WO2006016572A1 - シングルモード光ファイバ - Google Patents

シングルモード光ファイバ Download PDF

Info

Publication number
WO2006016572A1
WO2006016572A1 PCT/JP2005/014560 JP2005014560W WO2006016572A1 WO 2006016572 A1 WO2006016572 A1 WO 2006016572A1 JP 2005014560 W JP2005014560 W JP 2005014560W WO 2006016572 A1 WO2006016572 A1 WO 2006016572A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
loss
mfd
wavelength
bending
Prior art date
Application number
PCT/JP2005/014560
Other languages
English (en)
French (fr)
Inventor
Shoichiro Matsuo
Kuniharu Himeno
Original Assignee
Fujikura Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd. filed Critical Fujikura Ltd.
Priority to CN2005800266377A priority Critical patent/CN101006371B/zh
Priority to EP05770416A priority patent/EP1777559A4/en
Priority to JP2006531645A priority patent/JPWO2006016572A1/ja
Priority to KR1020077003024A priority patent/KR100848960B1/ko
Publication of WO2006016572A1 publication Critical patent/WO2006016572A1/ja
Priority to US11/673,471 priority patent/US7366387B2/en
Priority to US11/951,005 priority patent/US7505657B2/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • G02B6/03605Highest refractive index not on central axis
    • G02B6/03611Highest index adjacent to central axis region, e.g. annular core, coaxial ring, centreline depression affecting waveguiding
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02004Optical fibres with cladding with or without a coating characterised by the core effective area or mode field radius
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • G02B6/03616Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference
    • G02B6/03622Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 2 layers only
    • G02B6/03627Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 2 layers only arranged - +
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • G02B6/03616Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference
    • G02B6/03622Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 2 layers only
    • G02B6/03633Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 2 layers only arranged - -
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • G02B6/03616Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference
    • G02B6/03638Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 3 layers only
    • G02B6/03644Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 3 layers only arranged - + -
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • G02B6/03616Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference
    • G02B6/03638Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 3 layers only
    • G02B6/0365Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 3 layers only arranged - - +
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • G02B6/03616Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference
    • G02B6/03661Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 4 layers only
    • G02B6/03666Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 4 layers only arranged - + - +
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/028Optical fibres with cladding with or without a coating with core or cladding having graded refractive index
    • G02B6/0281Graded index region forming part of the central core segment, e.g. alpha profile, triangular, trapezoidal core

