁇ 2.9 ⁇ .
  • the bending loss can be reduced by increasing the value of
  • is increased, can be set within a predetermined range by decreasing the value of the index ⁇ . it can.
  • the structural parameters of Examples 1 to 19 and Examples 20 to 27 are compared. In Examples 1 to 19, the structural parameters are in the range of 1.0 ⁇ ⁇ ⁇ 2.2, 0.35 ⁇ r1 / r2 ⁇ 0.60, 0.08% ⁇
  • the value of ⁇ is 2.4 or more, and the value of
  • the value of r1 / r2 becomes too small, the mode field diameter becomes small, and as a result, a problem may arise that the connection loss when connecting to another optical fiber exceeds the upper limit of the allowable range. If r1 / r2 is set to 0.40 or more, such a problem hardly occurs. Considering this point, the value of r1 / r2 is preferably set to be 0.40 or more and 0.60 or less. On the other hand, if r1 / r2 becomes too large, there may be a problem that the bending loss exceeds the upper limit of the allowable range. If r1 / r2 is 0.55 or less, such a problem is less likely to occur. Considering this point, the value of r1 / r2 is preferably set to be 0.40 or more and 0.55 or less.
  • the increase in loss at a wavelength of 1.55 ⁇ m when wound 10 times around a cylindrical mandrel with a radius of 15 mm is less than 0.03 dB, and 10 turns around a cylindrical mandrel with a radius of 15 mm.
  • the loss increase at a wavelength of 1.625 ⁇ m when rotated was less than 0.1 dB, and the loss increase at a wavelength of 1.55 ⁇ m when wound once on a cylindrical mandrel with a radius of 10 mm was less than 0.1 dB, and the radius
  • the loss increase at a wavelength of 1.625 ⁇ m when wound once on a 10 mm cylindrical mandrel is less than 0.2 dB.
  • ITU-T Recommendation G. 657 It is possible to provide an optical fiber having a bending loss within a predetermined range at bending radii of 15 mm and 10 mm as defined in A2.
  • the loss increase at a wavelength of 1.625 ⁇ m when rotated was less than 0.1 dB, and the loss increase at a wavelength of 1.55 ⁇ m when wound once on a cylindrical mandrel with a radius of 10 mm was less than 0.1 dB, and the radius
  • the loss increase at a wavelength of 1.625 ⁇ m when wound once on a 10 mm cylindrical mandrel is less than 0.2 dB, and at a wavelength of 1.55 ⁇ m when wound once on a cylindrical mandrel with a radius of 7.5 mm.
  • the increase in loss is less than 0.5 dB, and the increase in loss at a wavelength of 1.625 ⁇ m when wound once on a cylindrical mandrel having a radius of 7.5 mm is less than 1.0 dB.
  • ITU-T Recommendation G. 657 It is possible to provide an optical fiber in which the bending loss at the bending radii of 15 mm, 10 mm, and 7.5 mm defined in A2 is within a predetermined range.
  • the MFD mode field diameter
  • the ITU-T Recommendation G is more preferably 8.8 ⁇ m or more and 9.2 ⁇ m or less.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Abstract

光ファイバは、コアと、コアを取り囲むディプレスド層と、ディプレスド層を取り囲むクラッドとを備える。コアの屈折率分布は、指数αが1.0以上2.9以下のα乗分布であり、クラッドに対するディプレスド層の比屈折率差Δ-は、その絶対値|Δ-|が0.05%以上0.15%以下になるように設定されており、コアの半径r1の、ディプレスド層の外周半径r2に対する比r1/r2は、0.35以上0.60以下となるように設定されており、22mのケーブルカットオフ波長λccは、1.26μm未満であり、波長1.31μmにおけるモードフィールド径が、8.6μmより大きく、9.5μmより小さい。

