JP7030089B2 - インプットレンズおよび電子分光装置 - Google Patents

インプットレンズおよび電子分光装置 Download PDF

Info

Publication number
JP7030089B2
JP7030089B2 JP2019178816A JP2019178816A JP7030089B2 JP 7030089 B2 JP7030089 B2 JP 7030089B2 JP 2019178816 A JP2019178816 A JP 2019178816A JP 2019178816 A JP2019178816 A JP 2019178816A JP 7030089 B2 JP7030089 B2 JP 7030089B2
Authority
JP
Japan
Prior art keywords
input lens
electrode
electron
mesh
lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019178816A
Other languages
English (en)
Other versions
JP2021057178A (ja
Inventor
達也 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd filed Critical Jeol Ltd
Priority to JP2019178816A priority Critical patent/JP7030089B2/ja
Priority to US17/032,092 priority patent/US11404260B2/en
Priority to EP20198606.4A priority patent/EP3799108A1/en
Publication of JP2021057178A publication Critical patent/JP2021057178A/ja
Application granted granted Critical
Publication of JP7030089B2 publication Critical patent/JP7030089B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/06Electron- or ion-optical arrangements
    • H01J49/068Mounting, supporting, spacing, or insulating electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/06Electron- or ion-optical arrangements
    • H01J49/067Ion lenses, apertures, skimmers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/05Electron or ion-optical arrangements for separating electrons or ions according to their energy or mass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/10Lenses
    • H01J37/12Lenses electrostatic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/153Electron-optical or ion-optical arrangements for the correction of image defects, e.g. stigmators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/44Energy spectrometers, e.g. alpha-, beta-spectrometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/227Measuring photoelectric effect, e.g. photoelectron emission microscopy [PEEM]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/02Details
    • H01J2237/026Shields
    • H01J2237/0262Shields electrostatic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/05Arrangements for energy or mass analysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/10Lenses