Definitions

  • the present invention is a single-mode optical fiber (hereinafter referred to as “optical fiber”) having excellent bending characteristics and connection characteristics that can be suitably used as an optical fiber that is particularly required to have low bending loss, such as optical access and small component applications. SMF)).
  • optical fiber single-mode optical fiber having excellent bending characteristics and connection characteristics that can be suitably used as an optical fiber that is particularly required to have low bending loss, such as optical access and small component applications. SMF).
  • WDM Widelength Division Multiplexing
  • Optical fibers for WDM transmission have been required to have characteristics such as suppression of nonlinear effects and dispersion control.
  • optical fibers with a reduced dispersion slope and optical fibers with little increase in loss due to OH have been proposed for systems with a span of several hundred km called metro.
  • Patent Document 1 US Patent Application Publication No. 2004Z0213531
  • Patent Document 2 International Publication No. WO01Z27667 Pamphlet
  • Tokubori 1 1. Sakabe, et al., Enhanced Bending Loss Insensitive Fiber and New Cables for CWDM Access Network, "Proceedings of the 53rd IWCS, pp.112—118 (2 004)
  • Non-Patent Document 2 S. Matsuo et al, “Bend ⁇ insensitive and low— splice— loss optical fiber for indoor wiring in FTTH”, OFC2004, ThI3
  • Non-Patent Document 3 Sato et al. Fiber ", 2003 IEICE Society Conference, B-10-30
  • Non-Patent Document 4 Ikeda et al., "Connection Loss-Reducing Low Bending Loss Optical Fiber", IEICE Technical Report, OCS2003-43
  • Non-Patent Document 5 Zhou et al., “Study on Application of Photonic Crystal Fiber to Home and Building Wiring”, IEICE Technical Report, OFT2002—81
  • Non-Patent Document 6 Tora et al., "A Study on Practical Use of Holey Fiber", IEICE Technical Report, OFT2002-82
  • the SMF with enhanced bending characteristics has a problem of deteriorating the connection characteristics that the MFD is small.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide an SMF in which loss characteristics are optimized in a line where small-diameter bending is assumed.
  • the present invention has a predetermined MFD (MFD m)) at the first wavelength ⁇ (m), is measured at the second wavelength m), and has a bending radius r ( mm)
  • the bending loss is 1 L (dB) per turn (1 turn), and the first wavelength is m) b 1
  • the splice loss with an optical fiber with a given MFD (m) is at the second wavelength (/ z m).
  • the present invention also has a predetermined MFD (MFD m)) at the first wavelength m), is measured at the second wavelength m), and is bent when wound at a bending radius r (mm). 1 loss
  • connection loss L is preferably 0.5 dB or less.
  • the amount of change of the total loss factor L when the MFD changes by ⁇ 0.3 ⁇ m is 0.4 dB or less. If the fluctuation amount is 0.2 dB or less, it is more desirable.
  • the bending radius r is preferably less than 15 mm.
  • the bending radius r is 10 mm
  • the second wavelength is 1550 nm.
  • the bending loss L is preferably 0.05 dB or less.
  • the bending loss L is preferably 0.05 dB or less.
  • the SMF of the present invention includes a central core having a radius r and a refractive index n, and a cladding having a substantially constant refractive index n surrounding the central core, and preferably n> n.
  • a trench having a radius r and a refractive index n, and an outer periphery of the trench.
  • MFD is an international standard IT
  • connection loss is a connection loss measured by mechanically splicing each optical fiber.
  • connection loss is a connection loss measured by fusion splicing each optical fiber.
  • connection loss is a connection loss measured by connecting each optical fiber with a connector.
  • the cladding diameter is preferably within 125 m ⁇ l m.
  • the median force of the diameter of the clad is preferably in the range of 0 ⁇ m to 100 ⁇ m.
  • the present invention has a predetermined MFD (MFD m)) at the first wavelength m), is measured at the second wavelength m), and is bent at a bending radius r (mm). 1 loss
  • connection loss with an optical fiber having a predetermined MFD (MFD (; zm)) b 1 2i at the first wavelength m) is connected at the second wavelength m) L per point
  • the SMF is (dB), and the MFD dependence of the total loss factor L calculated by the following equation (A) is minimal within the range of MFD ⁇ 0.5 ⁇ m.
  • n is the number of optical fibers connected to the SMF of the present invention, is a dimensionless weighting factor, and L is the connection loss (dB) between the SMF of the present invention and the i th optical fiber.
  • the present invention has a predetermined MFD (MFD m)) at the first wavelength m), is measured at the second wavelength m), and is bent at a bending radius r (mm). 1 loss
  • n is the number of optical fibers connected to the SMF of the present invention
  • n is the number of connections between the SMF of the present invention and the i th optical fiber
  • L is the SMF of the present invention and the i th optical fiber. Represents the splice loss (dB).
  • connection loss L 0.1 dB or less! /.
  • the SMF of the present invention can realize stable optical transmission with a small amount of loss variation with respect to a change in state under use conditions in which loss generation due to connection between a small-diameter bend and a normal SMF should be considered. it can.
  • the SMF of the present invention has a configuration in which loss characteristics are optimal in a line where small-diameter bending is assumed, it is an SMF that requires low bending loss especially for small-diameter applications such as optical access and small component applications. It can be used suitably.
  • FIG. 1 is a graph showing a unimodal refractive index profile of the SMF of the present invention.
  • FIG. 3A is a schematic configuration diagram showing a connection structure assumed in home wiring.
  • FIG. 3B is a schematic configuration diagram showing a connection structure assumed in home wiring.
  • FIG. 4 is a graph of the connection loss MFD dependence showing the results of Example 1.
  • FIG. 5 is a graph showing the MFD dependence of the total loss factor showing the results of Example 1.
  • FIG. 6 is a graph showing the MFD dependence of the total loss factor showing the results of Example 1.
  • FIG. 8 is a graph of the MFD dependence of the total loss factor showing the results of Example 2.
  • FIG. 9 is a graph of the MFD dependence of the total loss factor showing the results of Example 2.
  • FIG. 10 is a graph showing a trench type refractive index profile of the SMF of the present invention.
  • FIG. 12 is a graph showing the MFD dependence of the total loss factor showing the results of Example 3.
  • FIG. 13 is a graph showing the MFD dependence of the total loss factor showing the results of Example 3.
  • FIG. 15 is a graph showing the MFD dependence of the total loss factor showing the results of Example 4.
  • FIG. 16 is a graph showing the MFD dependence of the total loss factor showing the results of Example 4.
  • FIG. 17A is a graph illustrating another refractive index profile of the SMF of the present invention.
  • FIG. 17B is a graph illustrating another refractive index profile of the SMF of the present invention.
  • FIG. 17C is a graph illustrating another refractive index profile of the SMF of the present invention.
  • FIG. 17D is a graph illustrating another refractive index profile of the SMF of the present invention.
  • FIG. 17E is a graph illustrating another refractive index profile of the SMF of the present invention.
  • FIG. 17F is a graph illustrating another refractive index profile of the SMF of the present invention.
  • the first embodiment of the SMF of the present invention has a predetermined MFD (M FD (m)) at the first wavelength m), is measured at the second wavelength m), and has a bending radius r (mm). ⁇
  • Bend loss is L (dB) per time, and at a first wavelength (/ z m), a given MF b 1
  • the splice loss with the optical fiber with D is at the second wavelength (m).
  • the second embodiment of the SMF of the present invention has a predetermined MFD (M FD m)) at the first wavelength m), is measured at the second wavelength m), and has a bending radius r (mm )
  • the bending loss is L (dB) per turn and the number of bending times 3 ⁇ 4, and b b 1
  • the characteristic is that the MFD dependence of the total loss factor L calculated in 4) is minimal within the range of MFD ⁇ 0.5 m.
  • the SMF of the present invention designed by using the total loss coefficient L calculated by the above formula (1) or (4) and the parameters, the loss generation due to the connection between the small-diameter bend and the normal SMF.
  • the MFD of the optical fiber connected to the SMF of the present invention is
  • MFD evaluates a manufacturing center (average value of MFD of manufactured optical fiber) as MFD ( ⁇ ).
  • an optical fiber having an MFD with a different manufacturing center may be connected to the SMF of the present invention.
  • the first case is a case where the same MFD optical fiber is used for both the branch cable 13 and the ONU (optical network unit) 15, which corresponds to the first and second embodiments.
  • a bending-enhanced SMF with a smaller MFD than the normal SMF exemplified above may be used for the ONU connection.
  • the production center for SMF MFD is about 9.2 m at 1310 nm, whereas the production center for bending-reinforced SMF MFD is about 8.6 m.
  • Equation (1) can be changed to the following equation (A).
  • n is the number of optical fibers connected to the SMF of the present invention, is a dimensionless weighting factor, and L is the connection loss (dB) between the SMF of the present invention and the i-th optical fiber.
  • equation (4) can be changed as the following equation (B).
  • Equation 4 (Where n is the number of optical fibers connected to the SMF of the present invention, n is the number of connections between the SMF of the present invention and the i th optical fiber, and L is the SMF of the present invention and the i th optical fiber. Represents the splice loss (dB).)
  • the first wavelength ⁇ and the second wavelength ⁇ may be selected from an optical transmission wavelength region using SMF.
  • the wavelength can be selected from a range of 1260 nm to 1650 nm.
  • the range of wavelengths from 1260 ⁇ m to 1625 nm is used as SMF transmission wavelengths.
  • the range of 1625 to 1650 nm is used as a wavelength for line monitoring.
  • the bending radius r can be a small bending radius assumed in actual use of the SMF of the present invention, and the bending radius r is preferably less than 15 mm U.
  • connection loss is a mechanical splice connection, fusion connection, or connector connection between the SMF of the present invention and the SMF used as a general optical transmission line (hereinafter referred to as SMF). Measured connection loss.
  • SMF optical transmission line
  • connection loss L per connection point is 0.5 dB or less.
  • connection loss L exceeds 0.5 dB, the loss will increase when there are multiple connections.
  • the normal SMF connected to the SMF of the present invention is often a 1.3 m band SMF based on the international standard ITU-T G.652.
  • the SMF of the present invention is such that the MFD dependency of the total loss factor L calculated by the above formula (1) or (4) is a minimum value within a range of MFD ⁇ 0.5 m. If various parameters such as diameter, MFD, core clad relative refractive index difference, and radial refractive index distribution are set, the material, the shape of the refractive index distribution, etc. can be set appropriately. As the material of SMF, the same quartz glass as normal SMF can be used. In addition, the SMF of the present invention can be produced by various conventionally known production methods that are the same as ordinary SMF production methods.
  • FIG. 1 is a graph showing a unimodal (step-type) refractive index distribution as an example of the SMF of the present invention.
  • the SMF 100 of the present invention having this unimodal refractive index distribution includes a central core 1 having a radius r and a refractive index n, and a clad 2 having a substantially constant refractive index n surrounding the central core 1.
  • N > n.
  • the diameter of clad 2 is preferably within 125 m ⁇ l m.
  • FIG. 10 is a diagram showing a trench type refractive index distribution as another example of the SMF of the present invention.
  • the SMF 200 according to the present invention having this trench type refractive index profile is provided with a central core 1 having a radius r and a refractive index n, and an inner core having a radius n and a refractive index n provided on the outer periphery of the central core 1.
  • outer cladding 5 having a radius!: And a refractive index n, and n> n> n and n> n> n.
  • the center value of the cladding diameter is not limited to 125 ⁇ m, and can be set in a timely range from 60 ⁇ m to 100 ⁇ m.
  • the present invention is applicable to SMFs having various refractive index profiles as shown in FIGS.
  • the SMF300A having the refractive index profile shown in FIG. 17A has a single-peaked central core 1 and a two-layer cladding, and the inner cladding 6 has a higher refractive index than the outer cladding 5.
  • the SMF300B with the refractive index profile shown in Fig. 17B has an outer cladding 5 outside the central core 1 with a trapezoidal refractive index profile, and an outer core 7 with a high refractive index spaced from the central core 1. I have.
  • the SMF300C with the refractive index distribution shown in Fig. 17C has a low refractive index inner cladding 6 and a high refractive index outer core 8 outside the central core 1 with a triangular refractive index distribution.
  • the trench 4 and the low refractive index outer cladding 5 are provided in this order.
  • the SMF300D having the refractive index distribution shown in FIG. 17D has a configuration in which a low refractive index trench 4 and an outer cladding 5 are provided in this order on the outer side of the central core 1 having an inverted U-shaped refractive index distribution.
  • the SMF300E with the refractive index profile shown in Fig. 17E has the first trench 9 with the lowest refractive index, the outer core 8 with the higher refractive index, and the lower refractive index on the outside of the central core 1 with the trapezoidal or triangular refractive index profile.
  • the second trench 4 and the outer cladding 5 are provided in this order.
  • the SMF300F having the refractive index distribution shown in Fig. 17F is the same as the configuration in Fig. 17E except that the central portion of the central core 1 is the low refractive index region 10 and the high refractive index region is provided outside thereof to make the central core 1.
  • the first core 9 having the lowest refractive index, the outer core 8 having the higher refractive index, the second trench 4 having the lower refractive index, and the outer cladding 5 are sequentially provided outside the central core 1.
  • This example is an example of designing optimum characteristics when assuming that bending up to a radius of 10 mm is applied to the SMF 100 using a refractive index profile called a single peak type shown in FIG.
  • Figure 2 shows the relationship between the MFD at a wavelength of 1310 nm when the cable cutoff wavelength is 1260 nm and the bending loss when bending is performed 10 times at a radius of 10 mm at a wavelength of 1550 nm using a single-peak refractive index profile. Shown in
  • the bending loss decreases as the MFD increases.
  • the force shown in Fig. 2 has the impression that it is desirable to design the MFD as small as possible as an SMF used in an environment that requires strong bending.
  • FIGS. 3A and 3B are diagrams illustrating examples of connection configurations assumed in home wiring.
  • reference numeral 11 is a utility pole
  • 12 is a closure
  • 13 is a branch cable
  • 14 is a drop cable
  • 15 is an ONU.
  • 16 is a cabinet
  • 17 is an indoor cable
  • 18 is a wall
  • 19 is a cord with a connector
  • 20 is an optical connector.
  • a normal SMF specified as ITU-T. G. 652 is widely used for the branch cable 13 and the like, and it is desirable to keep this connection with the normal SMF in mind for connection characteristics.
  • Fig. 4 shows the results of evaluating the connection loss between the single-peaked optical fiber 100 (Fig. 1) and the normal SMF (MFD at wavelength 1310nm is 9.2 / z m).
  • MFD normal SMF
  • D. Marcuse LOSS analysis of single—mode fiber splice ss ", Bell syst. Tech. J. vol. 56, no5, pp703, May, 1977
  • equation (5) can be used to evaluate the connection efficiency power calculated for the MFD force of two types of optical fibers.
  • T (2-w -w / (w 2 + w 2 )) 2 -exp (-2dV (w 2 + w 2 )) (5) (where T is g 1 2 1 2 1 2 g Coupling efficiency, 2w and 2w are MFDs of optical fiber, and d is the amount of misalignment.
  • Connection loss is caused by the difference in MFD between the two types of optical fibers to be connected or the field axis misalignment. For this reason, as the MFD deviation increases (in Fig. 4, 9.2 m force is lost), the splice loss increases. For this reason, a design with an MFD of less than 6.5 m has a very stable bending loss, but the design is very unstable from the viewpoint of connection.
  • Fig. 5 shows the MFD dependence of the total loss coefficient evaluated based on the method of the present invention in Equation (1).
  • 1310nm
  • 1550nm
  • r 10mm
  • MFD 9.2
  • the region determined by the method of the present invention is used, the change of the total loss due to the MFD variation can be suppressed to be small.
  • MFD 7 determined by the method of the present invention.
  • the change in total loss is 0 for an MFD change of about ⁇ 0.3 m.
  • the total loss change amount is about 0.8 dB, which is about four times that when the method of the present invention is used.
  • the SMF designed by the method of the present invention has a small total loss due to bending and connection, and even if an MFD variation of an optical fiber that is unavoidable for manufacturing is assumed, It can be seen that the loss fluctuation is very small. This means that it is not necessary to give an excessive margin to the line design by applying this optical fiber, and an efficient design becomes possible.
  • this example uses the refractive index profile called the single peak type shown in FIG. 1, and assumes the optimum characteristics when bending up to a radius of 7.5 mm is applied to the SMF100. This is an example of design.
  • ⁇ m S MF sample 3
  • Table 2 shows the evaluation results.
  • the change of the total loss due to the MFD variation can be suppressed to be small.
  • MFD 6. determined by the method of the present invention
  • the total loss change can be suppressed to about 0.2 dB.
  • the total loss change amount is about 0.8 dB, which is about twice that when the method of the present invention is used.
  • the SMF designed by the method of the present invention has a small total loss due to bending and connection, and even if an MFD variation of an optical fiber that is unavoidable for manufacturing is assumed, the total loss variation You can see that it is very small. This means that it is not necessary to give an excessive margin to the line design by applying this optical fiber, and an efficient design becomes possible.
  • This example is an example of designing optimum characteristics when it is assumed that bending up to a radius of 10 mm is applied to SMF200 using the refractive index profile shown in FIG.
  • Figure 11 shows the relationship between the MFD at 1310 nm when the cable cutoff wavelength is 1260 nm and the bending loss when 10 bends are held at a radius of 10 mm at 1550 nm using the refractive index distribution shown in Figs. Shown in It can be seen that the refractive index profile in Fig. 10 can reduce the bending loss in the same MFD compared to the refractive index profile in Fig. 1. But However, as MFD increases, the bending loss tends to decrease. According to the conventional design method that focuses only on bending loss, 7. O / zm is preferred as the MFD.
  • the cladding diameter was 125 m
  • the cable cutoff wavelength was 1260 nm.
  • Example 1 The maximum loss value and loss change amount of Sample 5 are lower than those of Example 1 (Sample 1) in which the method of the present invention is applied to the single-peak refractive index distribution. This is an expected result from the dependence of the total loss coefficient on MFD in Fig. 12, and is the effect brought about by the improvement of the refractive index profile.
  • the maximum loss of sample 5 produced by applying the method of the present invention to the trench type refractive index profile is about 55% compared to sample 6 of the conventional method. It is suppressed at a time.
  • the amount of loss change under the assumed usage conditions has been improved by more than 10%. Compared to the single-peak conventional design method (Sample 2), it can be seen that it is improved by 33 to 65%.
  • the variation of the total loss due to the MFD variation can be suppressed to be small. Even assuming MFD fluctuations of about ⁇ 0., The amount of change in total loss is very small, 0.05 dB or less. In sample 6 of the conventional design method, assuming the same level of MFD fluctuation, a loss fluctuation of about 0.5 dB is expected.
  • the SMF designed by the method of the present invention has a small total loss due to bending and connection, and further, even if an MFD variation of an optical fiber that is unavoidable for manufacturing is assumed, the total loss variation You can see that it is very small. This means that it is not necessary to give an excessive margin to the line design by applying this optical fiber, and an efficient design becomes possible.
  • This example is an example of designing optimum characteristics when it is assumed that bending up to a radius of 7.5 mm is applied to the SMF 200 using the refractive index distribution shown in FIG.
  • the cladding diameter was 125 ⁇ m and the cable cutoff wavelength was 1260 nm.
  • Example 7 The loss maximum value and loss change amount of Sample 7 are lower than those of Example 2 (Sample 3) in which the method of the present invention is applied to the single-peak refractive index distribution. This is an effect brought about by improving the refractive index distribution.
  • Sample 7 produced by applying the method of the present invention to the trench-type refractive index profile shown in Fig. 10 has the same amount of loss change as the sample 8 obtained by the conventional method. The value is suppressed to about 82%. Compared with the conventional single-peak design method (sample 4) in Fig. 1, the maximum loss and the amount of change are reduced to about half.
  • the SMF designed by the method of the present invention has a small total loss due to bending and connection, and even if an MFD variation of an optical fiber unavoidable for manufacturing is assumed, the total loss variation You can see that it is very small. This means that it is not necessary to give an excessive margin to the line design by applying this optical fiber, and an efficient design becomes possible.
  • the force using 1310 nm as the MFD evaluation wavelength and 1550 nm as the bending loss evaluation wavelength is not particularly limited by this embodiment.
  • an MFD having a wavelength of 1310 nm was used for comparison with ITU-T G. 652.
  • the wavelength of 1550 nm belongs to the longer wavelength side in the wavelength generally used for optical communication at present. Since the bending loss of optical fibers tends to be worse at longer wavelengths, 1550 nm was used as the evaluation wavelength for bending loss.
  • the calculated value calculated from Equation (1) was used as the connection loss evaluation.
  • the SMF can be optimized more accurately.
  • the clad diameter is 125 m, but the present invention is not limited to this.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Abstract