Description

光ファイバ
 本発明は、光ファイバに関する。
 本願は、2018年2月13日に、日本に出願された特願2018-023228号に基づき優先権を主張し、その内容をここに援用する。
 特許文献1には、コアとクラッドとの間に、クラッドよりも屈折率が小さいディプレスド層を有する光ファイバが開示されている。また、特許文献1には、クラッドに対するディプレスド層の比屈折率差Δ、及び、ディプレスド層の外周半径r2に対するコアの半径r1の比r1/r2を最適化することで、モードフィールド径を維持して汎用光ファイバとの接続損失を小さくしながら、曲げ損失が、光ファイバに関する国際規格であるITU-T(International Telecommunication Union Telecommunication Standardization Sector)勧告G.657.A1を満たす光ファイバを実現し得ることが記載されている。
国際公開第2016/047749号
 ところで、光ファイバにおいては、ゼロ分散波長および1.55μmにおける波長分散値(以下、「波長分散特性」という)を所定の範囲内としつつ、曲げ損失をさらに低減することが求められている。
 本発明はこのような事情を考慮してなされたもので、ディプレスド層を有する光ファイバにおいて、波長分散特性を所定の範囲内としながら、曲げ損失をさらに低減することを目的とする。
 上記課題を解決するために、本発明の一態様に係る光ファイバは、コアと、前記コアを取り囲むディプレスド層と、前記ディプレスド層を取り囲むクラッドとを備え、前記コアの屈折率分布は、指数αが1.0以上2.9以下のα乗分布であり、前記クラッドに対する前記ディプレスド層の比屈折率差Δは、その絶対値|Δ|が0.05%以上0.15%以下になるように設定されており、前記コアの半径r1の、前記ディプレスド層の外周半径r2に対する比r1/r2は、0.35以上0.60以下となるように設定されており、22mのケーブルカットオフ波長λccは、1.26μm未満であり、波長1.31μmにおけるモードフィールド径が、8.6μmより大きく、9.5μmより小さい。
 本発明の上記態様によれば、ディプレスド層を有する光ファイバにおいて、波長分散特性を所定の範囲内としながら、曲げ損失をさらに低減することができる。
本実施形態に係る光ファイバの構造を示す断面図(左)及び側面図(右)である。 本実施形態に係る光ファイバの屈折率分布の一例を示すグラフである。 実線は本実施形態に係る定義に従って決定された理想的な屈折率分布を示すグラフである。破線は実際の屈折率分布を模したグラフである。 Δと、曲げ損失およびゼロ分散波長(ZDW)と、の関係を示すグラフである。 Δと、曲げ損失および1.55μmにおける波長分散の値と、の関係を示すグラフである。 αと、曲げ損失およびゼロ分散波長(ZDW)と、の関係を示すグラフである。 αと、曲げ損失および1.55μmにおける波長分散の値と、の関係を示すグラフである。
 以下、本実施形態の光ファイバについて図面に基づいて説明する。なお、本発明は以下の実施形態に限定されない。
 図1Aに示すように、光ファイバ1は、シリカガラスを主成分とする円柱状の構造体である。光ファイバ1は、円形状の断面を有するコア11と、コア11を取り囲む円環状の断面を有するディプレスド層12と、ディプレスド層12を取り囲む円環状の断面を有するクラッド13と、を有している。図1Aに示す一点鎖線Lは、光ファイバ1の中心軸線(以下、中心軸線Lという)である。
 本実施形態では、コア11の半径をr1と表し、ディプレスド層12の外周半径(外周面の半径)をr2と表し、クラッド13の外周半径をr3と表す。なお、ディプレスド層12の内周半径(内周面の半径)はr1となり、クラッド13の内周半径はr2となる。
 コア11は、ゲルマニウムなどのアップドーパント(屈折率を上昇させる添加剤)が添加された、クラッド13よりも屈折率の高い領域である。ディプレスド層12は、フッ素などのダウンドーパント(屈折率を低下させる添加剤)が添加された、クラッド13よりも屈折率の低い領域である。
 図1Bは、図1Aに示す光ファイバ1の屈折率分布の一例を示すグラフである。図1Bの横軸は、中心軸線Lからの距離(以下、半径rという)を示している。図1Bの縦軸は、半径rに対応した部分における屈折率nの値を示している。
 コア11の屈折率は、図1Bに示すように、α乗分布により近似される。換言すれば、0≦r≦r1の範囲内において、半径rにおける屈折率n(r)は、n(r)=n1[1-2Δ(r/r1)α1/2により近似される。ここで、n1は、中心軸線L上の屈折率(最大屈折率)であり、Δは、クラッド13に対するコア11の中心部の比屈折率差である。なお、αを大きくしていくと、α乗分布は、屈折率が一定となるステップ型の屈折率分布に漸近する。
 ディプレスド層12の屈折率は、図1Bに示すように、一様分布により近似される。換言すれば、r1≦r≦r2の範囲内において、半径rにおける屈折率n(r)は、n(r)=nd(定数)により近似される。また、クラッド13の屈折率は、図1Bに示すように、一様分布により近似される。換言すれば、r2≦r≦r3の範囲内において、半径rにおける屈折率n(r)は、n(r)=n2(定数)により近似される。
 コア11の最大屈折率n1、ディプレスド層12の屈折率nd、及び、クラッド13の屈折率n2の間には、nd<n2<n1という関係が成り立つ。
 以下の説明においては、コア11の最大屈折率n1の代わりに、クラッド13に対するコア11の中心部の比屈折率差Δを用いる。ここで、比屈折率差Δは、Δ=(n1-n2)/(2n1)×100[%]により定義される量である。また、以下の説明においては、ディプレスド層12の屈折率ndの代わりに、クラッド13に対するディプレスド層12の比屈折率差Δを用いる。ここで、比屈折率差Δは、Δ=(nd-n2)/(2nd)×100[%]により定義される量である。
 光ファイバ1の屈折率分布は、上述した定数α,Δ,Δ,r1,r2から一義的に定まる。以下、これらの5つの定数を、光ファイバ1の「構造パラメータ」と記載する。
 なお、現実の光ファイバ1の屈折率分布n’(r)は、図1Bに示す理想的な屈折率分布n(r)に一致しないことがある。しかしながら、現実の光ファイバ1の屈折率分布n’(r)に対しても、下記の手順(ステップ1~ステップ5)に従って構造パラメータα,Δ+,Δ-,r1,r2を定義することができる。そして、現実の光ファイバ1の屈折率分布n’(r)は、下記の手順に従って定義された構造パラメータα,Δ+,Δ-,r1,r2から定まる理想的な屈折率分布n(r)によって、精度良く近似される。
 ステップ1:現実の光ファイバ1の屈折率分布n’(r)において、クラッド13の屈折率が略一定である範囲の平均値を求め、その平均値をクラッド13の屈折率n2とする。n2の略一定の範囲の算出方法については、例えば、後述するr0の値の5.5倍~6.5倍の範囲のrにおけるn(r)の平均値を用いる。