    • H01J2237/12Lenses electrostatic
    • H01J2237/121Lenses electrostatic characterised by shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/153Correcting image defects, e.g. stigmators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/153Correcting image defects, e.g. stigmators
    • H01J2237/1534Aberrations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/25Tubes for localised analysis using electron or ion beams
    • H01J2237/2505Tubes for localised analysis using electron or ion beams characterised by their application
    • H01J2237/2516Secondary particles mass or energy spectrometry
    • H01J2237/2522Secondary particles mass or energy spectrometry of electrons (ESCA, XPS)
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/44Energy spectrometers, e.g. alpha-, beta-spectrometers
    • H01J49/46Static spectrometers
    • H01J49/48Static spectrometers using electrostatic analysers, e.g. cylindrical sector, Wien filter
    • H01J49/484Static spectrometers using electrostatic analysers, e.g. cylindrical sector, Wien filter with spherical mirrors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Electron Tubes For Measurement (AREA)

Description

本発明は、インプットレンズおよび電子分光装置に関する。
X線光電子分光装置やオージェ電子分光装置などの電子分光装置では、電子分光を行う。電子分光を行うための電子分光器としては、例えば、半球型アナライザーが知られている。このような電子分光器を用いる場合、電子発生源と電子分光器との間には、インプットレンズが配置される。インプットレンズは、電子の減速機能、結像機能、像倍率変換機能などを有する。
例えば、特許文献1には、所定物面位置から一定の開き角をもって出た電子に対して負の球面収差を有する拡大虚像を形成するように配置され、物面に対して凹面形状を有する光軸対称な回転楕円面からなるメッシュと、その像面側に光軸に同軸に配置され、拡大虚像の実像を形成し、正の球面収差を生じる収束電場を形成する同心面からなる複数の電極とを備えているレンズを備えたインプットレンズが開示されている。特許文献1では、光軸方向に長軸をもつ回転楕円面であり、かつ、回転楕円面における長軸半径と短軸半径との比を1.5:~2とする非球面メッシュを用いることによって、電子の取り込み立体角を±60度程度まで大きくしている。
特許第4802340号
電子分光装置では、インプットレンズの電子の取り込み立体角が大きいほど、感度が大きくなる。そのため、電子の取り込み立体角が大きいインプットレンズが求められている。
(1)本発明に係るインプットレンズの一態様は、
電子分光装置において、電子発生源と電子分光器との間に配置されるインプットレンズであって、
基準電位の基準電極と、
スリットと、
前記基準電極と前記スリットとの間に配置された第1~第n電極(nは3以上の整数)と、
前記第1電極に取付けられたメッシュと、
を含み、
前記第1~第n電極は、光軸に沿ってこの順で配置され、
前記メッシュの電位は、前記基準電位よりも高く、
第m電極(m=2,3,・・・,n-1)と前記光軸との間の距離は、第m-1電極と前記光軸との間の距離、および第m+1電極と前記光軸との間の距離よりも小さい。
このようなインプットレンズでは、メッシュの電位が基準電位よりも高いため、基準電極とメッシュとの間に、加速場の凸レンズを形成することができる。そのため、このようなインプットレンズでは、電子の取り込み立体角を大きくできる。
(2)本発明に係る電子分光装置の一態様は、
