WO2018092296A1 - 変倍光学系、光学機器、撮像機器および変倍光学系の製造方法 - Google Patents

変倍光学系、光学機器、撮像機器および変倍光学系の製造方法 Download PDF

Info

Publication number
WO2018092296A1
WO2018092296A1 PCT/JP2016/084396 JP2016084396W WO2018092296A1 WO 2018092296 A1 WO2018092296 A1 WO 2018092296A1 JP 2016084396 W JP2016084396 W JP 2016084396W WO 2018092296 A1 WO2018092296 A1 WO 2018092296A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens group
lens
refractive power
optical system
focal length
Prior art date
Application number
PCT/JP2016/084396
Other languages
English (en)
French (fr)
Inventor
幸介 町田
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Priority to CN201680090867.8A priority Critical patent/CN109983386B/zh
Priority to US16/345,198 priority patent/US11269164B2/en
Priority to JP2018550989A priority patent/JP6708262B2/ja
Priority to PCT/JP2016/084396 priority patent/WO2018092296A1/ja
Publication of WO2018092296A1 publication Critical patent/WO2018092296A1/ja
Priority to US17/580,918 priority patent/US20220146800A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/145Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only
    • G02B15/1451Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only the first group being positive
    • G02B15/145121Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only the first group being positive arranged +-+-+
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/144Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only
    • G02B15/1441Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only the first group being positive
    • G02B15/144105Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only the first group being positive arranged +-+-
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/146Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having more than five groups
    • G02B15/1461Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having more than five groups the first group being positive
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/16Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group
    • G02B15/20Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group having an additional movable lens or lens group for varying the objective focal length
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/64Imaging systems using optical elements for stabilisation of the lateral and angular position of the image
    • G02B27/646Imaging systems using optical elements for stabilisation of the lateral and angular position of the image compensating for small deviations, e.g. due to vibration or shake
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/34Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having four components only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/60Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having five components only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/62Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having six components only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/64Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having more than six components

