WO2014017025A1 - ズームレンズ、光学機器及びズームレンズの製造方法 - Google Patents

ズームレンズ、光学機器及びズームレンズの製造方法 Download PDF

Info

Publication number
WO2014017025A1
WO2014017025A1 PCT/JP2013/004029 JP2013004029W WO2014017025A1 WO 2014017025 A1 WO2014017025 A1 WO 2014017025A1 JP 2013004029 W JP2013004029 W JP 2013004029W WO 2014017025 A1 WO2014017025 A1 WO 2014017025A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
lens group
end state
refractive power
conditional expression
Prior art date
Application number
PCT/JP2013/004029
Other languages
English (en)
French (fr)
Inventor
三郎 真杉
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Priority to CN201380039577.7A priority Critical patent/CN104508532B/zh
Publication of WO2014017025A1 publication Critical patent/WO2014017025A1/ja
Priority to US14/604,695 priority patent/US9563043B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/145Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only
    • G02B15/1451Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only the first group being positive
    • G02B15/145129Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only the first group being positive arranged +-+++
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/145Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only
    • G02B15/1451Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only the first group being positive
    • G02B15/145113Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only the first group being positive arranged +-++-
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/16Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group
    • G02B15/163Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group having a first movable lens or lens group and a second movable lens or lens group, both in front of a fixed lens or lens group
    • G02B15/167Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group having a first movable lens or lens group and a second movable lens or lens group, both in front of a fixed lens or lens group having an additional fixed front lens or group of lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/16Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group
    • G02B15/20Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group having an additional movable lens or lens group for varying the objective focal length
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0025Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/021Mountings, adjusting means, or light-tight connections, for optical elements for lenses for more than one lens
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/64Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having more than six components