 シングルモード光ファイバは、第1の波長λ1(μm)において所定のモードフィールド径MFD1(μm)を持ち、第2の波長λ2(μm)で測定され、曲げ半径r(mm)で巻いたときの曲げ損失が1回あたりLb(dB)であり、第1の波長λ1(μm)において所定のモードフィールド径MFD2(μm)を持つ光ファイバとの接続損失が前記第2の波長λ2(μm)において接続箇所1点あたりLs(dB)であり、次式(1)で算出される全損失係数Lのモードフィールド径依存性がMFD1±0.5μmの範囲内で極小値となる。  L=ws・Ls+wb・Lb  ・・・(1)  ws+wb=1  ・・・(2)  ws>0,wb>0  ・・・(3)(式(1)中、wsとwbは無次元の重み係数であり、前記式(2)及び式(3)を満たす範囲で設定される。)

Description

明 細 書
シングルモード光ファイバ
技術分野
[0001] 本発明は、光アクセスや小型部品用途など、特に曲げ損失の低いことが要求される 光ファイバとして好適に用いることができる曲げ特性と接続特性に優れたシングルモ ード光ファイバ(以下、 SMFと記す。)に関する。
本願は、 2004年 8月 10日に出願された日本国特許出願第 2004— 233111号な らびに 2005年 4月 19日に出願された日本国特許出願第 2005— 120996号に対し 優先権を主張し、その内容をここに援用する。
背景技術
[0002] 従来、幹線、長距離系の伝送容量拡大を目的に WDM (Wavelength Division Multi plexing)を用いた伝送システム及び光ファイバの開発が活発に進められてきた。 WD M伝送用の光ファイバには、非線形効果の抑制や分散制御といった特性が要求され てきた。近年では、メトロと呼ばれる数百 km程度のスパンのシステム向けに分散スロ ープを低減した光ファイバや OHによるロス増がほとんどない光ファイバなどが提案さ れている。
[0003] オフィスや家庭への光ファイバ導入( ber To The Home; FTTH)を考えた場合、 これらの伝送用光ファイバとは異なった特性が要求される。ビルや住宅内にファイバ を引き回す際には、直径 30mm、 20mmといった非常に小さな曲げが入る可能性が ある。また、余長を収納する際、小さな曲げ径に卷いてもロス増が生じないことが非常 に重要になる。つまり、小さな曲げ径に耐えること力 FTTH向けの光ファイバとして 非常に重要な特性となる。また、基地局力もビルや住宅までに用いられる光ファイバ( 多くは、通常の 1. 3 m帯 SMF)との接続性も重要なポイントとなる。
特許文献 1 :米国特許出願公開第 2004Z0213531号明細書
特許文献 2:国際公開第 WO01Z27667号パンフレット
特干文献 1 : 1. Sakabe, et al., Enhanced Bending Loss Insensitive Fiber and New Cables for CWDM Access Network," Proceedings of the 53rd IWCS, pp.112— 118 (2 004)
非特許文献 2 : S. Matsuo et al, "Bend― insensitive and low— splice— loss optical fiber for indoor wiring in FTTH", OFC2004, ThI3 非特許文献 3 :佐藤ら、 "光アクセス用小径曲げ対応型光ファイバ"、 2003年電子情 報通信学会ソサイエティ大会、 B— 10— 30
非特許文献 4:池田ら、 "接続損失低減型低曲げ損失光ファイバ"、電子情報通信学 会研究報告、 OCS2003-43
非特許文献 5 :周ら、 "フォトニック結晶ファイバの宅内、ビル内配線への適用に関す る検討"、電子情報通信学会研究報告、 OFT2002— 81
非特許文献 6 :姚ら、 "ホーリーファイバの実用化に関する一検討"、電子情報通信学 会研究報告、 OFT2002-82
発明の開示
発明が解決しょうとする課題
[0004] オフィスや家庭内には、従来通常の 1. 3 μ m帯 SMFやマルチモード光ファイバが 一般に用いられている。し力しながら、これら従来の光ファイバは、一般に直径 60m m程度の曲げ径までし力許容されておらず、その引き回しの際には過剰な曲げが入 らな 、ように細心の注意が必要であった。
[0005] また、最近では、 1. 帯用 SMFの国際規格である ITU— T G. 652に準拠す る範囲で、モードフィールド径 (以下、 MFDと記す。)を小さくすることにより許容曲げ 径を直径 30mmまで許容した SMFが商品化されている力 ビル、宅内配線用にはさ らに小さな曲げ径に対応した SMFが望ましい。
[0006] し力しながら、一般に曲げ特性を強化した SMFは MFDが小さぐ接続特性を悪ィ匕 させるという問題があった。
つまり、小径曲げが想定される環境における最適な光ファイバパラメータを決定す る指標となるパラメータが知られて ヽなかった。
[0007] 本発明は前記事情に鑑みてなされ、小径曲げが想定される線路において損失特 性が最適になる SMFの提供を目的とする。
課題を解決するための手段 [0008] 前記目的を達成するため、本発明は、第 1の波長 λェ( m)において所定の MFD (MFD m) )を持ち、第 2の波長え m)で測定され、曲げ半径 r (mm)で卷 、
1 2
たときの曲げ損失が 1回(1ターン)あたり L (dB)であり、第 1の波長え m)におい b 1
て所定の MFD ( m)を持つ光ファイバとの接続損失が第 2の波長え (/z m)にお
2 2
いて接続箇所 1点あたり L (dB)であり、次式(1)で算出される全損失係数 Lの MFD 依存性が MFD ±0· 5 mの範囲内で極小値となる SMFを提供する。
L=w eL +w eL
s s b b
w +w = 1 · · · (2)
s b
w〉0, w〉0 · · · (3) (式(1)中、 wと wは無次元の重み係数であり、前記式( s b s b
2)及び式 (3)を満たす範囲で設定される。 )
[0009] また本発明は、第 1の波長え m)において所定の MFD (MFD m) )を持ち 、第 2の波長え m)で測定され、曲げ半径 r (mm)で巻いたときの曲げ損失が 1回
2
あたり L (dB)、曲げ回数が tであり、第 1の波長え (; z m)において所定の MFD (M b b 1
FD m) )を持つ光ファイバとの接続損失が第 2の波長え m)において接続箇
2 2
所 1点あたり L (dB)、接続箇所が n箇所であり、次式 (4)で算出される全損失係数 L の MFD依存性が MFD ±0. 5 mの範囲内で極小値となる SMFを提供する。
L=n -L +t -L · · · (4) (但し、 n >0, t >0である。)
s s b b s b
[0010] 本発明の SMFにおいて、接続損失 Lが 0. 5dB以下であることが好ましい。
s
[0011] 本発明の SMFにおいて、 MFDが ±0. 3 μ m変化したときの全損失係数 Lの変化 量が 0. 4dB以下であることが望ましい。変動量が 0. 2dB以下であれば、更に望まし い。
[0012] 本発明の SMFにおいて、曲げ半径 rが 15mm未満であることが好ましい。
[0013] 本発明の SMFにおいて、曲げ半径 r= 10mm、第 2の波長え = 1550nmにおい
2
て曲げ損失 Lが 0. 05dB以下であることが好ましい。
b
[0014] 本発明の SMFにおいて、曲げ半径 r= 7. 5mm、第 2の波長え = 1550nmにお
2
いて曲げ損失 Lが 0. 05dB以下であることが好ましい。
b
[0015] 本発明の SMFにおいて、半径 r、屈折率 nを持つ中心コアと、該中心コアを取り囲 むほぼ一定の屈折率 nを持つクラッドとを備え、 n >nであることが好ましい。 [0016] 本発明の SMFにおいて、半径 r、屈折率 nを持つ中心コアと、該中心コアの外周 に設けられ、半径 、屈折率 nを持つ内側クラッドと、該内側クラッドの外周に設けら
2 2
れ、半径 r、屈折率 nを持つトレンチと、該トレンチの外周に設けられ、半径 r、屈折
3 3 c 率 nを持つ外側クラッドとを備え、 n〉n〉n、 n〉n >nであることが好ましい。
c 1 c 3 1 2 3
[0017] 本発明の SMFにおいて、第 1の波長え =1310nmであり、 MFDが国際規格 IT
1 2
U-T G. 652の仕様を満足する範囲にあることが好ましい。
[0018] 本発明の SMFにおいて、接続損失がそれぞれの光ファイバをメカ-カルスプライス 接続して測定された接続損失であることが好まし ヽ。
[0019] 本発明の SMFにおいて、接続損失がそれぞれの光ファイバを融着接続して測定さ れた接続損失であることが好まし 、。
[0020] 本発明の SMFにおいて、接続損失がそれぞれの光ファイバをコネクタ接続して測 定された接続損失であることが好ま 、。
[0021] 本発明の SMFにおいて、クラッドの直径が 125 m±l m以内であることが好ま しい。
[0022] 本発明の SMFにおいて、クラッドの直径の中心値力 ½0 μ m〜100 μ mの範囲であ ることが好ましい。
[0023] また本発明は、第 1の波長え m)において所定の MFD(MFD m))を持ち 、第 2の波長え m)で測定され、曲げ半径 r (mm)で巻いたときの曲げ損失が 1回
2
あたり L (dB)であり、第 1の波長え m)において所定の MFD(MFD (; zm))を b 1 2i 持つ光ファイバとの接続損失が第 2の波長え m)にお 、て接続箇所 1点あたり L
2 si
(dB)であり、次式 (A)で算出される全損失係数 Lの MFD依存性が MFD ±0. 5μ mの範囲内で極小値となる SMFを提供する。
[0024] [数 1]
Figure imgf000006_0001
^wsi + wb =l ...(A)
wsi>0,wb >0 [0025] (式中、 nは本発明の SMFと接続される光ファイバの数、 は無次元の重み係数、 L は本発明の SMFと i番目の光ファイバの接続損失 (dB)を表す。 )
[0026] また本発明は、第 1の波長え m)において所定の MFD (MFD m) )を持ち 、第 2の波長え m)で測定され、曲げ半径 r (mm)で巻いたときの曲げ損失が 1回
2
あたり L (dB)、曲げ回数が tであり、第 1の波長え (; z m)において所定の MFD (M b b 1
FD m) )を持つ光ファイバとの接続損失が第 2の波長え m)において接続箇
2i 2
所 1点あたり L (dB)、接続箇所が n箇所であり、次式 (B)で算出される全損失係数
Lの MFD依存性が MFD ±0. 5 mの範囲内で極小値となる SMFを提供する。
[0027] [数 2]
Figure imgf000007_0001