Definitions

  • the present invention relates to a variable magnification optical system, an optical apparatus and an imaging apparatus using the variable magnification optical system, and a method for manufacturing the variable magnification optical system.
  • the focusing lens group has not been sufficiently reduced in weight.
  • the zoom optical system includes, in order from the object side, a front lens group having a positive refractive power, an M1 lens group having a negative refractive power, an M2 lens group having a positive refractive power, and a negative An RN lens group having refractive power, and at the time of zooming, an interval between the front lens group and the M1 lens group changes, an interval between the M1 lens group and the M2 lens group changes, and the M2 lens group And the distance between the RN lens group is changed, and the RN lens group is moved when focusing from an object at infinity to an object at a short distance, and the RN lens group is a lens having at least one positive refractive power; It has at least one lens having negative refractive power and satisfies the following conditional expression.
  • fFP focal length of the lens with the strongest positive refractive power in the RN lens group
  • fFN focal length of the lens with the strongest negative refractive power in the RN lens group
  • fF focal length of the RN lens group
  • f1 the above Focal length of front lens group
  • the optical apparatus according to the present invention is configured by mounting the variable magnification optical system.
  • An imaging apparatus includes the zoom optical system and an imaging unit that captures an image formed by the zoom optical system.
  • the zoom optical system manufacturing method includes, in order from the object side, a front lens group having a positive refractive power, an M1 lens group having a negative refractive power, and an M2 lens group having a positive refractive power.
  • An RN lens group having a negative refractive power and a method of manufacturing a variable magnification optical system, wherein the distance between the front lens group and the M1 lens group changes during magnification, and the M1
  • the distance between the lens group and the M2 lens group is changed, and the distance between the M2 lens group and the RN lens group is changed, and when focusing from an object at infinity to a near object,
  • the RN lens group moves, and the RN lens group includes at least one lens having a positive refractive power and at least one lens having a negative refractive power, and satisfies the following conditional expression.
  • fFP focal length of the lens with the strongest positive refractive power in the RN lens group
  • fFN focal length of the lens with the strongest negative refractive power in the RN lens group
  • fF focal length of the RN lens group
  • f1 the above Focal length of front lens group
  • FIG. 2A is a diagram of various aberrations during focusing at infinity in the wide-angle end state of the variable magnification optical system according to the first example
  • FIG. 2B is a blur correction for a rotational blur of 0.30 °.
  • FIG. 6 is a meridional lateral aberration diagram (coma aberration diagram) when performing.
  • FIG. 7 is a diagram illustrating various aberrations during focusing at infinity in the intermediate focal length state of the variable magnification optical system according to the first example.
  • FIG. 2A is a diagram of various aberrations during focusing at infinity in the wide-angle end state of the variable magnification optical system according to the first example
  • FIG. 2B is a blur correction for a rotational blur of 0.30 °.
  • FIG. 6 is a meridional lateral aberration diagram (coma aberration diagram) when performing.
  • FIG. 7 is a diagram illustrating various aberrations during focusing at infinity in the intermediate focal length state of the variable magnification optical system
  • FIG. 4A is a diagram of various aberrations during focusing at infinity in the telephoto end state of the variable magnification optical system according to the first example
  • FIG. 4B is a blur correction for a rotational blur of 0.20 °. It is a meridional transverse aberration diagram when performing. 5 (a), 5 (b), and 5 (c) respectively show the close-up focus in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the first example.
  • FIG. It is a figure which shows the lens structure of the variable magnification optical system which concerns on 2nd Example of this embodiment.
  • FIG. 7A is a diagram showing various aberrations during focusing at infinity in the wide-angle end state of the variable magnification optical system according to the second example, and FIG. 7B is a blur correction for a rotational blur of 0.30 °. It is a meridional transverse aberration diagram when performing.
  • FIG. 12 is a diagram illustrating various aberrations at the time of focusing on infinity in the intermediate focal length state of the variable magnification optical system according to the second example.
  • FIG. 9A is a diagram of various aberrations during focusing at infinity in the telephoto end state of the variable magnification optical system according to the second example, and FIG. 9B is a blur correction for a rotational blur of 0.20 °.
  • FIG. 12A is a diagram of various aberrations at the time of focusing at infinity in the wide-angle end state of the variable magnification optical system according to the third example
  • FIG. 12B is a blur correction for a rotational blur of 0.30 °. It is a meridional transverse aberration diagram when performing.
  • FIG. 14A is a diagram of various aberrations at the time of focusing on infinity in the telephoto end state of the variable magnification optical system according to the third example
  • FIG. 14B is a blur correction for a rotational blur of 0.20 °.
  • 15 (a), 15 (b), and 15 (c) respectively show the close-up focus in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the third example.
  • FIG. 15 (a), 15 (b), and 15 (c) respectively show the close-up focus in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the third example.
  • FIG. 17A is a diagram of various aberrations at the time of focusing at infinity in the wide-angle end state of the variable magnification optical system according to the fourth example
  • FIG. 17B is a blur correction for a rotational blur of 0.30 °. It is a meridional transverse aberration diagram when performing.
  • FIG. 12 is a diagram illustrating various aberrations during focusing at infinity in the intermediate focal length state of the variable magnification optical system according to the fourth example.
  • FIG. 12 is a diagram illustrating various aberrations during focusing at infinity in the intermediate focal length state of the variable magnification optical system according to the fourth example.
  • FIG. 19A is a diagram of various aberrations at the time of focusing on infinity in the telephoto end state of the variable magnification optical system according to the fourth example
  • FIG. 19B is a blur correction with respect to a rotational blur of 0.20 °.
  • It is a meridional transverse aberration diagram when performing. 20 (a), 20 (b), and 20 (c), respectively, at the time of short distance focusing in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the fourth example.
  • FIG. It is a figure which shows the lens structure of the variable magnification optical system which concerns on 5th Example of this embodiment.
  • FIG. 22A is a diagram of various aberrations at the time of focusing at infinity in the wide-angle end state of the variable magnification optical system according to the fifth example, and FIG. FIG. 6 is a meridional lateral aberration diagram when correction is performed.
  • FIG. 10 is a diagram illustrating various aberrations during focusing at infinity in the intermediate focal length state of the variable magnification optical system according to the fifth example.
  • FIG. 24A is a diagram of various aberrations during focusing at infinity in the telephoto end state of the variable magnification optical system according to the fifth example, and FIG. FIG. 6 is a meridional lateral aberration diagram when correction is performed.
  • FIG. 25 (a), 25 (b), and 25 (c) are respectively close-focused in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the fifth example.
  • FIG. It is a figure which shows the structure of the camera provided with the variable magnification optical system which concerns on this embodiment. It is a flowchart which shows the manufacturing method of the variable magnification optical system which concerns on this embodiment.
  • variable magnification optical system ZL (1) as an example of a variable magnification optical unit (zoom lens) ZL according to the present embodiment includes a front lens group GFS having a positive refractive power in order from the object side, as shown in FIG.
  • the RN lens group GRN moves, and the RN lens group GRN has at least one lens having a positive refractive power and at least one lens having a negative refractive power.
  • fFP focal length of the lens with the strongest positive refractive power in the RN lens group
  • GRN fFN focal length of the lens with the strongest negative refractive power in the RN lens group
  • GRN fF focal length of the RN lens group
  • GRN f1 front side Focal length of lens group
  • variable magnification optical system ZL includes a variable magnification optical system ZL (2) shown in FIG. 6, a variable magnification optical system ZL (3) shown in FIG. 11, and a variable magnification optical system ZL ( 4) or a variable magnification optical system ZL (5) shown in FIG.
  • variable magnification optical system has at least four lens groups, and by changing the distance between the lens groups at the time of zooming from the wide-angle end state to the telephoto end state, good aberration at the time of zooming Correction can be achieved. Further, by performing focusing with the RN lens group GRN, the RN lens group GRN, that is, the focusing lens group can be reduced in size and weight.
  • the RN lens group GRN (focusing lens group) has at least one lens having a positive refractive power and at least one lens having a negative refractive power, thereby focusing from an object at infinity to a near object. Variations in various aberrations including spherical aberration can be suppressed.
  • the conditional expression (1) defines the ratio between the focal length of the lens with the strongest positive refractive power in the focusing lens group and the focal length of the lens with the strongest negative refractive power in the focusing lens group. It is. By satisfying the conditional expression (1), it is possible to suppress fluctuations of various aberrations including spherical aberration when focusing from an object at infinity to an object at a short distance.
  • conditional expression (1) When the corresponding value of the conditional expression (1) exceeds the upper limit value, the refractive power of the lens having the strongest negative refractive power in the focusing lens group becomes strong, and the spherical surface at the time of focusing from an object at infinity to a short-distance object. It becomes difficult to suppress fluctuations in various aberrations including aberrations.
  • the upper limit of conditional expression (1) By setting the upper limit of conditional expression (1) to 4.40, the effect of this embodiment can be made more reliable. In order to ensure the effect of the present embodiment, it is preferable to set the upper limit of conditional expression (1) to 4.30.
  • the refractive power of the lens having the strongest positive refractive power in the focusing lens group becomes strong, and the spherical surface at the time of focusing from an object at infinity to a short distance object. It becomes difficult to suppress fluctuations in various aberrations including aberrations.
  • the lower limit of conditional expression (1) it is preferable to set the lower limit of conditional expression (1) to 2.90.
  • Conditional expression (2) defines the ratio between the focal length of the focusing lens group and the focal length of the front lens group GFS. Satisfying this conditional expression (2) suppresses variations in various aberrations including spherical aberration during zooming from the wide-angle end to the telephoto end, and at the time of focusing from an infinite object to a close object. Variations in various aberrations including spherical aberration can also be suppressed.
  • conditional expression (2) If the corresponding value of the conditional expression (2) exceeds the upper limit value, the refractive power of the front lens unit GFS becomes strong, and various aberrations including spherical aberration at the time of zooming from the wide angle end to the telephoto end are corrected. It becomes difficult.
  • the upper limit of conditional expression (2) By setting the upper limit of conditional expression (2) to 0.43, the effect of this embodiment can be made more reliable. In order to ensure the effect of the present embodiment, it is preferable to set the upper limit of conditional expression (2) to 0.41.
  • conditional expression (2) When the corresponding value of conditional expression (2) is below the lower limit, the refractive power of the focusing lens group becomes strong, and fluctuations in various aberrations such as spherical aberration during focusing from an object at infinity to a near object are reduced. It becomes difficult to suppress.
  • the lower limit value of conditional expression (2) By setting the lower limit value of conditional expression (2) to 0.27, the effect of the present embodiment can be made more reliable. In order to secure the effect of the present embodiment, it is preferable to set the lower limit of conditional expression (2) to 0.29.
  • the focusing lens group is reduced in size and weight, thereby realizing high-speed AF and quietness during AF without increasing the size of the lens barrel. It is possible to satisfactorily suppress the aberration fluctuation at the time of zooming from the end state to the telephoto end state and the aberration fluctuation at the time of focusing from an object at infinity to a short distance object. The same effect can be obtained by the manufacturing method of the optical device, the imaging device, and the zoom optical system according to the present invention.
  • the front lens group GFS is moved in the object direction when zooming from the wide-angle end state to the telephoto end state. Thereby, the total lens length in the wide-angle end state can be shortened, and the variable magnification optical system can be miniaturized.
  • the lens group closest to the object in the M1 lens group GM1 is fixed with respect to the image plane.
  • an anti-vibration lens group that can move in a direction orthogonal to the optical axis in order to correct the displacement of the imaging position due to camera shake or the like in the M2 lens group GM2. As a result, it is possible to effectively suppress performance degradation when blur correction is performed.
  • variable magnification optical system having the vibration-proof lens group satisfies the following conditional expression (3). 1.10 ⁇ fvr / fTM2 ⁇ 2.00 (3)
  • fvr focal length of the image stabilizing lens group
  • fTM2 focal length of the M2 lens group GM2 in the telephoto end state
  • Conditional expression (3) defines the ratio between the focal length of the image stabilizing lens group and the focal length of the M2 lens group GM2 in the telephoto end state.
  • various aberrations such as spherical aberration at the time of zooming from the wide-angle end to the telephoto end, and eccentric coma at the time of blurring correction, etc. The occurrence of various aberrations can be suppressed.
  • the refractive power of the M2 lens group GM2 in the telephoto end state becomes strong, and various aberrations including spherical aberration at the time of zooming from the wide angle end to the telephoto end. It becomes difficult to suppress fluctuations in
  • the upper limit of conditional expression (3) it is preferable to set the upper limit of conditional expression (3) to 1.90.
  • conditional expression (3) If the corresponding value of conditional expression (3) is below the lower limit, the refractive power of the anti-vibration lens group becomes strong, and it is difficult to suppress the occurrence of various aberrations such as decentering coma when performing blur correction. It becomes.
  • the lower limit of conditional expression (3) By setting the lower limit of conditional expression (3) to 1.15, the effect of the present embodiment can be made more reliable. In order to secure the effect of the present embodiment, it is preferable to set the lower limit value of conditional expression (3) to 1.20.
  • the anti-vibration lens group is preferably composed of a lens having a negative refractive power and a lens having a positive refractive power in order from the object side. As a result, it is possible to effectively suppress performance degradation when blur correction is performed.
  • variable magnification optical system of the present embodiment having the above-described anti-vibration lens group satisfies the following conditional expression (4). 1.00 ⁇ nvrN / nvrP ⁇ 1.25 (4)
  • nvrN Refractive index of a lens having negative refractive power in the image stabilizing lens group
  • nvrP Refractive index of a lens having positive refractive power in the image stabilizing lens group
  • Conditional expression (4) defines the ratio between the refractive index of a lens having negative refractive power in the vibration-proof lens group and the refractive index of a lens having positive refractive power in the vibration-proof lens group.
  • conditional expression (4) exceeds the upper limit value, the refractive index of the lens having positive refractive power in the anti-vibration lens group becomes low, and the occurrence of decentered coma that occurs when blur correction is performed. Becomes excessive and difficult to correct.
  • the upper limit value of conditional expression (4) it is preferable to set the upper limit of conditional expression (4) to 1.20.
  • conditional expression (4) When the corresponding value of the conditional expression (4) is below the lower limit value, the refractive index of the lens having negative refractive power in the anti-vibration lens group is lowered, and the eccentric coma when correcting the blur is corrected. It becomes difficult.
  • the lower limit value of conditional expression (4) By setting the lower limit value of conditional expression (4) to 1.03, the effect of the present embodiment can be made more reliable. In order to secure the effect of the present embodiment, it is preferable to set the lower limit of conditional expression (4) to 1.05.
  • variable magnification optical system of the present embodiment having the above-mentioned anti-vibration lens group also satisfies the following conditional expression (5). 0.30 ⁇ vrN / ⁇ vrP ⁇ 0.90 (5)
  • ⁇ vrN Abbe number of a lens having negative refractive power in the vibration-proof lens group
  • ⁇ vrP Abbe number of a lens having positive refractive power in the vibration-proof lens group
  • Conditional expression (5) defines the ratio between the Abbe number of a lens having negative refractive power in the image stabilizing lens group and the Abbe number of a lens having positive refractive power in the image stabilizing lens group.
  • conditional expression (5) If the corresponding value of conditional expression (5) exceeds the upper limit value, the Abbe number of the lens having positive refractive power in the anti-vibration lens group becomes small, and it is difficult to correct chromatic aberration that occurs when blur correction is performed. Become.
  • the upper limit of conditional expression (5) By setting the upper limit of conditional expression (5) to 0.85, the effect of this embodiment can be made more reliable. In order to ensure the effect of the present embodiment, it is preferable to set the upper limit of conditional expression (5) to 0.80.
  • conditional expression (5) If the corresponding value of conditional expression (5) is below the lower limit value, the Abbe number of the lens having negative refractive power in the anti-vibration lens group becomes small, and it is difficult to correct chromatic aberration that occurs when blur correction is performed. Become.
  • the lower limit of conditional expression (5) By setting the lower limit of conditional expression (5) to 0.35, the effect of this embodiment can be made more reliable. In order to secure the effect of the present embodiment, it is preferable to set the lower limit of conditional expression (5) to 0.40.
  • Conditional expression (6) defines the ratio between the focal length of the M1 lens unit GM1 and the focal length of the front lens unit GFS in the telephoto end state.
  • conditional expression (6) If the corresponding value of conditional expression (6) exceeds the upper limit value, the refractive power of the front lens group GFS becomes strong, and various aberrations including spherical aberration at the time of zooming from the wide angle end to the telephoto end are corrected. It becomes difficult.
  • the upper limit of conditional expression (6) By setting the upper limit of conditional expression (6) to 0.33, the effect of this embodiment can be made more reliable. In order to secure the effect of the present embodiment, it is preferable to set the upper limit of conditional expression (6) to 0.31.
  • conditional expression (6) When the corresponding value of conditional expression (6) is below the lower limit value, the refractive power of the M1 lens group GM1 becomes strong, and fluctuations in various aberrations including spherical aberration during zooming from the wide-angle end to the telephoto end are suppressed. It becomes difficult.
  • the lower limit of conditional expression (6) By setting the lower limit of conditional expression (6) to 0.16, the effect of this embodiment can be made more reliable. In order to secure the effect of the present embodiment, it is preferable to set the lower limit of conditional expression (6) to 0.17.
  • fTM2 focal length of the M2 lens group GM2 in the telephoto end state
  • Conditional expression (7) defines the ratio between the focal length of the M2 lens group GM2 and the focal length of the front lens group GFS in the telephoto end state.
  • conditional expression (7) If the corresponding value of conditional expression (7) exceeds the upper limit value, the refractive power of the front lens group GFS becomes strong, and various aberrations including spherical aberration at the time of zooming from the wide angle end to the telephoto end are corrected. It becomes difficult.
  • the upper limit value of conditional expression (7) By setting the upper limit value of conditional expression (7) to 0.37, the effect of the present embodiment can be made more reliable. In order to secure the effect of the present embodiment, it is preferable to set the upper limit of conditional expression (7) to 0.34.
  • conditional expression (7) When the corresponding value of conditional expression (7) is below the lower limit value, the refractive power of the M2 lens group GM2 becomes strong, and fluctuations of various aberrations including spherical aberration at the time of zooming from the wide angle end to the telephoto end are suppressed. It becomes difficult.
  • the lower limit value of conditional expression (7) By setting the lower limit value of conditional expression (7) to 0.22, the effect of the present embodiment can be made more reliable. In order to secure the effect of the present embodiment, it is preferable to set the lower limit of conditional expression (7) to 0.24.
  • the zoom optical system according to the present embodiment preferably includes a negative meniscus lens having a concave surface facing the object side adjacent to the image side of the RN lens group GRN. Further, a configuration may be adopted in which a lens having a negative refractive power and a lens having a positive refractive power are arranged in order from the object side adjacent to the image side of the RN lens group GRN. Thereby, various aberrations including coma can be effectively corrected.
  • fN Focal length of a lens having the strongest negative refractive power among the lenses adjacent to the image side of the RN lens group
  • GRN fP Strongest positive refractive power among the lenses adjacent to the image side of the RN lens group
  • GRN Lens focal length 0.70 ⁇ ( ⁇ fN) / fP ⁇ 2.00
  • Conditional expression (8) is the focal length of the lens having the strongest negative refractive power among the lenses adjacent to the image side of the RN lens group GRN and the most positive among the lenses adjacent to the image side of the RN lens group GRN. This defines the ratio to the focal length of a lens having a strong refractive power.
  • conditional expression (8) When the corresponding value of the conditional expression (8) exceeds the upper limit value, the refractive power of the lens having positive refractive power on the image side of the focusing lens group becomes strong, and the occurrence of coma aberration becomes excessive.
  • the upper limit of conditional expression (8) it is preferable to set the upper limit of conditional expression (8) to 1.80.
  • conditional expression (8) If the corresponding value of the conditional expression (8) is below the lower limit value, the refractive power of the negative refractive power lens on the image side of the focusing lens group becomes strong, and the correction of coma aberration becomes excessive.
  • the lower limit value of conditional expression (8) it is preferable to set the lower limit of conditional expression (8) to 0.90.
  • Conditional expression (9) defines the ratio between the focal length of the front lens group GFS and the focal length of the variable magnification optical system in the wide-angle end state.
  • conditional expression (9) When the corresponding value of the conditional expression (9) exceeds the upper limit value, the refractive power of the front lens group GFS becomes weak and the lens barrel becomes large.
  • the upper limit value of conditional expression (9) it is preferable to set the upper limit of conditional expression (9) to 3.10.
  • conditional expression (9) When the corresponding value of the conditional expression (9) is below the lower limit value, the refractive power of the front lens group GFS becomes strong, and various aberrations including spherical aberration at the time of zooming from the wide angle end to the telephoto end are corrected. It becomes difficult.
  • the lower limit of conditional expression (9) By setting the lower limit of conditional expression (9) to 1.90, the effect of the present embodiment can be made more reliable.
  • Conditional expression (10) defines the ratio between the focal length of the front lens group GFS and the focal length of the M1 lens group GM1. By satisfying this conditional expression (10), it is possible to suppress fluctuations in various aberrations including spherical aberration during zooming from the wide-angle end to the telephoto end.
  • conditional expression (10) When the corresponding value of the conditional expression (10) exceeds the upper limit value, the refractive power of the M1 lens group GM1 becomes strong, and fluctuations of various aberrations including spherical aberration at the time of zooming from the wide angle end to the telephoto end. It becomes difficult to suppress.
  • the upper limit of conditional expression (10) By setting the upper limit of conditional expression (10) to 4.90, the effect of this embodiment can be made more reliable. In order to further secure the effect of the present embodiment, it is preferable to set the upper limit of conditional expression (10) to 4.80.
  • conditional expression (10) When the corresponding value of the conditional expression (10) is below the lower limit value, the refractive power of the front lens group GFS becomes strong, and various aberrations including spherical aberration at the time of zooming from the wide angle end to the telephoto end are corrected. It becomes difficult.
  • the lower limit value of conditional expression (10) By setting the lower limit value of conditional expression (10) to 3.90, the effect of the present embodiment can be made more reliable. In order to further secure the effect of the present embodiment, it is preferable to set the lower limit of conditional expression (10) to 3.95.
  • Conditional expression (11) defines the ratio between the focal length of the front lens group GFS and the focal length of the M2 lens group GM2. By satisfying this conditional expression (11), it is possible to suppress variations in various aberrations including spherical aberration during zooming from the wide-angle end to the telephoto end.
  • conditional expression (11) When the corresponding value of the conditional expression (11) exceeds the upper limit value, the refractive power of the M2 lens group GM2 becomes strong, and fluctuations of various aberrations including spherical aberration at the time of zooming from the wide angle end to the telephoto end. It becomes difficult to suppress.
  • the upper limit value of conditional expression (11) By setting the upper limit value of conditional expression (11) to 4.80, the effect of this embodiment can be made more reliable. In order to further secure the effect of the present embodiment, it is preferable to set the upper limit of conditional expression (11) to 4.60.
  • conditional expression (11) When the corresponding value of the conditional expression (11) is below the lower limit value, the refractive power of the front lens group GFS becomes strong and various aberrations including spherical aberration at the time of zooming from the wide angle end to the telephoto end are corrected. It becomes difficult.
  • the lower limit value of conditional expression (11) By setting the lower limit value of conditional expression (11) to 3.40, the effect of the present embodiment can be made more reliable. In order to further secure the effect of the present embodiment, it is preferable to set the lower limit of conditional expression (11) to 3.60.
  • the optical apparatus and the imaging apparatus of the present embodiment are configured to include the variable magnification optical system having the above-described configuration.
  • a camera (corresponding to the imaging apparatus of the present invention) provided with the above-described variable magnification optical system ZL will be described with reference to FIG.
  • the camera 1 has a lens assembly configuration in which the photographic lens 2 can be replaced. That is, the photographing lens 2 corresponds to the optical apparatus of the present invention.
  • the camera 1 is a digital camera, and light from an object (subject) (not shown) is collected by the photographing lens 2 and reaches the image sensor 3. Thereby, the light from the subject is picked up by the image pickup device 3 and recorded as a subject image in a memory (not shown). In this way, the photographer can shoot the subject with the camera 1.
  • This camera may be a mirrorless camera or a single-lens reflex camera having a quick return mirror.
  • the camera 1 in which the variable magnification optical system ZL is mounted on the photographic lens 2 can reduce the size and weight of the focusing lens group, and can perform high-speed AF and AF without increasing the size of the lens barrel. Silence can be realized. Furthermore, it is possible to satisfactorily suppress aberration fluctuations at the time of zooming from the wide-angle end state to the telephoto end state and aberration fluctuations at the time of focusing from an object at infinity to an object at a short distance, thereby realizing good optical performance.
