WO2016047675A1 - 光ファイバおよびその製造方法 - Google Patents

光ファイバおよびその製造方法 Download PDF

Info

Publication number
WO2016047675A1
WO2016047675A1 PCT/JP2015/076899 JP2015076899W WO2016047675A1 WO 2016047675 A1 WO2016047675 A1 WO 2016047675A1 JP 2015076899 W JP2015076899 W JP 2015076899W WO 2016047675 A1 WO2016047675 A1 WO 2016047675A1
Authority
WO
WIPO (PCT)
Prior art keywords
refractive index
optical fiber
core
less
wavelength
Prior art date
Application number
PCT/JP2015/076899
Other languages
English (en)
French (fr)
Inventor
祥 遠藤
岸 達也
北村 隆之
Original Assignee
株式会社フジクラ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フジクラ filed Critical 株式会社フジクラ
Priority to EP15844942.1A priority Critical patent/EP3199992A4/en
Priority to US15/514,090 priority patent/US10067287B2/en
Priority to CN201580051121.1A priority patent/CN106716198B/zh
Priority to JP2016550352A priority patent/JP6393338B2/ja
Publication of WO2016047675A1 publication Critical patent/WO2016047675A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02004Optical fibres with cladding with or without a coating characterised by the core effective area or mode field radius
    • G02B6/02009Large effective area or mode field radius, e.g. to reduce nonlinear effects in single mode fibres
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/028Optical fibres with cladding with or without a coating with core or cladding having graded refractive index
    • G02B6/0281Graded index region forming part of the central core segment, e.g. alpha profile, triangular, trapezoidal core
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • G02B6/03605Highest refractive index not on central axis
    • G02B6/03611Highest index adjacent to central axis region, e.g. annular core, coaxial ring, centreline depression affecting waveguiding
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • G02B6/03616Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference
    • G02B6/03622Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 2 layers only
    • G02B6/03627Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 2 layers only arranged - +
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • G02B6/03616Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference
    • G02B6/03622Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 2 layers only
    • G02B6/03633Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 2 layers only arranged - -
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • G02B6/03616Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference
    • G02B6/03638Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 3 layers only
    • G02B6/0365Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 3 layers only arranged - - +
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/02Pure silica glass, e.g. pure fused quartz
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/31Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with germanium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/10Internal structure or shape details
    • C03B2203/22Radial profile of refractive index, composition or softening point
    • C03B2203/23Double or multiple optical cladding profiles
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/10Internal structure or shape details
    • C03B2203/22Radial profile of refractive index, composition or softening point
    • C03B2203/26Parabolic or graded index [GRIN] core profile