Definitions

  • the present invention relates to a zoom lens, an optical device, and a method for manufacturing a zoom lens.
  • a zoom lens having a high zoom ratio a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a third lens having a positive refractive power, which are arranged in order from the object side along the optical axis.
  • a zoom lens which includes a lens group and a fourth lens group having a positive refractive power, and performs zooming by moving each lens group.
  • the present invention has been made in view of such a problem, and an object thereof is to provide a bright, high-magnification, high-quality zoom lens, an optical device, and a method for manufacturing the zoom lens.
  • a zoom lens according to the present invention includes a first lens group having a positive refractive power and a second lens having a negative refractive power arranged in order from the object side along the optical axis. And a third lens group having a positive refractive power, a fourth lens group having a positive refractive power, and a fifth lens group, and the fourth lens group is composed of one positive lens.
  • the fifth lens group is composed of a single lens fixed with respect to the image plane during zooming, and satisfies the following conditional expression.
  • ⁇ 2w magnification of the second lens group in the wide-angle end state
  • ⁇ 3w magnification of the third lens group in the wide-angle end state
  • ⁇ 2t magnification of the second lens group in the telephoto end state
  • ⁇ 3t magnification of the third lens group in the telephoto end state.
  • the zoom lens according to the present invention preferably satisfies the following conditional expression.
  • the third lens group includes a single lens having a positive refractive power, a first cemented lens having a negative refractive power, arranged in order from the object side along the optical axis, It is preferable to have a second cemented lens.
  • the zoom lens according to the present invention preferably satisfies the following conditional expression.
  • f3 focal length of the third lens group
  • f3L the focal length of the second cemented lens constituting the third lens group.
  • the zoom lens according to the present invention preferably satisfies the following conditional expression.
  • R1 radius of curvature of the lens surface closest to the image side of the first cemented lens constituting the third lens group
  • R2 the radius of curvature of the lens surface closest to the object side of the second cemented lens constituting the third lens group.
  • the second lens group includes a first negative lens and a second negative lens arranged in order from the object side, and satisfies the following conditional expression.
  • f21 the focal length of the first negative lens constituting the second lens group
  • f22 the focal length of the second negative lens constituting the second lens group.
  • the zoom lens according to the present invention preferably satisfies the following conditional expression.
  • ⁇ 5 magnification of the fifth lens group.
  • the fifth lens group is composed of a plastic lens.
  • the first lens group moves so that the telephoto end state is closer to the object side than the wide-angle end state. It is preferable that the lens group moves along a locus that is convex toward the image side, the third lens group moves toward the object side, and the fourth lens group moves along a locus that is convex toward the object side.
  • the optical apparatus according to the present invention includes any one of the zoom lenses described above.
  • the zoom lens manufacturing method includes a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a positive refraction arranged in order from the object side along the optical axis.
  • a zoom lens manufacturing method including a third lens group having a power, a fourth lens group having a positive refractive power, and a fifth lens group, wherein the fourth lens group includes a single positive lens.
  • the fifth lens group is composed of one lens fixed with respect to the image plane during zooming, and each lens is incorporated in the lens barrel so as to satisfy the following conditional expression.
  • ⁇ 2w magnification of the second lens group in the wide-angle end state
  • ⁇ 3w magnification of the third lens group in the wide-angle end state
  • ⁇ 2t magnification of the second lens group in the telephoto end state
  • ⁇ 3t magnification of the third lens group in the telephoto end state.
  • a zoom lens, an optical apparatus, and a zoom lens manufacturing method that are bright, have a high zoom ratio, and have a high image quality.
  • FIG. 3A is a diagram illustrating various aberrations of the zoom lens according to the first example.
  • FIG. 9A is a diagram illustrating various aberrations in an infinite focus state in a wide-angle end state
  • FIG. FIGS. 9A and 9B show various aberration diagrams in the infinite focus state in the telephoto end state.
  • FIG. 5A is a diagram illustrating various aberrations of the zoom lens according to Example 2, wherein FIG.
  • FIG. 9A is a diagram illustrating various aberrations in the infinite focus state in the wide-angle end state
  • FIG. 9B is a graph in the infinite focus state in the intermediate focal length state
  • FIGS. 9A and 9B show various aberration diagrams in the infinite focus state in the telephoto end state. It is a figure explaining the digital camera (optical apparatus) carrying the zoom lens which concerns on this embodiment, (a) is a front view, (b) is a rear view.
  • FIG. 6 is a cross-sectional view taken along line AA ′ of FIG. 5 is a flowchart for explaining a method of manufacturing a zoom lens according to the present embodiment.
  • the zoom lens ZL includes a first lens group G1 having a positive refractive power and a second lens having a negative refractive power, which are arranged in order from the object side along the optical axis. It has a lens group G2, a third lens group G3 having a positive refractive power, a fourth lens group G4 having a positive refractive power, and a fifth lens group G5, and the fourth lens group G4 is a single lens.
  • the fifth lens group G5 includes a positive lens L41, and includes a single lens L51 that is fixed with respect to the image plane I during zooming. With this configuration, a high zoom ratio can be achieved while maintaining astigmatism without increasing the size of the entire lens.
  • the zoom lens ZL according to the present embodiment is configured to satisfy the following conditional expression (1) in consideration of the above configuration.
  • ⁇ 2w magnification of the second lens group G2 in the wide-angle end state
  • ⁇ 3w magnification of the third lens group G3 in the wide-angle end state
  • ⁇ 2t magnification of the second lens group G2 in the telephoto end state
  • ⁇ 3t magnification of the third lens group G3 in the telephoto end state.
  • Conditional expression (1) defines an appropriate magnification change ratio of the second lens group G2 and the third lens group G3 at the time of zooming from the wide-angle end state to the telephoto end state. If the lower limit of conditional expression (1) is not reached, coma will deteriorate, which is not preferable. Similarly, exceeding the upper limit value of conditional expression (1) is not preferable because coma becomes worse.
  • the zoom lens ZL according to the present embodiment satisfies the following conditional expression (2).
  • Conditional expression (2) defines a product of appropriate magnification changes of the second lens group G2 and the third lens group G3 at the time of zooming from the wide-angle end state to the telephoto end state. If the lower limit value of conditional expression (2) is not reached, coma will deteriorate, which is not preferable. Similarly, when the value exceeds the upper limit value of conditional expression (2), coma becomes worse, which is not preferable.
  • conditional expression (2) In order to secure the effect of the present embodiment, it is preferable to set the lower limit value of conditional expression (2) to 5.0. In order to secure the effect of the present embodiment, it is preferable to set the upper limit value of conditional expression (2) to 8.5.
  • the third lens group G3 includes a single lens having a positive refractive power and a first cemented lens having a negative refractive power, which are arranged in order from the object side along the optical axis. And a second cemented lens.
  • the zoom lens ZL according to the present embodiment satisfies the following conditional expression (3).
  • f3 focal length of the third lens group G3
  • f3L the focal length of the second cemented lens constituting the third lens group G3.
  • Conditional expression (3) defines an appropriate focal length ratio between the second cemented lens constituting the third lens group G3 and the third lens group G3. If the lower limit value of conditional expression (3) is not reached, spherical aberration and coma aberration deteriorate, which is not preferable. Exceeding the upper limit value of conditional expression (3) is not preferable because the entire optical system is enlarged and fluctuations in coma and astigmatism due to manufacturing errors increase.
  • conditional expression (3) In order to secure the effect of the present embodiment, it is preferable to set the lower limit value of conditional expression (3) to ⁇ 0.3. In order to ensure the effect of the present embodiment, it is preferable to set the upper limit of conditional expression (3) to 0.3.
  • the zoom lens ZL according to the present embodiment satisfies the following conditional expression (4).
  • R1 radius of curvature of the lens surface closest to the image side of the first cemented lens constituting the third lens group G3
  • R2 radius of curvature of the lens surface closest to the object side of the second cemented lens constituting the third lens group G3.
  • Conditional expression (4) defines a preferable shape of the air lens formed between the two cemented lenses constituting the third lens group G3, that is, between the first cemented lens and the second cemented lens. . If the lower limit value of conditional expression (4) is not reached, coma and spherical aberration are deteriorated, which is not preferable. Similarly, exceeding the upper limit value of conditional expression (4) is not preferable because coma and spherical aberrations deteriorate.
  • the second lens group G2 includes a first negative lens and a second negative lens arranged in order from the object side, and satisfies the following conditional expression (5): It is preferable to do.
  • f21 the focal length of the first negative lens constituting the second lens group G2.
  • f22 Focal length of the second negative lens constituting the second lens group G2.
  • Conditional expression (5) defines an appropriate focal length ratio between the two negative lenses constituting the second lens group G2, that is, the first negative lens and the second negative lens. If the lower limit value of conditional expression (5) is not reached, coma and spherical aberration are deteriorated, which is not preferable. Similarly, when the value is below the upper limit value of conditional expression (5), coma and spherical aberration are deteriorated, which is not preferable.
  • the zoom lens ZL according to this embodiment preferably satisfies the following conditional expression (6). 0.85 ⁇ 5 ⁇ 1.15 (6) However, ⁇ 5: magnification of the fifth lens group G5.
  • Conditional expression (6) defines an appropriate magnification of the fifth lens group G5. If the lower limit of conditional expression (6) is not reached, the optical system becomes large and the field curvature deteriorates, which is not preferable. Similarly, exceeding the upper limit value of conditional expression (6) is not preferable because the optical system becomes large and curvature of field deteriorates.
  • conditional expression (6) In order to secure the effect of the present embodiment, it is preferable to set the lower limit value of conditional expression (6) to 0.90. In order to secure the effect of the present embodiment, it is preferable to set the upper limit of conditional expression (6) to 1.10.
  • the fifth lens group G5 is composed of a plastic lens.
  • the plastic lens is likely to have various performance fluctuations due to temperature changes.
  • the performance changes due to temperature changes are not. Almost negligible. Therefore, it is more preferable to use a plastic lens for the fifth lens group G5 from the viewpoint of manufacturing cost.
  • the first lens group G1 can move so that the telephoto end state is closer to the object side than the wide-angle end state.
  • the first lens group G1 may move monotonously toward the object side or may move along a locus that is convex toward the image side.
  • the second lens group G2 preferably moves along a locus convex toward the image side.
  • the third lens group G3 preferably moves monotonously toward the object side.
  • the fourth lens group G4 preferably moves along a locus convex toward the object side.
  • FIG. 5 and 6 show a configuration of a digital still camera CAM (optical device) as an optical device including the above-described zoom lens ZL as a photographing lens.
  • a digital still camera CAM optical device
  • a power button not shown
  • a shutter not shown
  • light from the subject (object) is condensed by the zoom lens ZL, and an image is displayed.
  • An image is formed on an image sensor C (for example, a CCD or a CMOS) disposed on the surface I (see FIG. 1).
  • the subject image formed on the image sensor C is displayed on the liquid crystal monitor M disposed behind the digital still camera CAM.
  • the photographer determines the composition of the subject image while looking at the liquid crystal monitor M, and then depresses the release button B1 to photograph the subject image with the image sensor C, and records and saves it in a memory (not shown).
  • the camera CAM also includes an auxiliary light emitting unit EF that emits auxiliary light when the subject is dark, a function button B2 that is used for setting various conditions of the digital still camera CAM, and the like.
  • a compact type camera in which the camera CAM and the zoom lens ZL are integrally formed is illustrated.
  • a single lens reflex camera in which a lens barrel having the zoom lens ZL and a camera body main body can be attached and detached is used. good.
  • the camera CAM having the above-described configuration, it is possible to realize a bright, high-magnification, and high-quality camera by mounting the zoom lens ZL according to the present embodiment as a photographing lens.
  • a method of manufacturing the zoom lens ZL described above will be described with reference to FIG.
  • a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, and a third lens group G3 having a positive refractive power are aligned (step ST10).
