WO2016047129A1 - ズームレンズ、光学機器及びズームレンズの製造方法 - Google Patents

ズームレンズ、光学機器及びズームレンズの製造方法 Download PDF

Info

Publication number
WO2016047129A1
WO2016047129A1 PCT/JP2015/004803 JP2015004803W WO2016047129A1 WO 2016047129 A1 WO2016047129 A1 WO 2016047129A1 JP 2015004803 W JP2015004803 W JP 2015004803W WO 2016047129 A1 WO2016047129 A1 WO 2016047129A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens group
lens
end state
refractive power
conditional expression
Prior art date
Application number
PCT/JP2015/004803
Other languages
English (en)
French (fr)
Inventor
鈴木 篤
謙次 石田
三郎 真杉
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2014193360A external-priority patent/JP6539967B2/ja
Priority claimed from JP2015033649A external-priority patent/JP2016156903A/ja
Priority claimed from JP2015033647A external-priority patent/JP6620400B2/ja
Priority claimed from JP2015033648A external-priority patent/JP6634683B2/ja
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Priority to CN201580057686.0A priority Critical patent/CN107076972A/zh
Priority to CN202011137881.3A priority patent/CN112433352B/zh
Priority to AU2015323139A priority patent/AU2015323139B2/en
Priority to EP15844052.9A priority patent/EP3200001A4/en
Publication of WO2016047129A1 publication Critical patent/WO2016047129A1/ja
Priority to US15/462,811 priority patent/US10816781B2/en
Priority to US17/067,898 priority patent/US11914125B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/16Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/145Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only
    • G02B15/1451Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only the first group being positive
    • G02B15/145105Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only the first group being positive arranged +-+--
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/145Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only
    • G02B15/1451Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only the first group being positive
    • G02B15/145117Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only the first group being positive arranged +---+
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/145Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only
    • G02B15/1451Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only the first group being positive
    • G02B15/145121Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only the first group being positive arranged +-+-+
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/145Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only
    • G02B15/1451Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only the first group being positive
    • G02B15/145129Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only the first group being positive arranged +-+++
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/146Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having more than five groups
    • G02B15/1461Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having more than five groups the first group being positive
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/16Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group
    • G02B15/20Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group having an additional movable lens or lens group for varying the objective focal length
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/208Filters for use with infrared or ultraviolet radiation, e.g. for separating visible light from infrared and/or ultraviolet radiation