  • the lens group GRN is disposed (step ST1).
  • the distance between the front lens group GFS and the M1 lens group GM1 changes, the distance between the M1 lens group GM1 and the M2 lens group GM2 changes, and the distance between the M2 lens group GM2 and the RN lens group GRN changes.
  • the RN lens group GRN is configured to move when focusing from an object at infinity to an object at a short distance (step ST3).
  • the RN lens group GRN includes at least one lens having a positive refractive power. It has a lens having at least one negative refractive power (step ST4). Further, lenses are arranged so as to satisfy a predetermined conditional expression (step ST5).
  • FIG. 1, FIG. 6, FIG. 11, FIG. 16, and FIG. 21 are cross sections showing the configuration and refractive power distribution of the variable magnification optical system ZL ⁇ ZL (1) to ZL (5) ⁇ according to the first to fifth examples.
  • FIG. At the bottom of the sectional view of the variable magnification optical systems ZL (1) to ZL (5), the movement along the optical axis of each lens group when changing magnification from the wide-angle end state (W) to the telephoto end state (T) Directions are indicated by arrows. Furthermore, the moving direction when the focusing group GRN focuses on an object at a short distance from infinity is indicated by an arrow together with the characters “focusing”.
  • each lens group is represented by a combination of symbol G and a number or alphabet, and each lens is represented by a combination of symbol L and a number.
  • the lens groups and the like are represented using combinations of codes and numbers independently for each embodiment. For this reason, even if the combination of the same code
  • Tables 1 to 5 are shown below. Of these, Tables 1 to 5 are tables showing the various data in each of the first to fifth examples.
  • the d-line (wavelength 587.562 nm) and the g-line (wavelength 435.835 nm) are selected as the aberration characteristic calculation targets.
  • the surface number indicates the order of the optical surfaces from the object side along the light traveling direction, and R indicates the radius of curvature of each optical surface (the surface where the center of curvature is located on the image side).
  • D is a positive value
  • D is a surface interval that is the distance on the optical axis from each optical surface to the next optical surface (or image surface)
  • nd is the refractive index of the material of the optical member with respect to d-line
  • ⁇ d is optical The Abbe numbers based on the d-line of the material of the member are shown respectively.
  • the object plane indicates the object plane
  • the curvature radius “ ⁇ ” indicates a plane or aperture
  • (aperture S) indicates the aperture stop S
  • the image plane indicates the image plane I.
  • Description of the refractive index of air nd 1.000 is omitted.
  • f is the focal length of the entire lens system
  • FNO is the F number
  • 2 ⁇ is the angle of view (unit is ° (degree)
  • is the half angle of view
  • Ymax is the maximum image height.
  • Show. TL indicates a distance obtained by adding BF to the distance from the forefront lens to the final lens surface on the optical axis at the time of focusing on infinity
  • BF is an image from the final lens surface on the optical axis at the time of focusing on infinity.
  • the distance to the surface I (back focus) is shown.
  • the table of [variable distance data] is the surface number (for example, surface numbers 5, 13, 25, and 29 in Example 1) in which the surface distance is “variable” in the table indicating [lens specifications]. Indicates the surface spacing.
  • W wide angle end
  • M intermediate focal length
  • T telephoto end
  • mm is generally used for the focal length f, curvature radius R, surface distance D, and other lengths, etc. unless otherwise specified, but the optical system is proportionally enlarged. Alternatively, the same optical performance can be obtained even by proportional reduction, and the present invention is not limited to this.
  • FIG. 1 is a diagram showing a lens configuration of a variable magnification optical system according to the first example of the present embodiment.
  • the variable magnification optical system ZL (1) according to the present example includes, in order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, and a positive refractive power.
  • the sign (+) or ( ⁇ ) attached to each lens group symbol indicates the refractive power of each lens group, and this is the same in all the following embodiments.
  • the first lens group G1 is in the front lens group GFS
  • the second lens group G2 is in the M1 lens group GM1
  • the third lens group G3 is in the M2 lens group GM2
  • the fourth lens is related to the above embodiment.
  • the group G4 corresponds to the RN lens group GRN.
  • the first lens group G1 in order from the object side, includes a positive convex flat lens L11 having a convex surface directed toward the object side, a negative meniscus lens L12 having a convex surface directed toward the object side, and a positive meniscus lens L13 having a convex surface directed toward the object side. And a cemented positive lens.
  • the second lens group G2 in order from the object side, has a negative meniscus lens L21 having a convex surface directed toward the object side, a biconvex positive lens L22, a biconcave negative lens L23, and a concave surface directed toward the object side. It comprises a negative meniscus lens L24.
  • the third lens group G3 includes, in order from the object side, a cemented positive lens of a negative meniscus lens L31 having a convex surface directed toward the object side and a biconvex positive lens L32, a biconvex positive lens L33, and a biconcave shape.
  • the fourth lens group G4 includes, in order from the object side, a positive meniscus lens L41 having a concave surface directed toward the object side, and a biconcave negative lens L42.
  • the fifth lens group G5 includes, in order from the object side, a negative meniscus lens L51 having a concave surface directed toward the object side, and a biconvex positive lens L52.
  • focusing from a long-distance object to a short-distance object is performed by moving the fourth lens group G4 in the image plane direction.
  • variable magnification optical system a camera shake is obtained by moving a cemented positive lens of a negative meniscus lens L31 having a convex surface facing the object side and a positive biconvex lens L32 in a direction perpendicular to the optical axis.
  • the imaging position displacement due to the above is corrected.
  • the moving lens group for blur correction may be moved in the direction orthogonal to the optical axis by (f ⁇ tan ⁇ ) / K.
  • the image stabilization coefficient is 1.65 and the focal length is 72.1 mm. Therefore, the movement amount of the image stabilization lens group for correcting the rotation blur of 0.30 ° is 0.23 mm.
  • the movement amount of the image stabilization lens group for correcting the rotation blur of 0.20 ° is 0.49 mm.
  • Table 1 below lists the values of the specifications of the optical system according to this example.
  • f indicates the focal length
  • BF indicates the back focus.
  • FIGS. 2A and 2B are diagrams showing various aberrations at the time of focusing at infinity in the wide-angle end state of the variable magnification optical system having the image stabilization function according to the first example, and a rotation of 0.30 °, respectively.
  • FIG. 6 is a meridional lateral aberration diagram when blur correction is performed on blur.
  • FIG. 3 is a diagram of various aberrations during focusing at infinity in the intermediate focal length state of the variable magnification optical system having the image stabilization function according to the first example.
  • FIG. 4 (a) and 4 (b) are diagrams showing various aberrations at the time of focusing on infinity in the telephoto end state of the variable magnification optical system having the image stabilization function according to the first example, and rotation of 0.20 °, respectively.
  • FIG. 6 is a meridional lateral aberration diagram when blur correction is performed on blur.
  • 5 (a), 5 (b), and 5 (c) respectively show the close-up focus in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the first example.
  • FNO indicates the F number
  • NA indicates the numerical aperture
  • Y indicates the image height
  • the spherical aberration diagram shows the F-number or numerical aperture value corresponding to the maximum aperture
  • the astigmatism diagram and the distortion diagram show the maximum image height
  • the coma diagram shows the value of each image height.
  • the solid line indicates the sagittal image plane
  • the broken line indicates the meridional image plane. Note that the same reference numerals as in this example are also used in the aberration diagrams of the examples shown below.
  • variable magnification optical system has excellent imaging performance by correcting various aberrations well from the wide-angle end state to the telephoto end state, and also at the time of focusing at a short distance. It can be seen that the imaging performance is excellent.
  • FIG. 6 is a diagram showing a lens configuration of the variable magnification optical system according to the second example of the present embodiment.
  • the variable magnification optical system according to this example includes, in order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, and a third lens having a negative refractive power.
  • the lens group G3 includes a fourth lens group G4 having a positive refractive power, a fifth lens group G5 having a negative refractive power, and a sixth lens group G6 having a positive refractive power.
  • the first lens group G1 is in the front lens group GFS
  • the second lens group G2 and the third lens group G3 are in the M1 lens group GM1
  • the fourth lens group G4 is in the M2 lens group.
  • the fifth lens group G5 corresponds to the RN lens group GRN.
  • the first lens group G1 in order from the object side, includes a positive convex flat lens L11 having a convex surface directed toward the object side, a negative meniscus lens L12 having a convex surface directed toward the object side, and a positive meniscus lens L13 having a convex surface directed toward the object side. And a cemented positive lens.
  • the second lens group G2 includes, in order from the object side, a negative meniscus lens L21 having a convex surface directed toward the object side, a biconvex positive lens L22, and a biconcave negative lens L23.
  • the third lens group G3 includes a negative meniscus lens L31 having a concave surface directed toward the object side.
  • the fourth lens group G4 includes, in order from the object side, a cemented positive lens of a negative meniscus lens L41 having a convex surface directed toward the object side and a biconvex positive lens L42, a biconvex positive lens L43, and a biconcave shape.
  • the fifth lens group G5 includes, in order from the object side, a positive meniscus lens L51 having a concave surface directed toward the object side, and a biconcave negative lens L52.
  • the sixth lens group G6 includes, in order from the object side, a negative meniscus lens L61 having a concave surface directed toward the object side, and a biconvex positive lens L62.
  • focusing from a long-distance object to a short-distance object is performed by moving the fifth lens group G5 in the image plane direction.
  • a cemented positive lens of a negative meniscus lens L41 having a convex surface facing the object side and a biconvex positive lens L42 in a direction perpendicular to the optical axis is corrected.
  • the focal length of the entire system is f
  • the image stabilization coefficient ratio of image movement amount on the imaging surface to the movement amount of the moving lens group in shake correction
  • K the image stabilization coefficient
  • the moving lens group for blur correction may be moved in the direction orthogonal to the optical axis by (f ⁇ tan ⁇ ) / K.
  • the image stabilization coefficient is 1.66 and the focal length is 72.1 mm. Therefore, the movement amount of the image stabilization lens group for correcting the rotation blur of 0.30 ° is 0.23 mm.
  • the movement amount of the image stabilization lens group for correcting 0.20 ° rotational blur is 0.49 mm.
  • Table 2 below lists the values of the specifications of the optical system according to this example.
  • FIGS. 7A and 7B are diagrams showing various aberrations at the time of focusing at infinity in the wide-angle end state of the variable magnification optical system having the image stabilization function according to the second example, and a rotation of 0.30 °, respectively.
  • FIG. 6 is a meridional lateral aberration diagram when blur correction is performed on blur.
  • FIG. 8 is a diagram of various aberrations when focusing on infinity in the intermediate focal length state of the variable magnification optical system having the image stabilization function according to the second example.
  • FIGS. 9A and 9B are diagrams showing various aberrations at the time of focusing at infinity in the telephoto end state of the variable magnification optical system having the image stabilization function according to the second example, and rotation by 0.20 °, respectively.
  • FIG. 6 is a meridional lateral aberration diagram when blur correction is performed on blur.
  • 10 (a), 10 (b), and 10 (c), respectively, are in close focus at the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the second example.
  • FIG. 10 (a), 10 (b), and 10 (c), respectively, are in close focus at the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the second example.
  • variable magnification optical system has excellent imaging performance by correcting various aberrations well from the wide-angle end state to the telephoto end state, and also at the time of focusing at a short distance. It can be seen that the imaging performance is excellent.
  • FIG. 11 is a diagram showing a lens configuration of the variable magnification optical system according to the third example of the present embodiment.
  • the variable magnification optical system according to the present example includes, in order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, and a third lens having a positive refractive power.
  • the lens group G3 includes a fourth lens group G4 having a positive refractive power, a fifth lens group G5 having a negative refractive power, and a sixth lens group G6 having a positive refractive power.
  • the first lens group G1 is in the front lens group GFS
  • the second lens group G2 is in the M1 lens group GM1
  • the third lens group G3 and the fourth lens group G4 are in the M2 lens group.
  • the fifth lens group G5 corresponds to the RN lens group GRN.
  • the first lens group G1 in order from the object side, includes a positive convex flat lens L11 having a convex surface directed toward the object side, a negative meniscus lens L12 having a convex surface directed toward the object side, and a positive meniscus lens L13 having a convex surface directed toward the object side. And a cemented positive lens.
  • the second lens group G2 in order from the object side, has a negative meniscus lens L21 having a convex surface directed toward the object side, a biconvex positive lens L22, a biconcave negative lens L23, and a concave surface directed toward the object side. It comprises a negative meniscus lens L24.
  • the third lens group G3 includes, in order from the object side, a cemented positive lens of a negative meniscus lens L31 having a convex surface directed toward the object side and a biconvex positive lens L32, a biconvex positive lens L33, and a biconcave shape. It is composed of a positive lens joined to the negative lens L34 and an aperture stop S.
  • the fourth lens group G4 includes, in order from the object side, a cemented negative lens of a negative meniscus lens L41 having a convex surface directed toward the object side and a biconvex positive lens L42, and a biconvex positive lens L43. .
  • the fifth lens group G5 includes, in order from the object side, a positive meniscus lens L51 having a concave surface directed toward the object side, and a biconcave negative lens L52.
  • the sixth lens group G6 includes, in order from the object side, a negative meniscus lens L61 having a concave surface directed toward the object side, and a biconvex positive lens L62.
  • focusing from a long-distance object to a short-distance object is performed by moving the fifth lens group G5 in the image plane direction. Further, by moving a cemented positive lens of a negative meniscus lens L31 having a convex surface facing the object side and a biconvex positive lens L32 in a direction orthogonal to the optical axis, the imaging position displacement due to camera shake or the like is corrected. .
  • the focal length of the entire system is f
  • the image stabilization coefficient ratio of image movement amount on the imaging surface to the movement amount of the moving lens group in shake correction
  • K the image stabilization coefficient
  • the moving lens group for blur correction may be moved in the direction orthogonal to the optical axis by (f ⁇ tan ⁇ ) / K.
  • the image stabilization coefficient is 1.65 and the focal length is 72.1 mm. Therefore, the movement amount of the image stabilization lens group for correcting the rotation blur of 0.30 ° is 0.23 mm.
  • the movement amount of the image stabilization lens group for correcting 0.20 ° rotational blur is 0.49 mm.
  • Table 3 below lists the values of the specifications of the optical system according to the present example.
  • FIGS. 12A and 12B are diagrams showing various aberrations at the time of focusing at infinity in the wide-angle end state of the variable magnification optical system having the image stabilization function according to the third example, and a rotation of 0.30 °, respectively.
  • FIG. 6 is a meridional lateral aberration diagram when blur correction is performed on blur.
  • FIG. 13 is a diagram of various aberrations at the time of focusing at infinity in the intermediate focal length state of the variable magnification optical system having the image stabilization function according to the third example.
  • FIG. 14A and 14B are diagrams showing various aberrations at the time of focusing on infinity in the telephoto end state of the variable magnification optical system having the image stabilization function according to the third example, and rotation of 0.20 °, respectively.
  • FIG. 6 is a meridional lateral aberration diagram when blur correction is performed on blur.
  • 15 (a), 15 (b), and 15 (c) respectively show the close-up focus in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the third example.
  • variable magnification optical system has excellent imaging performance by correcting various aberrations well from the wide-angle end state to the telephoto end state, and also at the time of focusing at a short distance. It can be seen that the imaging performance is excellent.
  • FIG. 16 is a diagram showing a lens configuration of a variable magnification optical system according to the fourth example of the present embodiment.
  • the variable magnification optical system according to the present example includes, in order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, and a third lens having a positive refractive power.
  • the lens group G3 includes a fourth lens group G4 having negative refractive power.
  • the first lens group G1 is in the front lens group GFS
  • the second lens group G2 is in the M1 lens group GM1
  • the third lens group G3 is in the M2 lens group GM2
  • the fourth lens is related to the above embodiment.
  • the group G4 corresponds to the RN lens group GRN.
  • the first lens group G1 includes, in order from the object side, a positive convex lens L11 having a convex surface facing the object side, a negative meniscus lens L12 having a convex surface facing the object side, and a biconvex positive lens L13. It consists of.
  • the second lens group G2 in order from the object side, has a negative meniscus lens L21 having a convex surface directed toward the object side, a biconvex positive lens L22, a biconcave negative lens L23, and a concave surface directed toward the object side. And a negative meniscus lens L24.
  • the third lens group G3 includes, in order from the object side, a cemented positive lens composed of a negative meniscus lens L31 having a convex surface facing the object side and a biconvex positive lens L32, and a biconvex positive lens L33 and a concave surface facing the object side.
  • the fourth lens group G4 includes, in order from the object side, a positive meniscus lens L41 having a concave surface directed toward the object side, and a biconcave negative lens L42.
  • focusing from a long-distance object to a short-distance object is performed by moving the fourth lens group G4 in the image plane direction.
  • variable magnification optical system a camera shake is obtained by moving a cemented positive lens of a negative meniscus lens L31 having a convex surface facing the object side and a positive biconvex lens L32 in a direction perpendicular to the optical axis.
  • the imaging position displacement due to the above is corrected.
  • the focal length of the entire system is f
  • the image stabilization coefficient ratio of image movement amount on the imaging surface to the movement amount of the moving lens group in shake correction
  • K the image stabilization coefficient
  • the moving lens group for blur correction may be moved in the direction orthogonal to the optical axis by (f ⁇ tan ⁇ ) / K.
  • the image stabilization coefficient is 1.64 and the focal length is 72.1 mm. Therefore, the amount of movement of the image stabilization lens group for correcting the rotation blur of 0.30 ° is 0.23 mm.
  • the image stabilization coefficient is 2.10 and the focal length is 292.0 mm
  • the amount of movement of the image stabilization lens group for correcting 0.20 ° rotational blur is 0.48 mm.
  • Table 4 lists the values of the specifications of the optical system according to this example.
  • FIGS. 17A and 17B are graphs showing various aberrations at the time of focusing at infinity in the wide-angle end state of the zoom optical system having the image stabilization function according to the fourth example, and a rotation blur of 0.30 °, respectively.
  • FIG. 6 is a meridional transverse aberration diagram when blur correction is performed on the lens.
  • FIG. 18 is a diagram of various aberrations when focusing on infinity in the intermediate focal length state of the variable magnification optical system having the image stabilization function according to the fourth example.
  • FIGS. 19A and 19B are diagrams showing various aberrations at the time of focusing at infinity in the telephoto end state of the variable magnification optical system having the image stabilization function according to the fourth example, and a rotational blur of 0.20 °, respectively.
  • FIG. 6 is a meridional transverse aberration diagram when blur correction is performed on the lens.
  • 20 (a), 20 (b), and 20 (c) respectively show the zooming optical system according to the fourth example at the time of close focus in the wide-angle end state, the intermediate focal length state, and the telephoto end state. It is an aberration diagram.
  • variable magnification optical system has excellent imaging performance by correcting various aberrations well from the wide-angle end state to the telephoto end state, and also at the time of focusing at a short distance. It can be seen that the imaging performance is excellent.
  • FIG. 21 is a diagram showing a lens configuration of a variable magnification optical system according to the fifth example of the present embodiment.
  • the variable magnification optical system according to the present example includes, in order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, and a third lens having a positive refractive power.
  • the lens group G3 includes a fourth lens group G4 having a negative refractive power and a fifth lens group G5 having a positive refractive power.
  • the first lens group G1 is in the front lens group GFS
  • the second lens group G2 is in the M1 lens group GM1
  • the third lens group G3 is in the M2 lens group GM2
  • the fourth lens is related to the above embodiment.
  • the group G4 corresponds to the RN lens group GRN.
  • the first lens group G1 in order from the object side, includes a positive convex flat lens L11 having a convex surface directed toward the object side, a negative meniscus lens L12 having a convex surface directed toward the object side, and a positive meniscus lens L13 having a convex surface directed toward the object side. And a cemented positive lens.
  • the second lens group G2 in order from the object side, has a negative meniscus lens L21 having a convex surface directed toward the object side, a biconvex positive lens L22, a biconcave negative lens L23, and a concave surface directed toward the object side. It comprises a negative meniscus lens L24.
  • the third lens group G3 includes, in order from the object side, a cemented positive lens of a negative meniscus lens L31 having a convex surface directed toward the object side and a biconvex positive lens L32, a biconvex positive lens L33, and a biconcave shape.
  • the fourth lens group G4 includes, in order from the object side, a positive meniscus lens L41 having a concave surface directed toward the object side, and a biconcave negative lens L42.
  • the fifth lens group G5 includes, in order from the object side, a negative meniscus lens L51 having a concave surface directed toward the object side, a positive bilens lens L52, and a positive meniscus lens L53 having a convex surface directed toward the object side. .
  • focusing from a long-distance object to a short-distance object is performed by moving the fourth lens group G4 in the image plane direction. Further, by moving a cemented positive lens of a negative meniscus lens L31 having a convex surface facing the object side and a biconvex positive lens L32 in a direction orthogonal to the optical axis, the imaging position displacement due to camera shake or the like is corrected. .
  • the focal length of the entire system is f
  • the image stabilization coefficient ratio of image movement amount on the imaging surface to the movement amount of the moving lens group in shake correction
  • K the image stabilization coefficient
  • the moving lens group for blur correction may be moved in the direction orthogonal to the optical axis by (f ⁇ tan ⁇ ) / K.
  • the image stabilization coefficient is 1.65 and the focal length is 72.1 mm
  • the amount of movement of the image stabilization lens group for correcting the 0.30 ° rotation blur is 0.23 mm.
  • the image stabilization coefficient is 2.10 and the focal length is 292.0 mm
  • the amount of movement of the image stabilization lens group for correcting 0.20 ° rotational blur is 0.49 mm.
  • Table 5 lists the values of the specifications of the optical system according to this example.
  • FIGS. 22A and 22B are diagrams showing various aberrations at the time of focusing at infinity in the wide-angle end state of the variable magnification optical system having the image stabilization function according to the fifth example, and a rotation of 0.30 °, respectively.
  • FIG. 6 is a meridional lateral aberration diagram when blur correction is performed on blur.
  • FIG. 23 is a diagram of various aberrations at the time of focusing at infinity in the intermediate focal length state of the variable magnification optical system having the image stabilization function according to the fifth example.
  • FIGS. 24A and 24B are diagrams showing various aberrations at the time of focusing at infinity in the telephoto end state of the variable magnification optical system having the image stabilization function according to the fifth example, and rotation by 0.20 °, respectively.
  • FIG. 6 is a meridional lateral aberration diagram when blur correction is performed on blur.
  • FIGS. 25 (a), 25 (b), and 25 (c) are each in close focus in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the fifth example.
  • variable magnification optical system has excellent imaging performance by correcting various aberrations well from the wide-angle end state to the telephoto end state, and also at the time of focusing at a short distance. It can be seen that the imaging performance is excellent.
  • the focusing lens group is reduced in size and weight so that high-speed AF without increasing the size of the lens barrel, quietness during AF is achieved, and further, from the wide-angle end state to the telephoto end. It is possible to realize a variable magnification optical system that satisfactorily suppresses aberration fluctuations during zooming to a state and aberration fluctuations during focusing from an object at infinity to a short distance object.
  • each of the above embodiments shows a specific example of the present invention, and the present invention is not limited to these.
  • variable magnification optical system of the present application a four-group configuration, a five-group configuration, and a six-group configuration are shown.
  • present application is not limited to this, and other group configurations (for example, seven groups) ) Variable magnification optical system.
  • a configuration in which a lens or a lens group is added to the most object side or the most image plane side of the variable magnification optical system of the present application may be used.
  • the lens group refers to a portion having at least one lens separated by an air interval that changes during zooming.
  • the lens surface of the lens constituting the variable magnification optical system of the present application may be a spherical surface, a flat surface, or an aspheric surface.
  • the lens surface is a spherical surface or a flat surface, it is preferable because lens processing and assembly adjustment are easy, and deterioration of optical performance due to errors in lens processing and assembly adjustment can be prevented. Further, even when the image plane is deviated, it is preferable because there is little deterioration in drawing performance.
  • the lens surface is aspherical, any of aspherical surface by grinding, glass mold aspherical surface in which glass is molded into an aspherical shape, or composite aspherical surface in which resin provided on the glass surface is formed in an aspherical shape Good.
  • the lens surface may be a diffractive surface, and the lens may be a gradient index lens (GRIN lens) or a plastic lens.
  • an antireflection film having a high transmittance in a wide wavelength range may be applied to the lens surface of the lens constituting the variable magnification optical system of the present application. Thereby, flare and ghost can be reduced, and high optical performance with high contrast can be achieved.
  • the present camera 1 in which the variable magnification optical system according to the first embodiment is mounted as the photographing lens 2 can reduce the size and weight of the focusing lens group without increasing the size of the lens barrel. AF and quietness at the time of AF are achieved, and aberration fluctuation at the time of zooming from the wide-angle end state to the telephoto end state and aberration fluctuation at the time of focusing from an object at infinity to a short distance object are well suppressed. Good optical performance can be realized. Even if a camera equipped with the variable magnification optical system according to the second to fifth embodiments as the photographing lens 2 is configured, the same effect as the camera 1 can be obtained.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Lenses (AREA)
  • Studio Devices (AREA)