[0028] (式中、 nは本発明の SMFと接続される光ファイバの数、 nは本発明の SMFと i番目 の光ファイバの接続回数、 Lは本発明の SMFと i番目の光ファイバの接続損失 (dB) を表す。)
[0029] 前記 SMFにお!/、て、接続損失 Lは 0. ldB以下であることが好まし!/、。
[0030] 前記 SMFにおいて、 MFDが ±0. 3 /z m変動したときの全損失係数 Lの変動量が
0. 4dB以下であることが好ましい。
[0031] 前記 SMFにおいて、 MFDが ±0. 3 μ m変動したときの全損失係数 Lの変動量が
0. 2dB以下であることが好ましい。
発明の効果
[0032] 本発明の SMFは、小径曲げと通常の SMFとの接続による損失発生を考慮すべき 使用条件下において、状態の変化に対する損失の変動量が少なぐ安定した光伝送 を実現することができる。
本発明の SMFは、小径曲げが想定される線路において損失特性が最適になる構 成としたものなので、光アクセスや小型部品用途など、特に小径の曲げ損失が低いこ とが要求される SMFとして好適に用いることができる。 図面の簡単な説明
[図 1]本発明の SMFの単峰型屈折率分布を示すグラフである。
[図 2]実施例 1の結果を示す曲げ損失の MFD依存性 (単峰型、 r= 10mm)のグラフ である。
[図 3A]宅内配線において想定される接続構造を示す概略構成図である。
[図 3B]宅内配線において想定される接続構造を示す概略構成図である。
[図 4]実施例 1の結果を示す接続損失の MFD依存性のグラフである。
[図 5]実施例 1の結果を示す全損失係数の MFD依存性のグラフである。
[図 6]実施例 1の結果を示す全損失係数の MFD依存性のグラフである。
[図 7]実施例 2の結果を示す曲げ損失の MFD依存性 (単峰型、 r= 7. 5mm)のダラ フである。
[図 8]実施例 2の結果を示す全損失係数の MFD依存性のグラフである。
[図 9]実施例 2の結果を示す全損失係数の MFD依存性のグラフである。
[図 10]本発明の SMFのトレンチ型屈折率分布を示すグラフである。
[図 11]実施例 3の結果を示す曲げ損失の MFD依存性 (r= 10mm)のグラフである。
[図 12]実施例 3の結果を示す全損失係数の MFD依存性のグラフである。
[図 13]実施例 3の結果を示す全損失係数の MFD依存性のグラフである。
[図 14]実施例 4の結果を示す曲げ損失の MFD依存性 (r= 7. 5mm)のグラフである
[図 15]実施例 4の結果を示す全損失係数の MFD依存性のグラフである。
[図 16]実施例 4の結果を示す全損失係数の MFD依存性のグラフである。
[図 17A]本発明の SMFの別な屈折率分布を例示するグラフである。
[図 17B]本発明の SMFの別な屈折率分布を例示するグラフである。
[図 17C]本発明の SMFの別な屈折率分布を例示するグラフである。
[図 17D]本発明の SMFの別な屈折率分布を例示するグラフである。
[図 17E]本発明の SMFの別な屈折率分布を例示するグラフである。
[図 17F]本発明の SMFの別な屈折率分布を例示するグラフである。
符号の説明 [0034] 1…コア、 2…クラッド、 3…内側クラッド、 4· ··トレンチ、 5…外側クラッド、 6…内側ク ラッド、 7, 8…外側コア、 9…第 1トレンチ、 10· ··低屈折領域、 11· ··電柱、 12· ··クロー ジャ、 13· ··支線ケーブル、 14· ··ドロップケーブル、 15"-ONU、 16· ··キャビネット、 1 7· ··インドアケーブル、 18· ··壁、 19· ··コネクタ付コード、 20· ··光コネクタ、 100, 200 , 300Α, 300Β, 300C, 300D, 300Ε, 300F"-SMF。
発明を実施するための最良の形態
[0035] 以下、本発明の SMFの実施形態を説明する。
本発明の SMFの第 1実施形態は、第 1の波長え m)において所定の MFD (M FD ( m) )を持ち、第 2の波長え m)で測定され、曲げ半径 r (mm)で卷 、たと
1 2
きの曲げ損失が 1回あたり L (dB)であり、第 1の波長え (/z m)において所定の MF b 1
D (MFD ( m) )を持つ光ファイバとの接続損失が第 2の波長え ( m)において
2 2 接続箇所 1点あたり L (dB)とした場合に、次式(1)で算出される全損失係数 Lの MF
D依存性が MFD ±0. 5 mの範囲内で極小値となることを特徴としている。
L=w eL +w eL
s s b b
[0036] 前記式(1)中、 wと wは無次元の重み係数であり、想定する使用環境に応じて、前 s b
記式 (2)及び式 (3)を満たす範囲で設定される。
w +w =丄 · · · (2)
s b
w〉0, w >0 · · · (3)
s b
[0037] 本発明の SMFの第 2実施形態は、第 1の波長え m)において所定の MFD (M FD m) )を持ち、第 2の波長え m)で測定され、曲げ半径 r (mm)で巻いたと
1 2
きの曲げ損失が 1回あたり L (dB) ,曲げ回数力 ¾であり、第 1の波長え m)にお b b 1
いて所定の MFD (MFD ( m) )を持つ光ファイバとの接続損失が第 2の波長え (
2 2
IX m)において接続箇所 1点あたり L (dB)、接続箇所が n箇所とした場合に、次式(
4)で算出される全損失係数 Lの MFD依存性が MFD ±0. 5 mの範囲内で極小 値となることを特徴として 、る。
L=n -L +t -L · · · (4) (但し、 n >0, t >0である。)
s s b b s b
[0038] 前記式( 1)又は式 (4)により算出される全損失係数 Lと 、うパラメータを用いて設計 された本発明の SMFは、小径曲げと通常の SMFとの接続による損失発生を考慮す べき使用条件下において、状態の変化に対する損失の変動量が少なぐ安定した光 伝送を実現することができる。
[0039] 第 1,第 2の実施形態において、本発明の SMFと接続される光ファイバの MFDが
2 複数の値からなることがある。例えば、光ファイバの通常の製造工程においては、 M FDはある製造中心 (製造された光ファイバの MFDの平均値)を MFD ( μ )として評
2
価することが可能である。また、本発明の SMFに異なる製造中心の MFDをとる光フ アイバが接続される場合もある。例えば、図 3Αにおいて、ドロップケーブル 14に本発 明の SMFが適用された場合においては、以下の 2つのケースが考えられる。第 1の ケースは、支線ケーブル 13、 ONU (optical network unit) 15のいずれにも同じ MFD の光ファイバが用いられているケースであり、これは第 1、第 2の実施形態に相当する 。一方、 ONUの接続部に上記に例示したような通常の SMFよりも MFDが小さな曲 げ強化形 SMFが用いられている場合もある。通常 SMFの MFDの製造中心が 1310 nmにおいて 9. 2 m程度であるのに対して、曲げ強化形 SMFの MFDの製造中心 は 8. 6 m程度となっている。このような場合は、式(1)、式 (4)を以下のように変更 することで対応することが可能である。
式(1)は、以下の式 (A)のように変更できる。
[0040] [数 3]
L = ^si -Lsi + wb -Lb
^wJ(. + wfc = / ... ( A)
wsi > 0 , wh > 0
[0041] (式中、 nは本発明の SMFと接続される光ファイバの数、 は無次元の重み係数、 L は本発明の SMFと i番目の光ファイバの接続損失 (dB)を表す。 )
[0042] また式 (4)は、以下の式 (B)のように変更できる。
[0043] [数 4]
Figure imgf000010_0001
[0044] (式中、 nは本発明の SMFと接続される光ファイバの数、 nは本発明の SMFと i番目 の光ファイバの接続回数、 Lは本発明の SMFと i番目の光ファイバの接続損失 (dB) を表す。)
[0045] 前記第 1の波長 λ 及び第 2の波長 λ は、 SMFを用いた光伝送波長域から選択で
1 2
き、例えば波長 1260nm〜1650nmの範囲から選択することができる。波長 1260η m〜1625nmの範囲は SMFの伝送用波長として用いられる。また、 1625〜1650n mの範囲は線路監視用の波長として用いられて 、る。
前記曲げ半径 rは、本発明の SMFの実使用において想定される小径の曲げ半径と することができ、この曲げ半径 rは 15mm未満とすることが望ま U、。
[0046] 本発明の SMFにおいて、曲げ半径 r= 7. 5mm又は 10mm、曲げ損失の評価波 長である第 2の波長え = 1550nmで測定される 1回当たりの曲げ損失 Lは、 0. 05d
2 b
B以下であることが望ましい。この曲げ損失 Lが 0. 05dBを超えると、複数回の小径 b
曲げにより損失が増加してしまうので、好ましくない。
[0047] 前記接続損失は、本発明の SMFと、一般の光伝送路として使用されている SMF ( 以下、通常 SMFと記す。)とをメカ-カルスプライス接続、融着接続、或いはコネクタ 接続して測定された接続損失である。本発明の SMFにおいて、第 2の波長え m
2
)で測定される接続箇所 1点あたりの接続損失 Lは、 0. 5dB以下であることが望まし s
い。この接続損失 Lが 0. 5dBを超えると、複数の接続部が存在する場合に損失が大 s
きくなつてしまうので、好ましくない。なお、本発明の SMFと接続される通常 SMFは、 国際規格 ITU— T G. 652に基づく 1. 3 m帯用の SMFであることが多い。
[0048] 本発明の SMFは、前記式(1)又は (4)によって算出される全損失係数 Lの MFD 依存性が、 MFD ±0. 5 mの範囲内で極小値となるように、コア径、 MFD、コア クラッドの比屈折率差、径方向の屈折率分布などの各種パラメータが設定されていれ ばよぐその材質、屈折率分布の形状等は適宜設定することができる。 SMFの材質と しては、通常の SMFと同じぐ石英ガラスなどを用いることができる。また、本発明の S MFは、通常の SMFの製造方法とおなじぐ従来公知の各種の製造方法によって製 造することができる。 [0049] 図 1は、本発明の SMFの一例として、単峰型 (ステップ型)の屈折率分布を示すグ ラフである。
この単峰型の屈折率分布を有する本発明の SMF100は、半径 r、屈折率 nを持 つ中心コア 1と、該中心コア 1を取り囲むほぼ一定の屈折率 nを持つクラッド 2とを備 え、 n >nになっている。クラッド 2の直径は、 125 m± l m以内であることが好ま しい。また、クラッド径の中心値は 125 μ mには限定されない。例えば、 r= 5mmとい つた非常に小さな曲げ半径が必要とされる光ファイバにおいて、破断確率を低減す るためにクラッド径を細くすることが有効である。したがって、クラッド径の中心値は、 光ファイバの使用条件に応じて、 60 μ m〜100 μ mの範囲で適時設定することが可 能である。