  • one positive lens L41 is incorporated as the fourth lens group G4 (step ST20).
  • the fifth lens group G5 one lens L51 fixed with respect to the image plane I during zooming is incorporated (step ST30). Then, each lens is incorporated in the lens barrel so as to satisfy the following conditional expression (1) (step ST40).
  • ⁇ 2w magnification of the second lens group G2 in the wide-angle end state
  • ⁇ 3w magnification of the third lens group G2 in the wide-angle end state
  • ⁇ 2t magnification of the second lens group G3 in the telephoto end state
  • ⁇ 3t magnification of the third lens group G3 in the telephoto end state.
  • the concave surface is directed to the image side in order from the object side along the optical axis.
  • a meniscus negative lens L11 and a meniscus positive lens L12 having a convex surface facing the object side and a meniscus positive lens L13 having a convex surface facing the object side are incorporated, and the positive refractive power as a whole Configured to have.
  • the second lens group G2 in order from the object side along the optical axis, a meniscus negative lens L21 having a concave surface facing the image side, a biconcave negative lens L22, and a biconvex positive lens L23.
  • a biconvex positive lens L31, a meniscus positive lens L32 with a convex surface facing the object side, and a meniscus shape with a concave surface facing the image side A cemented lens with a negative lens L33 and a cemented lens with a biconcave negative lens L34 and a biconvex positive lens L35 are incorporated so as to have a positive refractive power as a whole.
  • a meniscus positive lens L41 having a convex surface facing the object side is incorporated so as to have a positive refractive power as a whole.
  • a meniscus positive lens L51 having a concave surface facing the object side is incorporated so as to have a positive refractive power as a whole.
  • Each lens is incorporated so that the value corresponding to conditional expression (1) is 1.18.
  • Tables 1 and 2 are shown below. These are tables of specifications in the first and second embodiments.
  • each reference symbol for FIG. 1 according to the first embodiment is used independently for each embodiment in order to avoid complication of explanation due to an increase in the number of digits of the reference symbol. Therefore, even if the same reference numerals as those in the drawings according to the other embodiments are given, they are not necessarily in the same configuration as the other embodiments.
  • d-line (wavelength 587.5620 nm) and g-line (wavelength 435.8350 nm) are selected as the calculation targets of the aberration characteristics.
  • the surface number is the order of the optical surfaces from the object side along the light traveling direction
  • R is the radius of curvature of each optical surface
  • D is the next optical surface from each optical surface
  • Or nd is the refractive index of the material of the optical member with respect to the d-line
  • ⁇ d is the Abbe number based on the d-line of the material of the optical member.
  • the object plane is the object plane
  • (variable) is the variable plane spacing
  • the curvature radius “ ⁇ ” is the plane or aperture
  • (aperture S) is the aperture stop S
  • the image plane is the image plane I.
  • the refractive index of air “1.00000” is omitted.
  • is the photographing magnification
  • f is the focal length of the entire lens system
  • FNO is the F number
  • is the half angle of view (unit: °)
  • Y is the image height
  • TL is the total lens length
  • BF represents the distance from the image side surface of the optical member disposed closest to the image side to the paraxial image plane
  • BF air equivalent represents the air equivalent distance from the final optical surface to the paraxial image plane.
  • TL is expressed by an air conversion distance from the final optical surface to the paraxial image surface.
  • Di is shown in each of the wide-angle end state, the intermediate focal length state, and the telephoto end state. Di represents a variable interval between the i-th surface and the (i + 1) -th surface.
  • G represents the group number
  • the first group surface represents the surface number of the most object side of each group
  • the group focal length represents the focal length of each group.
  • mm is generally used for the focal length f, curvature radius R, surface distance D, and other lengths, etc. unless otherwise specified, but the optical system is proportionally enlarged. Alternatively, the same optical performance can be obtained even by proportional reduction, and the present invention is not limited to this. Further, the unit is not limited to “mm”, and other appropriate units can be used.
  • the zoom lens ZL (ZL1) includes a first lens group G1 having a positive refractive power arranged in order from the object side along the optical axis, and a negative refractive power.
  • the first lens group G1 is a cemented lens of a meniscus negative lens L11 having a concave surface facing the image side and a meniscus positive lens L12 having a convex surface facing the object side, which are arranged in order from the object side along the optical axis. And a meniscus positive lens L13 having a convex surface facing the object side.
  • the second lens group G2 is arranged in order from the object side along the optical axis, the meniscus negative lens L21 having a concave surface on the image side, a biconcave negative lens L22, and a biconvex positive lens L23. It consists of. Aspheric surfaces are formed on the lens surfaces on both sides of the negative lens 21.
  • the third lens group G3 includes a biconvex positive lens L31 arranged in order from the object side along the optical axis, a meniscus positive lens L32 having a convex surface on the object side, and a meniscus having a concave surface on the image side. It consists of a cemented lens with a negative lens L33 having a shape and a cemented lens with a negative lens L34 having a biconcave shape and a positive lens L35 having a biconvex shape. Aspheric surfaces are formed on the lens surfaces on both sides of the positive lens L31.
  • the fourth lens group G4 includes a meniscus positive lens L41 having a convex surface directed toward the object side.
  • the fifth lens group G5 includes a meniscus positive lens L51 having a concave surface directed toward the object side. An aspherical surface is formed on the image side lens surface of the negative lens L51.
  • an aperture stop S for the purpose of adjusting the amount of light is disposed.
  • a low-pass filter LPF for cutting a spatial frequency higher than the limit resolution of a solid-state imaging device such as a CCD disposed on the image plane I is disposed.
  • the first lens group G1 moves so that the telephoto end state is closer to the object side than the wide-angle end state.
  • the group G2 moves along a locus convex toward the image side
  • the third lens group G3 moves monotonously toward the object side
  • the fourth lens group G4 moves along a locus convex toward the object side.
  • the fifth lens group G5 is always fixed with respect to the image plane I.
  • the aperture stop S moves together with the third lens group G3.
  • Table 1 below shows the values of each item in the first example.
  • Surface numbers 1 to 28 in Table 1 correspond to the optical surfaces having the curvature radii R1 to R28 shown in FIG.
  • the sixth surface, the seventh surface, the thirteenth surface, the fourteenth surface, and the twenty-fourth surface are formed in an aspherical shape.
  • FIG. 2 is a diagram showing various aberrations (spherical aberration, astigmatism, distortion, lateral chromatic aberration, and coma aberration) of the first example, and (a) is a diagram showing various aberrations in the infinite focus state at the wide-angle end state.
  • FIGS. 4A and 4B show various aberration diagrams in the infinite focus state in the intermediate focal length state
  • FIG. 5C shows various aberration diagrams in the infinite focus state in the telephoto end state.
  • FNO represents an F number
  • represents a half angle of view (unit: °).
  • the solid line indicates the spherical aberration
  • the broken line indicates the sine condition.
  • the solid line indicates the sagittal image plane
  • the broken line indicates the meridional image plane.
  • meridional coma meridional coma is shown.
  • d represents various aberrations with respect to the d-line
  • g represents various aberrations with respect to the g-line
  • those not described represent various aberrations with respect to the d-line.
  • the zoom lens ZL (ZL2) according to the second example includes a first lens group G1 having a positive refractive power arranged in order from the object side along the optical axis, and a negative refractive power.
  • the first lens group G1 is a cemented lens of a meniscus negative lens L11 having a concave surface facing the image side and a meniscus positive lens L12 having a convex surface facing the object side, which are arranged in order from the object side along the optical axis. And a meniscus positive lens L13 having a convex surface facing the object side.
  • the second lens group G2 is arranged in order from the object side along the optical axis, the meniscus negative lens L21 having a concave surface facing the image side, the biconcave negative lens L22, and the convex surface facing the object side. It comprises a meniscus positive lens L23. Aspheric surfaces are formed on the lens surfaces on both sides of the negative lens 21.
  • the third lens group G3 includes a biconvex positive lens L31 arranged in order from the object side along the optical axis, a meniscus positive lens L32 having a convex surface on the object side, and a meniscus having a concave surface on the image side. It consists of a cemented lens with a negative lens L33 having a shape and a cemented lens with a negative lens L34 having a biconcave shape and a positive lens L35 having a biconvex shape. Aspheric surfaces are formed on the lens surfaces on both sides of the positive lens L31.
  • the fourth lens group G4 includes a meniscus positive lens L41 having a convex surface directed toward the object side.
  • the fifth lens group G5 includes a meniscus negative lens L51 having a concave surface directed toward the object side. An aspherical surface is formed on the image side lens surface of the negative lens L51.
  • an aperture stop S for the purpose of adjusting the amount of light is disposed.
  • a low-pass filter LPF for cutting a spatial frequency higher than the limit resolution of a solid-state imaging device such as a CCD disposed on the image plane I is disposed.
  • the first lens group G1 moves so that the telephoto end state is closer to the object side than the wide-angle end state.
  • the group G2 moves along a locus convex toward the image side
  • the third lens group G3 moves monotonously toward the object side
  • the fourth lens group G4 moves along a locus convex toward the object side.
  • the fifth lens group G5 is always fixed with respect to the image plane I.
  • the aperture stop S moves together with the third lens group G3.
  • Table 2 below shows the values of each item in the second example.
  • Surface numbers 1 to 28 in Table 2 correspond to the optical surfaces having the curvature radii R1 to R28 shown in FIG.
  • the sixth surface, the seventh surface, the thirteenth surface, the fourteenth surface, and the twenty-fourth surface are formed in an aspherical shape.
  • FIG. 4 is a diagram showing various aberrations (spherical aberration, astigmatism, distortion aberration, lateral chromatic aberration and coma aberration) of the second example, and (a) is a diagram showing various aberrations in the infinite focus state at the wide-angle end state.
  • FIGS. 4A and 4B show various aberration diagrams in the infinite focus state in the intermediate focal length state
  • FIG. 5C shows various aberration diagrams in the infinite focus state in the telephoto end state.
  • a high-quality zoom lens can be realized while the F value is as bright as about 2 and a high zoom ratio of 6 times or more is secured.
  • a five-group configuration is shown as a zoom lens, but the present invention can also be applied to other group configurations such as six groups. Further, a configuration in which a lens or a lens group is added to the most object side, or a configuration in which a lens or a lens group is added to the most image side may be used.
  • the lens group refers to a portion having at least one lens separated by an air interval that changes during zooming.
  • a single lens group, a plurality of lens groups, or a partial lens group may be moved in the optical axis direction so as to focus on an object at infinity from a short distance object.
  • the focusing lens group can be applied to autofocus, and is also suitable for driving a motor for autofocus (using an ultrasonic motor or the like).
  • the fourth lens group G4 is preferably a focusing lens group.
  • image blur caused by camera shake is caused by vibrating the lens group or the partial lens group in a direction perpendicular to the optical axis, or rotating (swinging) in the in-plane direction including the optical axis.
  • It may be a vibration-proof lens group that corrects the above.
  • the lens surface may be formed as a spherical surface, a flat surface, or an aspheric surface.
  • the lens surface is a spherical surface or a flat surface, lens processing and assembly adjustment are facilitated, and optical performance deterioration due to errors in processing and assembly adjustment can be prevented. Further, even when the image plane is deviated, it is preferable because there is little deterioration in drawing performance.
  • the lens surface is an aspheric surface
  • the aspheric surface is an aspheric surface by grinding, a glass mold aspheric surface made of glass with an aspheric shape, or a composite aspheric surface made of resin with an aspheric shape on the glass surface. Any aspherical surface may be used.
  • the lens surface may be a diffractive surface, and the lens may be a gradient index lens (GRIN lens) or a plastic lens.
  • GRIN lens gradient index lens
  • the aperture stop S is preferably arranged in or near the third lens group G3.
  • the role is replaced by a lens frame without providing a member as an aperture stop, Good.
  • each lens surface may be provided with an antireflection film having high transmittance in a wide wavelength range in order to reduce flare and ghost and achieve high optical performance with high contrast.
  • the zoom lens ZL of the present embodiment has a zoom ratio of about 3 to 10 times.
  • ZL zoom lens CAM Digital still camera (optical equipment)
  • G1 1st lens group
  • G2 2nd lens group
  • G3 3rd lens group
  • G4 4th lens group
  • G5 5th lens group
  • S Aperture stop LPF Low pass filter I Image plane