Definitions

  • the present invention relates to a zoom lens, an optical device, and a method for manufacturing a zoom lens.
  • a zoom lens that includes a fourth lens group and a fifth lens group having a positive refractive power and performs zooming by moving each lens group (see, for example, Patent Document 1).
  • a zoom lens that includes a fourth lens group and a fifth lens group having a positive refractive power, and performs zooming by moving each lens group (see, for example, Patent Document 2).
  • a zoom lens with a high zoom ratio in order from the object side along the optical axis, a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a positive refractive power
  • a zoom lens that has a third lens group, a fourth lens group having a negative refractive power, and a fifth lens group having a positive refractive power and that performs zooming by moving each lens group has been proposed.
  • a zoom lens group having a positive refractive power in order from the object side along the optical axis, a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a positive refractive power
  • a zoom lens that has a third lens group, a fourth lens group having a negative refractive power, and a fifth lens group having a positive refractive power and that performs zooming by moving each lens group has been proposed.
  • the zoom ratio is around 50 times, and it is difficult to maintain good performance at higher zoom ratios.
  • the conventional zoom lens does not have sufficient optical performance.
  • the zoom lens according to the first aspect of the present invention includes a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a positive refraction arranged in order from the object side along the optical axis.
  • the first lens group is composed of three or more lenses
  • the fourth lens group is composed of two or less lenses
  • the fifth lens group is composed of two or less lenses, and has a wide angle end.
  • the zoom lens moves to the image plane side upon zooming from the state to the telephoto end state and satisfies the following conditional expression.
  • f1 the focal length of the first lens group
  • f2 focal length of the second lens group
  • a zoom lens according to a second aspect of the present invention includes a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a positive refraction arranged in order from the object side along the optical axis.
  • the first lens group is composed of three or more lenses
  • the fourth lens group is composed of two or less lenses
  • the fifth lens group is composed of two or less lenses, and has a wide angle end.
  • the zoom lens moves to the image plane side upon zooming from the state to the telephoto end state and satisfies the following conditional expression.
  • Dt12 distance on the optical axis from the image side surface of the first lens group to the object side surface of the second lens group in the telephoto end state
  • f2 focal length of the second lens group
  • a zoom lens according to a third aspect of the present invention includes a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a positive refraction arranged in order from the object side along the optical axis.
  • the first lens group is composed of three or more lenses
  • the fourth lens group is composed of two or less lenses
  • the fifth lens group is composed of two or less lenses, and has a wide angle end.
  • the zoom lens moves to the image plane side upon zooming from the state to the telephoto end state and satisfies the following conditional expression.
  • D1 Distance on the optical axis from the object side surface to the image side surface of the first lens group
  • ft focal length of the entire system in the telephoto end state
  • ⁇ t4 magnification of the fourth lens group in the telephoto end state
  • ⁇ t5 magnification of the fifth lens group in the telephoto end state
  • ⁇ w4 magnification of the fourth lens group in the wide-angle end state
  • ⁇ w5 magnification of the fifth lens group in the wide-angle end state
  • Fnt F number in the telephoto end state
  • Fnw F number in the wide-angle end state.
  • a zoom lens according to a fourth aspect of the present invention includes a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a positive refraction arranged in order from the object side along the optical axis.
  • the first lens group includes three or more lenses, and the fifth lens group moves to the image plane side upon zooming from the wide-angle end state to the telephoto end state, and satisfies the following conditional expression.
  • f2 focal length of the second lens group in the telephoto end state
  • ft focal length of the entire system in the telephoto end state.
  • a zoom lens according to a fifth aspect of the present invention includes a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a positive refraction arranged in order from the object side along the optical axis.
  • the third lens group having power, the fourth lens group having negative refractive power, and the fifth lens group having positive refractive power satisfy the following conditional expression.
  • ft focal length of the entire system in the telephoto end state
  • f2 focal length of the second lens group
  • Fnt F value in the telephoto end state
  • f1 the focal length of the first lens group
  • ⁇ 2t magnification of the second lens group in the telephoto end state
  • ⁇ 3t magnification of the third lens group in the telephoto end state
  • ⁇ 2w magnification of the second lens group in the wide-angle end state
  • ⁇ 3w magnification of the third lens group in the wide-angle end state.
  • the optical apparatus according to the present invention includes any one of the first to fifth zoom lenses according to the present invention.
  • the zoom lens manufacturing method includes a first lens group having a positive refractive power and a second lens group having a negative refractive power, arranged in order from the object side along the optical axis, A third lens group having a positive refractive power, a fourth lens group having a negative refractive power, and a fifth lens group having a positive refractive power, and changing the distance between the lens groups to change the magnification
  • the first lens group is composed of three or more lenses
  • the fourth lens group is composed of two or less lenses
  • the fifth lens group is:
  • Each lens is arranged in a lens barrel so that it is composed of two or less lenses, moves to the image plane side upon zooming from the wide-angle end state to the telephoto end state, and satisfies the following conditional expression.
  • f1 the focal length of the first lens group
  • f2 focal length of the second lens group
  • the zoom lens manufacturing method includes a first lens group having a positive refractive power and a second lens group having a negative refractive power, which are arranged in order from the object side along the optical axis.
  • the first lens group is composed of three or more lenses
  • the fourth lens group is composed of two or less lenses
  • the fifth lens group is:
  • Each lens is arranged in a lens barrel so that it is composed of two or less lenses, moves to the image plane side upon zooming from the wide-angle end state to the telephoto end state, and satisfies the following conditional expression.
  • Dt12 distance on the optical axis from the image side surface of the first lens group to the object side surface of the second lens group in the telephoto end state
  • f2 focal length of the second lens group
  • a zoom lens manufacturing method includes a first lens group having a positive refractive power, a second lens group having a negative refractive power, arranged in order from the object side along the optical axis, A third lens group having a positive refractive power, a fourth lens group having a negative refractive power, and a fifth lens group having a positive refractive power, and changing the distance between the lens groups to change the magnification
  • the first lens group is composed of three or more lenses
  • the fourth lens group is composed of two or less lenses
  • the fifth lens group is:
  • Each lens is arranged in a lens barrel so that it is composed of two or less lenses, moves to the image plane side upon zooming from the wide-angle end state to the telephoto end state, and satisfies the following conditional expression.
  • D1 Distance on the optical axis from the object side surface to the image side surface of the first lens group
  • ft focal length of the entire system in the telephoto end state
  • ⁇ t4 magnification of the fourth lens group in the telephoto end state
  • ⁇ t5 magnification of the fifth lens group in the telephoto end state
  • ⁇ w4 magnification of the fourth lens group in the wide-angle end state
  • ⁇ w5 magnification of the fifth lens group in the wide-angle end state
  • Fnt F number in the telephoto end state
  • Fnw F number in the wide-angle end state.
  • a zoom lens manufacturing method includes a first lens group having a positive refractive power, a second lens group having a negative refractive power, arranged in order from the object side along the optical axis, A third lens group having a positive refractive power, a fourth lens group having a negative refractive power, and a fifth lens group having a positive refractive power, and changing the distance between the lens groups to change the magnification
  • the first lens group includes three or more lenses
  • the fifth lens group moves to the image plane side upon zooming from the wide-angle end state to the telephoto end state.
  • Each lens is arranged in the lens barrel so as to move and satisfy the following conditional expression.
  • f2 focal length of the second lens group in the telephoto end state
  • ft focal length of the entire system in the telephoto end state.
  • a zoom lens manufacturing method includes a first lens group having a positive refractive power, a second lens group having a negative refractive power, arranged in order from the object side along the optical axis, A method of manufacturing a zoom lens having a third lens group having a positive refractive power, a fourth lens group having a negative refractive power, and a fifth lens group having a positive refractive power, and the following conditional expression
  • Each lens is arranged in the lens barrel so as to satisfy the above.
  • ft focal length of the entire system in the telephoto end state
  • f2 focal length of the second lens group
  • Fnt F value in the telephoto end state
  • f1 the focal length of the first lens group
  • ⁇ 2t magnification of the second lens group in the telephoto end state
  • ⁇ 3t magnification of the third lens group in the telephoto end state
  • ⁇ 2w magnification of the second lens group in the wide-angle end state
  • ⁇ 3w magnification of the third lens group in the wide-angle end state.
  • FIG. 2 is a cross-sectional view illustrating a configuration of a zoom lens according to Example 1, where (W) indicates a wide-angle end state, (M) indicates an intermediate focal length state, and (T) indicates a position of each lens group in a telephoto end state.
  • FIG. 6 is a diagram illustrating various aberrations of the zoom lens according to Example 1 at an infinite shooting distance, where (a) shows a wide-angle end state, (b) shows an intermediate focal length state, and (c) shows a telephoto end state.
  • FIG. 6 is a cross-sectional view illustrating a configuration of a zoom lens according to Example 2, where (W) indicates a wide-angle end state, (M) indicates an intermediate focal length state, and (T) indicates a position of each lens group in a telephoto end state.
  • FIG. 6 is a diagram illustrating various aberrations of the zoom lens according to Example 2 at an imaging distance of infinity, where (a) shows a wide-angle end state, (b) shows an intermediate focal length state, and (c) shows a telephoto end state.
  • FIG. 6 is a cross-sectional view illustrating a configuration of a zoom lens according to Example 3, where (W) indicates a wide-angle end state, (M) indicates an intermediate focal length state, and (T) indicates a position of each lens group in a telephoto end state.
  • FIG. 6 is a diagram illustrating various aberrations of the zoom lens according to Example 3 at an infinite shooting distance, where (a) shows a wide-angle end state, (b) shows an intermediate focal length state, and (c) shows a telephoto end state.
  • (A) is a front view of a digital still camera
  • (b) is a rear view of a digital still camera.
  • FIG. 8 is a cross-sectional view taken along arrow A1-A1 ′ in FIG.
  • FIG. 3 is a flowchart illustrating a method for manufacturing the zoom lens according to the first embodiment. It is a flowchart which shows the manufacturing method of the zoom lens which concerns on 2nd Embodiment.
  • FIG. 10 is a cross-sectional view illustrating a configuration of a zoom lens according to Example 4, where (W) indicates a wide-angle end state, (M) indicates an intermediate focal length state, and (T) indicates a position of each lens group in a telephoto end state.
  • FIG. 6A is a diagram illustrating various aberrations of the zoom lens according to Example 4 at an imaging distance of infinity, where (a) illustrates a wide angle end state, (b) illustrates an intermediate focal length state, and (c) illustrates a telephoto end state.
  • FIG. 10 is a cross-sectional view illustrating a configuration of a zoom lens according to Example 4, where (W) indicates a wide-angle end state, (M) indicates an intermediate focal length state, and (T) indicates a position of each lens group
  • FIG. 10 is a cross-sectional view illustrating a configuration of a zoom lens according to Example 5, where (W) indicates a wide-angle end state, (M) indicates an intermediate focal length state, and (T) indicates a position of each lens group in a telephoto end state.
  • FIG. 10 is a diagram illustrating various aberrations of the zoom lens according to Example 5 at an imaging distance of infinity, where (a) shows a wide-angle end state, (b) shows an intermediate focal length state, and (c) shows a telephoto end state.
  • FIG. 10 is a cross-sectional view illustrating a configuration of a zoom lens according to Example 5, where (W) indicates a wide-angle end state, (M) indicates an intermediate focal length state, and (T) indicates a position of each lens group in a telephoto end state.
  • FIG. 10 is a diagram illustrating various aberrations of the zoom lens according to Example 5 at an imaging distance of infinity, where (a) shows a wide-angle end state, (b)
  • FIG. 10 is a cross-sectional view illustrating a configuration of a zoom lens according to Example 6, where (W) indicates a wide-angle end state, (M) indicates an intermediate focal length state, and (T) indicates a position of each lens group in a telephoto end state.
  • FIG. 10 is a diagram illustrating various aberrations of the zoom lens according to Example 6 at an infinite shooting distance, where (a) shows the wide-angle end state, (b) shows the intermediate focal length state, and (c) shows the telephoto end state.
  • FIG. 10 is a cross-sectional view illustrating a configuration of a zoom lens according to Example 6, where (W) indicates a wide-angle end state, (M) indicates an intermediate focal length state, and (T) indicates a position of each lens group in a telephoto end state.
  • FIG. 10 is a diagram illustrating various aberrations of the zoom lens according to Example 6 at an infinite shooting distance, where (a) shows the wide-angle end state, (b) shows the intermediate focal length state,
  • FIG. 10 is a cross-sectional view illustrating a configuration of a zoom lens according to Example 7, where (W) indicates a wide-angle end state, (M) indicates an intermediate focal length state, and (T) indicates a position of each lens group in a telephoto end state.
  • FIG. 10 is a diagram illustrating various aberrations of the zoom lens according to Example 7 at an imaging distance of infinity, where (a) shows a wide-angle end state, (b) shows an intermediate focal length state, and (c) shows a telephoto end state.
  • FIG. 10 is a cross-sectional view illustrating a configuration of a zoom lens according to Example 7, where (W) indicates a wide-angle end state, (M) indicates an intermediate focal length state, and (T) indicates a position of each lens group in a telephoto end state.
  • FIG. 10 is a diagram illustrating various aberrations of the zoom lens according to Example 7 at an imaging distance of infinity, where (a) shows a wide-angle end state, (b)
  • FIG. 10 is a cross-sectional view illustrating a configuration of a zoom lens according to Example 8, where (W) indicates a wide-angle end state, (M) indicates an intermediate focal length state, and (T) indicates a position of each lens group in a telephoto end state.
  • FIG. 10 is a diagram illustrating various aberrations of the zoom lens according to Example 8 at an infinite shooting distance, where (a) shows the wide-angle end state, (b) shows the intermediate focal length state, and (c) shows the telephoto end state.
  • FIG. 10 is a cross-sectional view illustrating a configuration of a zoom lens according to Example 8, where (W) indicates a wide-angle end state, (M) indicates an intermediate focal length state, and (T) indicates a position of each lens group in a telephoto end state.
  • FIG. 10 is a diagram illustrating various aberrations of the zoom lens according to Example 8 at an infinite shooting distance, where (a) shows the wide-angle end state, (b) shows the intermediate focal length state,
  • FIG. 14 is a cross-sectional view illustrating a configuration of a zoom lens according to Example 9, where (W) indicates a wide-angle end state, (M) indicates an intermediate focal length state, and (T) indicates a position of each lens group in a telephoto end state.
  • FIG. 9A is a diagram illustrating various aberrations of the zoom lens according to Example 9 at an imaging distance of infinity, where (a) illustrates a wide-angle end state, (b) illustrates an intermediate focal length state, and (c) illustrates a telephoto end state.
  • (A) is a front view of a digital still camera
  • (b) is a rear view of a digital still camera.
  • FIG. 24 is a cross-sectional view taken along arrow A2-A2 ′ in FIG.
  • FIG. 9 is a flowchart illustrating a method for manufacturing a zoom lens according to a third embodiment. It is a figure which shows the structure of the zoom lens which concerns on 10th Example, and the movement locus
  • FIG. 10 is a diagram illustrating various aberrations of the zoom lens according to Example 10 at an infinite shooting distance, where (a) shows the wide-angle end state, (b) shows the intermediate focal length state, and (c) shows the telephoto end state. It is a figure which shows the structure of the zoom lens which concerns on 11th Example, and the movement locus
  • FIG. 10 is a diagram illustrating various aberrations of the zoom lens according to Example 11 at an infinite shooting distance, where (a) shows the wide-angle end state, (b) shows the intermediate focal length state, and (c) shows the telephoto end state. It is a figure which shows the structure of the zoom lens which concerns on 12th Example, and the movement locus
  • FIG. 14 is a diagram illustrating various aberrations of the zoom lens according to Example 12 at an infinite shooting distance, where (a) shows the wide-angle end state, (b) shows the intermediate focal length state, and (c) shows the telephoto end state. It is a figure which shows the structure of the camera carrying the zoom lens which concerns on 4th Embodiment. It is a figure which shows the outline of the manufacturing method of the zoom lens which concerns on 4th Embodiment.
  • the zoom lens ZLI according to the first embodiment has a first lens group G1 having a positive refractive power and a negative refractive power, which are arranged in order from the object side along the optical axis.
  • the first lens group G1 is composed of three or more lenses
  • the fourth lens group G4 is composed of two or less lenses
  • the fifth lens group G5 is changed by changing the distance between the lens groups. Is composed of two or less lenses, and moves to the image plane side upon zooming from the wide-angle end state to the telephoto end state. With this configuration, high zooming can be achieved.
  • the zoom lens ZLI according to the first embodiment satisfies the following conditional expression (1).
  • f1 Focal length of the first lens group G1
  • f2 focal length of the second lens group G2.
  • Conditional expression (1) is a conditional expression for reducing spherical aberration, astigmatism, and chromatic aberration.
  • the refractive power of the first lens group G1 becomes relatively large and falls below the lower limit value of the conditional expression (1), it is advantageous for downsizing, but it is difficult to correct spherical aberration and lateral chromatic aberration in the telephoto end state. Become. Further, when the refractive power of the second lens group G2 becomes relatively small and falls below the lower limit value of the conditional expression (1), the total length is increased in order to ensure a high zoom ratio. Here, in order to maintain the downsizing of the optical system, the refractive power of the first lens group G1 must be increased, and the spherical aberration in the telephoto end state is deteriorated.
  • the upper limit of conditional expression (1) it is preferable to set the upper limit of conditional expression (1) to 20.00.
  • the upper limit of conditional expression (1) When falling below the upper limit value of conditional expression (1), spherical aberration, astigmatism and chromatic aberration become smaller, which is preferable.
  • the zoom lens ZLI according to the first embodiment satisfies the following conditional expression (2).
  • ⁇ t3 magnification of the third lens group G3 in the telephoto end state
  • ⁇ w3 magnification of the third lens group G3 in the wide-angle end state.
  • Conditional expression (2) is a conditional expression for reducing the spherical aberration fluctuation due to zooming.
  • conditional expression (2) If the lower limit value of conditional expression (2) is not reached, the contribution of the third lens group G3 in zooming becomes too small, so that the first lens group G1 and the second lens group G2 need to bear more zooming action. is there.
  • the refractive power of the first lens group G1 is increased in order to maintain the miniaturization of the optical system, spherical aberration in the telephoto end state and chromatic aberration over the entire zoom range are deteriorated.
  • the refractive power of the second lens group G2 is increased in order to maintain the miniaturization of the entire optical system, it becomes difficult to correct axial chromatic aberration in the telephoto end state and astigmatism over the entire zoom range.
  • the lower limit of conditional expression (2) In order to ensure the effect of the first embodiment, it is preferable to set the lower limit of conditional expression (2) to 2.70. In order to secure the effect of the first embodiment, it is preferable to set the lower limit value of conditional expression (2) to 3.50. In order to further secure the effect of the first embodiment, it is preferable to set the lower limit of conditional expression (2) to 4.00.
  • the upper limit of conditional expression (2) it is preferable to set the upper limit of conditional expression (2) to 10.00. If the upper limit of conditional expression (2) is not reached, the spherical aberration fluctuation due to zooming becomes smaller, which is preferable. In order to ensure the effect of the first embodiment, it is preferable to set the upper limit of conditional expression (2) to 8.00. In order to ensure the effect of the first embodiment, it is preferable to set the upper limit of conditional expression (2) to 6.00.
  • the zoom lens ZLI according to the first embodiment satisfies the following conditional expression (3).
  • Dt12 Distance on the optical axis from the image side surface of the first lens group G1 to the object side surface of the second lens group G2 in the telephoto end state.
  • Conditional expression (3) is a conditional expression for reducing spherical aberration, lateral chromatic aberration and axial chromatic aberration, and ensuring good optical performance.
  • the distance between the first lens group G1 and the second lens group G2 in the telephoto end state becomes extremely small, so that the refractive power of the first lens group G1 and the second lens group G2 Becomes too big.
  • the refractive power of the first lens group G1 is increased, it becomes difficult to correct spherical aberration and lateral chromatic aberration particularly in the telephoto end state.
  • the refractive power of the second lens group G2 is increased, it is difficult to correct axial chromatic aberration.
  • the upper limit of conditional expression (3) it is preferable to set the upper limit of conditional expression (3) to 20.00. If the upper limit of conditional expression (3) is not reached, spherical aberration, lateral chromatic aberration and axial chromatic aberration are preferably reduced. In order to ensure the effect of the first embodiment, it is preferable to set the upper limit of conditional expression (3) to 16.00. In order to secure the effect of the first embodiment, it is preferable to set the upper limit of conditional expression (3) to 13.00.
  • the fourth lens group G4 includes two lenses, and these two lenses are cemented.
  • chromatic aberration can be effectively corrected.
  • performance degradation at the time of manufacture can be suppressed by making the power of each lens surface small.
  • the fifth lens group G5 includes two lenses, and these two lenses are cemented.
  • chromatic aberration can be effectively corrected.
  • performance degradation at the time of manufacture can be suppressed by making the power of each lens surface small.
  • the zoom lens ZLI according to the first embodiment includes a negative lens, a negative lens, a positive lens, and a negative lens in which the second lens group G2 is arranged in order from the object side along the optical axis. It is preferable. With this configuration, it is possible to effectively correct astigmatism over the entire zoom range and axial chromatic aberration in the telephoto end state.
  • the third lens group G3 includes a positive lens, a negative lens, a negative lens, and a positive lens arranged in order from the image side along the optical axis. preferable.
  • the zoom lens ZLI according to the first embodiment performs focusing by moving the fourth lens group G4 along the optical axis direction.
  • the zoom lens ZLI according to the first embodiment performs focusing by moving the fourth lens group G4 along the optical axis direction.
  • the zoom lens ZLI according to the first embodiment having the above-described configuration, it is possible to realize a zoom lens having good optical performance while having a high zoom ratio.
  • FIG. 7 and 8 show a configuration of a digital still camera CAM1 (optical device) as an optical device including the zoom lens ZLI described above.
  • a digital still camera CAM1 optical device
  • a power button not shown
  • a shutter not shown
  • light from the subject is condensed by the zoom lens ZLI, and an image is displayed.
  • An image is formed on an image sensor C (for example, a CCD or a CMOS) disposed on the surface I (see FIG. 1).
  • the subject image formed on the image sensor C is displayed on the liquid crystal monitor M1 disposed behind the digital still camera CAM1.
  • the photographer determines the composition of the subject image while looking at the liquid crystal monitor M1, and then depresses the release button B11 to photograph the subject image with the image sensor C, and records and saves it in a memory (not shown). In this way, the photographer can take an image of the subject with the camera CAM1.
  • the camera CAM1 is also provided with an auxiliary light emitting unit EF1 that emits auxiliary light when the subject is dark, a function button B12 used for setting various conditions of the digital still camera CAM1, and the like.
  • a compact type camera in which the camera CAM1 and the zoom lens ZLI are integrally formed is illustrated, but as an optical device, a single-lens reflex camera in which a lens barrel having the zoom lens ZLI and a camera body main body can be attached and detached. But it ’s okay.
  • the above-described zoom lens ZLI is mounted as a photographing lens, thereby realizing a camera having high optical performance while having a high zoom ratio. can do.
  • a manufacturing method of the above-described zoom lens ZLI will be described with reference to FIG. First, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, arranged in order from the object side along the optical axis in the lens barrel, and a positive refractive power.
  • each lens is arranged (step ST110).
  • each lens is arranged in the lens barrel so as to be composed of three or more lenses (step ST120).
  • the respective lenses are arranged in the lens barrel so as to be composed of two or less lenses (step ST130).
  • the fifth lens group G5 includes two or less lenses, and each lens is arranged in the lens barrel so as to move to the image plane side upon zooming from the wide-angle end state to the telephoto end state (step ST140). .
  • Each lens is arranged so as to satisfy the following conditional expression (1) (step ST150).
  • f1 Focal length of the first lens group G1
  • f2 focal length of the second lens group G2.
  • a cemented lens including a negative meniscus lens L11 having a concave surface facing the image side and a biconvex positive lens L12 in order from the object side.
  • the biconcave negative lens L22, the biconvex positive lens L23, and the biconcave negative lens L24 are arranged to form the second lens group G2, the biconvex positive lens L31, and the biconvex shape.
  • the third lens group G3 includes a cemented lens including a biconvex positive lens L41 and a biconcave negative lens L42 to form a fourth lens group G4.
  • the biconvex positive lens L51 and a concave surface on the object side are provided.
  • a cemented lens composed of the directed negative meniscus lens L52 is disposed to form a fifth lens group G5.
  • the zoom lens ZLI is manufactured by arranging the lens groups thus prepared in the above-described procedure.
  • the manufacturing method according to the first embodiment it is possible to manufacture a zoom lens ZLI having good optical performance while having a high zoom ratio.
  • the zoom lens ZLI according to the second embodiment has a first lens group G1 having a positive refractive power, which is arranged in order from the object side along the optical axis, and a negative refractive power.
  • the first lens group G1 is composed of three or more lenses
  • the fourth lens group G4 is composed of two or less lenses
  • the fifth lens group G5 is changed by changing the distance between the lens groups. Is composed of two or less lenses, and moves to the image plane side upon zooming from the wide-angle end state to the telephoto end state. With this configuration, high zooming can be achieved.
  • the zoom lens ZLI according to the second embodiment satisfies the following conditional expression (4).
  • Dt12 distance on the optical axis from the image side surface of the first lens group G1 to the object side surface of the second lens group G2 in the telephoto end state
  • f2 focal length of the second lens group G2.
  • Conditional expression (4) is a conditional expression for reducing spherical aberration, lateral chromatic aberration, and longitudinal chromatic aberration and ensuring good optical performance.
  • the distance between the first lens group G1 and the second lens group G2 in the telephoto end state becomes extremely small, so that the refractive power of the first lens group G1 and the second lens group G2 Becomes too big.
  • the refractive power of the first lens group G1 is increased, it becomes difficult to correct spherical aberration and lateral chromatic aberration particularly in the telephoto end state.
  • the refractive power of the second lens group G2 is increased, it is difficult to correct axial chromatic aberration.
  • the upper limit of conditional expression (4) it is preferable to set the upper limit of conditional expression (4) to 20.00.
  • the upper limit of conditional expression (4) is not reached, spherical aberration, lateral chromatic aberration and axial chromatic aberration are preferably reduced.
  • the zoom lens ZLI according to the second embodiment satisfies the following conditional expression (5).
  • Mv2 the amount of movement of the second lens group G2 from the wide-angle end state to the telephoto end state
  • ft focal length of the entire system in the telephoto end state.
  • Conditional expression (5) is a conditional expression for reducing axial chromatic aberration and lateral chromatic aberration.
  • the zoom lens ZLI according to the second embodiment satisfies the following conditional expression (6).
  • D1 Distance on the optical axis from the object side surface to the image side surface of the first lens group G1
  • ft focal length of the entire system in the telephoto end state.
  • Conditional expression (6) is a conditional expression for reducing fluctuations in spherical aberration and lateral chromatic aberration due to zooming.
  • the thickness of the first lens group G1 becomes too thin. Therefore, in order to secure the refractive power of the first lens group G1, the positive lens in the first lens group G1 It is necessary to increase the refractive index, and it becomes difficult to correct lateral chromatic aberration in the telephoto end state.
  • the thickness of the first lens group G1 becomes too large, so that the height of the light beam from the optical axis in the wide-angle end state increases, and the front lens diameter increases.
  • Increasing the refractive power of the second lens group G2 can cope to some extent, but it becomes difficult to suppress fluctuations in chromatic aberration due to zooming.
  • the zoom lens ZLI according to the second embodiment satisfies the following conditional expression (7).
  • Conditional expression (7) reduces variations in spherical aberration, astigmatism, and field curvature due to zooming, and shortens the focusing time when focusing on a short-distance object with the fourth lens group G4.
  • Zidwt represents a ratio of a coefficient representing the amount of movement of the imaging position when the lens group moves along the optical axis between the telephoto end state and the wide-angle end state.
  • Fnwt indicates the ratio of the F number between the telephoto end state and the wide-angle end state.
  • the zoom lens ZLI according to the second embodiment satisfies the following conditional expression (8).
  • ⁇ t3 magnification of the third lens group G3 in the telephoto end state
  • ⁇ w3 magnification of the third lens group G3 in the wide-angle end state.
  • Conditional expression (8) is a conditional expression for reducing spherical aberration fluctuations due to zooming.
  • conditional expression (8) If the lower limit value of conditional expression (8) is not reached, the contribution of the third lens group G3 in zooming becomes too small, so that the first lens group G1 and the second lens group G2 need to bear more zooming action. is there.
  • the refractive power of the first lens group G1 is increased in order to maintain the miniaturization of the optical system, spherical aberration in the telephoto end state and chromatic aberration over the entire zoom range are deteriorated.
  • the refractive power of the second lens group G2 is increased in order to maintain the miniaturization of the entire optical system, it becomes difficult to correct axial chromatic aberration in the telephoto end state and astigmatism over the entire zoom range.
  • the upper limit of conditional expression (8) it is preferable to set the upper limit of conditional expression (8) to 10.00.
  • the value falls below the upper limit value of conditional expression (8) the spherical aberration fluctuation due to zooming becomes smaller, which is preferable.
  • the zoom lens ZLI according to the second embodiment satisfies the following conditional expression (9).
  • f1 Focal length of the first lens group G1.
  • Conditional expression (9) is a conditional expression for reducing spherical aberration, astigmatism, and chromatic aberration.
  • the refractive power of the first lens group G1 becomes relatively large and falls below the lower limit value of the conditional expression (9), it is advantageous for downsizing, but it is difficult to correct spherical aberration and lateral chromatic aberration in the telephoto end state. Become. Further, when the refractive power of the second lens group G2 becomes relatively small and falls below the lower limit value of the conditional expression (9), the total length is increased in order to ensure a high zoom ratio. Here, in order to maintain the downsizing of the optical system, the refractive power of the first lens group G1 must be increased, and the spherical aberration in the telephoto end state is deteriorated.
  • conditional expression (9) In order to ensure the effect of the second embodiment, it is preferable to set the lower limit value of conditional expression (9) to 9.00. In order to secure the effect of the second embodiment, it is preferable to set the lower limit of conditional expression (9) to 10.00. In order to further secure the effect of the second embodiment, it is preferable to set the lower limit of conditional expression (9) to 11.00.
  • conditional expression (9) it is preferable to set the upper limit of conditional expression (9) to 20.00.
  • the upper limit value of conditional expression (9) When falling below the upper limit value of conditional expression (9), spherical aberration, astigmatism and chromatic aberration become smaller, which is preferable.
  • the fourth lens group G4 includes two lenses, and these two lenses are cemented.
  • chromatic aberration can be effectively corrected.
  • performance degradation at the time of manufacture can be suppressed by making the power of each lens surface small.
  • the fifth lens group G5 includes two lenses, and these two lenses are cemented.
  • chromatic aberration can be effectively corrected.
  • performance degradation at the time of manufacture can be suppressed by making the power of each lens surface small.
  • the zoom lens ZLI according to the second embodiment includes a negative lens, a negative lens, a positive lens, and a negative lens in which the second lens group G2 is arranged in order from the object side along the optical axis. It is preferable. With this configuration, it is possible to effectively correct astigmatism over the entire zoom range and axial chromatic aberration in the telephoto end state.
  • the third lens group G3 includes a positive lens, a negative lens, a negative lens, and a positive lens arranged in order from the image side along the optical axis. preferable.
  • the zoom lens ZLI according to the second embodiment performs focusing by moving the fourth lens group G4 along the optical axis direction.
  • this configuration it is possible to prevent performance degradation during focusing.
  • the zoom lens ZLI according to the second embodiment having the above-described configuration, it is possible to realize a zoom lens having good optical performance while being highly variable.
  • FIG. 7 and 8 show a configuration of a digital still camera CAM1 (optical device) as an optical device including the zoom lens ZLI described above. Since this digital still camera CAM1 is the same as that of the first embodiment and the configuration thereof has already been described, the description thereof is omitted here.
  • the above-described zoom lens ZLI is mounted as a photographing lens, thereby realizing a camera having good optical performance while having a high zoom ratio. can do.
  • a method for manufacturing the zoom lens ZLI will be described with reference to FIG. First, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, arranged in order from the object side along the optical axis in the lens barrel, and a positive refractive power.
  • each lens is arranged (step ST210).
  • each lens is arranged in the lens barrel so as to be composed of three or more lenses (step ST220).
  • the respective lenses are arranged in the lens barrel so as to be composed of two or less lenses (step ST230).
  • the fifth lens group G5 includes two or less lenses, and each lens is arranged in the lens barrel so as to move to the image plane side upon zooming from the wide-angle end state to the telephoto end state (step ST240). .
  • Each lens is arranged so as to satisfy the following conditional expression (4) (step ST250).
  • Dt12 distance on the optical axis from the image side surface of the first lens group G1 to the object side surface of the second lens group G2 in the telephoto end state
  • f2 focal length of the second lens group G2.
  • a cemented lens including a negative meniscus lens L11 having a concave surface facing the image side and a biconvex positive lens L12 in order from the object side.
  • the biconcave negative lens L22, the biconvex positive lens L23, and the biconcave negative lens L24 are arranged to form the second lens group G2, the biconvex positive lens L31, and the biconvex shape.
  • the third lens group G3 includes a cemented lens including a biconvex positive lens L41 and a biconcave negative lens L42 to form a fourth lens group G4.
  • the biconvex positive lens L51 and a concave surface on the object side are provided.
  • a cemented lens composed of the directed negative meniscus lens L52 is disposed to form a fifth lens group G5.
  • the zoom lens ZLI is manufactured by arranging the lens groups thus prepared in the above-described procedure.
  • the manufacturing method according to the second embodiment it is possible to manufacture a zoom lens ZLI having good optical performance while having a high zoom ratio.
  • FIG. 1 are cross-sectional views showing the configuration and refractive power distribution of zoom lenses ZLI (ZL1 to ZL3) according to the respective examples.
  • Tables 1 to 3 are shown below, but these are tables of specifications in the first to third examples.
  • d-line (wavelength: 587.6 nm), g-line (wavelength: 435.8 nm), C-line (wavelength: 656.3 nm), and F-line (wavelength: 486.1 nm) are selected as the aberration characteristic calculation targets.
  • the surface number is the order of the optical surfaces from the object side along the light traveling direction
  • R is the radius of curvature of each optical surface
  • D is the next optical surface from each optical surface
  • Or nd is the refractive index of the material of the optical member with respect to the d-line
  • ⁇ d is the Abbe number based on the d-line of the material of the optical member.
  • (variable) indicates a variable surface interval
  • “ ⁇ ” of the radius of curvature indicates a plane or an aperture
  • aperture S indicates an aperture stop S
  • an image plane indicates an image plane I.
  • the refractive index of air “1.00000” is omitted.
  • f is the focal length of the entire lens system
  • Fno is the F number
  • is the half field angle (maximum incident angle, unit: °)
  • Y is the image height
  • Bf is on the optical axis.
  • the distance from the last lens surface to the paraxial image surface, Bf (air) is the distance from the last lens surface to the paraxial image surface expressed in terms of air
  • TL is the total lens length (the lens maximum on the optical axis).
  • TL (air) is obtained by adding Bf (air) to the distance from the lens frontmost surface to the lens final surface on the optical axis.
  • [Variable interval data] in the table indicates the variable interval value Di in each state of the wide-angle end, the intermediate focal length, and the telephoto end.
  • Di represents a variable interval between the i-th surface and the (i + 1) -th surface.
  • mm is generally used for the focal length f, curvature radius R, surface distance D, and other lengths, etc. unless otherwise specified, but the optical system is proportionally enlarged. Alternatively, the same optical performance can be obtained even by proportional reduction, and the present invention is not limited to this. Further, the unit is not limited to “mm”, and other appropriate units can be used.
  • the zoom lens ZLI (ZL1) includes a first lens group G1 having a positive refractive power arranged in order from the object side along the optical axis, and a negative refractive power.
  • the first lens group G1 includes, in order from the object side along the optical axis, a cemented lens including a negative meniscus lens L11 having a concave surface facing the image side and a biconvex positive lens L12, and a convex surface facing the object side. And a positive meniscus lens L14 having a convex surface facing the object side.
  • the second lens group G2 is arranged in order from the object side along the optical axis, a negative meniscus lens L21 having a concave surface on the image side, a biconcave negative lens L22, a biconvex positive lens L23, It comprises a biconcave negative lens L24.
  • the third lens group G3 includes, in order from the object side along the optical axis, a biconvex positive lens L31, a biconvex positive lens L32, a negative meniscus lens L33 having a concave surface facing the image side, It is composed of a cemented lens composed of a negative meniscus lens L34 having a concave surface facing the image side and a biconvex positive lens L35.
  • Both side surfaces of the biconvex positive lens L31 are aspheric.
  • the fourth lens group G4 is composed of a cemented lens composed of a biconvex positive lens L41 and a biconcave negative lens L42 arranged in order from the object side along the optical axis.
  • the object side surface of the biconvex positive lens L41 is aspheric.
  • the fifth lens group G5 is composed of a cemented lens including a biconvex positive lens L51 and a negative meniscus lens L52 having a concave surface facing the object side, which are arranged in order from the object side along the optical axis.
  • the object side surface of the biconvex positive lens L51 is aspheric.
  • An aperture stop S for adjusting the amount of light is provided on the object side of the third lens group G3.
  • a filter FL is provided on the image side of the fifth lens group G5.
  • the filter FL is composed of a low-pass filter, an infrared cut filter, or the like for cutting a spatial frequency above the limit resolution of the solid-state imaging device, such as a CCD disposed on the image plane I.
  • the zoom lens ZL1 has all the lenses from the first lens group G1 to the fifth lens group G5 so that the distance between the lens groups changes during zooming from the wide-angle end state to the telephoto end state.
  • Move the group Specifically, the first lens group G1 is moved to the object side.
  • the second lens group G2 is once moved to the image plane side and then moved to the object side.
  • the third lens group G3 is moved to the object side.
  • the fourth lens group G4 is once moved to the image plane side and then moved to the object side.
  • the fifth lens group G5 is moved to the image plane side.
  • the aperture stop S is moved to the object side integrally with the third lens group G3.
  • Table 1 below shows the values of each item in the first example.
  • Surface numbers 1 to 33 in Table 1 correspond to the optical surfaces m1 to m33 shown in FIG.
  • FIG. 2 is a diagram illustrating various aberrations (spherical aberration diagram, astigmatism diagram, distortion diagram, coma aberration diagram, and chromatic aberration diagram of magnification) at the photographing distance infinity of the zoom lens ZL1 according to the first example.
  • FNO represents an F number
  • A represents a half angle of view (unit: °) with respect to each image height.
  • d is the d-line
  • g is the g-line
  • C is the C-line
  • F is the F-line aberration.
  • those without these descriptions show aberrations at the d-line.
  • the solid line indicates the sagittal image plane
  • the broken line indicates the meridional image plane. Note that the same reference numerals as in this embodiment are used in the aberration diagrams of each embodiment described later.
  • the zoom lens ZL1 according to the first example has excellent image forming performance with various aberrations corrected well.
  • the zoom lens ZLI (ZL2) includes a first lens group G1 having a positive refractive power, arranged in order from the object side along the optical axis, and a negative refractive power.
  • the first lens group G1 includes, in order from the object side along the optical axis, a cemented lens including a negative meniscus lens L11 having a concave surface facing the image side and a biconvex positive lens L12, and a convex surface facing the object side. And a positive meniscus lens L14 having a convex surface facing the object side.
  • the second lens group G2 is arranged in order from the object side along the optical axis, a negative meniscus lens L21 having a concave surface on the image side, a biconcave negative lens L22, a biconvex positive lens L23, It comprises a biconcave negative lens L24.
  • the third lens group G3 includes a biconvex positive lens L31 arranged in order from the object side along the optical axis, a negative meniscus lens L32 having a concave surface on the image side, and a negative meniscus having a concave surface on the image side. It is composed of a cemented lens made up of a lens L33 and a biconvex positive lens L34.
  • Both side surfaces of the biconvex positive lens L31 are aspheric.
  • the fourth lens group G4 is composed of a cemented lens composed of a biconvex positive lens L41 and a biconcave negative lens L42 arranged in order from the object side along the optical axis.
  • the fifth lens group G5 is composed of a cemented lens including a biconvex positive lens L51 and a negative meniscus lens L52 having a concave surface facing the object side, which are arranged in order from the object side along the optical axis.
  • the object side surface of the biconvex positive lens L51 is aspheric.
  • An aperture stop S for adjusting the amount of light is provided on the object side of the third lens group G3.
  • a filter FL is provided on the image side of the fifth lens group G5.
  • the filter FL is composed of a low-pass filter, an infrared cut filter, or the like for cutting a spatial frequency above the limit resolution of the solid-state imaging device, such as a CCD disposed on the image plane I.
  • the zoom lens ZL2 has all the lenses from the first lens group G1 to the fifth lens group G5 so that the distance between the lens groups changes during zooming from the wide-angle end state to the telephoto end state.
  • Move the group Specifically, the first lens group G1 is moved to the object side.
  • the second lens group G2 is moved to the image plane side.
  • the third lens group G3 is moved to the object side.
  • the fourth lens group G4 is moved to the object side.
  • the fifth lens group G5 is moved to the image plane side.
  • the aperture stop S is moved to the object side integrally with the third lens group G3.
  • Table 2 below shows the values of each item in the second example.
  • Surface numbers 1 to 31 in Table 2 correspond to the optical surfaces m1 to m31 shown in FIG.
  • FIG. 4 is a diagram showing various aberrations (spherical aberration diagram, astigmatism diagram, distortion diagram, coma diagram, and chromatic aberration diagram of magnification) at the photographing distance infinity of the zoom lens ZL2 according to the second example.
  • the zoom lens ZL2 according to Example 2 has various aberrations corrected satisfactorily and has excellent imaging performance.
  • the zoom lens ZLI (ZL3) according to the third example includes a first lens group G1 having a positive refractive power arranged in order from the object side along the optical axis, and a negative refractive power.
  • the first lens group G1 includes, in order from the object side along the optical axis, a cemented lens including a negative meniscus lens L11 having a concave surface facing the image side and a biconvex positive lens L12, and a convex surface facing the object side. And a positive meniscus lens L14 having a convex surface facing the object side.
  • the second lens group G2 is composed of a negative meniscus lens L21 having a concave surface facing the image side, a biconcave negative lens L22, and a biconvex positive lens L23 arranged in order from the object side along the optical axis. It is composed of a cemented lens and a negative meniscus lens L24 having a concave surface facing the object side.
  • the third lens group G3 includes a biconvex positive lens L31 arranged in order from the object side along the optical axis, a negative meniscus lens L32 having a concave surface on the image side, and a negative meniscus having a concave surface on the image side. It is composed of a cemented lens made up of a lens L33 and a biconvex positive lens L34.
  • Both side surfaces of the biconvex positive lens L31 are aspheric.
  • the fourth lens group G4 is composed of a cemented lens composed of a biconvex positive lens L41 and a biconcave negative lens L42 arranged in order from the object side along the optical axis.
  • the fifth lens group G5 is composed of a cemented lens including a biconvex positive lens L51 and a negative meniscus lens L52 having a concave surface facing the object side, which are arranged in order from the object side along the optical axis.
  • the object side surface of the biconvex positive lens L51 is aspheric.
  • An aperture stop S for adjusting the amount of light is provided on the object side of the third lens group G3.
  • a filter FL is provided on the image side of the fifth lens group G5.
  • the filter FL is composed of a low-pass filter, an infrared cut filter, or the like for cutting a spatial frequency above the limit resolution of the solid-state imaging device, such as a CCD disposed on the image plane I.
  • the zoom lens ZL3 has all the lenses from the first lens group G1 to the fifth lens group G5 so that the distance between the lens groups changes during zooming from the wide-angle end state to the telephoto end state.
  • Move the group Specifically, the first lens group G1 is moved to the object side.
  • the second lens group G2 is once moved to the image plane side and then moved to the object side.
  • the third lens group G3 is moved to the object side.
  • the fourth lens group G4 is once moved to the image plane side and then moved to the object side.
  • the fifth lens group G5 is moved to the image plane side.
  • the aperture stop S is moved to the object side integrally with the third lens group G3.
  • Table 3 shows the values of each item in the third example.
  • Surface numbers 1 to 30 in Table 3 correspond to the optical surfaces m1 to m30 shown in FIG.
  • FIG. 6 is a diagram illustrating various aberrations (spherical aberration diagram, astigmatism diagram, distortion diagram, coma diagram, and chromatic aberration diagram of magnification) at the photographing distance infinity of the zoom lens ZL3 according to Example 3, and (a) Is the wide-angle end state, (b) is the intermediate focal length state, and (c) is the telephoto end state.
  • various aberrations spherical aberration diagram, astigmatism diagram, distortion diagram, coma diagram, and chromatic aberration diagram of magnification
  • the zoom lens ZL3 according to the third example has excellent image forming performance with various aberrations corrected well.
  • a five-group configuration is shown.
  • the present invention is not limited to this, and can be applied to other group configurations (for example, six groups). It is. Specifically, a configuration in which a lens or a lens group is added closest to the object side or a configuration in which a lens or a lens group is added closest to the image side may be used.
  • the lens group indicates a portion having at least one lens separated by an air interval that changes at the time of zooming or focusing.
  • a part of the lens group, the entire lens group, or a plurality of lens groups is a focusing lens. It is good also as a structure which moves to an optical axis direction as a group.
  • This focusing lens group can be applied to autofocus, and is also suitable for driving a motor for autofocus (using an ultrasonic motor or the like).
  • the fourth lens group G4 or the fifth lens group G5 is preferably a focusing lens group. It is also possible to focus by moving the fourth lens group G4 and the fifth lens group G5 simultaneously.
  • either the entire lens group or the partial lens group is moved so as to have a component in a direction perpendicular to the optical axis, or in an in-plane including the optical axis.
  • An anti-vibration lens group that corrects image blur caused by camera shake or the like by rotating and swinging in the direction may be used.
  • the third lens group G3 is preferably an anti-vibration lens group.
  • the lens surface may be formed of a spherical surface, a flat surface, or an aspheric surface.
  • the lens surface is a spherical surface or a flat surface, lens processing and assembly adjustment are facilitated, and optical performance deterioration due to errors in processing and assembly adjustment can be prevented. Further, even when the image plane is deviated, it is preferable because there is little deterioration in drawing performance.
  • the lens surface is an aspheric surface
  • the aspheric surface is an aspheric surface by grinding, a glass mold aspheric surface made of glass with an aspheric shape, or a composite aspheric surface made of resin with an aspheric shape on the glass surface. Any aspherical surface may be used.
  • the lens surface may be a diffractive surface, and the lens may be a gradient index lens (GRIN lens) or a plastic lens.
  • GRIN lens gradient index lens
  • the aperture stop S is preferably disposed in the vicinity of the third lens group G3.
  • a member as an aperture stop is not provided and a lens frame is provided. That role may be substituted.
  • each lens surface has an antireflection film having a high transmittance in a wide wavelength range in order to reduce flare and ghost and achieve high optical performance with high contrast. May be applied.
  • the zoom lens ZLII has a first lens group G1 having a positive refractive power, which is arranged in order from the object side along the optical axis, and a negative refractive power.
  • the first lens group G1 is composed of three or more lenses
  • the fifth lens group G5 is an image plane at the time of zooming from the wide-angle end state to the telephoto end state. And the following conditional expression (10) is satisfied.
  • f2 focal length of the second lens group G2 in the telephoto end state
  • ft focal length of the entire system in the telephoto end state.
  • Conditional expression (10) is a conditional expression for reducing spherical aberration and coma due to zooming.
  • the refractive power of the second lens group G2 in the telephoto end state becomes too strong. For this reason, it is necessary to increase the refractive power of the other lens groups as well.
  • the refractive power of the first lens group G1 is increased, it becomes difficult to correct spherical aberration and coma aberration in the telephoto end state.
  • the refractive power of the third lens group G3 is increased, the spherical aberration in the third lens group G3 is increased, and the spherical aberration and the coma aberration are deteriorated in the entire zooming region.
  • the refractive power of the second lens group G2 in the telephoto end state becomes too weak. For this reason, it is necessary to weaken the refractive power of other lens groups as well. If the refractive power of the first lens group G1 is weakened, the entire length of the lens barrel becomes longer. To maintain the lens barrel size, it is necessary to increase the refractive power of the third lens group G3. Spherical aberration is increased, and spherical aberration and coma are deteriorated in the entire zooming region. Further, if the refractive power of the third lens group G3 is weakened, the entire length of the lens barrel becomes longer. If the lens barrel size is to be maintained, it is necessary to increase the refractive power of the first lens group G1. At the telephoto end, the spherical aberration and coma aberration deteriorate.
  • conditional expression (10) it is preferable to set the lower limit of conditional expression (10) to 0.024.
  • the zoom lens ZLII according to the third embodiment satisfies the following conditional expressions (11) and (12).
  • AVE1Grpvd Average Abbe number based on the d-line of the lenses in the first lens group G1
  • G1vd Abbe number based on the d-line of the lens L11 disposed closest to the object side in the first lens group G1.
  • Conditional expression (11) is a conditional expression for reducing the occurrence of longitudinal chromatic aberration and lateral chromatic aberration. If the lower limit value of conditional expression (11) is not reached, the average value of the Abbe number of the lenses constituting the first lens group G1 becomes small with respect to the focal length of the entire system in the telephoto end state, and axial chromatic aberration and lateral chromatic aberration are reduced. It becomes difficult to suppress. When the upper limit of conditional expression (11) is exceeded, the average value of the Abbe numbers of the lenses constituting the first lens group G1 increases with respect to the focal length of the entire system in the telephoto end state. This means that the lenses constituting the first lens group G1 generally have a weak refractive power.
  • the lens barrel size becomes long.
  • the refractive power of the third lens group G3 is increased to maintain the lens barrel size, it becomes difficult to suppress spherical aberration and coma aberration. .
  • conditional expression (11) it is preferable to set the lower limit value of conditional expression (11) to 74.50.
  • Conditional expression (12) is a conditional expression for reducing the occurrence of longitudinal chromatic aberration and lateral chromatic aberration. If the lower limit of conditional expression (12) is not reached, the Abbe number of the lens L11 disposed closest to the object side in the first lens group G1 with respect to the focal length of the entire system in the telephoto end state becomes small, and axial chromatic aberration It becomes difficult to suppress lateral chromatic aberration. When the upper limit value of conditional expression (12) is exceeded, the Abbe number of the lens L11 in the first lens group G1 increases with respect to the focal length of the entire system in the telephoto end state, and the lens generally has a weak refractive power.
  • the refractive power of the lens L11 arranged closest to the object side becomes weak, it becomes difficult to suppress chromatic aberration, and in order to suppress chromatic aberration, it is necessary to weaken the refractive power of the lens L12.
  • the first lens group The refractive power at G1 becomes weaker, and the lens barrel size becomes longer. If the refractive power of the third lens group G3 is increased so as to maintain the lens barrel size, it becomes difficult to suppress spherical aberration and coma aberration.
  • conditional expression (12) it is preferable to set the upper limit value of conditional expression (12) to 47.50.
  • the zoom lens ZLII according to the third embodiment satisfies the following conditional expression (13).
  • D12t the air gap between the first lens group G1 and the second lens group G2 in the telephoto end state
  • D12w an air space between the first lens group G1 and the second lens group G2 in the wide-angle end state.
  • Conditional expression (13) is a conditional expression for reducing variations in spherical aberration, coma aberration, and lateral chromatic aberration due to zooming. If the lower limit of conditional expression (13) is not reached, the distance between the first lens group G1 and the second lens group G2 in the telephoto end state becomes too narrow, and the refractive power of the first lens group G1 needs to be increased. . Therefore, when the refractive index of the positive lens in the first lens group G1 is increased, it becomes difficult to correct spherical aberration, coma aberration, and lateral chromatic aberration in the telephoto end state.
  • the distance between the first lens group G1 and the second lens group G2 in the telephoto end state becomes too wide, so that the entire length of the lens barrel becomes long.
  • it is necessary to weaken the refractive power of the first lens group G1 it is possible to cope with this to some extent by increasing the refractive power of the second lens group G2, but it is possible to suppress fluctuations in chromatic aberration due to zooming. It becomes difficult.
  • conditional expression (13) it is preferable to set the upper limit of conditional expression (13) to 138.00.
  • the zoom lens ZLII according to the third embodiment satisfies the following conditional expression (14).
  • Conditional expression (14) is a conditional expression for reducing fluctuations in spherical aberration and coma due to zooming. If the lower limit of conditional expression (14) is not reached, the contribution of the second lens group G2 at the time of zooming becomes too small. That is, the third lens group G3 needs to perform more zooming action. If the refractive power of the third lens group G3 is increased in order to maintain the lens barrel size, it becomes difficult to correct spherical aberration in the telephoto end state, and to correct spherical aberration and coma aberration in the entire zoom region. If the upper limit of conditional expression (14) is exceeded, the contribution of the second lens group G2 at the time of zooming becomes too large.
  • the zoom lens ZLII according to the third embodiment satisfies the following conditional expression (15).
  • f3 focal length of the third lens group G3 in the telephoto end state.
  • Conditional expression (15) is a conditional expression for reducing the fluctuation of spherical aberration due to zooming. If the lower limit of conditional expression (15) is not reached, the refractive power of the third lens group G3 in the telephoto end state becomes too strong. Then, the spherical aberration in the third lens group G3 increases. It becomes difficult to correct spherical aberration and coma aberration in the entire zoom range. If the upper limit of conditional expression (15) is exceeded, the refractive power of the third lens group G3 in the telephoto end state becomes too weak. As a result, the amount of movement of the third lens group G3 becomes large, and it becomes difficult to maintain the lens barrel size. If the refractive power of the first lens group G1 is increased in order to maintain the lens barrel size, it becomes difficult to correct spherical aberration and coma aberration in the entire zooming region.
  • the zoom lens ZLII according to the third embodiment includes a positive lens, a negative lens, a negative lens, and a positive lens in which the third lens group G3 is arranged in order from the object side along the optical axis. It is preferable.
  • This configuration makes it possible to correct spherical aberration and coma for each wavelength in the telephoto end state with a good balance.