 ステップ2:α乗分布で近似するコアの領域を決定する。現実の屈折率分布n’(r)においては、コアとディプレスド層の境界ではn(r)がrに対して緩やかに変化することがしばしば生じる。例えばこの境界において、rが増加するに従い、n(r)が次第に減少する場合がある。これは、例えばVAD法を用いたプリフォーム(母材)の製造過程において、シリカガラスにドープされたGeやFなどの元素が熱拡散するためだと考えられる。このような屈折率分布において、コア/ディプレスド層の境界を含めてフィッティングした場合、精度よく近似されない可能性がある。一方、コア/ディプレスド層の境界を除いたコア領域についてフィッティングした場合、精度良く近似できる。具体的には、n’(r)のrの一階微分dn’(r)/drの最小値を得るrを求め、これをr0とする。次に、0≦r≦r0の範囲で、n’(r)を最も良く近似する(二乗誤差を最小にする)α乗分布を求め、n1およびαの値を定める。
 なお、CVD法(Chemical Vapor Deposition method)を用いて母材を作製することにより、コアとディプレスド層との境界においてn(r)がrに対して緩やかに変化するように意図的に設定した場合であっても、上記フィッティング方法を含む本願の構成を適用することができる。
 r1については、n2(すなわち、n(r0×5.5)~n(r0×6.5)の平均値)を得る最小のrを求め、そのrをr1とする。r0<r<r1においては、例えば、実際の屈折率分布を適用してもよいし、その領域についてn(r)=n2と定義してもよい。なお、n2を求める方法としては、例えば、r0×5.5≦r≦r0×6.5の所定間隔毎にサンプリングポイントを取り、各サンプリングポイントにおけるn’(r)の平均値を算出する方法などが挙げられる。この場合、所定間隔は特に限定されないが、例えば、0.5μm、又は、0.5μmより小さい値である。
 ステップ3:現実の光ファイバ1の屈折率分布n’(r)において、n’(r)の最小値nminを求め、この最小値nminと屈折率n2との平均値nave=(nmin+n2)/2を求める。そして、現実の光ファイバ1の屈折率分布n’(r)において、n’(r)=naveとなる最大のrを求め、このrをディプレスド層12の外周半径r2とする。
 ステップ4:n’(r)=naveとなる最小のrを求め、このrをr4とする。領域r4<r<r2において、現実の光ファイバ1の屈折率分布n’(r)の平均値を求め、この平均値をディプレスド層12の屈折率ndとする。なお、平均値を求める方法としては、例えば、r4<r<r2に所定間隔毎にサンプリングポイントを取り、各サンプリングポイントにおけるn’(r)の平均値を算出する方法などが挙げられる。この場合、所定間隔は、特に限定されないが、例えば、0.5μm、又は、0.5μmより小さい値である。
 ステップ5:ステップ1にて特定されたクラッド13の屈折率n2と、ステップ2にて特定されたコア11の最大屈折率n1とから、クラッド13に対するコア11の比屈折率差Δを、Δ=(n1-n2)/(2n1)×100[%]に従って定める。また、ステップ1にて特定されたクラッド13の屈折率n2と、ステップ4にて特定されたディプレスド層12の屈折率ndとから、クラッド13に対するディプレスド層12の比屈折率差Δを、Δ=(nd-n2)/(2nd)×100[%]に従って定める。
 図2に実線で示すグラフは、実際の屈折率分布n’(r)を模したものである。図2(a)はr0=r1の場合の屈折率分布を、図2(b)はr0<r1の場合の屈折率分布を表している。どちらの屈折率分布においても、この屈折率分布n’(r)に対して上記の手順を適用すると、ある構造パラメータα,Δ,Δ,r1,r2が定まる。そして、その構造パラメータα,Δ,Δ,r1,r2を有する理想的な屈折率分布n(r)をプロットすると、図2に点線で示すグラフが得られる。図2によれば、実際の屈折率分布n’(r)は、上記の手順に従って定められた構造パラメータα,Δ,Δ,r1,r2を有する理想的な屈折率分布n(r)によって、精度良く近似されることが確かめられる。
(光ファイバの特性)
 光ファイバのモードフィールド径(MFD:Mode Field Diameter)は、IEC60793-1-45で定義されている。光ファイバの実効的なカットオフ波長として定められている、ファイバカットオフ波長およびケーブルカットオフ波長は、IEC60793-1-44で定義されている。光ファイバの波長分散および曲げ損失については,IEC60793-1-44およびIEC60793-1-47で定められている。
 カットオフ波長とは,高次モード(本明細書においてはLP11モードを示す)が十分に減衰する最小の波長を示す。具体的には、高次モードの損失が19.3dBになる最小波長である。カットオフ波長には、ファイバカットオフ波長とケーブルカットオフ波長とがあり、例えばITU-T勧告G.650に記載の測定法により、測定することができる。
 ゼロ分散波長とは、波長分散の値がゼロになる波長のことを指す。ここで、波長分散は、材料分散と導波路分散の合計である。また、ゼロ分散スロープとは、ゼロ分散波長における波長に対する波長分散の変化率のことを指す。
 本願発明者らは、鋭意検討の結果、光ファイバの諸特性について、以下の相関関係があることを見出した。
 図3Aは、MFD、ケーブルカットオフ波長、およびαの値を一定とし、Δの値を変化させた場合に、ゼロ分散波長ZDW(Zero Dispersion Wavelength)および曲げ損失がどのように変化するかを示したグラフである。図3Bは、MFD、ケーブルカットオフ波長、およびαの値を一定とし、Δの値を変化させた場合に、波長1.55μmにおける波長分散の値および曲げ損失がどのように変化するかを示したグラフである。図3A、図3Bでは、MFDを9.05μmとし、ケーブルカットオフ波長を1.21μmとし、αを3.5としている。図3A,図3Bの横軸は、先述の比屈折率差Δの値を示している。図3A,図3Bのどちらにおいても、第1縦軸は、曲げ半径R=10mm、波長1.55μmにおける相対的な曲げ損失の大きさを示している。図3Aの第2縦軸は、ZDWの値を示している。図3Bの第2縦軸は、波長1.55μmにおける波長分散の値を示している。
 図3Aに示すように、Δの絶対値が大きくなるほど(グラフの左側に向かうほど)、曲げ損失が小さくなっている。一方で、Δの絶対値が大きくなるほど、ZDWの値は小さくなる。このため、Δの絶対値を大きくした場合、ZDWの値が、ITU-T勧告G.652若しくはG.657で定義される下限値である1.300μmを下回ってしまうことが考えられる。また,図3Bに示すように、Δの絶対値が大きくなるほど(グラフの左側に向かうほど)、曲げ損失が小さくなるが、波長1.55μmの波長分散の値は大きくなる。したがって、Δの絶対値を大きくした場合、ZDWおよび波長1.55μmの波長分散の値の両方が、ITU-T勧告G.652.D若しくはG.657で定義される規格範囲である、「ZDWが1.300μm以上および波長1.55μmにおける波長分散の値が18.6 ps/km/nm以下」から外れてしまうことが考えられる。つまり、曲げ損失と波長分散特性とはいわゆるトレードオフの関係にあり、曲げ損失を低減するために単純にΔの絶対値を大きくすると、所望の波長分散特性が得られない場合があることが判る。