Abstract

変倍光学系が、物体側から順に、正の屈折力を有する前側レンズ群(GFS)と、負の屈折力を有するM1レンズ群(GM1)と、正の屈折力を有するM2レンズ群(GM2)と、負の屈折力を有するRNレンズ群(GRN)とを有し、変倍時に、前側レンズ群とM1レンズ群の間隔、M1レンズ群とM2レンズ群の間隔およびM2レンズ群とRNレンズ群の間隔がそれぞれ変化し、無限遠物体から近距離物体への合焦の際、RNレンズ群が移動し、RNレンズ群は、少なくとも一つの正の屈折力を有するレンズと少なくとも一つの負の屈折力を有するレンズを有し、以下の条件式を満足する。 2.70<fFP/(-fFN)<4.50 0.25<(-fF)/f1<0.45 但し、fFP:RNレンズ群中の最も正の屈折力が強いレンズの焦点距離 fFN:RNレンズ群中の最も負の屈折力が強いレンズの焦点距離 fF:RNレンズ群の焦点距離 f1:前側レンズ群の焦点距離

Description

変倍光学系、光学機器、撮像機器および変倍光学系の製造方法
 本発明は、変倍光学系、これを用いた光学機器および撮像機器並びに変倍光学系の製造方法に関する。
 従来、写真用カメラ、電子スチルカメラ、ビデオカメラ等に適した変倍光学系が提案されている(例えば、特許文献1を参照)。
特開平4-293007号
 しかしながら、従来の変倍光学系にあっては、合焦レンズ群の軽量化が不十分であった。
 本発明に係る変倍光学系は、物体側から順に、正の屈折力を有する前側レンズ群と、負の屈折力を有するM1レンズ群と、正の屈折力を有するM2レンズ群と、負の屈折力を有するRNレンズ群とを有し、変倍時に、前記前側レンズ群と前記M1レンズ群の間隔が変化し、前記M1レンズ群と前記M2レンズ群の間隔が変化し、前記M2レンズ群と前記RNレンズ群の間隔が変化し、無限遠物体から近距離物体への合焦の際、前記RNレンズ群が移動し、前記RNレンズ群は、少なくとも一つの正の屈折力を有するレンズと少なくとも一つの負の屈折力を有するレンズを有し、以下の条件式を満足する。
   2.70<fFP/(-fFN)<4.50
   0.25<(-fF)/f1<0.45
 但し、
 fFP:前記RNレンズ群中の最も正の屈折力が強いレンズの焦点距離
 fFN:前記RNレンズ群中の最も負の屈折力が強いレンズの焦点距離
 fF:前記RNレンズ群の焦点距離
 f1:前記前側レンズ群の焦点距離
 本発明に係る光学機器は、前記変倍光学系を搭載して構成される。
 本発明にかかる撮像機器は、前記変倍光学系と、前記変倍光学系によって形成される像を撮像する撮像部とを備える。
 本発明に係る変倍光学系の製造方法は、物体側から順に、正の屈折力を有する前側レンズ群と、負の屈折力を有するM1レンズ群と、正の屈折力を有するM2レンズ群と、負の屈折力を有するRNレンズ群とを有して構成される変倍光学系の製造方法であって、変倍時に、前記前側レンズ群と前記M1レンズ群の間隔が変化し、前記M1レンズ群と前記M2レンズ群の間隔が変化し、前記M2レンズ群と前記RNレンズ群の間隔が変化するように配置することを含み、無限遠物体から近距離物体への合焦の際、前記RNレンズ群が移動し、前記RNレンズ群は、少なくとも一つの正の屈折力を有するレンズと少なくとも一つの負の屈折力を有するレンズを有し、以下の条件式を満足する。
   2.70<fFP/(-fFN)<4.50
   0.25<(-fF)/f1<0.45
 但し、
 fFP:前記RNレンズ群中の最も正の屈折力が強いレンズの焦点距離
 fFN:前記RNレンズ群中の最も負の屈折力が強いレンズの焦点距離
 fF:前記RNレンズ群の焦点距離
 f1:前記前側レンズ群の焦点距離
本実施形態の第1実施例に係る変倍光学系のレンズ構成を示す図である。 図2(a)は、第1実施例に係る変倍光学系の広角端状態における無限遠合焦時の諸収差図であり、図2(b)は0.30°の回転ブレに対してブレ補正を行った際のメリディオナル横収差図(コマ収差図)である。 第1実施例に係る変倍光学系の中間焦点距離状態における無限遠合焦時の諸収差図である。 図4(a)は、第1実施例に係る変倍光学系の望遠端状態における無限遠合焦時の諸収差図であり、図4(b)は0.20°の回転ブレに対してブレ補正を行った際のメリディオナル横収差図である。 図5(a)、図5(b)、及び図5(c)はそれぞれ、第1実施例に係る変倍光学系の広角端状態、中間焦点距離状態、望遠端状態における近距離合焦時の諸収差図である。 本実施形態の第2実施例に係る変倍光学系のレンズ構成を示す図である。 図7(a)は、第2実施例に係る変倍光学系の広角端状態における無限遠合焦時の諸収差図であり、図7(b)は0.30°の回転ブレに対してブレ補正を行った際のメリディオナル横収差図である。 第2実施例に係る変倍光学系の中間焦点距離状態における無限遠合焦時の諸収差図である。 図9(a)は、第2実施例に係る変倍光学系の望遠端状態における無限遠合焦時の諸収差図であり、図9(b)は0.20°の回転ブレに対してブレ補正を行った際のメリディオナル横収差図である。 図10(a)、図10(b)、及び図10(c)はそれぞれ、第2実施例に係る変倍光学系の広角端状態、中間焦点距離状態、望遠端状態における近距離合焦時の諸収差図である。 本実施形態の第3実施例に係る変倍光学系のレンズ構成を示す図である。 図12(a)は、第3実施例に係る変倍光学系の広角端状態における無限遠合焦時の諸収差図であり、図12(b)は0.30°の回転ブレに対してブレ補正を行った際のメリディオナル横収差図である。 第3実施例に係る変倍光学系の中間焦点距離状態における無限遠合焦時の諸収差図である。 図14(a)は、第3実施例に係る変倍光学系の望遠端状態における無限遠合焦時の諸収差図であり、図14(b)は0.20°の回転ブレに対してブレ補正を行った際のメリディオナル横収差図である。 図15(a)、図15(b)、及び図15(c)はそれぞれ、第3実施例に係る変倍光学系の広角端状態、中間焦点距離状態、望遠端状態における近距離合焦時の諸収差図である。 本実施形態の第4実施例に係る変倍光学系のレンズ構成を示す図である。 図17(a)は、第4実施例に係る変倍光学系の広角端状態における無限遠合焦時の諸収差図であり、図17(b)は0.30°の回転ブレに対してブレ補正を行った際のメリディオナル横収差図である。 第4実施例に係る変倍光学系の中間焦点距離状態における無限遠合焦時の諸収差図である。 図19(a)は、第4実施例に係る変倍光学系の望遠端状態における無限遠合焦時の諸収差図であり、図19(b)は0.20°の回転ブレに対してブレ補正を行った際のメリディオナル横収差図である。 図20(a)、図20(b)、及び図20(c)はそれぞれ、第4実施例に係る変倍光学系の広角端状態、中間焦点距離状態、望遠端状態における近距離合焦時の諸収差図である。 本実施形態の第5実施例に係る変倍光学系のレンズ構成を示す図である。 図22(a)は、第5実施例に係る変倍光学系の広角端状態における無限遠合焦時の諸収差図であり、図22(b)は、0.30°の回転ブレに対してブレ補正を行った際のメリディオナル横収差図である。 第5実施例に係る変倍光学系の中間焦点距離状態における無限遠合焦時の諸収差図である。 図24(a)は、第5実施例に係る変倍光学系の望遠端状態における無限遠合焦時の諸収差図であり、図24(b)は、0.20°の回転ブレに対してブレ補正を行った際のメリディオナル横収差図である。 図25(a)、図25(b)、および図25(c)はそれぞれ、第5実施例に係る変倍光学系の広角端状態、中間焦点距離状態、望遠端状態における近距離合焦時の諸収差図である。 本実施形態に係る変倍光学系を備えたカメラの構成を示す図である。 本実施形態に係る変倍光学系の製造方法を示すフローチャートである。
 以下、本実施形態の変倍光学係、光学機器、撮像機器について図を参照して説明する。本実施形態に係る変倍光学係(ズームレンズ)ZLの一例としての変倍光学系ZL(1)は、図1に示すように、物体側から順に、正の屈折力を有する前側レンズ群GFSと、負の屈折力を有するM1レンズ群GM1と、正の屈折力を有するM2レンズ群GM2と、負の屈折力を有するRNレンズ群GRNとを有し、変倍時に、前側レンズ群GFSとM1レンズ群GM1との間隔が変化し、M1レンズ群GM1とM2レンズ群GM2との間隔が変化し、M2レンズ群GM2とRNレンズ群GRNとの間隔が変化し、無限遠物体から近距離物体への合焦の際、RNレンズ群GRNが移動し、RNレンズ群GRNは、少なくとも一つの正の屈折力を有するレンズと少なくとも一つの負の屈折力を有するレンズを有し、以下の条件式(1)および(2)を満足する。
   2.70<fFP/(-fFN)<4.50  ・・・(1)
   0.25<(-fF)/f1<0.45  ・・・(2)
 但し、
 fFP:RNレンズ群GRN中の最も正の屈折力が強いレンズの焦点距離
 fFN:RNレンズ群GRN中の最も負の屈折力が強いレンズの焦点距離
 fF:RNレンズ群GRNの焦点距離
 f1:前側レンズ群GFSの焦点距離
 本実施形態に係る変倍光学系ZLは、図6に示す変倍光学系ZL(2)や、図11に示す変倍光学系ZL(3)や、図16に示す変倍光学系ZL(4)や、図21に示す変倍光学系ZL(5)でも良い。
 本実施形態に係る変倍光学系は、少なくとも4つのレンズ群を有し、広角端状態から望遠端状態への変倍時に、各レンズ群間隔を変化させることによって、変倍時の良好な収差補正を図ることができる。また、RNレンズ群GRNで合焦を行うことにより、RNレンズ群GRNすなわち合焦レンズ群を小型軽量化できる。
 さらに、RNレンズ群GRN(合焦レンズ群)に少なくとも一つの正の屈折力を有するレンズと少なくとも一つの負の屈折力を有するレンズを有することで、無限遠物体から近距離物体への合焦時の球面収差をはじめとする諸収差の変動を抑えることができる。
 上記条件式(1)は、合焦レンズ群中の最も正の屈折力が強いレンズの焦点距離と合焦レンズ群中の最も負の屈折力が強いレンズの焦点距離との比を規定するものである。この条件式(1)を満足することで、無限遠物体から近距離物体への合焦時の球面収差をはじめとする諸収差の変動を抑えることができる。
 条件式(1)の対応値が上限値を上回ると、合焦レンズ群中の最も負の屈折力が強いレンズの屈折力が強くなり、無限遠物体から近距離物体への合焦時の球面収差をはじめとする諸収差の変動を抑えることが困難となる。条件式(1)の上限値を4.40に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をより確実にするために、条件式(1)の上限値を4.30にすることが好ましい。
 条件式(1)の対応値が下限値を下回ると、合焦レンズ群中の最も正の屈折力が強いレンズの屈折力が強くなり、無限遠物体から近距離物体への合焦時の球面収差をはじめとする諸収差の変動を抑えることが困難となる。条件式(1)の下限値を2.80に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をより確実にするために、条件式(1)の下限値を2.90にすることが好ましい。
 上記条件式(2)は、合焦レンズ群の焦点距離と前側レンズ群GFSの焦点距離との比を規定するものである。この条件式(2)を満足することで、広角端から望遠端への変倍の際の球面収差をはじめとする諸収差の変動を抑え、無限遠物体から近距離物体への合焦時の球面収差をはじめとする諸収差の変動も抑えることができる。
 条件式(2)の対応値が上限値を上回ると、前側レンズ群GFSの屈折力が強くなり、広角端から望遠端への変倍の際の球面収差をはじめとする諸収差を補正することが困難となる。条件式(2)の上限値を0.43に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をより確実にするために、条件式(2)の上限値を0.41にすることが好ましい。
 条件式(2)の対応値が下限値を下回ると、合焦レンズ群の屈折力が強くなり、無限遠物体から近距離物体への合焦時の球面収差をはじめとする諸収差の変動を抑えることが困難となる。条件式(2)の下限値を0.27に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をより確実にするために、条件式(2)の下限値を0.29にすることが好ましい。
 本実施形態に係る変倍光学係によれば、合焦用レンズ群を小型軽量化することで、鏡筒を大型化することなく高速なAF、AF時の静粛性を実現し、さらに、広角端状態から望遠端状態への変倍時の収差変動、ならびに無限遠物体から近距離物体への合焦時の収差変動を良好に抑えることができる。また、本実施形態発明に係る光学機器、撮像機器および変倍光学系の製造方法によっても同様の効果が得られる。
 本実施形態において、広角端状態から望遠端状態への変倍時に、前側レンズ群GFSを物体方向に移動させる構成とすることが好ましい。これにより、広角端状態でのレンズ全長の短縮ができ、変倍光学系の小型化を図ることができる。
 本実施形態において、広角端状態から望遠端状態への変倍の際、M1レンズ群GM1中の最も物体側にあるレンズ群が像面に対して固定であることが望ましい。これにより、製造誤差による性能劣化を抑え、量産性を確保することができる。
 本実施形態において、M2レンズ群GM2中に手ブレ等による結像位置変位の補正を行うために光軸と直交する方向へ移動可能な防振レンズ群を配置することが好ましい。これにより、ブレ補正を行った際の性能劣化を効果的に抑えることができる。
 本実施形態において、上記防振レンズ群を有する変倍光学系は、下記の条件式(3)を満足することが好ましい。
   1.10<fvr/fTM2<2.00  ・・・(3)
 但し、
 fvr:上記防振レンズ群の焦点距離
 fTM2:望遠端状態におけるM2レンズ群GM2の焦点距離
 上記条件式(3)は、防振レンズ群の焦点距離と望遠端状態におけるM2レンズ群GM2の焦点距離との比を規定するものである。この条件式(3)を満足することで、広角端から望遠端への変倍の際の球面収差をはじめとする諸収差の変動と、ブレ補正を行った際の偏芯コマ収差をはじめとする諸収差の発生を抑えることができる。
 条件式(3)の対応値が上限値を上回ると、望遠端状態におけるM2レンズ群GM2の屈折力が強くなり、広角端から望遠端への変倍の際の球面収差をはじめとする諸収差の変動を抑えることが困難となる。条件式(3)の上限値を1.95に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をより確実にするために、条件式(3)の上限値を1.90にすることが好ましい。
 条件式(3)の対応値が下限値を下回ると、防振レンズ群の屈折力が強くなり、ブレ補正を行った際の偏芯コマ収差をはじめとする諸収差の発生を抑えることが困難となる。条件式(3)の下限値を1.15に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をより確実にするために、条件式(3)の下限値を1.20にすることが好ましい。
 上記防振レンズ群は、物体側から順に、負の屈折力を有するレンズと正の屈折力を有するレンズとからなることが好ましい。これにより、ブレ補正を行った際の性能劣化を効果的に抑えることができる。
 上記防振レンズ群を有した本実施形態の変倍光学系は、以下の条件式(4)を満足することが望ましい。
   1.00<nvrN/nvrP<1.25  ・・・(4)
 但し、
 nvrN:上記防振レンズ群内の負の屈折力を有するレンズの屈折率
 nvrP:上記防振レンズ群内の正の屈折力を有するレンズの屈折率
 条件式(4)は、防振レンズ群内の負の屈折力を有するレンズの屈折率と防振レンズ群内の正の屈折力を有するレンズの屈折率との比を規定するものである。この条件式(4)を満足することで、ブレ補正を行った際の性能劣化を効果的に抑えることができる。
 条件式(4)の対応値が上限値を上回ると、防振レンズ群内の正の屈折力を有するレンズの屈折率が低くなり、ブレ補正を行った際に発生する偏芯コマ収差の発生が過大となり、補正するのが困難となる。条件式(4)の上限値を1.22に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をより確実にするために、条件式(4)の上限値を1.20にすることが好ましい。
 条件式(4)の対応値が下限値を下回ると、防振レンズ群内の負の屈折力を有するレンズの屈折率が低くなり、ブレ補正を行った際の偏芯コマ収差を補正するのが困難となる。条件式(4)の下限値を1.03に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をより確実にするために、条件式(4)の下限値を1.05にすることが好ましい。
 上記防振レンズ群を有した本実施形態の変倍光学系は、また、以下の条件式(5)を満足することが望ましい。
   0.30<νvrN/νvrP<0.90  ・・・(5)
 但し、
 νvrN:上記防振レンズ群内の負の屈折力を有するレンズのアッベ数
 νvrP:上記防振レンズ群内の正の屈折力を有するレンズのアッベ数
 条件式(5)は、防振レンズ群内の負の屈折力を有するレンズのアッベ数と防振レンズ群内の正の屈折力を有するレンズのアッベ数との比を規定するものである。この条件式(5)を満足することで、ブレ補正を行った際の性能劣化を効果的に抑えることができる。
 条件式(5)の対応値が上限値を上回ると、防振レンズ群内の正の屈折力を有するレンズのアッベ数が小さくなり、ブレ補正を行った際に発生する色収差の補正が困難となる。条件式(5)の上限値を0.85に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をより確実にするために、条件式(5)の上限値を0.80にすることが好ましい。
 条件式(5)の対応値が下限値を下回ると、防振レンズ群内の負の屈折力を有するレンズのアッベ数が小さくなり、ブレ補正を行った際に発生する色収差の補正が困難となる。条件式(5)の下限値を0.35に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をより確実にするために、条件式(5)の下限値を0.40にすることが好ましい。
 本実施形態に係る変倍光学系において、以下の条件式(6)を満足することが望ましい。
   0.15<(-fTM1)/f1<0.35  ・・・(6)
 但し、
 fTM1:望遠端状態におけるM1レンズ群GM1の焦点距離
 条件式(6)は、望遠端状態におけるM1レンズ群GM1の焦点距離と前側レンズ群GFSの焦点距離との比を規定するものである。この条件式(6)を満足することで、広角端から望遠端への変倍の際の球面収差をはじめとする諸収差の変動を抑えることができる。
 条件式(6)の対応値が上限値を上回ると、前側レンズ群GFSの屈折力が強くなり、広角端から望遠端への変倍の際の球面収差をはじめとする諸収差を補正することが困難となる。条件式(6)の上限値を0.33に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をより確実にするために、条件式(6)の上限値を0.31にすることが好ましい。