上記インプットレンズと、
電子分光器と、
を含み、
前記インプットレンズは、電子発生源と前記電子分光器との間に配置されている。
このような電子分光装置では、電子の取り込み立体角の大きいインプットレンズを含むため、電子の感度を向上できる。
第1実施形態に係るインプットレンズを模式的に示す断面図。 第2実施形態に係るインプットレンズを模式的に示す断面図。 第3実施形態に係るインプットレンズを模式的に示す断面図。 第3実施形態に係るインプットレンズの動作を説明するための図。 第3実施形態に係るインプットレンズの動作を説明するための図。 第3実施形態に係るインプットレンズの動作を説明するための図。 第4実施形態に係るインプットレンズを模式的に示す断面図。 第5実施形態に係るインプットレンズを模式的に示す断面図。 第6実施形態に係る電子分光装置の構成を示す図。
以下、本発明の好適な実施形態について図面を用いて詳細に説明する。なお、以下に説明する実施形態は、特許請求の範囲に記載された本発明の内容を不当に限定するものではない。また、以下で説明される構成の全てが本発明の必須構成要件であるとは限らない。
1. 第1実施形態
1.1. インプットレンズの構成
まず、第1実施形態に係るインプットレンズについて、図面を参照しながら説明する。図1は、第1実施形態に係るインプットレンズ100を模式的に示す断面図である。なお、図1では、電子の軌道を破線で示している。
インプットレンズ100は、電子分光装置において、電子発生源P1と電子分光器との間に配置される。
インプットレンズ100は、図1に示すように、基準電極L0と、第1電極L1と、第2電極L2と、第3電極L3と、第4電極L4と、第5電極L5と、・・・、第n-1電極Ln-1と、第n電極Lnと、他のメッシュの一例としての第1メッシュM1と、メッシュの一例としての第2メッシュM2と、スリットSと、を含む。
基準電極L0は、電子発生源P1側に配置される。基準電極L0は、インプットレンズ100において、電子の入口を構成している。基準電極L0の形状は、筒状である。図示の例では、基準電極L0は、円錐台状である。基準電極L0の電位は、基準電位である。インプットレンズ100では、基準電位は、接地電位である。基準電極L0には、第1メッシュM1が取り付けられている。インプットレンズ100の光軸Oは、例えば、基準電極L0の中心軸である。
第1~第n電極L1~Lnは、基準電極L0とスリットSとの間に配置されている。第1~第n電極L1~Lnは、光軸Oに沿ってこの順に配置されている。第1~第n電極L1~Lnの形状は、例えば、筒状であり、図示の例では、円筒状である。光軸Oは、例えば、第1~第n電極L1~Lnの中心軸である。基準電極L0、および第1~第n電極L1~Lnは、光軸Oを共通の中心軸とする。なお、インプットレンズ100は、少なくと
も3つの電極を有していればよい。すなわち、nは3以上の整数である。
第1~第n電極L1~Lnは、図示の例では、電子発生源P1と、基準電極L0の入口側の端部と、を結ぶ直線Gを母線とする円錐の内側に配置されている。なお、図示はしないが、第1~第n電極L1~Lnは、当該円錐の外側に配置されていてもよい。
第1電極L1の電位は、基準電極L0の電位よりも高い。第1電極L1の電位は、正の電位である。第1電極L1には、正の電圧が印加される。第2~第n電極L2~Lnの電位は、電子分光条件に応じて設定可能である。第2~第n電極L2~Lnには、それぞれ正または負の電圧が印加される。
第1~第n電極L1~Lnに印加される電圧は、例えば、可変である。インプットレンズ100は、図示はしないが、第1~第n電極L1~Lnに電圧を印加するための電源を備えている。
第1メッシュM1は、インプットレンズ100において、電子の入口に配置されている。第1メッシュM1は、基準電極L0に取り付けられている。第1メッシュM1の電位は、基準電極L0の電位と同じである。すなわち、第1メッシュM1の電位は、接地電位である。第1メッシュM1は、平面メッシュである。第1メッシュM1は、静電シールドを構成する。第1メッシュM1は、インプットレンズ100の先端からの電場の漏れを低減する。
第2メッシュM2は、第1電極L1に取り付けられている。第2メッシュM2の電位は、第1電極L1の電位と同じである。すなわち、第2メッシュM2の電位は、基準電極L0の電位よりも高い。
第2メッシュM2は、電子発生源P1に対して凹面形状を有している。第2メッシュM2の形状は、例えば、光軸Oを中心軸とする回転体面である。第2メッシュM2の形状は、例えば、光軸Oを中心軸とする回転楕円面である。第2メッシュM2は、例えば、回転楕円面として与えられるメッシュの形状を、球面収差が最小となるように微調整した非球面メッシュであってもよい。例えば、第2メッシュM2の形状は、回転楕円面における長軸aと短軸bとの比a/bが1.5~2.0の範囲であってもよい。これにより、例えば、第2メッシュM2の形状が球面の場合と比べて、電子の取り込み立体角θを大きくできる(特許第4802340号参照)。