 図4Aは、MFD、ケーブルカットオフ波長、およびΔの値を一定とし、αの値を変化させた場合に、ZDWおよび曲げ損失がどのように変化するかを示したグラフである。図4Bは、MFD、ケーブルカットオフ波長、およびΔの値を一定とし、αの値を変化させた場合に、波長1.55μmにおける波長分散の値および曲げ損失がどのように変化するかを示したグラフである。図4A,図4Bでは、MFDを9.05μmとし、ケーブルカットオフ波長を1.21μmとし、Δを-0.02%としている。図4A、図4Bの横軸は、先述のα乗分布(コア11の屈折率分布)に係る指数αの値を示している。図4A、図4Bの第1縦軸および第2縦軸は、図3A、図3Bと同様である。
 図4A、図4Bに示すように、αの値は、曲げ損失の大きさにほとんど影響しない。これに対して、図4Aに示すように、αの値を小さくすると、ZDWの値を大きくすることができる。また、図4Bに示すように、αの値を小さくすると、波長1.55μmにおける波長分散の値を小さくできる。
 以上の図3A、図3B、図4A、図4Bに関する考察を整理すると、Δの絶対値を大きくすることで曲げ損失を低減することができる。さらに、Δの絶対値を大きくすることに伴って悪化する波長分散特性については、αの値を小さくすることで、所望の範囲内まで改善させることができる。つまり、Δおよびαの双方の値を適切な範囲とすることで、波長分散特性を規格内に維持しながら、曲げ損失のさらなる低減を図ることが可能となる。
 以下、構造パラメータの適切な範囲について、実施例を用いて説明する。
(光ファイバの規格)
 まず、光ファイバの諸特性に関する規格について整理する。
 ITU-T勧告G.657.A2では、曲げ損失に関する以下の条件(A)~(C)が規定されている。
<条件(A)>半径10mmの円筒形のマンドレルに光ファイバを1回巻回したとき、波長1.55μmにおける損失増加(以下、BLR=10(1.55μm)と表す)は0.1dB/turn以下であり、波長1.625μmにおける損失増加(以下、BLR=10(1.625μm)と表す)は0.2dB/turn以下であること。
<条件(B)>半径15mmの円筒形のマンドレルに光ファイバを10回巻回したとき、波長1.55μmにおける損失増加(以下、BLR=15(1.55μm)と表す)は0.03dB/10turn以下であり、波長1.625μmにおける損失増加(以下、BLR=15(1.625μm)と表す)は0.1dB/10turn以下であること。
<条件(C)>半径7.5mmの円筒形のマンドレルに光ファイバを1回巻回したとき、波長1.55μmにおける損失増加(以下、BLR=7.5(1.55μm)と表す)は0.5dB/turn以下であり、波長1.625μmにおける損失増加(以下、BLR=7.5(1.625μm)と表す)は1.0dB/turn以下であること。
 また、ITU-T勧告G.652.D等が規定する要件を満足するため、曲げ損失以外の光ファイバの特性として、以下の条件(1)~(5)を満たすことが好ましい。
<条件(1)>波長1.31μmにおけるMFDの値が、8.6μmより大きく、9.5μmより小さいこと。
<条件(2)>ゼロ分散波長ZDWの値が、1.305μm以上1.319μm以下であること。
<条件(3)>ゼロ分散スロープの値が、0.073ps/km/nm2以上0.092ps/km/nm2以下であること。
<条件(4)>波長1.55μmにおける波長分散の値が、18.0ps/km/nm以下であること。
<条件(5)>22mのケーブルカットオフ波長λccの値が、1.26μmより小さいこと。
 なお、ITU-T勧告G.652.Dでは、ゼロ分散波長ZDWを1.300μm以上1.324μm以下とし、ゼロ分散スロープを0.073ps/km/nm2以上0.092ps/km/nm2以下とし、波長1.55μmにおける波長分散の値を18.6ps/km/nm以下とすることが推奨されている。製造ばらつきを考慮すると、ゼロ分散波長が1.305μm以上1.319μm以下となり(すなわち上記条件(2)を満たし)、波長1.55μmにおける波長分散の値が18.0ps/km/nm以下となる(すなわち上記条件(4)を満たす)光ファイバを設計することが求められる。
(実施例1~27)
 下記表1には、構造パラメータが1.0≦α≦2.9、0.35≦r1/r2≦0.60、0.05%≦|Δ|≦0.15%の範囲内である実施例1~27を示している。なお、以下の表1、2に示すMAC値とは、波長1.31μmにおけるMFDの値をケーブルカットオフ波長λccで除算して得られた値である。
Figure JPOXMLDOC01-appb-T000001
 表1に示す実施例1~27は、BLR=10(1.55μm)の値が0.002~0.056dB/turnであり、いずれも0.1dB/turn未満となっており、この上限値に対して少なくとも0.044dB/turnの余裕をもっている。また、BLR=10(1.625μm)の値が0.004~0.191dB/turnであり、いずれも0.2dB/turn未満となっており、この上限値に対して少なくとも0.009dB/turnの余裕をもっている。このように、実施例1~27は、上記条件(A)を満足している。
 実施例1~27は、BLR=15(1.55μm)の値が0.004~0.014dB/10turnであり、いずれも0.03dB/10turn未満となっており、この上限値に対して少なくとも0.016dB/10turnの余裕をもっている。また、BLR=15(1.625μm)の値が0.014~0.054dB/10turnであり、いずれも0.1dB/10turn未満となっており、この上限値に対して少なくとも0.046dB/10turnの余裕をもっている。このように、実施例1~27は、上記条件(B)を満足している。
 以上の通り、実施例1~27では、曲げに関する条件(A),(B)を満足している。これは、|Δ|の値を従来よりも大きくすることで、曲げ損失が低減されたためである(図3A、3B参照)。
 さらに、実施例1~27は、波長1.31μmにおけるMFDの値が、8.63~9.13μmであるため、上記条件(1)を満足しており、下限値に対して0.03μm、上限値に対して0.37μmの余裕をもっている。また、ZDW(ゼロ分散波長)の値が1.305~1.317μmであるため、上記条件(2)を満足しており、上限値に対して0.002μmの余裕をもっている。また、ゼロ分散スロープの値が0.089~0.092ps/km/nm2であるため、上記条件(3)を満足しており、下限値に対して0.016ps/km/nm2の余裕をもっている。また、波長1.55μmにおける波長分散の値が17.32~18.00ps/km/nmであるため、上記条件(4)を満足している。また、λcc(ケーブルカットオフ波長)の値が1.202~1.255μmであるため、上記条件(5)を満足している。
 以上の結果から、構造パラメータを1.0≦α≦2.9、0.35≦r1/r2≦0.60、0.05%≦|Δ|≦0.15%の範囲内とすることで、曲げ損失以外の条件(1)~(5)を満足させながら、曲げ損失を低減して条件(A)、(B)を満足する光ファイバ1を得ることが可能となる。
(比較例1~4)
 次に、比較例1~4について、表2を用いて説明する。比較例1~2は、1.0≦α≦2.9を満足するが0.05%≦|Δ|≦0.15%を満足しない。比較例3~4は、0.05%≦|Δ|≦0.15%を満足するが、1.0≦α≦2.9を満足しない。