Definitions

  • the present invention relates to an optical fiber having a low bending loss and a manufacturing method thereof.
  • This application is based on Japanese Patent Application No. 2014-195937 and Japanese Patent Application No. 2014-195938 filed on September 26, 2014, and 2014-249846 filed on Dec. 10, 2014. Is incorporated herein by reference.
  • An optical fiber having a low bending loss is particularly required for FTTH (Fiber To The Home) for introducing an optical fiber into an office, home, or the like.
  • FTTH Fiber To The Home
  • a small bend may occur.
  • a portion (excess length portion) of the extra length due to routing is wound and stored with a predetermined radius or more.
  • the storage space can be reduced by bending the extra length portion small. Therefore, an optical fiber in which a so-called bending loss (macrobend loss) is reduced in which loss does not increase even when a small bend is inserted is important.
  • ITU-T Recommendation G a standard for standard single mode optical fiber (S-SMF).
  • S-SMF standard single mode optical fiber
  • the mode field diameter is reduced (see, for example, Patent Documents 1 and 2 and Non-Patent Document 1), and a trench (low refractive index portion) is formed around the core.
  • the refractive index distribution of the core is ⁇ power distribution (graded index type) (for example, refer to Patent Documents 4 and 6).
  • the low bending loss optical fiber has a single-peak type refractive index distribution composed of a core and a clad while maintaining the same MFD as that of a general-purpose optical fiber.
  • the bending loss is reduced by making the refractive index distribution of the core an ⁇ power distribution. Therefore, an optical fiber having a core refractive index distribution in which bending loss is smaller than the ⁇ power distribution is required. Further, even when a trench is provided around the core, an optical fiber having a core refractive index distribution in which bending loss is smaller than the ⁇ power distribution is required.
  • the present invention has been made in view of the above circumstances, and provides an optical fiber having a core refractive index distribution in which a bending loss is smaller than an ⁇ power distribution and a method for manufacturing the same.
  • the first aspect of the present invention includes a core and a clad surrounding the outer periphery of the core, and has a refractive index distribution in which a relative refractive index difference with respect to a distance r from the center of the core is represented by ⁇ (r),
  • the unit of r is ⁇ m
  • the unit of relative refractive index difference ⁇ (r) is%
  • ⁇ ref (r) ⁇ 0.064r + 0.494
  • MFD 1.31 has a wavelength of 1.
  • the value of A represented by a mode field diameter at 31 ⁇ m is 0.3% ⁇ ⁇ m or less.
  • the mode field diameter MFD 1.31 at a wavelength of 1.31 ⁇ m is preferably 8.93 ⁇ m or more and 9.4 ⁇ m or less.
  • the fourth aspect of the present invention is to provide an optical fiber of any one aspect of the first to third embodiments, the maximum relative refractive index difference delta max in the entire core is preferably greater than 0.39%.
  • a fifth aspect of the present invention is to provide an optical fiber of any one aspect of the first to fourth embodiments, it is preferred maximum relative refractive index difference delta max in the entire core is less than 0.50%.
  • the cable cutoff wavelength ⁇ cc is preferably 1260 nm or less.
  • the cable cutoff wavelength ⁇ cc is preferably 1170 nm or more.
  • a ratio between a mode field diameter MFD 1.31 at a wavelength of 1.31 ⁇ m and a cable cutoff wavelength ⁇ cc , MFD The MAC value represented by 1.31 / ⁇ cc is preferably 7.38 or more and 7.7 or less.
  • an optical fiber having a higher relative refractive index difference closer to the center of the core and easier to confine light at the center of the core is obtained, and loss when the optical fiber is bent is reduced. can do.
  • FIG. 1 It is sectional drawing which shows typically the optical fiber which concerns on 1st Embodiment of this invention. It is a graph which shows the relationship between the value of A and the bending loss in the Example of 1st Embodiment.
  • 3 is a graph showing a refractive index distribution of the optical fiber of Example 1.
  • 6 is a graph showing the refractive index distribution of the optical fiber of Example 2.
  • 10 is a graph showing the refractive index distribution of the optical fiber of Example 3.
  • 10 is a graph showing the refractive index distribution of the optical fiber of Example 4.
  • 10 is a graph showing the refractive index distribution of the optical fiber of Example 5.
  • 10 is a graph showing the refractive index distribution of the optical fiber of Example 6.
  • 10 is a graph showing the refractive index distribution of the optical fiber of Example 7.
  • 10 is a graph showing the refractive index distribution of the optical fiber of Example 8.
  • 10 is a graph showing the refractive index distribution of the optical fiber of Example 9. It is a figure which shows typically the refractive index distribution of the optical fiber which concerns on 1st Embodiment of this invention. It is a figure which shows typically the refractive index distribution used by simulation. It is a figure which shows typically the refractive index distribution used by simulation. It is a figure which shows typically the refractive index distribution used by simulation. It is a figure which shows typically the refractive index distribution used by simulation. It is a figure which shows the calculation result of a bending loss. It is a figure which shows the calculation result of a bending loss. It is a figure which shows the calculation result of a bending loss.
  • the optical fiber 5 of the present embodiment includes a core 1 provided at the center of the optical fiber 5 and a clad 4 surrounding the outer periphery of the core 1.
  • the clad 4 is generally concentric with the core 1, but the clad 4 and the core 1 may be eccentric within an allowable range.
  • the refractive index distribution of the core is expressed by ⁇ (r) as a function of the relative refractive index difference ⁇ with respect to the distance r from the center of the core.
  • the distance r is non-negative (r ⁇ 0).
  • the relative refractive index difference ⁇ of the core means a relative refractive index difference based on the refractive index of the cladding. In the clad, the relative refractive index difference is zero.
  • a range of A values defined by the following mathematical formula (definition formula of A) is specified as a condition for obtaining a low bending loss optical fiber. The derivation of the definition formula will be described later.
  • ⁇ ref (r) ⁇ 0.064r + 0.494.
  • MFD 1.31 is a mode field diameter at a wavelength of 1.31 ⁇ m.
  • the MFD is not necessarily equal to the core diameter (diameter), but is generally the same as the core diameter. Then, since 0.5 MFD 1.31 is substantially equal to the core radius, the region where r ⁇ 0.44MFD 1.31 represents most of the core (excluding the peripheral portion). The region where r ⁇ 0.22MFD 1.31 represents the center of the core.
  • the definition formula of A is defined as a definite integral (first definite integral) in a section of 0 ⁇ r ⁇ 0.22MFD 1.31, and a constant in a section of 0.22MFD 1.31 ⁇ r ⁇ 0.44MFD 1.31.
  • Integration second definite integration.
  • the first definite integral and the second definite integral have the same integration interval width (0.22MFD 1.31 ) and the same integrand ( ⁇ (r) ⁇ ref (r)). Is the opposite and the contribution to A is different.
  • the refractive index distribution having a higher relative refractive index difference tends to have a smaller A value as it is closer to the center of the core.
  • the value of A is preferably 0.3% ⁇ ⁇ m or less. As a result, an optical fiber that can easily confine light at the center of the core can be obtained, and loss when the optical fiber is bent can be reduced.
  • the value of A is more preferably 0.2% ⁇ ⁇ m or less, and further preferably 0.1% ⁇ ⁇ m or less.
  • ⁇ ref (r) in the definition formula of A represents a refractive index distribution (reference refractive index distribution) referred to in the definition formula of A.
  • the value of A is, for example, 0% ⁇ ⁇ m or more, ⁇ 0.01% ⁇ ⁇ m or more, ⁇ 0.02% ⁇ ⁇ m or more, ⁇ 0.03% ⁇ ⁇ m or more, ⁇ 0.05% ⁇ ⁇ m or more, ⁇ It may be 0.1% ⁇ ⁇ m or more, ⁇ 0.2% ⁇ ⁇ m or more, ⁇ 0.3% ⁇ ⁇ m or more, and the like.
  • the optical fiber manufacturing method of the present embodiment includes a step of calculating the value of A using the definition formula of A, and the value of A is within a predetermined range (for example, 0.3% ⁇ ⁇ m or less). A step of confirming this.
  • the calculation step and the confirmation step of A are a series of steps performed when manufacturing an optical fiber, for example, a step of designing a refractive index distribution of an optical fiber, a step of manufacturing an optical fiber preform having the refractive index distribution, It can be performed at an arbitrary stage regardless of before and after the step of spinning an optical fiber from a fiber preform.
  • the optical fiber according to the present embodiment is manufactured by producing an optical fiber preform by a known preform producing method such as a shaft attaching method (VAD method), an external attaching method (OVD method), or an internal attaching method (CVD method). It can be manufactured by spinning an optical fiber from a fiber preform.
  • a method for producing the optical fiber preform at least the glass constituting the core is produced by the OVD method or the CVD method, and the remaining glass portion is produced by further depositing silica (SiO 2 ) glass, a quartz tube jacket, or the like. Can be mentioned.
  • the entire core or all of the core and a part of the clad are produced by the VAD method, and the remaining part of the clad is produced by the OVD method.
  • the part manufactured by the OVD method or the CVD method may be only glass (part or all) constituting the core, and may further include part of the glass constituting the cladding.
  • the size of the optical fiber is not particularly limited, examples of the cladding diameter include 125 ⁇ m and 80 ⁇ m.
  • one or more coatings such as a resin may be laminated on the outer periphery of the clad.
  • the mode field diameter MFD 1.31 at a wavelength of 1.31 ⁇ m is preferably about 9.2 ⁇ m.
  • MFD 1.31 is 9.2 ⁇ m ⁇ 0.2 ⁇ m, or 8.93 ⁇ m or more and 9.4 ⁇ m or less.
  • the refractive index profile of the core is preferably unimodal with only one peak within the core diameter range.
  • the single-peak type means that the point where the relative refractive index difference of the core takes the maximum value is only one point within the core diameter range.
  • the range of the core diameter includes not only the side where the coordinate value on the radius is positive, but the side where the coordinate value on the radius is negative, with the core center being 0. If the refractive index distribution of the core is concentric, the relative refractive index difference takes the maximum value at the core center. Therefore, the maximum relative refractive index difference delta max in the entire core, the distance r from the center of the core is preferably equal to the maximum relative refractive index difference delta c in the range below 1 [mu] m.
  • the core In order to confine light in the core in an optical fiber, it is sufficient that the core has a higher refractive index than in the clad. However, if the relative refractive index difference is too small, light confinement becomes weak. Therefore, it is preferred maximum relative refractive index difference delta max in the entire core is greater than 0.39%. On the other hand, if the relative refractive index difference is too large, the required amount of dopant increases and the cost increases. Therefore, it is preferred maximum relative refractive index difference delta max in the entire core is less than 0.50%.
  • the cable cutoff wavelength ⁇ cc of the optical fiber (that is, the cutoff wavelength ⁇ c 22m of 22 m ) is preferably 1260 nm or less. ⁇ cc may be greater than or equal to 1170nm.
  • the MAC value represented by the ratio (MFD 1.31 / ⁇ cc ) of the mode field diameter MFD 1.31 and the cable cutoff wavelength ⁇ cc at a wavelength of 1.31 ⁇ m is 7.38 or more and 7.7 or less. More preferably.
  • the dopant used for the production of the silica-based optical fiber include germanium (Ge), phosphorus (P), fluorine (F), boron (B), and aluminum (Al). Two or more dopants may be used.
  • the core material includes Ge-added silica
  • the clad material includes pure silica.
  • the refractive index distributions used are shown in FIGS. 13A to 13C. 13A to 13C, ( ⁇ cc [ ⁇ m] / MFD [ ⁇ m]) is (1.20 / 9.00), (1.23 / 9.15), (1.26 / 9.3) in order, respectively. ).
  • the dispersion value is set to ITU-T G. 652.
  • adjustment is performed depending on the refractive index distribution by providing the cladding portion with a slight low refractive index portion (depressed portion).
  • the calculation results of the bending loss in these refractive index profiles are shown in FIGS. 14A to 14C. From these results, it can be seen that the bending loss decreases as the relative refractive index difference at the core central portion increases (or the core shape inclination ⁇ (r1) / ⁇ c decreases).
  • the inventors have found that the relationship with the bending loss can be expressed from the deviation from the refractive index distribution (reference refractive index distribution) in which the bending loss is minimized in the simulation.