Abstract

光軸に沿って物体側から順に並んだ、正の屈折力を持つ第1レンズ群(G1)と、負の屈折力を持つ第2レンズ群(G2)と、正の屈折力を持つ第3レンズ群(G3)と、正の屈折力を持つ第4レンズ群(G4)と、第5レンズ群(G5)とを有し、第4レンズ群(G4)は1枚の正レンズ(L41)からなり、第5レンズ群(G5)は変倍中に像面に対して固定された1枚のレンズ(L51)からなり、次の条件式(1)を満足する。 0.9 < β2t・β3w/(β2w・β3t) < 1.7 …(1) 但し、β2w:広角端状態における第2レンズ群(G2)の倍率、β3w:広角端状態における第3レンズ群(G3)の倍率、β2t:望遠端状態における第2レンズ群(G2)の倍率、β3t:望遠端状態における第3レンズ群(G3)の倍率。

Description

ズームレンズ、光学機器及びズームレンズの製造方法
 本発明は、ズームレンズ、光学機器及びズームレンズの製造方法に関する。
 従来、高変倍比のズームレンズとして、光軸に沿って物体側から順に並んだ、正の屈折力の第1レンズ群、負の屈折力の第2レンズ群、正の屈折力の第3レンズ群、正の屈折力の第4レンズ群とから構成され、各レンズ群を移動させることにより変倍を行うズームレンズが提案されている。(例えば、特許文献1を参照)
特開2010-217478号公報
 従来のズームレンズでは、明るさは確保されているものの、変倍比は十分とは言えなかった。
 本発明は、このような問題に鑑みてなされたものであり、明るく、高変倍で、高画質なズームレンズ、光学機器及びズームレンズの製造方法を提供することを目的とする。
 このような目的を達成するため、本発明に係るズームレンズは、光軸に沿って物体側から順に並んだ、正の屈折力を持つ第1レンズ群と、負の屈折力を持つ第2レンズ群と、正の屈折力を持つ第3レンズ群と、正の屈折力を持つ第4レンズ群と、第5レンズ群とを有し、前記第4レンズ群は、1枚の正レンズからなり、前記第5レンズ群は、変倍中に像面に対して固定された1枚のレンズからなり、次の条件式を満足する。
 0.9 < β2t・β3w/(β2w・β3t) < 1.7
 但し、
 β2w:広角端状態における前記第2レンズ群の倍率、
 β3w:広角端状態における前記第3レンズ群の倍率、
 β2t:望遠端状態における前記第2レンズ群の倍率、
 β3t:望遠端状態における前記第3レンズ群の倍率。
 本発明に係るズームレンズは、次の条件式を満足することが好ましい。
 4.0 < β2t・β3t/(β2w・β3w) < 10.0
 本発明に係るズームレンズにおいて、前記第3レンズ群は、光軸に沿って物体側から順に並んだ、正の屈折力を持つ単レンズと、負の屈折力を持つ第1の接合レンズと、第2の接合レンズとを有することが好ましい。
 本発明に係るズームレンズは、次の条件式を満足することが好ましい。
 -0.4 < f3/f3L < 0.4
 但し、
 f3:前記第3レンズ群の焦点距離、
 f3L:前記第3レンズ群を構成する前記第2の接合レンズの焦点距離。
 本発明に係るズームレンズは、次の条件式を満足することが好ましい。
 0.0 < (R2+R1)/(R2-R1) < 1.5
 但し、
 R1:前記第3レンズ群を構成する前記第1の接合レンズの最も像側のレンズ面の曲率半径、
 R2:前記第3レンズ群を構成する前記第2の接合レンズの最も物体側のレンズ面の曲率半径。
 本発明に係るズームレンズにおいて、前記第2レンズ群は、物体側から順に並んだ、第1の負レンズと、第2の負レンズとを有し、次の条件式を満足することが好ましい。
 1.2 < f22/f21 < 5.0
 但し、
 f21:前記第2レンズ群を構成する前記第1の負レンズの焦点距離、
 f22:前記第2レンズ群を構成する前記第2の負レンズの焦点距離。
 本発明に係るズームレンズは、次の条件式を満足することが好ましい。
 0.85 < β5 < 1.15
 但し、
 β5:前記第5レンズ群の倍率。
 本発明に係るズームレンズにおいて、前記第5レンズ群は、プラスチックレンズで構成されていることが好ましい。
 本発明に係るズームレンズは、広角端状態から望遠端状態への変倍に際して、前記第1レンズ群は広角端状態よりも望遠端状態の方が物体側にあるように移動し、前記第2レンズ群は像側に凸の軌跡を描いて移動し、前記第3レンズ群は物体側へ移動し、前記第4レンズ群は物体側に凸の軌跡を描いて移動することが好ましい。
 本発明に係る光学機器は、上述のズームレンズのいずれかを備えて構成される。
 本発明に係るズームレンズの製造方法は、光軸に沿って物体側から順に並んだ、正の屈折力を持つ第1レンズ群と、負の屈折力を持つ第2レンズ群と、正の屈折力を持つ第3レンズ群と、正の屈折力を持つ第4レンズ群と、第5レンズ群とを有するズームレンズの製造方法であって、前記第4レンズ群は、1枚の正レンズからなり、前記第5レンズ群は、変倍中に像面に対して固定された1枚のレンズからなり、次の条件式を満足するように、レンズ鏡筒内に各レンズを組み込む。
 0.9 < β2t・β3w/(β2w・β3t) < 1.7
 但し、
 β2w:広角端状態における前記第2レンズ群の倍率、
 β3w:広角端状態における前記第3レンズ群の倍率、
 β2t:望遠端状態における前記第2レンズ群の倍率、
 β3t:望遠端状態における前記第3レンズ群の倍率。
 本発明によれば、明るく、高変倍で、高画質なズームレンズ、光学機器及びズームレンズの製造方法を提供することができる。
第1実施例に係るレンズ構成及び広角端状態から望遠端状態までの移動軌跡を示す図である。 第1実施例に係るズームレンズの諸収差図であり、(a)は広角端状態における無限遠合焦状態での諸収差図、(b)は中間焦点距離状態における無限遠合焦状態での諸収差図、(c)は望遠端状態における無限遠合焦状態での諸収差図をそれぞれ示す。 第2実施例に係るレンズ構成及び広角端状態から望遠端状態までの移動軌跡を示す図である。 第2実施例に係るズームレンズの諸収差図であり、(a)は広角端状態における無限遠合焦状態での諸収差図、(b)は中間焦点距離状態における無限遠合焦状態での諸収差図、(c)は望遠端状態における無限遠合焦状態での諸収差図をそれぞれ示す。 本実施形態に係るズームレンズを搭載するデジタルカメラ(光学機器)を説明する図であり、(a)は正面図であり、(b)は背面図である。 図5(a)のA-A´線に沿った断面図である。 本実施形態に係るズームレンズの製造方法を説明するためのフローチャートである。
 以下、実施形態について、図面を参照しながら説明する。本実施形態に係るズームレンズZLは、図1に示すように、光軸に沿って物体側から順に並んだ、正の屈折力を持つ第1レンズ群G1と、負の屈折力を持つ第2レンズ群G2と、正の屈折力を持つ第3レンズ群G3と、正の屈折力を持つ第4レンズ群G4と、第5レンズ群G5とを有し、第4レンズ群G4は1枚の正レンズL41からなり、第5レンズ群G5は変倍中に像面Iに対して固定された1枚のレンズL51からなる。この構成により、レンズ全体のサイズを大型化させずに、非点収差を維持したままで、高変倍化が可能となる。
 そして、本実施形態に係るズームレンズZLは、上記構成を踏まえた上で、次の条件式(1)を満足するように構成されている。
 0.9 < β2t・β3w/(β2w・β3t) < 1.7 …(1)
 但し、
 β2w:広角端状態における第2レンズ群G2の倍率、
 β3w:広角端状態における第3レンズ群G3の倍率、
 β2t:望遠端状態における第2レンズ群G2の倍率、
 β3t:望遠端状態における第3レンズ群G3の倍率。
 条件式(1)は、広角端状態から望遠端状態への変倍時における、第2レンズ群G2と第3レンズ群G3の適切な倍率変化の比率を規定している。条件式(1)の下限値を下回ると、コマ収差が悪化するため、好ましくない。同様に、条件式(1)の上限値を上回ると、コマ収差が悪化するため、好ましくない。
 本実施形態の効果をより確実なものとするために、条件式(1)の下限値を1.0とすることが好ましい。本実施形態の効果をより確実なものとするために、条件式(1)の上限値を1.5とすることが好ましい。
 本実施形態に係るズームレンズZLは、次の条件式(2)を満足することが好ましい。
 4.0 < β2t・β3t/(β2w・β3w) < 10.0 …(2)
 条件式(2)は、広角端状態から望遠端状態への変倍時における、第2レンズ群G2と第3レンズ群G3の適切な倍率変化の積を規定している。条件式(2)の下限値を下回ると、コマ収差が悪化するため、好ましくない。同様に、条件式(2)の上限値を上回ると、コマ収差が悪化するため、好ましくない。
 本実施形態の効果をより確実なものとするために、条件式(2)の下限値を5.0とすることが好ましい。本実施形態の効果をより確実なものとするために、条件式(2)の上限値を8.5とすることが好ましい。
 本実施形態に係るズームレンズZLにおいて、第3レンズ群G3は、光軸に沿って物体側から順に並んだ、正の屈折力を持つ単レンズと、負の屈折力を持つ第1の接合レンズと、第2の接合レンズとを有することが好ましい。この構成により、球面収差を効率良く補正することができる。また、大口径化が容易となる。
 本実施形態に係るズームレンズZLは、次の条件式(3)を満足することが好ましい。
 -0.4 < f3/f3L < 0.4 …(3)
 但し、
 f3:第3レンズ群G3の焦点距離、
 f3L:第3レンズ群G3を構成する第2の接合レンズの焦点距離。
 条件式(3)は、第3レンズ群G3を構成する第2の接合レンズと、第3レンズ群G3との適切な焦点距離比を規定している。条件式(3)の下限値を下回ると、球面収差とコマ収差が悪化するため、好ましくない。条件式(3)の上限値を上回ると、光学系全体が大型化するとともに、製造誤差によるコマ収差と非点収差の変動が大きくなるため、好ましくない。
 本実施形態の効果をより確実なものとするために、条件式(3)の下限値を-0.3とすることが好ましい。本実施形態の効果をより確実なものとするために、条件式(3)の上限値を0.3とすることが好ましい。
 本実施形態に係るズームレンズZLは、次の条件式(4)を満足することが好ましい。
 0.0 < (R2+R1)/(R2-R1) < 1.5 …(4)
 但し、
 R1:第3レンズ群G3を構成する第1の接合レンズの最も像側のレンズ面の曲率半径、
 R2:第3レンズ群G3を構成する第2の接合レンズの最も物体側のレンズ面の曲率半径。
 条件式(4)は、第3レンズ群G3を構成する2つの接合レンズ間、すなわち第1の接合レンズと第2の接合レンズとの間に形成される空気レンズの好ましい形状を規定している。条件式(4)の下限値を下回ると、コマ収差と球面収差が悪化するため、好ましくない。同様に、条件式(4)の上限値を上回ると、コマ収差と球面収差が悪化するため、好ましくない。
 本実施形態の効果をより確実なものとするために、条件式(4)の下限値を0.4とすることが好ましい。本実施形態の効果をより確実なものとするために、条件式(4)の上限値を1.2とすることが好ましい。
 本実施形態に係るズームレンズZLにおいて、第2レンズ群G2は、物体側から順に並んだ、第1の負レンズと、第2の負レンズとを有し、次の条件式(5)を満足することが好ましい。
 1.2 < f22/f21 < 5.0 …(5)
 但し、
 f21:第2レンズ群G2を構成する第1の負レンズの焦点距離、
 f22:第2レンズ群G2を構成する第2の負レンズの焦点距離。
 条件式(5)は、第2レンズ群G2を構成する2つの負レンズ、すなわち第1の負レンズと第2の負レンズとの適切な焦点距離比を規定している。条件式(5)の下限値を下回ると、コマ収差と球面収差が悪化するため、好ましくない。同様に、条件式(5)の上限値を下回ると、コマ収差と球面収差が悪化するため、好ましくない。
 本実施形態の効果をより確実なものとするために、条件式(5)の下限値を1.5とすることが好ましい。本実施形態の効果をより確実なものとするために、条件式(5)の上限値を4.5とすることが好ましい。
 本実施形態に係るズームレンズZLは、次の条件式(6)を満足することが好ましい。
 0.85 < β5 < 1.15 …(6)
 但し、
 β5:第5レンズ群G5の倍率。
 条件式(6)は、第5レンズ群G5の適切な倍率を規定している。条件式(6)の下限値を下回ると、光学系が大型化するとともに、像面湾曲が悪化するため、好ましくない。同様に、条件式(6)の上限値を上回ると、光学系が大型化するとともに、像面湾曲が悪化するため、好ましくない。
 本実施形態の効果をより確実なものとするために、条件式(6)の下限値を0.90とすることが好ましい。本実施形態の効果をより確実なものとするために、条件式(6)の上限値を1.10とすることが好ましい。