  • the third lens group G3 has at least one aspheric lens.
  • This configuration can satisfactorily correct spherical aberration and coma.
  • the zoom lens ZLII according to the third embodiment having the above-described configuration, it is possible to realize a zoom lens having good optical performance while having a high zoom ratio.
  • FIG. 23 and 24 show a configuration of a digital still camera CAM2 (optical device) as an optical device including the zoom lens ZLII described above.
  • a digital still camera CAM2 optical device
  • a power button not shown
  • a shutter not shown
  • light from the subject (object) is condensed by the zoom lens ZLII, and an image is obtained.
  • An image is formed on an image sensor C (for example, a CCD or a CMOS) arranged on the surface I (see FIG. 11).
  • the subject image formed on the image sensor C is displayed on the liquid crystal monitor M2 disposed behind the digital still camera CAM2.
  • the photographer determines the composition of the subject image while viewing the liquid crystal monitor M2, and then depresses the release button B21 to photograph the subject image with the image sensor C, and records and saves it in a memory (not shown).
  • the camera CAM2 is provided with an auxiliary light emitting unit EF2 that emits auxiliary light when the subject is dark, a function button B22 used for setting various conditions of the digital still camera CAM2, and the like.
  • auxiliary light emitting unit EF2 that emits auxiliary light when the subject is dark
  • function button B22 used for setting various conditions of the digital still camera CAM2, and the like.
  • the compact type camera in which the camera CAM2 and the zoom lens ZLII are integrally formed is illustrated.
  • a single lens reflex camera in which the lens barrel having the zoom lens ZLII and the camera body main body are detachable can be used. good.
  • the above zoom lens ZLII is mounted as a photographic lens, thereby realizing a camera having good optical performance while being highly variable in magnification. can do.
  • a manufacturing method of the above-described zoom lens ZLII will be described with reference to FIG. First, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, arranged in order from the object side along the optical axis in the lens barrel, and a positive refractive power.
  • each lens is arranged (step ST310).
  • each lens is arranged so that the first lens group G1 includes three or more lenses (step ST320).
  • the lenses are arranged so as to move to the image plane side upon zooming from the wide-angle end state to the telephoto end state (step ST330). Further, the respective lenses are arranged so as to satisfy the following conditional expression (10) (step ST340).
  • f2 focal length of the second lens group G2 in the telephoto end state
  • ft focal length of the entire system in the telephoto end state.
  • a cemented lens including a negative meniscus lens L11 having a convex surface facing the object side and a biconvex positive lens L12 in order from the object side.
  • a negative meniscus lens L22 having a concave surface facing the object side, a biconvex positive lens L23, and a biconcave negative lens L24 are arranged as a second lens group G2, and a biconvex positive lens L31 is provided.
  • a cemented lens composed of the directed negative meniscus lens L52 is disposed to form a fifth lens group G5.
  • the zoom lens ZLII is manufactured by arranging the lens groups thus prepared in the above-described procedure.
  • FIG. 11 Each reference numeral for FIG. 11 according to the fourth embodiment is used independently for each embodiment in order to avoid complication of explanation due to an increase in the number of digits of the reference code. Therefore, even if the same reference numerals as those in the drawings according to the other embodiments are given, they are not necessarily in the same configuration as the other embodiments.
  • C-line (wavelength 656.3 nm), d-line (wavelength 587.6 nm), F-line (wavelength 486.1 nm), and g-line (wavelength 435.8 nm) are selected as the calculation targets of the aberration characteristics.
  • the surface number is the order of the optical surfaces from the object side along the light traveling direction
  • R is the radius of curvature of each optical surface
  • D is the next optical surface from each optical surface
  • Or nd is the refractive index of the material of the optical member with respect to the d-line
  • ⁇ d is the Abbe number based on the d-line of the material of the optical member.
  • the object plane is the object plane
  • (variable) is the variable plane spacing
  • the curvature radius “ ⁇ ” is the plane or aperture
  • (aperture S) is the aperture stop S
  • the image plane is the image plane I.
  • the refractive index of air “1.0000” is omitted.
  • the optical surface is an aspherical surface
  • the surface number is marked with *
  • the column of curvature radius R indicates the paraxial curvature radius.
  • f is the focal length of the entire lens system
  • Fno is the F number
  • is the half field angle (maximum incident angle, unit: °)
  • Y is the image height
  • Bf is on the optical axis.
  • the distance from the last lens surface to the paraxial image surface, TL indicates the total lens length (the distance from the foremost lens surface to the last lens surface on the optical axis plus Bf).
  • Bf (air) and TL (air) are values obtained by converting the filter FL into air.
  • [Variable interval data] in the table indicates the variable interval value Di in each state of the wide-angle end, the intermediate focal length, and the telephoto end.
  • Di represents a variable interval between the i-th surface and the (i + 1) -th surface.
  • G represents a group number
  • the first group surface represents the surface number of the most object side of each group
  • the group focal length represents the focal length of each group.
  • mm is generally used as the focal length f, the radius of curvature R, the surface interval D, and other lengths, etc. unless otherwise specified, but the zoom lens is proportionally enlarged. Alternatively, the same optical performance can be obtained even by proportional reduction, and the present invention is not limited to this. Further, the unit is not limited to “mm”, and other appropriate units can be used.
  • the zoom lens ZLII (ZL4) according to the fourth example includes a first lens group G1 having a positive refractive power arranged in order from the object side along the optical axis, and a negative refractive power.
  • the first lens group G1 includes, in order from the object side along the optical axis, a cemented lens including a negative meniscus lens L11 having a concave surface facing the image side and a biconvex positive lens L12, and a convex surface facing the object side. And a positive meniscus lens L14 having a convex surface facing the object side.
  • the second lens group G2 includes a negative meniscus lens L21 having a concave surface facing the image side, a negative meniscus lens L22 having a concave surface facing the object side, and a biconvex positive lens arrayed in order from the object side along the optical axis.
  • the lens L23 is composed of a biconcave negative lens L24.
  • the third lens group G3 includes a biconvex positive lens L31 arranged in order from the object side along the optical axis, a negative meniscus lens L32 having a concave surface on the image side, and a negative meniscus having a concave surface on the image side. It is composed of a cemented lens made up of a lens L33 and a biconvex positive lens L34. Both surfaces of the biconvex positive lens L31 are aspheric.
  • the fourth lens group G4 is composed of a cemented lens composed of a biconvex positive lens L41 and a biconcave negative lens L42 arranged in order from the object side along the optical axis.
  • the fifth lens group G5 is composed of a cemented lens including a biconvex positive lens L51 and a negative meniscus lens L52 having a concave surface facing the object side, which are arranged in order from the object side along the optical axis.
  • the object side surface of the biconvex positive lens L51 is aspheric.
  • An aperture stop S for adjusting the amount of light is provided on the object side of the third lens group G3.
  • a filter FL is provided on the image side of the fifth lens group G5.
  • the filter FL is composed of a low-pass filter, an infrared cut filter, or the like for cutting a spatial frequency above the limit resolution of the solid-state imaging device, such as a CCD disposed on the image plane I.
  • the zoom lens ZL4 has all the lenses from the first lens group G1 to the fifth lens group G5 so that the distance between the lens groups changes during zooming from the wide-angle end state to the telephoto end state.
  • Move the group Specifically, the first lens group G1 is moved to the object side.
  • the second lens group G2 is once moved to the image plane side and then moved to the object side.
  • the third lens group G3 is moved to the object side.
  • the fourth lens group G4 is once moved to the image plane side and then moved to the object side.
  • the fifth lens group G5 is moved to the image plane side.
  • the aperture stop S is moved to the object side together with the third lens group G3.
  • Table 4 shows the values of each item in the fourth example.
  • Surface numbers 1 to 33 in Table 4 correspond to the optical surfaces m1 to m33 shown in FIG.
  • FIG. 12 is a diagram of various aberrations (spherical aberration diagram, astigmatism diagram, distortion diagram, coma diagram, and chromatic aberration diagram of magnification) at the photographing distance infinity of the zoom lens ZL4 according to Example 4, and (a) Is the wide-angle end state, (b) is the intermediate focal length state, and (c) is the telephoto end state.
  • various aberrations spherical aberration diagram, astigmatism diagram, distortion diagram, coma diagram, and chromatic aberration diagram of magnification
  • FNO represents an F number
  • A represents a half angle of view (unit: °) with respect to each image height.
  • d is the d-line
  • g is the g-line
  • C is the C-line
  • F is the F-line aberration.
  • those without these descriptions show aberrations at the d-line.
  • the solid line indicates the sagittal image plane
  • the broken line indicates the meridional image plane. Note that the same reference numerals as in this embodiment are used in the aberration diagrams of each embodiment described later.
  • the zoom lens ZL4 according to Example 4 has various aberrations corrected satisfactorily and has excellent imaging performance.
  • the zoom lens ZLII (ZL5) according to the fifth example includes a first lens group G1 having a positive refractive power arranged in order from the object side along the optical axis, and a negative refractive power.
  • the zoom lens ZLII (ZL5) includes a first lens group G1 having a positive refractive power arranged in order from the object side along the optical axis, and a negative refractive power.
  • the first lens group G1 includes, in order from the object side along the optical axis, a cemented lens including a negative meniscus lens L11 having a concave surface facing the image side and a biconvex positive lens L12, and a convex surface facing the object side. And a positive meniscus lens L14 having a convex surface facing the object side.
  • the second lens group G2 includes a negative meniscus lens L21 having a concave surface facing the image side, a negative meniscus lens L22 having a concave surface facing the object side, and a biconvex positive lens arrayed in order from the object side along the optical axis.
  • the lens L23 is composed of a biconcave negative lens L24.
  • the third lens group G3 includes a biconvex positive lens L31 arranged in order from the object side along the optical axis, a negative meniscus lens L32 having a concave surface on the image side, and a negative meniscus having a concave surface on the image side. It is composed of a cemented lens made up of a lens L33 and a biconvex positive lens L34. Both surfaces of the biconvex positive lens L31 are aspheric.
  • the fourth lens group G4 is composed of a cemented lens composed of a biconvex positive lens L41 and a biconcave negative lens L42 arranged in order from the object side along the optical axis.
  • the fifth lens group G5 is composed of a cemented lens including a biconvex positive lens L51 and a negative meniscus lens L52 having a concave surface facing the object side, which are arranged in order from the object side along the optical axis.
  • the object side surface of the biconvex positive lens L51 is aspheric.
  • An aperture stop S for adjusting the amount of light is provided on the object side of the third lens group G3.
  • a filter FL is provided on the image side of the fifth lens group G5.
  • the filter FL is composed of a low-pass filter, an infrared cut filter, or the like for cutting a spatial frequency above the limit resolution of the solid-state imaging device, such as a CCD disposed on the image plane I.
  • the zoom lens ZL5 has all the lenses from the first lens group G1 to the fifth lens group G5 so that the distance between the lens groups changes during zooming from the wide-angle end state to the telephoto end state.
  • Move the group Specifically, the first lens group G1 is moved to the object side.
  • the second lens group G2 is moved to the image plane side.
  • the third lens group G3 is once moved to the object side and then moved to the image plane side.
  • the fourth lens group G4 is once moved to the image plane side and then moved to the object side.
  • the fifth lens group G5 is moved to the image plane side.
  • the aperture stop S is moved to the object side together with the third lens group G3.
  • Table 5 shows the values of each item in the fifth example.
  • Surface numbers 1 to 33 in Table 5 correspond to the respective optical surfaces m1 to m33 shown in FIG.
  • FIG. 14 is a diagram illustrating various aberrations (spherical aberration diagram, astigmatism diagram, distortion aberration diagram, coma aberration diagram, and chromatic aberration diagram of magnification) at the photographing distance infinity of the zoom lens ZL5 according to Example 5, and (a) Is the wide-angle end state, (b) is the intermediate focal length state, and (c) is the telephoto end state.
  • various aberrations spherical aberration diagram, astigmatism diagram, distortion aberration diagram, coma aberration diagram, and chromatic aberration diagram of magnification
  • the zoom lens ZL5 according to Example 5 has various aberrations corrected well and has excellent imaging performance.
  • the zoom lens ZLII (ZL6) includes a first lens group G1 having a positive refractive power arranged in order from the object side along the optical axis, and a negative refractive power.
  • the first lens group G1 includes, in order from the object side along the optical axis, a cemented lens including a negative meniscus lens L11 having a concave surface facing the image side and a biconvex positive lens L12, and a convex surface facing the object side. And a positive meniscus lens L14 having a convex surface facing the object side.
  • the second lens group G2 is composed of a negative meniscus lens L21 having a concave surface facing the image side, a biconcave negative lens L22, and a biconvex positive lens L23 arranged in order from the object side along the optical axis. It is composed of a cemented lens and a negative meniscus lens L24 having a concave surface facing the object side.
  • the third lens group G3 includes a biconvex positive lens L31 arranged in order from the object side along the optical axis, a negative meniscus lens L32 having a concave surface on the image side, and a positive meniscus having a convex surface on the object side. It is composed of a cemented lens made up of a lens L33 and a biconvex positive lens L34. Both surfaces of the biconvex positive lens L31 are aspheric.
  • the fourth lens group G4 is composed of a cemented lens composed of a positive meniscus lens L41 having a convex surface facing the image side and a biconcave negative lens L42, which are arranged in order from the object side along the optical axis.
  • the fifth lens group G5 is composed of a cemented lens including a biconvex positive lens L51 and a negative meniscus lens L52 having a concave surface facing the object side, which are arranged in order from the object side along the optical axis.
  • the object side surface of the biconvex positive lens L51 is aspheric.
  • An aperture stop S for adjusting the amount of light is provided on the object side of the third lens group G3.
  • a filter FL is provided on the image side of the fifth lens group G5.
  • the filter FL is composed of a low-pass filter, an infrared cut filter, or the like for cutting a spatial frequency above the limit resolution of the solid-state imaging device, such as a CCD disposed on the image plane I.
  • the zoom lens ZL6 has all the lenses from the first lens group G1 to the fifth lens group G5 so that the distance between the lens groups changes during zooming from the wide-angle end state to the telephoto end state.
  • Move the group Specifically, the first lens group G1 is moved to the object side.
  • the second lens group G2 is once moved to the image plane side and then moved to the object side.
  • the third lens group G3 is moved to the object side.
  • the fourth lens group G4 is once moved to the image plane side and then moved to the object side.
  • the fifth lens group G5 is moved to the image plane side.
  • the aperture stop S is moved to the object side together with the third lens group G3.
  • Table 6 shows the values of each item in the sixth example.
  • Surface numbers 1 to 32 in Table 6 correspond to the respective optical surfaces m1 to m32 shown in FIG.
  • FIG. 16 is a diagram of various aberrations (spherical aberration diagram, astigmatism diagram, distortion aberration diagram, coma aberration diagram, and chromatic aberration diagram of magnification) at the photographing distance infinity of the zoom lens ZL6 according to Example 6, and (a) Is the wide-angle end state, (b) is the intermediate focal length state, and (c) is the telephoto end state.
  • various aberrations spherical aberration diagram, astigmatism diagram, distortion aberration diagram, coma aberration diagram, and chromatic aberration diagram of magnification
  • the zoom lens ZL6 according to Example 6 has various aberrations corrected well and has excellent imaging performance.
  • the zoom lens ZLII (ZL7) according to the seventh example includes a first lens group G1 having a positive refractive power arranged in order from the object side along the optical axis, and a negative refractive power.
  • the first lens group G1 includes, in order from the object side along the optical axis, a cemented lens including a negative meniscus lens L11 having a concave surface facing the image side and a biconvex positive lens L12, and a convex surface facing the object side. And a positive meniscus lens L14 having a convex surface facing the object side.
  • the second lens group G2 is arranged in order from the object side along the optical axis, a negative meniscus lens L21 having a concave surface on the image side, a biconcave negative lens L22, a biconvex positive lens L23, And a negative meniscus lens L24 having a concave surface facing the object side.
  • the third lens group G3 includes a biconvex positive lens L31, a biconcave negative lens L32, a positive meniscus lens L33 having a convex surface facing the object side, and both arranged in order from the object side along the optical axis. It is comprised from the cemented lens which consists of convex-shaped positive lens L34. Both surfaces of the biconvex positive lens L31 are aspheric.
  • the fourth lens group G4 is composed of a cemented lens which is arranged in order from the object side along the optical axis and includes a negative meniscus lens L41 having a concave surface facing the image side and a positive meniscus lens L42 having a concave surface facing the object side.
  • the fifth lens group G5 is composed of a cemented lens including a biconvex positive lens L51 and a negative meniscus lens L52 having a concave surface facing the object side, which are arranged in order from the object side along the optical axis.
  • the object side surface of the biconvex positive lens L51 is aspheric.
  • An aperture stop S for adjusting the amount of light is provided on the object side of the third lens group G3.
  • a filter FL is provided on the image side of the fifth lens group G5.
  • the filter FL is composed of a low-pass filter, an infrared cut filter, or the like for cutting a spatial frequency above the limit resolution of the solid-state imaging device, such as a CCD disposed on the image plane I.
  • the zoom lens ZL7 has all the lenses from the first lens group G1 to the fifth lens group G5 so that the distance between the lens groups changes during zooming from the wide-angle end state to the telephoto end state.
  • Move the group Specifically, the first lens group G1 is moved to the object side.
  • the second lens group G2 is moved to the image plane side.
  • the third lens group G3 is moved to the object side.
  • the fourth lens group G4 is once moved to the object side and then moved to the image plane side.
  • the fifth lens group G5 is moved to the image plane side.
  • the aperture stop S is moved to the object side together with the third lens group G3.
  • Table 7 shows the values of each item in the seventh example.
  • Surface numbers 1 to 33 in Table 7 correspond to the respective optical surfaces m1 to m33 shown in FIG.
  • Table 7 shows that the zoom lens ZL7 according to the present example satisfies the conditional expressions (10) to (15).
  • FIG. 18 is a diagram illustrating various aberrations (spherical aberration diagram, astigmatism diagram, distortion diagram, coma diagram, and chromatic aberration diagram of magnification) at the photographing distance infinity of the zoom lens ZL7 according to Example 7, and (a) Is the wide-angle end state, (b) is the intermediate focal length state, and (c) is the telephoto end state.
  • various aberrations spherical aberration diagram, astigmatism diagram, distortion diagram, coma diagram, and chromatic aberration diagram of magnification
  • the zoom lens ZL7 according to Example 7 has various aberrations corrected well and has excellent imaging performance.
  • the zoom lens ZLII (ZL8) includes a first lens group G1 having a positive refractive power arranged in order from the object side along the optical axis, and a negative refractive power.
  • the first lens group G1 includes, in order from the object side along the optical axis, a cemented lens including a negative meniscus lens L11 having a concave surface facing the image side and a biconvex positive lens L12, and a convex surface facing the object side. And a positive meniscus lens L14 having a convex surface facing the object side.
  • the second lens group G2 includes a negative meniscus lens L21 having a concave surface facing the image side, a negative meniscus lens L22 having a concave surface facing the object side, and a biconvex positive lens arrayed in order from the object side along the optical axis.
  • the lens L23 is composed of a biconcave negative lens L24.
  • the third lens group G3 is arranged in order from the object side along the optical axis, and includes a positive lens L31 having a convex surface facing the object side, a negative meniscus lens L32 having a concave surface facing the image side, and a concave surface facing the image side. Further, it is composed of a cemented lens composed of a negative meniscus lens L33 and a biconvex positive lens L34. Both surfaces of the biconvex positive lens L31 are aspheric.
  • the fourth lens group G4 is composed of a cemented lens composed of a positive meniscus lens L41 having a convex surface facing the image side and a biconcave negative lens L42, which are arranged in order from the object side along the optical axis.
  • the fifth lens group G5 is composed of a cemented lens including a biconvex positive lens L51 and a negative meniscus lens L52 having a concave surface facing the object side, which are arranged in order from the object side along the optical axis.
  • the object side surface of the biconvex positive lens L51 is aspheric.
  • An aperture stop S for adjusting the amount of light is provided on the object side of the third lens group G3.
  • a filter FL is provided on the image side of the fifth lens group G5.
  • the filter FL is composed of a low-pass filter, an infrared cut filter, or the like for cutting a spatial frequency above the limit resolution of the solid-state imaging device, such as a CCD disposed on the image plane I.
  • the zoom lens ZL8 has all the lenses from the first lens group G1 to the fifth lens group G5 so that the distance between the lens groups changes during zooming from the wide-angle end state to the telephoto end state.
  • Move the group Specifically, the first lens group G1 is moved to the object side.
  • the second lens group G2 is once moved to the image plane side and then moved to the object side.
  • the third lens group G3 is moved to the object side.
  • the fourth lens group G4 is moved to the object side.
  • the fifth lens group G5 is moved to the image plane side.
  • the aperture stop S is moved to the object side together with the third lens group G3.
  • Table 8 shows the values of each item in the eighth example.
  • Surface numbers 1 to 33 in Table 8 correspond to the optical surfaces m1 to m33 shown in FIG.
  • FIG. 20 is a diagram of various aberrations (spherical aberration diagram, astigmatism diagram, distortion diagram, coma diagram, and chromatic aberration diagram of magnification) at the photographing distance infinity of the zoom lens ZL8 according to Example 8, and (a) Is the wide-angle end state, (b) is the intermediate focal length state, and (c) is the telephoto end state.
  • various aberrations spherical aberration diagram, astigmatism diagram, distortion diagram, coma diagram, and chromatic aberration diagram of magnification
  • the zoom lens ZL8 according to Example 8 has various aberrations corrected well and has excellent imaging performance.
  • the zoom lens ZLII (ZL9) according to the ninth example includes a first lens group G1 having a positive refractive power arranged in order from the object side along the optical axis, and a negative refractive power.
  • the first lens group G1 includes, in order from the object side along the optical axis, a cemented lens including a negative meniscus lens L11 having a concave surface facing the image side and a biconvex positive lens L12, and a convex surface facing the object side. And a positive meniscus lens L14 having a convex surface facing the object side.
  • the second lens group G2 is arranged in order from the object side along the optical axis, a negative meniscus lens L21 having a concave surface on the image side, a biconcave negative lens L22, a biconvex positive lens L23, It comprises a biconcave negative lens L24.
  • the third lens group G3 is arranged in order from the object side along the optical axis.
  • the positive meniscus lens L31 has a convex surface facing the object side
  • the negative meniscus lens L32 has a concave surface facing the image side
  • a concave surface facing the image side It is composed of a cemented lens composed of a directed negative meniscus lens L33 and a biconvex positive lens L34. Both surfaces of the biconvex positive lens L31 are aspheric.
  • the fourth lens group G4 is composed of a cemented lens composed of a positive meniscus lens L41 having a convex surface facing the image side and a biconcave negative lens L42, which are arranged in order from the object side along the optical axis.
  • the fifth lens group G5 is composed of a cemented lens including a biconvex positive lens L51 and a negative meniscus lens L52 having a concave surface facing the object side, which are arranged in order from the object side along the optical axis.
  • the object side surface of the biconvex positive lens L51 is aspheric.
  • the sixth lens group G6 includes a positive meniscus lens L61 having a convex surface directed toward the image side.
  • An aperture stop S for adjusting the amount of light is provided on the object side of the third lens group G3.
  • a filter FL is provided on the image side of the sixth lens group G6.
  • the filter FL is composed of a low-pass filter, an infrared cut filter, or the like for cutting a spatial frequency above the limit resolution of the solid-state imaging device, such as a CCD disposed on the image plane I.
  • the zoom lens ZL9 has all the lenses from the first lens group G1 to the sixth lens group G6 so that the distance between the lens groups changes during zooming from the wide-angle end state to the telephoto end state.
  • Move the group Specifically, the first lens group G1 is moved to the object side.
  • the second lens group G2 is moved to the image plane side.
  • the third lens group G3 is moved to the object side.
  • the fourth lens group G4 is moved to the object side.
  • the fifth lens group G5 is moved to the image plane side.
  • the sixth lens group G6 is moved to the object side.
  • the aperture stop S is moved to the object side together with the third lens group G3.
  • Table 9 shows the values of each item in the ninth example.
  • Surface numbers 1 to 35 in Table 9 correspond to the optical surfaces m1 to m35 shown in FIG.
  • FIG. 22 is a diagram illustrating various aberrations (spherical aberration diagram, astigmatism diagram, distortion aberration diagram, coma aberration diagram, and chromatic aberration diagram of magnification) at the photographing distance infinity of the zoom lens ZL9 according to Example 9, and (a) Is the wide-angle end state, (b) is the intermediate focal length state, and (c) is the telephoto end state.
  • various aberrations spherical aberration diagram, astigmatism diagram, distortion aberration diagram, coma aberration diagram, and chromatic aberration diagram of magnification
  • the zoom lens ZL9 according to Example 9 has various aberrations corrected well and has excellent imaging performance.
  • the 5-group and 6-group configurations are shown, but the present invention can be applied to other group configurations.
  • a configuration in which a lens or a lens group is added to the most object side or a configuration in which a lens or a lens group is added to the most image side may be used.
  • the lens group refers to a portion having at least one lens separated by an air interval that changes during zooming.
  • the zoom lens ZLII as a focusing lens group that moves a single lens group or a plurality of lens groups, or a partial lens group in the optical axis direction, and performs focusing from an object at infinity to a near object. Also good.
  • This focusing lens group can be applied to autofocus, and is also suitable for driving a motor for autofocus (using an ultrasonic motor or the like).
  • the fourth lens group G4 is preferably a focusing lens group.
  • the fifth lens group G5 may be a focusing lens group. Alternatively, focusing can be performed by simultaneously moving the fourth lens group G4 and the fifth lens group G5.
  • the lens group or the partial lens group is moved so as to have a component in a direction perpendicular to the optical axis, or rotated (oscillated) in an in-plane direction including the optical axis.
  • a vibration-proof lens group that corrects image blur caused by camera shake may be used.
  • the third lens group G3 is preferably an anti-vibration lens group.
  • the lens surface may be formed of a spherical surface, a flat surface, or an aspheric surface.
  • the lens surface is a spherical surface or a flat surface, lens processing and assembly adjustment are facilitated, and optical performance deterioration due to errors in processing and assembly adjustment can be prevented. Further, even when the image plane is deviated, it is preferable because there is little deterioration in drawing performance.
  • the lens surface is an aspheric surface
  • the aspheric surface is an aspheric surface by grinding, a glass mold aspheric surface made of glass with an aspheric shape, or a composite aspheric surface made of resin with an aspheric shape on the glass surface. Any aspherical surface may be used.
  • the lens surface may be a diffractive surface, and the lens may be a gradient index lens (GRIN lens) or a plastic lens.
  • GRIN lens gradient index lens
  • the aperture stop S is preferably disposed in the vicinity of the third lens group G3.
  • the role of the aperture stop S is not provided by a lens frame without providing a member as an aperture stop. You may substitute.
  • each lens surface is provided with an antireflection film having high transmittance in a wide wavelength range in order to reduce flare and ghost and achieve high contrast and high optical performance. Also good.
  • the zoom lens ZLIII according to the fourth embodiment has a first lens group G1 having a positive refractive power arranged in order from the object side along the optical axis, and a negative refractive power.
  • a second lens group G2 a third lens group G3 having a positive refractive power
  • a fourth lens group G4 having a negative refractive power
  • a fifth lens group G5 having a positive refractive power. Is done.
  • This configuration makes it possible to achieve high zooming.
  • the zoom lens ZLIII according to the fourth embodiment satisfies the following conditional expressions (16) to (18).
  • ft focal length of the entire system in the telephoto end state
  • f2 focal length of the second lens group G2
  • Fnt F value in the telephoto end state
  • f1 Focal length of the first lens group G1 ⁇ 2t: magnification of the second lens group G2 in the telephoto end state
  • ⁇ 3t magnification of the third lens group G3 in the telephoto end state
  • ⁇ 2w magnification of the second lens group G2 in the wide-angle end state
  • ⁇ 3w magnification of the third lens group G3 in the wide-angle end state.
  • Conditional expression (16) defines the ratio between the focal length of the entire system in the telephoto end state and the focal length of the second lens group G2.
  • conditional expression (16) If the upper limit value of conditional expression (16) is exceeded, various aberrations such as lateral chromatic aberration, coma aberration, and astigmatism deteriorate, which is not preferable.
  • conditional expression (16) If the lower limit value of conditional expression (16) is not reached, various aberrations such as lateral chromatic aberration, coma aberration, and astigmatism are deteriorated.
  • Conditional expression (17) defines the F value of the first lens group G1 in the telephoto end state.
  • Conditional expression (18) defines the product of the zoom ratios of the second lens group G2 and the third lens group G3.
  • conditional expression (18) If the upper limit of conditional expression (18) is exceeded, various aberrations such as spherical aberration and coma will deteriorate, such being undesirable.
  • conditional expression (18) it is preferable to set the upper limit of conditional expression (18) to 63.00.
  • conditional expression (18) If the lower limit of conditional expression (18) is not reached, various aberrations such as spherical aberration and coma are deteriorated.
  • the interval between the adjacent lens groups is changed upon zooming from the wide-angle end state to the telephoto end state.
  • This configuration makes it possible to achieve high zooming.
  • the zoom lens ZLIII it is preferable that all the lens units move during zooming from the wide-angle end state to the telephoto end state.
  • This configuration makes it possible to achieve further wide-angle and high zooming while maintaining the overall lens size, astigmatism and chromatic aberration.
  • the fifth lens group G5 includes one positive lens and one negative lens.
  • This configuration makes it possible to achieve further wide-angle and high zooming while maintaining the overall lens size, astigmatism and chromatic aberration.
  • the zoom lens ZLIII according to the fourth embodiment satisfies the following conditional expression (19).
  • f3 focal length of the third lens group G3.
  • Conditional expression (19) defines the ratio between the focal length of the entire system in the telephoto end state and the focal length of the third lens group G3.
  • conditional expression (19) If the upper limit of conditional expression (19) is exceeded, various aberrations such as coma will deteriorate, such being undesirable.
  • conditional expression (19) If the lower limit of conditional expression (19) is not reached, various coma and other aberrations are deteriorated, which is not preferable.
  • conditional expression (19) it is preferable to set the lower limit value of conditional expression (19) to 15.50.
  • the zoom lens ZLIII according to the fourth embodiment satisfies the following conditional expression (20).
  • ⁇ 2w magnification of the second lens group G2 in the wide-angle end state
  • ⁇ 2t magnification of the second lens group G2 in the telephoto end state.
  • Conditional expression (20) defines the magnification of the second lens group G2 in the wide-angle end state and the magnification of the second lens group G2 in the telephoto end state.
  • conditional expression (20) If the upper limit of conditional expression (20) is exceeded, various aberrations such as coma will deteriorate, such being undesirable.
  • conditional expression (20) If the lower limit of conditional expression (20) is not reached, various aberrations such as coma and astigmatism deteriorate, which is not preferable.
  • the zoom lens ZLIII according to the fourth embodiment satisfies the following conditional expression (21).
  • f3 focal length of the third lens group G3.
  • Conditional expression (21) defines the ratio between the focal length of the second lens group G2 and the focal length of the third lens group G3.
  • conditional expression (21) If the upper limit of conditional expression (21) is exceeded, various aberrations such as distortion, astigmatism, and coma will deteriorate, such being undesirable.
  • conditional expression (21) If the lower limit of conditional expression (21) is not reached, various aberrations such as distortion, astigmatism, and coma are deteriorated.
  • conditional expression (21) it is preferable to set the lower limit value of conditional expression (21) to 2.10.
  • the zoom lens ZLIII according to the fourth embodiment satisfies the following conditional expression (22).
  • fw focal length of the entire system in the wide-angle end state.
  • Conditional expression (22) defines the ratio between the focal length of the first lens group G1 and the focal length of the entire system in the wide-angle end state.
  • conditional expression (22) If the upper limit value of conditional expression (22) is exceeded, various aberrations such as distortion, astigmatism, and coma will deteriorate.
  • conditional expression (22) If the lower limit of conditional expression (22) is not reached, various aberrations such as distortion, astigmatism, coma and the like deteriorate, which is not preferable.
  • conditional expression (22) it is preferable to set the lower limit value of conditional expression (22) to 19.00.
  • the zoom lens ZLIII according to the fourth embodiment satisfies the following conditional expression (23).
  • x2 A distance by which the second lens group G2 moves in the image plane direction with respect to the imaging position during zooming from the wide-angle end state to the telephoto end state.
  • Conditional expression (23) defines the ratio of the distance that the second lens group G2 moves during zooming from the wide-angle end state to the telephoto end state and the focal length of the entire system in the telephoto end state.
  • conditional expression (23) If the upper limit value of conditional expression (23) is exceeded, various aberrations such as coma will deteriorate, such being undesirable.
  • conditional expression (23) If the lower limit value of conditional expression (23) is not reached, various aberrations such as coma aberration deteriorate, which is not preferable.
  • the zoom lens ZLIII according to the fourth embodiment preferably has an aperture stop S between the second lens group G2 and the fourth lens group G4.
  • This configuration can satisfactorily correct various aberrations such as spherical aberration, astigmatism and distortion.
  • the zoom lens ZLIII according to the fourth embodiment preferably has an aperture stop S between the second lens group G2 and the third lens group G3.
  • This configuration can satisfactorily correct various aberrations such as spherical aberration, astigmatism and distortion.
  • the zoom lens ZLIII according to the fourth embodiment preferably moves the aperture stop S in the optical axis direction during zooming.
  • This configuration can satisfactorily correct various aberrations such as spherical aberration, astigmatism and distortion.
  • the zoom lens ZLIII according to the fourth embodiment satisfies the following conditional expression (24).
  • Conditional expression (24) is a condition that defines an optimum value of the angle of view in the telephoto end state. By satisfying this conditional expression (24), various aberrations such as coma, distortion, and field curvature can be favorably corrected.
  • the upper limit of conditional expression (24) it is preferable to set the upper limit of conditional expression (24) to 4.00 °. In order to secure the effect of the fourth embodiment, it is preferable to set the upper limit of conditional expression (24) to 3.00 °. In order to secure the effect of the fourth embodiment, it is preferable to set the upper limit of conditional expression (24) to 2.00 °. In order to further secure the effect of the fourth embodiment, it is preferable to set the upper limit of conditional expression (24) to 1.00 °.
  • conditional expression (24) it is preferable to set the lower limit value of conditional expression (24) to 0.30 °. In order to secure the effect of the fourth embodiment, it is preferable to set the lower limit of conditional expression (24) to 0.50 °.
  • the zoom lens ZLIII according to the fourth embodiment satisfies the following conditional expression (25).
  • Conditional expression (25) is a condition that defines the optimum value of the angle of view in the wide-angle end state. By satisfying this conditional expression (25), various aberrations such as coma, distortion, and field curvature can be favorably corrected while having a wide angle of view.
  • the upper limit of conditional expression (25) it is preferable to set the upper limit of conditional expression (25) to 70.00 °. In order to secure the effect of the fourth embodiment, it is preferable to set the upper limit of conditional expression (25) to 60.00 °. In order to further secure the effect of the fourth embodiment, it is preferable to set the upper limit of conditional expression (25) to 50.00 °.
  • conditional expression (25) it is preferable to set the lower limit value of conditional expression (25) to 30.00 °. In order to secure the effect of the fourth embodiment, it is preferable to set the lower limit of conditional expression (25) to 35.00 °. In order to further secure the effect of the fourth embodiment, it is preferable to set the lower limit of conditional expression (25) to 40.00 °.
  • zoom lens ZLIII according to the fourth embodiment having the above-described configuration it is possible to achieve further wide-angle and high zooming while maintaining the overall size of the lens and good optical performance.
  • a zoom lens that can be realized can be realized.
  • the camera 31 is an interchangeable lens camera (so-called mirrorless camera) provided with the zoom lens ZLIII described above as the photographing lens 32.
  • the camera 31 light from an object (subject) (not shown) is collected by the taking lens 32 and is on the imaging surface of the imaging unit 33 via an OLPF (Optical Low Pass Filter) (not shown).
  • OLPF Optical Low Pass Filter
  • a subject image is formed on the screen.
  • the subject image is photoelectrically converted by the photoelectric conversion element provided in the imaging unit 33 to generate an image of the subject.
  • This image is displayed on an EVF (Electronic view finder) 34 provided in the camera 31.
  • EVF Electronic view finder
  • the photographer can observe the subject via the EVF 34.
  • a release button (not shown) is pressed by the photographer, the subject image generated by the imaging unit 33 is stored in a memory (not shown). In this way, the photographer can shoot the subject with the camera 31.
  • the zoom lens ZLIII according to the fourth embodiment mounted on the camera 31 as the photographing lens 32 has a characteristic lens configuration and a good overall optical performance and a good optical performance as can be seen from each example described later. While maintaining the above, further widening and high zooming can be achieved. Therefore, according to the present camera 31, it is possible to realize an optical apparatus that can achieve further wide-angle and high zoom ratio while maintaining the size of the entire lens and good optical performance.
  • the present invention is not limited to this.
  • the zoom lens ZLIII described above is mounted on a single-lens reflex camera that has a quick return mirror in the camera body and observes a subject with a finder optical system, the same effect as the camera 31 can be obtained. .
  • a first lens group G1 having a positive refractive power in order from the object side along the optical axis, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, and a positive refractive power.
  • Each lens is arranged to have a third lens group G3, a fourth lens group G4 having a negative refractive power, and a fifth lens group G5 having a positive refractive power (step ST410).
  • Each lens is arranged in the lens barrel so as to satisfy the following conditional expressions (16) to (18) (step ST420).
  • ft focal length of the entire system in the telephoto end state
  • f2 focal length of the second lens group G2
  • Fnt F value in the telephoto end state
  • f1 Focal length of the first lens group G1 ⁇ 2t: magnification of the second lens group G2 in the telephoto end state
  • ⁇ 3t magnification of the third lens group G3 in the telephoto end state
  • ⁇ 2w magnification of the second lens group G2 in the wide-angle end state
  • ⁇ 3w magnification of the third lens group G3 in the wide-angle end state.
  • a negative meniscus lens L11 having a concave surface on the image side and a convex surface on the object side.
  • a cemented lens with the positive meniscus lens L12, a positive meniscus lens L13 with a convex surface facing the object side, and a positive meniscus lens L14 with a convex surface facing the object side are arranged as a first lens group G1, and a concave surface on the image side
  • a negative meniscus lens L21 facing the lens, a biconcave negative lens L22, a biconvex positive lens L23, and a negative meniscus lens L24 having a concave surface facing the object side to form a second lens group G2.
  • a biconvex positive lens L31, a negative meniscus lens L32 having a concave surface facing the image side, and a cemented lens of a biconcave negative lens L33 and a biconvex positive lens L34 are arranged as a third lens.
  • the zoom lens ZLIII is manufactured by arranging the lens groups thus prepared in the above-described procedure.
  • the manufacturing method according to the fourth embodiment it is possible to manufacture the zoom lens ZLIII that can achieve further wide-angle and high zooming ratio while maintaining the overall size of the lens and good optical performance. Can do.
  • FIG. 26, FIG. 28, and FIG. 30 are sectional views showing the configuration and refractive power distribution of the zoom lens ZLIII (ZL10 to ZL12) according to each example.
  • arrows indicate the moving direction along the optical axis of each lens group when zooming from the wide-angle end state to the telephoto end state.
  • FIG. 26 Each reference numeral for FIG. 26 according to the tenth embodiment is used independently for each embodiment in order to avoid complication of explanation due to an increase in the number of digits of the reference code. Therefore, even if the same reference numerals as those in the drawings according to the other embodiments are given, they are not necessarily in the same configuration as the other embodiments.
  • Tables 10 to 12 are shown below, but these are tables of specifications in the tenth to twelfth embodiments.
  • d-line (wavelength 587.6 nm) and g-line (wavelength 435.8 nm) are selected as the calculation target of the aberration characteristics.
  • the surface number is the order of the optical surfaces from the object side along the direction in which the light beam travels
  • R is the radius of curvature of each optical surface
  • D is the next optical surface from each optical surface (or The distance between surfaces on the optical axis to the image plane)
  • nd is the refractive index of the material of the optical member with respect to the d-line
  • ⁇ d is the Abbe number with respect to the d-line of the material of the optical member.
  • the object plane is the object plane
  • Di is the plane spacing (plane spacing between the i-th plane and the (i + 1) -th plane)
  • the curvature radius “ ⁇ ” is a plane or an aperture
  • (aperture stop) is the aperture stop S, Indicates the image plane I, respectively.
  • the refractive index of air “1.0000” is omitted.
  • the optical surface is an aspherical surface
  • the surface number is marked with *
  • the column of curvature radius R indicates the paraxial curvature radius.
  • f is the focal length of the entire lens system
  • is the aperture stop diameter
  • Fno is the F number
  • 2 ⁇ is the angle of view (unit: °)
  • BF is the final lens surface on the optical axis.
  • BF (air) is the distance from the last lens surface on the optical axis to the paraxial image plane expressed in terms of air
  • TL is from the forefront of the lens on the optical axis.
  • the distance to the paraxial image plane, TL (air) is obtained by adding BF (air) to the distance from the lens front surface to the lens final surface on the optical axis.
  • Di represents the distance between the i-th surface and the (i + 1) -th surface.
  • the group number, the first surface of the group is the surface number of the most object side of each group
  • the group focal length is the focal length of each group
  • the lens configuration length is the lens surface of the most object side of each group The distance on the optical axis from the lens surface to the most image side lens surface is shown.
  • mm is generally used for the focal length f, curvature radius R, surface distance D, and other lengths, etc. unless otherwise specified, but the optical system is proportionally enlarged. Alternatively, the same optical performance can be obtained even by proportional reduction, and the present invention is not limited to this. Further, the unit is not limited to “mm”, and other appropriate units can be used.
  • the zoom lens ZLIII (ZL10) includes a first lens group G1 having a positive refractive power arranged in order from the object side along the optical axis, and a negative refractive power.
  • the first lens group G1 includes, in order from the object side along the optical axis, a cemented lens of a negative meniscus lens L11 having a concave surface facing the image side and a positive meniscus lens L12 having a convex surface facing the object side, and an object side And a positive meniscus lens L14 having a convex surface facing the object side, and a positive meniscus lens L14 having a convex surface facing the object side.
  • the second lens group G2 is arranged in order from the object side along the optical axis, a negative meniscus lens L21 having a concave surface on the image side, a biconcave negative lens L22, a biconvex positive lens L23, And a negative meniscus lens L24 having a concave surface facing the object side.
  • the negative meniscus lens L21 has two aspheric surfaces.
  • the third lens group G3 includes a biconvex positive lens L31 arranged in order from the object side along the optical axis, a negative meniscus lens L32 having a concave surface facing the image side, a biconcave negative lens L33, and both It consists of a cemented lens with a convex positive lens L34. Both side surfaces of the biconvex positive lens L31 are aspheric.
  • the fourth lens group G4 is composed of a biconcave negative lens L41.
  • the fifth lens group G5 is composed of a cemented lens composed of a biconvex positive lens L51 and a negative meniscus lens L52 having a concave surface directed toward the object side, which are arranged in order from the object side along the optical axis.
  • an aperture stop S for the purpose of adjusting the amount of light is disposed.
  • the filter group FL is disposed between the fifth lens group G5 and the image plane I.
  • the filter group FL is configured by a low-pass filter, an infrared cut filter, or the like for cutting a spatial frequency equal to or higher than the limit resolution of the solid-state imaging device, such as a CCD disposed on the image plane I.
  • the zoom lens ZL10 performs zooming by moving all the lens groups G1 to G5 and the aperture stop S in the optical axis direction so that the interval between the lens groups changes. Specifically, upon zooming from the wide-angle end state to the telephoto end state, the first lens group G1 is moved to the object side, the second lens group G2 is moved to the image side, and the third lens group G3 is moved to the object side. The fourth lens group G4 is moved to the object side, the fifth lens group G5 is once moved to the object side, and then moved to the image side.
  • the aperture stop S is moved to the object side independently of each lens group during zooming from the wide-angle end state to the telephoto end state.
  • Table 10 shows the values of each item in the tenth embodiment.
  • Surface numbers 1 to 30 in Table 10 correspond to the optical surfaces m1 to m30 shown in FIG.
  • FIG. 27 is a diagram illustrating various aberrations (spherical aberration diagram, astigmatism diagram, distortion diagram, coma aberration diagram, and chromatic aberration diagram of magnification) at the photographing distance infinity of the zoom lens ZL10 according to Example 10, and (a) Is the wide-angle end state, (b) is the intermediate focal length state, and (c) is the telephoto end state.
  • various aberrations spherical aberration diagram, astigmatism diagram, distortion diagram, coma aberration diagram, and chromatic aberration diagram of magnification
  • FNO represents an F number
  • A represents a half angle of view (unit: °) with respect to each image height.
  • d indicates the d-line
  • g indicates the aberration at the g-line.
  • those without these descriptions show aberrations at the d-line.
  • the solid line indicates the spherical aberration
  • the broken line indicates the sine condition.
  • the solid line indicates the sagittal image plane
  • the broken line indicates the meridional image plane.
  • the solid line indicates the meridional coma aberration for the d-line and the g-line at each incident angle or object height
  • the broken line on the right side from the origin indicates the sagittal coma aberration generated in the meridional direction with respect to the d-line
  • the broken line on the left side from the origin indicates the d-line Shows the sagittal coma aberration generated in the sagittal direction. Note that the same reference numerals as in this embodiment are used in the aberration diagrams of each embodiment described later.
  • the zoom lens ZL10 according to the tenth example has various aberrations well corrected and excellent optical performance in each focal length state from the wide-angle end state to the telephoto end state. It can be seen that it has performance. Since distortion can be sufficiently corrected by image processing after imaging, optical correction is not necessary.
  • the zoom lens ZLIII (ZL11) according to the eleventh example includes a first lens group G1 having a positive refractive power arranged in order from the object side along the optical axis, and a negative refractive power.
  • the sixth lens group G6 having refractive power.
  • the first lens group G1 is arranged in order from the object side along the optical axis, and is a cemented lens of a negative meniscus lens L11 having a concave surface facing the image side and a biconvex positive lens L12, and a convex surface facing the object side.
  • the positive meniscus lens L13 and the positive meniscus lens L14 having a convex surface facing the object side.
  • the second lens group G2 includes, in order from the object side along the optical axis, a biconcave negative lens L21, a biconcave negative lens L22, a biconvex positive lens L23, and a concave surface on the object side. And a negative meniscus lens L24 facing the lens.
  • the negative meniscus lens L21 has an aspheric image side surface.
  • the third lens group G3 includes a biconvex positive lens L31 arranged in order from the object side along the optical axis, a negative meniscus lens L32 having a concave surface facing the image side, a biconcave negative lens L33, and both It consists of a cemented lens with a convex positive lens L34. Both side surfaces of the biconvex positive lens L31 are aspheric.
  • the fourth lens group G4 is composed of a biconcave negative lens L41.
  • the fifth lens group G5 is composed of a cemented lens composed of a biconvex positive lens L51 and a negative meniscus lens L52 having a concave surface directed toward the object side, which are arranged in order from the object side along the optical axis.
  • the sixth lens group G6 includes a biconvex positive lens L61.
  • an aperture stop S for the purpose of adjusting the amount of light is disposed.
  • the filter group FL is disposed between the sixth lens group G6 and the image plane I.
  • the filter group FL is configured by a low-pass filter, an infrared cut filter, or the like for cutting a spatial frequency equal to or higher than the limit resolution of the solid-state imaging device, such as a CCD disposed on the image plane I.
  • the first to fifth lens groups G1 to G5 and the aperture stop S are moved in the optical axis direction so that the interval between the lens groups changes, and the sixth lens group G6 is fixed.
  • zooming is performed. Specifically, upon zooming from the wide-angle end state to the telephoto end state, the first lens group G1 is moved to the object side, the second lens group G2 is once moved to the image side, and then moved to the object side.
  • the third lens group G3 is moved to the object side, the fourth lens group G4 is moved to the object side, the fifth lens group G5 is once moved to the object side, and then moved to the image side. It is fixed with respect to the image plane I.
  • the aperture stop S is moved to the object side independently of each lens group during zooming from the wide-angle end state to the telephoto end state.
  • Table 11 shows the values of each item in the eleventh embodiment.
  • Surface numbers 1 to 32 in Table 11 correspond to the optical surfaces m1 to m32 shown in FIG.
  • Table 11 shows that the zoom lens ZL11 according to the present example satisfies the conditional expressions (16) to (25).
  • FIG. 29 is a diagram illustrating various aberrations (spherical aberration diagram, astigmatism diagram, distortion diagram, coma aberration diagram, and chromatic aberration diagram of magnification) at the photographing distance infinity of the zoom lens ZL11 according to the eleventh example.
  • the zoom lens ZL11 according to the eleventh example has excellent aberrations in which various aberrations are well corrected in each focal length state from the wide-angle end state to the telephoto end state. It can be seen that it has performance. Since distortion can be sufficiently corrected by image processing after imaging, optical correction is not necessary.
  • the zoom lens ZLIII (ZL12) according to the twelfth example includes a first lens group G1 having a positive refractive power, arranged in order from the object side along the optical axis, and a negative refractive power.
  • the first lens group G1 includes, in order from the object side along the optical axis, a cemented lens of a negative meniscus lens L11 having a concave surface facing the image side and a positive meniscus lens L12 having a convex surface facing the object side, and an object side And a positive meniscus lens L14 having a convex surface facing the object side, and a positive meniscus lens L14 having a convex surface facing the object side.
  • the second lens group G2 includes a negative meniscus lens L21 having a concave surface facing the image side, a negative meniscus lens L22 having a concave surface facing the object side, and a biconvex positive lens arrayed in order from the object side along the optical axis. And a lens L23.
  • the negative meniscus lens L21 has an aspheric image side surface.
  • the third lens group G3 includes a biconvex positive lens L31 arranged in order from the object side along the optical axis, a negative meniscus lens L32 having a concave surface on the image side, and a negative meniscus having a concave surface on the image side. It is composed of a cemented lens of a lens L33 and a biconvex positive lens L34. Both side surfaces of the biconvex positive lens L31 are aspheric.
  • the fourth lens group G4 includes a negative meniscus lens L41 having a concave surface directed toward the image side.
  • the fifth lens group G5 is composed of a cemented lens composed of a biconvex positive lens L51 and a negative meniscus lens L52 having a concave surface directed toward the object side, which are arranged in order from the object side along the optical axis.
  • an aperture stop S for the purpose of adjusting the amount of light is disposed.
  • the filter group FL is disposed between the fifth lens group G5 and the image plane I.
  • the filter group FL is configured by a low-pass filter, an infrared cut filter, or the like for cutting a spatial frequency equal to or higher than the limit resolution of the solid-state imaging device, such as a CCD disposed on the image plane I.
  • the zoom lens ZL12 performs zooming by moving all the lens groups G1 to G5 and the aperture stop S in the optical axis direction so that the interval between the lens groups changes. Specifically, upon zooming from the wide-angle end state to the telephoto end state, the first lens group G1 is moved to the object side, the second lens group G2 is moved to the image side, and the third lens group G3 is moved to the object side. The fourth lens group G4 is moved to the object side, the fifth lens group G5 is once moved to the object side, and then moved to the image side.
  • the aperture stop S is moved to the object side independently of each lens group during zooming from the wide-angle end state to the telephoto end state.
  • Table 12 shows values of various specifications in the twelfth embodiment.
  • Surface numbers 1 to 28 in Table 12 correspond to the optical surfaces m1 to m28 shown in FIG.
  • FIG. 31 is a diagram of various aberrations (spherical aberration diagram, astigmatism diagram, distortion diagram, coma diagram, and chromatic aberration diagram of magnification) at an imaging distance of infinity of the zoom lens ZL12 according to Example 12, and (a) Is the wide-angle end state, (b) is the intermediate focal length state, and (c) is the telephoto end state.
  • various aberrations spherical aberration diagram, astigmatism diagram, distortion diagram, coma diagram, and chromatic aberration diagram of magnification
  • the zoom lens ZL12 according to the twelfth example has excellent aberrations in which various aberrations are well corrected in each focal length state from the wide-angle end state to the telephoto end state. It can be seen that it has performance. Since distortion can be sufficiently corrected by image processing after imaging, optical correction is not necessary.
  • a five-group and six-group configuration is shown.
  • the present invention is not limited to this, and can be applied to other group configurations (for example, seven groups). It is. Specifically, a configuration in which a lens or a lens group is added closest to the object side or a configuration in which a lens or a lens group is added closest to the image side may be used.
  • the lens group indicates a portion having at least one lens separated by an air interval that changes at the time of zooming or focusing.
  • the zoom lens ZLIII in order to focus on an object at a short distance from infinity, part of the lens group, one entire lens group, or a plurality of lens groups is used as the focusing lens group. It is good also as a structure moved to an optical axis direction.
  • This focusing lens group can be applied to autofocus, and is also suitable for driving a motor for autofocus (using an ultrasonic motor or the like).
  • either the entire lens group or the partial lens group is moved so as to have a component in a direction perpendicular to the optical axis, or rotated in an in-plane direction including the optical axis.
  • a vibration-proof lens group that corrects image blur caused by camera shake or the like by moving (swinging) may be used.
  • the lens surface may be formed of a spherical surface, a flat surface, or an aspheric surface.
  • the lens surface is a spherical surface or a flat surface, lens processing and assembly adjustment are facilitated, and optical performance deterioration due to errors in processing and assembly adjustment can be prevented. Further, even when the image plane is deviated, it is preferable because there is little deterioration in drawing performance.
  • the lens surface is an aspheric surface
  • the aspheric surface is an aspheric surface by grinding, a glass mold aspheric surface made of glass with an aspheric shape, or a composite aspheric surface made of resin with an aspheric shape on the glass surface. Any aspherical surface may be used.
  • the lens surface may be a diffractive surface, and the lens may be a gradient index lens (GRIN lens) or a plastic lens.
  • GRIN lens gradient index lens
  • the aperture stop S is preferably disposed between the second lens group G2 to the fourth lens group G4, but the lens is not provided as a member as the aperture stop.
  • the role may be substituted in the frame.
  • each lens surface is provided with an antireflection film having high transmittance in a wide wavelength region in order to reduce flare and ghost and achieve high contrast and high optical performance. Also good.
  • the zoom lens ZLIII according to the fourth embodiment has a zoom ratio of about 20 to 150 times.
  • ZLI ZL1 to ZL3
  • ZLII ZL4 to ZL9
  • ZLIII ZL10 to ZL12
  • Zoom lens according to the fourth embodiment G1 First 1 lens group G2 2nd lens group G3 3rd lens group
  • G4 4th lens group G5 5th lens group
  • G6 6th lens group S
  • Aperture stop FL filter filter group
  • I image plane CAM1 digital still camera optical apparatus according to the first and second embodiments
  • CAM2 digital still camera optical apparatus according to the third embodiment
  • 31 camera optical apparatus according to the fourth embodiment