 条件式(6)の対応値が下限値を下回ると、M1レンズ群GM1の屈折力が強くなり、広角端から望遠端への変倍の際の球面収差をはじめとする諸収差の変動を抑えることが困難となる。条件式(6)の下限値を0.16に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をより確実にするために、条件式(6)の下限値を0.17にすることが好ましい。
 本実施形態に係る変倍光学系において、以下の条件式(7)を満足することが望ましい。
   0.20<fTM2/f1<0.40  ・・・(7)
 但し、
 fTM2:望遠端状態におけるM2レンズ群GM2の焦点距離
 条件式(7)は、望遠端状態におけるM2レンズ群GM2の焦点距離と前側レンズ群GFSの焦点距離との比を規定するものである。この条件式(7)を満足することで、広角端から望遠端への変倍の際の球面収差をはじめとする諸収差の変動を抑えることができる。
 条件式(7)の対応値が上限値を上回ると、前側レンズ群GFSの屈折力が強くなり、広角端から望遠端への変倍の際の球面収差をはじめとする諸収差を補正することが困難となる。条件式(7)の上限値を0.37に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をより確実にするために、条件式(7)の上限値を0.34にすることが好ましい。
 条件式(7)の対応値が下限値を下回ると、M2レンズ群GM2の屈折力が強くなり、広角端から望遠端への変倍の際の球面収差をはじめとする諸収差の変動を抑えることが困難となる。条件式(7)の下限値を0.22に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をより確実にするために、条件式(7)の下限値を0.24にすることが好ましい。
 本実施形態に係る変倍光学系において、RNレンズ群GRNの像側に隣接して、物体側に凹面を向けた負メニスカスレンズを有する構成とすることが好ましい。また、RNレンズ群GRNの像側に隣接して、物体側から順に、負の屈折力を有するレンズと正の屈折力を有するレンズとを有する構成としても良い。これにより、コマ収差をはじめとする諸収差を効果的に補正することができる。
 本実施形態に係る変倍光学系において、以下の条件式(8)を満足することが好ましい。
   0.70<(-fN)/fP<2.00  ・・・(8)
 但し、
 fN:RNレンズ群GRNの像側に隣接するレンズのうちで最も負の屈折力が強いレンズの焦点距離
 fP:RNレンズ群GRNの像側に隣接するレンズのうちで最も正の屈折力が強いレンズの焦点距離
 上記条件式(8)は、RNレンズ群GRNの像側に隣接するレンズのうちで最も負の屈折力が強いレンズの焦点距離とRNレンズ群GRNの像側に隣接するレンズのうちで最も正の屈折力が強いレンズの焦点距離との比を規定するものである。この条件式(8)を満足することで、コマ収差をはじめとする諸収差を効果的に補正することができる。
 上記条件式(8)の対応値が上限値を上回ると、合焦レンズ群の像側にある正の屈折力を有するレンズの屈折力が強くなり、コマ収差の発生が過大となる。条件式(8)の上限値を1.90に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をより確実にするために、条件式(8)の上限値を1.80にすることが好ましい。
 上記条件式(8)の対応値が下限値を下回ると、合焦レンズ群の像側にある負の屈折力を有するレンズの屈折力が強くなり、コマ収差の補正が過大となる。条件式(8)の下限値を0.80に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をより確実にするために、条件式(8)の下限値を0.90にすることが好ましい。
 本実施形態に係る変倍光学系において、以下の条件式(9)を満足することが好ましい。
   1.80<f1/fw<3.50  ・・・(9)
 但し、
 fw:広角端状態における変倍光学系の焦点距離
 条件式(9)は、前側レンズ群GFSの焦点距離と広角端状態における変倍光学系の焦点距離との比を規定するものである。この条件式(9)を満足することで、鏡筒の大型化を防ぎ、広角端から望遠端への変倍の際の球面収差をはじめとする諸収差の変動を抑えることができる。
 上記条件式(9)の対応値が上限値を上回ると、前側レンズ群GFSの屈折力が弱くなり、鏡筒が大型化する。条件式(9)の上限値を3.30に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実にするために、条件式(9)の上限値を3.10に設定することが好ましい。
 上記条件式(9)の対応値が下限値を下回ると、前側レンズ群GFSの屈折力が強くなり、広角端から望遠端への変倍の際の球面収差をはじめとする諸収差を補正することが困難となる。条件式(9)の下限値を1.90に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実にするために、条件式(9)の下限値を2.00に設定することが好ましく、条件式(9)の下限値を2.10に設定することがより好ましい。
 本実施形態に係る変倍光学系において、以下の条件式(10)を満足することが好ましい。
   3.70<f1/(-fTM1)<5.00  ・・・(10)
 但し、
 fTM1:望遠端状態におけるM1レンズ群GM1の焦点距離
 条件式(10)は、前側レンズ群GFSの焦点距離とM1レンズ群GM1の焦点距離との比を規定するものである。この条件式(10)を満足することで、広角端から望遠端への変倍の際の球面収差をはじめとする諸収差の変動を抑えることができる。
 上記条件式(10)の対応値が上限値を上回ると、M1レンズ群GM1の屈折力が強くなり、広角端から望遠端への変倍の際の球面収差をはじめとする諸収差の変動を抑えることが困難となる。条件式(10)の上限値を4.90に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実にするために、条件式(10)の上限値を4.80に設定することが好ましい。
 上記条件式(10)の対応値が下限値を下回ると、前側レンズ群GFSの屈折力が強くなり、広角端から望遠端への変倍の際の球面収差をはじめとする諸収差を補正することが困難となる。条件式(10)の下限値を3.90に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実にするために、条件式(10)の下限値を3.95に設定することが好ましい。
 本実施形態に係る変倍光学系において、以下の条件式(11)を満足することが好ましい。
   3.20<f1/fTM2<5.00 ・・・(11)
 但し、
 fTM2:望遠端状態におけるM2レンズ群GM2の焦点距離
 条件式(11)は、前側レンズ群GFSの焦点距離とM2レンズ群GM2の焦点距離との比を規定するものである。この条件式(11)を満足することで、広角端から望遠端への変倍の際の球面収差をはじめとする諸収差の変動を抑えることができる。
 上記条件式(11)の対応値が上限値を上回ると、M2レンズ群GM2の屈折力が強くなり、広角端から望遠端への変倍の際の球面収差をはじめとする諸収差の変動を抑えることが困難となる。条件式(11)の上限値を4.80に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実にするために、条件式(11)の上限値を4.60に設定することが好ましい。
 上記条件式(11)の対応値が下限値を下回ると、前側レンズ群GFSの屈折力が強くなり、広角端から望遠端への変倍の際の球面収差をはじめとする諸収差を補正することが困難となる。条件式(11)の下限値を3.40に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実にするために、条件式(11)の下限値を3.60に設定することが好ましい。
 本実施形態の光学機器および撮像機器は、上述した構成の変倍光学系を備えて構成される。その具体例として、上記変倍光学系ZLを備えたカメラ(本願発明の撮像機器に対応)を図26に基づいて説明する。このカメラ1は、図26に示すように撮影レンズ2が交換可能なレンズアセンブリ構成であり、この撮影レンズ2に上述した構成の変倍光学係が設けられている。すなわち、撮影レンズ2が本願発明の光学機器に対応する。カメラ1はデジタルカメラであり、不図示の物体(被写体)からの光は、撮影レンズ2で集光されて、撮像素子3へ到達する。これにより被写体からの光は、当該撮像素子3によって撮像されて、被写体画像として不図示のメモリに記録される。このようにして、撮影者はカメラ1による被写体の撮影を行うことができる。なお、このカメラは、ミラーレスカメラでも、クイックリターンミラーを有した一眼レフタイプのカメラであっても良い。
 以上の構成により、上記変倍光学系ZLを撮影レンズ2に搭載したカメラ1は、合焦用レンズ群を小型軽量化することで、鏡筒を大型化することなく高速なAF、AF時の静粛性を実現することができる。さらに、広角端状態から望遠端状態への変倍時の収差変動、ならびに無限遠物体から近距離物体への合焦時の収差変動を良好に抑え、良好な光学性能を実現することができる。
 続いて、図27を参照しながら、上述の変倍光学系ZLの製造方法について概説する。まず、物体側から順に、正の屈折力を有する前側レンズ群GFSと、負の屈折力を有するM1レンズ群GM1と、正の屈折力を有するM2レンズ群GM2と、負の屈折力を有するRNレンズ群GRNとを配置する(ステップST1)。そして、変倍時に、前側レンズ群GFSとM1レンズ群GM1の間隔が変化し、M1レンズ群GM1とM2レンズ群GM2の間隔が変化し、M2レンズ群GM2とRNレンズ群GRNの間隔が変化するように構成する。(ステップST2)。このとき、無限遠物体から近距離物体への合焦の際、RNレンズ群GRNが移動するように構成し(ステップST3)、RNレンズ群GRNは、少なくとも一つの正の屈折力を有するレンズと少なくとも一つの負の屈折力を有するレンズを有して構成する(ステップST4)。さらに、所定の条件式を満足するようにレンズを配置する(ステップST5)。
 以下、本実施形態の実施例に係る変倍光学系(ズームレンズ)ZLを図面に基づいて説明する。図1、図6、図11、図16、図21は、第1~第5実施例に係る変倍光学系ZL{ZL(1)~ZL(5)}の構成及び屈折力配分を示す断面図である。変倍光学系ZL(1)~ZL(5)の断面図の下部には、広角端状態(W)から望遠端状態(T)に変倍する際の各レンズ群の光軸に沿った移動方向を矢印で示す。さらに、合焦群GRNが無限遠から近距離物体に合焦する際の移動方向を「合焦」という文字とともに矢印で示している。
 これら図1、図6、図11、図16、図21において、各レンズ群を符号Gと数字もしくはアルファベットの組み合わせにより、各レンズを符号Lと数字の組み合わせにより、それぞれ表している。この場合において、符号、数字の種類および数が大きくなって煩雑化するのを防止するため、実施例毎にそれぞれ独立して符号と数字の組み合わせを用いてレンズ群等を表している。このため、実施例間で同一の符号と数字の組み合わせが用いられていても、同一の構成であることを意味するものでは無い。
 以下に表1~表5を示すが、この内、表1~5は第1実施例~第5実施例のそれぞれにおける各諸元データを示す表である。各実施例では収差特性の算出対象として、d線(波長587.562nm)、g線(波長435.835nm)を選んでいる。
 [レンズ諸元]の表において、面番号は光線の進行する方向に沿った物体側からの光学面の順序を示し、Rは各光学面の曲率半径(曲率中心が像側に位置する面を正の値としている)、Dは各光学面から次の光学面(又は像面)までの光軸上の距離である面間隔、ndは光学部材の材質のd線に対する屈折率、νdは光学部材の材質のd線を基準とするアッベ数を、それぞれ示す。物面とは物体面のことを示し、曲率半径の「∞」は平面又は開口を、(絞りS)は開口絞りSを、像面は像面Iを、それぞれ示す。空気の屈折率nd=1.00000の記載は省略している。
 [各種データ]の表において、fはレンズ全系の焦点距離、FNOはFナンバー、2ωは画角(単位は°(度)で、ωが半画角である)、Ymaxは最大像高を示す。TLは無限遠合焦時の光軸上でのレンズ最前面からレンズ最終面までの距離にBFを加えた距離を示し、BFは無限遠合焦時の光軸上でのレンズ最終面から像面Iまでの距離(バックフォーカス)を示す。なお、これらの値は、広角端(W)、中間焦点距離(M)、望遠端(T)の各変倍状態におけるそれぞれについて示している。
 [可変間隔データ]の表は、[レンズ諸元]を示す表において面間隔が「可変」となっている面番号(例えば、実施例1では、面番号5,13,25,29)での面間隔を示す。ここでは無限遠および近距離に合焦させたときのそれぞれについて、広角端(W)、中間焦点距離(M)、望遠端(T)の各変倍状態における面間隔を示す。
 [レンズ群データ]の表において、第1~第5レンズ群(もしくは第1~第4レンズ群もしくは第1~第6レンズ群)のそれぞれの始面(最も物体側の面)と焦点距離を示す。
 [条件式対応値]の表には、上記の条件式(1)~(11)に対応する値を示す。
 以下、全ての諸元値において、掲載されている焦点距離f、曲率半径R、面間隔D、その他の長さ等は、特記のない場合一般に「mm」が使われるが、光学系は比例拡大又は比例縮小しても同等の光学性能が得られるので、これに限られるものではない。
 ここまでの表の説明は全ての実施例において共通であり、以下での重複する説明は省略する。
 (第1実施例)
 第1実施例について、図1および表1を用いて説明する。図1は、本実施形態の第1実施例に係る変倍光学系のレンズ構成を示す図である。本実施例に係る変倍光学系ZL(1)は、物体側から順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、負の屈折力を有する第4レンズ群G4と、正の屈折力を有する第5レンズ群G5から構成されている。各レンズ群記号に付けている符号(+)もしくは(-)は各レンズ群の屈折力を示し、このことは以下の全ての実施例でも同様である。
 この構成は上記実施形態との関係として、第1レンズ群G1が前側レンズ群GFSに、第2レンズ群G2がM1レンズ群GM1に、第3レンズ群G3がM2レンズ群GM2に、第4レンズ群G4がRNレンズ群GRNに対応する。
 第1レンズ群G1は、物体側から順に、物体側に凸面を向けた正凸平レンズL11と、物体側に凸面を向けた負メニスカスレンズL12と物体側に凸面を向けた正メニスカスレンズL13との接合正レンズとから構成される。
 第2レンズ群G2は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL21と、両凸形状の正レンズL22と、両凹形状の負レンズL23と、物体側に凹面を向けた負メニスカスレンズL24とから構成される。
 第3レンズ群G3は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL31と両凸形状の正レンズL32との接合正レンズと、両凸形状の正レンズL33と両凹形状の負レンズL34との接合正レンズと、開口絞りSと、物体側に凸面を向けた負メニスカスレンズL35と両凸形状の正レンズL36との接合負レンズと、両凸形状の正レンズL37とから構成される。
 第4レンズ群G4は、物体側から順に、物体側に凹面を向けた正メニスカスレンズL41と、両凹形状の負レンズL42とから構成される。
 第5レンズ群G5は、物体側から順に、物体側に凹面を向けた負メニスカスレンズL51と、両凸形状の正レンズL52とから構成される。
 本実施例に係る光学系では、第4レンズ群G4を像面方向へ移動させることにより、遠距離物体から近距離物体への合焦が行われる。
 本実施例に係る変倍光学系では、物体側に凸面を向けた負メニスカスレンズL31と両凸形状の正レンズL32との接合正レンズを光軸と直交する方向へ移動させることによって、手ブレ等による結像位置変位を補正する。
 全系の焦点距離がfで、防振係数(ブレ補正での移動レンズ群の移動量に対する結像面での像移動量比)がKのレンズで角度θの回転ブレを補正するには、ブレ補正用の移動レンズ群を(f・tanθ)/Kだけ光軸と直交方向に移動させればよい。第1実施例の広角端においては、防振係数1.65であり、焦点距離は72.1mmであるので、0.30°の回転ブレを補正するための防振レンズ群の移動量は0.23mmである。第1実施例の望遠端状態においては、防振係数2.10であり、焦点距離は292.0mmであるので、0.20°の回転ブレを補正するための防振レンズ群の移動量は0.49mmである。
 以下の表1に、本実施例に係る光学系の諸元の値を掲げる。表1において、fは焦点距離、BFはバックフォーカスを示す。
(表1)第1実施例 
[レンズ諸元] 
面番号   R     D     nd    νd 
物面    ∞ 
  1   109.4870   4.600   1.48749   70.31 
  2    ∞     0.200 
  3   101.1800   1.800   1.62004   36.40 
  4   49.8109   7.200   1.49700   81.61 
  5   385.8166   可変
  6   176.0187   1.700   1.69680   55.52 
  7   31.3680   5.150 
  8   32.6087   5.500   1.78472   25.64 
  9  -129.7634   1.447 
 10  -415.4105   1.300   1.77250   49.62 
 11   34.3083   4.300 
 12   -33.1502   1.200   1.85026   32.35 
 13  -203.5644   可変
 14   70.9040   1.200   1.80100   34.92 
 15   30.2785   5.900   1.64000   60.20 
 16   -70.1396   1.500 
 17   34.0885   6.000   1.48749   70.31 
 18   -42.6106   1.300   1.80610   40.97 
 19   401.2557   2.700 
 20    ∞    14.110              (絞りS)
 21   350.0000   1.200   1.83400   37.18 
 22   30.1592   4.800   1.51680   63.88 
 23   -94.9908   0.200
 24   66.3243   2.800   1.80100   34.92 
 25  -132.5118   可変
 26   -92.0997   2.200   1.80518   25.45 
 27   -44.0090   6.500
 28   -36.9702   1.000   1.77250   49.62 
 29   68.3346   可変
 30   -24.5000   1.400   1.62004   36.40 
 31   -41.1519   0.200 
 32   106.0000   3.800   1.67003   47.14 
 33  -106.0000   BF 
像面    ∞
 