 本実施形態に係るズームレンズZLにおいて、第5レンズ群G5は、プラスチックレンズで構成されていることが好ましい。一般に、プラスチックレンズは温度変化による諸性能の変動が問題となりやすいが、本実施形態に係るズームレンズZLにおいては、像面Iに近い第5レンズ群G5に使用するため、温度変化による性能変化はほぼ無視することができる。よって、製造コストの観点から、第5レンズ群G5には、プラスチックレンズを使用することがより好ましい。
 本実施形態に係るズームレンズZLは、広角端状態から望遠端状態への変倍に際して、第1レンズ群G1は広角端状態よりも望遠端状態の方が物体側にあるように移動することが好ましい。その際、第1レンズ群G1は、物体側へ単調に移動してもよいし、像側に凸の軌跡を描いて移動してもよい。第2レンズ群G2は、像側に凸の軌跡を描いて移動するのが好ましい。第3レンズ群G3は、物体側へ単調に移動するのが好ましい。第4レンズ群G4は、物体側に凸の軌跡を描いて移動することが好ましい。この構成により、変倍時に球面収差等の諸収差の変動を小さく抑えつつ、各レンズ群の移動量が大きくなりすぎることを防いで、レンズ全体の小型化を図ることができる。
 図5及び図6に、撮影レンズとして上述のズームレンズZLを備える光学機器として、デジタルスチルカメラCAM(光学機器)の構成を示す。このデジタルスチルカメラCAMは、不図示の電源釦を押すと、撮影レンズ(ズームレンズZL)の不図示のシャッタが開放されて、ズームレンズZLで被写体(物体)からの光が集光され、像面I(図1参照)に配置された撮像素子C(例えば、CCDやCMOS等)に結像される。撮像素子Cに結像された被写体像は、デジタルスチルカメラCAMの背後に配置された液晶モニターMに表示される。撮影者は、液晶モニターMを見ながら被写体像の構図を決めた後、レリーズ釦B1を押し下げて被写体像を撮像素子Cで撮影し、不図示のメモリーに記録保存する。また、カメラCAMには、被写体が暗い場合に補助光を発光する補助光発光部EF、デジタルスチルカメラCAMの種々の条件設定等に使用するファンクションボタンB2等が配置されている。
 ここでは、カメラCAMとズームレンズZLとが一体に成形されたコンパクトタイプのカメラを例示したが、光学機器としては、ズームレンズZLを有するレンズ鏡筒とカメラボディ本体とが着脱可能な一眼レフカメラでも良い。
 上記構成のカメラCAMによれば、撮影レンズとして本実施形態に係るズームレンズZLを搭載することにより、明るく、高変倍で、高画質なカメラを実現することができる。
 続いて、図7を参照しながら、上述のズームレンズZLの製造方法について説明する。まず、鏡筒内に、物体側から順に、正の屈折力を持つ第1レンズ群G1と、負の屈折力を持つ第2レンズ群G2と、正の屈折力を持つ第3レンズ群G3と、正の屈折力を持つ第4レンズ群G4と、第5レンズ群G5とが並ぶように、各レンズを組み込む(ステップST10)。このとき、第4レンズ群G4として、1枚の正レンズL41を組み込む(ステップST20)。また、第5レンズ群G5として、変倍中に像面Iに対して固定された1枚のレンズL51を組み込む(ステップST30)。そして、次の条件式(1)を満足するように、鏡筒内に各レンズを組み込む(ステップST40)。
 0.9 < β2t・β3w/(β2w・β3t) < 1.7 …(1)
 但し、
 β2w:広角端状態における第2レンズ群G2の倍率、
 β3w:広角端状態における第3レンズ群G2の倍率、
 β2t:望遠端状態における第2レンズ群G3の倍率、
 β3t:望遠端状態における第3レンズ群G3の倍率。
 ここで、本実施形態におけるレンズ配置の一例を挙げると、図1に示すように、ズームレンズZLでは、第1レンズ群G1として、光軸に沿って物体側から順に、像側に凹面を向けたメニスカス形状の負レンズL11と物体側に凸面を向けたメニスカス形状の正レンズL12との接合レンズと、物体側に凸面を向けたメニスカス形状の正レンズL13とを組み込み、全体として正の屈折力を持つように構成した。第2レンズ群G2として、光軸に沿って物体側から順に、像側に凹面を向けたメニスカス形状の負レンズL21と、両凹形状の負レンズL22と、両凸形状の正レンズL23とを組み込み、全体として負の屈折力を持つように構成した。第3レンズ群G3として、光軸に沿って物体側から順に、両凸形状の正レンズL31と、物体側に凸面を向けたメニスカス形状の正レンズL32と像側に凹面を向けたメニスカス形状の負レンズL33との接合レンズと、両凹形状の負レンズL34と両凸形状の正レンズL35との接合レンズとを組み込み、全体として正の屈折力を持つように構成した。第4レンズ群G4として、物体側に凸面を向けたメニスカス形状の正レンズL41を組み込み、全体として正の屈折力を持つように構成した。第5レンズ群G5として、物体側に凹面を向けたメニスカス形状の正レンズL51を組み込み、全体として正の屈折力を持つように構成した。なお、条件式(1)に対応する値が1.18となるように、各レンズを組み込んでいる。
 上述の製造方法によれば、明るく、高変倍で、高画質なズームレンズZLを得ることができる。
 これより本実施形態に係る実施例について、図面に基づいて説明する。以下に、表1,表2を示すが、これらは第1実施例,第2実施例における各諸元の表である。
 なお、第1実施例に係る図1に対する各参照符号は、参照符号の桁数の増大による説明の煩雑化を避けるため、実施例ごとに独立して用いている。ゆえに、他の実施例に係る図面と共通の参照符号を付していても、それらは他の実施例とは必ずしも共通の構成ではない。
 各実施例では収差特性の算出対象として、d線(波長587.5620nm)、g線(波長435.8350nm)を選んでいる。
 表中の[レンズ諸元]において、面番号は光線の進行する方向に沿った物体側からの光学面の順序、Rは各光学面の曲率半径、Dは各光学面から次の光学面(又は像面)までの光軸上の距離である面間隔、ndは光学部材の材質のd線に対する屈折率、νdは光学部材の材質のd線を基準とするアッベ数をそれぞれ示す。物面は物体面、(可変)は可変の面間隔、曲率半径の「∞」は平面又は開口、(絞りS)は開口絞りS、像面は像面Iをそれぞれ示す。空気の屈折率「1.00000」は省略する。光学面が非球面である場合には、面番号に*印を付し、曲率半径Rの欄には近軸曲率半径を示す。
 表中の[非球面データ]には、[レンズ諸元]に示した非球面について、その形状を次式(a)で示す。X(y)は非球面の頂点における接平面から高さyにおける非球面上の位置までの光軸方向に沿った距離を、Rは基準球面の曲率半径(近軸曲率半径)を、κは円錐定数を、Aiは第i次の非球面係数を示す。「E-n」は、「×10-n」を示す。例えば、1.234E-05=1.234×10-5である。
 X(y)=(y2/R)/{1+(1-κ×y2/R21/2
           +A4×y4+A6×y6 …(a)
 表中の[全体諸元]において、βは撮影倍率、fはレンズ全系の焦点距離、FNOはFナンバー、ωは半画角(単位:°)、Yは像高、TLはレンズ全長、BFは最も像側に配置されている光学部材の像側の面から近軸像面までの距離、BF(空気換算)は最終光学面から近軸像面までの空気換算距離をそれぞれ示す。ここでTLは、最終光学面から近軸像面までの空気換算距離により表記している。
 表中の[可変間隔データ]において、広角端状態、中間焦点距離状態及び望遠端状態のそれぞれにおけるDiを示す。なお、Diは第i面と第(i+1)面の可変間隔を示す。
 表中の[レンズ群データ]において、Gは群番号、群初面は各群の最も物体側の面番号を、群焦点距離は各群の焦点距離を示す。
 表中の[条件式]において、上記の条件式(1)~(6)に対応する値を示す。
 以下、全ての諸元値において、掲載されている焦点距離f、曲率半径R、面間隔D、その他の長さ等は、特記のない場合一般に「mm」が使われるが、光学系は比例拡大又は比例縮小しても同等の光学性能が得られるので、これに限られるものではない。また、単位は「mm」に限定されることなく、他の適当な単位を用いることが可能である。
 ここまでの表の説明は全ての実施例において共通であり、以下での説明を省略する。
(第1実施例)
 第1実施例について、図1,図2及び表1を用いて説明する。第1実施例に係るズームレンズZL(ZL1)は、図1に示すように、光軸に沿って物体側から順に並んだ、正の屈折力を持つ第1レンズ群G1と、負の屈折力を持つ第2レンズ群G2と、正の屈折力を持つ第3レンズ群G3と、正の屈折力を持つ第4レンズ群G4と、正の屈折力を持つ第5レンズ群G5とから構成される。
 第1レンズ群G1は、光軸に沿って物体側から順に並んだ、像側に凹面を向けたメニスカス形状の負レンズL11と物体側に凸面を向けたメニスカス形状の正レンズL12との接合レンズと、物体側に凸面を向けたメニスカス形状の正レンズL13とからなる。
 第2レンズ群G2は、光軸に沿って物体側から順に並んだ、像側に凹面を向けたメニスカス形状の負レンズL21と、両凹形状の負レンズL22と、両凸形状の正レンズL23とからなる。負レンズ21の両側のレンズ面には、非球面が形成されている。
 第3レンズ群G3は、光軸に沿って物体側から順に並んだ、両凸形状の正レンズL31と、物体側に凸面を向けたメニスカス形状の正レンズL32と像側に凹面を向けたメニスカス形状の負レンズL33との接合レンズと、両凹形状の負レンズL34と両凸形状の正レンズL35との接合レンズとからなる。正レンズL31の両側のレンズ面には、非球面が形成されている。
 第4レンズ群G4は、物体側に凸面を向けたメニスカス形状の正レンズL41からなる。
 第5レンズ群G5は、物体側に凹面を向けたメニスカス形状の正レンズL51からなる。負レンズL51の像側のレンズ面には、非球面が形成されている。
 第2レンズ群G2と第3レンズ群G3との間には、光量を調節することを目的とした開口絞りSが配置されている。第5レンズ群G5と像面Iとの間には、像面Iに配設されるCCD等の固体撮像素子の限界解像以上の空間周波数をカットするためのローパスフィルタLPFが配置されている。
 上記構成の本実施例では、広角端状態から望遠端状態への変倍に際して、第1レンズ群G1は広角端状態よりも望遠端状態の方が物体側にあるように移動し、第2レンズ群G2は像側に凸の軌跡を描いて移動し、第3レンズ群G3は物体側へ単調に移動し、第4レンズ群G4は物体側に凸の軌跡を描いて移動する。また、第5レンズ群G5は像面Iに対して常に固定とする。開口絞りSは、第3レンズ群G3と共に移動する。
 下記の表1に、第1実施例における各諸元の値を示す。表1における面番号1~28が、図1に示す曲率半径R1~R28の各光学面に対応している。第1実施例では、第6面、第7面、第13面、第14面及び第24面が非球面形状に形成されている。
(表1)
[レンズ諸元]
 面番号      R     D    nd    νd
 物面       ∞
  1      40.0406   1.00   1.84666   23.8
  2      28.1663   3.20   1.60300   65.4 
  3      95.7899   0.10
  4      27.9170   2.80   1.59319   67.9
  5      95.7810   D5(可変)
 *6(非球面)   48.2050   1.10   1.85135   40.1
 *7(非球面)   5.9983   5.20
  8      -18.5000   0.90   1.60300   65.4
  9      59.7963   0.10
  10      20.4465   1.90   1.92286   20.9
  11     -459.9230   D11(可変)
  12(絞りS)    ∞    0.70
 *13(非球面)  10.1948   2.55   1.69350   53.2
 *14(非球面)  -35.4141   0.50
  15       9.1807   2.00   1.60000   65.4
  16      132.3288   0.60   1.74951   35.3
  17       6.8378   1.35
  18      -31.9343   0.60   1.74951   35.3
  19       7.5503   2.60   1.48749   70.3
  20      -10.2389   D20(可変)
  21      13.7079   2.10   1.49782   82.6
  22      104.3223   D22(可変)
  23     -167.6500   1.20   1.53153   56.0
 *24(非球面)  -33.3219   0.50
  25        ∞    0.50   1.51680   63.9
  26        ∞    0.50
  27        ∞    0.50   1.51680   63.9
  28        ∞    BF
 像面       ∞
 