スリットSは、インプットレンズ100の出力部分である。すなわち、スリットSは、インプットレンズ100において、電子の出口を構成している。インプットレンズ100において、電子はスリットSを通って射出される。
なお、上記では、図1に示すように、第1電極L1に第2メッシュM2が取り付けられていたが、第1電極L1に加えて、第2~第n電極L2のうちの少なくとも1つに第2メッシュM2と同様のメッシュが取り付けられてもよい。
1.2. インプットレンズの動作
電子発生源P1で発生した電子は、インプットレンズ100に入射する。電子発生源P1から第1メッシュM1までは電位勾配がない。そのため、電子発生源P1と第1メッシュM1との間は、電子の軌道は直線状である。電子発生源P1で発生した電子は、第1メッシュM1を通過してインプットレンズ100に入射する。
第1メッシュM1と第2メッシュM2との間、すなわち、基準電極L0と第2メッシュ
M2との間には、第2メッシュM2に正の電圧を印加することで形成される電場によって、加速場の凸レンズが形成される。そのため、第1メッシュM1と第2メッシュM2との間において、電子は光軸Oに向かって引き寄せられる。これにより、例えば第2メッシュM2の電位が基準電位である場合と比べて、電子の取り込み立体角θを大きくできる。
第2メッシュM2とスリットSとの間には、第2~第n電極L2~Lnが形成する電場によって、静電レンズ系が形成される。
インプットレンズ100では、基準電極L0の電位が基準電位であり、第2メッシュM2の電位が基準電位よりも高く設定される。第2メッシュM2の電位を基準電位よりも高くすることによって、基準電極L0と第2メッシュM2との間に形成される電場には、正の球面収差が生じる。そのため、この正の球面収差を打ち消すように、すなわち、第2~第n電極L2~Lnが形成する電場によって負の球面収差が生じるように、第2~第n電極L2~Lnに印加する電圧が設定される。
これにより、インプットレンズ100では、第2~第n電極L2~Lnが形成する電場によって発生する負の球面収差で、基準電極L0と第2メッシュM2との間に形成される電場によって発生する正の球面収差を打ち消すことができる。この結果、電子発生源P1で発生した電子は、スリットS上に集束する。
また、第2メッシュM2に正の電圧を印加すると、すなわち、第2メッシュM2の電子を基準電位よりも高くすると、第2メッシュM2を通過するときの電子のエネルギーは第2メッシュM2の電位のぶんだけ大きくなる。そのため、第2~第n電極L2~Lnにて減速型のレンズを採用したとしても、色収差を小さくできる。
1.3. 効果
インプットレンズ100は、例えば、以下の効果を有する。
インプットレンズ100では、基準電位の基準電極L0と、スリットSと、基準電極L0とスリットSとの間に配置された第1~第n電極L1~Lnと、第1電極L1に取付けられた第2メッシュM2と、を含み、第1~第n電極L1~Lnは、光軸Oに沿ってこの順で配置され、第2メッシュM2の電位は、基準電位よりも高い。このように、インプットレンズ100では、第2メッシュM2の電位は、基準電位よりも高いため、基準電極L0と第2メッシュM2との間に形成される電場によって、加速場の凸レンズが形成される。したがって、基準電極L0(第1メッシュM1)と第2メッシュM2との間において、電子は光軸Oに向かって引き寄せられる。したがって、インプットレンズ100では、電子の取り込み立体角θを大きくできる。
インプットレンズ100では、上記のように、第1メッシュM1と第2メッシュM2との間において、加速場の凸レンズの作用によって電子は光軸Oに向かって引き寄せられるため、基準電極L0の近傍を通る電子を取り込むことができる。そのため、インプットレンズ100が占める空間の立体角、すなわち、直線Gを母線とする円錐の頂角と、電子の取り込み立体角θとを、ほぼ等しくできる。そのため、インプットレンズ100では、装置の小型化を図ることができる。
インプットレンズ100では、基準電極L0と第2メッシュM2との間に形成される電場によって、正の球面収差が生じ、第2~第n電極L2~Lnが形成する電場によって、負の球面収差が生じる。そのため、インプットレンズ100では、球面収差を低減できる。したがって、インプットレンズ100では、電子の取り込み立体角θが大きくなっても、スリットSで結像できる。
インプットレンズ100では、第2メッシュM2の電位が基準電位よりも高いため、上述したように、色収差を小さくできる。したがって、インプットレンズ100では、インプットレンズ100に入射した電子のエネルギー範囲が広くても、スリットSで結像できる。
ここで、電子分光器のエネルギー分解能を高くした状態で動作させるためには、インプットレンズは減速器として使用することが一般的である。このとき、インプットレンズの分光作用はごくわずかで有り、インプットレンズの後段の電子分光器で分光する。しかし、インプットレンズを加速器として使用する場合、インプットレンズは電子分光器と同様、または電子分光器よりも高い分光作用を生じる。したがって、インプットレンズの色収差は、同時に取り込むことが可能なエネルギー範囲を制限できる。