Figure JPOXMLDOC01-appb-T000002
 表2に示す通り、比較例1は、BLR=15(1.55μm)の値が0.03dB/10turnを上回っており、また、BLR=15(1.625μm)の値が0.1dB/10turnを上回っており、条件(B)を満足しない。比較例3は、条件(A)を満たすものの、ゼロ分散波長ZDWの値が1.305μmを下回っており、条件(2)を満足しない。比較例2および比較例4は、条件(A)を満たすものの、ゼロ分散スロープの値が0.092ps/km/nm2を上回っており、条件(3)を満足しない。また、比較例2および比較例4は、波長1.55μmにおける波長分散の値が18.0ps/km/nmを上回っており、条件(4)を満足しない。
 実施例1~27と比較例1~4との対比から、条件(1)~(4)を満足しつつ条件(A)を満足させるためには、0.05%≦|Δ|≦0.15%およびα≦2.9を満足させる必要があることが判る。
 また、αの値は、1.0以上とすることが好ましい。その理由を以下に述べる。αを制御したコア領域の製造方法としてはCVD法(Chemical Vapor Deposition method)が一般的に知られているが、CVD法ではいわゆるセントラルディップが形成される場合がある。セントラルディップとは、コア中心部において、屈折率が低下した部分をいう。ZDW(ゼロ分散波長)の値を上記条件(2)内に維持しながら、曲げ損失のさらなる低減を図る上でセントラルディップの影響を受けにくくするためには、αの値を1.0以上とすることが好ましい。αの値が1.0未満の場合、コア中心部に向かって屈折率が急峻に増加するため、セントラルディップの影響を受けやすい。このため、現実的にはαの値が1.0未満の光ファイバを製造することは容易ではない。
 以上のことを総合すると、0.05%≦|Δ|≦0.15%および1.0≦α≦2.9を満足させることが好ましい。これにより、例えばITU-T勧告G.652.Dに規定される諸特性を満足しつつ、従来よりも曲げ損失を低減した光ファイバを提供することができる。より詳しくは、|Δ|の値を大きくすることで曲げ損失を低減させることができる。そして、|Δ|の値を大きくすることに伴って悪化するゼロ分散波長および波長1.55μmにおける波長分散値については、指数αの値を小さくすることで、それぞれ所定の範囲内とすることができる。
 ところで、表1における実施例1~19は、BLR=7.5(1.55μm)の値が0.058~0.477dB/turnであり、いずれも0.5dB/turn未満であり、上限値に対して少なくとも0.023dB/turnの余裕がある。また、実施例1~19は、BLR=7.5(1.625μm)の値が0.051~0.995dB/turnであり、いずれも1.0dB/turn未満であり、上限値に対して少なくとも0.005dB/turnの余裕がある。従って、実施例1~19は、条件(C)を満足している。
 これに対して実施例20~27は、BLR=7.5(1.625μm)の値が1.0dB/turnを上回っており、上記条件(C)を満足していない。
 ここで、実施例1~19および実施例20~27の構造パラメータを比較する。実施例1~19は、構造パラメータが1.0≦α≦2.2、0.35≦r1/r2≦0.60、0.08%≦|Δ|≦0.15%の範囲内となっている。一方、実施例20~27は、αの値が2.4以上であり、|Δ|の値が0.07%以下となっている。
 以上の結果から、構造パラメータを1.0≦α≦2.2、0.35≦r1/r2≦0.60、0.08%≦|Δ|≦0.15%の範囲内とすることで、曲げ損失以外の条件(1)~(4)を満足させながら、曲げ損失を低減して条件(A)~(C)を満足する光ファイバ1を得ることが可能となる。また、条件(A)~(C)の全てを満足することで、ITU-T勧告G.657.A2が規定する曲げ損失に関する要件を満たした光ファイバ1を提供することができる。
 なお、r1/r2の値が小さくなりすぎると、モードフィールド径が小さくなり、その結果、他の光ファイバと接続した際の接続損失が許容可能範囲の上限値を上回るという問題を生じ得る。r1/r2を0.40以上にすれば、このような問題が生じ難くなる。この点を考慮すると、r1/r2の値は、0.40以上0.60以下となるように設定されているとよい。
 一方、r1/r2が大きくなり過ぎると、曲げ損失が許容可能範囲の上限値を上回るという問題を生じ得る。r1/r2を0.55以下にすれば、このような問題が生じ難くなる。この点を考慮すると、r1/r2の値は、0.40以上0.55以下となるように設定されているとよい。
 また、実施例1~27では、半径15mmの円筒形のマンドレルに10回巻回したときの波長1.55μmにおける損失増加は、0.03dB未満であり、半径15mmの円筒形のマンドレルに10回巻回したときの波長1.625μmにおける損失増加は、0.1dB未満であり、半径10mmの円筒形のマンドレルに1回巻回したときの波長1.55μmにおける損失増加は、0.1dB未満であり、半径10mmの円筒形のマンドレルに1回巻回したときの波長1.625μmにおける損失増加は、0.2dB未満となっている。このように、本実施形態によれば、ITU-T勧告G.657.A2に規定される、曲げ半径15mmおよび10mmにおける曲げ損失を所定の範囲内とした光ファイバを提供することができる。
 また、実施例1~19では、半径15mmの円筒形のマンドレルに10回巻回したときの波長1.55μmにおける損失増加は、0.03dB未満であり、半径15mmの円筒形のマンドレルに10回巻回したときの波長1.625μmにおける損失増加は、0.1dB未満であり、半径10mmの円筒形のマンドレルに1回巻回したときの波長1.55μmにおける損失増加は、0.1dB未満であり、半径10mmの円筒形のマンドレルに1回巻回したときの波長1.625μmにおける損失増加は、0.2dB未満であり、半径7.5mmの円筒形のマンドレルに1回巻回したときの波長1.55μmにおける損失増加は、0.5dB未満であり、半径7.5mmの円筒形のマンドレルに1回巻回したときの波長1.625μmにおける損失増加は、1.0dB未満となっている。このように、本実施形態によれば、ITU-T勧告G.657.A2に規定される、曲げ半径15mm、10mm、および7.5mmにおける曲げ損失を所定の範囲内とした光ファイバを提供することができる。
 また、波長1.31μmにおけるMFD(モードフィールド径)を、8.6μmより大きく、かつ9.5μmより小さくすることで、ITU-T勧告G.652等に規定される要件の1つを満足することができる。なお、製造ばらつきなどを考慮すると、MFDの値は、8.8μm以上9.2μm以下であることが、より好ましい。
 なお、本発明の技術的範囲は前記実施の形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
 また、本発明の趣旨を逸脱しない範囲で、上記した実施形態または実施例における構成要素を周知の構成要素に置き換えることは適宜可能である。
 1…光ファイバ 11…コア 12…ディプレスド層 13…クラッド