[非球面データ]
第6面
 κ=1.0000,A4=-7.104E-05,A6=2.104E-07
第7面
 κ=0.3441,A4=8.035E-05,A6=0.000E+00
第13面
 κ=0.9724,A4=-7.996E-05,A6=0.000E+00
第14面
 κ=1.0000,A4=1.092E-04,A6=0.0000E+00
第24面
 κ=1.0000,A4=3.729E-04,A6=-7.079E-06
 
[全体諸元]
        広角端   中間   望遠端
 f       6.17   16.00   41.54
 開口絞り径   9.2    7.3    7.3
 Fno      2.0    3.1    4.1
 ω      39.7    16.4    6.5
 BF      0.357   0.357   0.357
 BF(空気換算)  2.016   2.016   2.016
 
[可変間隔データ]
 f   6.17   16.00   41.54
 D5   0.46   10.95   21.98
 D11  19.07    5.98    2.02
 D20  3.70    5.51   19.07
 D22  5.53   10.09    5.77
 
[レンズ群データ]
 群番号  群初面  群焦点距離
 G1     1     46.9
 G2     6     -9.0
 G3    13     15.6
 G4    21     31.5
 G5    23     78.0
 
[条件式]
 条件式(1) β2t・β3w/(β2w・β3t) = 1.18
 条件式(2) β2t・β3t/(β2w・β3w) = 6.80
 条件式(3) f3/f3L =0.09
 条件式(4) (R2+R1)/(R2-R1) =0.65
 条件式(5) f22/f21 = 2.86
 条件式(6) β5 =0.98
 表1から、本実施例に係るズームレンズZL1は、条件式(1)~(6)を満たすことが分かる。
 図2は、第1実施例の諸収差図(球面収差、非点収差、歪曲収差、倍率色収差及びコマ収差)であり、(a)は広角端状態における無限遠合焦状態での諸収差図、(b)は中間焦点距離状態における無限遠合焦状態での諸収差図、(c)は望遠端状態における無限遠合焦状態での諸収差図をそれぞれ示す。
 各収差図において、FNOはFナンバー、ωは半画角(単位:°)をそれぞれ示す。球面収差図において、実線は球面収差、破線は正弦条件をそれぞれ示す。非点収差図において、実線はサジタル像面、破線はメリジオナル像面をそれぞれ示す。コマ収差図においては、メリジオナルコマを示す。dはd線に対する諸収差、gはg線に対する諸収差、記載のないものはd線に対する諸収差をそれぞれ示す。以上の収差図の説明は、他の実施例においても同様とし、その説明を省略する。
 各収差図から明らかなように、第1実施例では、広角端状態から望遠端状態までの各焦点距離状態において、諸収差が良好に補正され、優れた光学性能を有することが分かる。
(第2実施例)
 第2実施例について、図3,図4及び表2を用いて説明する。第2実施例に係るズームレンズZL(ZL2)は、図3に示すように、光軸に沿って物体側から順に並んだ、正の屈折力を持つ第1レンズ群G1と、負の屈折力を持つ第2レンズ群G2と、正の屈折力を持つ第3レンズ群G3と、正の屈折力を持つ第4レンズ群G4と、負の屈折力を持つ第5レンズ群G5とから構成される。
 第1レンズ群G1は、光軸に沿って物体側から順に並んだ、像側に凹面を向けたメニスカス形状の負レンズL11と物体側に凸面を向けたメニスカス形状の正レンズL12との接合レンズと、物体側に凸面を向けたメニスカス形状の正レンズL13とからなる。
 第2レンズ群G2は、光軸に沿って物体側から順に並んだ、像側に凹面を向けたメニスカス形状の負レンズL21と、両凹形状の負レンズL22と、物体側に凸面を向けたメニスカス形状の正レンズL23とからなる。負レンズ21の両側のレンズ面には、非球面が形成されている。
 第3レンズ群G3は、光軸に沿って物体側から順に並んだ、両凸形状の正レンズL31と、物体側に凸面を向けたメニスカス形状の正レンズL32と像側に凹面を向けたメニスカス形状の負レンズL33との接合レンズと、両凹形状の負レンズL34と両凸形状の正レンズL35との接合レンズとからなる。正レンズL31の両側のレンズ面には、非球面が形成されている。
 第4レンズ群G4は、物体側に凸面を向けたメニスカス形状の正レンズL41からなる。
 第5レンズ群G5は、物体側に凹面を向けたメニスカス形状の負レンズL51からなる。負レンズL51の像側のレンズ面には、非球面が形成されている。
 第2レンズ群G2と第3レンズ群G3との間には、光量を調節することを目的とした開口絞りSが配置されている。第5レンズ群G5と像面Iとの間には、像面Iに配設されるCCD等の固体撮像素子の限界解像以上の空間周波数をカットするためのローパスフィルタLPFが配置されている。
 上記構成の本実施例では、広角端状態から望遠端状態への変倍に際して、第1レンズ群G1は広角端状態よりも望遠端状態の方が物体側にあるように移動し、第2レンズ群G2は像側に凸の軌跡を描いて移動し、第3レンズ群G3は物体側へ単調に移動し、第4レンズ群G4は物体側に凸の軌跡を描いて移動する。また、第5レンズ群G5は像面Iに対して常に固定とする。開口絞りSは、第3レンズ群G3と共に移動する。
 下記の表2に、第2実施例における各諸元の値を示す。表2における面番号1~28が、図3に示す曲率半径R1~R28の各光学面に対応している。第2実施例では、第6面、第7面、第13面、第14面及び第24面が非球面形状に形成されている。
(表2)
[レンズ諸元]
 面番号      R     D    nd    νd
 物面       ∞
  1      42.5763   1.00   1.84666   23.80
  2      29.1423   3.20   1.59319   67.90
  3      100.4970   0.10
  4      24.8831   2.85   1.60300   65.44
  5      69.9033   D5(可変)
 *6(非球面)   58.8322   1.10   1.80139   45.46
 *7(非球面)    5.7793   5.20
  8      -19.0000   0.70   1.60300   65.44
  9      162.1080   0.30
  10      20.7314   1.70   1.92286   20.88
  11      208.7749   D11(可変)
  12(絞りS)    ∞    0.70
 *13(非球面)    9.5179   2.45   1.69350   53.22
 *14(非球面)  -38.1787   0.50
  15      11.4039   2.10   1.48749   70.31
  16      305.4914   0.60   1.90265   35.73
  17       9.7755   1.00
  18      248.7610   0.60   1.74951   35.33
  19       6.9238   2.50   1.48749   70.31
  20      -10.3196   D20(可変)
  21      14.7422   2.10   1.49782   82.57
  22      598.6161   D22(可変)
  23      -36.5173   1.00   1.53153   55.95
 *24(非球面)  -86.2360   0.60
  25        ∞    0.40   1.51680   63.88
  26        ∞    0.50
  27        ∞    0.50   1.51680   63.88
  28        ∞    BF
 像面       ∞
 