[各種データ]
変倍比   4.05
      W    M    T 
f     72.1   100.0   292.0 
FNO    4.49   4.86   5.88
2ω    33.96   24.48   8.44
Ymax   21.60   21.60   21.60 
TL    190.13  205.07  245.82 
BF    39.12   46.45   67.12 
 
[可変間隔データ]
       W    M    T      W    M    T 
      無限遠  無限遠  無限遠    近距離  近距離  近距離 
d5     6.204  21.150  61.895    6.204  21.150  61.895 
d13    30.000  22.666  2.000    30.000  22.666  2.000
d25     2.180  3.742  3.895    2.837  4.562  5.614 
d29    21.418  19.856  19.703    20.761  19.036  17.984 
 
[レンズ群データ] 
群  始面     f 
G1    1    145.319 
G2    6    -29.546 
G3   14    38.298 
G4   26    -48.034
G5   30    324.470
 
[条件式対応値]
(1) fFP/(-fFN) = 3.317
(2) (-fF)/f1 = 0.331
(3) fvr/fTM2 = 1.755
(4) nvrN/nvrP = 1.098
(5) νvrN/νvrP = 0.580
(6) (-fTM1)/f1 = 0.203
(7) fTM2/f1 = 0.264
(8) (-fN)/fP = 1.266
(9) f1/fw= 2.016
(10) f1/(-fTM1) = 4.918
(11) f1/fTM2 = 3.794
 
 図2(a)、及び図2(b)はそれぞれ、第1実施例に係る防振機能を有する変倍光学系の広角端状態における無限遠合焦時の諸収差図、及び0.30°の回転ブレに対してブレ補正を行った際のメリディオナル横収差図である。図3は、第1実施例に係る防振機能を有する変倍光学系の中間焦点距離状態における無限遠合焦時の諸収差図である。図4(a)、及び図4(b)はそれぞれ、第1実施例に係る防振機能を有する変倍光学系の望遠端状態における無限遠合焦時の諸収差図、及び0.20°の回転ブレに対してブレ補正を行った際のメリディオナル横収差図である。図5(a)、図5(b)、及び図5(c)はそれぞれ、第1実施例に係る変倍光学系の広角端状態、中間焦点距離状態、望遠端状態における近距離合焦時の諸収差図である。
 図2~図5の各収差図において、FNOはFナンバー、NAは開口数、Yは像高をそれぞれ示す。なお、球面収差図では最大口径に対応するFナンバーまたは開口数の値を示し、非点収差図及び歪曲収差図では像高の最大値をそれぞれ示し、コマ収差図では各像高の値を示す。dはd線(λ=587.6nm)、gはg線(λ=435.8nm)をそれぞれ示す。非点収差図において、実線はサジタル像面、破線はメリディオナル像面をそれぞれ示す。なお、以下に示す各実施例の収差図においても、本実施例と同様の符号を用いる。
 各諸収差図より、本実施例に係る変倍光学系は、広角端状態から望遠端状態にわたって諸収差を良好に補正し優れた結像性能を有しており、さらに近距離合焦時にも優れた結像性能を有していることがわかる。
 (第2実施例)
 図6は、本実施形態の第2実施例に係る変倍光学系のレンズ構成を示す図である。本実施例に係る変倍光学系は、物体側から順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4と、負の屈折力を有する第5レンズ群G5と、正の屈折力を有する第6レンズ群G6から構成されている。
 この構成は上記実施形態との関係として、第1レンズ群G1が前側レンズ群GFSに、第2レンズ群G2および第3レンズ群G3がM1レンズ群GM1に、第4レンズ群G4がM2レンズ群GM2に、第5レンズ群G5がRNレンズ群GRNに対応する。
 第1レンズ群G1は、物体側から順に、物体側に凸面を向けた正凸平レンズL11と、物体側に凸面を向けた負メニスカスレンズL12と物体側に凸面を向けた正メニスカスレンズL13との接合正レンズとから構成される。
 第2レンズ群G2は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL21と、両凸形状の正レンズL22と、両凹形状の負レンズL23とから構成される。
 第3レンズ群G3は、物体側に凹面を向けた負メニスカスレンズL31からなる。
 第4レンズ群G4は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL41と両凸形状の正レンズL42との接合正レンズと、両凸形状の正レンズL43と両凹形状の負レンズL44との接合正レンズと、開口絞りSと、物体側に凸面を向けた負メニスカスレンズL45と両凸形状の正レンズL46との接合負レンズと、両凸形状の正レンズL47とから構成される。
 第5レンズ群G5は、物体側から順に、物体側に凹面を向けた正メニスカスレンズL51と、両凹形状の負レンズL52とから構成される。
 第6レンズ群G6は、物体側から順に、物体側に凹面を向けた負メニスカスレンズL61と、両凸形状の正レンズL62とから構成される。
 本実施例に係る光学系では、第5レンズ群G5を像面方向へ移動させることにより、遠距離物体から近距離物体への合焦が行われる。また、物体側に凸面を向けた負メニスカスレンズL41と両凸形状の正レンズL42との接合正レンズを光軸と直交する方向へ移動させることによって、手ブレ等による結像位置変位を補正する。
 なお、全系の焦点距離がfで、防振係数(ブレ補正での移動レンズ群の移動量に対する結像面での像移動量比)がKのレンズで角度θの回転ブレを補正するには、ブレ補正用の移動レンズ群を(f・tanθ)/Kだけ光軸と直交方向に移動させればよい。第2実施例の広角端においては、防振係数1.66であり、焦点距離は72.1mmであるので、0.30°の回転ブレを補正するための防振レンズ群の移動量は0.23mmである。第2実施例の望遠端状態においては、防振係数2.10であり、焦点距離は292.0mmであるので、0.20°の回転ブレを補正するための防振レンズ群の移動量は0.49mmである。
 以下の表2に、本実施例に係る光学系の諸元の値を掲げる。 
(表2)第2実施例 
[レンズ諸元] 
面番号   R     D     nd    νd 
物面    ∞ 
  1   107.5723   4.600   1.48749   70.32 
  2    ∞     0.200 
  3   96.9007   1.800   1.62004   36.40 
  4   47.8324   7.200   1.49700   81.61 
  5   361.3792   可変
  6   139.8663   1.700   1.69680   55.52 
  7   33.7621   6.806 
  8   33.5312   5.500   1.78472   25.64 
  9  -139.8348   0.637 
 10  -492.0620   1.300   1.80400   46.60 
 11   35.1115   可変
 12   -34.6163   1.200   1.83400   37.18 
 13  -377.1306   可変 
 14   74.8969   1.200   1.80100   34.92 
 15   31.6202   5.900   1.64000   60.19 
 16   -69.0444   1.500
 17   34.2668   6.000   1.48749   70.32 
 18   -42.8334   1.300   1.80610   40.97 
 19   434.9585   2.700
 20    ∞    14.312             (絞りS)
 21   350.0000   1.200   1.83400   37.18 
 22   30.4007   4.800   1.51680   63.88 
 23   -98.0361   0.200
 24   68.9306   2.800   1.80100   34.92 
 25  -129.3404   可変
 26   -90.5065   2.200   1.80518   25.45 
 27   -44.1796   6.500
 28   -37.6907   1.000   1.77250   49.62 
 29   68.3000   可変
 30   -24.5545   1.400   1.62004   36.40 
 31   -41.7070   0.200 
 32   106.0000   3.800   1.67003   47.14 
 33  -106.0000   BF
像面    ∞
 
[各種データ] 
変倍比   4.05
      W    M    T 
f     72.1  100.0  292.0 
FNO    4.53   4.89   5.88
2ω    33.98  24.48   8.44
Ymax   21.60  21.60  21.60 
TL    190.82  206.02  245.82 
BF    39.12  46.27  66.46 
 
[可変間隔データ]
       W    M    T      W    M    T 
      無限遠  無限遠  無限遠    近距離  近距離  近距離 
d5     2.861  18.057  57.861    2.861  18.057  57.861 
d11     5.727  5.812  6.883    5.727  5.812  6.883
d13    30.500  23.259  2.000    30.500  23.259  2.000 
d25     2.246  3.634  3.634    2.888  4.436  5.329 
d29    22.411  21.023  21.023    21.770  20.221  19.329 
 
[レンズ群データ] 
群  始面     f 
G1    1    141.867 
G2    6   -104.910 
G3   12    -45.774 
G4   14    38.681
G5   26    -48.266
G6   30    340.779
 
[条件式対応値]
(1) fFP/(-fFN) = 3.352
(2) (-fF)/f1 = 0.340
(3) fvr/fTM2 = 1.764
(4) nvrN/nvrP = 1.098
(5) νvrN/νvrP = 0.580
(6) (-fTM1)/f1 = 0.208
(7) fTM2/f1 = 0.273
(8) (-fN)/fP = 1.248
(9) f1/fw= 1.968
(10) f1/(-fTM1) = 4.804
(11) f1/fTM2 = 3.668
 
 図7(a)、及び図7(b)はそれぞれ、第2実施例に係る防振機能を有する変倍光学系の広角端状態における無限遠合焦時の諸収差図、及び0.30°の回転ブレに対してブレ補正を行った際のメリディオナル横収差図である。図8は、第2実施例に係る防振機能を有する変倍光学系の中間焦点距離状態における無限遠合焦時の諸収差図である。図9(a)、及び図9(b)はそれぞれ、第2実施例に係る防振機能を有する変倍光学系の望遠端状態における無限遠合焦時の諸収差図、及び0.20°の回転ブレに対してブレ補正を行った際のメリディオナル横収差図である。図10(a)、図10(b)、及び図10(c)はそれぞれ、第2実施例に係る変倍光学系の広角端状態、中間焦点距離状態、望遠端状態における近距離合焦時の諸収差図である。
 各諸収差図より、本実施例に係る変倍光学系は、広角端状態から望遠端状態にわたって諸収差を良好に補正し優れた結像性能を有しており、さらに近距離合焦時にも優れた結像性能を有していることがわかる。
 (第3実施例)
 図11は、本実施形態の第3実施例に係る変倍光学系のレンズ構成を示す図である。本実施例に係る変倍光学系は、物体側から順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4と、負の屈折力を有する第5レンズ群G5と、正の屈折力を有する第6レンズ群G6から構成されている。
 この構成は上記実施形態との関係として、第1レンズ群G1が前側レンズ群GFSに、第2レンズ群G2がM1レンズ群GM1に、第3レンズ群G3および第4レンズ群G4がM2レンズ群GM2に、第5レンズ群G5がRNレンズ群GRNに対応する。
 第1レンズ群G1は、物体側から順に、物体側に凸面を向けた正凸平レンズL11と、物体側に凸面を向けた負メニスカスレンズL12と物体側に凸面を向けた正メニスカスレンズL13との接合正レンズとから構成される。
 第2レンズ群G2は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL21と、両凸形状の正レンズL22と、両凹形状の負レンズL23と、物体側に凹面を向けた負メニスカスレンズL24とから構成される。
 第3レンズ群G3は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL31と両凸形状の正レンズL32との接合正レンズと、両凸形状の正レンズL33と両凹形状の負レンズL34との接合正レンズと、開口絞りSとから構成される。
 第4レンズ群G4は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL41と両凸形状の正レンズL42との接合負レンズと、両凸形状の正レンズL43とから構成される。
 第5レンズ群G5は、物体側から順に、物体側に凹面を向けた正メニスカスレンズL51と、両凹形状の負レンズL52とから構成される。
 第6レンズ群G6は、物体側から順に、物体側に凹面を向けた負メニスカスレンズL61と、両凸形状の正レンズL62とから構成される。
 本実施例に係る光学系では、第5レンズ群G5を像面方向へ移動させることにより、遠距離物体から近距離物体への合焦が行われる。また、物体側に凸面を向けた負メニスカスレンズL31と両凸形状の正レンズL32との接合正レンズを光軸と直交する方向へ移動させることによって、手ブレ等による結像位置変位を補正する。
 なお、全系の焦点距離がfで、防振係数(ブレ補正での移動レンズ群の移動量に対する結像面での像移動量比)がKのレンズで角度θの回転ブレを補正するには、ブレ補正用の移動レンズ群を(f・tanθ)/Kだけ光軸と直交方向に移動させればよい。第3実施例の広角端においては、防振係数1.65であり、焦点距離は72.1mmであるので、0.30°の回転ブレを補正するための防振レンズ群の移動量は0.23mmである。第3実施例の望遠端状態においては、防振係数2.10であり、焦点距離は292.0mmであるので、0.20°の回転ブレを補正するための防振レンズ群の移動量は0.49mmである。
 以下の表3に、本実施例に係る光学系の諸元の値を掲げる。
 (表3)第3実施例 
[レンズ諸元] 
面番号   R     D     nd    νd 
物面    ∞ 
  1   106.7563   4.600   1.48749   70.32 
  2    ∞     0.200 
  3   99.4635   1.800   1.62004   36.40 
  4   49.2336   7.200   1.49700   81.61 
  5   332.7367   可変
  6   152.3830   1.700   1.69680   55.52 
  7   31.0229   5.695 
  8   32.0867   5.500   1.78472   25.64 
  9  -139.5695   1.399 
 10  -403.4713   1.300   1.77250   49.62 
 11   33.8214   4.300 
 12   -34.0003   1.200   1.85026   32.35 
 13  -235.0206   可変
 14   69.3622   1.200   1.80100   34.92 
 15   29.8420   5.900   1.64000   60.19 
 16   -71.2277   1.500 
 17   34.4997   6.000   1.48749   70.32 
 18   -43.1246   1.300   1.80610   40.97 
 19   382.2412   2.700 
 20    ∞     可変              (絞りS)
 21   350.0000   1.200   1.83400   37.18 
 22   30.6178   4.800   1.51680   63.88 
 23   -88.2508   0.200 
 24   66.4312   2.800   1.80100   34.92 
 25  -142.7832   可変
 26   -93.6206   2.200   1.80518   25.45 
 27   -44.3477   6.500 
 28   -37.1859   1.000   1.77250   49.62 
 29   68.3000   可変
 30   -24.9508   1.400   1.62004   36.40 
 31   -42.7086   0.200 
 32   106.0000   3.800   1.67003   47.14 
 33  -106.0000   BF
像面    ∞
 