Abstract

 光軸に沿って物体側より順に並んだ、正の屈折力を持つ第1レンズ群(G1)と、負の屈折力を持つ第2レンズ群(G2)と、正の屈折力を持つ第3レンズ群(G3)と、負の屈折力を持つ第4レンズ群(G4)と、正の屈折力を持つ第5レンズ群(G5)とを有し、各レンズ群の間隔を変化させて変倍を行い、第1レンズ群(G1)は、3枚以上のレンズで構成され、第4レンズ群(G4)は、2枚以下のレンズで構成され、第5レンズ群(G5)は、2枚以下のレンズで構成され、広角端状態から望遠端状態への変倍時に像面側へ移動し、以下の条件式(1)を満足する。 8.40 < f1/(-f2) …(1) 但し、 f1:第1レンズ群(G1)の焦点距離、 f2:第2レンズ群(G2)の焦点距離。

Description

ズームレンズ、光学機器及びズームレンズの製造方法
 本発明は、ズームレンズ、光学機器及びズームレンズの製造方法に関する。
 従来から、光軸に沿って物体側から順に、正の屈折力の第1レンズ群と、負の屈折力の第2レンズ群と、正の屈折力の第3レンズ群と、負の屈折力の第4レンズ群と、正の屈折力の第5レンズ群とからなり、各レンズ群を移動させて変倍を行うズームレンズが提案されている(例えば、特許文献1を参照)。
 従来から、光軸に沿って物体側から順に、正の屈折力の第1レンズ群と、負の屈折力の第2レンズ群と、正の屈折力の第3レンズ群と、負の屈折力の第4レンズ群と、正の屈折力の第5レンズ群とからなり、各レンズ群を移動させて変倍を行うズームレンズが提案されている(例えば、特許文献2を参照)。
 従来、高変倍比のズームレンズとして、光軸に沿って物体側から順に、正の屈折力を持つ第1レンズ群と、負の屈折力を持つ第2レンズ群と、正の屈折力を持つ第3レンズ群と、負の屈折力を持つ第4レンズ群と、正の屈折力を持つ第5レンズ群とから構成され、各レンズ群を移動させて変倍を行うズームレンズが提案されている(例えば、特許文献1を参照)。
特開2012-98699号公報 特開2013-164455号公報
 しかしながら、従来のズームレンズでは、変倍比50倍前後が限界であり、それ以上の高変倍では良好な性能を保持することが困難である。
 従来のズームレンズでは、光学性能が十分とはいえなかった。
 第1の本発明に係るズームレンズは、光軸に沿って物体側より順に並んだ、正の屈折力を持つ第1レンズ群と、負の屈折力を持つ第2レンズ群と、正の屈折力を持つ第3レンズ群と、負の屈折力を持つ第4レンズ群と、正の屈折力を持つ第5レンズ群とを有し、各レンズ群の間隔を変化させて変倍を行い、前記第1レンズ群は、3枚以上のレンズで構成され、前記第4レンズ群は、2枚以下のレンズで構成され、前記第5レンズ群は、2枚以下のレンズで構成され、広角端状態から望遠端状態への変倍時に像面側へ移動し、以下の条件式を満足する。
 8.40 < f1/(-f2)
 但し、
 f1:前記第1レンズ群の焦点距離、
 f2:前記第2レンズ群の焦点距離。
 第2の本発明に係るズームレンズは、光軸に沿って物体側より順に並んだ、正の屈折力を持つ第1レンズ群と、負の屈折力を持つ第2レンズ群と、正の屈折力を持つ第3レンズ群と、負の屈折力を持つ第4レンズ群と、正の屈折力を持つ第5レンズ群とを有し、各レンズ群の間隔を変化させて変倍を行い、前記第1レンズ群は、3枚以上のレンズで構成され、前記第4レンズ群は、2枚以下のレンズで構成され、前記第5レンズ群は、2枚以下のレンズで構成され、広角端状態から望遠端状態への変倍時に像面側へ移動し、以下の条件式を満足する。
 5.80 < Dt12/(-f2)
 但し、
 Dt12:望遠端状態における前記第1レンズ群の像側面から前記第2レンズ群の物体側面までの光軸上の距離、
 f2:前記第2レンズ群の焦点距離。
 第3の本発明に係るズームレンズは、光軸に沿って物体側より順に並んだ、正の屈折力を持つ第1レンズ群と、負の屈折力を持つ第2レンズ群と、正の屈折力を持つ第3レンズ群と、負の屈折力を持つ第4レンズ群と、正の屈折力を持つ第5レンズ群とを有し、各レンズ群の間隔を変化させて変倍を行い、前記第1レンズ群は、3枚以上のレンズで構成され、前記第4レンズ群は、2枚以下のレンズで構成され、前記第5レンズ群は、2枚以下のレンズで構成され、広角端状態から望遠端状態への変倍時に像面側へ移動し、以下の条件式を満足する。
 0.01 < D1/ft < 0.15
 0.70 < Zidwt/Fnwt < 1.10
 但し、
 D1:前記第1レンズ群の物体側面から像側面までの光軸上の距離、
 ft:望遠端状態における全系の焦点距離、
 βt4:望遠端状態における前記第4レンズ群の倍率、
 βt5:望遠端状態における前記第5レンズ群の倍率、
 βw4:広角端状態における前記第4レンズ群の倍率、
 βw5:広角端状態における前記第5レンズ群の倍率、
 Fnt:望遠端状態におけるFナンバー、
 Fnw:広角端状態におけるFナンバー。
 なお、
 Zidwt = {(1-βt4^2)*βt5^2}/{(1-βw4^2)*βw5^2}
 Fnwt = Fnt/Fnw
 と定義する。
 第4の本発明に係るズームレンズは、光軸に沿って物体側より順に並んだ、正の屈折力を持つ第1レンズ群と、負の屈折力を持つ第2レンズ群と、正の屈折力を持つ第3レンズ群と、負の屈折力を持つ第4レンズ群と、正の屈折力を持つ第5レンズ群とを有し、各レンズ群の間隔を変化させて変倍を行い、前記第1レンズ群は、3枚以上のレンズで構成され、前記第5レンズ群は、広角端状態から望遠端状態への変倍時に像面側へ移動し、以下の条件式を満足する。
 0.020 < (-f2)/ft < 0.031
 但し、
 f2:望遠端状態における前記第2レンズ群の焦点距離、
 ft:望遠端状態における全系の焦点距離。
 第5の本発明に係るズームレンズは、光軸に沿って物体側より順に並んだ、正の屈折力を持つ第1レンズ群と、負の屈折力を持つ第2レンズ群と、正の屈折力を持つ第3レンズ群と、負の屈折力を持つ第4レンズ群と、正の屈折力を持つ第5レンズ群とを有し、以下の条件式を満足する。
 33.00 < ft/(-f2) < 46.00
 1.60 < (Fnt・f1)/ft < 2.30
 43.00 < β2t・β3t/(β2w・β3w) < 65.00
 但し、
 ft:望遠端状態における全系の焦点距離、
 f2:前記第2レンズ群の焦点距離、
 Fnt:望遠端状態におけるF値、
 f1:前記第1レンズ群の焦点距離、
 β2t:望遠端状態における前記第2レンズ群の倍率、
 β3t:望遠端状態における前記第3レンズ群の倍率、
 β2w:広角端状態における前記第2レンズ群の倍率、
 β3w:広角端状態における前記第3レンズ群の倍率。
 本発明に係る光学機器は、第1~5の本発明に係るズームレンズのいずれかを搭載する。
 第1の本発明に係るズームレンズの製造方法は、光軸に沿って物体側より順に並んだ、正の屈折力を持つ第1レンズ群と、負の屈折力を持つ第2レンズ群と、正の屈折力を持つ第3レンズ群と、負の屈折力を持つ第4レンズ群と、正の屈折力を持つ第5レンズ群とを有し、各レンズ群の間隔を変化させて変倍を行うズームレンズの製造方法であって、前記第1レンズ群は、3枚以上のレンズで構成され、前記第4レンズ群は、2枚以下のレンズで構成され、前記第5レンズ群は、2枚以下のレンズで構成され、広角端状態から望遠端状態への変倍時に像面側へ移動し、以下の条件式を満足するように、レンズ鏡筒内に各レンズを配置する。
 8.40 < f1/(-f2)
 但し、
 f1:前記第1レンズ群の焦点距離、
 f2:前記第2レンズ群の焦点距離。
 第2の本発明に係るズームレンズの製造方法は、光軸に沿って物体側より順に並んだ、正の屈折力を持つ第1レンズ群と、負の屈折力を持つ第2レンズ群と、正の屈折力を持つ第3レンズ群と、負の屈折力を持つ第4レンズ群と、正の屈折力を持つ第5レンズ群とを有し、各レンズ群の間隔を変化させて変倍を行うズームレンズの製造方法であって、前記第1レンズ群は、3枚以上のレンズで構成され、前記第4レンズ群は、2枚以下のレンズで構成され、前記第5レンズ群は、2枚以下のレンズで構成され、広角端状態から望遠端状態への変倍時に像面側へ移動し、以下の条件式を満足するように、レンズ鏡筒内に各レンズを配置する。
 5.80 < Dt12/(-f2)
 但し、
 Dt12:望遠端状態における前記第1レンズ群の像側面から前記第2レンズ群の物体側面までの光軸上の距離、
 f2:前記第2レンズ群の焦点距離。
 第3の本発明に係るズームレンズの製造方法は、光軸に沿って物体側より順に並んだ、正の屈折力を持つ第1レンズ群と、負の屈折力を持つ第2レンズ群と、正の屈折力を持つ第3レンズ群と、負の屈折力を持つ第4レンズ群と、正の屈折力を持つ第5レンズ群とを有し、各レンズ群の間隔を変化させて変倍を行うズームレンズの製造方法であって、前記第1レンズ群は、3枚以上のレンズで構成され、前記第4レンズ群は、2枚以下のレンズで構成され、前記第5レンズ群は、2枚以下のレンズで構成され、広角端状態から望遠端状態への変倍時に像面側へ移動し、以下の条件式を満足するように、レンズ鏡筒内に各レンズを配置する。
 0.01 < D1/ft < 0.15
 0.70 < Zidwt/Fnwt < 1.10
 但し、
 D1:前記第1レンズ群の物体側面から像側面までの光軸上の距離、
 ft:望遠端状態における全系の焦点距離、
 βt4:望遠端状態における前記第4レンズ群の倍率、
 βt5:望遠端状態における前記第5レンズ群の倍率、
 βw4:広角端状態における前記第4レンズ群の倍率、
 βw5:広角端状態における前記第5レンズ群の倍率、
 Fnt:望遠端状態におけるFナンバー、
 Fnw:広角端状態におけるFナンバー。
 なお、
 Zidwt = {(1-βt4^2)*βt5^2}/{(1-βw4^2)*βw5^2}
 Fnwt = Fnt/Fnw
 と定義する。
 第4の本発明に係るズームレンズの製造方法は、光軸に沿って物体側より順に並んだ、正の屈折力を持つ第1レンズ群と、負の屈折力を持つ第2レンズ群と、正の屈折力を持つ第3レンズ群と、負の屈折力を持つ第4レンズ群と、正の屈折力を持つ第5レンズ群とを有し、各レンズ群の間隔を変化させて変倍を行うズームレンズの製造方法であって、前記第1レンズ群は、3枚以上のレンズで構成され、前記第5レンズ群は、広角端状態から望遠端状態への変倍時に像面側へ移動し、以下の条件式を満足するように、レンズ鏡筒内に各レンズを配置する。
 0.020 < (-f2)/ft < 0.031
 但し、
 f2:望遠端状態における前記第2レンズ群の焦点距離、
 ft:望遠端状態における全系の焦点距離。
 第5の本発明に係るズームレンズの製造方法は、光軸に沿って物体側より順に並んだ、正の屈折力を持つ第1レンズ群と、負の屈折力を持つ第2レンズ群と、正の屈折力を持つ第3レンズ群と、負の屈折力を持つ第4レンズ群と、正の屈折力を持つ第5レンズ群とを有するズームレンズの製造方法であって、以下の条件式を満足するように、レンズ鏡筒内に各レンズを配置する。
 33.00 < ft/(-f2) < 46.00
 1.60 < (Fnt・f1)/ft < 2.30
 43.00 < β2t・β3t/(β2w・β3w) < 65.00
 但し、
 ft:望遠端状態における全系の焦点距離、
 f2:前記第2レンズ群の焦点距離、
 Fnt:望遠端状態におけるF値、
 f1:前記第1レンズ群の焦点距離、
 β2t:望遠端状態における前記第2レンズ群の倍率、
 β3t:望遠端状態における前記第3レンズ群の倍率、
 β2w:広角端状態における前記第2レンズ群の倍率、
 β3w:広角端状態における前記第3レンズ群の倍率。
第1実施例に係るズームレンズの構成を示す断面図であり、(W)は広角端状態、(M)は中間焦点距離状態、(T)は望遠端状態における各レンズ群の位置を示す。 第1実施例に係るズームレンズの撮影距離無限遠における諸収差図であり、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態を示す。 第2実施例に係るズームレンズの構成を示す断面図であり、(W)は広角端状態、(M)は中間焦点距離状態、(T)は望遠端状態における各レンズ群の位置を示す。 第2実施例に係るズームレンズの撮影距離無限遠における諸収差図であり、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態を示す。 第3実施例に係るズームレンズの構成を示す断面図であり、(W)は広角端状態、(M)は中間焦点距離状態、(T)は望遠端状態における各レンズ群の位置を示す。 第3実施例に係るズームレンズの撮影距離無限遠における諸収差図であり、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態を示す。 (a)はデジタルスチルカメラの正面図であり、(b)はデジタルスチルカメラの背面図である。 図7(a)中の矢印A1-A1´に沿った断面図である。 第1の実施形態に係るズームレンズの製造方法を示すフローチャートである。 第2の実施形態に係るズームレンズの製造方法を示すフローチャートである。 第4実施例に係るズームレンズの構成を示す断面図であり、(W)は広角端状態、(M)は中間焦点距離状態、(T)は望遠端状態における各レンズ群の位置を示す。 第4実施例に係るズームレンズの撮影距離無限遠における諸収差図であり、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態を示す。 第5実施例に係るズームレンズの構成を示す断面図であり、(W)は広角端状態、(M)は中間焦点距離状態、(T)は望遠端状態における各レンズ群の位置を示す。 第5実施例に係るズームレンズの撮影距離無限遠における諸収差図であり、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態を示す。 第6実施例に係るズームレンズの構成を示す断面図であり、(W)は広角端状態、(M)は中間焦点距離状態、(T)は望遠端状態における各レンズ群の位置を示す。 第6実施例に係るズームレンズの撮影距離無限遠における諸収差図であり、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態を示す。 第7実施例に係るズームレンズの構成を示す断面図であり、(W)は広角端状態、(M)は中間焦点距離状態、(T)は望遠端状態における各レンズ群の位置を示す。 第7実施例に係るズームレンズの撮影距離無限遠における諸収差図であり、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態を示す。 第8実施例に係るズームレンズの構成を示す断面図であり、(W)は広角端状態、(M)は中間焦点距離状態、(T)は望遠端状態における各レンズ群の位置を示す。 第8実施例に係るズームレンズの撮影距離無限遠における諸収差図であり、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態を示す。 第9実施例に係るズームレンズの構成を示す断面図であり、(W)は広角端状態、(M)は中間焦点距離状態、(T)は望遠端状態における各レンズ群の位置を示す。 第9実施例に係るズームレンズの撮影距離無限遠における諸収差図であり、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態を示す。 (a)はデジタルスチルカメラの正面図であり、(b)はデジタルスチルカメラの背面図である。 図23(a)中の矢印A2-A2´に沿った断面図である。 第3の実施形態に係るズームレンズの製造方法を示すフローチャートである。 第10実施例に係るズームレンズの構成及び広角端状態から望遠端状態までの各群の移動軌跡(矢印)を示す図である。 第10実施例に係るズームレンズの撮影距離無限遠における諸収差図であり、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態を示す。 第11実施例に係るズームレンズの構成及び広角端状態から望遠端状態までの各群の移動軌跡(矢印)を示す図である。 第11実施例に係るズームレンズの撮影距離無限遠における諸収差図であり、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態を示す。 第12実施例に係るズームレンズの構成及び広角端状態から望遠端状態までの各群の移動軌跡(矢印)を示す図である。 第12実施例に係るズームレンズの撮影距離無限遠における諸収差図であり、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態を示す。 第4の実施形態に係るズームレンズを搭載したカメラの構成を示す図である。 第4の実施形態に係るズームレンズの製造方法の概略を示す図である。
発明を実施するための形態(第1、第2の実施形態)
 以下、第1の実施形態について、図面を参照しながら説明する。第1の実施形態に係るズームレンズZLIは、図1に示すように、光軸に沿って物体側より順に並んだ、正の屈折力を持つ第1レンズ群G1と、負の屈折力を持つ第2レンズ群G2と、正の屈折力を持つ第3レンズ群G3と、負の屈折力を持つ第4レンズ群G4と、正の屈折力を持つ第5レンズ群G5とを有し、各レンズ群の間隔を変化させて変倍を行い、第1レンズ群G1は、3枚以上のレンズで構成され、第4レンズ群G4は、2枚以下のレンズで構成され、第5レンズ群G5は、2枚以下のレンズで構成され、広角端状態から望遠端状態への変倍時に像面側へ移動する。この構成により、高変倍化を達成することができる。
 第1の実施形態に係るズームレンズZLIは、次の条件式(1)を満足する。
 8.40 < f1/(-f2) …(1)
 但し、
 f1:第1レンズ群G1の焦点距離、
 f2:第2レンズ群G2の焦点距離。
 条件式(1)は、球面収差、非点収差および色収差を小さくするための条件式である。
 第1レンズ群G1の屈折力が相対的に大きくなり過ぎて、条件式(1)の下限値を下回る場合、小型化には有利だが、望遠端状態における球面収差や倍率色収差の補正が困難になる。また、第2レンズ群G2の屈折力が相対的に小さくなり過ぎて、条件式(1)の下限値を下回る場合、高い変倍比を確保するためには全長が大型化する。ここで、光学系の小型化を維持するためには、第1レンズ群G1の屈折力を大きくしなければならず、望遠端状態における球面収差が悪化する。
 第1の実施形態の効果を確実なものとするために、条件式(1)の下限値を9.50とすることが好ましい。第1の実施形態の効果をより確実なものとするために、条件式(1)の下限値を10.50とすることが好ましい。
 第1の実施形態の効果を確実なものとするために、条件式(1)の上限値を20.00とすることが好ましい。条件式(1)の上限値を下回る場合、球面収差、非点収差および色収差がより小さくなり好ましい。第1の実施形態の効果を確実なものとするために、条件式(1)の上限値を17.50とすることが好ましい。第1の実施形態の効果をより確実なものとするために、条件式(1)の上限値を15.00とすることが好ましい。
 第1の実施形態に係るズームレンズZLIは、次の条件式(2)を満足することが好ましい。
 2.70 < βt3/βw3 …(2)
 但し、
 βt3:望遠端状態における第3レンズ群G3の倍率、
 βw3:広角端状態における第3レンズ群G3の倍率。
 条件式(2)は、変倍による球面収差変動を小さくするための条件式である。
 条件式(2)の下限値を下回ると、変倍における第3レンズ群G3の寄与が小さくなり過ぎるため、第1レンズ群G1および第2レンズ群G2でより多くの変倍作用を担う必要がある。ここで、光学系の小型化を維持するため、第1レンズ群G1の屈折力を大きくすると、望遠端状態における球面収差や、全変倍域にわたる色収差が悪化する。また、光学系全体の小型化を維持するため、第2レンズ群G2の屈折力を大きくすると、望遠端状態における軸上色収差や、全変倍域にわたる非点収差の補正が困難になる。
 第1の実施形態の効果を確実なものとするために、条件式(2)の下限値を2.70とすることが好ましい。第1の実施形態の効果をより確実なものとするために、条件式(2)の下限値を3.50とすることが好ましい。第1の実施形態の効果をさらに確実なものとするために、条件式(2)の下限値を4.00とすることが好ましい。
 第1の実施形態の効果を確実なものとするために、条件式(2)の上限値を10.00とすることが好ましい。条件式(2)の上限値を下回る場合、変倍による球面収差変動がより小さくなり好ましい。第1の実施形態の効果を確実なものとするために、条件式(2)の上限値を8.00とすることが好ましい。第1の実施形態の効果をより確実なものとするために、条件式(2)の上限値を6.00とすることが好ましい。
 第1の実施形態に係るズームレンズZLIは、次の条件式(3)を満足することが好ましい。
 5.80 < Dt12/(-f2) …(3)
 但し、
 Dt12:望遠端状態における第1レンズ群G1の像側面から第2レンズ群G2の物体側面までの光軸上の距離。
 条件式(3)は、球面収差、倍率色収差および軸上色収差を小さくし、良好な光学性能を確保するための条件式である。
 条件式(3)の下限値を下回ると、望遠端状態における第1レンズ群G1と第2レンズ群G2との間隔が著しく小さくなるため、第1レンズ群G1,第2レンズ群G2の屈折力が大きくなり過ぎる。第1レンズ群G1の屈折力が大きくなると、特に、望遠端状態における球面収差、倍率色収差の補正が困難になる。第2レンズ群G2の屈折力が大きくなると、軸上色収差の補正が困難になる。
 第1の実施形態の効果を確実なものとするために、条件式(3)の下限値を7.50とすることが好ましい。第1の実施形態の効果をより確実なものとするために、条件式(3)の下限値を8.40とすることが好ましい。第1の実施形態の効果をさらに確実なものとするために、条件式(3)の下限値を9.40とすることが好ましい。
 第1の実施形態の効果を確実なものとするために、条件式(3)の上限値を20.00とすることが好ましい。条件式(3)の上限値を下回る場合、球面収差、倍率色収差および軸上色収差がより小さくなり好ましい。第1の実施形態の効果を確実なものとするために、条件式(3)の上限値を16.00とすることが好ましい。第1の実施形態の効果をより確実なものとするために、条件式(3)の上限値を13.00とすることが好ましい。
 第1の実施形態に係るズームレンズZLIは、第4レンズ群G4が、2枚のレンズで構成され、これら2枚のレンズは接合されていることが好ましい。この構成により、色収差を効果的に補正することができる。また、各レンズ面のパワーを小さくすることにより、製造時の性能低下を抑えることができる。
 第1の実施形態に係るズームレンズZLIは、第5レンズ群G5が、2枚のレンズで構成され、これら2枚のレンズは接合されていることが好ましい。この構成により、色収差を効果的に補正することができる。また、各レンズ面のパワーを小さくすることにより、製造時の性能低下を抑えることができる。
 第1の実施形態に係るズームレンズZLIは、第2レンズ群G2が、光軸に沿って物体側から順に並んだ、負レンズと、負レンズと、正レンズと、負レンズとから構成されることが好ましい。この構成により、全変倍域にわたる非点収差や、望遠端状態における軸上色収差を効果的に補正することができる。
 第1の実施形態に係るズームレンズZLIは、第3レンズ群G3が、光軸に沿って像側から順に並んだ、正レンズと、負レンズと、負レンズと、正レンズとを有することが好ましい。この構成により、望遠端状態での波長ごとの球面収差とコマ収差を良好なバランスで補正することができる。
 第1の実施形態に係るズームレンズZLIは、第4レンズ群G4を光軸方向に沿って移動させることにより合焦を行うことが好ましい。この構成により、合焦時の性能低下を防ぐことができる。但し、第5レンズ群G5など、その他の群を用いて合焦を行うことも可能である。
 以上のような構成を備える第1の実施形態に係るズームレンズZLIによれば、高変倍でありながら、良好な光学性能を有するズームレンズを実現することができる。
 図7及び図8に、上述のズームレンズZLIを備える光学機器として、デジタルスチルカメラCAM1(光学機器)の構成を示す。このデジタルスチルカメラCAM1は、不図示の電源釦を押すと、撮影レンズ(ズームレンズZLI)の不図示のシャッタが開放されて、ズームレンズZLIで被写体(物体)からの光が集光され、像面I(図1参照)に配置された撮像素子C(例えば、CCDやCMOS等)に結像される。撮像素子Cに結像された被写体像は、デジタルスチルカメラCAM1の背後に配置された液晶モニターM1に表示される。撮影者は、液晶モニターM1を見ながら被写体像の構図を決めた後、レリーズ釦B11を押し下げて被写体像を撮像素子Cで撮影し、不図示のメモリーに記録保存する。このようにして、撮影者はカメラCAM1による被写体の撮影を行うことができる。
 カメラCAM1には、被写体が暗い場合に補助光を発光する補助光発光部EF1、デジタルスチルカメラCAM1の種々の条件設定等に使用するファンクションボタンB12等も配置されている。
 またここでは、カメラCAM1とズームレンズZLIとが一体に成形されたコンパクトタイプのカメラを例示したが、光学機器としては、ズームレンズZLIを有するレンズ鏡筒とカメラボディ本体とが着脱可能な一眼レフカメラでも良い。
 以上のような構成を備える第1の実施形態に係るカメラCAM1によれば、撮影レンズとして上述のズームレンズZLIを搭載することにより、高変倍でありながら、良好な光学性能を有するカメラを実現することができる。
 続いて、図9を参照しながら、上述のズームレンズZLIの製造方法について説明する。まず、鏡筒内に、光軸に沿って物体側より順に並んだ、正の屈折力を持つ第1レンズ群G1と、負の屈折力を持つ第2レンズ群G2と、正の屈折力を持つ第3レンズ群G3と、負の屈折力を持つ第4レンズ群G4と、正の屈折力を持つ第5レンズ群G5とを有し、各レンズ群の間隔を変化させて変倍を行うように、各レンズを配置する(ステップST110)。第1レンズ群G1は、3枚以上のレンズで構成されるように、各レンズを鏡筒内に配置する(ステップST120)。第4レンズ群G4は、2枚以下のレンズで構成されるように、各レンズを鏡筒内に配置する(ステップST130)。第5レンズ群G5は、2枚以下のレンズで構成され、広角端状態から望遠端状態への変倍時に像面側へ移動するように、各レンズを鏡筒内に配置する(ステップST140)。次の条件式(1)を満足するように、各レンズを配置する(ステップST150)。
 8.40 < f1/(-f2) …(1)
 但し、
 f1:第1レンズ群G1の焦点距離、
 f2:第2レンズ群G2の焦点距離。
 第1の実施形態におけるレンズ配置の一例を挙げると、図1に示すように、物体側から順に、像側に凹面を向けた負メニスカスレンズL11と両凸形状の正レンズL12とからなる接合レンズと、物体側に凸面を向けた正メニスカスレンズL13と、物体側に凸面を向けた正メニスカスレンズL14とを配置して第1レンズ群G1とし、像側に凹面を向けた負メニスカスレンズL21と、両凹形状の負レンズL22と、両凸形状の正レンズL23と、両凹形状の負レンズL24とを配置して第2レンズ群G2とし、両凸形状の正レンズL31と、両凸形状の正レンズL32と、像側に凹面を向けた負メニスカスレンズL33と、像側に凹面を向けた負メニスカスレンズL34と両凸形状の正レンズL35とからなる接合レンズとを配置して第3レンズ群G3とし、両凸形状の正レンズL41と両凹形状の負レンズL42とからなる接合レンズを配置して第4レンズ群G4とし、両凸形状の正レンズL51と物体側に凹面を向けた負メニスカスレンズL52とからなる接合レンズを配置して第5レンズ群G5とする。このように準備した各レンズ群を、上述の手順で配置してズームレンズZLIを製造する。
 第1の実施形態に係る製造方法によれば、高変倍でありながら、良好な光学性能を有するズームレンズZLIを製造することができる。
 以下、第2の実施形態について、図面を参照しながら説明する。第2の実施形態に係るズームレンズZLIは、図1に示すように、光軸に沿って物体側より順に並んだ、正の屈折力を持つ第1レンズ群G1と、負の屈折力を持つ第2レンズ群G2と、正の屈折力を持つ第3レンズ群G3と、負の屈折力を持つ第4レンズ群G4と、正の屈折力を持つ第5レンズ群G5とを有し、各レンズ群の間隔を変化させて変倍を行い、第1レンズ群G1は、3枚以上のレンズで構成され、第4レンズ群G4は、2枚以下のレンズで構成され、第5レンズ群G5は、2枚以下のレンズで構成され、広角端状態から望遠端状態への変倍時に像面側へ移動する。この構成により、高変倍化を達成することができる。
 第2の実施形態に係るズームレンズZLIは、次の条件式(4)を満足する。
 5.80 < Dt12/(-f2) …(4)
 但し、
 Dt12:望遠端状態における第1レンズ群G1の像側面から第2レンズ群G2の物体側面までの光軸上の距離、
 f2:第2レンズ群G2の焦点距離。
 条件式(4)は、球面収差、倍率色収差および軸上色収差を小さくし、良好な光学性能を確保するための条件式である。
 条件式(4)の下限値を下回ると、望遠端状態における第1レンズ群G1と第2レンズ群G2との間隔が著しく小さくなるため、第1レンズ群G1,第2レンズ群G2の屈折力が大きくなり過ぎる。第1レンズ群G1の屈折力が大きくなると、特に、望遠端状態における球面収差、倍率色収差の補正が困難になる。第2レンズ群G2の屈折力が大きくなると、軸上色収差の補正が困難になる。
 第2の実施形態の効果を確実なものとするために、条件式(4)の下限値を7.50とすることが好ましい。第2の実施形態の効果をより確実なものとするために、条件式(4)の下限値を8.40とすることが好ましい。第2の実施形態の効果をさらに確実なものとするために、条件式(4)の下限値を8.90とすることが好ましい。
 第2の実施形態の効果を確実なものとするために、条件式(4)の上限値を20.00とすることが好ましい。条件式(4)の上限値を下回る場合、球面収差、倍率色収差および軸上色収差がより小さくなり好ましい。第2の実施形態の効果を確実なものとするために、条件式(4)の上限値を16.00とすることが好ましい。第2の実施形態の効果をより確実なものとするために、条件式(4)の上限値を13.00とすることが好ましい。
 第2の実施形態に係るズームレンズZLIは、次の条件式(5)を満足することが好ましい。
 0.03 < Mv2/ft …(5)
 但し、
 Mv2:広角端状態から望遠端状態までの第2レンズ群G2の移動量、
 ft:望遠端状態における全系の焦点距離。
 条件式(5)は、軸上色収差および倍率色収差を小さくするための条件式である。
 条件式(5)の下限値を下回ると、変倍による第2レンズ群G2の移動量が著しく小さくなるため、第2レンズ群G2の屈折力を大きくする必要があり、変倍による色収差の変動を抑えることが困難になる。第1レンズ群G1の移動量を大きくすることで対応可能であるが、前玉径が大きくなり、小型化が困難になる。
 第2の実施形態の効果を確実なものとするために、条件式(5)の下限値を0.05とすることが好ましい。第2の実施形態の効果をより確実なものとするために、条件式(5)の下限値を0.07とすることが好ましい。
 第2の実施形態に係るズームレンズZLIは、次の条件式(6)を満足することが好ましい。
 0.01 < D1/ft < 0.15 …(6)
 但し、
 D1:第1レンズ群G1の物体側面から像側面までの光軸上の距離、
 ft:望遠端状態における全系の焦点距離。
 条件式(6)は、変倍による球面収差および倍率色収差の変動を小さくするための条件式である。
 条件式(6)の下限値を下回ると、第1レンズ群G1の厚さが薄くなりすぎるため、第1レンズ群G1の屈折力を確保するために、第1レンズ群G1内の正レンズの屈折率を大きくする必要があり、望遠端状態における倍率色収差の補正が困難になる。
 第2の実施形態の効果を確実なものとするために、条件式(6)の下限値を0.03とすることが好ましい。第2の実施形態の効果をより確実なものとするために、条件式(6)の下限値を0.05とすることが好ましい。
 条件式(6)の上限値を上回ると、第1レンズ群G1の厚さが大きくなりすぎるため、広角端状態における光軸からの光線高さが大きくなり、前玉径が大型化する。第2レンズ群G2の屈折力を大きくすることである程度は対応可能であるが、変倍による色収差の変動を抑えることが困難になる。
 第2の実施形態の効果を確実なものとするために、条件式(6)の上限値を0.10とすることが好ましい。第2の実施形態の効果をより確実なものとするために、条件式(6)の上限値を0.07とすることが好ましい。
 第2の実施形態に係るズームレンズZLIは、次の条件式(7)を満足することが好ましい。
 0.70 < Zidwt/Fnwt < 1.10 …(7)
 なお、
 Zidwt = {(1-βt4^2)*βt5^2}/{(1-βw4^2)*βw5^2}
 Fnwt = Fnt/Fnw
と定義する。
 但し、
 βt4:望遠端状態における第4レンズ群G4の倍率、
 βt5:望遠端状態における第5レンズ群G5の倍率、
 βw4:広角端状態における第4レンズ群G4の倍率、
 βw5:広角端状態における第5レンズ群G5の倍率、
 Fnt:望遠端状態におけるFナンバー、
 Fnw:広角端状態におけるFナンバー。
 条件式(7)は、変倍による球面収差、非点収差および像面湾曲の変動を小さくし、第4レンズ群G4で近距離物体への合焦を行う際に、合焦時間を短くするための条件式である。なお、Zidwtは、レンズ群が光軸に沿って移動したときの結像位置の移動量を表す係数の望遠端状態と広角端状態とにおける比を示す。Fnwtは、Fナンバーの望遠端状態と広角端状態とにおける比を示す。
 Zidwtの値が相対的に小さくなり、条件式(7)の下限値を下回る場合、望遠端状態における第5レンズ群G5の倍率が小さくなり過ぎ、強い縮小倍率がかかるため、非点収差や像面湾曲の変動を抑えることが困難になる。また、Fnwtの値が相対的に大きくなり、条件式(7)の下限値を下回る場合、広角端状態におけるFナンバーが小さくなるため、球面収差の補正が困難になる。
 第2の実施形態の効果を確実なものとするために、条件式(7)の下限値を0.80とすることが好ましい。第2の実施形態の効果をより確実なものとするために、条件式(7)の下限値を0.95とすることが好ましい。
 Zidwtの値が相対的に大きくなり、条件式(7)の上限値を上回る場合、望遠端状態における第5レンズ群G5の倍率が大きくなり過ぎ、光学系全体の小型化が困難になる。第1レンズ群G1および第2レンズ群G2の屈折力を強くすることで対応できるが、望遠端状態における球面収差の補正や、変倍による非点収差や像面湾曲の変動を抑えることが困難になる。また、Fnwtの値が相対的に小さくなり、条件式(7)の上限値を上回る場合、望遠端状態におけるFナンバーが小さくなるため、球面収差の補正が困難になる。
 第2の実施形態の効果を確実なものとするために、条件式(7)の上限値を1.05とすることが好ましい。
 第2の実施形態に係るズームレンズZLIは、次の条件式(8)を満足することが好ましい。
 2.70 < βt3/βw3 …(8)
 但し、
 βt3:望遠端状態における第3レンズ群G3の倍率、
 βw3:広角端状態における第3レンズ群G3の倍率。
 条件式(8)は、変倍による球面収差変動を小さくするための条件式である。
 条件式(8)の下限値を下回ると、変倍における第3レンズ群G3の寄与が小さくなり過ぎるため、第1レンズ群G1および第2レンズ群G2でより多くの変倍作用を担う必要がある。ここで、光学系の小型化を維持するため、第1レンズ群G1の屈折力を大きくすると、望遠端状態における球面収差や、全変倍域にわたる色収差が悪化する。また、光学系全体の小型化を維持するため、第2レンズ群G2の屈折力を大きくすると、望遠端状態における軸上色収差や、全変倍域にわたる非点収差の補正が困難になる。
 第2の実施形態の効果を確実なものとするために、条件式(8)の下限値を3.00とすることが好ましい。第2の実施形態の効果をより確実なものとするために、条件式(8)の下限値を3.50とすることが好ましい。
 第2の実施形態の効果を確実なものとするために、条件式(8)の上限値を10.00とすることが好ましい。条件式(8)の上限値を下回る場合、変倍による球面収差変動がより小さくなり好ましい。第2の実施形態の効果を確実なものとするために、条件式(8)の上限値を8.00とすることが好ましい。第2の実施形態の効果をより確実なものとするために、条件式(8)の上限値を6.00とすることが好ましい。
 第2の実施形態に係るズームレンズZLIは、次の条件式(9)を満足することが好ましい。
 8.40 < f1/(-f2) …(9)
 但し、
 f1:第1レンズ群G1の焦点距離。
 条件式(9)は、球面収差、非点収差および色収差を小さくするための条件式である。
 第1レンズ群G1の屈折力が相対的に大きくなり過ぎて、条件式(9)の下限値を下回る場合、小型化には有利だが、望遠端状態における球面収差や倍率色収差の補正が困難になる。また、第2レンズ群G2の屈折力が相対的に小さくなり過ぎて、条件式(9)の下限値を下回る場合、高い変倍比を確保するためには全長が大型化する。ここで、光学系の小型化を維持するためには、第1レンズ群G1の屈折力を大きくしなければならず、望遠端状態における球面収差が悪化する。
 第2の実施形態の効果を確実なものとするために、条件式(9)の下限値を9.00とすることが好ましい。第2の実施形態の効果をより確実なものとするために、条件式(9)の下限値を10.00とすることが好ましい。第2の実施形態の効果をさらに確実なものとするために、条件式(9)の下限値を11.00とすることが好ましい。
 第2の実施形態の効果を確実なものとするために、条件式(9)の上限値を20.00とすることが好ましい。条件式(9)の上限値を下回る場合、球面収差、非点収差および色収差がより小さくなり好ましい。第2の実施形態の効果を確実なものとするために、条件式(9)の上限値を17.50とすることが好ましい。第2の実施形態の効果をより確実なものとするために、条件式(9)の上限値を15.00とすることが好ましい。
 第2の実施形態に係るズームレンズZLIは、第4レンズ群G4が、2枚のレンズで構成され、これら2枚のレンズは接合されていることが好ましい。この構成により、色収差を効果的に補正することができる。また、各レンズ面のパワーを小さくすることにより、製造時の性能低下を抑えることができる。
 第2の実施形態に係るズームレンズZLIは、第5レンズ群G5が、2枚のレンズで構成され、これら2枚のレンズは接合されていることが好ましい。この構成により、色収差を効果的に補正することができる。また、各レンズ面のパワーを小さくすることにより、製造時の性能低下を抑えることができる。
 第2の実施形態に係るズームレンズZLIは、第2レンズ群G2が、光軸に沿って物体側から順に並んだ、負レンズと、負レンズと、正レンズと、負レンズとから構成されることが好ましい。この構成により、全変倍域にわたる非点収差や、望遠端状態における軸上色収差を効果的に補正することができる。
 第2の実施形態に係るズームレンズZLIは、第3レンズ群G3が、光軸に沿って像側から順に並んだ、正レンズと、負レンズと、負レンズと、正レンズとを有することが好ましい。この構成により、望遠端状態での波長ごとの球面収差とコマ収差を良好なバランスで補正することができる。
 第2の実施形態に係るズームレンズZLIは、第4レンズ群G4を光軸方向に沿って移動させることにより合焦を行うことが好ましい。この構成により、合焦時の性能低下を防ぐことができる。但し、第5レンズ群G5など、その他の群を用いて合焦を行うことも可能である。
 以上のような構成を備える第2の実施形態に係るズームレンズZLIによれば、高変倍でありながら、良好な光学性能を有するズームレンズを実現することができる。
 図7及び図8に、上述のズームレンズZLIを備える光学機器として、デジタルスチルカメラCAM1(光学機器)の構成を示す。このデジタルスチルカメラCAM1は、第1の実施形態のものと同一であり、既にその構成説明を行っているので、ここでの説明は省略する。
 以上のような構成を備える第2の実施形態に係るカメラCAM1によれば、撮影レンズとして上述のズームレンズZLIを搭載することにより、高変倍でありながら、良好な光学性能を有するカメラを実現することができる。
 続いて、図10を参照しながら、上述のズームレンズZLIの製造方法について説明する。まず、鏡筒内に、光軸に沿って物体側より順に並んだ、正の屈折力を持つ第1レンズ群G1と、負の屈折力を持つ第2レンズ群G2と、正の屈折力を持つ第3レンズ群G3と、負の屈折力を持つ第4レンズ群G4と、正の屈折力を持つ第5レンズ群G5とを有し、各レンズ群の間隔を変化させて変倍を行うように、各レンズを配置する(ステップST210)。第1レンズ群G1は、3枚以上のレンズで構成されるように、各レンズを鏡筒内に配置する(ステップST220)。第4レンズ群G4は、2枚以下のレンズで構成されるように、各レンズを鏡筒内に配置する(ステップST230)。第5レンズ群G5は、2枚以下のレンズで構成され、広角端状態から望遠端状態への変倍時に像面側へ移動するように、各レンズを鏡筒内に配置する(ステップST240)。次の条件式(4)を満足するように、各レンズを配置する(ステップST250)。
 5.80 < Dt12/(-f2) …(4)
 但し、
 Dt12:望遠端状態における第1レンズ群G1の像側面から第2レンズ群G2の物体側面までの光軸上の距離、
 f2:第2レンズ群G2の焦点距離。
 第2の実施形態におけるレンズ配置の一例を挙げると、図1に示すように、物体側から順に、像側に凹面を向けた負メニスカスレンズL11と両凸形状の正レンズL12とからなる接合レンズと、物体側に凸面を向けた正メニスカスレンズL13と、物体側に凸面を向けた正メニスカスレンズL14とを配置して第1レンズ群G1とし、像側に凹面を向けた負メニスカスレンズL21と、両凹形状の負レンズL22と、両凸形状の正レンズL23と、両凹形状の負レンズL24とを配置して第2レンズ群G2とし、両凸形状の正レンズL31と、両凸形状の正レンズL32と、像側に凹面を向けた負メニスカスレンズL33と、像側に凹面を向けた負メニスカスレンズL34と両凸形状の正レンズL35とからなる接合レンズとを配置して第3レンズ群G3とし、両凸形状の正レンズL41と両凹形状の負レンズL42とからなる接合レンズを配置して第4レンズ群G4とし、両凸形状の正レンズL51と物体側に凹面を向けた負メニスカスレンズL52とからなる接合レンズを配置して第5レンズ群G5とする。このように準備した各レンズ群を、上述の手順で配置してズームレンズZLIを製造する。
 第2の実施形態に係る製造方法によれば、高変倍でありながら、良好な光学性能を有するズームレンズZLIを製造することができる。
第1、第2の実施形態に係る実施例
 これより第1、第2の実施形態に係る各実施例について、図面に基づいて説明する。図1、図3、図5は、各実施例に係るズームレンズZLI(ZL1~ZL3)の構成及び屈折力配分を示す断面図である。
 第1実施例に係る図1に対する各参照符号は、参照符号の桁数の増大による説明の煩雑化を避けるため、実施例ごとに独立して用いている。ゆえに、他の実施例に係る図面と共通の参照符号を付していても、それらは他の実施例とは必ずしも共通の構成ではない。
 また、以下に表1~表3を示すが、これらは第1実施例~第3実施例における各諸元の表である。
 各実施例では収差特性の算出対象として、d線(波長587.6nm)、g線(波長435.8nm)、C線(波長656.3nm)、F線(波長486.1nm)を選んでいる。
 表中の[レンズ諸元]において、面番号は光線の進行する方向に沿った物体側からの光学面の順序、Rは各光学面の曲率半径、Dは各光学面から次の光学面(又は像面)までの光軸上の距離である面間隔、ndは光学部材の材質のd線に対する屈折率、νdは光学部材の材質のd線を基準とするアッベ数をそれぞれ示す。また、(可変)は可変の面間隔、曲率半径の「∞」は平面又は開口、(絞りS)は開口絞りS、像面は像面Iをそれぞれ示す。空気の屈折率「1.00000」は省略する。光学面が非球面である場合には、面番号に*印を付し、曲率半径Rの欄には近軸曲率半径を示す。
 表中の[非球面データ]には、[レンズ諸元]に示した非球面について、その形状を次式(a)で示す。X(y)は非球面の頂点における接平面から高さyにおける非球面上の位置までの光軸方向に沿った距離を、Rは基準球面の曲率半径(近軸曲率半径)を、κは円錐定数を、Aiは第i次の非球面係数を示す。「E-n」は、「×10-n」を示す。例えば、1.234E-05=1.234×10-5である。なお、2次の非球面係数A2は0であり、記載を省略する。
 X(y)=(y2/R)/{1+(1-κ×y2/R21/2}+A4×y4+A6×y6+A8×y8+A10×y10 …(a)
 表中の[全体諸元]において、fはレンズ全系の焦点距離、FnoはFナンバー、ωは半画角(最大入射角、単位:°)、Yは像高、Bfは光軸上でのレンズ最終面から近軸像面までの距離、Bf(空気)はレンズ最終面から近軸像面までの距離を空気換算長により表記したもの、TLはレンズ全長(光軸上でのレンズ最前面からレンズ最終面までの距離にBfを加えたもの)、TL(空気)は光軸上でのレンズ最前面からレンズ最終面までの距離にBf(空気)を加えたものである。
 表中の[可変間隔データ]において、広角端、中間焦点距離、望遠端の各状態における可変間隔の値Diを示す。なお、Diは、第i面と第(i+1)面の可変間隔を示す。
 表中の[レンズ群データ]において、各レンズ群の始面と焦点距離を示す。
 表中の[条件式]には、上記の条件式(1)~(9)に対応する値を示す。
 以下、全ての諸元値において、掲載されている焦点距離f、曲率半径R、面間隔D、その他の長さ等は、特記のない場合一般に「mm」が使われるが、光学系は比例拡大又は比例縮小しても同等の光学性能が得られるので、これに限られるものではない。また、単位は「mm」に限定されることなく、他の適当な単位を用いることが可能である。
 ここまでの表の説明は全ての実施例において共通であり、以下での説明を省略する。
(第1実施例)
 第1実施例について、図1、図2及び表1を用いて説明する。第1実施例に係るズームレンズZLI(ZL1)は、図1に示すように、光軸に沿って物体側から順に並んだ、正の屈折力を持つ第1レンズ群G1と、負の屈折力を持つ第2レンズ群G2と、正の屈折力を持つ第3レンズ群G3と、負の屈折力を持つ第4レンズ群G4と、正の屈折力を持つ第5レンズ群G5とから構成される。
 第1レンズ群G1は、光軸に沿って物体側から順に並んだ、像側に凹面を向けた負メニスカスレンズL11と両凸形状の正レンズL12とからなる接合レンズと、物体側に凸面を向けた正メニスカスレンズL13と、物体側に凸面を向けた正メニスカスレンズL14とから構成される。
 第2レンズ群G2は、光軸に沿って物体側から順に並んだ、像側に凹面を向けた負メニスカスレンズL21と、両凹形状の負レンズL22と、両凸形状の正レンズL23と、両凹形状の負レンズL24とから構成される。
 第3レンズ群G3は、光軸に沿って物体側から順に並んだ、両凸形状の正レンズL31と、両凸形状の正レンズL32と、像側に凹面を向けた負メニスカスレンズL33と、像側に凹面を向けた負メニスカスレンズL34と両凸形状の正レンズL35とからなる接合レンズとから構成される。
 両凸形状の正レンズL31の両側面は、非球面である。
 第4レンズ群G4は、光軸に沿って物体側から順に並んだ、両凸形状の正レンズL41と両凹形状の負レンズL42とからなる接合レンズで構成される。
 両凸形状の正レンズL41の物体側面は、非球面である。
 第5レンズ群G5は、光軸に沿って物体側から順に並んだ、両凸形状の正レンズL51と物体側に凹面を向けた負メニスカスレンズL52とからなる接合レンズで構成される。
 両凸形状の正レンズL51の物体側面は、非球面である。
 第3レンズ群G3の物体側に、光量を調節することを目的とした開口絞りSが設けられている。
 第5レンズ群G5の像側に、フィルタFLが設けられている。フィルタFLは、像面Iに配設されるCCD等、固体撮像素子の限界解像以上の空間周波数をカットするためのローパスフィルタや赤外カットフィルタ等で構成されている。
 本実施例に係るズームレンズZL1は、広角端状態から望遠端状態への変倍に際して、各レンズ群の間隔が変化するように、第1レンズ群G1から第5レンズ群G5までの全てのレンズ群を移動させる。具体的には、第1レンズ群G1を、物体側へ移動させる。第2レンズ群G2を、一旦像面側へ移動させ、その後物体側へ移動させる。第3レンズ群G3を、物体側へ移動させる。第4レンズ群G4を、一旦像面側へ移動させ、その後物体側へ移動させる。第5レンズ群G5を、像面側へ移動させる。開口絞りSを、第3レンズ群G3と一体的に、物体側へ移動させる。
 下記の表1に、第1実施例における各諸元の値を示す。表1における面番号1~33が、図1に示すm1~m33の各光学面に対応している。
(表1)
[レンズ諸元]
 面番号  R     D      nd     νd
 物面   ∞
  1  1098.9825   1.8000   1.804000   46.5977
  2   79.1099   8.8106   1.437001   95.1004
  3  -239.9403   0.1000
  4   82.2574   6.1989   1.496997   81.6084
  5  1523.9054   0.1000
  6   89.9100   5.6000   1.496997   81.6084
  7  768.6046   D7(可変)
  8  107.6966   1.0000   1.834810   42.7334
  9   11.6443   5.5064
  10  -25.3488   0.7000   1.834810   42.7334
  11  92.8811   0.1774
  12  24.8647   3.3358   1.922860   20.8804
  13  -36.0593   0.9641
  14  -18.9977   1.3410   1.834810   42.7334
  15  684.6171   D15(可変)
  16   ∞     0.7500   (絞りS)
 *17  17.1514   3.0050   1.589130   61.1500
 *18  -67.5172   1.1196
  19  20.6602   3.2736   1.496997   81.6084
  20  -54.9465   0.1000
  21  116.0203   0.6000   1.834000   37.1838
  22  14.8071   1.3307
  23 2815.9221   0.6000   1.720467   34.7080
  24  21.6373   4.3258   1.603000   65.4413
  25  -18.9606   D25(可変)
 *26  44.9637   1.8886   1.672700   32.1855
  27  -37.2442   0.6000   1.670000   57.3496
  28  12.1780   D28(可変)
 *29  17.6808   2.1729   1.618750   63.7334
  30  -23.9691   1.0000   1.846663   23.7848
  31  -75.0000   D31(可変)
  32   ∞     0.8000   1.516800   63.8807
  33   ∞     Bf
 像面   ∞
 