  • FIG. 15 shows the normalized electric field strength distribution in the reference refractive index distribution.
  • optical fiber having a core part and a clad part provided around the core part was manufactured.
  • the optical fiber was manufactured by drawing (spinning) an optical fiber preform.
  • the optical fiber preform was manufactured by forming a core member composed of the entire core and a part of the clad by the VAD method or the CVD method and then forming the remaining clad portion around the core member by the OVD method.
  • the core base material was manufactured by the VAD method
  • Example 9 the core base material was manufactured by the CVD method.
  • the refractive index distribution of the obtained optical fiber is represented by a relative refractive index difference ⁇ with respect to the radius [ ⁇ m].
  • the shapes of the refractive index profiles of the optical fibers of Examples 1 to 9 are shown in FIGS. 3 to 11, respectively.
  • the radius [ ⁇ m] is 0 [ ⁇ m] at the core center and can take either positive or negative values.
  • the distance r [ ⁇ m] from the center of the core in the definition formula of A is an absolute value of the radius [ ⁇ m] and takes 0 or a positive value.
  • Table 1 shows the parameters of the optical fibers of Examples 1 to 9.
  • ⁇ max is the maximum relative refractive index difference [%] in the entire core.
  • the delta c within a distance r from the center of the core the following 1 [mu] m (i.e., -1 ⁇ m ⁇ radius ⁇ 1 [mu] m) is the maximum relative refractive index difference at [%].
  • r 1 is the radius [ ⁇ m] of the core.
  • Distance r is the core radius r 1 greater than the area from the center of the core is clad, the relative refractive index difference in the cladding is zero.
  • ⁇ min is the minimum relative refractive index difference [%] in the entire core.
  • ⁇ cc is the cable cutoff wavelength [ ⁇ m].
  • MFD 1.31 is a mode field diameter [ ⁇ m] at a wavelength of 1.31 ⁇ m.
  • MAC represents the value of the ratio expressed by MFD 1.31 / ⁇ cc.
  • the bending loss is a bending loss [dB / 10 turn] at a bending radius of 15 mm and a wavelength of 1.55 ⁇ m.
  • the optical fibers of Examples 1 to 9 are ITU-T G. 652.
  • A [% ⁇ ⁇ m] was calculated according to the definition formula of A.
  • the relationship between the value A and the bending loss (wavelength 1.55 ⁇ m, radius 15 mm, 10 turns) in Examples 1 to 9 is shown in the graph of FIG. As the value of A became smaller, the bending loss tended to take a smaller value.
  • Examples 1 to 6 and Example 9 correspond to A ⁇ 0.3% ⁇ ⁇ m.
  • the bending loss was 0.034 dB / 10 turn
  • the mode field diameter MFD 1.31 was 9.2 ⁇ m
  • the clad 4 may have the following configuration.
  • FIG. 16 shows a schematic configuration of the optical fiber 10 according to the second embodiment of the present invention.
  • the optical fiber 10 includes a core 1 disposed in the center, and a clad 4 provided concentrically with the core 1 on the outer peripheral side of the core 1.
  • the cladding 4 has at least an inner cladding part 2 adjacent to the outer peripheral side of the core 1 and an outer cladding part 3 formed on the outer peripheral side of the inner cladding part 2.
  • FIG. 17 schematically shows the refractive index distribution of the optical fiber 10.
  • the refractive index of the core 1 is ⁇ 1, and the maximum refractive index is ⁇ 1max.
  • the refractive index of the inner cladding portion 2 is ⁇ 2, and the minimum refractive index is ⁇ 2min.
  • the maximum refractive index ⁇ 1max of the core 1 is the refractive index of the core 1 that is maximum in the radial range from the center of the core 1 to the outer periphery.
  • the refractive index ⁇ 1 is equal to the maximum refractive index ⁇ 1max over the entire range.
  • the minimum refractive index ⁇ 2min of the inner cladding portion 2 is the refractive index of the inner cladding portion 2 that is the smallest in the radial range from the inner periphery to the outer periphery of the inner cladding portion 2.
  • the refractive index ⁇ 2 is equal to the minimum refractive index ⁇ 2min over the entire range.
  • the following equation (11) is established. ⁇ 1max> ⁇ 2min and ⁇ 1max> ⁇ 3 (11)
  • the maximum refractive index ⁇ 1max of the core 1 is set larger than the minimum refractive index ⁇ 2min of the inner cladding portion 2 and the refractive index ⁇ 3 of the outer cladding portion 3.
  • the minimum refractive index ⁇ 2 min of the inner cladding portion 2 is set to be smaller than the refractive index ⁇ 3 of the outer cladding portion 3.
  • Equation (12) means that the absolute value of the difference between the minimum refractive index ⁇ 2min of the inner cladding portion 2 and the refractive index ⁇ 3 of the outer cladding portion 3 exceeds 0.01% and is less than 0.03%. To do.
  • the bending loss may not be sufficiently reduced.
  • the absolute value of the difference between ⁇ 2min and ⁇ 3 is too large, the mode field diameter becomes small, resulting in a large connection loss when connected to another optical fiber (for example, a normal single mode optical fiber (S-SMF)).
  • S-SMF normal single mode optical fiber
  • the bending loss can be reduced by setting the absolute value of the difference between ⁇ 2min and ⁇ 3 to a range exceeding 0.01%.
  • the absolute value of the difference between ⁇ 2min and ⁇ 3 to less than 0.03%, the mode field diameter (MFD) can be optimized and the connection loss when connected to another optical fiber can be kept low.
  • the following equation (11A) is established regarding the magnitude relationship among ⁇ 1max, ⁇ 2min, and ⁇ 3.
  • ⁇ 1max> ⁇ 3> ⁇ 2min (11A) As shown in Expression (11A), the maximum refractive index ⁇ 1max of the core 1 is set to be larger than the refractive index ⁇ 3 of the outer cladding portion 3.
  • the refractive index ⁇ 3 of the outer cladding part 3 is set larger than the minimum refractive index ⁇ 2min of the inner cladding part 2.
  • Equation (12A) means that the difference between the refractive index ⁇ 3 of the outer cladding portion 3 and the minimum refractive index ⁇ 2min of the inner cladding portion 2 is more than 0.01% and less than 0.03%.
  • the outer peripheral radii of the core 1, the inner cladding part 2, and the outer cladding part 3 are r1, r2, and r3, respectively. Between the outer peripheral radii r1 to r3 of the core 1, the inner cladding portion 2, and the outer cladding portion 3, there is a relationship expressed by the following equation (13). r1 ⁇ r2 ⁇ r3 (13)
  • the ratio r1 / r2 between the outer peripheral radius r1 of the core 1 and the outer peripheral radius r2 of the inner cladding portion 2 is in the range shown in the following equation (14). 0.2 ⁇ r1 / r2 ⁇ 0.5 (14)
  • r1 / r2 If r1 / r2 is too small, the mode field diameter becomes small, and there is a possibility that the connection loss when connected to another optical fiber (for example, S-SMF) becomes large. On the other hand, if r1 / r2 is too large, bending loss may increase.
  • the optical fiber 10 by setting r1 / r2 to be 0.2 or more, the mode field diameter can be optimized and the connection loss when connecting to another optical fiber can be kept low. By making r1 / r2 0.5 or less, bending loss can be reduced.
  • the optical fiber 10 has a cable cutoff wavelength ⁇ cc of 1260 nm or less. That is, the following equation (15) is established. ⁇ cc ⁇ 1260 nm (15) As a result, ITU-T Recommendation G. 652 can be satisfied.
  • the cutoff wavelength ⁇ cc is, for example, ITU-T Recommendation G. It can be measured by the measurement method described in 650.
  • the optical fiber 10 is set such that the mode field diameter (MFD) at a wavelength of 1310 nm is 8.6 ⁇ m or more and 9.5 ⁇ m or less by adjusting the refractive index and the outer radius. That is, the following equation (16) is established. 8.6 ⁇ m ⁇ MFD ⁇ 9.5 ⁇ m (16) By setting the mode field diameter within this range, connection loss when connected to another optical fiber (for example, S-SMF) can be kept low.
  • the optical fiber 10 has an ITU-T G.D. It satisfies the provisions of 652.
  • the optical fiber 10 preferably has a loss increase of 0.25 dB or less at a wavelength of 1550 nm when it is wound 10 times on a cylindrical mandrel having a diameter of 15 mm. Further, the increase in loss at a wavelength of 1625 nm when wound around a cylindrical mandrel having a diameter of 15 mm 10 times is preferably 1.0 dB or less.
  • the core 1 can be made of silica glass whose refractive index is increased by adding a dopant such as germanium (Ge).
  • the inner cladding portion 2 can be made of silica glass whose refractive index is lowered by adding a dopant such as fluorine (F).
  • the inner cladding portion 2 may be made of silica glass whose refractive index is increased by adding a dopant such as chlorine (Cl).
  • the outer cladding part 3 can be comprised, for example with a pure silica glass.
  • the outer cladding portion 3 may adjust the refractive index by adding a dopant (eg, Ge, F, etc.).
  • Each layer constituting the optical fiber 10 can be formed by a known method such as an MCVD method, a PCVD method, a VAD method, an OVD method, or a combination thereof.
  • the optical fiber preform can be manufactured as follows.
  • a glass deposition layer serving as the inner cladding portion 2 is formed inside a silica glass tube serving as the outer cladding portion 3 (for example, a glass tube made of pure silica glass) using a raw material containing a dopant such as fluorine (F). .
  • the refractive index of the inner cladding part 2 can be adjusted by the amount of dopant added.
  • a glass deposition layer to be the core 1 is formed inside the glass deposition layer using a raw material containing a dopant such as germanium (Ge).
  • the core 1 can also be formed using the core rod produced separately.
  • the silica glass tube on which the glass deposition layer is formed is made into an optical fiber preform through processes such as transparency and solidification.
  • the optical fiber 10 shown in FIG. 16 is obtained by drawing this optical fiber preform.
  • the CVD method is preferable in that the refractive index distribution can be accurately adjusted by adding a dopant.
  • the VAD method and the OVD method are also applicable.
  • the VAD method and the OVD method have an advantage of high productivity.
  • the difference in refractive index between the inner cladding portion 2 and the outer cladding portion 3 is in the above range (see formula (12)), and the ratio of the outer peripheral radius between the core 1 and the inner cladding portion 2 is in the above range (formula). (Refer to (14)), the connection loss when connecting to another optical fiber can be kept low, and the bending loss can be reduced.
  • the present inventor has found that the bending loss can be reduced without reducing the mode field diameter.
  • a refractive index distribution that can be reduced.
  • the conventional manufacturing method for example, a normal S-SMF manufacturing method
  • the refractive indexes of the part 2 and the outer cladding part 3 can be adjusted easily and accurately.
  • the difference in refractive index between the inner cladding portion 2 and the outer cladding portion 3 is small, there are few restrictions based on the manufacturing method. For example, not only the CVD method suitable for adjusting the refractive index distribution but also a VAD method and an OVD method can be employed. Therefore, the optical fiber 10 can be easily manufactured, and the manufacturing cost can be kept low.
  • the optical fiber 10 has a small difference in refractive index between the inner cladding portion 2 and the outer cladding portion 3, the amount of dopant such as fluorine (F) and chlorine (Cl) for forming the inner cladding portion 2 can be reduced.
  • the source gas (for example, SiF 4 ) used for doping such as fluorine (F) is expensive, the source cost can be suppressed and the manufacturing cost can be reduced by reducing the dopant addition amount.
  • the optical fiber 10 since the minimum refractive index ⁇ 2min of the inner cladding portion 2 is smaller than the refractive index ⁇ 3 of the outer cladding portion 3, the optical fiber 10 has good confinement of light in the core 1 and reduces bending loss. it can.
  • FIG. 18 shows a schematic configuration of an optical fiber 20 according to the second embodiment of the present invention.
  • the optical fiber 20 includes a core 1 disposed in the center, and a clad 14 provided concentrically with the core 1 on the outer peripheral side of the core 1.
  • the clad 14 has at least an inner clad portion 12 adjacent to the outer peripheral side of the core 1 and an outer clad portion 13 formed on the outer peripheral side of the inner clad portion 12.
  • FIG. 19 schematically shows the refractive index distribution of the optical fiber 20.
  • the refractive index of the core 1 is ⁇ 1, and the maximum refractive index is ⁇ 1max.
  • the refractive index of the inner cladding portion 12 is ⁇ 2, and the minimum refractive index is ⁇ 2min.
  • the following equation (17) is established, as in the optical fiber 10 of the first embodiment. ⁇ 1max> ⁇ 2min and ⁇ 1max> ⁇ 3 (17)
  • the optical fiber 20 differs from the optical fiber 10 of the first embodiment in that the minimum refractive index ⁇ 2min of the inner cladding portion 12 is larger than the refractive index ⁇ 3 of the outer cladding portion 13.
  • the following equation (18) is established, as in the optical fiber 10 of the first embodiment. 0.01% ⁇
  • the mode field diameter (MFD) can be optimized, the connection loss when connected to another optical fiber can be kept low, and the bending loss can be reduced. it can.
  • the optical fiber 20 has a cable cutoff wavelength ⁇ cc of 1260 nm or less.