インプットレンズ100では、基準電極L0に取り付けられた第1メッシュM1を含む。そのため、インプットレンズ100の先端からの電場の漏れを低減できる。
2. 第2実施形態
2.1. インプットレンズの構成
次に、第2実施形態に係るインプットレンズについて、図面を参照しながら説明する。図2は、第2実施形態に係るインプットレンズ200を模式的に示す断面図である。以下、第2実施形態に係るインプットレンズ200において、第1実施形態に係るインプットレンズ100の構成部材と同様の機能を有する部材については同一の符号を付し、その詳細な説明を省略する。
インプットレンズ200では、図2に示すように、第1電極L1は、基準電極L0の内面2から光軸Oに向かって突出している。第1電極L1には、正の電圧が印加され、電子は光軸Oに向かって引き寄せられる。そのため、第1電極L1が光軸Oに向かって突出していても、第1電極L1は、電子の経路を妨げない。したがって、インプットレンズ200では、インプットレンズの先端部が大きくなることを防ぎつつ、第2メッシュM2を取り付けることができる。
第1電極L1を突出させることによって、第2メッシュM2の形状を変えることができる。第2メッシュM2の形状を変えることによって、第2メッシュM2が発生させる電場を変えることができ、レンズ作用を変えることができる。さらに、第1電極L1を突出させることによって、レンズ作用を変えることができる。このように、インプットレンズ200では、第1電極L1の形状、および、第2メッシュM2の形状によって、レンズ作用を変えることができ、電子の軌道を制御できる。
第1電極L1の形状および第2メッシュM2の形状の変化に応じて、第2電極L2~第n電極Lnの形状も変化させる。図示の例では、第2電極L2が、第1電極L1と同様に、基準電極L0の内面2から光軸Oに向かって突出している。第1電極L1と光軸Oとの間の距離は、第2電極L2と光軸Oとの間の距離よりも小さい。
第1電極L1を突出させることによって、第2メッシュM2近傍の電位を細かく制御できる。さらに、第2電極L2を突出させることによって、第2メッシュM2近傍の電位をより細かく制御できる。
2.2. インプットレンズの動作
インプットレンズ200の動作は、上述したインプットレンズ100の動作と同じである。ただし、インプットレンズ200では、第2メッシュM2の形状、第1電極L1の形
状、および第2電極L2の形状が異なるため、第1~第n電極L1~Lnに印加される電圧も異なる。
2.3. 効果
インプットレンズ200は、例えば、以下の効果を有する。
インプットレンズ200では、上述したインプットレンズ100と同様の作用効果を奏する。さらに、インプットレンズ200では、第1電極L1は、基準電極L0の内面2から光軸Oに向かって突出している。そのため、インプットレンズ200の先端部を大きくすることなく、第1電極L1を配置することができる。したがって、インプットレンズ200では、小型化を図ることができる。
3. 第3実施形態
3.1. インプットレンズの構成
次に、第3実施形態に係るインプットレンズについて、図面を参照しながら説明する。図3は、第3実施形態に係るインプットレンズ300を模式的に示す断面図である。以下、第3実施形態に係るインプットレンズ300において、第1実施形態に係るインプットレンズ100および第2実施形態に係るインプットレンズ200の構成部材と同様の機能を有する部材については同一の符号を付し、その詳細な説明を省略する。
インプットレンズ300では、第n-1電極Ln-1と光軸Oとの間の距離が、第n-2電極Ln-2と光軸Oとの間の距離、および第n電極Lnとの間の距離よりも小さい。第n-1電極Ln-1は、図示の例では、光軸Oに向かって突出している突出部4を有している。これにより、第n-1電極Ln-1と第n-2電極Ln-2との間の電位差が小さく、かつ、第n-1電極Ln-1と第n電極Lnとの間の電位差が小さい場合でも、第n-1電極Ln-1近傍において、強いレンズ作用を生じさせることができる。
ここで、例えば、図2に示すインプットレンズ200において、第n-1電極Ln-1近傍において強いレンズ作用を生じさせるためには、第n-1電極Ln-1に対して大きな電圧を印加しなければならない。しかしながら、第n-1電極Ln-1に大きな電圧を印加した場合、隣り合う電極との間で電位差が大きくなり、放電が生じるなどの問題がある。インプットレンズ300では、第n-1電極Ln-1に突出部4を設けることで、隣り合う電極との間の電位差を小さくできるため、放電などの問題が生じる可能性を低減できる。
3.2. 動作
3.2.1. インプットレンズ内での結像
図4は、インプットレンズ300の動作を説明するための図である。図4は、図3に対応している。
インプットレンズ300では、図3に示すインプットレンズ300内で結像しない場合と、図4に示すインプットレンズ300内で結像する場合の2つの状態をつくることができる。