[非球面データ]
面番号 κ    A4      A6      A8     A10
 17 0.0785  6.8202E-06  9.2770E-08  3.6522E-11 0.0000E+00
 18 0.3350  6.7762E-05  2.5527E-08  1.2890E-10 0.0000E+00
 26 1.0000 -5.2516E-06  2.2052E-06 -2.8016E-07 1.0265E-08
 29 1.0000  1.7725E-06 -1.3037E-06  6.7078E-08 0.0000E+00
 
[全体諸元]
ズーム比 78.22
        広角端  中間焦点  望遠端
 f      4.430   39.000  346.502
 Fno     2.00257  4.19533  6.60712
 ω      42.9497   5.7616   0.6533
 Bf     0.530   0.530   0.530
 Bf(空気)  6.665   2.996   1.557
 TL    132.6704  166.9200  195.1357
 TL(空気) 132.398  166.647  194.863
 
[可変間隔データ]
可変間隔  広角端   中間焦点   望遠端
 D7     0.90176   63.00443   91.08694
 D15   58.14079   16.93034    2.02752
 D25    5.94269   20.40134   20.00000
 D28    4.34707   6.91470   23.79095
 D31    5.60788   1.93891    0.50000
 
[レンズ群データ]
群番号  群初面  群焦点距離
 G1    1   114.32333
 G2    8   -10.09770
 G3    16    19.86940
 G4    26   -25.80086
 G5    29    27.37196
 
[条件式]
条件式(1)f1/(-f2) = 11.322
条件式(2)βt3/βw3 = 3.629
条件式(3)Dt12/(-f2) = 9.021
 
条件式(4)Dt12/(-f2) = 9.021
条件式(5)Mv2/ft = 0.080
条件式(6)D1/ft = 0.065
条件式(7)Zidwt/Fnwt = 0.962
条件式(8)βt3/βw3 = 3.629
条件式(9)f1/(-f2) = 11.322
 表1から、第1実施例に係るズームレンズZL1は、条件式(1)~(9)を満足することが分かる。
 図2は、第1実施例に係るズームレンズZL1の撮影距離無限遠における諸収差図(球面収差図、非点収差図、歪曲収差図、コマ収差図及び倍率色収差図)であり、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態をそれぞれ示す。
 各収差図において、FNOはFナンバー、Aは各像高に対する半画角(単位:°)を示す。dはd線、gはg線、CはC線、FはF線における収差を示す。また、これらの記載がないものは、d線における収差を示す。非点収差図において、実線はサジタル像面、破線はメリディオナル像面を示す。なお、後述する各実施例の収差図においても、本実施例と同様の符号を用いる。
 図2に示す各収差図から明らかなように、第1実施例に係るズームレンズZL1は、諸収差が良好に補正され、優れた結像性能を有することが分かる。
(第2実施例)
 第2実施例について、図3、図4及び表2を用いて説明する。第2実施例に係るズームレンズZLI(ZL2)は、図3に示すように、光軸に沿って物体側から順に並んだ、正の屈折力を持つ第1レンズ群G1と、負の屈折力を持つ第2レンズ群G2と、正の屈折力を持つ第3レンズ群G3と、負の屈折力を持つ第4レンズ群G4と、正の屈折力を持つ第5レンズ群G5とから構成される。
 第1レンズ群G1は、光軸に沿って物体側から順に並んだ、像側に凹面を向けた負メニスカスレンズL11と両凸形状の正レンズL12とからなる接合レンズと、物体側に凸面を向けた正メニスカスレンズL13と、物体側に凸面を向けた正メニスカスレンズL14とから構成される。
 第2レンズ群G2は、光軸に沿って物体側から順に並んだ、像側に凹面を向けた負メニスカスレンズL21と、両凹形状の負レンズL22と、両凸形状の正レンズL23と、両凹形状の負レンズL24とから構成される。
 第3レンズ群G3は、光軸に沿って物体側から順に並んだ、両凸形状の正レンズL31と、像側に凹面を向けた負メニスカスレンズL32と、像側に凹面を向けた負メニスカスレンズL33と両凸形状の正レンズL34とからなる接合レンズとから構成される。
 両凸形状の正レンズL31の両側面は、非球面である。
 第4レンズ群G4は、光軸に沿って物体側から順に並んだ、両凸形状の正レンズL41と両凹形状の負レンズL42とからなる接合レンズで構成される。
 第5レンズ群G5は、光軸に沿って物体側から順に並んだ、両凸形状の正レンズL51と物体側に凹面を向けた負メニスカスレンズL52とからなる接合レンズで構成される。
 両凸形状の正レンズL51の物体側面は、非球面である。
 第3レンズ群G3の物体側に、光量を調節することを目的とした開口絞りSが設けられている。
 第5レンズ群G5の像側に、フィルタFLが設けられている。フィルタFLは、像面Iに配設されるCCD等、固体撮像素子の限界解像以上の空間周波数をカットするためのローパスフィルタや赤外カットフィルタ等で構成されている。
 本実施例に係るズームレンズZL2は、広角端状態から望遠端状態への変倍に際して、各レンズ群の間隔が変化するように、第1レンズ群G1から第5レンズ群G5までの全てのレンズ群を移動させる。具体的には、第1レンズ群G1を、物体側へ移動させる。第2レンズ群G2を、像面側へ移動させる。第3レンズ群G3を、物体側へ移動させる。第4レンズ群G4を、物体側へ移動させる。第5レンズ群G5を、像面側へ移動させる。開口絞りSを、第3レンズ群G3と一体的に、物体側へ移動させる。
 下記の表2に、第2実施例における各諸元の値を示す。表2における面番号1~31が、図3に示すm1~m31の各光学面に対応している。
(表2)
[レンズ諸元]
 面番号  R     D      nd     νd
 物面   ∞
  1  484.4033   2.3000   1.785900   44.1699
  2   85.0000   7.3809   1.437001   95.1004
  3  -350.5228   0.1000
  4   86.0152   6.2000   1.497820   82.5713
  5  6404.7076   0.1000
  6   94.9006   5.0000   1.497820   82.5713
  7  317.0879   D7(可変)
  8  285.0282   1.0000   1.834810   42.7334
  9   13.4140   6.1209
  10  -28.9721   0.8000   1.834810   42.7334
  11  65.6936   0.5807
  12  26.2967   2.8915   1.922860   20.8804
  13  -49.9285   0.9100
  14  -23.5354   0.7000   1.696800   55.5204
  15  67.7824   D15(可変)
  16   ∞     0.7500   (絞りS)
 *17  12.7205   3.0000   1.553319   71.6846
 *18  -64.8335   2.6500
  19  27.1737   1.0000   1.903658   31.3150
  20  13.1901   3.0000
  21  18.1149   0.5000   1.785900   44.1699
  22  11.1100   3.5000   1.497820   82.5713
  23  -30.9288   D23(可変)
  24  81.6464   2.3146   1.531720   48.7796
  25  -53.0701   0.5000   1.497820   82.5713
  26  17.0991   D26(可変)
 *27  23.8500   1.9271   1.589130   61.1500
  28  -24.7549   0.5000   1.717360   29.5729
  29  -65.0000   D29(可変)
  30   ∞     0.7100   1.516800   63.8807
  31   ∞     Bf
 像面   ∞
 
[非球面データ]
面番号 κ    A4      A6      A8     A10
 17 1.0000 -2.3567E-05 -8.3836E-07 2.3372E-08  0.0000E+00
 18 1.0000  5.9006E-05 -9.6651E-07 3.2880E-08 -7.9949E-11
 27 1.0000 -5.6440E-05 -8.8494E-07 1.2292E-08  0.0000E+00
 
[全体諸元]
ズーム比 78.22
        広角端  中間焦点  望遠端
 f      4.430   39.218  346.505
 Fno     2.87575  4.65096  6.47791
 ω      43.2096   5.7207   0.6537
 Bf     1.300   1.300   1.300
 Bf(空気)  6.524   3.775   2.167
 TL    133.3685  171.8996  199.8660
 TL(空気) 133.127  171.658  199.623
 
[可変間隔データ]
可変間隔  広角端   中間焦点   望遠端
 D7     0.75000   64.61154   96.27731
 D15   60.13384   18.41985    1.80999
 D23    3.49384   17.87410   20.68068
 D26    8.50000   13.25234   24.96239
 D29    4.75515   2.00614    0.40000
 
[レンズ群データ]
群番号  群初面  群焦点距離
 G1    1   121.16789
 G2    8   -10.01637
 G3    16    21.08324
 G4    24   -46.26883
 G5    27    32.98244
 
[条件式]
条件式(1)f1/(-f2) = 12.097
条件式(2)βt3/βw3 = 3.941
条件式(3)Dt12/(-f2) = 9.612
 
条件式(4)Dt12/(-f2) = 9.612
条件式(5)Mv2/ft = 0.084
条件式(6)D1/ft = 0.061
条件式(7)Zidwt/Fnwt = 1.034
条件式(8)βt3/βw3 = 3.941
条件式(9)f1/(-f2) = 12.097
 表2から、第2実施例に係るズームレンズZL2は、条件式(1)~(9)を満足することが分かる。
 図4は、第2実施例に係るズームレンズZL2の撮影距離無限遠における諸収差図(球面収差図、非点収差図、歪曲収差図、コマ収差図及び倍率色収差図)であり、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態をそれぞれ示す。
 図4に示す各収差図から明らかなように、第2実施例に係るズームレンズZL2は、諸収差が良好に補正され、優れた結像性能を有することが分かる。
(第3実施例)
 第3実施例について、図5、図6及び表3を用いて説明する。第3実施例に係るズームレンズZLI(ZL3)は、図5に示すように、光軸に沿って物体側から順に並んだ、正の屈折力を持つ第1レンズ群G1と、負の屈折力を持つ第2レンズ群G2と、正の屈折力を持つ第3レンズ群G3と、負の屈折力を持つ第4レンズ群G4と、正の屈折力を持つ第5レンズ群G5とから構成される。
 第1レンズ群G1は、光軸に沿って物体側から順に並んだ、像側に凹面を向けた負メニスカスレンズL11と両凸形状の正レンズL12とからなる接合レンズと、物体側に凸面を向けた正メニスカスレンズL13と、物体側に凸面を向けた正メニスカスレンズL14とから構成される。
 第2レンズ群G2は、光軸に沿って物体側から順に並んだ、像側に凹面を向けた負メニスカスレンズL21と、両凹形状の負レンズL22と両凸形状の正レンズL23とからなる接合レンズと、物体側に凹面を向けた負メニスカスレンズL24とから構成される。
 第3レンズ群G3は、光軸に沿って物体側から順に並んだ、両凸形状の正レンズL31と、像側に凹面を向けた負メニスカスレンズL32と、像側に凹面を向けた負メニスカスレンズL33と両凸形状の正レンズL34とからなる接合レンズとから構成される。
 両凸形状の正レンズL31の両側面は、非球面である。
 第4レンズ群G4は、光軸に沿って物体側から順に並んだ、両凸形状の正レンズL41と両凹形状の負レンズL42とからなる接合レンズで構成される。
 第5レンズ群G5は、光軸に沿って物体側から順に並んだ、両凸形状の正レンズL51と物体側に凹面を向けた負メニスカスレンズL52とからなる接合レンズで構成される。
 両凸形状の正レンズL51の物体側面は、非球面である。
 第3レンズ群G3の物体側に、光量を調節することを目的とした開口絞りSが設けられている。
 第5レンズ群G5の像側に、フィルタFLが設けられている。フィルタFLは、像面Iに配設されるCCD等、固体撮像素子の限界解像以上の空間周波数をカットするためのローパスフィルタや赤外カットフィルタ等で構成されている。
 本実施例に係るズームレンズZL3は、広角端状態から望遠端状態への変倍に際して、各レンズ群の間隔が変化するように、第1レンズ群G1から第5レンズ群G5までの全てのレンズ群を移動させる。具体的には、第1レンズ群G1を、物体側へ移動させる。第2レンズ群G2を、一旦像面側へ移動させ、その後物体側へ移動させる。第3レンズ群G3を、物体側へ移動させる。第4レンズ群G4を、一旦像面側へ移動させ、その後物体側へ移動させる。第5レンズ群G5を、像面側へ移動させる。開口絞りSを、第3レンズ群G3と一体的に、物体側へ移動させる。
 下記の表3に、第3実施例における各諸元の値を示す。表3における面番号1~30が、図5に示すm1~m30の各光学面に対応している。
(表3)
[レンズ諸元]
 面番号  R     D      nd     νd
 物面   ∞
  1  684.3944   2.3000   1.785900   44.1699
  2   88.5883   7.4292   1.437001   95.1004
  3  -286.7900   0.1000
  4   87.7854   6.0709   1.497820   82.5713
  5  4722.6942   0.1000
  6   94.2199   4.7668   1.497820   82.5713
  7  336.7415   D7(可変)
  8  179.2706   1.0000   1.834810   42.7334
  9   14.6897   5.9573
  10  -25.1944   0.8000   1.744000   44.8042
  11  17.2656   3.4603   1.922860   20.8804
  12  -64.8896   1.2728
  13  -19.4404   0.7000   1.785900   44.1699
  14  -82.5000   D14(可変)
  15   ∞     0.7500   (絞りS)
 *16  12.4672   2.6305   1.553319   71.6846
 *17  -59.9456   2.3724
  18  25.5702   0.9990   1.903658   31.3150
  19  12.0000   3.2000
  20  19.0940   0.5000   1.804400   39.6073
  21  14.0398   2.8805   1.497820   82.5713
  22  -24.1660   D22(可変)
  23  93.5777   2.2752   1.531720   48.7796
  24  -24.8694   0.5000   1.497820   82.5713
  25  14.9217   D25(可変)
 *26  25.2736   1.8147   1.589130   61.1500
  27  -27.4400   0.5000   1.805180   25.4483
  28  -65.0000   D28(可変)
  29   ∞     0.7100   1.516800   63.8807
  30   ∞     Bf
 像面   ∞
 
[非球面データ]
面番号 κ    A4      A6      A8     A10
 16 1.0000 -3.4837E-05 -3.7395E-07  4.0089E-09 0.0000E+00
 17 1.0000  5.8798E-05 -3.9831E-07  5.8745E-09 0.0000E+00
 26 1.0000 -1.1977E-04  1.5724E-06 -4.7608E-08 0.0000E+00
 
[全体諸元]
ズーム比 78.22
        広角端  中間焦点  望遠端
 f      4.430   39.179  346.504
 Fno     3.09863  4.57242  6.84974
 ω      43.4725   5.6976   0.6510
 Bf     1.300   1.300   1.300
 Bf(空気)  5.375   4.055   2.168
 TL    134.7637  168.1698  200.0000
 TL(空気) 134.522  167.928  199.758
 
[可変間隔データ]
可変間隔  広角端   中間焦点   望遠端
 D7     0.80000   65.29820   96.41213
 D14   61.58986   16.55966    1.75000
 D22    2.80178   17.33563   19.59710
 D25   11.57540   12.30000   27.45116
 D28    3.60706   2.28669    0.40000
 
[レンズ群データ]
群番号  群初面  群焦点距離
 G1    1   121.53230
 G2    8    -9.68967
 G3    15    19.81666
 G4    23   -38.50803
 G5    26    36.16627
 
[条件式]
条件式(1)f1/(-f2) = 12.542
条件式(2)βt3/βw3 = 4.374
条件式(3)Dt12/(-f2) = 9.950
 
条件式(4)Dt12/(-f2) = 9.950
条件式(5)Mv2/ft = 0.088
条件式(6)D1/ft = 0.060
条件式(7)Zidwt/Fnwt = 0.994
条件式(8)βt3/βw3 = 4.374
条件式(9)f1/(-f2) = 12.542
 表3から、第3実施例に係るズームレンズZL3は、条件式(1)~(9)を満足することが分かる。
 図6は、第3実施例に係るズームレンズZL3の撮影距離無限遠における諸収差図(球面収差図、非点収差図、歪曲収差図、コマ収差図及び倍率色収差図)であり、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態をそれぞれ示す。
 図6に示す各収差図から明らかなように、第3実施例に係るズームレンズZL3は、諸収差が良好に補正され、優れた結像性能を有することが分かる。
 ここまで本発明を分かりやすくするために、実施形態の構成要件を付して説明したが、本発明がこれに限定されるものではないことは言うまでもない。以下の内容は、本願のズームレンズの光学性能を損なわない範囲で適宜採用することが可能である。
 第1、第2の実施形態に係るズームレンズZLIの数値実施例として、5群構成のものを示したが、これに限定されず、他の群構成(例えば、6群等)にも適用可能である。具体的には、最も物体側にレンズまたはレンズ群を追加した構成や、最も像側にレンズまたはレンズ群を追加した構成でも構わない。また、レンズ群とは、変倍時または合焦時に変化する空気間隔で分離された、少なくとも1枚のレンズを有する部分を示す。
 第1、第2の実施形態に係るズームレンズZLIにおいて、無限遠から近距離物体への合焦を行うために、レンズ群の一部、1つのレンズ群全体、或いは複数のレンズ群を合焦レンズ群として、光軸方向へ移動させる構成としてもよい。この合焦レンズ群は、オートフォーカスにも適用することができ、オートフォーカス用の(超音波モーター等を用いた)モーター駆動にも適している。特に、第4レンズ群G4、または第5レンズ群G5を合焦レンズ群とすることが好ましい。また、第4レンズ群G4と第5レンズ群G5とを同時に動かして合焦を行うことも可能である。
 第1、第2の実施形態に係るズームレンズZLIにおいて、いずれかのレンズ群全体または部分レンズ群を、光軸に垂直な方向の成分を持つように移動させるか、或いは光軸を含む面内方向に回転移動(揺動)させて、手ブレ等によって生じる像ブレを補正する防振レンズ群としてもよい。特に、第3レンズ群G3を防振レンズ群とするのが好ましい。
 第1、第2の実施形態に係るズームレンズZLIにおいて、レンズ面は、球面または平面で形成されても、非球面で形成されても構わない。レンズ面が球面または平面の場合、レンズ加工および組立調整が容易になり、加工および組立調整の誤差による光学性能の劣化を防げるので好ましい。また、像面がずれた場合でも描写性能の劣化が少ないので好ましい。レンズ面が非球面の場合、非球面は、研削加工による非球面、ガラスを型で非球面形状に形成したガラスモールド非球面、ガラスの表面に樹脂を非球面形状に形成した複合型非球面のいずれの非球面でも構わない。また、レンズ面は回折面としてもよく、レンズを屈折率分布型レンズ(GRINレンズ)あるいはプラスチックレンズとしてもよい。
 第1、第2の実施形態に係るズームレンズZLIにおいて、開口絞りSは、第3レンズ群G3の近傍に配置されるのが好ましいが、開口絞りとしての部材を設けずに、レンズの枠でその役割を代用してもよい。
 第1、第2の実施形態に係るズームレンズZLIにおいて、各レンズ面に、フレアやゴーストを軽減し高コントラストの高い光学性能を達成するために、広い波長域で高い透過率を有する反射防止膜を施してもよい。
発明を実施するための形態(第3の実施形態)
 以下、実施形態について、図面を参照しながら説明する。第3の実施形態に係るズームレンズZLIIは、図11に示すように、光軸に沿って物体側より順に並んだ、正の屈折力を持つ第1レンズ群G1と、負の屈折力を持つ第2レンズ群G2と、正の屈折力を持つ第3レンズ群G3と、負の屈折力を持つ第4レンズ群G4と、正の屈折力を持つ第5レンズ群G5とを有し、各レンズ群の間隔を変化させて変倍を行い、第1レンズ群G1は、3枚以上のレンズで構成され、第5レンズ群G5は、広角端状態から望遠端状態への変倍時に像面側へ移動し、次の条件式(10)を満足する。
 0.020 < (-f2)/ft < 0.031 …(10)
 但し、
 f2:望遠端状態における第2レンズ群G2の焦点距離、
 ft:望遠端状態における全系の焦点距離。
 条件式(10)は、変倍による球面収差、コマ収差を小さくするための条件式である。
 条件式(10)の下限値を下回ると、望遠端状態における第2レンズ群G2の屈折力が強くなり過ぎる。このため、他のレンズ群も同様に屈折力を強くする必要がある。第1レンズ群G1の屈折力を強くすると、望遠端状態における球面収差、コマ収差の補正が困難となる。第3レンズ群G3の屈折力を強くすると、第3レンズ群G3内での球面収差が大きくなり、全変倍領域において球面収差、コマ収差が悪化する。
 条件式(10)の上限値を上回ると、望遠端状態における第2レンズ群G2の屈折力が弱くなり過ぎる。このため、他のレンズ群も同様に屈折力を弱くする必要がある。第1レンズ群G1の屈折力を弱くすると、鏡筒全長が長くなり、鏡筒サイズを維持しようとすると、第3レンズ群G3の屈折力を強める必要があり、第3レンズ群G3内での球面収差が大きくなり、全変倍領域において球面収差、コマ収差が悪化する。また、第3レンズ群G3の屈折力を弱くすると、鏡筒全長が長くなり、鏡筒サイズを維持しようとすると、第1レンズ群G1の屈折力を強める必要があり、第1レンズ群G1内での球面収差が大きくなり、望遠端状態における球面収差、コマ収差が悪化する。
 第3の実施形態の効果を確実なものとするために、条件式(10)の下限値を0.024とすることが好ましい。
 第3の実施形態に係るズームレンズZLIIは、次の条件式(11),(12)を満足することが好ましい。
 74.00 < AVE1Grpvd < 80.00 …(11)
 36.00 < G1vd < 48.00 …(12)
 但し、
 AVE1Grpvd:第1レンズ群G1内のレンズのd線を基準とするアッベ数の平均、
 G1vd:第1レンズ群G1内の最も物体側に配置されたレンズL11のd線を基準とするアッベ数。
 条件式(11)は、軸上色収差、倍率色収差の発生を小さくするための条件式である。条件式(11)の下限値を下回ると、望遠端状態における全系の焦点距離に対して第1レンズ群G1を構成するレンズのアッベ数の平均値が小さくなり、軸上色収差、倍率色収差を抑えるのが困難となる。条件式(11)の上限値を上回ると、望遠端状態における全系の焦点距離に対して第1レンズ群G1を構成するレンズのアッベ数の平均値が大きくなる。これは、第1レンズ群G1を構成するレンズが概して屈折力の弱いことを意味する。第1レンズ群G1の屈折力が弱くなると、鏡筒サイズが長くなり、鏡筒サイズを維持しようと第3レンズ群G3の屈折力を強くすると、球面収差、コマ収差を抑えるのが困難となる。
 第3の実施形態の効果を確実なものとするために、条件式(11)の下限値を74.50とすることが好ましい。
 条件式(12)は、軸上色収差、倍率色収差の発生を小さくするための条件式である。条件式(12)の下限値を下回ると、望遠端状態における全系の焦点距離に対して第1レンズ群G1内の最も物体側に配置されたレンズL11のアッベ数が小さくなり、軸上色収差、倍率色収差を抑えるのが困難となる。条件式(12)の上限値を上回ると、望遠端状態における全系の焦点距離に対して第1レンズ群G1内のレンズL11のアッベ数が大きくなり、該レンズは概して屈折力が弱くなる。このように最も物体側に配置されたレンズL11の屈折力が弱くなると、色収差を抑えるのが困難となり、色収差を抑えるためにはレンズL12の屈折力を弱める必要があり、結果として第1レンズ群G1での屈折力が弱くなり、鏡筒サイズが長くなる。鏡筒サイズを維持しようと第3レンズ群G3の屈折力を強くすると、球面収差、コマ収差を抑えるのが困難となる。
 第3の実施形態の効果を確実なものとするために、条件式(12)の下限値を37.00とすることが好ましい。
 第3の実施形態の効果をより確実なものとするために、条件式(12)の上限値を47.50とすることが好ましい。
 第3の実施形態に係るズームレンズZLIIは、次の条件式(13)を満足することが好ましい。
 100.00 < D12t/D12w < 140.00 …(13)
 但し、
 D12t:望遠端状態における第1レンズ群G1と第2レンズ群G2との空気間隔、
 D12w:広角端状態における第1レンズ群G1と第2レンズ群G2との空気間隔。
 条件式(13)は、変倍による球面収差、コマ収差、倍率色収差の変動を小さくするための条件式である。条件式(13)の下限値を下回ると、望遠端状態における第1レンズ群G1と第2レンズ群G2との間隔が狭くなり過ぎるため、第1レンズ群G1の屈折力を強くする必要がある。そこで、第1レンズ群G1内の正レンズの屈折率を大きくすると、望遠端状態における球面収差、コマ収差、倍率色収差の補正が困難になる。条件式(13)の上限値を上回ると、望遠端状態における第1レンズ群G1と第2レンズ群G2との間隔が広くなり過ぎるため、鏡筒全長が長くなる。また、第1レンズ群G1の屈折力を弱くする必要があるが、第2レンズ群G2の屈折力を大きくすることである程度は対応することが可能であるが、変倍による色収差の変動を抑えることが困難になる。
 第3の実施形態の効果を確実なものとするために、条件式(13)の下限値を105.00とすることが好ましい。
 第3の実施形態の効果を確実なものとするために、条件式(13)の上限値を138.00とすることが好ましい。
 第3の実施形態に係るズームレンズZLIIは、次の条件式(14)を満足することが好ましい。
 12.34 < β2t/β2w < 14.40 …(14)
 但し、
 β2t :望遠端状態における第2レンズ群G2の倍率、
 β2w :広角端状態における第2レンズ群G2の倍率。
 条件式(14)は、変倍による球面収差、コマ収差の変動を小さくするための条件式である。条件式(14)の下限値を下回ると、変倍時における第2レンズ群G2の寄与が小さくなり過ぎる。すなわち、第3レンズ群G3は、より多くの変倍作用を担う必要がある。鏡筒サイズを維持するために、第3レンズ群G3の屈折力を強くすると、望遠端状態における球面収差の補正や、全変倍領域における球面収差、コマ収差の補正が困難になる。条件式(14)の上限値を上回ると、変倍時における第2レンズ群G2の寄与が大きくなり過ぎる。第2レンズ群G2の移動量が大きい場合は、鏡筒サイズの維持が困難となる。また、第2レンズ群G2の屈折力が強い場合は、全変倍領域において球面収差、コマ収差の補正が困難となる。
 第3の実施形態の効果を確実なものとするために、条件式(14)の上限値を14.35とすることが好ましい。
 第3の実施形態に係るズームレンズZLIIは、次の条件式(15)を満足することが好ましい。
 0.04 < f3/ft < 0.06 …(15)
 但し、
 f3:望遠端状態における第3レンズ群G3の焦点距離。
 条件式(15)は、変倍による球面収差の変動を小さくするための条件式である。条件式(15)の下限値を下回ると、望遠端状態における第3レンズ群G3の屈折力が強くなり過ぎる。すると、第3レンズ群G3での球面収差が大きくなる。全変倍領域における球面収差、コマ収差の補正が困難となる。条件式(15)の上限値を上回ると、望遠端状態における第3レンズ群G3の屈折力が弱くなり過ぎる。その結果、第3レンズ群G3の移動量が大きくなり、鏡筒サイズの維持が困難となる。鏡筒サイズを維持するために、第1レンズ群G1の屈折力を強くすると、全変倍領域において球面収差、コマ収差の補正が困難となる。
 第3の実施形態の効果を確実なものとするために、条件式(15)の下限値を0.045とすることが好ましい。
 第3の実施形態に係るズームレンズZLIIは、第3レンズ群G3が、光軸に沿って物体側から順に並んだ、正レンズと、負レンズと、負レンズと、正レンズとから構成されることが好ましい。
 この構成により、望遠端状態における波長ごとの球面収差とコマ収差を良好なバランスで補正することができる。
 第3の実施形態に係るズームレンズZLIIは、第3レンズ群G3が、少なくとも1枚の非球面レンズを有することが好ましい。
 この構成により、球面収差、コマ収差を良好に補正することができる。
 以上のような構成を備える第3の実施形態に係るズームレンズZLIIによれば、高変倍でありながら、良好な光学性能を有するズームレンズを実現することができる。
 図23及び図24に、上述のズームレンズZLIIを備える光学機器として、デジタルスチルカメラCAM2(光学機器)の構成を示す。このデジタルスチルカメラCAM2は、不図示の電源釦を押すと、撮影レンズ(ズームレンズZLII)の不図示のシャッタが開放されて、ズームレンズZLIIで被写体(物体)からの光が集光され、像面I(図11参照)に配置された撮像素子C(例えば、CCDやCMOS等)に結像される。撮像素子Cに結像された被写体像は、デジタルスチルカメラCAM2の背後に配置された液晶モニターM2に表示される。撮影者は、液晶モニターM2を見ながら被写体像の構図を決めた後、レリーズ釦B21を押し下げて被写体像を撮像素子Cで撮影し、不図示のメモリーに記録保存する。
 カメラCAM2には、被写体が暗い場合に補助光を発光する補助光発光部EF2、デジタルスチルカメラCAM2の種々の条件設定等に使用するファンクションボタンB22等が配置されている。ここでは、カメラCAM2とズームレンズZLIIとが一体に成形されたコンパクトタイプのカメラを例示したが、光学機器としては、ズームレンズZLIIを有するレンズ鏡筒とカメラボディ本体とが着脱可能な一眼レフカメラでも良い。
 以上のような構成を備える第3の実施形態に係るカメラCAM2によれば、撮影レンズとして上述のズームレンズZLIIを搭載することにより、高変倍でありながら、良好な光学性能を有するカメラを実現することができる。
 続いて、図25を参照しながら、上述のズームレンズZLIIの製造方法について説明する。まず、鏡筒内に、光軸に沿って物体側より順に並んだ、正の屈折力を持つ第1レンズ群G1と、負の屈折力を持つ第2レンズ群G2と、正の屈折力を持つ第3レンズ群G3と、負の屈折力を持つ第4レンズ群G4と、正の屈折力を持つ第5レンズ群G5とを有し、各レンズ群の間隔を変化させて変倍を行うように、各レンズを配置する(ステップST310)。このとき、第1レンズ群G1は、3枚以上のレンズで構成されるように、各レンズを配置する(ステップST320)。第5レンズ群G5は、広角端状態から望遠端状態への変倍時に像面側へ移動するように、各レンズを配置する(ステップST330)。また、次の条件式(10)を満足するように、各レンズを配置する(ステップST340)。
 0.020 < (-f2)/ft < 0.031 …(10)
 但し、
 f2:望遠端状態における第2レンズ群G2の焦点距離、
 ft:望遠端状態における全系の焦点距離。
 第3の実施形態におけるレンズ配置の一例を挙げると、図11に示すように、物体側から順に、物体側に凸面を向けた負メニスカスレンズL11と両凸形状の正レンズL12とからなる接合レンズと、物体側に凸面を向けた正メニスカスレンズL13と、物体側に凸面を向けた正メニスカスレンズL14とを配置して第1レンズ群G1とし、像側に凹面を向けた負メニスカスレンズL21と、物体側に凹面を向けた負メニスカスレンズL22と、両凸形状の正レンズL23と、両凹形状の負レンズL24とを配置して第2レンズ群G2とし、両凸形状の正レンズL31と、像側に凹面を向けた負メニスカスレンズL32と、像側に凹面を向けた負メニスカスレンズL33と両凸形状の正レンズL34とからなる接合レンズとを配置して第3レンズ群G3とし、両凸形状の正レンズL41と両凹形状の負レンズL42とからなる接合レンズを配置して持つ第4レンズ群G4とし、両凸形状の正レンズL51と物体側に凹面を向けた負メニスカスレンズL52とからなる接合レンズを配置して第5レンズ群G5とする。このように準備した各レンズ群を、上述の手順で配置してズームレンズZLIIを製造する。
 上記のズームレンズZLIIの製造方法によれば、高変倍でありながら、良好な光学性能を有するズームレンズを製造することができる。
第3の実施形態に係る実施例
 これより第3の実施形態に係る各実施例について、図面に基づいて説明する。以下に、表4~表9を示すが、これらは第4実施例~第9実施例における各諸元の表である。
 第4実施例に係る図11に対する各参照符号は、参照符号の桁数の増大による説明の煩雑化を避けるため、実施例ごとに独立して用いている。ゆえに、他の実施例に係る図面と共通の参照符号を付していても、それらは他の実施例とは必ずしも共通の構成ではない。
 各実施例では収差特性の算出対象として、C線(波長656.3nm)、d線(波長587.6nm)、F線(波長486.1nm)、g線(波長435.8nm)を選んでいる。
 表中の[レンズ諸元]において、面番号は光線の進行する方向に沿った物体側からの光学面の順序、Rは各光学面の曲率半径、Dは各光学面から次の光学面(又は像面)までの光軸上の距離である面間隔、ndは光学部材の材質のd線に対する屈折率、νdは光学部材の材質のd線を基準とするアッベ数をそれぞれ示す。物面は物体面、(可変)は可変の面間隔、曲率半径の「∞」は平面又は開口、(絞りS)は開口絞りS、像面は像面Iをそれぞれ示す。空気の屈折率「1.0000」は省略する。光学面が非球面である場合には、面番号に*印を付し、曲率半径Rの欄には近軸曲率半径を示す。
 表中の[非球面データ]には、[レンズ諸元]に示した非球面について、その形状を次式(a)で示す。X(y)は非球面の頂点における接平面から高さyにおける非球面上の位置までの光軸方向に沿った距離を、Rは基準球面の曲率半径(近軸曲率半径)を、κは円錐定数を、Aiは第i次の非球面係数を示す。「E-n」は、「×10-n」を示す。例えば、1.234E-05=1.234×10-5である。なお、2次の非球面係数A2は0であり、記載を省略する。
 X(y)=(y2/R)/{1+(1-κ×y2/R21/2}+A4×y4+A6×y6+A8×y8+A10×y10 …(a)
 表中の[全体諸元]において、fはレンズ全系の焦点距離、FnoはFナンバー、ωは半画角(最大入射角、単位:°)、Yは像高、Bfは光軸上でのレンズ最終面から近軸像面までの距離、TLはレンズ全長(光軸上でのレンズ最前面からレンズ最終面までの距離にBfを加えたもの)を示す。但し、Bf(空気)およびTL(空気)は、フィルタFLを空気換算した値である。
 表中の[可変間隔データ]において、広角端、中間焦点距離、望遠端の各状態における可変間隔の値Diを示す。なお、Diは、第i面と第(i+1)面の可変間隔を示す。
 表中の[レンズ群データ]において、Gは群番号、群初面は各群の最も物体側の面番号、群焦点距離は各群の焦点距離を示す。
 表中の[条件式]には、上記の条件式(10)~(15)に対応する値を示す。
 以下、全ての諸元値において、掲載されている焦点距離f、曲率半径R、面間隔D、その他の長さ等は、特記のない場合一般に「mm」が使われるが、ズームレンズは比例拡大又は比例縮小しても同等の光学性能が得られるので、これに限られるものではない。また、単位は「mm」に限定されることなく、他の適当な単位を用いることが可能である。
 ここまでの表の説明は全ての実施例において共通であり、以下での説明を省略する。
(第4実施例)
 第4実施例について、図11、図12及び表4を用いて説明する。第4実施例に係るズームレンズZLII(ZL4)は、図11に示すように、光軸に沿って物体側から順に並んだ、正の屈折力を持つ第1レンズ群G1と、負の屈折力を持つ第2レンズ群G2と、正の屈折力を持つ第3レンズ群G3と、負の屈折力を持つ第4レンズ群G4と、正の屈折力を持つ第5レンズ群G5とから構成される。
 第1レンズ群G1は、光軸に沿って物体側から順に並んだ、像側に凹面を向けた負メニスカスレンズL11と両凸形状の正レンズL12とからなる接合レンズと、物体側に凸面を向けた正メニスカスレンズL13と、物体側に凸面を向けた正メニスカスレンズL14とから構成される。
 第2レンズ群G2は、光軸に沿って物体側から順に並んだ、像側に凹面を向けた負メニスカスレンズL21と、物体側に凹面を向けた負メニスカスレンズL22と、両凸形状の正レンズL23と、両凹形状の負レンズL24とから構成される。
 第3レンズ群G3は、光軸に沿って物体側から順に並んだ、両凸形状の正レンズL31と、像側に凹面を向けた負メニスカスレンズL32と、像側に凹面を向けた負メニスカスレンズL33と両凸形状の正レンズL34とからなる接合レンズとから構成される。両凸形状の正レンズL31の両面は、非球面である。
 第4レンズ群G4は、光軸に沿って物体側から順に並んだ、両凸形状の正レンズL41と両凹形状の負レンズL42とからなる接合レンズで構成される。
 第5レンズ群G5は、光軸に沿って物体側から順に並んだ、両凸形状の正レンズL51と物体側に凹面を向けた負メニスカスレンズL52とからなる接合レンズで構成される。両凸形状の正レンズL51の物体側面は、非球面である。
 第3レンズ群G3の物体側には、光量を調節することを目的とした開口絞りSが設けられている。
 第5レンズ群G5の像側には、フィルタFLが設けられている。フィルタFLは、像面Iに配設されるCCD等、固体撮像素子の限界解像以上の空間周波数をカットするためのローパスフィルタや赤外カットフィルタ等で構成されている。
 本実施例に係るズームレンズZL4は、広角端状態から望遠端状態への変倍に際して、各レンズ群の間隔が変化するように、第1レンズ群G1から第5レンズ群G5までの全てのレンズ群を移動させる。具体的には、第1レンズ群G1を、物体側へ移動させる。第2レンズ群G2を、一旦像面側へ移動させ、その後物体側へ移動させる。第3レンズ群G3を、物体側へ移動させる。第4レンズ群G4を、一旦像面側へ移動させ、その後物体側へ移動させる。第5レンズ群G5を、像面側へ移動させる。開口絞りSを、第3レンズ群G3と一体となって、物体側へ移動させる。
 下記の表4に、第4実施例における各諸元の値を示す。表4における面番号1~33が、図11に示すm1~m33の各光学面に対応している。
(表4)
[レンズ諸元]
 面番号  R     D     nd    νd
 物面   ∞
  1  334.8603   2.3000   1.7859   44.17
  2   83.1077   7.0000   1.4370   95.10
  3  -772.5727   0.1000
  4   87.2537   5.8122   1.4978   82.57
  5  1342.4159   0.1000
  6   98.7260   4.5143   1.4978   82.57
  7  342.9176   D7(可変)
  8   41.9147   1.0000   1.8830   40.66
  9   11.9219   6.5000
  10  -20.7730   0.8000   1.8348   42.73
  11 -344.1828   0.1000
  12  30.5891   2.6713   1.9459   17.98
  13  -83.2782   1.5000
  14  -19.1496   0.7000   1.6700   57.35
  15 4309.2857   D15(可変)
  16   ∞     0.1000   (絞りS)
 *17  11.4711   2.7045   1.5533   71.68
 *18  -91.6831   2.9489
  19  25.5216   1.0000   1.9037   31.31
  20  10.5793   1.8797
  21  16.4639   0.5000   1.7859   44.17
  22  15.0193   3.0297   1.4978   82.57
  23  -25.7395   D23(可変)
  24  115.7933   2.6797   1.5317   48.78
  25  -25.8235   0.5000   1.4978   82.57
  26  15.9526   D26(可変)
 *27  19.2159   2.2519   1.5891   61.15
  28  -20.0000   0.5000   1.7174   29.57
  29 -101.2812   D29(可変)
  30   ∞     0.2100   1.5168   63.88
  31   ∞     0.8500
  32   ∞     0.5000   1.5168   63.88
  33   ∞     Bf
 像面   ∞
 