  • the mode field diameter (MFD) at a wavelength of 1310 nm is 8.6 ⁇ m or more and 9.5 ⁇ m or less.
  • the optical fiber 20 preferably has a loss increase of 0.25 dB or less at a wavelength of 1550 nm when it is wound 10 times on a cylindrical mandrel having a diameter of 15 mm. Further, the increase in loss at a wavelength of 1625 nm when wound around a cylindrical mandrel having a diameter of 15 mm 10 times is preferably 1.0 dB or less.
  • the core 1 can be made of silica glass whose refractive index is increased by adding a dopant such as germanium (Ge).
  • the inner cladding portion 12 can be made of, for example, pure silica glass.
  • the inner cladding portion 12 may adjust the refractive index by adding a dopant such as chlorine (Cl).
  • the outer cladding portion 13 can be made of, for example, pure silica glass.
  • the outer clad part 3 may be made of silica glass whose refractive index is lowered by adding a dopant such as fluorine (F).
  • the optical fiber 20 can be manufactured by the MCVD method, the PCVD method, the VAD method, the OVD method, or the like, similarly to the optical fiber 10 of the first embodiment.
  • the optical fiber preform can be manufactured as follows. Using a raw material such as pure silica glass, a glass deposition layer to be the inner cladding portion 12 is formed inside a silica glass tube to be the outer cladding portion 13 (for example, a silica glass tube containing a dopant such as fluorine (F)). . Next, a glass deposition layer to be the core 1 is formed inside the glass deposition layer using a raw material containing a dopant such as germanium (Ge).
  • the core 1 can also be formed using the core rod produced separately.
  • the silica glass tube on which the glass deposition layer is formed is made into an optical fiber preform through processes such as transparency and solidification. By drawing the optical fiber preform, an optical fiber 20 shown in FIG. 18 is obtained.
  • the difference in refractive index between the inner cladding portion 12 and the outer cladding portion 13 is set in the above range, and the ratio of the outer peripheral radius between the core 1 and the inner cladding portion 12 is set in the above range.
  • Connection loss when connected can be kept low, and bending loss can be reduced. Since the optical fiber 20 can be used without greatly changing the conventional manufacturing method, it is easy to manufacture and the manufacturing cost can be kept low.
  • the clads 4 and 14 are composed of two clad portions (an inner clad portion and an outer clad portion). It may have a layer.
  • FIG. 20 shows a schematic configuration of an optical fiber 30 according to the fourth embodiment of the present invention.
  • the optical fiber 30 includes a core 21 disposed in the center, and a clad 25 provided concentrically with the core 21 on the outer peripheral side of the core 21.
  • the cladding 25 includes at least an inner cladding portion 22 adjacent to the outer peripheral side of the core 21, a trench portion 23 formed adjacent to the outer peripheral side of the inner cladding portion 22, and an outer portion formed on the outer peripheral side of the trench portion 23.
  • a clad portion 24 is a schematic configuration of an optical fiber 30 according to the fourth embodiment of the present invention.
  • the optical fiber 30 includes a core 21 disposed in the center, and a clad 25 provided concentrically with the core 21 on the outer peripheral side of the core 21.
  • the cladding 25 includes at least an inner cladding portion 22 adjacent to the outer peripheral side of the core 21, a trench portion 23 formed adjacent to the outer peripheral side of the inner cladding portion 22, and an outer portion formed on the outer
  • FIG. 21 schematically shows the refractive index distribution of the optical fiber 30.
  • the refractive index of the core 21 is ⁇ 1, and the maximum refractive index is ⁇ 1max.
  • the refractive index of the inner cladding portion 22 is ⁇ 2, and the minimum refractive index is ⁇ 2min.
  • the refractive index of the trench portion 23 is ⁇ 3, and the minimum refractive index is ⁇ 3 min.
  • the refractive index of the outer cladding part 24 is assumed to be ⁇ 4.
  • the maximum refractive index ⁇ 1max of the core 21 is the refractive index of the core 21 that is maximized in the radial range from the center of the core 21 to the outer periphery.
  • the refractive index ⁇ 1 is equal to the maximum refractive index ⁇ 1max over the entire range.
  • the minimum refractive index ⁇ 2min of the inner cladding portion 22 is the refractive index of the inner cladding portion 22 that is the smallest in the radial range from the inner periphery to the outer periphery of the inner cladding portion 22.
  • the refractive index ⁇ 2 is equal to the minimum refractive index ⁇ 2min over the entire range.
  • the minimum refractive index ⁇ 3min of the trench portion 23 is the refractive index of the trench portion 23 that is the smallest in the radial range from the inner periphery to the outer periphery of the trench portion 23.
  • the refractive index ⁇ 3 is equal to the minimum refractive index ⁇ 3min over the entire range.
  • the following formula (21) is established. ⁇ 1max> ⁇ 2> ⁇ 3min (21)
  • the maximum refractive index ⁇ 1max of the core 21 is set larger than the refractive index ⁇ 2 of the inner cladding portion 22.
  • the refractive index ⁇ 2 of the inner cladding portion 22 is set to be larger than ⁇ 3 min of the trench portion 23.
  • the following expression (22) is further established. ⁇ 1max> ⁇ 4> ⁇ 3min (22)
  • the maximum refractive index ⁇ 1max of the core 21 is set to be larger than the refractive index ⁇ 4 of the outer cladding portion 24.
  • the refractive index ⁇ 4 of the outer cladding portion 24 is set to be larger than ⁇ 3 min of the trench portion 23.
  • Equation (23) means that the difference between the refractive index ⁇ 4 of the outer cladding portion 24 and the minimum refractive index ⁇ 3min of the trench portion 23 exceeds 0.01% and is less than 0.03%.
  • the bending loss may not be sufficiently reduced.
  • the difference between ⁇ 4 and ⁇ 3min is too small, the bending loss may not be sufficiently reduced.
  • the difference between ⁇ 4 and ⁇ 3min is too large, the mode field diameter becomes small, and there is a possibility that the connection loss when connecting to another optical fiber (for example, a normal single mode optical fiber (S-SMF)) becomes large. is there.
  • the bending loss can be reduced by setting the difference between ⁇ 4 and ⁇ 3min to a range exceeding 0.01%.
  • the difference between ⁇ 4 and ⁇ 3min to be less than 0.03%, the mode field diameter (MFD) can be optimized and the connection loss when connecting to another optical fiber can be kept low.
  • the outer peripheral radii of the core 21, the inner cladding part 22, the trench part 23, and the outer cladding part 24 are r1, r2, r3, and r4, respectively.
  • the ratio r2 / r1 between the outer peripheral radius r2 of the inner cladding portion 22 and the outer peripheral radius r1 of the core 21 is in the range shown in the following equation (25). 1 ⁇ r2 / r1 ⁇ 5 (25)
  • r2 / r1 If r2 / r1 is too small, bending loss may increase. On the other hand, if r2 / r1 is too large, the mode field diameter becomes small, and there is a possibility that the connection loss becomes large when connected to another optical fiber (for example, S-SMF). In the optical fiber 30, bending loss can be reduced by setting r2 / r1 to 1 or more. By setting r2 / r1 to 5 or less, the mode field diameter can be optimized and the connection loss when connected to another optical fiber can be kept low.
  • S-SMF optical fiber
  • the ratio r3 / r2 between the outer peripheral radius r3 of the trench part 23 and the outer peripheral radius r2 of the inner cladding part 22 is in the range represented by the following equation (26). 1 ⁇ r3 / r2 ⁇ 2 (26)
  • r3 / r2 If r3 / r2 is too small, bending loss may increase. On the other hand, if r3 / r2 is too large, the mode field diameter becomes small, and the connection loss when connected to another optical fiber (for example, S-SMF) may increase. In the optical fiber 30, by making r3 / r2 greater than 1, bending loss can be reduced. By setting r3 / r2 to 2 or less, the mode field diameter can be optimized and the connection loss when connected to another optical fiber can be kept low.
  • S-SMF optical fiber
  • the optical fiber 30 has a cable cutoff wavelength ⁇ cc of 1260 nm or less. That is, the following equation (27) is established. ⁇ cc ⁇ 1260 nm (27) As a result, ITU-T Recommendation G. 652 can be satisfied.
  • the cable cutoff wavelength ⁇ cc is, for example, ITU-T Recommendation G. It can be measured by the measurement method described in 650.
  • the optical fiber 30 is set so that the mode field diameter (MFD) at a wavelength of 1310 nm is 8.6 ⁇ m or more and 9.5 ⁇ m or less by adjusting the refractive index and the outer radius. That is, the following equation (28) is established. 8.6 ⁇ m ⁇ MFD ⁇ 9.5 ⁇ m (28) By setting the mode field diameter within this range, connection loss when connected to another optical fiber (for example, S-SMF) can be kept low.
  • the optical fiber 30 has an ITU-T G.D. It satisfies the provisions of 652.
  • the optical fiber 30 preferably has a loss increase of 0.25 dB or less at a wavelength of 1550 nm when it is wound 10 times on a cylindrical mandrel having a diameter of 15 mm. Further, the increase in loss at a wavelength of 1625 nm when wound around a cylindrical mandrel having a diameter of 15 mm 10 times is preferably 1.0 dB or less.
  • the core 21 can be made of silica glass whose refractive index is increased by adding a dopant such as germanium (Ge).
  • the inner cladding portion 22 and the trench portion 23 can be made of silica glass whose refractive index is lowered by adding a dopant such as fluorine (F).
  • the outer cladding portion 24 can be made of, for example, pure silica glass. The outer cladding portion 24 may adjust the refractive index by adding a dopant (eg, Ge, F, etc.).
  • Each layer constituting the optical fiber 30 can be formed by a known method such as an MCVD method, a PCVD method, a VAD method, an OVD method, or a combination thereof.
  • the optical fiber preform can be manufactured as follows.
  • a glass deposition layer to be the trench portion 23 is formed inside a silica glass tube to be the outer cladding portion 24 (for example, a glass tube made of pure silica glass) using a raw material containing a dopant such as fluorine (F).
  • a glass deposition layer to be the inner cladding portion 22 is formed inside the glass deposition layer using a raw material containing a dopant such as fluorine (F).
  • the refractive indexes of the trench portion 23 and the inner cladding portion 22 can be adjusted by the amount of dopant added.
  • a glass deposition layer to be the core 21 is formed inside the glass deposition layer using a raw material containing a dopant such as germanium (Ge).
  • the core 21 can also be formed using a separately prepared core rod.
  • the silica glass tube on which the glass deposition layer is formed is made into an optical fiber preform through processes such as transparency and solidification.
  • the optical fiber 30 shown in FIG. 20 is obtained by drawing this optical fiber preform.
  • the CVD method is preferable in that the refractive index distribution can be accurately adjusted by adding a dopant.
  • the VAD method and the OVD method can also be applied to manufacture the optical fiber 30.
  • the VAD method and the OVD method have an advantage of high productivity.
  • the difference in refractive index between the trench portion 23 and the outer cladding portion 24 is set to the above range (see formula (23)), and the ratio of the outer peripheral radii of the core 21, the inner cladding portion 22, and the trench portion 23 is set.
  • the present inventor has found that the bending loss can be reduced without reducing the mode field diameter.
  • the optical fiber 30 is technically significant in that it adopts this refractive index distribution to achieve both suppression of connection loss and reduction of bending loss when connected to another optical fiber.
  • the conventional manufacturing method for example, a normal S-SMF manufacturing method
  • the refractive index of the outer cladding part 24 can be adjusted easily and accurately.
  • the difference in refractive index between the trench portion 23 and the outer cladding portion 24 is small, there are few restrictions based on the manufacturing method. For example, not only the CVD method suitable for adjusting the refractive index distribution but also a VAD method and an OVD method can be employed. Therefore, the optical fiber 30 can be easily manufactured, and the manufacturing cost can be kept low.
  • the optical fiber 30 has a small difference in refractive index between the trench portion 23 and the outer cladding portion 24, the amount of dopant such as fluorine (F) for forming the trench portion 23 can be reduced. Since the source gas (for example, SiF 4 ) used for doping such as fluorine (F) is expensive, the source cost can be suppressed and the manufacturing cost can be reduced by reducing the dopant addition amount.
  • the source gas for example, SiF 4
  • the outer radius radii r1 to r4 of the core 21, the inner clad part 22, the trench part 23, and the outer clad part 24 have the relationship shown in the equation (24).
  • r1 ⁇ r2 ⁇ r3 ⁇ r4 (24)
  • the clad 25 includes only the trench part 23 and the outer clad part 24 formed on the outer peripheral side of the trench part 23.
  • the clad 25 includes three layers (an inner clad part, a trench part, and an outer clad part), but the clad may have other layers.