Claims (8)

  1.  コアと、前記コアを取り囲むディプレスド層と、前記ディプレスド層を取り囲むクラッドとを備え、
     前記コアの屈折率分布は、指数αが1.0以上2.9以下のα乗分布であり、
     前記クラッドに対する前記ディプレスド層の比屈折率差Δは、その絶対値|Δ|が0.05%以上0.15%以下になるように設定されており、
     前記コアの半径r1の、前記ディプレスド層の外周半径r2に対する比r1/r2は、0.35以上0.60以下となるように設定されており、
     22mのケーブルカットオフ波長λccは、1.26μm未満であり、
     波長1.31μmにおけるモードフィールド径が、8.6μmより大きく、9.5μmより小さい光ファイバ。
  2.  前記r1/r2が、0.40以上0.60以下となるように設定されている、請求項1に記載の光ファイバ。
  3.  半径15mmの円筒形のマンドレルに10回巻回したときの波長1.55μmにおける損失増加は、0.03dB未満であり、
     半径15mmの円筒形のマンドレルに10回巻回したときの波長1.625μmにおける損失増加は、0.1dB未満であり、
     半径10mmの円筒形のマンドレルに1回巻回したときの波長1.55μmにおける損失増加は、0.1dB未満であり、
     半径10mmの円筒形のマンドレルに1回巻回したときの波長1.625μmにおける損失増加は、0.2dB未満である、請求項1または2に記載の光ファイバ。
  4.  ゼロ分散波長ZDWの値が1.305~1.319μmであるか、もしくは、ゼロ分散スロープの値が0.092ps/km/nm2以下であるか、もしくは、波長1.55μmにおける波長分散の値が18.00ps/km/nm以下であるかのいずれかを満足する、請求項1から3のいずれか1項に記載の光ファイバ。
  5.  前記指数αが、1.0以上2.2以下、前記比屈折率差Δが、その絶対値|Δ|が0.08%以上0.15%以下、となるように設定されている請求項1から4のいずれか1項に記載の光ファイバ。
  6.  半径15mmの円筒形のマンドレルに10回巻回したときの波長1.55μmにおける損失増加は、0.03dB未満であり、
     半径15mmの円筒形のマンドレルに10回巻回したときの波長1.625μmにおける損失増加は、0.1dB未満であり、
     半径10mmの円筒形のマンドレルに1回巻回したときの波長1.55μmにおける損失増加は、0.1dB未満であり、
     半径10mmの円筒形のマンドレルに1回巻回したときの波長1.625μmにおける損失増加は、0.2dB未満であり、
     半径7.5mmの円筒形のマンドレルに1回巻回したときの波長1.55μmにおける損失増加は、0.5dB未満であり、
     半径7.5mmの円筒形のマンドレルに1回巻回したときの波長1.625μmにおける損失増加は、1.0dB未満である、請求項5に記載の光ファイバ。
  7.  前記r1/r2が、0.40以上0.55以下となるように設定されている、請求項1から6のいずれか1項に記載の光ファイバ。
  8.  波長1.31μmにおけるモードフィールド径が、8.8μm以上、9.2μm以下である請求項1から7のいずれか1項に記載の光ファイバ。
PCT/JP2019/003616 2018-02-13 2019-02-01 光ファイバ WO2019159719A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/956,131 US11048039B2 (en) 2018-02-13 2019-02-01 Optical fiber
CN201980006104.4A CN111527430B (zh) 2018-02-13 2019-02-01 光纤
JP2020500393A JP7134219B2 (ja) 2018-02-13 2019-02-01 光ファイバ
EP19755250.8A EP3754393A4 (en) 2018-02-13 2019-02-01 OPTICAL FIBER