[非球面データ]
面番号  κ    A4      A6     A8     A10
 17  0.7787 -4.4127E-05  2.5417E-07 6.1315E-09  0.0000E+00
 18  1.0000  1.2195E-04 -4.0857E-08 7.2014E-09 -6.1745E-11
 27 -34.1326  1.0673E-04 -3.2846E-06 5.1727E-08  0.0000E+00
 
[全体諸元]
ズーム比 87.00
        広角端  中間焦点  望遠端
 f      4.430   41.320  385.415
 Fno     2.69789  4.62051  7.46514
 ω      43.38857  5.48852  0.59127
 Bf     0.400   0.400   0.400
 Bf(空気)  6.253   1.750   0.942
 TL    126.5640  167.9134  209.7638
 TL(空気) 126.8060  168.1554  210.0058
 
[可変間隔データ]
可変間隔  広角端   中間焦点   望遠端
 D7     0.75072   67.39058   102.85326
 D15    57.5468   15.77846    2.48969
 D23    3.10183   20.52426   15.49812
 D26    6.64433   10.19066   35.70666
 D29    5.61149   1.10796    0.30000
 
[レンズ群データ]
群番号  群初面  群焦点距離
 G1    1   129.99999
 G2    8   -10.36057
 G3    17    19.81736
 G4    24   -40.00000
 G5    27    31.99999
 
[条件式]
条件式(10) (-f2)/ft = 0.027
条件式(11) AVE1Grpvd = 76.10
条件式(12) G1vd = 44.17
条件式(13) D12t/D12w = 137.01
条件式(14) β2t/β2w = 13.50
条件式(15) f3/ft = 0.051
 表4から、本実施例に係るズームレンズZL4は、条件式(10)~(15)を満たすことが分かる。
 図12は、第4実施例に係るズームレンズZL4の撮影距離無限遠における諸収差図(球面収差図、非点収差図、歪曲収差図、コマ収差図及び倍率色収差図)であり、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態をそれぞれ示す。
 各収差図において、FNOはFナンバー、Aは各像高に対する半画角(単位:°)を示す。dはd線、gはg線、CはC線、FはF線における収差を示す。また、これらの記載がないものは、d線における収差を示す。非点収差図において、実線はサジタル像面、破線はメリディオナル像面を示す。なお、後述する各実施例の収差図においても、本実施例と同様の符号を用いる。
 図12に示す各収差図から明らかなように、第4実施例に係るズームレンズZL4は、諸収差が良好に補正され、優れた結像性能を有することが分かる。
(第5実施例)
 第5実施例について、図13、図14及び表5を用いて説明する。第5実施例に係るズームレンズZLII(ZL5)は、図13に示すように、光軸に沿って物体側から順に並んだ、正の屈折力を持つ第1レンズ群G1と、負の屈折力を持つ第2レンズ群G2と、正の屈折力を持つ第3レンズ群G3と、負の屈折力を持つ第4レンズ群G4と、正の屈折力を持つ第5レンズ群G5とから構成される。
 第1レンズ群G1は、光軸に沿って物体側から順に並んだ、像側に凹面を向けた負メニスカスレンズL11と両凸形状の正レンズL12とからなる接合レンズと、物体側に凸面を向けた正メニスカスレンズL13と、物体側に凸面を向けた正メニスカスレンズL14とから構成される。
 第2レンズ群G2は、光軸に沿って物体側から順に並んだ、像側に凹面を向けた負メニスカスレンズL21と、物体側に凹面を向けた負メニスカスレンズL22と、両凸形状の正レンズL23と、両凹形状の負レンズL24とから構成される。
 第3レンズ群G3は、光軸に沿って物体側から順に並んだ、両凸形状の正レンズL31と、像側に凹面を向けた負メニスカスレンズL32と、像側に凹面を向けた負メニスカスレンズL33と両凸形状の正レンズL34とからなる接合レンズとから構成される。両凸形状の正レンズL31の両面は、非球面である。
 第4レンズ群G4は、光軸に沿って物体側から順に並んだ、両凸形状の正レンズL41と両凹形状の負レンズL42とからなる接合レンズで構成される。
 第5レンズ群G5は、光軸に沿って物体側から順に並んだ、両凸形状の正レンズL51と物体側に凹面を向けた負メニスカスレンズL52とからなる接合レンズで構成される。両凸形状の正レンズL51の物体側面は、非球面である。
 第3レンズ群G3の物体側には、光量を調節することを目的とした開口絞りSが設けられている。
 第5レンズ群G5の像側には、フィルタFLが設けられている。フィルタFLは、像面Iに配設されるCCD等、固体撮像素子の限界解像以上の空間周波数をカットするためのローパスフィルタや赤外カットフィルタ等で構成されている。
 本実施例に係るズームレンズZL5は、広角端状態から望遠端状態への変倍に際して、各レンズ群の間隔が変化するように、第1レンズ群G1から第5レンズ群G5までの全てのレンズ群を移動させる。具体的には、第1レンズ群G1を、物体側へ移動させる。第2レンズ群G2を、像面側へ移動させる。第3レンズ群G3を、一旦物体側へ移動させ、その後像面側へ移動させる。第4レンズ群G4を、一旦像面側へ移動させ、その後物体側へ移動させる。第5レンズ群G5を、像面側へ移動させる。開口絞りSを、第3レンズ群G3と一体となって、物体側へ移動させる。
 下記の表5に、第5実施例における各諸元の値を示す。表5における面番号1~33が、図13に示すm1~m33の各光学面に対応している。
(表5)
[レンズ諸元]
 面番号  R     D     nd    νd
 物面   ∞
  1  332.6865   2.3000   1.7880   47.35
  2   68.7077   7.9529   1.4370   95.10
  3  -792.4624   0.1000
  4   75.9597   6.6000   1.4978   82.57
  5  1080.6696   0.1000
  6   95.1129   5.2000   1.4978   82.57
  7  572.0061   D7(可変)
  8   52.5449   1.0000   1.8348   42.73
  9   11.4702   5.7000
  10  -19.4639   0.8000   1.8160   46.59
  11 -138.4066   0.1000
  12  25.9493   2.6314   1.9459   17.98
  13 -143.3398   1.5000
  14  -21.1331   0.7000   1.7130   53.94
  15  85.8491   D15(可変)
  16   ∞     0.1000   (絞りS)
 *17   9.3923   3.0788   1.5533   71.68
 *18 -154.0447   2.1252
  19  20.7239   1.0000   1.9108   35.25
  20   8.2675   2.0000
  21  10.2754   0.5000   1.7859   44.17
  22   7.9325   4.0000   1.4875   70.32
  23  -26.6811   D23(可変)
  24  44.3901   2.2259   1.5317   48.78
  25 -233.6852   0.5000   1.4978   82.57
  26  12.9802   D26(可変)
 *27  17.9809   2.2407   1.5891   61.15
  28  -20.0000   0.5000   1.7174   29.57
  29 -147.4991   D29(可変)
  30   ∞     0.2100   1.5168   63.88
  31   ∞     0.8500
  32   ∞     0.5000   1.5168   63.88
  33   ∞     Bf
 像面   ∞
 
[非球面データ]
面番号 κ    A4      A6     A8     A10
 17 0.8353 -4.6313E-05 -3.6242E-07 2.9634E-09  0.0000E+00
 18 1.0000  6.7198E-05 -4.0471E-07 1.0833E-08 -6.1745E-11
 27 -0.5478  2.2570E-05 -1.3489E-06 4.5185E-08  0.0000E+00
 
[全体諸元]
ズーム比 70.00
        広角端  中間焦点  望遠端
 f      4.430   37.064   310.100
 Fno     2.51999  5.81666  5.6272
 ω      43.39058  6.11341  0.72895
 Bf     0.400   0.400   0.400
 Bf(空気)  5.899   3.357   0.942
 TL    116.1281  140.7703  189.7467
 TL(空気) 116.3701  141.0123  189.9887
 
[可変間隔データ]
可変間隔  広角端   中間焦点   望遠端
 D7     0.75000   30.71122   94.88378
 D15   47.52740   8.76826    1.87939
 D23    2.92278   35.90870   20.00918
 D26    5.00000   8.00000   18.01274
 D29    5.25664   2.71478    0.30000
 
[レンズ群データ]
群番号  群初面  群焦点距離
 G1    1   119.50699
 G2    8    -9.30300
 G3    17    18.50000
 G4    24   -39.35678
 G5    27    31.99996
 
[条件式]
条件式(10) (-f2)/ft = 0.030
条件式(11) AVE1Grpvd = 76.90
条件式(12) G1vd = 47.35
条件式(13) D12t/D12w = 126.51
条件式(14) β2t/β2w = 14.30
条件式(15) f3/ft = 0.060
 表5から、本実施例に係るズームレンズZL5は、条件式(10)~(15)を満たすことが分かる。
 図14は、第5実施例に係るズームレンズZL5の撮影距離無限遠における諸収差図(球面収差図、非点収差図、歪曲収差図、コマ収差図及び倍率色収差図)であり、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態をそれぞれ示す。
 図14に示す各収差図から明らかなように、第5実施例に係るズームレンズZL5は、諸収差が良好に補正され、優れた結像性能を有することが分かる。
(第6実施例)
 第6実施例について、図15、図16及び表6を用いて説明する。第6実施例に係るズームレンズZLII(ZL6)は、図15に示すように、光軸に沿って物体側から順に並んだ、正の屈折力を持つ第1レンズ群G1と、負の屈折力を持つ第2レンズ群G2と、正の屈折力を持つ第3レンズ群G3と、負の屈折力を持つ第4レンズ群G4と、正の屈折力を持つ第5レンズ群G5とから構成される。
 第1レンズ群G1は、光軸に沿って物体側から順に並んだ、像側に凹面を向けた負メニスカスレンズL11と両凸形状の正レンズL12とからなる接合レンズと、物体側に凸面を向けた正メニスカスレンズL13と、物体側に凸面を向けた正メニスカスレンズL14とから構成される。
 第2レンズ群G2は、光軸に沿って物体側から順に並んだ、像側に凹面を向けた負メニスカスレンズL21と、両凹形状の負レンズL22と両凸形状の正レンズL23とからなる接合レンズと、物体側に凹面を向けた負メニスカスレンズL24とから構成される。
 第3レンズ群G3は、光軸に沿って物体側から順に並んだ、両凸形状の正レンズL31と、像側に凹面を向けた負メニスカスレンズL32と、物体側に凸面を向けた正メニスカスレンズL33と両凸形状の正レンズL34とからなる接合レンズとから構成される。両凸形状の正レンズL31の両面は、非球面である。
 第4レンズ群G4は、光軸に沿って物体側から順に並んだ、像側に凸面を向けた正メニスカスレンズL41と両凹形状の負レンズL42とからなる接合レンズで構成される。
 第5レンズ群G5は、光軸に沿って物体側から順に並んだ、両凸形状の正レンズL51と物体側に凹面を向けた負メニスカスレンズL52とからなる接合レンズで構成される。両凸形状の正レンズL51の物体側面は、非球面である。
 第3レンズ群G3の物体側には、光量を調節することを目的とした開口絞りSが設けられている。
 第5レンズ群G5の像側には、フィルタFLが設けられている。フィルタFLは、像面Iに配設されるCCD等、固体撮像素子の限界解像以上の空間周波数をカットするためのローパスフィルタや赤外カットフィルタ等で構成されている。
 本実施例に係るズームレンズZL6は、広角端状態から望遠端状態への変倍に際して、各レンズ群の間隔が変化するように、第1レンズ群G1から第5レンズ群G5までの全てのレンズ群を移動させる。具体的には、第1レンズ群G1を、物体側へ移動させる。第2レンズ群G2を、一旦像面側へ移動させ、その後物体側へ移動させる。第3レンズ群G3を、物体側へ移動させる。第4レンズ群G4を、一旦像面側へ移動させ、その後物体側へ移動させる。第5レンズ群G5を、像面側へ移動させる。開口絞りSを、第3レンズ群G3と一体となって、物体側へ移動させる。
 下記の表6に、第6実施例における各諸元の値を示す。表6における面番号1~32が、図15に示すm1~m32の各光学面に対応している。
(表6)
[レンズ諸元]
 面番号  R     D     nd    νd
 物面   ∞
  1  291.9703   2.3000   1.7859   44.17
  2   72.3111   7.4243   1.4370   95.10
  3 -1201.3878   0.1000
  4   78.8924   6.4219   1.4978   82.57
  5  1542.7728   0.1000
  6   82.9135   5.2000   1.4978   82.57
  7  311.2487   D7(可変)
  8   60.7024   1.0000   1.8830   40.66
  9   12.9654   5.9446
  10  -22.2075   0.8000   1.7440   44.80
  11  16.9140   3.7500   1.9229   20.88
  12  -64.8769   1.7659
  13  -15.7953   0.7000   1.6968   55.52
  14  -45.5525   D14(可変)
  15   ∞     0.1000   (絞りS)
  16  10.5140   2.9919   1.5533   71.68
 *17  -58.4572   2.8910
 *18  30.8667   1.0000   1.9037   31.31
  19   9.3737   1.7411
  20  14.0809   1.0000   1.7859   44.17
  21  17.6611   3.0000   1.4978   82.57
  22  -23.7336   D22(可変)
  23 -558.9081   2.2109   1.5317   48.78
  24  -37.3536   0.5000   1.4978   82.57
  25  22.4761   D25(可変)
  26  37.6571   2.0000   1.5891   61.15
 *27  -20.0000   0.5000   1.7174   29.57
  28  -30.9522   D28(可変)
  29   ∞     0.2100   1.5168   63.88
  30   ∞     0.8500
  31   ∞     0.5000   1.5168   63.88
  32   ∞     Bf
 像面   ∞
 
[非球面データ]
面番号 κ    A4      A6      A8     A10
 17 0.2984  2.2126E-05 -9.6783E-08  1.0853E-08  0.0000E+00
 18 1.0000  7.4554E-05 -4.8732E-07  1.4048E-08 -6.1745E-11
 27 15.0166 -8.4847E-05  6.1404E-08 -7.2871E-12  0.0000E+00
 
[全体諸元]
ズーム比 78.22
        広角端  中間焦点  望遠端
 f      4.430   39.179  346.505
 Fno     2.43455  4.13217  6.96915
 ω      43.38805  5.81887  0.66236
 Bf     0.400   0.400   0.400
 Bf(空気)  8.065   4.492   2.081
 TL    115.1645  157.4796  199.5146
 TL(空気) 115.4065  157.7216  199.7566
 
[可変間隔データ]
可変間隔  広角端   中間焦点   望遠端
 D7     0.75000   59.34562   89.39655
 D14   45.32590   12.31287    1.98552
 D22    1.45649   18.75135    8.86102
 D25    5.04939   8.04422   42.66202
 D28    7.42269   3.84984    1.43902
 
[レンズ群データ]
群番号  群初面  群焦点距離
 G1    1   114.99999
 G2    8    -9.35558
 G3    16    18.46138
 G4    23   -45.00007
 G5    26    31.23415
 
[条件式]
条件式(10) (-f2)/ft = 0.027
条件式(11) AVE1Grpvd = 76.10
条件式(12) G1vd = 44.17
条件式(13) D12t/D12w = 119.20
条件式(14) β2t/β2w = 13.15
条件式(15) f3/ft = 0.053
 表6から、本実施例に係るズームレンズZL6は、条件式(10)~(15)を満たすことが分かる。
 図16は、第6実施例に係るズームレンズZL6の撮影距離無限遠における諸収差図(球面収差図、非点収差図、歪曲収差図、コマ収差図及び倍率色収差図)であり、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態をそれぞれ示す。
 図16に示す各収差図から明らかなように、第6実施例に係るズームレンズZL6は、諸収差が良好に補正され、優れた結像性能を有することが分かる。
(第7実施例)
 第7実施例について、図17、図18及び表7を用いて説明する。第7実施例に係るズームレンズZLII(ZL7)は、図17に示すように、光軸に沿って物体側から順に並んだ、正の屈折力を持つ第1レンズ群G1と、負の屈折力を持つ第2レンズ群G2と、正の屈折力を持つ第3レンズ群G3と、負の屈折力を持つ第4レンズ群G4と、正の屈折力を持つ第5レンズ群G5とから構成される。
 第1レンズ群G1は、光軸に沿って物体側から順に並んだ、像側に凹面を向けた負メニスカスレンズL11と両凸形状の正レンズL12とからなる接合レンズと、物体側に凸面を向けた正メニスカスレンズL13と、物体側に凸面を向けた正メニスカスレンズL14とから構成される。
 第2レンズ群G2は、光軸に沿って物体側から順に並んだ、像側に凹面を向けた負メニスカスレンズL21と、両凹形状の負レンズL22と、両凸形状の正レンズL23と、物体側に凹面を向けた負メニスカスレンズL24とから構成される。
 第3レンズ群G3は、光軸に沿って物体側から順に並んだ、両凸形状の正レンズL31と、両凹形状の負レンズL32と、物体側に凸面を向けた正メニスカスレンズL33と両凸形状の正レンズL34とからなる接合レンズとから構成される。両凸形状の正レンズL31の両面は、非球面である。
 第4レンズ群G4は、光軸に沿って物体側から順に並んだ、像側に凹面を向けた負メニスカスレンズL41と物体側に凹面を向けた正メニスカスレンズL42とからなる接合レンズで構成される。
 第5レンズ群G5は、光軸に沿って物体側から順に並んだ、両凸形状の正レンズL51と物体側に凹面を向けた負メニスカスレンズL52とからなる接合レンズで構成される。両凸形状の正レンズL51の物体側面は、非球面である。
 第3レンズ群G3の物体側には、光量を調節することを目的とした開口絞りSが設けられている。
 第5レンズ群G5の像側には、フィルタFLが設けられている。フィルタFLは、像面Iに配設されるCCD等、固体撮像素子の限界解像以上の空間周波数をカットするためのローパスフィルタや赤外カットフィルタ等で構成されている。
 本実施例に係るズームレンズZL7は、広角端状態から望遠端状態への変倍に際して、各レンズ群の間隔が変化するように、第1レンズ群G1から第5レンズ群G5までの全てのレンズ群を移動させる。具体的には、第1レンズ群G1を、物体側へ移動させる。第2レンズ群G2を、像面側へ移動させる。第3レンズ群G3を、物体側へ移動させる。第4レンズ群G4を、一旦物体側へ移動させ、その後像面側へ移動させる。第5レンズ群G5を、像面側へ移動させる。開口絞りSを、第3レンズ群G3と一体となって、物体側へ移動させる。
 下記の表7に、第7実施例における各諸元の値を示す。表7における面番号1~33が、図17に示すm1~m33の各光学面に対応している。
(表7)
[レンズ諸元]
 面番号  R     D     nd    νd
 物面   ∞
  1  208.3815   2.3000   1.8044   39.61
  2   71.5047   7.7255   1.4370   95.10
  3  -765.8864   0.1000
  4   74.8004   6.0964   1.4978   82.57
  5  465.0253   0.1000
  6   86.8705   5.2000   1.4978   82.57
  7  390.6162   D7(可変)
  8  101.8391   1.0000   1.7880   47.35
  9   13.9500   5.7000
  10  -26.1620   0.8000   1.8348   42.73
  11  19.4555   0.1000
  12  19.0787   3.2308   1.9229   20.88
  13  -66.5101   1.1878
  14  -17.6024   0.7000   1.6968   55.52
  15 -108.5090   D15(可変)
  16   ∞     0.1000   (絞りS)
 *17  10.4010   3.1500   1.5533   71.68
 *18  -28.5808   2.0669
  19 -293.1983   1.0000   1.8830   40.66
  20  10.3933   1.5000
  21  16.1238   1.0000   1.7859   44.17
  22  34.1322   3.0000   1.4978   82.57
  23  -14.4033   D23(可変)
  24  743.7882   1.5000   1.5317   48.78
  25   8.1699   1.0000   1.4978   82.57
  26  16.6750   D26(可変)
 *27  28.4599   2.0005   1.5891   61.25
  28  -20.0000   0.5000   1.7174   29.57
  29  -31.8276   D29(可変)
  30   ∞     0.2100   1.5168   63.88
  31   ∞     0.8500
  32   ∞     0.5000   1.5168   63.88
  33   ∞     Bf
 像面   ∞
 
[非球面データ]
面番号  κ    A4      A6     A8     A10
 17  0.7787 -4.4127E-05  2.5417E-07 6.1315E-09  0.0000E+00
 18  1.0000  1.2195E-04 -4.0857E-08 7.2014E-09 -6.1745E-11
 27 -34.1326  1.0673E-04 -3.2846E-06 5.1727E-08  0.0000E+00
 
[全体諸元]
ズーム比 67.15
        広角端  中間焦点  望遠端
 f      4.430   35.716  297.466
 Fno     2.60507  4.87201  5.85857
 ω      43.06494  6.33115  0.76345
 Bf     0.400   0.400   0.400
 Bf(空気)  6.181   1.642   0.950
 TL    119.7472  161.2022  174.7740
 TL(空気) 119.9892  161.4442  175.0160
 
[可変間隔データ]
可変間隔  広角端   中間焦点   望遠端
 D7     0.75000   53.27134   81.00337
 D15   49.83252   21.16730    1.00000
 D23    2.84198   6.26878   18.82770
 D26    8.01801   26.71375   20.84323
 D29    5.53948   1.00000    0.30769
 
[レンズ群データ]
群番号  群初面  群焦点距離
 G1    1   107.05751
 G2    8    -8.96757
 G3    17    17.52950
 G4    24   -30.00001
 G5    27    27.53859
 
[条件式]
条件式(10) (-f2)/ft = 0.030
条件式(11) AVE1Grpvd = 74.96
条件式(12) G1vd = 39.61
条件式(13) D12t/D12w = 108.00
条件式(14) β2t/β2w = 12.35
条件式(15) f3/ft = 0.059
 表7から、本実施例に係るズームレンズZL7は、条件式(10)~(15)を満たすことが分かる。
 図18は、第7実施例に係るズームレンズZL7の撮影距離無限遠における諸収差図(球面収差図、非点収差図、歪曲収差図、コマ収差図及び倍率色収差図)であり、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態をそれぞれ示す。
 図18に示す各収差図から明らかなように、第7実施例に係るズームレンズZL7は、諸収差が良好に補正され、優れた結像性能を有することが分かる。
(第8実施例)
 第8実施例について、図19、図20及び表8を用いて説明する。第8実施例に係るズームレンズZLII(ZL8)は、図19に示すように、光軸に沿って物体側から順に並んだ、正の屈折力を持つ第1レンズ群G1と、負の屈折力を持つ第2レンズ群G2と、正の屈折力を持つ第3レンズ群G3と、負の屈折力を持つ第4レンズ群G4と、正の屈折力を持つ第5レンズ群G5とから構成される。
 第1レンズ群G1は、光軸に沿って物体側から順に並んだ、像側に凹面を向けた負メニスカスレンズL11と両凸形状の正レンズL12とからなる接合レンズと、物体側に凸面を向けた正メニスカスレンズL13と、物体側に凸面を向けた正メニスカスレンズL14とから構成される。
 第2レンズ群G2は、光軸に沿って物体側から順に並んだ、像側に凹面を向けた負メニスカスレンズL21と、物体側に凹面を向けた負メニスカスレンズL22と、両凸形状の正レンズL23と、両凹形状の負レンズL24とから構成される。
 第3レンズ群G3は、光軸に沿って物体側から順に並んだ、物体側に凸面を向けた正レンズL31と、像側に凹面を向けた負メニスカスレンズL32と、像側に凹面を向けた負メニスカスレンズL33と両凸形状の正レンズL34とからなる接合レンズとから構成される。両凸形状の正レンズL31の両面は、非球面である。
 第4レンズ群G4は、光軸に沿って物体側から順に並んだ、像側に凸面を向けた正メニスカスレンズL41と両凹形状の負レンズL42とからなる接合レンズで構成される。
 第5レンズ群G5は、光軸に沿って物体側から順に並んだ、両凸形状の正レンズL51と物体側に凹面を向けた負メニスカスレンズL52とからなる接合レンズで構成される。両凸形状の正レンズL51の物体側面は、非球面である。
 第3レンズ群G3の物体側には、光量を調節することを目的とした開口絞りSが設けられている。
 第5レンズ群G5の像側には、フィルタFLが設けられている。フィルタFLは、像面Iに配設されるCCD等、固体撮像素子の限界解像以上の空間周波数をカットするためのローパスフィルタや赤外カットフィルタ等で構成されている。
 本実施例に係るズームレンズZL8は、広角端状態から望遠端状態への変倍に際して、各レンズ群の間隔が変化するように、第1レンズ群G1から第5レンズ群G5までの全てのレンズ群を移動させる。具体的には、第1レンズ群G1を、物体側へ移動させる。第2レンズ群G2を、一旦像面側へ移動させ、その後物体側へ移動させる。第3レンズ群G3を、物体側へ移動させる。第4レンズ群G4を、物体側へ移動させる。第5レンズ群G5を、像面側へ移動させる。開口絞りSを、第3レンズ群G3と一体となって、物体側へ移動させる。
 下記の表8に、第8実施例における各諸元の値を示す。表8における面番号1~33が、図19に示すm1~m33の各光学面に対応している。
(表8)
[レンズ諸元]
 面番号   R      D     nd    νd
 物面    ∞
  1   263.0063   2.3000   1.7859   44.17
  2    82.7549   7.0000   1.4370   95.10
  3  -1109.1351   0.1000
  4    85.5748   5.8000   1.4370   95.10
  5   520.4380   0.1000
  6    84.6851   5.0982   1.4978   82.57
  7   302.4541   D7(可変)
  8    49.5072   1.0000   1.8830   40.66
  9    11.5546   5.7000
  10   -21.8668   0.8000   1.8348   42.73
  11 -21914.3660   0.1000   
  12   28.1612   3.7500   1.9229   20.88
  13   -46.2757   1.5083   
  14   -19.3983   0.7000   1.6968   55.46
  15   259.7592   D15(可変)
  16    ∞     0.1000   (絞りS)
 *17   11.6667   2.7000   1.5533   71.68
 *18  8376.3479   2.0436
  19   18.0472   1.0000   1.9037   31.31
  20   11.0864   2.0000
  21   17.1967   0.5000   1.7995   42.09
  22   10.6441   3.0000   1.4978   82.57
  23   -28.9001   D23(可変)
  24  -105.3136   2.4205   1.5317   48.78
  25   -17.9207   0.5000   1.4978   82.57
  26   22.9810   D26(可変)
 *27   29.1256   2.0436   1.5891   61.25
  28   -20.0000   0.5000   1.7174   29.57
  29   -45.0948   D29(可変)
  30    ∞     0.2100   1.5168   63.88
  31    ∞     0.8500
  32    ∞     0.5000   1.5168   63.88
  33    ∞     Bf
 像面    ∞
 
[非球面データ]
面番号  κ    A4      A6     A8     A10
 17  0.9914 -2.7993E-05 -4.2955E-07 1.1909E-08  0.0000E+00
 18  1.0000  5.0164E-05 -4.0760E-07 1.8325E-08 -6.1745E-11
 27 -3.5175  1.1021E-05 -2.3098E-07 1.6357E-08  0.0000E+00
 
[全体諸元]
ズーム比 97.00
        広角端  中間焦点  望遠端
 f      4.430   43.630  429.712
 Fno     2.70160  5.08497  8.28574
 ω      43.39124  5.27441  0.53600
 Bf     0.400   0.400   0.400
 Bf(空気)  10.972   1.642   1.623
 TL    130.7843  173.5863  217.4697
 TL(空気) 131.0263  173.8283  217.7117
 
[可変間隔データ]
可変間隔  広角端   中間焦点   望遠端
 D7     0.75000   68.26231   102.51459
 D15   60.14750   19.05527    3.07934
 D23    1.33023   16.10976   11.63827
 D26    5.74536   16.66072   46.75849
 D29   10.3295    1.00000    0.98126
 
[レンズ群データ]
群番号  群初面  群焦点距離
 G1    1   129.99999
 G2    8   -10.74275
 G3    17    20.08616
 G4    24   -40.00002
 G5    27    34.00000
 
[条件式]
条件式(10) (-f2)/ft = 0.025
条件式(11) AVE1Grpvd = 79.24
条件式(12) G1vd = 44.17
条件式(13) D12t/D12w = 136.69
条件式(14) β2t/β2w = 14.30
条件式(15) f3/ft = 0.047
 表8から、本実施例に係るズームレンズZL8は、条件式(10)~(15)を満たすことが分かる。
 図20は、第8実施例に係るズームレンズZL8の撮影距離無限遠における諸収差図(球面収差図、非点収差図、歪曲収差図、コマ収差図及び倍率色収差図)であり、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態をそれぞれ示す。
 図20に示す各収差図から明らかなように、第8実施例に係るズームレンズZL8は、諸収差が良好に補正され、優れた結像性能を有することが分かる。
(第9実施例)
 第9実施例について、図21、図22及び表9を用いて説明する。第9実施例に係るズームレンズZLII(ZL9)は、図21に示すように、光軸に沿って物体側から順に並んだ、正の屈折力を持つ第1レンズ群G1と、負の屈折力を持つ第2レンズ群G2と、正の屈折力を持つ第3レンズ群G3と、負の屈折力を持つ第4レンズ群G4と、正の屈折力を持つ第5レンズ群G5と、正の屈折力を持つ第6レンズ群G6とから構成される。
 第1レンズ群G1は、光軸に沿って物体側から順に並んだ、像側に凹面を向けた負メニスカスレンズL11と両凸形状の正レンズL12とからなる接合レンズと、物体側に凸面を向けた正メニスカスレンズL13と、物体側に凸面を向けた正メニスカスレンズL14とから構成される。
 第2レンズ群G2は、光軸に沿って物体側から順に並んだ、像側に凹面を向けた負メニスカスレンズL21と、両凹形状の負レンズL22と、両凸形状の正レンズL23と、両凹形状の負レンズL24とから構成される。
 第3レンズ群G3は、光軸に沿って物体側から順に並んだ、物体側に凸面を向けた正メニスカスレンズL31と、像側に凹面を向けた負メニスカスレンズL32と、像側に凹面を向けた負メニスカスレンズL33と両凸形状の正レンズL34とからなる接合レンズで構成される。両凸形状の正レンズL31の両面は、非球面である。
 第4レンズ群G4は、光軸に沿って物体側から順に並んだ、像側に凸面を向けた正メニスカスレンズL41と両凹形状の負レンズL42とからなる接合レンズで構成される。
 第5レンズ群G5は、光軸に沿って物体側から順に並んだ、両凸形状の正レンズL51と物体側に凹面を向けた負メニスカスレンズL52とからなる接合レンズで構成される。両凸形状の正レンズL51の物体側面は、非球面である。
 第6レンズ群G6は、像側に凸面を向けた正メニスカスレンズL61で構成される。
 第3レンズ群G3の物体側には、光量を調節することを目的とした開口絞りSが設けられている。
 第6レンズ群G6の像側には、フィルタFLが設けられている。フィルタFLは、像面Iに配設されるCCD等、固体撮像素子の限界解像以上の空間周波数をカットするためのローパスフィルタや赤外カットフィルタ等で構成されている。
 本実施例に係るズームレンズZL9は、広角端状態から望遠端状態への変倍に際して、各レンズ群の間隔が変化するように、第1レンズ群G1から第6レンズ群G6までの全てのレンズ群を移動させる。具体的には、第1レンズ群G1を、物体側へ移動させる。第2レンズ群G2を、像面側へ移動させる。第3レンズ群G3を、物体側へ移動させる。第4レンズ群G4を、物体側へ移動させる。第5レンズ群G5を、像面側へ移動させる。第6レンズ群G6を、物体側へ移動させる。開口絞りSを、第3レンズ群G3と一体となって、物体側へ移動させる。
 下記の表9に、第9実施例における各諸元の値を示す。表9における面番号1~35が、図21に示すm1~m35の各光学面に対応している。
(表9)
[レンズ諸元]
 面番号   R      D     nd    νd
 物面    ∞
  1   185.9259   2.3000   1.900433   37.37
  2    93.7725   7.0058   1.437001   95.10
  3  -2966.2960   0.1000
  4    90.7425   5.1630   1.437001   95.10
  5   576.7002   0.1000
  6    91.5818   4.5000   1.497820   82.57
  7   271.0724   D7(可変)
  8    85.5699   1.0000   1.883000   40.66
  9    13.7260   8.0241
  10   -25.3126   0.8000   1.834810   42.73
  11   100.2702   0.1000
  12   32.0359   3.4979   1.922860   20.88
  13   -40.2295   1.9112
  14   -20.0004   0.7000   1.696802   55.46
  15   534.4663   D15(可変)
  16    ∞     0.1000   (絞りS)
 *17   11.8578   2.7000   1.553319   71.68
 *18   358.4613   2.0000
  19   15.5677   1.0000   1.903658   31.31
  20   11.2909   1.5000
  21   18.2012   0.5000   1.799520   42.09
  22    9.1742   3.0523   1.497820   82.57
  23   -39.5155   D23(可変)
  24  -147.7108   2.5218   1.53172   48.78
  25   -28.3514   0.5000   1.49782   82.57
  26   21.1401   D26(可変)
 *27   38.0765   2.0000   1.58913   61.25
  28   -20.0000   0.5000   1.71736   29.57
  29   -34.6793   D29(可変)
  30   -35.0000   1.1441   1.49782   82.57
  31   -30.0000   D31(可変)
  32    ∞     0.2100   1.51680   63.88
  33    ∞     0.8500
  34    ∞     0.5000   1.51680   63.88
  35    ∞     Bf
 像面    ∞
 
[非球面データ]
面番号 κ    A4      A6      A8     A10
 17 1.0048 -2.5489E-05 -3.9473E-07  9.6614E-09  0.0000E+00
 18 1.0000  3.9703E-05 -3.5578E-07  1.5790E-08 -6.1745E-11
 27 1.0000 -2.7472E-05  6.8463E-07 -1.6469E-08  0.0000E+00
 