Abstract

 光ファイバは、コアと、コアの外周を取り囲むクラッドと、を備え、コアの中心からの距離rに対する比屈折率差がΔ(r)で表される屈折率分布を有し、下記の数式(ここで、rの単位はμmであり、比屈折率差Δ(r)の単位は%であり、Δref(r)=-0.064r+0.494であり、MFD1.31は波長1.31μmにおけるモードフィールド径である。)で表されるAの値が、0.3%・μm以下である。

Description

光ファイバおよびその製造方法
 本発明は、低い曲げ損失を有する光ファイバおよびその製造方法に関する。
 本願は、2014年9月26日に出願された日本国特許出願2014-195937号及び日本国特許出願2014-195938号、及び2014年12月10日に出願された2014-249846号に基づき優先権を主張し、その内容をここに援用する。
 低い曲げ損失を有する光ファイバ(低曲げ損失光ファイバ)は、特に、オフィスや家庭等へ光ファイバを導入するFTTH(Fiber To The Home)のために必要とされている。例えばビルや宅内に光ファイバを引き回す際に、小さな曲げが入る可能性がある。また、引き回しで余った長さの部分(余長部)は所定半径以上に巻回されて収納されるが、余長部を小さく曲げることで、収納スペースを削減することができる。そのため、小さな曲げを入れても損失が増加しない、いわゆる曲げ損失(マクロベンド損失)を低減した光ファイバが重要となる。宅内配線用の光ファイバにおいては、基地局とユーザ宅とを結ぶ光ファイバとの接続損失が小さいことから、低コストであることも要求される。基地局とユーザ宅とを結ぶ光ファイバは、距離が長いことから、汎用のシングルモード(SM)ファイバが使用されている。
 標準シングルモード光ファイバ(S-SMF)の規格であるITU-T Recommendation G.652に準拠しつつ、標準シングルモード光ファイバに比べて曲げ損失が低減された光ファイバの規格として、ITU-T Recommendation G.657がある。
 これまで、低曲げ損失光ファイバを得るには、例えば、モードフィールド径(MFD)を小さくする(例えば特許文献1,2、及び非特許文献1参照)、コアの周囲にトレンチ(低屈折率部)を設ける(例えば特許文献3~5参照)、コアの屈折率分布をα乗分布(グレーデッドインデックス型)とする(例えば特許文献4,6参照)等が提案されている。
日本国特許第4268115号公報 国際公開第2006/016572号パンフレット 日本国特開2013-88818号公報 米国特許第8428411号明細書 日本国特開昭63-43107号公報 米国特許第8588569号明細書
K. Okamoto and T. Okoshi, "Computer-aided synthesis of the optimum refractive index profile for a multimode fiber,"IEEE Trans. Microwave Theory Tech., vol. MTT-25, pp.213-221, 1976
 特許文献1の図2に示されるように、MFDを小さくすると、汎用SMファイバとの接続損失が増加する。このため、汎用SMファイバと同等のMFD(波長1.31μmで9.2μm程度)が好ましい。
 コアの周囲にトレンチを設けた場合、MFDを小さくすることなく、低い曲げ損失を実現することができる。しかし、外付け法(OVD法)や低屈折率ガラス(例えば石英管)のジャケット等によりトレンチを作製する場合には、光ファイバの製造工程が増える。内付け法(CVD法)でコア部からトレンチ部まで一括で作製することもできるが、作製できる母材サイズが小さく、一つの母材から紡糸により製造可能な光ファイバが短くなる。
 結果として、いずれの方法でも製造コストが増大する。
 以上の考察から、低曲げ損失光ファイバは、汎用光ファイバと同等のMFDを維持したまま、コアおよびクラッドから構成される単峰型の屈折率分布を有することが望まれる。これまで、コアの屈折率分布をα乗分布とすることで、曲げ損失を低減することが知られている。そこで、α乗分布よりも曲げ損失が小さくなるコア屈折率分布を有する光ファイバが求められる。また、コアの周囲にトレンチを設けた場合であっても、α乗分布よりも曲げ損失が小さくなるコア屈折率分布を有する光ファイバが求められる。
 本発明は、上記事情に鑑みてなされたものであり、α乗分布よりも曲げ損失が小さくなるコア屈折率分布を有する光ファイバおよびその製造方法を提供する。
 本発明の第1態様は、コアと、コアの外周を取り囲むクラッドと、を備え、コアの中心からの距離rに対する比屈折率差がΔ(r)で表される屈折率分布を有し、
Figure JPOXMLDOC01-appb-M000003
(ここで、rの単位はμmであり、比屈折率差Δ(r)の単位は%であり、Δref(r)=-0.064r+0.494であり、MFD1.31は波長1.31μmにおけるモードフィールド径である。)で表されるAの値が、0.3%・μm以下である。
 本発明の第2態様は、上記第1態様の光ファイバにおいて、波長1.31μmにおけるモードフィールド径MFD1.31が8.93μm以上9.4μm以下であることが好ましい。
 本発明の第3態様は、上記第1または第2態様の光ファイバにおいて、コア全体における最大比屈折率差Δmaxと、コアの中心からの距離rが1μm以下の範囲内における最大比屈折率差Δとが等しいことが好ましい。
 本発明の第4態様は、上記第1~第3態様のうちいずれか1態様の光ファイバにおいて、コア全体における最大比屈折率差Δmaxが0.39%よりも大きいことが好ましい。
 本発明の第5態様は、上記第1~第4態様のうちいずれか1態様の光ファイバにおいて、コア全体における最大比屈折率差Δmaxが0.50%よりも小さいことが好ましい。
 本発明の第6態様は、上記第1~第5態様のうちいずれか1態様の光ファイバにおいて、ケーブルカットオフ波長λccが1260nm以下であることが好ましい。
 本発明の第7態様は、上記第1~第6態様のうちいずれか1態様の光ファイバにおいて、ケーブルカットオフ波長λccが1170nm以上であることが好ましい。
 本発明の第8態様は、上記第1~第7態様のうちいずれか1態様の光ファイバにおいて、波長1.31μmにおけるモードフィールド径MFD1.31とケーブルカットオフ波長λccとの比、MFD1.31/λccで表されるMAC値が7.38以上7.7以下であることが好ましい。
 本発明の第9態様は、上記第1~第8態様のうちいずれか1態様の光ファイバの製造方法であって、コアの中心からの距離rに対する比屈折率差がΔ(r)で表される屈折率分布を有し、
Figure JPOXMLDOC01-appb-M000004
(ここで、rの単位はμmであり、比屈折率差Δ(r)の単位は%であり、Δref(r)=-0.064r+0.494であり、MFD1.31は波長1.31μmにおけるモードフィールド径である。)で表される前記Aの値を算出する工程と、前記Aの値が、0.3%・μm以下であることを確認する工程を有する。
 上記本発明に係る態様によれば、コアの中心部に近いほど比屈折率差が高く、コアの中心に光を閉じ込めやすい光ファイバが得られ、光ファイバに曲げが生じた際の損失を低減することができる。
本発明の第1実施形態に係る光ファイバを模式的に示す断面図である。 第1実施形態の実施例におけるAの値と曲げ損失との関係を示すグラフである。 例1の光ファイバの屈折率分布を示すグラフである。 例2の光ファイバの屈折率分布を示すグラフである。 例3の光ファイバの屈折率分布を示すグラフである。 例4の光ファイバの屈折率分布を示すグラフである。 例5の光ファイバの屈折率分布を示すグラフである。 例6の光ファイバの屈折率分布を示すグラフである。 例7の光ファイバの屈折率分布を示すグラフである。 例8の光ファイバの屈折率分布を示すグラフである。 例9の光ファイバの屈折率分布を示すグラフである。 本発明の第1実施形態に係る光ファイバの屈折率分布を模式的に示す図である。 シミュレーションで用いた屈折率分布を模式的に示す図である。 シミュレーションで用いた屈折率分布を模式的に示す図である。 シミュレーションで用いた屈折率分布を模式的に示す図である。 曲げ損失の計算結果を示す図である。 曲げ損失の計算結果を示す図である。 曲げ損失の計算結果を示す図である。 基準屈折率分布における規格化した電界強度分布を示す図である。 第2実施形態に係る光ファイバを模式的に示す断面図である。 前図に示す光ファイバの屈折率分布を模式的に示す図である。 第3実施形態に係る光ファイバを模式的に示す断面図である。 前図に示す光ファイバの屈折率分布を模式的に示す図である。 第4実施形態に係る光ファイバを模式的に示す断面図である。 前図に示す光ファイバの屈折率分布を模式的に示す図である。 他の実施形態に係る光ファイバの屈折率分布を模式的に示す図である。
(第1実施形態)
 以下、本発明の好適な第1実施形態を説明する。
 本実施形態の光ファイバ5は、図1に示すように、光ファイバ5の中心部に設けられるコア1と、コア1の外周を取り囲むクラッド4とを有する。クラッド4は、一般にコア1に対して同心状であるが、許容範囲内でクラッド4とコア1とが偏心することがあり得る。
 コアの屈折率分布は、コアの中心からの距離rに対する比屈折率差Δの関数として、Δ(r)で表される。距離rは非負である(r≧0)。コアの比屈折率差Δは、クラッドの屈折率を基準とした比屈折率差を意味する。クラッドでは、比屈折率差が0である。本実施形態では、低曲げ損失光ファイバを得るための条件として、次の数式(Aの定義式)により定義されるAの値の範囲が特定される。定義式の導出については、後述する。
Figure JPOXMLDOC01-appb-M000005
 ここで、rの単位はμmであり、比屈折率差Δ(r)の単位は%である。Δref(r)=-0.064r+0.494である。MFD1.31は波長1.31μmにおけるモードフィールド径である。
 SMファイバにおいて、MFDは必ずしもコア径(直径)に等しいわけではないが、一般にコア径と同程度である。そうすると、0.5MFD1.31は、ほぼコア半径に等しいから、r≦0.44MFD1.31となる領域は、コアの大部分(周辺部を除く。)を表す。r≦0.22MFD1.31となる領域は、コアの中心部を表す。
 前記Aの定義式は、0≦r≦0.22MFD1.31の区間における定積分(第1の定積分)と、0.22MFD1.31≦r≦0.44MFD1.31の区間における定積分(第2の定積分)とを含む。第1の定積分と第2の定積分は、積分区間の幅(0.22MFD1.31)が等しく、被積分関数(Δ(r)-Δref(r))も同一であるが、符号が反対であり、Aに対する寄与が異なる。その結果、コアの中心部に近いほど比屈折率差が高い屈折率分布は、Aの値が小さくなる傾向がある。
 そこで、Aの値は、0.3%・μm以下が好ましい。これにより、コアの中心に光を閉じ込めやすい光ファイバが得られ、光ファイバに曲げが生じた際の損失を低減することができる。Aの値は、0.2%・μm以下がより好ましく、0.1%・μm以下がさらに好ましい。
 前記Aの定義式におけるΔref(r)は、前記Aの定義式において参照される屈折率分布(参照屈折率分布)を表す。本実施形態においては、Δref(r)がrの一次式で表される。具体的には、上述したとおり、Δref(r)=-0.064r+0.494である。コアの屈折率分布が、参照屈折率分布Δref(r)と同じく、Δ(r)=-0.064r+0.494で表される場合、前記Aの定義式における被積分関数(Δ(r)-Δref(r))が恒等的に0になるので、Aの値も0になる。Aの値は、例えば、0%・μm以上、-0.01%・μm以上、-0.02%・μm以上、-0.03%・μm以上、-0.05%・μm以上、-0.1%・μm以上、-0.2%・μm以上、-0.3%・μm以上、等であってもよい。
 本実施形態の光ファイバの製造方法は、前記Aの定義式を使用してAの値を算出する工程と、Aの値が所定の範囲内(例えば、0.3%・μm以下)であることを確認する工程を有する。このAの算出工程および確認工程は、光ファイバの製造に際して行われる一連の工程、例えば光ファイバの屈折率分布を設計する工程、前記屈折率分布を有する光ファイバ母材を製造する工程、前記光ファイバ母材から光ファイバを紡糸する工程等に対して前後を問わず、任意の段階で行うことができる。
 本実施形態の光ファイバは、軸付け法(VAD法)、外付け法(OVD法)、内付け法(CVD法)などの公知の母材作製方法により光ファイバ母材を作製した後、光ファイバ母材から光ファイバを紡糸することによって製造することができる。光ファイバ母材の作製方法の一例として、少なくともコアを構成するガラスをOVD法またはCVD法で作製し、残りのガラス部分をさらなるシリカ(SiO)ガラスの堆積、石英管のジャケット等により作製することが挙げられる。より具体的には、コアの全部またはコアの全部とクラッドの一部をVAD法で作製し、クラッドの残部をOVD法で製造する方法が挙げられる。OVD法またはCVD法で作製する部分は、コアを構成するガラス(一部または全部)のみであってもよく、それに加えてクラッドを構成するガラスの一部を含んでもよい。
光ファイバのサイズは特に限定されないが、例えばクラッド径として125μm、80μm等が挙げられる。紡糸後の光ファイバには、クラッドの外周に樹脂等の被覆が1層または2層以上積層されてもよい。
 基地局とユーザ宅とを結ぶ光ファイバに多用される、汎用SMファイバとの接続損失を抑制するためには、汎用SMファイバと同程度のMFDを有することが好ましい。例えば、波長1.31μmにおけるモードフィールド径MFD1.31として、9.2μm程度が好ましい。具体的には、MFD1.31が9.2μm±0.2μm、あるいは8.93μm以上9.4μm以下であることが好ましい。
 コアの屈折率分布は、コア直径の範囲内でピークを1つのみ有する、単峰型であることが好ましい。ここで、単峰型とは、コアの比屈折率差が最大値をとる点が、コア直径の範囲内で1点のみであることを意味する。コア直径の範囲は、コア中心を0として、半径上の座標値が正となる側だけでなく、半径上の座標値が負となる側を含む。もしコアの屈折率分布が同心状であれば、コア中心において比屈折率差が最大値をとる。そこで、コア全体における最大比屈折率差Δmaxと、コアの中心からの距離rが1μm以下の範囲内における最大比屈折率差Δとが等しいことが好ましい。
 光ファイバにおいてコアに光を閉じ込めるには、クラッドに比べてコアの屈折率が高ければよいが、比屈折率差が小さすぎると光の閉じ込めが弱くなる。このため、コア全体における最大比屈折率差Δmaxが0.39%よりも大きいことが好ましい。その反対に、比屈折率差が大きすぎるとドーパントの必要量が増えてコストが増加する。このため、コア全体における最大比屈折率差Δmaxが0.50%よりも小さいことが好ましい。
 光ファイバが曲げ損失の影響を受けにくい場合、光ファイバがシングルモード伝搬を行う波長範囲の下限値であるカットオフ波長が短くなり、シングルモード伝搬の波長範囲が拡大される。そのため、光ファイバのケーブルカットオフ波長λcc(すなわち、22mのカットオフ波長λc22m)は、1260nm以下であることが好ましい。λccは1170nm以上でよい。さらに、波長1.31μmにおけるモードフィールド径MFD1.31とケーブルカットオフ波長λccとの比(MFD1.31/λcc)で表されるMAC値は、7.38以上7.7以下であることがより好ましい。
 以上、本発明を好適な実施形態に基づいて説明してきたが、本発明は上述の実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で種々の改変が可能である。