[0050] また図 10は、本発明の SMFの別な例として、トレンチ型の屈折率分布を示すダラ フである。
このトレンチ型の屈折率分布を有する本発明の SMF200は、半径 r、屈折率 nを 持つ中心コア 1と、該中心コア 1の外周に設けられ、半径]:、屈折率 nを持つ内側ク
2 2
ラッド 3と、該内側クラッド 3の外周に設けられ、半径!:、屈折率 nを持つトレンチ 4と、
3 3
該トレンチ 4の外周に設けられ、半径!:、屈折率 nを持つ外側クラッド 5とを備え、 n > n >n、 n >n >nになっている。外側クラッド 5の直径は、 125 m± 1 m以内で c 3 1 2 3
あることが好ましい。また、クラッド径の中心値は 125 μ mには限定されず、 60 μ m〜 100 μ mの範囲で適時設定することが可能である。
[0051] さらに、本発明は、図 17A〜Fに示すような様々な屈折率分布を持つ SMFについ て適用可能である。
図 17Aに示す屈折率分布を持つ SMF300Aは、単峰型の中心コア 1と 2層のクラッ ドを備えており、内側クラッド 6が外側クラッド 5より屈折率が高くなつている。
図 17Bに示す屈折率分布を持つ SMF300Bは、台形の屈折率分布を持つ中心コ ァ 1の外側に外側クラッド 5が設けられ、中心コア 1から間隔をおいて屈折率の高い外 側コア 7を備えている。
図 17Cに示す屈折率分布を持つ SMF300Cは、三角形の屈折率分布を持つ中心 コア 1の外側に、低屈折率の内側クラッド 6、高屈折率の外側コア 8、屈折率が最も低 、トレンチ 4、低屈折率の外側クラッド 5を順に設けた構成になって 、る。 図 17Dに示す屈折率分布を持つ SMF300Dは、逆 U字状の屈折率分布を持つ中 心コア 1の外側に、低屈折率のトレンチ 4、外側クラッド 5を順に設けた構成になって いる。
図 17Eに示す屈折率分布を持つ SMF300Eは、台形又は三角形の屈折率分布を 持つ中心コア 1の外側に、屈折率の最も低い第 1トレンチ 9、屈折率の高い外側コア 8 、低屈折率の第 2トレンチ 4、外側クラッド 5を順に設けた構成になっている。
図 17Fに示す屈折率分布を持つ SMF300Fは、中心コア 1の中央部を低屈折率 領域 10とし、その外側に高屈折率領域を設けて中心コア 1とした以外は、図 17Eの 構成と同じぐ中心コア 1の外側に、屈折率の最も低い第 1トレンチ 9、屈折率の高い 外側コア 8、低屈折率の第 2トレンチ 4、外側クラッド 5を順に設けた構成になっている
実施例
[0052] (実施例 1)
本実施例は、図 1に示す単峰型と呼ばれる屈折率分布を用いて、半径 10mmまで の曲げが SMF100に印加されると想定したときの最適特性について設計した例であ る。
単峰型の屈折率分布を用いて、ケーブルカットオフ波長を 1260nmとしたときの波 長 1310nmにおける MFDと、波長 1550nmにおける半径 10mmにおいて 10回の 曲げを加えたときの曲げ損失の関係を図 2に示す。
[0053] 図 2に示すように、 MFDが大きくなるにしたがって、曲げ損失は小さくなる。この図 2 力らは、曲げに強いことが要求される環境に用いる SMFとしては、 MFDを極力小さ くした設計を行うことが好ましい印象をうける。
[0054] し力しながら、実使用環境においては、曲げ損失に加えて、接続損失を考慮に入 れることが必要である。図 3A, Bは宅内配線において想定される接続の構成を例示 する図であり、図 3A, Bにおいて、符号 11は電柱、 12はクロージャ、 13は支線ケー ブル、 14はドロップケーブル、 15は ONU (Optical Network Unit)、 16はキャビネット 、 17はインドアケーブル、 18は壁、 19はコネクタ付コード、 20は光コネクタである。 [0055] 例えば、図 3Aのようにクロージャ 12内で支線ケーブル 13と接続されたドロップケー ブル 14が ONU15に直結するような形態では、クロージャ 12内において、他の光フ アイバとの接続が入る可能性がある。また、 ONU15との接続においても、他の光ファ ィバと接続が入る可能性がある。また、図 3Bに示すような配線形態を想定すると、両 端にコネクタ 20を持ったコネクタ付コード 19の使用が想定される。この場合は、最悪 2箇所で他の光ファイバとの接続が入る可能性がある。
[0056] 支線ケーブル 13などには ITU— T. G. 652として規定されている通常 SMFが広く 用いられており、接続特性に関してはこの通常 SMFとの接続を念頭に置いておくこ とが望ましい。
[0057] 図 4は、単峰型(図 1)の光ファイバ 100と通常 SMF (波長 1310nmにおける MFD が 9. 2 /z m)との接続損失について評価した結果である。光ファイバどうしの接続損 失につ ヽて ίま、 D. Marcuse, LOSS analysis of single— mode fiber splice ss", Bell syst. Tech. J. vol. 56, no5, pp703, May, 1977【こ示されて ヽるよう に、以下の式(5)を用いて 2種の光ファイバの MFD力 計算される接続効率力 評 価することができる。
T = (2-w -w / (w 2+w 2) ) 2-exp(-2dV(w 2+w 2) ) · · · (5) (式中、 Tは g 1 2 1 2 1 2 g 結合効率、 2w , 2wは光ファイバの MFD、 dは軸ずれ量を表す。
1 2
)
[0058] 接続損失は、接続する 2種の光ファイバの MFDの違いやフィールドの軸ずれなど により生じる。このため、 MFDのずれが大きくなるに従い(図 4では、 9. 2 m力らず れるに従って)、接続損失は大きくなる。このため、 MFDが 6. 5 mを下回るような設 計は、曲げ損失は非常に安定しているが、接続の観点からは非常に不安定な設計と なることが分力ゝる。
[0059] 図 5は、式(1)の本発明の手法に基づき評価した全損失係数の MFD依存性を示し ている。 λ = 1310nm、 λ = 1550nm、 r= 10mm、 MFD = 9. 2 ^ πι, w =w =
1 2 2 s b
0. 5とした。図 5によると、全損失係数 Lは、 MFDi = 7. 0 mで最小となることがわ かる。
[0060] そこで、従来の曲げ損失を指標とした設計で好ましいとされる MFD = 6. 5 μ mの S MF (サンプル 2)と、本発明の手法により好ましいと評価される MFD = 7. O /z mの S MF (サンプル 1)について、種々の状況でのロス変動を評価した。評価結果を表 1に 示す。なお、表 1〜表 4において、評価条件とは、接続箇所と曲げ回数との組み合わ せを指す。
[0061] [表 1]
Figure imgf000015_0001
[0062] サンプノレ 1 ίま、図 1に示す Δ = 0. 58%, r = 3. 26 m、サンプノレ 2ίま、 Δ = 0. 65
%、 r = 3. 07 μ mである。いずれも、クラッド直径は 125 μ m、ケーブルカットオフ波 長は 1260nmであった。
[0063] 本発明の手法を用いて作製したサンプル 1のロスの最大値は、従来手法によるサン プル 2と比べ約 73%に抑制されている。また、想定した使用条件下におけるロス変化 量も約 83%に抑制されることが分かる。
2点の接続と r= 10mm, 10回の曲げを想定したときの全損失の MFD依存性を図
6に示す。本発明の手法により決定された 7. O /z mの MFD付近においてほぼ最低 の全損失が得られることが分かる。
また、本発明の手法で決定される領域を用いれば、 MFDのばらつきによる全損失 の変ィ匕も小さく抑えることができる。例えば、本発明の手法により決定される MFD = 7
. O /z m付近では、 ± 0. 3 m程度の MFDの変化に対して、全損失の変化量は 0.
2dB程度である。し力しながら、従来手法の例において、全損失変化量を同程度に 抑制しょうとした場合、 MFDのばらつきはほとんど認められないことになる。逆に、同 程度の MFD変動を許容した場合、全損失変化量は 0. 8dB程度になり、本発明の手 法を用いた場合の 4倍程度になってしまう。
[0064] 以上の例により、本発明の手法により設計した SMFは、曲げと接続による総合的な 損失が小さぐさらに製造上不可避な光ファイバの MFDの変動を想定しても総合損 失変動が非常に小さいことがわかる。このことは、本光ファイバの適用により、線路設 計にぉ 、て過剰なマージンを与える必要がな 、ことを意味し、効率的な設計が可能 となる。
[0065] (実施例 2)
本実施例は、前記実施例 1と同様に、図 1に示す単峰型と呼ばれる屈折率分布を 用いて、半径 7. 5mmまでの曲げが SMF100に印加されると想定したときの最適特 性にっ 、て設計した例である。
単峰型の屈折率分布を用いて、ケーブルカットオフ波長を 1260nmとしたときの 13 lOnmにおける MFDと 1550nmにおける半径 7. 5mmにおいて 10回の曲げを加え たときの曲げ損失の関係を図 7に示す。 MFDが大きくなるにしたがって、曲げ損失は 小さくなる。 r= 10mmの場合と同様に、曲げに強いことが要求される環境に用いる S MFとしては、 MFDを極力小さくした設計を行うことが好ましい印象をうける。しかしな がら、実施例 1でも示したように、このような領域では、通常 SMFとの接続損失が大き くなると 、う問題を持って!/、る。
[0066] 図 8は、式(1)の本発明の手法に基づき評価した全損失係数の MFD依存性を示し て ヽる。 = 1310nm、 λ = 1550nm、曲 半径 r= 7. 5mm, MFD = 9. 2 μ ηι
1 2 2
、 w =w = 0. 5とした。図 8によると、全損失係数 Lは、 MFD = 6. で最小とな s b 1
ることがゎカゝる。
[0067] そこで、従来の曲げ損失を指標とした設計で好ましいとされる MFD = 6. 3 μ mの S MF (サンプル 4)と、本発明の手法により好ましいと評価される MFD = 6. 8 μ mの S MF (サンプル 3)について、種々の状況でのロス変動を評価した。評価結果を表 2に 示す。
[0068] [表 2] 評価条件番号 1 2 3 4 5 6 7 8 ロス ロス 接続箇所 1 1 1 1 2 2 2 2 最大値変化値
[dB] 圆
曲げ回数 0 5 10 20 0 5 10 20
サンプル 3 0. 40 0. 45 0. 50 0. 60 0. 80 0. 85 0, 90 1. 00 1 , 00 0. 60