[各種データ] 
変倍比   4.05
      W    M    T 
f     72.1  100.0  292.0 
FNO    4.49   4.85   5.88
2ω    33.98  24.48   8.44
Ymax   21.60  21.60  21.60 
TL    190.26  205.79  245.82 
BF    39.12  46.10  67.12 
 
[可変間隔データ]
       W    M    T      W    M    T 
      無限遠  無限遠  無限遠    近距離  近距離  近距離 
d5     5.981  21.510  61.535    5.981  21.510  61.535 
d13    30.000  23.014  2.000    30.000  23.014  2.000
d20    14.365  14.107  14.196    14.365  14.107  14.196 
d25     2.202  3.476  3.676    2.867  4.301  5.396 
d29    21.004  19.988  19.700    20.339  19.163  17.979 
 
[レンズ群データ] 
群  始面     f 
G1    1    145.335 
G2    6    -29.607 
G3   14    48.974 
G4   21    62.364
G5   26    -48.296
G6   30    336.791
 
[条件式対応値]
(1) fFP/(-fFN) = 3.306
(2) (-fF)/f1 = 0.332
(3) fvr/fTM2 = 1.747
(4) nvrN/nvrP = 1.098
(5) νvrN/νvrP = 0.580
(6) (-fTM1)/f1 = 0.204
(7) fTM2/f1 = 0.264
(8) (-fN)/fP = 1.253
(9) f1/fw= 2.016
(10) f1/(-fTM1) = 4.909
(11) f1/fTM2 = 3.786
 
 図12(a)、及び図12(b)はそれぞれ、第3実施例に係る防振機能を有する変倍光学系の広角端状態における無限遠合焦時の諸収差図、及び0.30°の回転ブレに対してブレ補正を行った際のメリディオナル横収差図である。図13は、第3実施例に係る防振機能を有する変倍光学系の中間焦点距離状態における無限遠合焦時の諸収差図である。図14(a)、及び図14(b)はそれぞれ、第3実施例に係る防振機能を有する変倍光学系の望遠端状態における無限遠合焦時の諸収差図、及び0.20°の回転ブレに対してブレ補正を行った際のメリディオナル横収差図である。図15(a)、図15(b)、及び図15(c)はそれぞれ、第3実施例に係る変倍光学系の広角端状態、中間焦点距離状態、望遠端状態における近距離合焦時の諸収差図である。
 各諸収差図より、本実施例に係る変倍光学系は、広角端状態から望遠端状態にわたって諸収差を良好に補正し優れた結像性能を有しており、さらに近距離合焦時にも優れた結像性能を有していることがわかる。
(第4実施例) 
図16は、本実施形態の第4実施例に係る変倍光学系のレンズ構成を示す図である。本実施例に係る変倍光学系は、物体側から順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、負の屈折力を有する第4レンズ群G4から構成されている。
 この構成は上記実施形態との関係として、第1レンズ群G1が前側レンズ群GFSに、第2レンズ群G2がM1レンズ群GM1に、第3レンズ群G3がM2レンズ群GM2に、第4レンズ群G4がRNレンズ群GRNに対応する。
 第1レンズ群G1は、物体側から順に、物体側に凸面を向けた正凸平レンズL11と、物体側に凸面を向けた負メニスカスレンズL12と両凸形状の正レンズL13との接合正レンズとからなる。
 第2レンズ群G2は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL21と、両凸形状の正レンズL22と、両凹形状の負レンズL23と、物体側に凹面を向けた負メニスカスレンズL24とからなる。
 第3レンズ群G3は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL31と両凸形状の正レンズL32との接合正レンズと、両凸形状の正レンズL33と物体側に凹面を向けた負メニスカスレンズL34との接合正レンズと、開口絞りSと、物体側に凸面を向けた負メニスカスレンズL35と両凸形状の正レンズL36との接合負レンズと、両凸形状の正レンズL37とからなる。
 第4レンズ群G4は、物体側から順に、物体側に凹面を向けた正メニスカスレンズL41と、両凹形状の負レンズL42とからなる。
 本実施例に係る光学系では、第4レンズ群G4を像面方向へ移動させることにより、遠距離物体から近距離物体への合焦が行われる。
 本実施例に係る変倍光学系では、物体側に凸面を向けた負メニスカスレンズL31と両凸形状の正レンズL32との接合正レンズを光軸と直交する方向へ移動させることによって、手ブレ等による結像位置変位を補正する。
 なお、全系の焦点距離がfで、防振係数(ブレ補正での移動レンズ群の移動量に対する結像面での像移動量比)がKのレンズで角度θの回転ブレを補正するには、ブレ補正用の移動レンズ群を(f・tanθ)/Kだけ光軸と直交方向に移動させればよい。第4実施例の広角端においては、防振係数1.64であり、焦点距離は72.1mmであるので、0.30°の回転ブレを補正するための防振レンズ群の移動量は0.23mmである。第4実施例の望遠端状態においては、防振係数2.10であり、焦点距離は292.0mmであるので、0.20°の回転ブレを補正するための防振レンズ群の移動量は0.48mmである。
 以下の表4に、本実施例に係る光学系の諸元の値を掲げる。
 (表4)第4実施例 
[レンズ諸元] 
面番号   R     D     nd    νd 
物面    ∞ 
  1   124.8083   4.600   1.48749   70.32
  2    ∞     0.200
  3   111.5077   1.800   1.62004   36.40
  4   51.2894   7.200   1.49700   81.61
  5  -4057.4569   可変
  6  1232.8716   1.700   1.69680   55.52
  7   32.6209   3.624
  8   33.1180   5.224   1.78472   25.64
  9  -126.9611   1.768 
 10  -243.6400   1.300   1.77250   49.62
 11   37.7537   4.300
 12   -33.1285   1.200   1.85026   32.35
 13  -124.4232   可変
 14   80.2408   1.200   1.80100   34.92
 15   32.8582   5.862   1.64000   60.19
 16   -70.9140   1.500
 17   40.5722   6.000   1.48749   70.32
 18   -43.0594   1.300   1.80610   40.97
 19  -2388.6437   2.700 
 20    ∞    18.922                (絞りS)
 21   812.4602   1.200   1.83400   37.18
 22   34.5376   5.275   1.51680   63.88
 23   -59.1982   0.200 
 24   75.5608   3.209   1.80100   34.92
 25  -197.1038   可変
 26   -76.9453   2.263   1.80518   25.45
 27   -41.7537   6.500
 28   -33.9973   1.000   1.77250   49.62
 29   132.3165   BF
像面    ∞
 
[各種データ] 
変倍比   4.05
      W    M    T 
f     72.1  100.0  292.0 
FNO    4.68   4.90   6.19
2ω    33.78  23.92   8.22
Ymax   21.60  21.60  21.60 
TL    189.82  210.78  245.82 
BF    64.99  69.56  89.99 
 
       W    M    T      W    M    T 
      無限遠  無限遠  無限遠    近距離  近距離  近距離 
d5     2.000  22.956  58.000    2.000  22.956  58.000 
d13    30.000  25.721  2.000    30.000  25.721  2.000
d25     2.777  2.495  5.785    3.449  3.343  7.497 
 
[レンズ群データ] 
群  始面     f 
G1    1    139.523 
G2    6    -29.733 
G3   14    41.597 
G4   26    -54.885
 
[条件式対応値]
(1) fFP/(-fFN) = 3.156
(2) (-fF)/f1 = 0.393
(3) fvr/fTM2 = 1.728
(4) nvrN/nvrP = 1.098
(5) νvrN/νvrP = 0.580
(6) (-fTM1)/f1 = 0.213
(7) fTM2/f1 = 0.298
(9) f1/fw = 1.935
(10) f1/(-fTM1) = 4.693
(11) f1/fTM2 = 3.354
 
 図17(a)及び図17(b)はそれぞれ、第4実施例に係る防振機能を有する変倍光学系の広角端状態における無限遠合焦時の諸収差図、及び0.30°の回転ブレに対してブレ補正を行った際のメリディオナル横収差図である。図18は、第4実施例に係る防振機能を有する変倍光学系の中間焦点距離状態における無限遠合焦時の諸収差図である。図19(a)及び図19(b)はそれぞれ、第4実施例に係る防振機能を有する変倍光学系の望遠端状態における無限遠合焦時の諸収差図、及び0.20°の回転ブレに対してブレ補正を行った際のメリディオナル横収差図である。図20(a)、図20(b)及び図20(c)はそれぞれ、第4実施例に係る変倍光学系の広角端状態、中間焦点距離状態、望遠端状態における近距離合焦時の諸収差図である。
 各諸収差図より、本実施例に係る変倍光学系は、広角端状態から望遠端状態にわたって諸収差を良好に補正し優れた結像性能を有しており、さらに近距離合焦時にも優れた結像性能を有していることがわかる。
 (第5実施例)
 図21は、本実施形態の第5実施例に係る変倍光学系のレンズ構成を示す図である。本実施例に係る変倍光学系は、物体側から順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、負の屈折力を有する第4レンズ群G4と、正の屈折力を有する第5レンズ群G5から構成されている。
 この構成は上記実施形態との関係として、第1レンズ群G1が前側レンズ群GFSに、第2レンズ群G2がM1レンズ群GM1に、第3レンズ群G3がM2レンズ群GM2に、第4レンズ群G4がRNレンズ群GRNに対応する。
 第1レンズ群G1は、物体側から順に、物体側に凸面を向けた正凸平レンズL11と、物体側に凸面を向けた負メニスカスレンズL12と物体側に凸面を向けた正メニスカスレンズL13との接合正レンズとから構成される。
 第2レンズ群G2は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL21と、両凸形状の正レンズL22と、両凹形状の負レンズL23と、物体側に凹面を向けた負メニスカスレンズL24とから構成される。
 第3レンズ群G3は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL31と両凸形状の正レンズL32との接合正レンズと、両凸形状の正レンズL33と両凹形状の負レンズL34との接合正レンズと、開口絞りSと、物体側に凸面を向けた負メニスカスレンズL35と両凸形状の正レンズL36との接合負レンズと、両凸形状の正レンズL37とから構成される。
 第4レンズ群G4は、物体側から順に、物体側に凹面を向けた正メニスカスレンズL41と、両凹形状の負レンズL42とから構成される。
 第5レンズ群G5は、物体側から順に、物体側に凹面を向けた負メニスカスレンズL51と、両凸形状の正レンズL52と、物体側に凸面を向けた正メニスカスレンズL53とから構成される。
 本実施例に係る光学系では、第4レンズ群G4を像面方向へ移動させることにより、遠距離物体から近距離物体への合焦が行われる。また、物体側に凸面を向けた負メニスカスレンズL31と両凸形状の正レンズL32との接合正レンズを光軸と直交する方向へ移動させることによって、手ブレ等による結像位置変位を補正する。
 なお、全系の焦点距離がfで、防振係数(ブレ補正での移動レンズ群の移動量に対する結像面での像移動量比)がKのレンズで角度θの回転ブレを補正するには、ブレ補正用の移動レンズ群を(f・tanθ)/Kだけ光軸と直交方向に移動させればよい。第4実施例の広角端においては、防振係数1.65であり、焦点距離は72.1mmであるので、0.30°の回転ブレを補正するための防振レンズ群の移動量は0.23mmである。第4実施例の望遠端状態においては、防振係数2.10であり、焦点距離は292.0mmであるので、0.20°の回転ブレを補正するための防振レンズ群の移動量は0.49mmである。
 以下の表5に、本実施例に係る光学系の諸元の値を掲げる。
 (表5)第5実施例 
[レンズ諸元] 
面番号   R     D     nd    νd 
物面    ∞ 
  1   109.5099   4.600   1.48749   70.32
  2    ∞     0.200 
  3   101.8486   1.800   1.62004   36.40
  4   49.8873   7.200   1.49700   81.61
  5   403.0130   可変
  6   166.1577   1.700   1.69680   55.52
  7   31.1882   3.953 
  8   32.0256   5.500   1.78472   25.64
  9  -139.5816   1.553 
 10  -767.2482   1.300   1.77250   49.62
 11   33.9202   4.300 
 12   -32.8351   1.200   1.85026   32.35
 13  -256.2484   可変
 14   69.5902   1.200   1.80100   34.92
 15   29.9877   5.900   1.64000   60.19
 16   -70.0411   1.500 
 17   36.2271   6.000   1.48749   70.32
 18   -39.9358   1.300   1.80610   40.97
 19   820.8027   2.700 
 20    ∞    14.092             (絞りS)
 21   427.1813   1.200   1.83400   37.18
 22   31.7606   4.800   1.51680   63.88
 23   -89.4727   0.200 
 24   73.5865   2.800   1.80100   34.92
 25  -110.0493   可変
 26   -83.7398   2.200   1.80518   25.45
 27   -42.9999   6.500 
 28   -36.8594   1.000   1.77250   49.62
 29   73.0622   可変
 30   -26.0662   1.400   1.62004   36.4
 31   -40.4068   0.200 
 32   143.0444   3.035   1.67003   47.14
 33  -220.8402   0.200 
 34   100.4330   2.145   1.79002   47.32
 35   170.3325   BF
像面    ∞
 
[各種データ] 
変倍比   4.05
       W    M    T 
f     72.1  100.0  292.0 
FNO    4.48   4.85   5.87
2ω    33.94  24.44   8.42
Ymax   21.60  21.60  21.60 
TL    190.21  205.27  245.82 
BF    39.12  46.37  67.13 
 
[可変間隔データ]
       W    M    T      W    M    T 
      無限遠  無限遠  無限遠    近距離  近距離  近距離 
d5     5.892  20.953  61.502    5.892  20.953  61.502 
d13    30.000  22.752  2.000    30.000  22.752  2.000
d25     2.212  3.707  3.900    2.864  4.521  5.606 
d29    21.306  19.811  19.618    20.654  18.997  17.912 
 
[レンズ群データ] 
群   始面     f 
G1    1    145.022 
G2    6    -29.562 
G3   14    38.233 
G4   26    -48.257
G5   30    318.066
 
[条件式対応値]
(1) fFP/(-fFN) = 3.393
(2) (-fF)/f1 = 0.333
(3) fvr/fTM2 = 1.738
(4) nvrN/nvrP = 1.098
(5) νvrN/νvrP = 0.580
(6) (-fTM1)/f1 = 0.204
(7) fTM2/f1 = 0.264
(8) (-fN)/fP = 0.947
(9) f1/fw = 2.011
(10) f1/(-fTM1) = 4.906
(11) f1/fTM2 = 3.793
 