 石英系光ファイバの製造に使用されるドーパントは、ゲルマニウム(Ge)、リン(P)、フッ素(F)、ホウ素(B)、アルミニウム(Al)等が挙げられる。2種以上のドーパントを使用してもよい。コアおよびクラッドの組成の一例として、コア材料はGe添加シリカ、クラッド材料は純シリカが挙げられる。
 以上、本発明の第1実施形態を説明してきたが、これらは本発明の例示であり、追加、省略、置換、およびその他の変更は、本発明の範囲から逸脱することなく行うことができる。
 以下、実施例をもって本発明を具体的に説明する。
(定義式の導出)
 まず、コア形状及び曲げ損失の関係を確認するために、コア形状が異なるが、ケーブルカットオフ波長λcc、波長1.31μmのMFDが一定となる屈折率分布でシミュレーションを実施した。コア径r1、コア中心部の比屈折率差Δc、半径r1における比屈折率差Δ(r1)を変数として特性を調整した(図12)。
 使用した屈折率分布を図13A~図13Cに示す。図13A~図13Cはそれぞれ、(λcc[μm]/MFD[μm])が順に(1.20/9.00),(1.23/9.15),(1.26/9.3)である。なお、分散値をITU-T G.652.D規格に準拠させるため、クラッド部に若干の低屈折率部(ディプレスト部)を持たせることで屈折率分布によっては調整を行っている。
 これらの屈折率分布における曲げ損失の計算結果を図14A~図14Cに示す。これらの結果からコア中心部の比屈折率差が大きくなるほど(またはコア形状の傾きΔ(r1)/Δcが小さくなるほど)、曲げ損失が小さくなることがわかる。
 しかしながら、実際のプロファイルではズレが生じ、コア中心部の比屈折率差や傾きを用いて表すことが難しい。そこで、シミュレーションで最も曲げ損失が小さくなった屈折率分布(基準屈折率分布)とのズレから、曲げ損失との関係を表現することを見出した。基準屈折率分布はrl=5.45μm、Δc=0.494%、Δ(rl)=0.145%、(Δ(r)=0.064r+0.494(r≦5.45))であり、これを用いてズレを下記のように表した。
Figure JPOXMLDOC01-appb-M000006
(ここで、rの単位はμmであり、比屈折率差Δ(r)の単位は%であり、Δref(r)=-0.064r+0.494であり、MFD1.31は波長1.31μmにおけるモードフィールド径である。)
 図15に基準屈折率分布における規格化した電界強度分布を表す。規格化した電界強度が0.5になる半径はおおよそ0.44×MFD=βとなる位置で、この場合4μmであった。コア中心における光の閉じ込めが曲げ損失に影響を与えると考え、このβより内側の形状でズレを表現している。また、この範囲内でも、内周部(0<r<α=β/12)・外側(α=β/12<r<β)で重み付けをしている。
(光ファイバの作製)
 コア部およびその周囲に設けられたクラッド部を有する光ファイバを作製した。光ファイバは、光ファイバ母材を線引き(紡糸)することで、製造した。光ファイバ母材は、VAD法またはCVD法でコアの全部とクラッドの一部からなるコア部材を作製した後、コア部材の周囲にOVD法で残りのクラッド部を形成する方法で製造した。例1~8ではコア母材をVAD法で作製し、例9ではコア母材をCVD法で作製した。
 得られた光ファイバの屈折率分布を、半径[μm]に対する比屈折率差Δで表す。例1~9の光ファイバの屈折率分布の形状を、それぞれ図3~11に示す。これらのグラフ中、半径[μm]は、コア中心を0[μm]とし、正負いずれの値もとり得る。Aの定義式におけるコアの中心からの距離r[μm]は、半径[μm]の絶対値であり、0または正の値をとる。
 表1に、例1~9の光ファイバの各パラメータを示す。
Figure JPOXMLDOC01-appb-T000007
 Δmaxは、コア全体における最大の比屈折率差[%]である。Δは、コアの中心からの距離rが1μm以下の範囲内(つまり、-1μm≦半径≦1μm)における最大の比屈折率差[%]である。rは、コアの半径[μm]である。コアの中心からの距離rがコア半径rより大きい領域はクラッドであり、クラッドにおける比屈折率差は0である。Δminは、コア全体における最小の比屈折率差[%]である。
 λccは、ケーブルカットオフ波長[μm]である。MFD1.31は、波長1.31μmにおけるモードフィールド径[μm]である。MACは、MFD1.31/λccで表される比の値を表す。曲げ損失は、曲げ半径15mm、波長1.55μmにおける曲げ損失[dB/10turn]である。
 例1~9の光ファイバは、ITU-T G.652.D規格に準拠した特性となっていた。この規格では、MFD1.31が8.6~9.5μm、クラッド径が125.0±1μm、コア偏心量が0.6μm以下、クラッド非円率が1.0%以下、ケーブルカットオフ波長が1260nm以下、マクロベンド損失(波長1625nm、半径30mm、100ターン)が0.1dB以下、ゼロ分散波長λが1300nm以上1324nm以下、ゼロ分散スロープ係数Sが0.092ps/nm×km以下と規定されている。
 前記Aの定義式により、A[%・μm]の値を算出した。例1~9における、Aの値と、曲げ損失(波長1.55μm、半径15mm、10ターン)との関係を、図1のグラフに示す。Aの値が小さくなるにつれ、曲げ損失が小さな値をとる傾向が見出された。表1で、A≦0.3%・μmに該当するのは、例1~6および例9である。
 図1の破線は、α乗屈折率分布(α=3)の光ファイバについて求めた曲げ損失の値を示す。α乗屈折率分布(α=3)の光ファイバでは、曲げ損失が0.034dB/10turn、モードフィールド径MFD1.31が9.2μm、ケーブルカットオフ波長λccが1.20μmであった。これらの結果から、Aの値を0.3%・μm以下とすることにより、α乗屈折率分布(α=3)の光ファイバよりも低曲げ損失の光ファイバが得られることが分かった。
(第2実施形態)
 上記実施形態では、光ファイバ5がコア1とクラッド4とを有する形態を説明したが、クラッド4について、以下の構成を有していてもよい。
 図16に、本発明の第2実施形態に係る光ファイバ10の概略構成を示す。
 光ファイバ10は、中心部に配されるコア1と、コア1の外周側にコア1と同心状に設けられたクラッド4とを有する。
 クラッド4は、少なくとも、コア1の外周側に隣接した内クラッド部2と、内クラッド部2の外周側に形成された外クラッド部3とを有する。
 図17に、光ファイバ10の屈折率分布を模式的に示す。
 コア1の屈折率をΔ1とし、最大屈折率をΔ1maxとする。
 内クラッド部2の屈折率をΔ2とし、最小屈折率をΔ2minとする。
 外クラッド部3の屈折率をΔ3とする。
 コア1の最大屈折率Δ1maxは、コア1の中心から外周までの径方向範囲において最大となるコア1の屈折率である。図17に示す屈折率分布では、コア1の屈折率Δ1は径方向位置にかかわらず一定であるため、屈折率Δ1は全範囲で最大屈折率Δ1maxに等しい。
 内クラッド部2の最小屈折率Δ2minは、内クラッド部2の内周から外周までの径方向範囲において最小となる内クラッド部2の屈折率である。図17に示す屈折率分布では、内クラッド部2の屈折率Δ2は径方向位置にかかわらず一定であるため、屈折率Δ2は全範囲で最小屈折率Δ2minに等しい。
 光ファイバ10では、次の式(11)が成り立つ。
 Δ1max>Δ2min、かつΔ1max>Δ3  ・・・(11)
 式(11)に示すように、コア1の最大屈折率Δ1maxは、内クラッド部2の最小屈折率Δ2minおよび外クラッド部3の屈折率Δ3より大きく設定されている。
 また、光ファイバ10では、内クラッド部2の最小屈折率Δ2minは、外クラッド部3の屈折率Δ3より小さく設定されている。
 光ファイバ10では、さらに、次の式(12)が成り立つ。
 0.01%<|Δ2min-Δ3|<0.03%  ・・・(12)
 式(12)は、内クラッド部2の最小屈折率Δ2minと外クラッド部3の屈折率Δ3との差の絶対値が、0.01%を越え、かつ0.03%未満であることを意味する。
 Δ2minとΔ3との差の絶対値が小さすぎると、曲げ損失を十分に低減できないおそれがある。一方、Δ2minとΔ3との差の絶対値が大きすぎると、モードフィールド径が小さくなり、他の光ファイバ(例えば通常のシングルモード光ファイバ(S-SMF))と接続した際の接続損失が大きくなるおそれがある。
 光ファイバ10では、Δ2minとΔ3との差の絶対値を0.01%を越える範囲とすることによって、曲げ損失を低減することができる。また、Δ2minとΔ3との差の絶対値を0.03%未満とすることによって、モードフィールド径(MFD)を適正化し、他の光ファイバと接続した際の接続損失を低く抑えることができる。
 第1実施形態の光ファイバ10では、Δ1maxと、Δ2minと、Δ3との大小関係に関して、次の式(11A)が成り立つ。
 Δ1max>Δ3>Δ2min  ・・・(11A)
 式(11A)に示すように、コア1の最大屈折率Δ1maxは、外クラッド部3の屈折率Δ3より大きく設定されている。
 外クラッド部3の屈折率Δ3は、内クラッド部2の最小屈折率Δ2minより大きく設定されている。
 Δ3がΔ2minより大きいため、上述の式(12)は、次のように記載することができる。
 0.01%<(Δ3-Δ2min)<0.03%  ・・・(12A)
 式(12A)は、外クラッド部3の屈折率Δ3と内クラッド部2の最小屈折率Δ2minとの差が、0.01%を越え、かつ0.03%未満であることを意味する。
 コア1、内クラッド部2および外クラッド部3の外周半径を、それぞれr1、r2、r3とする。
 コア1と内クラッド部2と外クラッド部3との外周半径r1~r3の間には、次の式(13)に示す関係がある。
 r1<r2<r3  ・・・(13)
 コア1の外周半径r1と内クラッド部2の外周半径r2との比r1/r2は、次の式(14)に示す範囲にある。
 0.2≦r1/r2≦0.5  ・・・(14)
 r1/r2が小さすぎると、モードフィールド径が小さくなり、他の光ファイバ(例えばS-SMF)と接続した際の接続損失が大きくなるおそれがある。一方、r1/r2が大きすぎると、曲げ損失が増大するおそれがある。
 光ファイバ10では、r1/r2を0.2以上とすることによって、モードフィールド径を適正化し、他の光ファイバと接続した際の接続損失を低く抑えることができる。r1/r2を0.5以下とすることによって、曲げ損失を低減することができる。
 光ファイバ10は、ケーブルカットオフ波長λccが1260nm以下とされる。すなわち、次の式(15)が成立する。
 λcc≦1260nm  ・・・(15)
 これによって、ITU-T Recommendation G.652の規定を満足することができる。
 カットオフ波長λccは、例えばITU-T Recommendation G.650に記載の測定法により測定することができる。
 光ファイバ10は、上述の屈折率および外周半径の調整によって、波長1310nmにおけるモードフィールド径(MFD)が、8.6μm以上、かつ9.5μm以下となるように設定される。すなわち、次の式(16)が成立する。
 8.6μm≦MFD≦9.5μm  ・・・(16)
 モードフィールド径をこの範囲にすることによって、他の光ファイバ(例えばS-SMF)と接続した際の接続損失を低く抑えることができる。
 光ファイバ10は、モードフィールド径をこの範囲とすることによって、ITU-T G.652の規定を満たす。
 光ファイバ10は、直径15mmの円筒形のマンドレルに10回巻回したときの波長1550nmにおける損失増加は0.25dB以下となることが好ましい。
 また、直径15mmの円筒形のマンドレルに10回巻回したときの波長1625nmにおける損失増加は1.0dB以下となることが好ましい。
 コア1は、例えばゲルマニウム(Ge)等のドーパントを添加することによって屈折率を高めたシリカガラスで構成することができる。
 内クラッド部2は、例えばフッ素(F)等のドーパントを添加することによって屈折率を低くしたシリカガラスで構成することができる。内クラッド部2は、例えば塩素(Cl)等のドーパントを添加することによって屈折率を高くしたシリカガラスで構成してもよい。
 外クラッド部3は、例えば純粋シリカガラスで構成することができる。外クラッド部3は、ドーパント(例えばGe、Fなど)を添加することによって屈折率を調整してもよい。
 光ファイバ10を構成する各層は、MCVD法、PCVD法、VAD法、OVD法などの公知の方法、またはこれらの組み合わせにより形成することができる。
 例えば、MCVD法を採用する場合には、光ファイバ母材を次のようにして作製することができる。
 外クラッド部3となるシリカガラス管(例えば純粋シリカガラスからなるガラス管)の内側に、例えばフッ素(F)等のドーパントを含む原材料を用いて、内クラッド部2となるガラス堆積層を形成する。内クラッド部2の屈折率はドーパントの添加量によって調整することができる。
 次いで、上記ガラス堆積層の内側に、例えばゲルマニウム(Ge)等のドーパントを含む原材料を用いて、コア1となるガラス堆積層を形成する。なお、コア1は、別途作製したコアロッドを用いて形成することもできる。
 ガラス堆積層が形成されたシリカガラス管は、透明化、中実化などの工程を経て光ファイバ母材とする。この光ファイバ母材を線引きすることによって、図16に示す光ファイバ10を得る。
 CVD法は、ドーパントの添加によって屈折率分布を精度よく調整できる点で好ましい。
 光ファイバ10の製造には、VAD法、OVD法も適用可能である。VAD法、OVD法には、生産性が高いという利点がある。
 光ファイバ10では、内クラッド部2と外クラッド部3の屈折率の差を上記範囲(式(12)を参照)とし、かつコア1と内クラッド部2の外周半径の比を上記範囲(式(14)を参照)とすることによって、他の光ファイバと接続した際の接続損失を低く抑え、かつ曲げ損失を低減できる。
 コアに近い部分のクラッドの屈折率が光ファイバの光学特性に大きな影響を与えることは周知であるが、本発明者は、詳細な検討の結果、モードフィールド径を小さくすることなく、曲げ損失を低減できる屈折率分布を見出した。
 光ファイバ10は、この屈折率分布を採用することにより、他の光ファイバと接続した際の接続損失の抑制と曲げ損失の低減とを両立させている。
 光ファイバ10は、内クラッド部2と外クラッド部3の屈折率の差が小さいため、従来の製造方法(例えば通常のS-SMFの製造方法)を大きく変更することなく利用して、内クラッド部2および外クラッド部3の屈折率を容易に、かつ精度よく調整することができる。
 また、内クラッド部2と外クラッド部3の屈折率の差が小さいため、製造方法に基づく制約が少ない。例えば、屈折率分布の調整に適しているとされるCVD法だけでなく、VAD法、OVD法を採用することもできる。
 従って、光ファイバ10の製造が容易であり、製造コストを低く抑えることができる。
 光ファイバ10は、内クラッド部2と外クラッド部3の屈折率の差が小さいため、内クラッド部2を形成するためのフッ素(F)、塩素(Cl)等のドーパントの添加量を削減できる。
 フッ素(F)等のドープに用いられる原料ガス(例えばSiF)は高価であるため、ドーパント添加量の削減によって、原料コストを抑制し、製造コストを低く抑えることができる。
 光ファイバ10は、図17に示すように、内クラッド部2の最小屈折率Δ2minが外クラッド部3の屈折率Δ3より小さいため、コア1への光の閉じ込めが良好であり、曲げ損失を低減できる。
(第3実施形態)
 本発明の実施形態において、光ファイバはさらに以下の構成を有していてもよい。
 図18に、本発明の第2実施形態に係る光ファイバ20の概略構成を示す。
 光ファイバ20は、中心部に配されるコア1と、コア1の外周側にコア1と同心状に設けられたクラッド14とを有する。