サンプル 4 0. 75 0. 75 0. 75 0. 75 1. 50 1 . 50 1. 50 1. 50 1 . 50 0. 75 [0069] サンプノレ 3ίま、図 1に示す Δ = 0. 61 %, r = 3. 17 ^ m,サンプノレ 4ίま、 Δ = 0. 71 %、 r = 2. 92 μ mである。いずれも、クラッド直径は 125 μ m、ケーブルカットオフ波 長は 1260nmであった。
[0070] 本発明の手法を用いて作製したサンプル 3のロスの最大値は、従来手法によるサン プル 4と比べ約 66%に抑制されている。また、想定した使用条件下におけるロス変化 量も約 80%に抑制されることが分かる。
2点の接続と曲げ半径 r= 7. 5mm、 10回の曲げを想定したときの全損失の MFD 依存性を図 9に示す。本発明の手法により決定された 6. の MFD付近におい てほぼ最低の全損失が得られることが分かる。
また、本発明の手法で決定される領域を用いれば、 MFDのばらつきによる全損失 の変ィ匕も小さく抑えることができる。例えば、本発明の手法により決定される MFD = 6 . 付近では、 MFDを 6. 60〜6. 95 mの範囲に制御すれば、全損失の変化 量を 0. 2dB程度に抑えることができる。し力しながら、従来手法の例において、全損 失変化量を同程度に抑制しょうとした場合、 MFDのばらつきはほとんど認められな いことになる。逆に、同程度の MFD変動を許容した場合、全損失変化量は 0. 8dB 程度になり、本発明の手法を用いた場合の倍程度になってしまう。
[0071] 以上の例により、本発明の手法により設計した SMFは、曲げと接続による総合的な 損失が小さぐさらに製造上不可避な光ファイバの MFDの変動を想定しても総合損 失変動が非常に小さいことがわかる。このことは、本光ファイバの適用により、線路設 計にぉ 、て過剰なマージンを与える必要がな 、ことを意味し、効率的な設計が可能 となる。
[0072] (実施例 3)
本実施例は、図 10に示す屈折率分布を用いて、半径 10mmまでの曲げが SMF2 00に印加されると想定したときの最適特性について設計した例である。
図 1、図 10に示す屈折率分布を用いて、ケーブルカットオフ波長を 1260nmとした ときの 1310nmにおける MFDと 1550nmにおける半径 10mmにおいて 10回の曲げ をカ卩えたときの曲げ損失の関係を図 11に示す。図 10の屈折率分布は、図 1の屈折 率分布に比べて、同一 MFDにおける曲げ損失が小さくできることが分かる。しかしな がら、 MFDが大きくなるにしたがって、曲げ損失は小さくなる傾向は変わらない。従 来の曲げ損失のみに着目した設計手法によると、 MFDとしては、 7. O /z mが好まし い。
[0073] 図 12は、式(1)の本発明の手法に基づき評価した全損失係数の MFD依存性を示 して ヽる。 = 1310nm、 λ = 1550nm、曲 半径 r= 10mm、 MFD = 9. 2 ^ m
1 2 2
、 w =w =0. 5とした。図 12によると、全損失係数 Lは、 MFD =8. 2 mで最小と s b 1
なることがわ力る。
[0074] そこで、従来の曲げ損失を指標とした設計で好ましいとされる MFD = 7. O /z mの S MF (サンプル 6)と、本発明の手法により好ましいと評価される MFD = 8. 2 μ mの S MF (サンプル 5)について、種々の状況でのロス変動を評価した。評価結果を、実施 例 1で示した図 1の屈折率分布におけるサンプル 1, 2の評価結果も併せて、表 3に示 す。
[0075] [表 3]
Figure imgf000018_0002
[0076] サンプル 5は、図 10に示す Δ =0. 40%、 Δ =0. 0%、 Δ =—0. 25%、 r = 3.
1 2 3 1
56 ^ m, r = 11. 75 m、 r = 17. 80 m、サンプル 6は、 Δ =0. 54%、 Δ =0.
1 2
0%、 Δ = 15. である。
Figure imgf000018_0001
いずれも、クラッド直径は 125 m、ケーブルカットオフ波長は 1260nmであった。
[0077] サンプル 5のロス最大値、ロス変化量は、単峰屈折率分布に対して本発明の手法を 適用した実施例 1 (サンプル 1)よりも低い値を示している。これは、図 12の全損失係 数 MFD依存性からも予想される結果であり、屈折率分布の改善によりもたらされた 効果である。しかしながら、トレンチ型の屈折率分布に対して本発明の手法を適用し て作製したサンプル 5のロス最大値は、従来手法によるサンプル 6と比べ約 55%程 度に抑制されている。また、想定した使用条件下におけるロス変化量は 10%以上改 善されている。単峰型の従来設計手法 (サンプル 2)と比べると、 33〜65%程度改善 されていることが分かる。
2点の接続と曲げ半径 r= 10mm, 10回の曲げを想定したときの全損失の MFD依 存性を図 13に示す。本発明の手法により決定された 8. 2 iu mのMFD付近にぉぃて ほぼ最低の全損失が得られることが分かる。
また、本実施例においても、本発明の手法で決定される領域を用いれば、 MFDの ばらつきによる全損失の変ィ匕も小さく抑えることができる。 ±0. 程度の MFD変 動を想定しても、全損失の変化量は 0. 05dB以下と非常に小さい。従来の設計手法 のサンプル 6において、同程度の MFD変動を想定した場合、 0. 5dB程度のロス変 動が見込まれる。
[0078] 以上の例により、本発明の手法により設計した SMFは、曲げと接続による総合的な 損失が小さぐさらに製造上不可避な光ファイバの MFDの変動を想定しても総合損 失変動が非常に小さいことがわかる。このことは、本光ファイバの適用により、線路設 計にぉ 、て過剰なマージンを与える必要がな 、ことを意味し、効率的な設計が可能 となる。
[0079] (実施例 4)
本実施例は、図 10に示す屈折率分布を用いて、半径 7. 5mmまでの曲げが SMF 200に印加されると想定したときの最適特性について設計した例である。
図 1、図 10に示す屈折率分布を用いて、ケーブルカットオフ波長を 1260nmとした ときの 1310nmにおける MFDと 1550nmにおける半径 7. 5mmにおいて 10回の曲 げをカ卩えたときの曲げ損失の関係を図 14に示す。図 10の屈折率分布は、図 1の屈 折率分布に比べて、同一 MFDにおける曲げ損失が小さくできることが分かる。し力 ながら、 MFDが大きくなるにしたがって、曲げ損失は小さくなる傾向は変わらない。 従来の曲げ損失のみに着目した設計手法によると、 MFDとしては、 6. 8 mが好ま しい。
[0080] 図 15は、式(1)の本発明の手法に基づき評価した全損失係数の MFD依存性を示 して ヽる。 = 1310nm、 λ = 1550nm、曲 半径 r= 7. 5mm, MFD = 9. 2 μ m、 w =w =0. 5とした。図 15によると、全損失係数 Lは、 MFD =8. 2 mで最小 s b 1
となることがわかる。
[0081] そこで、従来の曲げ損失を指標とした設計で好ましいとされる MFD = 6. 8 μ mの S MF (サンプル 8)と、本発明の手法により好ましいと評価される MFD = 7. 2 μ mの S MF (サンプル 7)について、種々の状況でのロス変動を評価した。評価結果を、実施 例 2で示した図 1の屈折率分布におけるサンプル 3, 4の評価結果も併せて、表 4に示 す。
[0082] [表 4]
Figure imgf000020_0002
[0083] サンプノレ 7ίま、図 10に示す Δ =0. 52%, Δ =0. 0%, Δ =—0. 25%, r = 3.
1 2 3 1 lO ^ m, r = 10. 23 m、 r = 15. 50 m、サンプル 8は、 Δ =0. 57%、 Δ =0.
1 2
0%、 Δ = 14. である。い
Figure imgf000020_0001
ずれも、クラッド直径は 125 μ m、ケーブルカットオフ波長は 1260nmであった。
[0084] サンプル 7のロス最大値、ロス変化量は、単峰屈折率分布に対して本発明の手法を 適用した実施例 2 (サンプル 3)よりも低い値を示している。これは、屈折率分布の改 善によりもたらされた効果である。図 10に示すトレンチ型の屈折率分布に対して本発 明の手法を適用して作製したサンプル 7は、想定した使用条件下におけるロス変化 量は従来手法によるサンプル 8と同等である力 ロス最大値は約 82%程度に抑制さ れている。図 1の単峰型の従来設計手法 (サンプル 4)と比べると、ロスの最大値、変 化量は半分程度に抑制されていることが分力る。
2点の接続と曲げ半径 r= 7. 5mm、 10回の曲げを想定したときの全損失の MFD 依存性を図 16に示す。本発明の手法により決定された 7. の MFD付近におい てほぼ最低の全損失が得られることが分かる。 また、本実施例においても、本発明の手法で決定される領域を用いれば、 MFDの ばらつきによる全損失の変ィ匕も小さく抑えることができる。 ±0. 程度の MFD変 動を想定すると、全損失の変化量は 0. 13dB程度である。従来の設計領域において 、同程度のロス変動に抑えるためには、 MFDの変化は ±0. 05 m程度しか許容さ れない。 ±0. 2 mの MFD変動を想定した場合、 0. 6dB程度のロス変動が見込ま れる。
[0085] 以上の例により、本発明の手法により設計した SMFは、曲げと接続による総合的な 損失が小さぐさらに製造上不可避な光ファイバの MFDの変動を想定しても総合損 失変動が非常に小さいことがわかる。このことは、本光ファイバの適用により、線路設 計にぉ 、て過剰なマージンを与える必要がな 、ことを意味し、効率的な設計が可能 となる。
[0086] なお、前述した各実施例では、 MFDの評価波長として 1310nm、曲げ損失の評価 波長として 1550nmを用いた力 この波長についても特に実施例により限定されるも のではない。前述した各実施例では、 ITU—T G. 652との対比を行うために、波長 1310nmの MFDを用いた。また、波長 1550nmは、現在一般に光通信に用いられ る波長では長波長側に属する。光ファイバの曲げ損失は、長波長側ほど悪くなる傾 向があるため、曲げ損失の評価波長として 1550nmを用いた。
また、前述した各実施例では、接続損失の評価として、式(1)から算出される計算 値を用いた。融着接続、メカ-カルスプライス、コネクタ接続などによる接続損失の測 定値を用いることにより、 SMFの最適化を更に精度良く行うことができる。
さらに前述した各実施例では、クラッド直径を 125 mとしたが、本発明はこれに限 定されるものではない。例えば、 5mm以下の曲げを許容するには、信頼性確保の観 点からクラッド直径を細径ィ匕することが望ましい。必要に応じて、 60〜100 /ζ πιのクラ ッド直径を選択することが望まし 、。