[全体諸元]
ズーム比 97.00
        広角端  中間焦点  望遠端
 f      4.430   43.631  429.720
 Fno     2.92486  5.69847  8.77338
 ω      43.21864  5.26157  0.53559
 Bf     0.400   0.400   0.400
 Bf(空気)  9.938   1.860   0.942
 TL    138.4644  180.7524  212.5374
 TL(空気) 138.7064  180.9944  212.7794
 
[可変間隔データ]
可変間隔  広角端   中間焦点   望遠端
 D7     0.75000   67.31512   100.20497
 D15   65.74525   22.59867    1.00000
 D23    2.75173   14.55177   30.65337
 D26    5.38192   20.23914   24.82268
 D29    9.29589   1.21841    0.30000
 D31    0.10000   0.37749    1.09589
 
[レンズ群データ]
群番号  群初面  群焦点距離
 G1    1   129.99999
 G2    8   -10.65737
 G3    17    21.00000
 G4    24   -38.30835
 G5    27    33.99853
 G6    30   392.02507
 
[条件式]
条件式(10) (-f2)/ft = 0.025
条件式(11) AVE1Grpvd = 77.54
条件式(12) G1vd = 37.37
条件式(13) D12t/D12w = 133.616
条件式(14) β2t/β2w = 12.35
条件式(15) f3/ft = 0.049
 表9から、本実施例に係るズームレンズZL9は、条件式(10)~(15)を満たすことが分かる。
 図22は、第9実施例に係るズームレンズZL9の撮影距離無限遠における諸収差図(球面収差図、非点収差図、歪曲収差図、コマ収差図及び倍率色収差図)であり、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態をそれぞれ示す。
 図22に示す各収差図から明らかなように、第9実施例に係るズームレンズZL9は、諸収差が良好に補正され、優れた結像性能を有することが分かる。
 ここまで本発明を分かりやすくするために、実施形態の構成要件を付して説明したが、本発明がこれに限定されるものではないことは言うまでもない。
 例えば、上記実施例では、5群、6群構成を示したが、他の群構成にも適用可能である。また、最も物体側にレンズまたはレンズ群を追加した構成や、最も像側にレンズまたはレンズ群を追加した構成でも構わない。また、レンズ群とは、変倍時に変化する空気間隔で分離された、少なくとも1枚のレンズを有する部分を示す。
 第3の実施形態に係るズームレンズZLIIにおいて、単独または複数のレンズ群、または部分レンズ群を光軸方向に移動させて、無限遠物体から近距離物体への合焦を行う合焦レンズ群としてもよい。この合焦レンズ群は、オートフォーカスにも適用することができ、オートフォーカス用の(超音波モーター等を用いた)モーター駆動にも適している。特に、第4レンズ群G4を合焦レンズ群とするのが好ましい。また、第5レンズ群G5を合焦レンズ群としてもよい。あるいは、第4レンズ群G4と第5レンズ群G5とを同時に動かして、合焦を行うことも可能である。
 第3の実施形態に係るズームレンズZLIIにおいて、レンズ群または部分レンズ群を光軸に垂直な方向の成分を持つように移動させるか、或いは光軸を含む面内方向に回転移動(揺動)させて、手ブレによって生じる像ブレを補正する防振レンズ群としてもよい。特に、第3レンズ群G3を防振レンズ群とするのが好ましい。
 第3の実施形態に係るズームレンズZLIIにおいて、レンズ面は、球面または平面で形成されても、非球面で形成されても構わない。レンズ面が球面または平面の場合、レンズ加工および組立調整が容易になり、加工および組立調整の誤差による光学性能の劣化を防げるので好ましい。また、像面がずれた場合でも描写性能の劣化が少ないので好ましい。レンズ面が非球面の場合、非球面は、研削加工による非球面、ガラスを型で非球面形状に形成したガラスモールド非球面、ガラスの表面に樹脂を非球面形状に形成した複合型非球面のいずれの非球面でも構わない。また、レンズ面は回折面としてもよく、レンズを屈折率分布型レンズ(GRINレンズ)あるいはプラスチックレンズとしてもよい。
 第3の実施形態に係るズームレンズZLIIにおいて、開口絞りSは、第3レンズ群G3の近傍に配置されるのが好ましいが、開口絞りとしての部材を設けずに、レンズの枠でその役割を代用してもよい。
 第3の実施形態に係るズームレンズZLIIにおいて、各レンズ面に、フレアやゴーストを軽減し高コントラストの高い光学性能を達成するために、広い波長域で高い透過率を有する反射防止膜を施してもよい。
発明を実施するための形態(第4の実施形態)
 以下、実施形態について、図面を参照しながら説明する。第4の実施形態に係るズームレンズZLIIIは、図26に示すように、光軸に沿って物体側より順に並んだ、正の屈折力を持つ第1レンズ群G1と、負の屈折力を持つ第2レンズ群G2と、正の屈折力を持つ第3レンズ群G3と、負の屈折力を持つ第4レンズ群G4と、正の屈折力を持つ第5レンズ群G5とを有して構成される。
 この構成により、高変倍化の達成が可能となる。
 そして、上記構成のもと、第4の実施形態に係るズームレンズZLIIIは、次の条件式(16)~(18)を満足する。
 33.00 < ft/(-f2) < 46.00 …(16)
 1.60 < (Fnt・f1)/ft < 2.30 …(17)
 43.00 < β2t・β3t/(β2w・β3w) < 65.00 …(18)
 但し、
 ft:望遠端状態における全系の焦点距離、
 f2:第2レンズ群G2の焦点距離、
 Fnt:望遠端状態におけるF値、
 f1:第1レンズ群G1の焦点距離、
 β2t:望遠端状態における第2レンズ群G2の倍率、
 β3t:望遠端状態における第3レンズ群G3の倍率、
 β2w:広角端状態における第2レンズ群G2の倍率、
 β3w:広角端状態における第3レンズ群G3の倍率。
 条件式(16)は、望遠端状態における全系の焦点距離と、第2レンズ群G2の焦点距離との比を規定している。
 条件式(16)の上限値を上回ると、倍率色収差、コマ収差、非点収差等の諸収差が悪化するため、好ましくない。
 第4の実施形態の効果を確実なものとするために、条件式(16)の上限値を45.00とすることが好ましい。
 条件式(16)の下限値を下回ると、倍率色収差、コマ収差、非点収差等の諸収差が悪化するため、好ましくない。
 第4の実施形態の効果を確実なものとするために、条件式(16)の下限値を34.00とすることが好ましい。
 条件式(17)は、望遠端状態における第1レンズ群G1のF値を規定している。
 条件式(17)の上限値を上回ると、望遠端状態における倍率色収差、コマ収差等の諸収差が悪化するため、好ましくない。
 第4の実施形態の効果を確実なものとするために、条件式(17)の上限値を2.20とすることが好ましい。
 条件式(17)の下限値を下回ると、望遠端状態における倍率色収差、コマ収差等の諸収差が悪化するため、好ましくない。
 第4の実施形態の効果を確実なものとするために、条件式(17)の下限値を1.70とすることが好ましい。
 条件式(18)は、第2レンズ群G2と第3レンズ群G3の変倍比の積を規定している。
 条件式(18)の上限値を上回ると、球面収差、コマ収差等の諸収差が悪化するため、好ましくない。
 第4の実施形態の効果を確実なものとするために、条件式(18)の上限値を63.00とすることが好ましい。
 条件式(18)の下限値を下回ると、球面収差、コマ収差等の諸収差が悪化するため、好ましくない。
 第4の実施形態の効果を確実なものとするために、条件式(18)の下限値を45.00とすることが好ましい。
 第4の実施形態に係るズームレンズZLIIIにおいて、広角端状態から望遠端状態への変倍に際し、互いに隣り合う各レンズ群の間隔が変化することが好ましい。
 この構成により、高変倍化の達成が可能となる。
 第4の実施形態に係るズームレンズZLIIIにおいて、広角端状態から望遠端状態への変倍に際し、全てのレンズ群が移動することが好ましい。
 この構成により、レンズ全体のサイズと、非点収差と色収差を維持したまま、更なる広角化と高変倍化の達成が可能となる。
 第4の実施形態に係るズームレンズZLIIIにおいて、第5レンズ群G5は、正レンズ1枚と、負レンズ1枚とからなることが好ましい。
 この構成により、レンズ全体のサイズと、非点収差と色収差を維持したまま、更なる広角化と高変倍化の達成が可能となる。
 第4の実施形態に係るズームレンズZLIIIは、次の条件式(19)を満足することが好ましい。
 15.00 < ft/f3 < 19.00 …(19)
 但し、
 f3:第3レンズ群G3の焦点距離。
 条件式(19)は、望遠端状態における全系の焦点距離と、第3レンズ群G3の焦点距離との比を規定している。
 条件式(19)の上限値を上回ると、コマ収差等の諸収差が悪化するため、好ましくない。
 第4の実施形態の効果を確実なものとするために、条件式(19)の上限値を18.50とすることが好ましい。
 条件式(19)の下限値を下回ると、コマ収差等の諸収差が悪化するため、好ましくない。
 第4の実施形態の効果を確実なものとするために、条件式(19)の下限値を15.50とすることが好ましい。
 第4の実施形態に係るズームレンズZLIIIは、次の条件式(20)を満足することが好ましい。
 15.00 < β2t/β2w < 25.00 …(20)
 但し、
 β2w:広角端状態における第2レンズ群G2の倍率、
 β2t:望遠端状態における第2レンズ群G2の倍率。
 条件式(20)は、広角端状態における第2レンズ群G2の倍率と、望遠端状態における第2レンズ群G2の倍率とを規定している。
 条件式(20)の上限値を上回ると、コマ収差等の諸収差が悪化するため、好ましくない。
 第4の実施形態の効果を確実なものとするために、条件式(20)の上限値を24.00とすることが好ましい。
 条件式(20)の下限値を下回ると、コマ収差、非点収差等の諸収差が悪化するため、好ましくない。
 第4の実施形態の効果を確実なものとするために、条件式(20)の下限値を16.00とすることが好ましい。
 第4の実施形態に係るズームレンズZLIIIは、次の条件式(21)を満足することが好ましい。
 2.00 < f3/(-f2) < 2.70 …(21)
 但し、
 f3:第3レンズ群G3の焦点距離。
 条件式(21)は、第2レンズ群G2の焦点距離と、第3レンズ群G3の焦点距離との比を規定している。
 条件式(21)の上限値を上回ると、歪曲収差、非点収差、コマ収差等の諸収差が悪化するため、好ましくない。
 第4の実施形態の効果を確実なものとするために、条件式(21)の上限値を2.60とすることが好ましい。
 条件式(21)の下限値を下回ると、歪曲収差、非点収差、コマ収差等の諸収差が悪化するため、好ましくない。
 第4の実施形態の効果を確実なものとするために、条件式(21)の下限値を2.10とすることが好ましい。
 第4の実施形態に係るズームレンズZLIIIは、次の条件式(22)を満足することが好ましい。
 15.00 < f1/fw < 40.00 …(22)
 但し、
 fw:広角端状態における全系の焦点距離。
 条件式(22)は、第1レンズ群G1の焦点距離と、広角端状態における全系の焦点距離との比を規定している。
 条件式(22)の上限値を上回ると、歪曲収差、非点収差、コマ収差等の諸収差が悪化するため、好ましくない。
 第4の実施形態の効果を確実なものとするために、条件式(22)の上限値を35.00とすることが好ましい。
 条件式(22)の下限値を下回ると、歪曲収差、非点収差、コマ収差等の諸収差が悪化するため、好ましくない。
 第4の実施形態の効果を確実なものとするために、条件式(22)の下限値を19.00とすることが好ましい。
 第4の実施形態に係るズームレンズZLIIIは、次の条件式(23)を満足することが好ましい。
 10.00 < ft/x2 < 40.00 …(23)
 但し、
 x2:広角端状態から望遠端状態への変倍に際し、結像位置に対して第2レンズ群G2が像面方向に移動する距離。
 条件式(23)は、広角端状態から望遠端状態への変倍に際して第2レンズ群G2が移動する距離と、望遠端状態における全系の焦点距離との比を規定している。
 条件式(23)の上限値を上回ると、コマ収差等の諸収差が悪化するため、好ましくない。
 第4の実施形態の効果を確実なものとするために、条件式(23)の上限値を37.00とすることが好ましい。
 条件式(23)の下限値を下回ると、コマ収差等の諸収差が悪化するため、好ましくない。
 第4の実施形態の効果を確実なものとするために、条件式(23)の下限値を15.00とすることが好ましい。
 第4の実施形態に係るズームレンズZLIIIは、第2レンズ群G2と第4レンズ群G4との間に、開口絞りSを有することが好ましい。
 この構成により、球面収差、非点収差、歪曲収差等の諸収差を良好に補正することができる。
 第4の実施形態に係るズームレンズZLIIIは、第2レンズ群G2と第3レンズ群G3との間に、開口絞りSを有することが好ましい。
 この構成により、球面収差、非点収差、歪曲収差等の諸収差を良好に補正することができる。
 第4の実施形態に係るズームレンズZLIIIは、変倍に際して、開口絞りSを光軸方向に移動させることが好ましい。
 この構成により、球面収差、非点収差、歪曲収差等の諸収差を良好に補正することができる。
 第4の実施形態に係るズームレンズZLIIIは、次の条件式(24)を満足することが好ましい。
 0.10° < ωt < 5.00° …(24)
 但し、
 ωt:望遠端状態における半画角。
 条件式(24)は、望遠端状態における画角の最適な値を規定する条件である。この条件式(24)を満足することにより、コマ収差、歪曲収差、像面湾曲等の諸収差を良好に補正することができる。
 第4の実施形態の効果を確実なものとするために、条件式(24)の上限値を4.00°とすることが好ましい。第4の実施形態の効果をより確実なものとするために、条件式(24)の上限値を3.00°とすることが好ましい。第4の実施形態の効果をより確実なものとするために、条件式(24)の上限値を2.00°とすることが好ましい。第4の実施形態の効果をさらに確実なものとするために、条件式(24)の上限値を1.00°とすることが好ましい。
 第4の実施形態の効果を確実なものとするために、条件式(24)の下限値を0.30°とすることが好ましい。第4の実施形態の効果を確実なものとするために、条件式(24)の下限値を0.50°とすることが好ましい。
 第4の実施形態に係るズームレンズZLIIIは、次の条件式(25)を満足することが好ましい。
 25.00° < ωw < 80.00° …(25)
 但し、
 ωw:広角端状態における半画角。
 条件式(25)は、広角端状態における画角の最適な値を規定する条件である。この条件式(25)を満足することにより、広い画角を有しつつ、コマ収差、歪曲収差、像面湾曲等の諸収差を良好に補正することができる。
 第4の実施形態の効果を確実なものとするために、条件式(25)の上限値を70.00°とすることが好ましい。第4の実施形態の効果をより確実なものとするために、条件式(25)の上限値を60.00°とすることが好ましい。第4の実施形態の効果をさらに確実なものとするために、条件式(25)の上限値を50.00°とすることが好ましい。
 第4の実施形態の効果を確実なものとするために、条件式(25)の下限値を30.00°とすることが好ましい。第4の実施形態の効果をより確実なものとするために、条件式(25)の下限値を35.00°とすることが好ましい。第4の実施形態の効果をさらに確実なものとするために、条件式(25)の下限値を40.00°とすることが好ましい。
 以上のような構成を備える第4の実施形態に係るズームレンズZLIIIによれば、レンズ全体のサイズと、良好な光学性能を維持しながら、更なる広角化と高変倍化を達成することができるズームレンズを実現することができる。
 次に、図32を参照しながら、上述のズームレンズZLIIIを備えたカメラ(光学機器)について説明する。カメラ31は、図32に示すように、撮影レンズ32として上述のズームレンズZLIIIを備えたレンズ交換式のカメラ(所謂ミラーレスカメラ)である。このカメラ31において、不図示の物体(被写体)からの光は、撮影レンズ32で集光されて、不図示のOLPF(Optical low pass filter:光学ローパスフィルタ)を介して撮像部33の撮像面上に被写体像を形成する。そして、撮像部33に設けられた光電変換素子によって被写体像が光電変換されて被写体の画像が生成される。この画像は、カメラ31に設けられたEVF(Electronic view finder:電子ビューファインダ)34に表示される。これにより撮影者は、EVF34を介して被写体を観察することができる。また、撮影者によって不図示のレリーズボタンが押されると、撮像部33で生成された被写体の画像が不図示のメモリーに記憶される。このようにして、撮影者は本カメラ31による被写体の撮影を行うことができる。
 本カメラ31に撮影レンズ32として搭載した第4の実施形態に係るズームレンズZLIIIは、後述の各実施例からも分かるようにその特徴的なレンズ構成によって、レンズ全体のサイズと、良好な光学性能を維持しながら、更なる広角化と高変倍化を達成することができる。したがって、本カメラ31によれば、レンズ全体のサイズと、良好な光学性能を維持しながら、更なる広角化と高変倍化を達成することができる光学機器を実現することができる。
 なお、第4の実施形態では、ミラーレスカメラの例を説明したが、これに限定されるものではない。例えば、カメラ本体にクイックリターンミラーを有し、ファインダ光学系によって被写体を観察する一眼レフタイプのカメラに、上述のズームレンズZLIIIを搭載した場合でも、上記カメラ31と同様の効果を奏することができる。
 続いて、図33を参照しながら、上述のズームレンズZLIIIの製造方法について概説する。まず、レンズ鏡筒内に、光軸に沿って物体側より順に、正の屈折力を持つ第1レンズ群G1と、負の屈折力を持つ第2レンズ群G2と、正の屈折力を持つ第3レンズ群G3と、負の屈折力を持つ第4レンズ群G4と、正の屈折力を持つ第5レンズ群G5とを有するように、各レンズを配置する(ステップST410)。次の条件式(16)~(18)を満足するように、鏡筒内に各レンズを配置する(ステップST420)。
 33.00 < ft/(-f2) < 46.00 …(16)
 1.60 < (Fnt・f1)/ft < 2.30 …(17)
 43.00 < β2t・β3t/(β2w・β3w) < 65.00 …(18)
 但し、
 ft:望遠端状態における全系の焦点距離、
 f2:第2レンズ群G2の焦点距離、
 Fnt:望遠端状態におけるF値、
 f1:第1レンズ群G1の焦点距離、
 β2t:望遠端状態における第2レンズ群G2の倍率、
 β3t:望遠端状態における第3レンズ群G3の倍率、
 β2w:広角端状態における第2レンズ群G2の倍率、
 β3w:広角端状態における第3レンズ群G3の倍率。
 第4の実施形態におけるレンズ配置の一例を挙げると、図26に示すように、光軸に沿って物体側から順に、像側に凹面を向けた負メニスカスレンズL11と物体側に凸面を向けた正メニスカスレンズL12との接合レンズと、物体側に凸面を向けた正メニスカスレンズL13と、物体側に凸面を向けた正メニスカスレンズL14とを配置して第1レンズ群G1とし、像側に凹面を向けた負メニスカスレンズL21と、両凹形状の負レンズL22と、両凸形状の正レンズL23と、物体側に凹面を向けた負メニスカスレンズL24とを配置して第2レンズ群G2とし、両凸形状の正レンズL31と、像側に凹面を向けた負メニスカスレンズL32と、両凹形状の負レンズL33と両凸形状の正レンズL34との接合レンズとを配置して第3レンズ群G3とし、両凹形状の負レンズL41を配置して第4レンズ群G4とし、両凸形状の正レンズL51と物体側に凹面を向けた負メニスカスレンズL52との接合レンズを配置して第5レンズ群G5とする。このように準備した各レンズ群を、上述の手順で配置してズームレンズZLIIIを製造する。
 第4の実施形態に係る製造方法によれば、レンズ全体のサイズと、良好な光学性能を維持しながら、更なる広角化と高変倍化を達成することができるズームレンズZLIIIを製造することができる。
第4の実施形態に係る実施例
 これより第4の実施形態に係る各実施例について、図面に基づいて説明する。図26、図28、図30は、各実施例に係るズームレンズZLIII(ZL10~ZL12)の構成及び屈折力配分を示す断面図である。ズームレンズZL10~ZL12の断面図の下部には、広角端状態から望遠端状態に変倍する際の各レンズ群の光軸に沿った移動方向を矢印で示す。
 第10実施例に係る図26に対する各参照符号は、参照符号の桁数の増大による説明の煩雑化を避けるため、実施例ごとに独立して用いている。ゆえに、他の実施例に係る図面と共通の参照符号を付していても、それらは他の実施例とは必ずしも共通の構成ではない。
 また、以下に表10~表12を示すが、これらは第10実施例~第12実施例における各諸元の表である。
 各実施例では収差特性の算出対象として、d線(波長587.6nm)、g線(波長435.8nm)を選んでいる。
 表中の[レンズデータ]において、面番号は光線の進行する方向に沿った物体側からの光学面の順序、Rは各光学面の曲率半径、Dは各光学面から次の光学面(又は像面)までの光軸上の距離である面間隔、ndは光学部材の材質のd線に対する屈折率、νdは光学部材の材質のd線を基準とするアッベ数をそれぞれ示す。また、物面は物体面、Diは面間隔(第i面と第(i+1)面との面間隔)、曲率半径の「∞」は平面又は開口、(開口絞り)は開口絞りS、像面は像面Iをそれぞれ示す。空気の屈折率「1.0000」は省略する。光学面が非球面である場合には、面番号に*印を付し、曲率半径Rの欄には近軸曲率半径を示す。
 表中の[全体諸元]において、fはレンズ全系の焦点距離、φは開口絞り径、FnoはFナンバー、2ωは画角(単位:°)、BFは光軸上でのレンズ最終面から近軸像面までの距離、BF(空気)は光軸上でのレンズ最終面から近軸像面までの距離を空気換算長により表記したもの、TLは光軸上でのレンズ最前面から近軸像面までの距離、TL(空気)は光軸上でのレンズ最前面からレンズ最終面までの距離にBF(空気)を加えたものを示す。
 表中の[非球面データ]には、[レンズデータ]に示した非球面について、その形状を次式(a)で示す。X(y)は非球面の頂点における接平面から高さyにおける非球面上の位置までの光軸方向に沿った距離を、Rは基準球面の曲率半径(近軸曲率半径)を、κは円錐定数を、Aiは第i次の非球面係数を示す。「E-n」は、「×10-n」を示す。例えば、1.234E-05=1.234×10-5である。なお、2次の非球面係数A2は0であり、記載を省略する。
 X(y)=(y2/R)/{1+(1-κ×y2/R21/2}+A4×y4+A6×y6+A8×y8+A10×y10…(a)
 表中の[可変間隔データ]において、広角端、中間焦点距離、望遠端の各状態における面間隔の値Diを示す。なお、Diは、第i面と第(i+1)面の面間隔を示す。
 表中の[レンズ群データ]において、群番号、群初面は各群の最も物体側の面番号、群焦点距離は各群の焦点距離、レンズ構成長は各群の最も物体側のレンズ面から最も像側のレンズ面までの光軸上での距離を示す。
 表中の[条件式]には、上記の条件式(16)~(25)に対応する値を示す。
 以下、全ての諸元値において、掲載されている焦点距離f、曲率半径R、面間隔D、その他の長さ等は、特記のない場合一般に「mm」が使われるが、光学系は比例拡大又は比例縮小しても同等の光学性能が得られるので、これに限られるものではない。また、単位は「mm」に限定されることなく、他の適当な単位を用いることが可能である。
 ここまでの表の説明は全ての実施例において共通であり、以下での説明を省略する。
(第10実施例)
 第10実施例について、図26、図27及び表10を用いて説明する。第10実施例に係るズームレンズZLIII(ZL10)は、図26に示すように、光軸に沿って物体側から順に並んだ、正の屈折力を持つ第1レンズ群G1と、負の屈折力を持つ第2レンズ群G2と、正の屈折力を持つ第3レンズ群G3と、負の屈折力を持つ第4レンズ群G4と、正の屈折力を持つ第5レンズ群G5とから構成される。
 第1レンズ群G1は、光軸に沿って物体側から順に並んだ、像側に凹面を向けた負メニスカスレンズL11と物体側に凸面を向けた正メニスカスレンズL12との接合レンズと、物体側に凸面を向けた正メニスカスレンズL13と、物体側に凸面を向けた正メニスカスレンズL14とから構成される。
 第2レンズ群G2は、光軸に沿って物体側から順に並んだ、像側に凹面を向けた負メニスカスレンズL21と、両凹形状の負レンズL22と、両凸形状の正レンズL23と、物体側に凹面を向けた負メニスカスレンズL24とから構成される。負メニスカスレンズL21は、両面が非球面である。
 第3レンズ群G3は、光軸に沿って物体側から順に並んだ、両凸形状の正レンズL31と、像側に凹面を向けた負メニスカスレンズL32と、両凹形状の負レンズL33と両凸形状の正レンズL34との接合レンズとから構成される。両凸形状の正レンズL31の両側面は、非球面である。
 第4レンズ群G4は、両凹形状の負レンズL41から構成される。
 第5レンズ群G5は、光軸に沿って物体側から順に並んだ、両凸形状の正レンズL51と物体側に凹面を向けた負メニスカスレンズL52との接合レンズから構成される。
 第2レンズ群G2と第3レンズ群G3との間に、光量を調節することを目的とした開口絞りSが配置されている。
 第5レンズ群G5と像面Iとの間に、フィルタ群FLが配置されている。フィルタ群FLは、像面Iに配設されるCCD等、固体撮像素子の限界解像以上の空間周波数をカットするためのローパスフィルタや赤外カットフィルタ等で構成されている。
 本実施例に係るズームレンズZL10は、各レンズ群の間隔が変化するように、全てのレンズ群G1~G5および開口絞りSを光軸方向に移動させることにより、変倍を行う。具体的には、広角端状態から望遠端状態への変倍に際し、第1レンズ群G1を物体側へ移動させ、第2レンズ群G2を像側へ移動させ、第3レンズ群G3を物体側へ移動させ、第4レンズ群G4を物体側へ移動させ、第5レンズ群G5を一旦物体側に移動させ、その後像側へ移動させる。開口絞りSは、広角端状態から望遠端状態への変倍に際し、各レンズ群とは別に単独で、物体側へ移動させる。
 下記の表10に、第10実施例における各諸元の値を示す。表10における面番号1~30が、図26に示すm1~m30の各光学面に対応している。
(表10)
[レンズデータ]
 面番号   R     D    nd   νd
 物面    ∞
  1   299.113   3.74   1.8348   42.7
  2   112.365   12.9   1.4370   95.0
  3   7582.022   0.42
  4   132.075   9.36   1.4978   82.6
  5   631.671   0.42
  6   129.950   9.78   1.4978   82.6
  7   1116.862   (D7)
 *8   1147.820   2.29   1.8820   37.2
 *9    14.801   9.78
  10   -46.021   1.87   1.8348   42.7
  11   169.618   1.04
  12   49.381   5.82   1.9229   20.9
  13   -43.941   1.04
  14   -36.266   1.66   1.9108   35.3
  15  -220.373   (D15)
  16    ∞    (D16)  (開口絞り)
 *17   19.853   4.59   1.5533   71.7
 *18   -43.626   4.59
  19   52.966   0.92   1.9108   35.3
  20   22.035   3.09
  21  -144.583   0.92   1.8340   37.2
  22   55.310   4.59   1.4978   82.6
  23   -23.136   (D23)
  24  -6040.775   1.04   1.4875   70.3
  25   52.947   (D25)
  26   31.075   5.20   1.4875   70.3
  27   -37.574   1.66   1.9108   35.3
  28   -84.589   (D28)
  29    ∞    2.02   1.5168   63.9
  30    ∞    (BF)
 像面    ∞
 
[全体諸元]
ズーム比 75.5
        広角端   中間焦点   望遠端
f       7.70    67.58    581.59
φ       14.48    14.48     16.22
Fno     2.75     5.02     6.44
2ω      92.58    13.446     1.5466
BF      1.00     1.00     1.00
BF(空気)   13.63    40.77     10.22
TL     210.44    273.47    321.86
TL(空気)  209.75    272.78    321.18
 
[非球面データ]
面番号 κ     A4      A6      A8     A10
  8 1.0000   5.34E-06  -5.13E-08   1.59E-10  -1.68E-13
  9 0.7435   4.24E-06  -8.79E-08  -1.70E-11   6.06E-13
 17 1.0559  -1.84E-05   0.00E+00   0.00E+00   0.00E+00
 18 1.0000   1.92E-05   0.00E+00   0.00E+00   0.00E+00
 
[可変間隔データ]
可変間隔  広角端   中間焦点   望遠端
 f     7.70    67.58    581.59
 D7     1.144   93.67035   144.51292
 D15   63.81464   15.28327    0.57177
 D16   24.06722   2.38004    0.23337
 D23    7.13476   21.29766   14.87916
 D25   13.25685   12.67442   64.04793
 D28   11.29590   38.43652    7.88868
 
[レンズ群データ]
 群番号    群初面  群焦点距離  レンズ構成長
第1レンズ群    1    180.1     36.61
第2レンズ群    8    -15.9     23.50
第3レンズ群   17     35.9     18.69
第4レンズ群   24    -107.7     1.04
第5レンズ群   26     65.9     6.86
 
[条件式]
 条件式(16) ft/(-f2) = 36.49
 条件式(17) (Fnt・f1)/ft = 1.99
 条件式(18) β2t・β3t/(β2w・β3w) = 53.90
 条件式(19) ft/f3 = 16.18
 条件式(20) β2t/β2w = 19.22
 条件式(21) f3/(-f2) = 2.26
 条件式(22) f1/fw = 23.38
 条件式(23) ft/x2 = 18.20
 条件式(24) ωt = 0.7733°
 条件式(25) ωw = 46.29°
 表10から、本実施例に係るズームレンズZL10は、条件式(16)~(25)を満たすことが分かる。
 図27は、第10実施例に係るズームレンズZL10の撮影距離無限遠における諸収差図(球面収差図、非点収差図、歪曲収差図、コマ収差図及び倍率色収差図)であり、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態をそれぞれ示す。
 各収差図において、FNOはFナンバー、Aは各像高に対する半画角(単位:°)を示す。dはd線、gはg線における収差を示す。また、これらの記載がないものは、d線における収差を示す。球面収差図において、実線は球面収差を、破線は正弦条件を示す。非点収差図において、実線はサジタル像面、破線はメリジオナル像面を示す。コマ収差図において、実線は各入射角又は物体高のd線及びg線に対するメリジオナルコマ収差、原点より右側の破線はd線に対してメリデジオナル方向に発生するサジタルコマ収差、原点より左側の破線はd線に対してサジタル方向に発生するサジタルコマ収差を示す。なお、後述する各実施例の収差図においても、本実施例と同様の符号を用いる。
 図27に示す各収差図から明らかなように、第10実施例に係るズームレンズZL10は、広角端状態から望遠端状態までの各焦点距離状態において、諸収差が良好に補正され、優れた光学性能を有することが分かる。歪曲収差については、撮像後の画像処理により十分補正可能であるため、光学的な補正は必要ない。
(第11実施例)
 第11実施例について、図28、図29及び表11を用いて説明する。第11実施例に係るズームレンズZLIII(ZL11)は、図28に示すように、光軸に沿って物体側から順に並んだ、正の屈折力を持つ第1レンズ群G1と、負の屈折力を持つ第2レンズ群G2と、正の屈折力を持つ第3レンズ群G3と、負の屈折力を持つ第4レンズ群G4と、正の屈折力を持つ第5レンズ群G5と、正の屈折力を有する第6レンズ群G6とから構成される。
 第1レンズ群G1は、光軸に沿って物体側から順に並んだ、像側に凹面を向けた負メニスカスレンズL11と両凸形状の正レンズL12との接合レンズと、物体側に凸面を向けた正メニスカスレンズL13と、物体側に凸面を向けた正メニスカスレンズL14とから構成される。
 第2レンズ群G2は、光軸に沿って物体側から順に並んだ、両凹形状の負レンズL21と、両凹形状の負レンズL22と、両凸形状の正レンズL23と、物体側に凹面を向けた負メニスカスレンズL24とから構成される。負メニスカスレンズL21は、像側面が非球面である。
 第3レンズ群G3は、光軸に沿って物体側から順に並んだ、両凸形状の正レンズL31と、像側に凹面を向けた負メニスカスレンズL32と、両凹形状の負レンズL33と両凸形状の正レンズL34との接合レンズとから構成される。両凸形状の正レンズL31の両側面は、非球面である。
 第4レンズ群G4は、両凹形状の負レンズL41から構成される。
 第5レンズ群G5は、光軸に沿って物体側から順に並んだ、両凸形状の正レンズL51と物体側に凹面を向けた負メニスカスレンズL52との接合レンズから構成される。
 第6レンズ群G6は、両凸形状の正レンズL61から構成される。
 第2レンズ群G2と第3レンズ群G3との間に、光量を調節することを目的とした開口絞りSが配置されている。
 第6レンズ群G6と像面Iとの間に、フィルタ群FLが配置されている。フィルタ群FLは、像面Iに配設されるCCD等、固体撮像素子の限界解像以上の空間周波数をカットするためのローパスフィルタや赤外カットフィルタ等で構成されている。
 本実施例に係るズームレンズZL11は、各レンズ群の間隔が変化するように、第1~第5レンズ群G1~G5および開口絞りSを光軸方向に移動させ、第6レンズ群G6を固定することにより、変倍を行う。具体的には、広角端状態から望遠端状態への変倍に際し、第1レンズ群G1を物体側へ移動させ、第2レンズ群G2を一旦像側に移動させ、その後物体側へ移動させ、第3レンズ群G3を物体側へ移動させ、第4レンズ群G4を物体側へ移動させ、第5レンズ群G5を一旦物体側に移動させ、その後像側へ移動させ、第6レンズ群G6は像面Iに対して固定する。開口絞りSは、広角端状態から望遠端状態への変倍に際し、各レンズ群とは別に単独で、物体側へ移動させる。
 下記の表11に、第11実施例における各諸元の値を示す。表11における面番号1~32が、図28に示すm1~m32の各光学面に対応している。
(表11)
[レンズデータ]
 面番号   R     D    nd    νd
 物面    ∞
  1   275.935   3.738   1.8348   42.7
  2   115.550   16.405   1.4370   95.0
  3  -13143.500   0.415
  4   122.063   13.290   1.4370   95.0
  5   1070.443   0.415
  6   130.766   10.591   1.4970   81.6
  7   494.258   (D7)
  8  -1739.519   1.869   1.8820   37.2
 *9    13.578   10.277
  10   -40.755   1.869   1.8348   42.7
  11   158.411   1.038
  12   49.075   5.607   1.9229   20.9
  13   -45.763   1.038
  14   -45.322   1.661   1.9108   35.3
  15  -317.902   (D15)
  16    ∞    (D16)  (開口絞り)
 *17   24.225   6.230   1.5533   71.7
 *18   -44.084   6.230
  19   31.149   1.246   1.9108   35.3
  20   21.553   3.115
  21  -122.750   0.831   1.9538   32.3
  22   38.038   5.191   1.4875   70.3
  23   -20.976   (D23)
  24  -142.256   2.077   1.4875   70.3
  25   103.345   (D25)
  26   32.393   5.191   1.4875   70.3
  27   -74.819   1.038   1.8503   32.4
  28  -183.548   (D28)
  29   415.316   1.661   1.5311   55.9
  30  -193.972   1.167
  31    ∞    1.424   1.5168   63.9
  32    ∞    (BF)
 像面    ∞
 
[全体諸元]
ズーム比 85.1
        広角端   中間焦点   望遠端
f        7.7     66.1     655.5
φ       10.86    13.68     17.24
Fno     3.63     4.97     6.34
2ω      91.98    13.87     1.38 
BF      1.20     1.20     1.20 
BF(空気)   3.30     3.30     3.30 
TL     217.69    288.91    338.08 
TL(空気)  217.20    288.42    337.59
 
[非球面データ]
面番号 κ     A4      A6      A8     A10
  9 0.7082  -8.35E-07  -5.83E-08   4.69E-10  -1.82E-12
 17 1.1650  -1.10E-05   0.00E+00   0.00E+00   0.00E+00
 18 1.0000   1.72E-05   0.00E+00   0.00E+00   0.00E+00
 
[可変間隔データ]
可変間隔  広角端   中間焦点   望遠端
 f    7.7     66.1     655.5
 D7    1.034    96.141    143.280
 D15   57.059    13.662     0.963
 D16   25.639    3.987     1.844
 D23    4.317    15.343     5.882
 D25   15.695    16.571    81.057 
 D28    9.130    38.393     0.239
 
[レンズ群データ]
 群番号    群初面  群焦点距離  レンズ構成長
第1レンズ群    1    179.62    44.85
第2レンズ群    8    -14.74    23.36
第3レンズ群   17     36.76    22.84
第4レンズ群   24    -122.45     2.08
第5レンズ群   26     67.49     6.23
第6レンズ群   29    249.19     1.66
 