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018023228 2018-02-13
JP2018-023228 2018-02-13

Publications (1)

Publication Number Publication Date
WO2019159719A1 true WO2019159719A1 (ja) 2019-08-22

Family

ID=67618506

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/003616 WO2019159719A1 (ja) 2018-02-13 2019-02-01 光ファイバ

Country Status (5)

Country Link
US (1) US11048039B2 (ja)
EP (1) EP3754393A4 (ja)
JP (1) JP7134219B2 (ja)
CN (1) CN111527430B (ja)
WO (1) WO2019159719A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022181614A1 (ja) * 2021-02-25 2022-09-01 住友電気工業株式会社 光ファイバ

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014526066A (ja) * 2011-08-19 2014-10-02 コーニング インコーポレイテッド 低曲げ損失光ファイバ
WO2016047749A1 (ja) 2014-09-26 2016-03-31 株式会社フジクラ 光ファイバ
JP2016518620A (ja) * 2013-04-08 2016-06-23 コーニング インコーポレイテッド 低曲げ損失の光ファイバ
US20170075061A1 (en) * 2015-09-15 2017-03-16 Corning Incorporated Low bend loss single mode optical fiber with chlorine updoped cladding
WO2017048820A1 (en) * 2015-09-16 2017-03-23 Corning Incorporated Low-loss and low-bend-loss optical fiber
JP2018023228A (ja) 2016-08-04 2018-02-08 株式会社三井ハイテック 積層鉄心の樹脂注入方法
JP2018189914A (ja) * 2017-05-11 2018-11-29 住友電気工業株式会社 光ファイバ