Claims

請求の範囲
[1] 第 1の波長え ( m)において所定のモードフィールド径 MFD ( /z m)を持ち、 第 2の波長え m)で測定され、曲げ半径 r (mm)で巻いたときの曲げ損失が 1回
2
あたり L (dB)であり、
b
第 1の波長え (; z m)において所定のモードフィールド径 MFD (; z m)を持つ光フ
1 2
アイバとの接続損失が前記第 2の波長え m)において接続箇所 1点あたり L (dB
2 s
)であり、
次式(1)で算出される全損失係数 Lのモードフィールド径依存性が MFD ± 0· 5 μ mの範囲内で極小値となるシングルモード光ファイバ。
L=w e L +w e L
s s b b
w +w = 1 · · · (2)
s b
w〉0, w〉0 · · · (3) (式(1)中、 wと wは無次元の重み係数であり、前記式( s b s b
2)及び式 (3)を満たす範囲で設定される。 )
[2] 第 1の波長え ( m)において所定のモードフィールド径 MFD ( /z m)を持ち、 第 2の波長え m)で測定され、曲げ半径 r (mm)で巻いたときの曲げ損失が 1回
2
あたり L (dB)、曲げ回数が tであり、 第 1の波長え ( m)において所定のモードフ b b 1
ィールド径 MFD m)を持つ光ファイバとの接続損失が前記第 2の波長え m)
2 2 において接続箇所 1点あたり L (dB)、接続箇所が n箇所であり、
次式 (4)で算出される全損失係数 Lのモードフィールド径依存性が MFD ± 0. 5 mの範囲内で極小値となるシングルモード光ファイバ。
L=n - L +t - L · · · (4) (但し、 n > 0, t > 0である。)
s s b b s b
[3] 前記接続損失 Lが 0. 5dB以下である請求項 1又は 2に記載のシングルモード光フ s
アイバ。
[4] 曲げ半径 rが 15mm未満である請求項 1又は 2に記載のシングルモード光ファイバ [5] 前記曲げ半径 r= 10mm、前記第 2の波長え = 1550nmにおいて前記曲げ損失
2
Lが 0. 05dB以下である請求項 4に記載のシングルモード光ファイバ。
b
[6] 前記曲げ半径 r= 7. 5mm、前記第 2の波長え = 1550nmにおいて前記曲げ損 失しが 0. 05dB以下である請求項 4に記載のシングルモード光ファイバ。
b
[7] 半径 r、屈折率 nを持つ中心コアと、該中心コアを取り囲むほぼ一定の屈折率 nを 持つクラッドとを備え、 n >nである請求項 1又は 2に記載のシングルモード光フアイ バ。
[8] 半径 r、屈折率 nを持つ中心コアと、該中心コアの外周に設けられ、半径 r、屈折
1 1 2 率 nを持つ内側クラッドと、該内側クラッドの外周に設けられ、半径 r、屈折率 nを持
2 3 3 つトレンチと、該トレンチの外周に設けられ、半径 r、屈折率 nを持つ外側クラッドとを 備え、 n >n >n、 n >n >nである請求項 1又は 2に記載のシングルモード光ファ
1 c 3 1 2 3
ィバ。
[9] 前記第 1の波長え = 1310nmであり、前記モードフィールド径 MFDが国際規格 I
1 2
TU-T G. 652の仕様を満足する範囲にある請求項 1又は 2に記載のシングルモ ード光ファイバ。
[10] 前記接続損失がそれぞれの光ファイバをメカ-カルスプライス接続して測定された 接続損失である請求項 1又は 2に記載のシングルモード光ファイバ。
[11] 前記接続損失がそれぞれの光ファイバを融着接続して測定された接続損失である 請求項 1又は 2に記載のシングルモード光ファイバ。
[12] 前記接続損失がそれぞれの光ファイバをコネクタ接続して測定された接続損失で ある請求項 1又は 2に記載のシングルモード光ファイバ。
[13] 前記クラッドの直径が 125 m± 1 m以内である請求項 7に記載のシングルモー ド光ファイバ。
[14] 前記クラッドの直径の中心値が 60 μ m〜100 μ mの範囲である請求項 7に記載の シングルモード光ファイバ。
[15] 前記クラッドの直径が 125 m± 1 m以内である請求項 8に記載のシングルモー ド光ファイバ。
[16] 前記クラッドの直径の中心値が 60 μ m〜100 μ mの範囲である請求項 8に記載の シングルモード光ファイバ。
[17] 第 1の波長え ( m)において所定のモードフィールド径 MFD ( /z m)を持ち、 第 2の波長え m)で測定され、曲げ半径 r (mm)で巻いたときの曲げ損失が 1回 あたり L (dB)であり、
b
第 1の波長 λ ( m)にお!/、て所定のモードフィールド径 MFD ( μ m)を持つ光フ
1 2i
アイバとの接続損失が前記第 2の波長え m)において接続箇所 1点あたり L (dB
2 si
)であり、
次式 (A)で算出される全損失係数 Lのモードフィールド径依存性が MFD ± 0. 5 mの範囲内で極小値となるシングルモード光ファイバ。
[数 1] i
^ wsi + wb = l ... (A )
ws, > 0 , wわ > 0
(式中、 nは前記シングルモード光ファイバと接続される光ファイバの数、 は無次元 の重み係数、 L は前記シングルモード光ファイバと i番目の光ファイバの接続損失 (d B)を表す。)
第 1の波長え ( m)において所定のモードフィールド径 MFD ( /z m)を持ち、 第 2の波長え m)で測定され、曲げ半径 r (mm)で巻いたときの曲げ損失が 1回
2
あたり L (dB)、曲げ回数が tであり、 第 1の波長え ( m)において前記所定のモ b b 1
ードフィールド径 MFD ( μ m)を持つ光ファイバとの接続損失が前記第 2の波長 λ
2i 2
( m)において接続箇所 1点あたり L (dB)、接続箇所が n箇所であり、
次式 (B)で算出される全損失係数 Lのモードフィールド径依存性が MFD ± 0. 5 mの範囲内で極小値となるシングルモード光ファイバ。
[数 2] = + ' - ( B)
(式中、 nは前記シングルモード光ファイバと接続される光ファイバの数、 nは前記シ ングルモード光ファイバと i番目の光ファイバの接続回数、 Lは前記シングルモード 光ファイバと潘目の光ファイバの接続損失 (dB)を表す。 ) [19] 前記接続損失 が 0. ldB以下である請求項 17又は 18に記載のシングルモード 光ファイバ。
[20] 前記 MFDが ±0. 3 m変動したときの前記全損失係数 Lの変動量が 0. 4dB以 下である請求項 17又は 18に記載のシングルモード光ファイバ。
[21] MFDが ±0. 3 m変動したときの前記全損失係数 Lの変動量が 0. 2dB以下で ある請求項 20に記載のシングルモード光ファイバ。
PCT/JP2005/014560 2004-08-10 2005-08-09 シングルモード光ファイバ WO2006016572A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN2005800266377A CN101006371B (zh) 2004-08-10 2005-08-09 单模光纤
EP05770416A EP1777559A4 (en) 2004-08-10 2005-08-09 OPTICAL SINGLE FIBER
JP2006531645A JPWO2006016572A1 (ja) 2004-08-10 2005-08-09 シングルモード光ファイバ
KR1020077003024A KR100848960B1 (ko) 2004-08-10 2005-08-09 싱글 모드 광파이버
US11/673,471 US7366387B2 (en) 2004-08-10 2007-02-09 Single-mode optical fiber
US11/951,005 US7505657B2 (en) 2004-08-10 2007-12-05 Single-mode optical fiber

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004-233111 2004-08-10
JP2004233111 2004-08-10
JP2005120996 2005-04-19
JP2005-120996 2005-04-19

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/673,471 Continuation US7366387B2 (en) 2004-08-10 2007-02-09 Single-mode optical fiber

Publications (1)

Publication Number Publication Date
WO2006016572A1 true WO2006016572A1 (ja) 2006-02-16

Family

ID=35839341

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/014560 WO2006016572A1 (ja) 2004-08-10 2005-08-09 シングルモード光ファイバ

Country Status (5)

Country Link
US (2) US7366387B2 (ja)
EP (1) EP1777559A4 (ja)
JP (1) JPWO2006016572A1 (ja)
KR (1) KR100848960B1 (ja)
WO (1) WO2006016572A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009104724A1 (ja) * 2008-02-22 2009-08-27 住友電気工業株式会社 光ファイバおよび光ケーブル
JP2013125064A (ja) * 2011-12-13 2013-06-24 Nippon Telegr & Teleph Corp <Ntt> カットオフ波長制御型光ファイバおよび光ファイバケーブル
US9739935B2 (en) 2014-08-01 2017-08-22 Fujikura Ltd. Optical fiber and manufacturing method thereof
US9772444B2 (en) 2014-09-26 2017-09-26 Fujikura Ltd. Optical fiber
US10067287B2 (en) 2014-09-26 2018-09-04 Fujikura Ltd. Optical fiber and method of manufacturing the same
JP2020140080A (ja) * 2019-02-28 2020-09-03 住友電気工業株式会社 光ファイバ