 図22(a)、及び図22(b)はそれぞれ、第5実施例に係る防振機能を有する変倍光学系の広角端状態における無限遠合焦時の諸収差図、及び0.30°の回転ブレに対してブレ補正を行った際のメリディオナル横収差図である。図23は、第5実施例に係る防振機能を有する変倍光学系の中間焦点距離状態における無限遠合焦時の諸収差図である。図24(a)、及び図24(b)はそれぞれ、第5実施例に係る防振機能を有する変倍光学系の望遠端状態における無限遠合焦時の諸収差図、及び0.20°の回転ブレに対してブレ補正を行った際のメリディオナル横収差図である。図25(a)、図25(b)、及び図25(c)はそれぞれ、第5実施例に係る変倍光学系の広角端状態、中間焦点距離状態、望遠端状態における近距離合焦時の諸収差図である。
 各諸収差図より、本実施例に係る変倍光学系は、広角端状態から望遠端状態にわたって諸収差を良好に補正し優れた結像性能を有しており、さらに近距離合焦時にも優れた結像性能を有していることがわかる。
 上記各実施例によれば、合焦用レンズ群を小型軽量化することで、鏡筒を大型化することなく高速なAF、AF時の静粛性を実現し、さらに、広角端状態から望遠端状態への変倍時の収差変動、ならびに無限遠物体から近距離物体への合焦時の収差変動を良好に抑えた変倍光学系を実現することができる。 
 ここで、上記各実施例は本願発明の一具体例を示しているものであり、本願発明はこれらに限定されるものではない。
 なお、以下の内容は、本願の変倍光学系の光学性能を損なわない範囲で適宜採用することが可能である。
 本願の変倍光学系の数値実施例として4群構成のものと5群構成のものと6群構成のものを示したが、本願はこれに限られず、その他の群構成(例えば、7群等)の変倍光学系を構成することもできる。具体的には、本願の変倍光学系の最も物体側や最も像面側にレンズ又はレンズ群を追加した構成でも構わない。なお、レンズ群とは、変倍時に変化する空気間隔で分離された、少なくとも1枚のレンズを有する部分を示す。
 また、本願の変倍光学系では、必ずしも一部のレンズを移動させることによって、手ブレ等による結像位置変位を補正する必要はない。
 また、本願の変倍光学系を構成するレンズのレンズ面は、球面又は平面としてもよく、或いは非球面としてもよい。レンズ面が球面又は平面の場合、レンズ加工及び組立調整が容易になり、レンズ加工及び組立調整の誤差による光学性能の劣化を防ぐことができるため好ましい。また、像面がずれた場合でも描写性能の劣化が少ないため好ましい。レンズ面が非球面の場合、研削加工による非球面、ガラスを型で非球面形状に成型したガラスモールド非球面、又はガラス表面に設けた樹脂を非球面形状に形成した複合型非球面のいずれでもよい。また、レンズ面は回折面としてもよく、レンズを屈折率分布型レンズ(GRINレンズ)或いはプラスチックレンズとしてもよい。
 また、本願の変倍光学系を構成するレンズのレンズ面に、広い波長域で高い透過率を有する反射防止膜を施してもよい。これにより、フレアやゴーストを軽減し、高コントラストの高い光学性能を達成することができる。
 以上の構成により、上記第1実施例に係る変倍光学系を撮影レンズ2として搭載した本カメラ1は、合焦用レンズ群を小型軽量化することで、鏡筒を大型化することなく高速なAF、AF時の静粛性を実現し、さらに、広角端状態から望遠端状態への変倍時の収差変動、ならびに無限遠物体から近距離物体への合焦時の収差変動を良好に抑え、良好な光学性能を実現することができる。なお、上記第2~上記第5実施例に係る変倍光学系を撮影レンズ2として搭載したカメラを構成しても上記カメラ1と同様の効果を奏することができる。
 G1 第1レンズ群     G2 第2レンズ群
 G3 第3レンズ群     G4 第4レンズ群
 G5 第5レンズ群     GFS 前側レンズ群
 GM1 M1レンズ群    GM2 M2レンズ群
 GRN RNレンズ群
 I 像面          S 開口絞り

Claims (19)

  1.  物体側から順に、正の屈折力を有する前側レンズ群と、負の屈折力を有するM1レンズ群と、正の屈折力を有するM2レンズ群と、負の屈折力を有するRNレンズ群とを有し、
     変倍時に、前記前側レンズ群と前記M1レンズ群の間隔が変化し、前記M1レンズ群と前記M2レンズ群の間隔が変化し、前記M2レンズ群と前記RNレンズ群の間隔が変化し、
     無限遠物体から近距離物体への合焦の際、前記RNレンズ群が移動し、
     前記RNレンズ群は、少なくとも一つの正の屈折力を有するレンズと少なくとも一つの負の屈折力を有するレンズを有し、
     以下の条件式を満足する変倍光学系。
       2.70<fFP/(-fFN)<4.50
       0.25<(-fF)/f1<0.45
     但し、
     fFP:前記RNレンズ群中の最も正の屈折力が強いレンズの焦点距離
     fFN:前記RNレンズ群中の最も負の屈折力が強いレンズの焦点距離
     fF:前記RNレンズ群の焦点距離
     f1:前記前側レンズ群の焦点距離
  2.  広角端状態から望遠端状態への変倍時に、前記前側レンズ群が物体側へ移動する請求項1に記載の変倍光学系。
  3.  変倍時に、前記M1レンズ群中の最も物体側にあるレンズ群が像面に対して固定である請求項1もしくは2に記載の変倍光学系。
  4. 前記M2レンズ群は、手ブレ等による結像位置変位の補正を行うために光軸と直交する方向へ移動可能な防振レンズ群を有する請求項1~3のいずれかに記載の変倍光学系。
  5.  以下の条件式を満足する請求項4に記載の変倍光学系。
       1.10<fvr/fTM2<2.00
     但し、
     fvr:前記防振レンズ群の焦点距離
     fTM2:望遠端状態における前記M2レンズ群の焦点距離
  6.  前記防振レンズ群は、物体側から順に、負の屈折力を有するレンズと正の屈折力を有するレンズとからなる請求項4もしくは5に記載の変倍光学系。
  7.  以下の条件式を満足する請求項6に記載の変倍光学系。
       1.00<nvrN/nvrP<1.25
     但し、
     nvrN:前記防振レンズ群内の負の屈折力を有するレンズの屈折率
     nvrP:前記防振レンズ群内の正の屈折力を有するレンズの屈折率
  8.  以下の条件式を満足する請求項6もしくは7に記載の変倍光学系。
       0.30<νvrN/νvrP<0.90
     但し、
     νvrN:前記防振レンズ群内の負の屈折力を有するレンズのアッベ数
     νvrP:前記防振レンズ群内の正の屈折力を有するレンズのアッベ数
  9.  以下の条件式を満足する請求項1~8のいずれかに記載の変倍光学系。
       0.15<(-fTM1)/f1<0.35
     但し、
     fTM1:望遠端状態における前記M1レンズ群の焦点距離
  10.  以下の条件式を満足する請求項1~9のいずれかに記載の変倍光学系。
       0.20<fTM2/f1<0.40
     但し、
     fTM2:望遠端状態における前記M2レンズ群の焦点距離
  11.  前記RNレンズ群の像側に隣接して、物体側に凹面を向けた負メニスカスレンズを有する請求項1~10のいずれかに記載の変倍光学系。
  12.  前記RNレンズ群の像側に隣接して、物体側から順に、負の屈折力を有するレンズと正の屈折力を有するレンズとを有する請求項1~10のいずれかに記載の変倍光学系。
  13.  以下の条件式を満足する請求項11もしくは12に記載の変倍光学系。
       0.70<(-fN)/fP<2.00
     但し、
     fN:前記RNレンズ群の像側に隣接するレンズのうちで最も負の屈折力が強いレンズの焦点距離
     fP:前記RNレンズ群の像側に隣接するレンズのうちで最も正の屈折力が強いレンズの焦点距離
  14.  以下の条件式を満足する請求項1~13のいずれかに記載の変倍光学系。
       1.80<f1/fw<3.50
     但し、
     fw:広角端状態における前記変倍光学系の焦点距離
  15.  以下の条件式を満足する請求項1~14のいずれかに記載の変倍光学系。
       3.70<f1/(-fTM1)<5.00
     但し、
     fTM1:望遠端状態における前記M1レンズ群の焦点距離
  16.  以下の条件式を満足する請求項1~15のいずれかに記載の変倍光学系。
       3.20<f1/fTM2<5.00
     但し、
     fTM2:望遠端状態における前記M2レンズ群の焦点距離
  17.  請求項1~16のいずれかに記載の変倍光学系を有する光学機器。
  18.  請求項1~16のいずれかに記載の変倍光学系と、前記変倍光学系によって形成される像を撮像する撮像部とを備える撮像機器。
  19.  物体側から順に、正の屈折力を有する前側レンズ群と、負の屈折力を有するM1レンズ群と、正の屈折力を有するM2レンズ群と、負の屈折力を有するRNレンズ群とを有して構成される変倍光学系の製造方法であって、
     変倍時に、前記前側レンズ群と前記M1レンズ群の間隔が変化し、前記M1レンズ群と前記M2レンズ群の間隔が変化し、前記M2レンズ群と前記RNレンズ群の間隔が変化するように配置することを含み、
     無限遠物体から近距離物体への合焦の際、前記RNレンズ群が移動し、
     前記RNレンズ群は、少なくとも一つの正の屈折力を有するレンズと少なくとも一つの負の屈折力を有するレンズを有し、
     以下の条件式を満足する変倍光学系の製造方法。
       2.70<fFP/(-fFN)<4.50
       0.25<(-fF)/f1<0.45
     但し、
     fFP:RNレンズ群中の最も正の屈折力が強いレンズの焦点距離
     fFN:RNレンズ群中の最も負の屈折力が強いレンズの焦点距離
     fF:RNレンズ群の焦点距離
     f1:前側レンズ群の焦点距離
PCT/JP2016/084396 2016-11-21 2016-11-21 変倍光学系、光学機器、撮像機器および変倍光学系の製造方法 WO2018092296A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201680090867.8A CN109983386B (zh) 2016-11-21 2016-11-21 变倍光学系统、光学设备以及摄像设备
US16/345,198 US11269164B2 (en) 2016-11-21 2016-11-21 Zoom optical system, optical apparatus, imaging apparatus and method for manufacturing the zoom optical system
JP2018550989A JP6708262B2 (ja) 2016-11-21 2016-11-21 変倍光学系、光学機器および撮像機器
PCT/JP2016/084396 WO2018092296A1 (ja) 2016-11-21 2016-11-21 変倍光学系、光学機器、撮像機器および変倍光学系の製造方法
US17/580,918 US20220146800A1 (en) 2016-11-21 2022-01-21 Zoom optical system, optical apparatus, imaging apparatus and method for manufacturing the zoom optical system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/084396 WO2018092296A1 (ja) 2016-11-21 2016-11-21 変倍光学系、光学機器、撮像機器および変倍光学系の製造方法

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/345,198 A-371-Of-International US11269164B2 (en) 2016-11-21 2016-11-21 Zoom optical system, optical apparatus, imaging apparatus and method for manufacturing the zoom optical system
US17/580,918 Division US20220146800A1 (en) 2016-11-21 2022-01-21 Zoom optical system, optical apparatus, imaging apparatus and method for manufacturing the zoom optical system

Publications (1)

Publication Number Publication Date
WO2018092296A1 true WO2018092296A1 (ja) 2018-05-24

Family

ID=62145743

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/084396 WO2018092296A1 (ja) 2016-11-21 2016-11-21 変倍光学系、光学機器、撮像機器および変倍光学系の製造方法

Country Status (4)

Country Link
US (2) US11269164B2 (ja)
JP (1) JP6708262B2 (ja)
CN (1) CN109983386B (ja)
WO (1) WO2018092296A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021039699A1 (ja) * 2019-08-26 2021-03-04 株式会社ニコン 変倍光学系、光学機器および変倍光学系の製造方法
JP7030089B2 (ja) * 2019-09-30 2022-03-04 日本電子株式会社 インプットレンズおよび電子分光装置
US11698517B2 (en) * 2020-03-03 2023-07-11 Ricoh Company, Ltd. Zoom lens, lens barrel, and imaging apparatus

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001033697A (ja) * 1999-07-16 2001-02-09 Canon Inc リヤーフォーカス式のズームレンズ
WO2012176432A1 (ja) * 2011-06-22 2012-12-27 富士フイルム株式会社 ズームレンズおよび撮像装置
JP2015055697A (ja) * 2013-09-11 2015-03-23 コニカミノルタ株式会社 ズームレンズ,撮像光学装置及びデジタル機器
JP2015138178A (ja) * 2014-01-23 2015-07-30 キヤノン株式会社 ズームレンズおよびそれを有する撮像装置
JP2015166790A (ja) * 2014-03-04 2015-09-24 キヤノン株式会社 ズームレンズ及びそれを用いた光学機器
JP2016065912A (ja) * 2014-09-24 2016-04-28 株式会社ニコン ズームレンズ、光学機器及びズームレンズの製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2808915B2 (ja) 1991-03-20 1998-10-08 キヤノン株式会社 ズームレンズ
US7443605B2 (en) * 2003-06-13 2008-10-28 Matsushita Electric Industrial Co., Ltd. Zoom lens, imaging device, and camera having imaging device
AU2015323139B2 (en) 2014-09-24 2018-12-06 Nikon Corporation Zoom lens, optical device and method of manufacturing zoom lens
CN107407793A (zh) * 2015-03-27 2017-11-28 奥林巴斯株式会社 变焦镜头和具有该变焦镜头的摄像装置
JP6818429B2 (ja) 2016-05-06 2021-01-20 キヤノン株式会社 ズームレンズ及びそれを有する撮像装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001033697A (ja) * 1999-07-16 2001-02-09 Canon Inc リヤーフォーカス式のズームレンズ
WO2012176432A1 (ja) * 2011-06-22 2012-12-27 富士フイルム株式会社 ズームレンズおよび撮像装置
JP2015055697A (ja) * 2013-09-11 2015-03-23 コニカミノルタ株式会社 ズームレンズ,撮像光学装置及びデジタル機器
JP2015138178A (ja) * 2014-01-23 2015-07-30 キヤノン株式会社 ズームレンズおよびそれを有する撮像装置
JP2015166790A (ja) * 2014-03-04 2015-09-24 キヤノン株式会社 ズームレンズ及びそれを用いた光学機器
JP2016065912A (ja) * 2014-09-24 2016-04-28 株式会社ニコン ズームレンズ、光学機器及びズームレンズの製造方法

Also Published As

Publication number Publication date
US20190361209A1 (en) 2019-11-28
CN109983386A (zh) 2019-07-05
US20220146800A1 (en) 2022-05-12
US11269164B2 (en) 2022-03-08
CN109983386B (zh) 2021-10-29
JPWO2018092296A1 (ja) 2019-10-10
JP6708262B2 (ja) 2020-06-10

Similar Documents

Publication Publication Date Title
JP6773125B2 (ja) 変倍光学系、光学機器および撮像機器
US20220171175A1 (en) Zoom optical system, optical apparatus and imaging apparatus using the zoom optical system, and method for manufacturing the zoom optical system
WO2017094660A1 (ja) 変倍光学系、光学機器および変倍光学系の製造方法
US20220146800A1 (en) Zoom optical system, optical apparatus, imaging apparatus and method for manufacturing the zoom optical system
WO2018092295A1 (ja) 変倍光学系、光学機器、撮像機器および変倍光学系の製造方法
WO2017094665A1 (ja) 変倍光学系、光学機器および変倍光学系の製造方法
JP6743904B2 (ja) 変倍光学系、これを用いた光学機器および撮像機器
WO2017094664A1 (ja) 変倍光学系、光学機器および変倍光学系の製造方法
JP6281200B2 (ja) 変倍光学系及び光学装置
JP6620998B2 (ja) 変倍光学系及び光学装置
US11269163B2 (en) Zoom optical system, optical apparatus and imaging apparatus using the zoom optical system, and method for manufacturing the zoom optical system
JP7088327B2 (ja) 変倍光学系および光学機器
WO2017094663A1 (ja) 変倍光学系、光学機器および変倍光学系の製造方法
JP7243884B2 (ja) 変倍光学系、これを用いた光学機器および撮像機器
JP2021002063A (ja) 変倍光学系、光学機器および撮像機器
JP6601471B2 (ja) 変倍光学系及び光学装置
JP6693531B2 (ja) 変倍光学系および光学機器
JP6256732B2 (ja) 変倍光学系、及び、この変倍光学系を有する光学装置
JP6260074B2 (ja) 変倍光学系、及び、この変倍光学系を有する光学装置
JP6205856B2 (ja) 変倍光学系、撮像装置、および変倍光学系の製造方法
JP2014048370A (ja) 変倍光学系、この変倍光学系を有する光学装置、及び、変倍光学系の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16921832

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018550989

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16921832

Country of ref document: EP

Kind code of ref document: A1