[非球面データ]
第6面
 κ=0.0000,A4= -4.02E-05,A6=8.10E-08,A8=0.00E+00,A10=0.00E+00
第7面
 κ=-0.656,A4=-1.10E-05,A6=0.000E+00,A8=0.000E+00,A10=-8.34E-10
第13面
 κ=-0.506,A4=-8.67E-05,A6=0.000E+00,A8=0.000E+00,A10=0.000E+00
第14面
 κ=0.011,A4=1.42E-04,A6=0.000E+00,A8=0.000E+00,A10=0.000E+00
第24面
 κ=0.000,A4=1.78E-04,A6=-5.19E-06,A8=0.000E+00,A10=0.000E+00
 
[全体諸元]
        広角端   中間   望遠端
 f       6.17   16.10   41.56
 開口絞り径   8.8    7.1    7.1
 Fno      2.1    3.2    4.1
 ω      39.7    16.6    6.6
 BF       0.6    0.6    0.6
 BF(空気換算)  2.292   2.292   2.292
 
[可変間隔データ]
 f      6.17    16.10    41.56
 D5   0.450   10.749   21.977
 D11  17.796    4.740    1.093
 D20   3.272    5.492   18.866
 D22   5.577    9.748    5.471
 
[レンズ群データ]
 群番号  群初面  群焦点距離
 G1     1     47.40
 G2     6     -8.95
 G3    13     15.16
 G4    21     29.88
 G5    23    -120.00
 
[条件式]
 条件式(1) β2t・β3w/(β2w・β3t) = 1.14
 条件式(2) β2t・β3t/(β2w・β3w) = 6.70
 条件式(3) f3/f3L =0.15
 条件式(4) (R2+R1)/(R2-R1) =0.92
 条件式(5) f22/f21 = 3.49
 条件式(6) β5 =1.03
 表2から、本実施例に係るズームレンズZL2は、条件式(1)~(6)を満たすことが分かる。
 図4は、第2実施例の諸収差図(球面収差、非点収差、歪曲収差、倍率色収差及びコマ収差)であり、(a)は広角端状態における無限遠合焦状態での諸収差図、(b)は中間焦点距離状態における無限遠合焦状態での諸収差図、(c)は望遠端状態における無限遠合焦状態での諸収差図をそれぞれ示す。
 各収差図から明らかなように、第2実施例では、広角端状態から望遠端状態までの各焦点距離状態において、諸収差が良好に補正され、優れた光学性能を有することが分かる。
 以上のように、各実施例によれば、F値が2程度と明るく、6倍以上の高い変倍比を確保しながら、高画質なズームレンズを実現することができる。
 上述の実施形態において、以下に記載の内容は、光学性能を損なわない範囲で適宜採用可能である。
 各実施例では、ズームレンズとして5群構成を示したが、6群等の他の群構成にも適用可能である。また、最も物体側にレンズまたはレンズ群を追加した構成や、最も像側にレンズまたはレンズ群を追加した構成でも構わない。また、レンズ群とは、変倍時に変化する空気間隔で分離された、少なくとも1枚のレンズを有する部分を示す。
 本実施形態のズームレンズZLにおいては、単独または複数のレンズ群、または部分レンズ群を光軸方向に移動させて、無限遠物体から近距離物体への合焦を行う合焦レンズ群としてもよい。前記合焦レンズ群は、オートフォーカスにも適用でき、オートフォーカス用の(超音波モーター等を用いた)モーター駆動にも適している。特に、第4レンズ群G4を合焦レンズ群とするのが好ましい。
 本実施形態のズームレンズZLにおいて、レンズ群または部分レンズ群を光軸に垂直な方向に振動させ、または光軸を含む面内方向に回転移動(揺動)させて、手ブレによって生じる像ブレを補正する防振レンズ群としてもよい。特に、第3レンズ群G3の少なくとも一部を防振レンズ群とするのが好ましい。
 本実施形態のズームレンズZLにおいて、レンズ面は、球面または平面で形成されても、非球面で形成されても構わない。レンズ面が球面または平面の場合、レンズ加工及び組立調整が容易になり、加工及び組立調整の誤差による光学性能の劣化を防げるので好ましい。また、像面がずれた場合でも描写性能の劣化が少ないので好ましい。レンズ面が非球面の場合、非球面は、研削加工による非球面、ガラスを型で非球面形状に形成したガラスモールド非球面、ガラスの表面に樹脂を非球面形状に形成した複合型非球面のいずれの非球面でも構わない。また、レンズ面は回折面としてもよく、レンズを屈折率分布型レンズ(GRINレンズ)あるいはプラスチックレンズとしてもよい。
 本実施形態のズームレンズZLにおいて、開口絞りSは第3レンズ群G3の中又は近傍に配置されるのが好ましいが、開口絞りとしての部材を設けずにレンズ枠でその役割を代用してもよい。
 本実施形態のズームレンズZLにおいて、各レンズ面には、フレアやゴーストを軽減し高コントラストの高い光学性能を達成するために、広い波長域で高い透過率を有する反射防止膜を施してもよい。
 本実施形態のズームレンズZLは、変倍比が3~10倍程度である。
 ここまで本発明を分かりやすくするために、実施形態の構成要件を付して説明したが、本発明がこれに限定されるものではないことは言うまでもない。
 ZL(ZL1,ZL2) ズームレンズ
 CAM デジタルスチルカメラ(光学機器)
 G1 第1レンズ群
 G2 第2レンズ群
 G3 第3レンズ群
 G4 第4レンズ群
 G5 第5レンズ群
 S  開口絞り
 LPF ローパスフィルタ
 I  像面

Claims (11)

  1.  光軸に沿って物体側から順に並んだ、正の屈折力を持つ第1レンズ群と、負の屈折力を持つ第2レンズ群と、正の屈折力を持つ第3レンズ群と、正の屈折力を持つ第4レンズ群と、第5レンズ群とを有し、
     前記第4レンズ群は、1枚の正レンズからなり、
     前記第5レンズ群は、変倍中に像面に対して固定された1枚のレンズからなり、
     以下の条件式を満足することを特徴とするズームレンズ。
     0.9 < β2t・β3w/(β2w・β3t) < 1.7
     但し、
     β2w:広角端状態における前記第2レンズ群の倍率、
     β3w:広角端状態における前記第3レンズ群の倍率、
     β2t:望遠端状態における前記第2レンズ群の倍率、
     β3t:望遠端状態における前記第3レンズ群の倍率。
  2.  以下の条件式を満足することを特徴とする請求項1に記載のズームレンズ。
     4.0 < β2t・β3t/(β2w・β3w) < 10.0
  3.  前記第3レンズ群は、光軸に沿って物体側から順に並んだ、正の屈折力を持つ単レンズと、負の屈折力を持つ第1の接合レンズと、第2の接合レンズとを有することを特徴とする請求項1に記載のズームレンズ。
  4.  以下の条件式を満足することを特徴とする請求項3に記載のズームレンズ。
     -0.4 < f3/f3L < 0.4
     但し、
     f3:前記第3レンズ群の焦点距離、
     f3L:前記第3レンズ群を構成する前記第2の接合レンズの焦点距離。
  5.  以下の条件式を満足することを特徴とする請求項3に記載のズームレンズ。
     0.0 < (R2+R1)/(R2-R1) < 1.5
     但し、
     R1:前記第3レンズ群を構成する前記第1の接合レンズの最も像側のレンズ面の曲率半径、
     R2:前記第3レンズ群を構成する前記第2の接合レンズの最も物体側のレンズ面の曲率半径。
  6.  前記第2レンズ群は、物体側から順に並んだ、第1の負レンズと、第2の負レンズとを有し、
     以下の条件式を満足することを特徴とする請求項1に記載のズームレンズ。
     1.2 < f22/f21 < 5.0
     但し、
     f21:前記第2レンズ群を構成する前記第1の負レンズの焦点距離、
     f22:前記第2レンズ群を構成する前記第2の負レンズの焦点距離。
  7.  以下の条件式を満足することを特徴とする請求項1に記載のズームレンズ。
     0.85 < β5 < 1.15
     但し、
     β5:前記第5レンズ群の倍率。
  8.  前記第5レンズ群は、プラスチックレンズで構成されていることを特徴とする請求項1に記載のズームレンズ。
  9.  広角端状態から望遠端状態への変倍に際して、前記第1レンズ群は広角端状態よりも望遠端状態の方が物体側にあるように移動し、前記第2レンズ群は像側に凸の軌跡を描いて移動し、前記第3レンズ群は物体側へ移動し、前記第4レンズ群は物体側に凸の軌跡を描いて移動することを特徴とする請求項1に記載のズームレンズ。
  10.  請求項1に記載のズームレンズを搭載することを特徴とする光学機器。
  11.  光軸に沿って物体側から順に並んだ、正の屈折力を持つ第1レンズ群と、負の屈折力を持つ第2レンズ群と、正の屈折力を持つ第3レンズ群と、正の屈折力を持つ第4レンズ群と、第5レンズ群とを有するズームレンズの製造方法であって、
     前記第4レンズ群は、1枚の正レンズからなり、
     前記第5レンズ群は、変倍中に像面に対して固定された1枚のレンズからなり、
     以下の条件式を満足するように、レンズ鏡筒内に各レンズを組み込むことを特徴とするズームレンズの製造方法。
     0.9 < β2t・β3w/(β2w・β3t) < 1.7
     但し、
     β2w:広角端状態における前記第2レンズ群の倍率、
     β3w:広角端状態における前記第3レンズ群の倍率、
     β2t:望遠端状態における前記第2レンズ群の倍率、
     β3t:望遠端状態における前記第3レンズ群の倍率。
PCT/JP2013/004029 2012-07-26 2013-06-28 ズームレンズ、光学機器及びズームレンズの製造方法 WO2014017025A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201380039577.7A CN104508532B (zh) 2012-07-26 2013-06-28 变焦镜头、光学设备和用于制造变焦镜头的方法
US14/604,695 US9563043B2 (en) 2012-07-26 2015-01-24 Zoom lens, optical apparatus and method for manufacturing the zoom lens