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2893149B1 (fr) 2005-11-10 2008-01-11 Draka Comteq France Fibre optique monomode.
FR2899693B1 (fr) 2006-04-10 2008-08-22 Draka Comteq France Fibre optique monomode.
WO2009062131A1 (en) 2007-11-09 2009-05-14 Draka Comteq, B.V. Microbend- resistant optical fiber
US20090169163A1 (en) * 2007-12-13 2009-07-02 Abbott Iii John Steele Bend Resistant Multimode Optical Fiber
FR2930997B1 (fr) 2008-05-06 2010-08-13 Draka Comteq France Sa Fibre optique monomode
US7676129B1 (en) 2008-11-18 2010-03-09 Corning Incorporated Bend-insensitive fiber with two-segment core
US8520298B2 (en) * 2009-02-26 2013-08-27 Cubic Corporation Tightly coiled amplifying optical fiber with reduced mode distortion
US8385701B2 (en) * 2009-09-11 2013-02-26 Corning Incorporated Low bend loss optical fiber
US8873917B2 (en) 2011-05-20 2014-10-28 Corning Incorporated Low bend loss optical fiber
US8891925B2 (en) 2011-08-19 2014-11-18 Corning Incorporated Low bend loss optical fiber
US9188736B2 (en) 2013-04-08 2015-11-17 Corning Incorporated Low bend loss optical fiber
CN105899982B (zh) * 2013-12-20 2019-11-22 德拉克通信科技公司 表现出损耗降低的具有梯形纤芯的单模光纤
US9586853B2 (en) 2014-07-09 2017-03-07 Corning Incorporated Method of making optical fibers in a reducing atmosphere
US9650281B2 (en) 2014-07-09 2017-05-16 Corning Incorporated Optical fiber with reducing hydrogen sensitivity
US10302857B2 (en) 2017-05-03 2019-05-28 Corning Incorporated Low bend loss optical fiber with a germania doped core
US10962708B2 (en) 2017-12-21 2021-03-30 Draka Comteq France Bending-loss insensitive single mode fibre, with a shallow trench, and corresponding optical system
WO2019226477A1 (en) * 2018-05-25 2019-11-28 Corning Incorporated Single-mode large effective area optical fibers with low cutoff wavelength
KR20220169260A (ko) 2021-06-18 2022-12-27 주식회사메리츠엔지니어링 라벨링 장치
KR20220169257A (ko) 2021-06-18 2022-12-27 주식회사메리츠엔지니어링 라벨링 장치

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4755022A (en) 1985-09-02 1988-07-05 Nippon Telegraph And Telephone Corporation Zero dispersion single mode optical fiber with center core and side core in the 1.5 μm wavelength region
US4838643A (en) 1988-03-23 1989-06-13 Alcatel Na, Inc. Single mode bend insensitive fiber for use in fiber optic guidance applications
WO2001027667A2 (en) 1999-10-12 2001-04-19 Corning Incorporated Higher wavelength optimized optical fiber waveguide
US20040213531A1 (en) 2002-01-15 2004-10-28 Eisuke Sasaoka Optical fiber, optical fiber tape, optical cable and optical connector with optical fiber

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4047232B2 (ja) * 2003-06-18 2008-02-13 株式会社フジクラ 高次モードファイバ用モード変換器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4755022A (en) 1985-09-02 1988-07-05 Nippon Telegraph And Telephone Corporation Zero dispersion single mode optical fiber with center core and side core in the 1.5 μm wavelength region
US4838643A (en) 1988-03-23 1989-06-13 Alcatel Na, Inc. Single mode bend insensitive fiber for use in fiber optic guidance applications
WO2001027667A2 (en) 1999-10-12 2001-04-19 Corning Incorporated Higher wavelength optimized optical fiber waveguide
US20040213531A1 (en) 2002-01-15 2004-10-28 Eisuke Sasaoka Optical fiber, optical fiber tape, optical cable and optical connector with optical fiber

Non-Patent Citations (13)

* Cited by examiner, † Cited by third party
Title
I. SAKABE ET AL.: "Enhanced Bending Loss Insensitive Fiber and New Cables for CWDM Access Network", PROCEEDINGS OF THE 53RD IWCS, 2004, pages 112 - 118
IKEDA ET AL.: "Low Bending Loss Optical Fiber with Reduced Splice Loss", TECHNICAL REPORT OF IEICE, OCS, 2003, pages 43
IKEDA MASATAKA ET AL: "Setsuzoku Sonshitsu o Teigen shita Teimage Sonshitsu Hikari Fiber. (Low bending loss optical fiber with reduced splice loss)", FUJIKURA GIHO., no. 105, 31 October 2003 (2003-10-31), pages 6 - 10, XP002996874 *
IKEDA MASATAKA ET AL: "Setsuzoku Sonshitsu Teigengata Teimage Sonshitsu Hikari Fiber. (Low bending loss optical fiber with reduced loss)", THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS GIJUTSU K NKYU HOKOKU., vol. 103, no. 257 (OFT2003 19-36), 21 August 2003 (2003-08-21), pages 35 - 40, XP002996875 *
IKEDA MASATAKA ET AL: "Setsuzoku Sonshitsu Teigengata Teimage Sonshitsu Hikari Fiber. (Low bending loss optical fiber with reduced splice loss)", PROCEEDINGS OF THE IEICE CONFERENCE., 8 March 2004 (2004-03-08), pages 372, (B-10-1), XP002996876 *
MATSUO S ET AL: "Bend-insensitive and low-splice-loss optical fiber for indoor wiring in FTTH.", OPTICAL FIBER COMMUNICATIONS CONFERENCE 2004 (OFC 2004)., 26 February 2004 (2004-02-26), pages 157 - 159, XP010745853 *
MATSUO S. ET AL.: "Bend-insensitive and low-splice-loss optical fiber for indoor wiring in FTTH", OPTICAL FIBER COMMUNICATION CONFERENCE, vol. 2, 26 February 2004 (2004-02-26), pages 157 - 159
S. MATSUO ET AL.: "Bend-insensitive and low-splice-loss optical fiber for indoor wiring in FTTH", OFC, 2004
SATO ET AL.: "Optical Fiber Conforming to Bending around Small Radius for Optical Access", THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS (IEICE) SOCIETY CONFERENCE, vol. B, 2003, pages 10 - 30
See also references of EP1777559A4 *
YAO ET AL.: "A Study on Commercialization of Holey Fiber", TECHNICAL REPORT OF IEICE, OFT, 2002, pages 82
YIN S. ET AL.: "Optics Communications", vol. 177, 1 April 2000, NORTH-HOLLAND PUBLISHING CO., article "a new design for non-zero dispersion shifted fiber (NZ-DSF) with large effective area over 100 µm2 and low bending and splice loss", pages: 225 - 232
ZHOU ET AL.: "A Study on Application of Photonic Crystal Fiber to Wiring in Homes and Buildings", TECHNICAL REPORT OF IEICE, OFT, 2002, pages 81

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009104724A1 (ja) * 2008-02-22 2009-08-27 住友電気工業株式会社 光ファイバおよび光ケーブル
US8081855B2 (en) 2008-02-22 2011-12-20 Sumitomo Electric Industries, Ltd. Optical fiber and optical cable
US8081856B2 (en) 2008-02-22 2011-12-20 Sumitomo Electric Industries, Ltd. Optical fiber and optical cable
US8249407B2 (en) 2008-02-22 2012-08-21 Sumitomo Electric Industries, Ltd. Optical fiber and optical cable
US8301001B2 (en) 2008-02-22 2012-10-30 Sumitomo Electric Industries, Ltd. Optical cable and optical transmission system
JP5440183B2 (ja) * 2008-02-22 2014-03-12 住友電気工業株式会社 光ファイバおよび光ケーブル
JP2013125064A (ja) * 2011-12-13 2013-06-24 Nippon Telegr & Teleph Corp <Ntt> カットオフ波長制御型光ファイバおよび光ファイバケーブル
US9739935B2 (en) 2014-08-01 2017-08-22 Fujikura Ltd. Optical fiber and manufacturing method thereof
US9772444B2 (en) 2014-09-26 2017-09-26 Fujikura Ltd. Optical fiber
US10067287B2 (en) 2014-09-26 2018-09-04 Fujikura Ltd. Optical fiber and method of manufacturing the same
JP2020140080A (ja) * 2019-02-28 2020-09-03 住友電気工業株式会社 光ファイバ

Also Published As

Publication number Publication date
US20070189684A1 (en) 2007-08-16
US7366387B2 (en) 2008-04-29
KR100848960B1 (ko) 2008-07-29
KR20070033461A (ko) 2007-03-26
JPWO2006016572A1 (ja) 2008-05-01
EP1777559A4 (en) 2010-03-24
EP1777559A1 (en) 2007-04-25
US7505657B2 (en) 2009-03-17
US20080101755A1 (en) 2008-05-01

Similar Documents

Publication Publication Date Title
WO2006016572A1 (ja) シングルモード光ファイバ
JP4833071B2 (ja) シングルモード光ファイバ
JP3853833B2 (ja) 光ファイバ
JP5440183B2 (ja) 光ファイバおよび光ケーブル
JP6486533B2 (ja) 光ファイバ
JP5222752B2 (ja) 光ファイバ
JP4268115B2 (ja) シングルモード光ファイバ
JP6082875B2 (ja) 大有効面積を有する低減衰光ファイバ
WO2005106544A1 (en) Optical fiber with improved bending behavior
JP4073806B2 (ja) 光ファイバ及び該光ファイバを用いた光伝送路
KR20180124729A (ko) 광파이버
JP6554875B2 (ja) 光ファイバケーブル
CN100374888C (zh) 光纤
JP2013125064A (ja) カットオフ波長制御型光ファイバおよび光ファイバケーブル
KR100693638B1 (ko) 구부림 강건형 광섬유
JP4568305B2 (ja) 光ファイバ
CN101006371B (zh) 单模光纤
JP2005181664A (ja) 光ファイバ及びこの光ファイバを用いたリボンスロット型光ファイバケーブル
JP2005148116A (ja) 光ファイバ
JP2005003794A (ja) 光ファイバ、及びそれを用いた光伝送線路

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2006531645

Country of ref document: JP

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005770416

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 200580026637.7

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1020077003024

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 11673471

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 1020077003024

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2005770416

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11673471

Country of ref document: US