 クラッド14は、少なくとも、コア1の外周側に隣接した内クラッド部12と、内クラッド部12の外周側に形成された外クラッド部13とを有する。
 図19に、光ファイバ20の屈折率分布を模式的に示す。
 コア1の屈折率をΔ1とし、最大屈折率をΔ1maxとする。内クラッド部12の屈折率をΔ2とし、最小屈折率をΔ2minとする。外クラッド部13の屈折率をΔ3とする。
 光ファイバ20では、第1実施形態の光ファイバ10と同様に、次の式(17)が成り立つ。
 Δ1max>Δ2min、かつΔ1max>Δ3  ・・・(17)
 光ファイバ20では、内クラッド部12の最小屈折率Δ2minが、外クラッド部13の屈折率Δ3より大きくされている点で、第1実施形態の光ファイバ10と異なる。
 光ファイバ20では、第1実施形態の光ファイバ10と同様に、次の式(18)が成り立つ。
 0.01%<|Δ2min-Δ3|<0.03%  ・・・(18)
 Δ2minとΔ3との差の絶対値を上記範囲とすることによって、モードフィールド径(MFD)を適正化し、他の光ファイバと接続した際の接続損失を低く抑え、かつ曲げ損失を低減することができる。
 コア1と内クラッド部12と外クラッド部13との外周半径r1~r3の間には、第1実施形態の光ファイバ10と同様に、次の式(19)、(20)に示す関係がある。
 r1<r2<r3  ・・・(19)
 0.2≦r1/r2≦0.5  ・・・(20)
 r1/r2を0.2以上とすることによって、モードフィールド径を適正化し、他の光ファイバと接続した際の接続損失を低く抑え、かつ曲げ損失を低減することができる。
 光ファイバ20は、第1実施形態の光ファイバ10と同様に、ケーブルカットオフ波長λccが1260nm以下とされる。
 また、波長1310nmにおけるモードフィールド径(MFD)は、8.6μm以上、かつ9.5μm以下とされる。
 光ファイバ20は、直径15mmの円筒形のマンドレルに10回巻回したときの波長1550nmにおける損失増加は0.25dB以下となることが好ましい。また、直径15mmの円筒形のマンドレルに10回巻回したときの波長1625nmにおける損失増加は1.0dB以下となることが好ましい。
 コア1は、例えばゲルマニウム(Ge)等のドーパントを添加することによって屈折率を高めたシリカガラスで構成することができる。
 内クラッド部12は、例えば純粋シリカガラスで構成することができる。内クラッド部12は、例えば塩素(Cl)等のドーパントを添加することによって屈折率を調整してもよい。
 外クラッド部13は、例えば純粋シリカガラスで構成することができる。外クラッド部3は、例えばフッ素(F)等のドーパントを添加することによって屈折率を低くしたシリカガラスで構成してもよい。
 光ファイバ20は、第1実施形態の光ファイバ10と同様に、MCVD法、PCVD法、VAD法、OVD法などにより製造することができる。
 例えば、MCVD法を採用する場合には、光ファイバ母材を次のようにして作製することができる。
 外クラッド部13となるシリカガラス管(例えばフッ素(F)等のドーパントを含むシリカガラス管)の内側に、純粋シリカガラスなどの原材料を用いて、内クラッド部12となるガラス堆積層を形成する。
 次いで、ガラス堆積層の内側に、例えばゲルマニウム(Ge)等のドーパントを含む原材料を用いて、コア1となるガラス堆積層を形成する。なお、コア1は、別途作製したコアロッドを用いて形成することもできる。
 ガラス堆積層が形成されたシリカガラス管は、透明化、中実化などの工程を経て光ファイバ母材とする。この光ファイバ母材を線引きすることによって、図18に示す光ファイバ20を得る。
 光ファイバ20では、内クラッド部12と外クラッド部13の屈折率の差を上記範囲とし、かつコア1と内クラッド部12の外周半径の比を上記範囲とすることによって、他の光ファイバと接続した際の接続損失を低く抑え、かつ曲げ損失を低減できる。
 光ファイバ20は、従来の製造方法を大きく変更せずに利用できるため、製造が容易であり、製造コストを低く抑えることができる。
 以上、本発明の好ましい実施形態を説明したが、これらは本発明の例示であり、追加、省略、置換、およびその他の変更は、本発明の範囲から逸脱することなく行うことができる。
 例えば、図17、図19に示す光ファイバ10,20では、クラッド4,14は2つのクラッド部(内クラッド部および外クラッド部)からなるが、クラッドは、内クラッド部および外クラッド部以外の層を有していてもよい。
(第4実施形態)
 本発明の実施形態において、光ファイバはさらに以下の構成を有していてもよい。
 図20に、本発明の第4実施形態に係る光ファイバ30の概略構成を示す。
 光ファイバ30は、中心部に配されるコア21と、コア21の外周側にコア21と同心状に設けられたクラッド25とを有する。
 クラッド25は、少なくとも、コア21の外周側に隣接した内クラッド部22と、内クラッド部22の外周側に隣接して形成されたトレンチ部23と、トレンチ部23の外周側に形成された外クラッド部24とを有する。
 図21に、光ファイバ30の屈折率分布を模式的に示す。
 コア21の屈折率をΔ1とし、最大屈折率をΔ1maxとする。
 内クラッド部22の屈折率をΔ2とし、最小屈折率をΔ2minとする。
 トレンチ部23の屈折率をΔ3とし、最小屈折率をΔ3minとする。
 外クラッド部24の屈折率をΔ4とする。
 コア21の最大屈折率Δ1maxは、コア21の中心から外周までの径方向範囲において最大となるコア21の屈折率である。図21に示す屈折率分布では、コア21の屈折率Δ1は径方向位置にかかわらず一定であるため、屈折率Δ1は全範囲で最大屈折率Δ1maxに等しい。
 内クラッド部22の最小屈折率Δ2minは、内クラッド部22の内周から外周までの径方向範囲において最小となる内クラッド部22の屈折率である。図21に示す屈折率分布では、内クラッド部22の屈折率Δ2は径方向位置にかかわらず一定であるため、屈折率Δ2は全範囲で最小屈折率Δ2minに等しい。
 トレンチ部23の最小屈折率Δ3minは、トレンチ部23の内周から外周までの径方向範囲において最小となるトレンチ部23の屈折率である。図21に示す屈折率分布では、トレンチ部23の屈折率Δ3は径方向位置にかかわらず一定であるため、屈折率Δ3は全範囲で最小屈折率Δ3minに等しい。
 光ファイバ30では、次の式(21)が成り立つ。
 Δ1max>Δ2>Δ3min  ・・・(21)
 式(21)に示すように、コア21の最大屈折率Δ1maxは、内クラッド部22の屈折率Δ2より大きく設定されている。
 内クラッド部22の屈折率Δ2は、トレンチ部23のΔ3minより大きく設定されている。
 光ファイバ30では、さらに、次の式(22)が成り立つ。
 Δ1max>Δ4>Δ3min  ・・・(22)
 式(22)に示すように、コア21の最大屈折率Δ1maxは、外クラッド部24の屈折率Δ4より大きく設定されている。
 外クラッド部24の屈折率Δ4は、トレンチ部23のΔ3minより大きく設定されている。
 光ファイバ30では、さらに、次の式(23)が成り立つ。
 0.01%<(Δ4-Δ3min)<0.03%  ・・・(23)
 式(23)は、外クラッド部24の屈折率Δ4とトレンチ部23の最小屈折率Δ3minとの差が、0.01%を越え、かつ0.03%未満であることを意味する。
 Δ4とΔ3minとの差が小さすぎると、曲げ損失を十分に低減できないおそれがある。一方、Δ4とΔ3minとの差が大きすぎると、モードフィールド径が小さくなり、他の光ファイバ(例えば通常のシングルモード光ファイバ(S-SMF))と接続した際の接続損失が大きくなるおそれがある。
 光ファイバ30では、Δ4とΔ3minとの差を0.01%を越える範囲とすることによって、曲げ損失を低減することができる。また、Δ4とΔ3minとの差を0.03%未満とすることによって、モードフィールド径(MFD)を適正化し、他の光ファイバと接続した際の接続損失を低く抑えることができる。
 コア21、内クラッド部22、トレンチ部23および外クラッド部24の外周半径を、それぞれr1、r2、r3、r4とする。
 コア21と内クラッド部22とトレンチ部23と外クラッド部24との外周半径r1~r4の間には、次の式(24)に示す関係がある。
 r1≦r2<r3<r4  ・・・(24)
 内クラッド部22の外周半径r2とコア21の外周半径r1との比r2/r1は、次の式(25)に示す範囲にある。
 1≦r2/r1≦5  ・・・(25)
 r2/r1が小さすぎると、曲げ損失が増大するおそれがある。一方、r2/r1が大きすぎると、モードフィールド径が小さくなり、他の光ファイバ(例えばS-SMF)と接続した際の接続損失が大きくなるおそれがある。
 光ファイバ30では、r2/r1を1以上とすることによって、曲げ損失を低減することができる。r2/r1を5以下とすることによって、モードフィールド径を適正化し、他の光ファイバと接続した際の接続損失を低く抑えることができる。
 トレンチ部23の外周半径r3と内クラッド部22の外周半径r2との比r3/r2は、次の式(26)に示す範囲にある。
 1<r3/r2≦2  ・・・(26)
 r3/r2が小さすぎると、曲げ損失が増大するおそれがある。一方、r3/r2が大きすぎると、モードフィールド径が小さくなり、他の光ファイバ(例えばS-SMF)と接続した際の接続損失が大きくなるおそれがある。
 光ファイバ30では、r3/r2を1より大きくとすることによって、曲げ損失を低減することができる。r3/r2を2以下とすることによって、モードフィールド径を適正化し、他の光ファイバと接続した際の接続損失を低く抑えることができる。
 光ファイバ30は、ケーブルカットオフ波長λccが1260nm以下とされる。
すなわち、次の式(27)が成立する。
 λcc≦1260nm  ・・・(27)
 これによって、ITU-T Recommendation G.652の規定を満足することができる。
 ケーブルカットオフ波長λccは、例えばITU-T Recommendation G.650に記載の測定法により測定することができる。
 光ファイバ30は、上述の屈折率および外周半径の調整によって、波長1310nmにおけるモードフィールド径(MFD)が、8.6μm以上、かつ9.5μm以下となるように設定される。すなわち、次の式(28)が成立する。
 8.6μm≦MFD≦9.5μm  ・・・(28)
 モードフィールド径をこの範囲にすることによって、他の光ファイバ(例えばS-SMF)と接続した際の接続損失を低く抑えることができる。
 光ファイバ30は、モードフィールド径をこの範囲とすることによって、ITU-T G.652の規定を満たす。
 光ファイバ30は、直径15mmの円筒形のマンドレルに10回巻回したときの波長1550nmにおける損失増加は0.25dB以下となることが好ましい。
 また、直径15mmの円筒形のマンドレルに10回巻回したときの波長1625nmにおける損失増加は1.0dB以下となることが好ましい。
 コア21は、例えばゲルマニウム(Ge)等のドーパントを添加することによって屈折率を高めたシリカガラスで構成することができる。
 内クラッド部22およびトレンチ部23は、例えばフッ素(F)等のドーパントを添加することによって屈折率を低くしたシリカガラスで構成することができる。
 外クラッド部24は、例えば純粋シリカガラスで構成することができる。外クラッド部24は、ドーパント(例えばGe、Fなど)を添加することによって屈折率を調整してもよい。
 光ファイバ30を構成する各層は、MCVD法、PCVD法、VAD法、OVD法などの公知の方法、またはこれらの組み合わせにより形成することができる。
 例えば、MCVD法を採用する場合には、光ファイバ母材を次のようにして作製することができる。
 外クラッド部24となるシリカガラス管(例えば純粋シリカガラスからなるガラス管)の内側に、例えばフッ素(F)等のドーパントを含む原材料を用いて、トレンチ部23となるガラス堆積層を形成する。
 前記ガラス堆積層の内側に、例えばフッ素(F)等のドーパントを含む原材料を用いて、内クラッド部22となるガラス堆積層を形成する。
 トレンチ部23および内クラッド部22の屈折率はドーパントの添加量によって調整することができる。
 次いで、ガラス堆積層の内側に、例えばゲルマニウム(Ge)等のドーパントを含む原材料を用いて、コア21となるガラス堆積層を形成する。なお、コア21は、別途作製したコアロッドを用いて形成することもできる。
 ガラス堆積層が形成されたシリカガラス管は、透明化、中実化などの工程を経て光ファイバ母材とする。この光ファイバ母材を線引きすることによって、図20に示す光ファイバ30を得る。
 CVD法は、ドーパントの添加によって屈折率分布を精度よく調整できる点で好ましい。
 光ファイバ30の製造には、VAD法、OVD法も適用可能である。VAD法、OVD法には、生産性が高いという利点がある。
 光ファイバ30では、トレンチ部23と外クラッド部24の屈折率の差を前記範囲(式(23)を参照)とし、かつコア21、内クラッド部22、およびトレンチ部23の外周半径の比を前記範囲(式(25)~(27)を参照)とすることによって、他の光ファイバと接続した際の接続損失を低く抑え、かつ曲げ損失を低減できる。
 コアに近い部分のクラッドの屈折率が光ファイバの光学特性に大きな影響を与えることは周知であるが、本発明者は、詳細な検討の結果、モードフィールド径を小さくすることなく、曲げ損失を低減できる屈折率分布を見出した。
 光ファイバ30は、この屈折率分布を採用することにより、他の光ファイバと接続した際の接続損失の抑制と曲げ損失の低減とを両立させた点に技術的意義がある。
 光ファイバ30は、トレンチ部23と外クラッド部24の屈折率の差が小さいため、従来の製造方法(例えば通常のS-SMFの製造方法)を大きく変更することなく利用して、トレンチ部23および外クラッド部24の屈折率を容易に、かつ精度よく調整することができる。
 また、トレンチ部23と外クラッド部24の屈折率の差が小さいため、製造方法に基づく制約が少ない。例えば、屈折率分布の調整に適しているとされるCVD法だけでなく、VAD法、OVD法を採用することもできる。
 従って、光ファイバ30の製造が容易であり、製造コストを低く抑えることができる。
 光ファイバ30は、トレンチ部23と外クラッド部24の屈折率の差が小さいため、トレンチ部23を形成するためのフッ素(F)等のドーパントの添加量を削減できる。
 フッ素(F)等のドープに用いられる原料ガス(例えばSiF)は高価であるため、ドーパント添加量の削減によって、原料コストを抑制し、製造コストを低く抑えることができる。
 上述のように、コア21と内クラッド部22とトレンチ部23と外クラッド部24との外周半径r1~r4の間には、式(24)に示す関係がある。
 r1≦r2<r3<r4  ・・・(24)
 図20および図21に示す光ファイバ30では、r1とr2とr3とは互いに異なる値であるが、本発明は、r1=r2、かつr2≠r3の場合を含む。
 図22は、本発明の他の実施形態の光ファイバの屈折率分布図であり、r1=r2、かつr2≠r3の場合を示す。
 この光ファイバでは、r1とr2とが等しいため、クラッド25は、トレンチ部23と、トレンチ部23の外周側に形成された外クラッド部24のみからなる。
 以上、本発明の好ましい実施形態を説明したが、これらは本発明の例示であり、追加、省略、置換、およびその他の変更は、本発明の範囲から逸脱することなく行うことができる。
 例えば、図20に示す光ファイバ30では、クラッド25は3つの層(内クラッド部、トレンチ部および外クラッド部)からなるが、クラッドは、これら以外の層を有していてもよい。
1、5、21…コア 2、12、22…内クラッド部 3、13、24…外クラッド部 4、14…クラッド 23…トレンチ部 10、20、30…光ファイバ Δ…比屈折率差。