[条件式]
 条件式(16) ft/(-f2) = 44.46
 条件式(17) (Fnt・f1)/ft = 1.74
 条件式(18) β2t・β3t/(β2w・β3w) = 54.86
 条件式(19) ft/f3 = 17.84
 条件式(20) β2t/β2w = 22.41
 条件式(21) f3/(-f2) = 2.49
 条件式(22) f1/fw = 23.33
 条件式(23) ft/x2 = 30.00
 条件式(24) ωt = 0.69°
 条件式(25) ωw = 45.99°
 表11から、本実施例に係るズームレンズZL11は、条件式(16)~(25)を満たすことが分かる。
 図29は、第11実施例に係るズームレンズZL11の撮影距離無限遠における諸収差図(球面収差図、非点収差図、歪曲収差図、コマ収差図及び倍率色収差図)であり、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態をそれぞれ示す。
 図29に示す各収差図から明らかなように、第11実施例に係るズームレンズZL11は、広角端状態から望遠端状態までの各焦点距離状態において、諸収差が良好に補正され、優れた光学性能を有することが分かる。歪曲収差については、撮像後の画像処理により十分補正可能であるため、光学的な補正は必要ない。
(第12実施例)
 第12実施例について、図30、図31及び表12を用いて説明する。第12実施例に係るズームレンズZLIII(ZL12)は、図30に示すように、光軸に沿って物体側から順に並んだ、正の屈折力を持つ第1レンズ群G1と、負の屈折力を持つ第2レンズ群G2と、正の屈折力を持つ第3レンズ群G3と、負の屈折力を持つ第4レンズ群G4と、正の屈折力を持つ第5レンズ群G5とから構成される。
 第1レンズ群G1は、光軸に沿って物体側から順に並んだ、像側に凹面を向けた負メニスカスレンズL11と物体側に凸面を向けた正メニスカスレンズL12との接合レンズと、物体側に凸面を向けた正メニスカスレンズL13と、物体側に凸面を向けた正メニスカスレンズL14とから構成される。
 第2レンズ群G2は、光軸に沿って物体側から順に並んだ、像側に凹面を向けた負メニスカスレンズL21と、物体側に凹面を向けた負メニスカスレンズL22と、両凸形状の正レンズL23とから構成される。負メニスカスレンズL21は、像側面が非球面である。
 第3レンズ群G3は、光軸に沿って物体側から順に並んだ、両凸形状の正レンズL31と、像側に凹面を向けた負メニスカスレンズL32と、像側に凹面を向けた負メニスカスレンズL33と両凸形状の正レンズL34との接合レンズとから構成される。両凸形状の正レンズL31の両側面は、非球面である。
 第4レンズ群G4は、像側に凹面を向けた負メニスカスレンズL41から構成される。
 第5レンズ群G5は、光軸に沿って物体側から順に並んだ、両凸形状の正レンズL51と物体側に凹面を向けた負メニスカスレンズL52との接合レンズから構成される。
 第2レンズ群G2と第3レンズ群G3との間に、光量を調節することを目的とした開口絞りSが配置されている。
 第5レンズ群G5と像面Iとの間に、フィルタ群FLが配置されている。フィルタ群FLは、像面Iに配設されるCCD等、固体撮像素子の限界解像以上の空間周波数をカットするためのローパスフィルタや赤外カットフィルタ等で構成されている。
 本実施例に係るズームレンズZL12は、各レンズ群の間隔が変化するように、全てのレンズ群G1~G5および開口絞りSを光軸方向に移動させることにより、変倍を行う。具体的には、広角端状態から望遠端状態への変倍に際し、第1レンズ群G1を物体側へ移動させ、第2レンズ群G2を像側に移動させ、第3レンズ群G3を物体側へ移動させ、第4レンズ群G4を物体側へ移動させ、第5レンズ群G5を一旦物体側に移動させ、その後像側へ移動させる。開口絞りSは、広角端状態から望遠端状態への変倍に際し、各レンズ群とは別に単独で、物体側へ移動させる。
 下記の表12に、第12実施例における各諸元の値を示す。表12における面番号1~28が、図30に示すm1~m28の各光学面に対応している。
(表12)
[レンズデータ]
 面番号   R     D    nd    νd
 物面    ∞
  1   244.999   3.323   1.8348   42.7
  2   108.306   11.258   1.4370   95.0
  3   1072.209   0.449
  4   121.893   9.371   1.4370   95.0
  5   1373.087   0.449
  6   122.768   7.437   1.4970   81.6
  7   471.470   (D7)
  8   140.014   2.284   1.8514   40.1
 *9    12.843   9.760
  10   -22.876   1.502   1.8830   40.7
  11  -813.948   0.441
  12   78.912   3.141   1.9460   18.0
  13   -58.918   (D13)
  14    ∞    (D14)  (開口絞り)
 *15   17.399   4.436   1.5533   71.7
 *16  -136.593   3.766
  17   26.925   1.280   1.9538   32.3
  18   15.999   1.897
  19   33.038   0.864   1.9538   32.3
  20   22.735   3.659   1.4970   81.7
  21   -52.794   (D21)
  22   332.698   1.272   1.4875   70.3
  23   50.549   (D23)
  24   40.201   4.600   1.4875   70.3
  25   -38.619   1.687   2.0010   29.1
  26   -59.486   (D26)
  27    ∞    1.512   1.5168   63.9
  28    ∞    (BF)
 像面    ∞
 
[全体諸元]
ズーム比 64.3
        広角端   中間焦点   望遠端
f       7.7     66.1     494.9
φ       10.59    11.88     13.33
Fno     3.22     5.08     6.28
2ω      92.93    13.76     1.83
BF      2.03     2.03     2.03
BF(空気)   15.39    45.35     9.30
TL     171.18    251.62    300.42
TL(空気)  170.66    251.11    299.90
 
[非球面データ]
面番号 κ     A4      A6      A8     A10
  9 1.1197  -1.82E-05  -3.63E-07   4.88E-09  -3.46E-11
 15 0.5972  -8.98E-06   0.00E+00   0.00E+00   0.00E+00
 16 1.0000   6.74E-06   0.00E+00   0.00E+00   0.00E+00
 
[可変間隔データ]
可変間隔  広角端   中間焦点   望遠端
 f    7.7     66.1     494.9
 D7    1.142    93.043    145.113 
 D13   47.825    8.383     0.839
 D14   19.286    5.941     3.798 
 D21    9.849    13.311     7.613 
 D23    4.297    12.205    60.368 
 D26   12.363    42.320     6.270
 
[レンズ群データ]
 群番号    群初面  群焦点距離  レンズ構成長
第1レンズ群    1    179.62    32.29
第2レンズ群    8    -14.74    17.13
第3レンズ群   15     31.77    15.90
第4レンズ群   22    -122.45     1.27
第5レンズ群   24     64.37     6.29
 
[条件式]
 条件式(16) ft/(-f2) = 33.57
 条件式(17) (Fnt・f1)/ft = 2.28
 条件式(18) β2t・β3t/(β2w・β3w) = 43.74
 条件式(19) ft/f3 = 15.58
 条件式(20) β2t/β2w = 18.92
 条件式(21) f3/(-f2) = 2.15
 条件式(22) f1/fw = 23.33
 条件式(23) ft/x2 = 33.59
 条件式(24) ωt = 0.915°
 条件式(25) ωw = 46.465°
 表12から、本実施例に係るズームレンズZL12は、条件式(16)~(25)を満たすことが分かる。
 図31は、第12実施例に係るズームレンズZL12の撮影距離無限遠における諸収差図(球面収差図、非点収差図、歪曲収差図、コマ収差図及び倍率色収差図)であり、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態をそれぞれ示す。
 図31に示す各収差図から明らかなように、第12実施例に係るズームレンズZL12は、広角端状態から望遠端状態までの各焦点距離状態において、諸収差が良好に補正され、優れた光学性能を有することが分かる。歪曲収差については、撮像後の画像処理により十分補正可能であるため、光学的な補正は必要ない。
 上記の各実施例によれば、レンズ全体のサイズと、良好な光学性能を維持しながら、更なる広角化と高変倍化を達成することができるズームレンズを実現することができる。
 ここまで本発明を分かりやすくするために、実施形態の構成要件を付して説明したが、本発明がこれに限定されるものではないことは言うまでもない。以下の内容は、本願のズームレンズZLIIIの光学性能を損なわない範囲で適宜採用することが可能である。
 第4の実施形態に係るズームレンズZLIIIの数値実施例として、5群、6群構成のものを示したが、これに限定されず、他の群構成(例えば、7群等)にも適用可能である。具体的には、最も物体側にレンズまたはレンズ群を追加した構成や、最も像側にレンズまたはレンズ群を追加した構成でも構わない。また、レンズ群とは、変倍時または合焦時に変化する空気間隔で分離された、少なくとも1枚のレンズを有する部分を示す。
 第4の実施形態に係るズームレンズZLIIIにおいて、無限遠から近距離物体への合焦を行うために、レンズ群の一部、1つのレンズ群全体、或いは複数のレンズ群を合焦レンズ群として、光軸方向へ移動させる構成としてもよい。この合焦レンズ群は、オートフォーカスにも適用することができ、オートフォーカス用の(超音波モーター等を用いた)モーター駆動にも適している。特に、第4レンズ群G4又は第5レンズ群G5の少なくとも一部を合焦レンズ群とすることが好ましい。
 第4の実施形態に係るズームレンズZLIIIにおいて、いずれかのレンズ群全体または部分レンズ群を、光軸に垂直な方向の成分を持つように移動させるか、或いは光軸を含む面内方向に回転移動(揺動)させて、手ブレ等によって生じる像ブレを補正する防振レンズ群としてもよい。特に、第3レンズ群G3の少なくとも一部を防振レンズ群とするのが好ましい。
 第4の実施形態に係るズームレンズZLIIIにおいて、レンズ面は、球面または平面で形成されても、非球面で形成されても構わない。レンズ面が球面または平面の場合、レンズ加工および組立調整が容易になり、加工および組立調整の誤差による光学性能の劣化を防げるので好ましい。また、像面がずれた場合でも描写性能の劣化が少ないので好ましい。レンズ面が非球面の場合、非球面は、研削加工による非球面、ガラスを型で非球面形状に形成したガラスモールド非球面、ガラスの表面に樹脂を非球面形状に形成した複合型非球面のいずれの非球面でも構わない。また、レンズ面は回折面としてもよく、レンズを屈折率分布型レンズ(GRINレンズ)あるいはプラスチックレンズとしてもよい。
 第4の実施形態に係るズームレンズZLIIIにおいて、開口絞りSは、第2レンズ群G2~第4レンズ群G4の間に配置されるのが好ましいが、開口絞りとしての部材を設けずに、レンズの枠でその役割を代用してもよい。
 第4の実施形態に係るズームレンズZLIIIにおいて、各レンズ面に、フレアやゴーストを軽減し高コントラストの高い光学性能を達成するために、広い波長域で高い透過率を有する反射防止膜を施してもよい。
 第4の実施形態に係るズームレンズZLIIIは、変倍比が20~150倍程度である。
 ZLI(ZL1~ZL3) 第1、第2の実施形態に係るズームレンズ
 ZLII(ZL4~ZL9) 第3の実施形態に係るズームレンズ
 ZLIII(ZL10~ZL12) 第4の実施形態に係るズームレンズ
 G1 第1レンズ群
 G2 第2レンズ群
 G3 第3レンズ群
 G4 第4レンズ群
 G5 第5レンズ群
 G6 第6レンズ群
 S  開口絞り
 FL フィルタ(フィルタ群)
 I  像面
 CAM1 デジタルスチルカメラ(第1、第2の実施形態に係る光学機器)
 CAM2 デジタルスチルカメラ(第3の実施形態に係る光学機器)
 31 カメラ(第4の実施形態に係る光学機器)
 

Claims (41)

  1.  光軸に沿って物体側より順に並んだ、正の屈折力を持つ第1レンズ群と、負の屈折力を持つ第2レンズ群と、正の屈折力を持つ第3レンズ群と、負の屈折力を持つ第4レンズ群と、正の屈折力を持つ第5レンズ群とを有し、各レンズ群の間隔を変化させて変倍を行い、
     前記第1レンズ群は、3枚以上のレンズで構成され、
     前記第4レンズ群は、2枚以下のレンズで構成され、
     前記第5レンズ群は、2枚以下のレンズで構成され、広角端状態から望遠端状態への変倍時に像面側へ移動し、
     以下の条件式を満足することを特徴とするズームレンズ。
     8.40 < f1/(-f2)
     但し、
     f1:前記第1レンズ群の焦点距離、
     f2:前記第2レンズ群の焦点距離。
  2.  光軸に沿って物体側より順に並んだ、正の屈折力を持つ第1レンズ群と、負の屈折力を持つ第2レンズ群と、正の屈折力を持つ第3レンズ群と、負の屈折力を持つ第4レンズ群と、正の屈折力を持つ第5レンズ群とを有し、各レンズ群の間隔を変化させて変倍を行い、
     前記第1レンズ群は、3枚以上のレンズで構成され、
     前記第4レンズ群は、2枚以下のレンズで構成され、
     前記第5レンズ群は、2枚以下のレンズで構成され、広角端状態から望遠端状態への変倍時に像面側へ移動し、
     以下の条件式を満足することを特徴とするズームレンズ。
     5.80 < Dt12/(-f2)
     但し、
     Dt12:望遠端状態における前記第1レンズ群の像側面から前記第2レンズ群の物体側面までの光軸上の距離、
     f2:前記第2レンズ群の焦点距離。
  3.  光軸に沿って物体側より順に並んだ、正の屈折力を持つ第1レンズ群と、負の屈折力を持つ第2レンズ群と、正の屈折力を持つ第3レンズ群と、負の屈折力を持つ第4レンズ群と、正の屈折力を持つ第5レンズ群とを有し、各レンズ群の間隔を変化させて変倍を行い、
     前記第1レンズ群は、3枚以上のレンズで構成され、
     前記第4レンズ群は、2枚以下のレンズで構成され、
     前記第5レンズ群は、2枚以下のレンズで構成され、広角端状態から望遠端状態への変倍時に像面側へ移動し、
     以下の条件式を満足することを特徴とするズームレンズ。
     0.01 < D1/ft < 0.15
     0.70 < Zidwt/Fnwt < 1.10
     但し、
     D1:前記第1レンズ群の物体側面から像側面までの光軸上の距離、
     ft:望遠端状態における全系の焦点距離、
     βt4:望遠端状態における前記第4レンズ群の倍率、
     βt5:望遠端状態における前記第5レンズ群の倍率、
     βw4:広角端状態における前記第4レンズ群の倍率、
     βw5:広角端状態における前記第5レンズ群の倍率、
     Fnt:望遠端状態におけるFナンバー、
     Fnw:広角端状態におけるFナンバー。
     なお、
     Zidwt = {(1-βt4^2)*βt5^2}/{(1-βw4^2)*βw5^2}
     Fnwt = Fnt/Fnw
     と定義する。
  4.  以下の条件式を満足することを特徴とする請求項1又は3に記載のズームレンズ。
     5.80 < Dt12/(-f2)
     但し、
     Dt12:望遠端状態における前記第1レンズ群の像側面から前記第2レンズ群の物体側面までの光軸上の距離。
  5.  以下の条件式を満足することを特徴とする請求項1又は2に記載のズームレンズ。
     0.01 < D1/ft < 0.15
     但し、
     D1:前記第1レンズ群の物体側面から像側面までの光軸上の距離、
     ft:望遠端状態における全系の焦点距離。
  6.  以下の条件式を満足することを特徴とする請求項1又は2に記載のズームレンズ。
     0.70 < Zidwt/Fnwt < 1.10
     なお、
     Zidwt = {(1-βt4^2)*βt5^2}/{(1-βw4^2)*βw5^2}
     Fnwt = Fnt/Fnw
    と定義する。
     但し、
     βt4:望遠端状態における前記第4レンズ群の倍率、
     βt5:望遠端状態における前記第5レンズ群の倍率、
     βw4:広角端状態における前記第4レンズ群の倍率、
     βw5:広角端状態における前記第5レンズ群の倍率、
     Fnt:望遠端状態におけるFナンバー、
     Fnw:広角端状態におけるFナンバー。
  7.  以下の条件式を満足することを特徴とする請求項2又は3に記載のズームレンズ。
     8.40 < f1/(-f2)
     但し、
     f1:前記第1レンズ群の焦点距離。
  8.  以下の条件式を満足することを特徴とする請求項1~7のいずれか一項に記載のズームレンズ。
     2.70 < βt3/βw3
     但し、
     βt3:望遠端状態における前記第3レンズ群の倍率、
     βw3:広角端状態における前記第3レンズ群の倍率。
  9.  以下の条件式を満足することを特徴とする請求項1~8のいずれか一項に記載のズームレンズ。
     0.03 < Mv2/ft
     但し、
     Mv2:広角端状態から望遠端状態までの前記第2レンズ群の移動量、
     ft:望遠端状態における全系の焦点距離。
  10.  前記第4レンズ群は、2枚のレンズで構成され、これら2枚のレンズは接合されていることを特徴とする請求項1~9のいずれか一項に記載のズームレンズ。
  11.  前記第5レンズ群は、2枚のレンズで構成され、これら2枚のレンズは接合されていることを特徴とする請求項1~10のいずれか一項に記載のズームレンズ。
  12.  前記第2レンズ群は、光軸に沿って物体側から順に並んだ、負レンズと、負レンズと、正レンズと、負レンズとから構成されることを特徴とする請求項1~11のいずれか一項に記載のズームレンズ。
  13.  前記第3レンズ群は、光軸に沿って像側から順に並んだ、正レンズと、負レンズと、負レンズと、正レンズとを有することを特徴とする請求項1~12のいずれか一項に記載のズームレンズ。
  14.  前記第4レンズ群を光軸方向に沿って移動させることにより合焦を行うことを特徴とする請求項1~13のいずれか一項に記載のズームレンズ。
  15.  光軸に沿って物体側より順に並んだ、正の屈折力を持つ第1レンズ群と、負の屈折力を持つ第2レンズ群と、正の屈折力を持つ第3レンズ群と、負の屈折力を持つ第4レンズ群と、正の屈折力を持つ第5レンズ群とを有し、各レンズ群の間隔を変化させて変倍を行い、
     前記第1レンズ群は、3枚以上のレンズで構成され、
     前記第5レンズ群は、広角端状態から望遠端状態への変倍時に像面側へ移動し、
     以下の条件式を満足することを特徴とするズームレンズ。
     0.020 < (-f2)/ft < 0.031
     但し、
     f2:望遠端状態における前記第2レンズ群の焦点距離、
     ft:望遠端状態における全系の焦点距離。
  16.  以下の条件式を満足することを特徴とする請求項15に記載のズームレンズ。
     74.00 < AVE1Grpvd < 80.00
     36.00 < G1vd < 48.00
     但し、
     AVE1Grpvd:前記第1レンズ群内のレンズのd線を基準とするアッベ数の平均、
     G1vd:前記第1レンズ群内の最も物体側に配置されたレンズのd線を基準とするアッベ数。
  17.  以下の条件式を満足することを特徴とする請求項15又は16に記載のズームレンズ。
     100.00 < D12t/D12w < 140.00
     但し、
     D12t:望遠端状態における前記第1レンズ群と前記第2レンズ群との空気間隔、
     D12w:広角端状態における前記第1レンズ群と前記第2レンズ群との空気間隔。
  18.  以下の条件式を満足することを特徴とする請求項15~17のいずれか一項に記載のズームレンズ。
     12.34 < β2t/β2w < 14.40
     但し、
     β2t :望遠端状態における前記第2レンズ群の倍率、
     β2w :広角端状態における前記第2レンズ群の倍率。
  19.  以下の条件式を満足することを特徴とする請求項15~18のいずれか一項に記載のズームレンズ。
     0.04 < f3/ft < 0.06
     但し、
     f3:望遠端状態における前記第3レンズ群の焦点距離。
  20.  前記第3レンズ群は、光軸に沿って物体側から順に並んだ、正レンズと、負レンズと、負レンズと、正レンズとから構成されることを特徴とする請求項15~19のいずれか一項に記載のズームレンズ。
  21.  前記第3レンズ群は、少なくとも1枚の非球面レンズを有することを特徴とする請求項15~20のいずれか一項に記載のズームレンズ。
  22.  光軸に沿って物体側より順に並んだ、正の屈折力を持つ第1レンズ群と、負の屈折力を持つ第2レンズ群と、正の屈折力を持つ第3レンズ群と、負の屈折力を持つ第4レンズ群と、正の屈折力を持つ第5レンズ群とを有し、
     以下の条件式を満足することを特徴とするズームレンズ。
     33.00 < ft/(-f2) < 46.00
     1.60 < (Fnt・f1)/ft < 2.30
     43.00 < β2t・β3t/(β2w・β3w) < 65.00
     但し、
     ft:望遠端状態における全系の焦点距離、
     f2:前記第2レンズ群の焦点距離、
     Fnt:望遠端状態におけるF値、
     f1:前記第1レンズ群の焦点距離、
     β2t:望遠端状態における前記第2レンズ群の倍率、
     β3t:望遠端状態における前記第3レンズ群の倍率、
     β2w:広角端状態における前記第2レンズ群の倍率、
     β3w:広角端状態における前記第3レンズ群の倍率。
  23.  広角端状態から望遠端状態への変倍に際し、互いに隣り合う各レンズ群の間隔が変化することを特徴とする請求項22に記載のズームレンズ。
  24.  前記第5レンズ群は、正レンズ1枚と、負レンズ1枚とからなることを特徴とする請求項22又は23に記載のズームレンズ。
  25.  以下の条件式を満足することを特徴とする請求項22~24のいずれか一項に記載のズームレンズ。
     15.00 < ft/f3 < 19.00
     但し、
     f3:前記第3レンズ群の焦点距離。
  26.  以下の条件式を満足することを特徴とする請求項22~25のいずれか一項に記載のズームレンズ。
     15.00 < β2t/β2w < 25.00
  27.  以下の条件式を満足することを特徴とする請求項22~26のいずれか一項に記載のズームレンズ。
     2.00 < f3/(-f2) < 2.70
     但し、
     f3:前記第3レンズ群の焦点距離。
  28.  以下の条件式を満足することを特徴とする請求項22~27のいずれか一項に記載のズームレンズ。
     15.00 < f1/fw < 40.00
     但し、
     fw:広角端状態における全系の焦点距離。
  29.  以下の条件式を満足することを特徴とする請求項22~28のいずれか一項に記載のズームレンズ。
     10.00 < ft/x2 < 40.00
     但し、
     x2:広角端状態から望遠端状態への変倍に際し、結像位置に対して前記第2レンズ群が像面方向に移動する距離。
  30.  前記第2レンズ群と前記第4レンズ群との間に、開口絞りを有することを特徴とする請求項22~29のいずれか一項に記載のズームレンズ。
  31.  前記第2レンズ群と前記第3レンズ群との間に、開口絞りを有することを特徴とする請求項22~30のいずれか一項に記載のズームレンズ。
  32.  変倍に際して、前記開口絞りを光軸方向に移動させることを特徴とする請求項30又は31に記載のズームレンズ。
  33.  以下の条件式を満足することを特徴とする請求項22~32のいずれか一項に記載のズームレンズ。
     0.10° < ωt < 5.00°
     但し、
     ωt:望遠端状態における半画角。
  34.  以下の条件式を満足することを特徴とする請求項22~33のいずれか一項に記載のズームレンズ。
     25.00° < ωw < 80.00°
     但し、
     ωw:広角端状態における半画角。
  35.  広角端状態から望遠端状態への変倍に際し、全てのレンズ群が移動することを特徴とする請求項1~34のいずれか一項に記載のズームレンズ。
  36.  請求項1~35のいずれか一項に記載のズームレンズを搭載することを特徴とする光学機器。
  37.  光軸に沿って物体側より順に並んだ、正の屈折力を持つ第1レンズ群と、負の屈折力を持つ第2レンズ群と、正の屈折力を持つ第3レンズ群と、負の屈折力を持つ第4レンズ群と、正の屈折力を持つ第5レンズ群とを有し、各レンズ群の間隔を変化させて変倍を行うズームレンズの製造方法であって、
     前記第1レンズ群は、3枚以上のレンズで構成され、
     前記第4レンズ群は、2枚以下のレンズで構成され、
     前記第5レンズ群は、2枚以下のレンズで構成され、広角端状態から望遠端状態への変倍時に像面側へ移動し、
     以下の条件式を満足するように、レンズ鏡筒内に各レンズを配置することを特徴とするズームレンズの製造方法。
     8.40 < f1/(-f2)
     但し、
     f1:前記第1レンズ群の焦点距離、
     f2:前記第2レンズ群の焦点距離。
  38.  光軸に沿って物体側より順に並んだ、正の屈折力を持つ第1レンズ群と、負の屈折力を持つ第2レンズ群と、正の屈折力を持つ第3レンズ群と、負の屈折力を持つ第4レンズ群と、正の屈折力を持つ第5レンズ群とを有し、各レンズ群の間隔を変化させて変倍を行うズームレンズの製造方法であって、
     前記第1レンズ群は、3枚以上のレンズで構成され、
     前記第4レンズ群は、2枚以下のレンズで構成され、
     前記第5レンズ群は、2枚以下のレンズで構成され、広角端状態から望遠端状態への変倍時に像面側へ移動し、
     以下の条件式を満足するように、レンズ鏡筒内に各レンズを配置することを特徴とするズームレンズの製造方法。
     5.80 < Dt12/(-f2)
     但し、
     Dt12:望遠端状態における前記第1レンズ群の像側面から前記第2レンズ群の物体側面までの光軸上の距離、
     f2:前記第2レンズ群の焦点距離。
  39.  光軸に沿って物体側より順に並んだ、正の屈折力を持つ第1レンズ群と、負の屈折力を持つ第2レンズ群と、正の屈折力を持つ第3レンズ群と、負の屈折力を持つ第4レンズ群と、正の屈折力を持つ第5レンズ群とを有し、各レンズ群の間隔を変化させて変倍を行うズームレンズの製造方法であって、
     前記第1レンズ群は、3枚以上のレンズで構成され、
     前記第4レンズ群は、2枚以下のレンズで構成され、
     前記第5レンズ群は、2枚以下のレンズで構成され、広角端状態から望遠端状態への変倍時に像面側へ移動し、
     以下の条件式を満足するように、レンズ鏡筒内に各レンズを配置することを特徴とするズームレンズの製造方法。
     0.01 < D1/ft < 0.15
     0.70 < Zidwt/Fnwt < 1.10
     但し、
     D1:前記第1レンズ群の物体側面から像側面までの光軸上の距離、
     ft:望遠端状態における全系の焦点距離、
     βt4:望遠端状態における前記第4レンズ群の倍率、
     βt5:望遠端状態における前記第5レンズ群の倍率、
     βw4:広角端状態における前記第4レンズ群の倍率、
     βw5:広角端状態における前記第5レンズ群の倍率、
     Fnt:望遠端状態におけるFナンバー、
     Fnw:広角端状態におけるFナンバー。
     なお、
     Zidwt = {(1-βt4^2)*βt5^2}/{(1-βw4^2)*βw5^2}
     Fnwt = Fnt/Fnw
     と定義する。
  40.  光軸に沿って物体側より順に並んだ、正の屈折力を持つ第1レンズ群と、負の屈折力を持つ第2レンズ群と、正の屈折力を持つ第3レンズ群と、負の屈折力を持つ第4レンズ群と、正の屈折力を持つ第5レンズ群とを有し、各レンズ群の間隔を変化させて変倍を行うズームレンズの製造方法であって、
     前記第1レンズ群は、3枚以上のレンズで構成され、
     前記第5レンズ群は、広角端状態から望遠端状態への変倍時に像面側へ移動し、
     以下の条件式を満足するように、
     レンズ鏡筒内に各レンズを配置することを特徴とするズームレンズの製造方法。
     0.020 < (-f2)/ft < 0.031
     但し、
     f2:望遠端状態における前記第2レンズ群の焦点距離、
     ft:望遠端状態における全系の焦点距離。
  41.  光軸に沿って物体側より順に並んだ、正の屈折力を持つ第1レンズ群と、負の屈折力を持つ第2レンズ群と、正の屈折力を持つ第3レンズ群と、負の屈折力を持つ第4レンズ群と、正の屈折力を持つ第5レンズ群とを有するズームレンズの製造方法であって、
     以下の条件式を満足するように、
     レンズ鏡筒内に各レンズを配置することを特徴とするズームレンズの製造方法。
     33.00 < ft/(-f2) < 46.00
     1.60 < (Fnt・f1)/ft < 2.30
     43.00 < β2t・β3t/(β2w・β3w) < 65.00
     但し、
     ft:望遠端状態における全系の焦点距離、
     f2:前記第2レンズ群の焦点距離、
     Fnt:望遠端状態におけるF値、
     f1:前記第1レンズ群の焦点距離、
     β2t:望遠端状態における前記第2レンズ群の倍率、
     β3t:望遠端状態における前記第3レンズ群の倍率、
     β2w:広角端状態における前記第2レンズ群の倍率、
     β3w:広角端状態における前記第3レンズ群の倍率。
     
PCT/JP2015/004803 2014-09-24 2015-09-18 ズームレンズ、光学機器及びズームレンズの製造方法 WO2016047129A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201580057686.0A CN107076972A (zh) 2014-09-24 2015-09-18 变焦镜头、光学设备以及变焦镜头的制造方法
CN202011137881.3A CN112433352B (zh) 2014-09-24 2015-09-18 变焦镜头以及光学设备
AU2015323139A AU2015323139B2 (en) 2014-09-24 2015-09-18 Zoom lens, optical device and method of manufacturing zoom lens
EP15844052.9A EP3200001A4 (en) 2014-09-24 2015-09-18 Zoom lens, optical device and method of manufacturing zoom lens
US15/462,811 US10816781B2 (en) 2014-09-24 2017-03-18 Zoom lens, optical apparatus and method for manufacturing the zoom lens
US17/067,898 US11914125B2 (en) 2014-09-24 2020-10-12 Zoom lens, optical apparatus and method for manufacturing the zoom lens

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2014193360A JP6539967B2 (ja) 2014-09-24 2014-09-24 ズームレンズ、光学機器及びズームレンズの製造方法
JP2014-193360 2014-09-24
JP2015-033648 2015-02-24
JP2015-033647 2015-02-24
JP2015-033649 2015-02-24
JP2015033649A JP2016156903A (ja) 2015-02-24 2015-02-24 ズームレンズ、光学機器及びズームレンズの製造方法
JP2015033647A JP6620400B2 (ja) 2015-02-24 2015-02-24 ズームレンズ及び光学機器
JP2015033648A JP6634683B2 (ja) 2015-02-24 2015-02-24 ズームレンズ及び光学機器

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/462,811 Continuation US10816781B2 (en) 2014-09-24 2017-03-18 Zoom lens, optical apparatus and method for manufacturing the zoom lens

Publications (1)

Publication Number Publication Date
WO2016047129A1 true WO2016047129A1 (ja) 2016-03-31

Family

ID=55580676

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/004803 WO2016047129A1 (ja) 2014-09-24 2015-09-18 ズームレンズ、光学機器及びズームレンズの製造方法

Country Status (5)

Country Link
US (2) US10816781B2 (ja)
EP (1) EP3200001A4 (ja)
CN (2) CN107076972A (ja)
AU (1) AU2015323139B2 (ja)
WO (1) WO2016047129A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106597649A (zh) * 2016-11-25 2017-04-26 福建福光股份有限公司 高分辨率强透雾电视摄像变焦镜头

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2015323139B2 (en) * 2014-09-24 2018-12-06 Nikon Corporation Zoom lens, optical device and method of manufacturing zoom lens
CN107250871B (zh) * 2015-02-24 2020-07-28 株式会社尼康 变焦镜头以及光学设备
US11150451B2 (en) 2016-10-07 2021-10-19 Nikon Corporation Zoom optical system, optical apparatus and method for manufacturing the zoom optical system
WO2018092296A1 (ja) 2016-11-21 2018-05-24 株式会社ニコン 変倍光学系、光学機器、撮像機器および変倍光学系の製造方法
JP6664068B2 (ja) * 2017-10-27 2020-03-13 パナソニックIpマネジメント株式会社 ズームレンズ系、及び撮像装置
CN110488472B (zh) * 2018-05-15 2021-04-23 嘉兴中润光学科技股份有限公司 变焦距光学系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000180722A (ja) * 1998-12-14 2000-06-30 Canon Inc リアフォ―カス式のズ―ムレンズ
JP2003287681A (ja) * 2002-03-28 2003-10-10 Minolta Co Ltd 撮像レンズ装置
JP2008129076A (ja) * 2006-11-16 2008-06-05 Canon Inc ズームレンズ及びそれを有する撮像装置
JP2008281927A (ja) * 2007-05-14 2008-11-20 Konica Minolta Opto Inc 変倍光学系、撮像装置及びデジタル機器
JP2009047982A (ja) * 2007-08-21 2009-03-05 Olympus Imaging Corp 結像光学系及びそれを有する電子撮像装置
JP2009139770A (ja) * 2007-12-07 2009-06-25 Ricoh Co Ltd ズームレンズ、撮像装置および携帯情報端末装置
JP2009265652A (ja) * 2008-04-02 2009-11-12 Panasonic Corp ズームレンズ系、交換レンズ装置、及びカメラシステム
JP2009294513A (ja) * 2008-06-06 2009-12-17 Canon Inc ズームレンズ及びそれを有する撮像装置

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5666229A (en) * 1993-07-12 1997-09-09 Nikon Corporation Variable focal length optical system
JP4810133B2 (ja) * 2005-06-15 2011-11-09 キヤノン株式会社 ズームレンズ及びそれを有する撮像装置
US7864443B2 (en) 2007-12-07 2011-01-04 Ricoh Company, Ltd. Zoom lens, imaging apparatus, and personal data assistant
JP5294051B2 (ja) * 2008-03-25 2013-09-18 株式会社リコー ズームレンズ、撮像装置
US7796344B2 (en) * 2008-04-02 2010-09-14 Panasonic Corporation Zoom lens system, interchangeable lens apparatus and camera system
US8614855B2 (en) 2009-02-26 2013-12-24 Tamron Co., Ltd. Zoom lens
JP4770945B2 (ja) * 2009-02-27 2011-09-14 ソニー株式会社 可変焦点距離レンズ系及び撮像装置
JP5328484B2 (ja) * 2009-05-26 2013-10-30 キヤノン株式会社 ズームレンズ及びそれを有する撮像装置
JP5624377B2 (ja) 2009-07-23 2014-11-12 富士フイルム株式会社 ズームレンズおよび撮像装置
CN102033306B (zh) 2009-10-01 2013-08-07 索尼公司 可变焦距镜头系统和图像拾取设备
JP2011075985A (ja) * 2009-10-01 2011-04-14 Sony Corp 可変焦点距離レンズ系及び撮像装置
JP5541663B2 (ja) 2009-10-06 2014-07-09 キヤノン株式会社 ズームレンズ及びそれを有する撮像装置
JP5743810B2 (ja) 2010-10-07 2015-07-01 キヤノン株式会社 ズームレンズ及びそれを有する撮像装置
JP5656895B2 (ja) 2012-02-09 2015-01-21 キヤノン株式会社 ズームレンズ及びそれを有する撮像装置
JP5686298B2 (ja) * 2012-02-28 2015-03-18 コニカミノルタ株式会社 ズームレンズ及び撮像装置
JP5675680B2 (ja) 2012-03-15 2015-02-25 キヤノン株式会社 ズームレンズ及びそれを有する撮像装置
US9069156B2 (en) 2012-05-21 2015-06-30 Canon Kabushiki Kaisha Zoom lens and image pickup apparatus having the same
JP5936439B2 (ja) 2012-05-21 2016-06-22 キヤノン株式会社 ズームレンズ及びそれを有する撮像装置
JP5893509B2 (ja) 2012-05-21 2016-03-23 キヤノン株式会社 ズームレンズ及びそれを有する撮像装置
JP5649621B2 (ja) 2012-07-19 2015-01-07 キヤノン株式会社 光学系および撮像装置
US8976271B2 (en) 2012-07-19 2015-03-10 Canon Kabushiki Kaisha Optical system and image pickup apparatus
JP6004820B2 (ja) * 2012-08-08 2016-10-12 キヤノン株式会社 ズ−ムレンズ及びそれを有する撮像装置
JP6160060B2 (ja) * 2012-10-23 2017-07-12 株式会社ニコン 変倍光学系、光学装置、変倍光学系の製造方法
JP6076764B2 (ja) 2013-02-05 2017-02-08 株式会社タムロン ズームレンズ
JP6253239B2 (ja) * 2013-03-18 2017-12-27 キヤノン株式会社 ズームレンズ及び光学系並びにそれらを有する撮像装置
JP6136588B2 (ja) * 2013-05-31 2017-05-31 ソニー株式会社 ズームレンズ及び撮像装置
JP2015001550A (ja) * 2013-06-13 2015-01-05 オリンパスイメージング株式会社 ズームレンズ及びそれを有する撮像装置
JP6223141B2 (ja) 2013-11-18 2017-11-01 キヤノン株式会社 ズームレンズ及びそれを有する撮像装置
JP6261299B2 (ja) 2013-11-27 2018-01-17 キヤノン株式会社 ズームレンズ及びそれを有する撮像装置
JP6436675B2 (ja) 2014-08-04 2018-12-12 キヤノン株式会社 ズームレンズ及びそれを有する撮像装置
JP5828942B2 (ja) 2014-09-22 2015-12-09 キヤノン株式会社 ズームレンズ及びそれを有する撮像装置
AU2015323139B2 (en) * 2014-09-24 2018-12-06 Nikon Corporation Zoom lens, optical device and method of manufacturing zoom lens

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000180722A (ja) * 1998-12-14 2000-06-30 Canon Inc リアフォ―カス式のズ―ムレンズ
JP2003287681A (ja) * 2002-03-28 2003-10-10 Minolta Co Ltd 撮像レンズ装置
JP2008129076A (ja) * 2006-11-16 2008-06-05 Canon Inc ズームレンズ及びそれを有する撮像装置
JP2008281927A (ja) * 2007-05-14 2008-11-20 Konica Minolta Opto Inc 変倍光学系、撮像装置及びデジタル機器
JP2009047982A (ja) * 2007-08-21 2009-03-05 Olympus Imaging Corp 結像光学系及びそれを有する電子撮像装置
JP2009139770A (ja) * 2007-12-07 2009-06-25 Ricoh Co Ltd ズームレンズ、撮像装置および携帯情報端末装置
JP2009265652A (ja) * 2008-04-02 2009-11-12 Panasonic Corp ズームレンズ系、交換レンズ装置、及びカメラシステム
JP2009294513A (ja) * 2008-06-06 2009-12-17 Canon Inc ズームレンズ及びそれを有する撮像装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3200001A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106597649A (zh) * 2016-11-25 2017-04-26 福建福光股份有限公司 高分辨率强透雾电视摄像变焦镜头
CN106597649B (zh) * 2016-11-25 2019-07-26 福建福光股份有限公司 高分辨率强透雾电视摄像变焦镜头

Also Published As

Publication number Publication date
US20210026119A1 (en) 2021-01-28
AU2015323139B2 (en) 2018-12-06
EP3200001A1 (en) 2017-08-02
US10816781B2 (en) 2020-10-27
CN107076972A (zh) 2017-08-18
US11914125B2 (en) 2024-02-27
EP3200001A4 (en) 2018-04-18
CN112433352A (zh) 2021-03-02
AU2015323139A1 (en) 2017-05-18
US20170254993A1 (en) 2017-09-07
CN112433352B (zh) 2022-08-05

Similar Documents

Publication Publication Date Title
WO2016047129A1 (ja) ズームレンズ、光学機器及びズームレンズの製造方法
WO2019097669A1 (ja) 変倍光学系、光学装置、変倍光学系の製造方法
JP6539967B2 (ja) ズームレンズ、光学機器及びズームレンズの製造方法
WO2014017025A1 (ja) ズームレンズ、光学機器及びズームレンズの製造方法
WO2015162883A1 (ja) 変倍光学系、光学機器及び変倍光学系の製造方法
JP5861472B2 (ja) ズームレンズ及び光学機器
JP5622103B2 (ja) ズームレンズ、このズームレンズを搭載した光学機器、及び、ズームレンズの製造方法
WO2015146177A1 (ja) ズームレンズ、撮像装置及びズームレンズの製造方法
JP6221451B2 (ja) ズームレンズ、光学機器及びズームレンズの製造方法
JP5919840B2 (ja) ズームレンズ及び光学機器
JP6354257B2 (ja) 変倍光学系及び撮像装置
JP6269049B2 (ja) ズームレンズ及び光学機器
JP6880544B2 (ja) ズームレンズおよび光学機器
WO2017131223A1 (ja) ズームレンズ、光学機器及びズームレンズの製造方法
JP5906759B2 (ja) ズームレンズ、光学機器及びズームレンズの製造方法
JP5532402B2 (ja) ズームレンズおよび光学機器
JP5115718B2 (ja) 変倍光学系、この変倍光学系を備えた光学機器、及び、変倍光学系の変倍方法
JP6354256B2 (ja) 変倍光学系及び撮像装置
JP6634683B2 (ja) ズームレンズ及び光学機器
JP6620400B2 (ja) ズームレンズ及び光学機器
JP6354158B2 (ja) ズームレンズ及び光学機器
JP6337565B2 (ja) 変倍光学系及び撮像装置
JP6451074B2 (ja) 変倍光学系、光学装置、変倍光学系の製造方法
JP2016156903A (ja) ズームレンズ、光学機器及びズームレンズの製造方法
JP6555336B2 (ja) ズームレンズ、光学機器及びズームレンズの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15844052

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015844052

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2015323139

Country of ref document: AU

Date of ref document: 20150918

Kind code of ref document: A