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7043125B2 (en) * 2001-07-30 2006-05-09 Corning Incorporated Optical waveguide fiber for local access
CN101523259B (zh) * 2006-08-31 2013-01-23 康宁股份有限公司 低弯曲损耗单模光纤
CN101373238B (zh) * 2008-08-20 2010-09-08 富通集团有限公司 弯曲损耗不敏感的单模光纤
JP5575422B2 (ja) 2009-05-20 2014-08-20 信越化学工業株式会社 光ファイバ
US8542969B2 (en) * 2010-02-26 2013-09-24 Corning Incorporated Low bend loss optical fiber
US9020316B2 (en) * 2013-02-28 2015-04-28 Corning Incorporated Low attenuation optical fibers with an F-graded index core
US9057817B2 (en) * 2013-04-15 2015-06-16 Corning Incorporated Low diameter optical fiber
US9383511B2 (en) * 2013-05-02 2016-07-05 Corning Incorporated Optical fiber with large mode field diameter and low microbending losses
US9618692B2 (en) * 2014-07-10 2017-04-11 Corning Incorporated High chlorine content low attenuation optical fiber
CN106716198B (zh) * 2014-09-26 2019-06-21 株式会社藤仓 光纤及其制造方法
WO2016053699A1 (en) * 2014-09-29 2016-04-07 Corning Incorporated Quasi-single-mode optical fiber with a large effective area
WO2016168042A1 (en) * 2015-04-15 2016-10-20 Corning Incorporated Low loss optical fibers with fluorine and chlorine codoped core regions
EP3393987A1 (en) * 2015-12-22 2018-10-31 Corning Incorporated Bromine-doped silica glass optical fiber and method of producing it
CN109863436A (zh) * 2016-09-30 2019-06-07 康宁股份有限公司 具有溴正掺杂包层的低弯曲损耗单模光纤
US9989699B2 (en) * 2016-10-27 2018-06-05 Corning Incorporated Low bend loss single mode optical fiber
US10422948B2 (en) * 2017-07-18 2019-09-24 Fujikura Ltd. Optical fiber and method of manufacturing the same
US10422949B2 (en) * 2017-07-18 2019-09-24 Fujikura Ltd. Optical fiber and method of manufacturing the same
US10571628B2 (en) * 2017-11-20 2020-02-25 Corning Incorporated Low loss optical fiber with core codoped with two or more halogens

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014526066A (ja) * 2011-08-19 2014-10-02 コーニング インコーポレイテッド 低曲げ損失光ファイバ
JP2016518620A (ja) * 2013-04-08 2016-06-23 コーニング インコーポレイテッド 低曲げ損失の光ファイバ
WO2016047749A1 (ja) 2014-09-26 2016-03-31 株式会社フジクラ 光ファイバ
US20170075061A1 (en) * 2015-09-15 2017-03-16 Corning Incorporated Low bend loss single mode optical fiber with chlorine updoped cladding
WO2017048820A1 (en) * 2015-09-16 2017-03-23 Corning Incorporated Low-loss and low-bend-loss optical fiber
JP2018023228A (ja) 2016-08-04 2018-02-08 株式会社三井ハイテック 積層鉄心の樹脂注入方法
JP2018189914A (ja) * 2017-05-11 2018-11-29 住友電気工業株式会社 光ファイバ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3754393A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022181614A1 (ja) * 2021-02-25 2022-09-01 住友電気工業株式会社 光ファイバ

Also Published As

Publication number Publication date
US11048039B2 (en) 2021-06-29
JPWO2019159719A1 (ja) 2020-12-03
JP7134219B2 (ja) 2022-09-09
US20200326471A1 (en) 2020-10-15
EP3754393A1 (en) 2020-12-23
CN111527430B (zh) 2022-05-27
EP3754393A4 (en) 2021-10-20
CN111527430A (zh) 2020-08-11

Similar Documents

Publication Publication Date Title
US10571628B2 (en) Low loss optical fiber with core codoped with two or more halogens
US11314017B2 (en) Optical fiber
CN108873156B (zh) 光纤
US11714229B2 (en) Optical fiber and method of manufacturing optical fiber
WO2016047675A1 (ja) 光ファイバおよびその製造方法
WO2012128250A1 (ja) 光ファイバ、光ファイバコードおよび光ファイバケーブル
WO2021187475A1 (ja) 光ファイバ
WO2019159719A1 (ja) 光ファイバ
EP3657223B1 (en) Optical fiber and method for producing same
US10422949B2 (en) Optical fiber and method of manufacturing the same
US10422948B2 (en) Optical fiber and method of manufacturing the same
US11714228B2 (en) Optical fiber and method of manufacturing optical fiber
US20210294030A1 (en) Optical fiber and method for manufacturing optical fiber
WO2023112968A1 (ja) 光ファイバ
US20230244027A1 (en) Optical fiber
WO2022131161A1 (ja) 光ファイバ、光ファイバの設計方法および光ファイバの製造方法
WO2022181614A1 (ja) 光ファイバ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19755250

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020500393

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019755250

Country of ref document: EP

Effective date: 20200914