Claims (9)

  1.  コアと、前記コアの外周を取り囲むクラッドと、を備え、
     前記コアの中心からの距離rに対する比屈折率差がΔ(r)で表される屈折率分布を有し、
    Figure JPOXMLDOC01-appb-M000001
    (ここで、rの単位はμmであり、比屈折率差Δ(r)の単位は%であり、Δref(r)=-0.064r+0.494であり、MFD1.31は波長1.31μmにおけるモードフィールド径である。)で表されるAの値が、0.3%・μm以下である、光ファイバ。
  2.  波長1.31μmにおけるモードフィールド径MFD1.31が8.93μm以上9.4μm以下である、請求項1に記載の光ファイバ。
  3.  コア全体における最大比屈折率差Δmaxと、コアの中心からの距離rが1μm以下の範囲内における最大比屈折率差Δとが等しい、請求項1または2に記載の光ファイバ。
  4.  コア全体における最大比屈折率差Δmaxが0.39%よりも大きい、請求項1~3のいずれか1項に記載の光ファイバ。
  5.  コア全体における最大比屈折率差Δmaxが0.50%よりも小さい、請求項1~4のいずれか1項に記載の光ファイバ。
  6.  ケーブルカットオフ波長λccが1260nm以下である、請求項1~5のいずれか1項に記載の光ファイバ。
  7.  ケーブルカットオフ波長λccが1170nm以上である、請求項1~6のいずれか1項に記載の光ファイバ。
  8.  波長1.31μmにおけるモードフィールド径MFD1.31とケーブルカットオフ波長λccとの比、MFD1.31/λccで表されるMAC値が7.38以上7.7以下である、請求項1~7のいずれか1項に記載の光ファイバ。
  9.  コアの中心からの距離rに対する比屈折率差がΔ(r)で表される屈折率分布を有する、請求項1~8のいずれか1項に記載の光ファイバの製造方法であって、
    Figure JPOXMLDOC01-appb-M000002
    (ここで、rの単位はμmであり、比屈折率差Δ(r)の単位は%であり、Δref(r)=-0.064r+0.494であり、MFD1.31は波長1.31μmにおけるモードフィールド径である。)で表されるAの値を算出する工程と、前記Aの値が、0.3%・μm以下であることを確認する工程を有する、光ファイバの製造方法。
PCT/JP2015/076899 2014-09-26 2015-09-24 光ファイバおよびその製造方法 WO2016047675A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP15844942.1A EP3199992A4 (en) 2014-09-26 2015-09-24 Optical fiber and method for manufacturing same
US15/514,090 US10067287B2 (en) 2014-09-26 2015-09-24 Optical fiber and method of manufacturing the same
CN201580051121.1A CN106716198B (zh) 2014-09-26 2015-09-24 光纤及其制造方法
JP2016550352A JP6393338B2 (ja) 2014-09-26 2015-09-24 光ファイバおよびその製造方法

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2014-195937 2014-09-26
JP2014195938 2014-09-26
JP2014195937 2014-09-26
JP2014-195938 2014-09-26
JP2014249846 2014-12-10
JP2014-249846 2014-12-10

Publications (1)

Publication Number Publication Date
WO2016047675A1 true WO2016047675A1 (ja) 2016-03-31

Family

ID=55581198

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/076899 WO2016047675A1 (ja) 2014-09-26 2015-09-24 光ファイバおよびその製造方法

Country Status (5)

Country Link
US (1) US10067287B2 (ja)
EP (1) EP3199992A4 (ja)
JP (1) JP6393338B2 (ja)
CN (1) CN106716198B (ja)
WO (1) WO2016047675A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109716184B (zh) * 2016-07-20 2022-12-02 罗切斯特大学 用于抑制热模式不稳定性的lma光纤
JP6911307B2 (ja) * 2016-09-13 2021-07-28 住友電気工業株式会社 光ファイバおよび光ファイバ心線
US11048039B2 (en) * 2018-02-13 2021-06-29 Fujikura Ltd. Optical fiber
US11714227B2 (en) * 2019-06-17 2023-08-01 Sterlite Technologies Limited Universal optical fiber
CN115128728B (zh) * 2022-06-01 2023-09-26 长飞光纤光缆股份有限公司 一种分布式声波振动传感光纤及声波振动监测系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07209539A (ja) * 1993-12-27 1995-08-11 Corning Inc シングルモ−ド光導波路ファイバおよび光ファイバ・コアプリフォ−ムを作成する方法
WO2006049279A1 (ja) * 2004-11-05 2006-05-11 Fujikura Ltd. 光ファイバ及び伝送システム並びに波長多重伝送システム
WO2006118362A1 (en) * 2005-04-29 2006-11-09 Ls Cable Ltd. Optical fiber with low stimulated brillouin scattering, and optical transmission line and optical transmission system using the same
JP2008547049A (ja) * 2005-06-15 2008-12-25 コーニング インコーポレイテッド アルミニウムドーパントを含む高sbs閾値光ファイバ
JP2013512463A (ja) * 2009-11-25 2013-04-11 コーニング インコーポレイテッド 低損失光ファイバ

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4852968A (en) 1986-08-08 1989-08-01 American Telephone And Telegraph Company, At&T Bell Laboratories Optical fiber comprising a refractive index trench
WO1999034243A1 (en) 1997-12-30 1999-07-08 Samsung Electronics Co., Ltd. Single mode optical fiber
EP0999189B1 (en) 1998-11-05 2005-03-30 Shin-Etsu Chemical Co., Ltd. Process and apparatus for drawing a preform and for drawing an optical fibre from the drawn preform
JP3437484B2 (ja) 1999-03-19 2003-08-18 信越化学工業株式会社 光ファイバプリフォームの製造方法及び装置
JP2000205999A (ja) 1999-01-08 2000-07-28 Fujikura Ltd 光ファイバ測定装置
NL1018338C2 (nl) 2001-06-20 2002-12-30 Draka Fibre Technology Bv Optische vezel.
JP3986842B2 (ja) 2001-07-26 2007-10-03 株式会社フジクラ ノンゼロ分散シフト光ファイバ用光ファイバ母材の製法
KR100419418B1 (ko) 2002-04-03 2004-02-21 삼성전자주식회사 분산 제어 광섬유
KR100506311B1 (ko) 2003-01-20 2005-08-05 삼성전자주식회사 광대역 분산 제어 광섬유
CN100507621C (zh) 2003-04-17 2009-07-01 日本电信电话株式会社 带空孔型单模光纤
CN100476469C (zh) 2004-04-28 2009-04-08 Ls电线有限公司 具有改进的弯曲性能的光纤
WO2006016572A1 (ja) 2004-08-10 2006-02-16 Fujikura Ltd. シングルモード光ファイバ
DK1788411T3 (en) 2004-08-30 2014-03-17 Fujikura Ltd Single-mode optical fiber
JP4268115B2 (ja) 2004-10-28 2009-05-27 古河電気工業株式会社 シングルモード光ファイバ
JP4101227B2 (ja) 2004-11-05 2008-06-18 古河電気工業株式会社 光ファイバおよびそれに用いる光ファイバの製造方法
CN100545686C (zh) * 2004-11-05 2009-09-30 株式会社藤仓 光纤和传输系统以及波分复用传输系统
KR100668284B1 (ko) 2004-12-14 2007-01-16 한국전자통신연구원 S밴드 분리형 라만 증폭기를 위한 분산보상광섬유
JP4417286B2 (ja) 2005-04-13 2010-02-17 日本電信電話株式会社 ホーリーファイバおよび光ファイバモジュール
US7764854B2 (en) 2005-12-27 2010-07-27 Ofs Fitel Llc Optical fiber with specialized index profile to compensate for bend-induced distortions
US7406237B2 (en) 2006-02-21 2008-07-29 Corning Incorporated Multiband optical fiber
US7505660B2 (en) 2006-06-30 2009-03-17 Corning Incorporated Microstructured transmission optical fiber
US20080050086A1 (en) 2006-08-24 2008-02-28 Scott Robertson Bickham Optical fiber containing alkali metal oxide
US7689085B1 (en) 2009-01-30 2010-03-30 Corning Incorporated Large effective area fiber with GE-free core
US8542969B2 (en) 2010-02-26 2013-09-24 Corning Incorporated Low bend loss optical fiber
DK2369379T3 (en) 2010-03-17 2015-06-08 Draka Comteq Bv Single-mode optical fiber having reduced bending losses
US9279935B2 (en) 2010-12-23 2016-03-08 Prysmian S.P.A. Low macrobending loss single-mode optical fibre
EP2745152A1 (en) 2011-08-19 2014-06-25 Corning Incorporated Low bend loss optical fiber
KR101273801B1 (ko) 2011-10-17 2013-06-11 에쓰이에이치에프코리아 (주) 구부림 손실 강화 광섬유
US8588569B2 (en) 2011-11-30 2013-11-19 Corning Incorporated Low bend loss optical fiber
WO2014038512A1 (ja) 2012-09-04 2014-03-13 住友電気工業株式会社 光ファイバ
US9383511B2 (en) 2013-05-02 2016-07-05 Corning Incorporated Optical fiber with large mode field diameter and low microbending losses

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07209539A (ja) * 1993-12-27 1995-08-11 Corning Inc シングルモ−ド光導波路ファイバおよび光ファイバ・コアプリフォ−ムを作成する方法
WO2006049279A1 (ja) * 2004-11-05 2006-05-11 Fujikura Ltd. 光ファイバ及び伝送システム並びに波長多重伝送システム
WO2006118362A1 (en) * 2005-04-29 2006-11-09 Ls Cable Ltd. Optical fiber with low stimulated brillouin scattering, and optical transmission line and optical transmission system using the same
JP2008547049A (ja) * 2005-06-15 2008-12-25 コーニング インコーポレイテッド アルミニウムドーパントを含む高sbs閾値光ファイバ
JP2013512463A (ja) * 2009-11-25 2013-04-11 コーニング インコーポレイテッド 低損失光ファイバ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3199992A4 *

Also Published As

Publication number Publication date
CN106716198A (zh) 2017-05-24
JP6393338B2 (ja) 2018-09-19
CN106716198B (zh) 2019-06-21
US20170336558A1 (en) 2017-11-23
US10067287B2 (en) 2018-09-04
EP3199992A1 (en) 2017-08-02
JPWO2016047675A1 (ja) 2017-06-01
EP3199992A4 (en) 2018-06-27

Similar Documents

Publication Publication Date Title
JP7094915B2 (ja) 光ファイバ
KR101908735B1 (ko) 단일 모드 광 섬유
JP3853833B2 (ja) 光ファイバ
JP6236386B2 (ja) マルチモード光ファイバ及びこのファイバを内蔵したシステム
JP6393338B2 (ja) 光ファイバおよびその製造方法
JP6155380B2 (ja) 光ファイバ及びその製造方法
JP5222752B2 (ja) 光ファイバ
JP2021503630A (ja) 2種類以上のハロゲンが共ドープされたコアを有する低損失の光ファイバ
JP6268758B2 (ja) 光ファイバ
EP3657223B1 (en) Optical fiber and method for producing same
US10422948B2 (en) Optical fiber and method of manufacturing the same
US11714228B2 (en) Optical fiber and method of manufacturing optical fiber
WO2023112968A1 (ja) 光ファイバ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15844942

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016550352

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15514090

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015844942

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015844942

Country of ref document: EP