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-165554 2012-07-26
JP2012165554A JP5895761B2 (ja) 2012-07-26 2012-07-26 ズームレンズ、光学機器及びズームレンズの製造方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/604,695 Continuation US9563043B2 (en) 2012-07-26 2015-01-24 Zoom lens, optical apparatus and method for manufacturing the zoom lens

Publications (1)

Publication Number Publication Date
WO2014017025A1 true WO2014017025A1 (ja) 2014-01-30

Family

ID=49996853

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/004029 WO2014017025A1 (ja) 2012-07-26 2013-06-28 ズームレンズ、光学機器及びズームレンズの製造方法

Country Status (4)

Country Link
US (1) US9563043B2 (ja)
JP (1) JP5895761B2 (ja)
CN (1) CN104508532B (ja)
WO (1) WO2014017025A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016014841A (ja) * 2014-07-03 2016-01-28 ソニー株式会社 ズームレンズおよび撮像装置
WO2017094662A1 (ja) * 2015-11-30 2017-06-08 株式会社ニコン 変倍光学系、光学機器および変倍光学系の製造方法
CN110366693A (zh) * 2017-11-30 2019-10-22 深圳市大疆创新科技有限公司 透镜系统、摄像装置及移动体

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109188663B (zh) * 2013-06-28 2021-10-15 株式会社尼康 变倍光学系统、光学设备和该变倍光学系统的制造方法
JP6525009B2 (ja) * 2014-07-30 2019-06-05 株式会社ニコン 変倍光学系、及び、光学装置
JP6555920B2 (ja) * 2015-04-22 2019-08-07 株式会社タムロン ズームレンズ及び撮像装置
CN106646834A (zh) * 2015-11-04 2017-05-10 佳凌科技股份有限公司 广角镜头
TWI705266B (zh) 2016-06-08 2020-09-21 揚明光學股份有限公司 光學系統及其光學鏡頭

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008026837A (ja) * 2006-06-22 2008-02-07 Ricoh Co Ltd ズームレンズおよび撮像装置および携帯情報端末装置
JP2008096924A (ja) * 2006-10-16 2008-04-24 Ricoh Co Ltd ズームレンズおよび撮像装置および携帯情報端末装置
JP2009093118A (ja) * 2007-10-12 2009-04-30 Canon Inc ズームレンズ及びそれを有する撮像装置
JP2010019959A (ja) * 2008-07-09 2010-01-28 Olympus Imaging Corp ズームレンズ及びそれを有する撮像装置
JP2010039429A (ja) * 2008-08-08 2010-02-18 Canon Inc ズームレンズ及びそれを有する撮像装置
JP2011095488A (ja) * 2009-10-29 2011-05-12 Olympus Imaging Corp レンズ成分、結像光学系、及びそれを有する電子撮像装置
JP2011170054A (ja) * 2010-02-17 2011-09-01 Ricoh Co Ltd ズームレンズ、カメラおよび携帯情報端末装置
JP2011232620A (ja) * 2010-04-28 2011-11-17 Olympus Imaging Corp 結像光学系及びそれを有する電子撮像装置
JP2011247949A (ja) * 2010-05-24 2011-12-08 Olympus Imaging Corp 結像光学系及びそれを有する電子撮像装置
JP2012078788A (ja) * 2010-09-10 2012-04-19 Tamron Co Ltd ズームレンズ
JP2012133116A (ja) * 2010-12-21 2012-07-12 Nikon Corp ズームレンズ、このズームレンズを搭載した光学機器、及び、ズームレンズの製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4942091B2 (ja) * 2006-10-31 2012-05-30 オリンパスイメージング株式会社 広角高変倍ズームレンズ及びそれを用いた撮像装置
JP5328324B2 (ja) * 2008-12-03 2013-10-30 キヤノン株式会社 ズームレンズ及びそれを有する撮像装置
JP2010217478A (ja) 2009-03-17 2010-09-30 Olympus Imaging Corp ズームレンズ及びそれを備える撮像装置
JP5229962B2 (ja) * 2009-03-31 2013-07-03 富士フイルム株式会社 投写用広角ズームレンズおよび投写型表示装置
EP2244117B1 (en) 2009-04-24 2017-05-31 Ricoh Company, Ltd. Zoom lens unit

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008026837A (ja) * 2006-06-22 2008-02-07 Ricoh Co Ltd ズームレンズおよび撮像装置および携帯情報端末装置
JP2008096924A (ja) * 2006-10-16 2008-04-24 Ricoh Co Ltd ズームレンズおよび撮像装置および携帯情報端末装置
JP2009093118A (ja) * 2007-10-12 2009-04-30 Canon Inc ズームレンズ及びそれを有する撮像装置
JP2010019959A (ja) * 2008-07-09 2010-01-28 Olympus Imaging Corp ズームレンズ及びそれを有する撮像装置
JP2010039429A (ja) * 2008-08-08 2010-02-18 Canon Inc ズームレンズ及びそれを有する撮像装置
JP2011095488A (ja) * 2009-10-29 2011-05-12 Olympus Imaging Corp レンズ成分、結像光学系、及びそれを有する電子撮像装置
JP2011170054A (ja) * 2010-02-17 2011-09-01 Ricoh Co Ltd ズームレンズ、カメラおよび携帯情報端末装置
JP2011232620A (ja) * 2010-04-28 2011-11-17 Olympus Imaging Corp 結像光学系及びそれを有する電子撮像装置
JP2011247949A (ja) * 2010-05-24 2011-12-08 Olympus Imaging Corp 結像光学系及びそれを有する電子撮像装置
JP2012078788A (ja) * 2010-09-10 2012-04-19 Tamron Co Ltd ズームレンズ
JP2012133116A (ja) * 2010-12-21 2012-07-12 Nikon Corp ズームレンズ、このズームレンズを搭載した光学機器、及び、ズームレンズの製造方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016014841A (ja) * 2014-07-03 2016-01-28 ソニー株式会社 ズームレンズおよび撮像装置
WO2017094662A1 (ja) * 2015-11-30 2017-06-08 株式会社ニコン 変倍光学系、光学機器および変倍光学系の製造方法
JPWO2017094662A1 (ja) * 2015-11-30 2018-09-13 株式会社ニコン 変倍光学系、光学機器および変倍光学系の製造方法
US10761306B2 (en) 2015-11-30 2020-09-01 Nikon Corporation Zoom optical system, optical apparatus and method for manufacturing the zoom optical system
CN110366693A (zh) * 2017-11-30 2019-10-22 深圳市大疆创新科技有限公司 透镜系统、摄像装置及移动体
CN110366693B (zh) * 2017-11-30 2021-06-18 深圳市大疆创新科技有限公司 透镜系统、摄像装置及移动体
US11353689B2 (en) 2017-11-30 2022-06-07 SZ DJI Technology Co., Ltd. Lens system, imaging apparatus, and moving object

Also Published As

Publication number Publication date
JP5895761B2 (ja) 2016-03-30
CN104508532B (zh) 2017-04-12
CN104508532A (zh) 2015-04-08
US20150241672A1 (en) 2015-08-27
JP2014026074A (ja) 2014-02-06
US9563043B2 (en) 2017-02-07

Similar Documents

Publication Publication Date Title
JP5895761B2 (ja) ズームレンズ、光学機器及びズームレンズの製造方法
JP4876755B2 (ja) 高変倍ズームレンズと、これを有する光学機器
JP6467769B2 (ja) ズームレンズ及び光学機器
WO2015075904A1 (ja) ズームレンズ、光学機器及びズームレンズの製造方法
JP6467770B2 (ja) ズームレンズ及び光学機器
JP6221451B2 (ja) ズームレンズ、光学機器及びズームレンズの製造方法
JP5622103B2 (ja) ズームレンズ、このズームレンズを搭載した光学機器、及び、ズームレンズの製造方法
JP5919840B2 (ja) ズームレンズ及び光学機器
JP2016065912A (ja) ズームレンズ、光学機器及びズームレンズの製造方法
JP6299178B2 (ja) ズームレンズ、光学機器及びズームレンズの製造方法
JP6467804B2 (ja) ズームレンズ、及び光学機器
JP6583420B2 (ja) ズームレンズおよび光学機器
JP2016156942A (ja) ズームレンズ、光学機器及びズームレンズの製造方法
JP5906759B2 (ja) ズームレンズ、光学機器及びズームレンズの製造方法
JP6031778B2 (ja) ズームレンズ、光学機器及びズームレンズの製造方法
JP2012008273A (ja) ズームレンズ、撮像装置、ズームレンズの製造方法
JP2016156941A (ja) レンズ系、光学機器及びレンズ系の製造方法
JP6347098B2 (ja) ズームレンズおよび光学機器
JP5505770B2 (ja) ズームレンズ、光学機器
JP5434006B2 (ja) ズームレンズ、撮像装置、および変倍方法
JP2017102201A (ja) ズームレンズ、光学機器、およびズームレンズの製造方法
JP2016156940A (ja) ズームレンズ、光学機器及びズームレンズの製造方法
JP2016156903A (ja) ズームレンズ、光学機器及びズームレンズの製造方法
JP6205850B2 (ja) ズームレンズ及び光学機器
JP6507479B2 (ja) 変倍光学係および撮像装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13823042

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13823042

Country of ref document: EP

Kind code of ref document: A1