図3に示す例では、第n-2電極Ln-2の電位、第n-1電極Ln-1の電位、第n電極Lnの電位がほぼ等しく、第n-2電極Ln-2から第n電極Lnでのレンズ作用は弱い。そのため、図3に示す例では、電子の軌道は、図2に示す例とほぼ同じであり、スリットSで結像する。
図3に示すインプットレンズの状態から、第1電極L1~第n電極Lnに印加される電
圧を変化させることによって、図4に示すように、第n-1電極Ln-1近傍、およびスリットSの2点で結像させることができる。
インプットレンズ300では、第1~第n電極L1~Lnに印加する電圧を制御することによって、図3に示すインプットレンズ内で結像しない場合と、図4に示すインプットレンズ内で結像する場合と、を切り替えることができる。インプットレンズ300では、上述したように、第n-1電極Ln-1と光軸Oとの間の距離が小さいため、第n-1電極Ln-1近傍において、強いレンズ作用を生じさせることができる。そのため、第n-1電極Ln-1近傍において、結像させることができる。
図4に示すように、インプットレンズ300内に結像をつくる場合、結像の位置を変化させることによって、インプットレンズ300の像倍率や角度倍率の設定範囲を広げることができる。電子分光のエネルギー分解能を変えるためにはインプットレンズの減速率を変える必要があるが、減速率に応じて像倍率や角度倍率を変えることによって、より広範囲の減速率に対して良好な電子分光が行える。ただし、インプットレンズ内に結像させると、像倍率や角度倍率の設定範囲を広くとれるという効果があるが、色収差も大きくなってしまう。したがって、電子分光条件に応じて、図3に示すインプットレンズ内で結像しない場合と、図4に示すインプットレンズ内で結像する場合と、を切り替える。
なお、上記では、第n-1電極Ln-1に突出部4を設けて、第n-1電極Ln-1と光軸Oとの間の距離を、第n-2電極Ln-2と光軸Oとの間の距離、および第n電極Lnとの間の距離よりも小さくしたが、突出部4を設ける電極は、第2電極L2から第n-1電極Ln-1のうちのいずれの電極であってもよい。すなわち、突出部4は、第m電極Lm(m=2,3,・・・,n-1)に設けられ、第m電極Lmと光軸Oとの間の距離は、第m-1電極Lm-1と光軸Oとの間の距離、および第m+1電極Lm+1と光軸Oとの間の距離よりも小さくてもよい。これにより、第m電極Lm近傍において、強いレンズ作用を生じさせることができる。
3.2.2. 球面収差補正および色収差補正
図5および図6は、インプットレンズ300の動作を説明するための図である。
インプットレンズ300では、図5に示す球面収差補正レンズと、図6に示す加速型静電レンズと、を実現することができる。
図5に示すインプットレンズ300を球面収差補正レンズとする場合、インプットレンズ300の動作は、上述した図3に示す場合と同様である。すなわち、第2メッシュM2には、正の電圧が印加され、加速場の凸レンズが形成される。基準電極L0と第2メッシュM2との間に形成される電場によって生じる正の球面収差は、第2~第n電極L2~Lnが形成する電場によって生じる負の球面収差によって低減される。
図5には、電子発生源P1での電子のエネルギーをEkとし、スリットSでの電子のエネルギーをEpとして、インプットレンズ300において電子が5倍に加速される場合の電子の軌道を図示している。なお、軌道Aは、Ep/Ek=5.00×0.95であり、軌道Bは、Ep/Ek=5.00×1.00であり、軌道Cは、Ep/Ek=5.00×1.05である。
インプットレンズ300を球面収差補正レンズとした場合、図5に示すように、球面収差を小さくできる。
図6に示すインプットレンズ300を加速型静電レンズとする場合、インプットレンズ
300では、図5に示す例と比べて、第1電極L1と第2電極L2との間の電位差が小さい。
第1電極L1と第2電極L2との間の電位差を小さくすると、球面収差補正の効果が小さくなり、インプットレンズ全体の球面収差は正となる。
さらに、第1電極L1と第2電極L2との間の電位差をゼロ、かつ、第2電極L2から第n電極Lnまでの電位差をゼロとした場合、第2メッシュM2以降の電子の軌道は直線となる。そのため、インプットレンズ全体の球面収差は正となる。この状態は、第2メッシュM2が無い状態に近く、一般的な加速型静電レンズの動作に近似する。
図6には、電子発生源P1での電子のエネルギーをEkとし、スリットSでの電子のエネルギーをEpとして、インプットレンズ300において電子が5倍に加速される場合の電子の軌道を図示している。なお、軌道Aは、Ep/Ek=5.00×0.95であり、軌道Bは、Ep/Ek=5.00×1.00であり、軌道Cは、Ep/Ek=5.00×1.05である。
第1電極L1と第2電極L2との間の電位差を小さくしてインプットレンズ300を加速型静電レンズとした場合、図6に示すように、色収差を小さくできる。
なお、上記では、インプットレンズ300において、電子が5倍に加速される場合について説明したが、これは一例であり、5倍に限定されない。
上記のように、インプットレンズ300では、第1~第n電極L1~Lnに印加する電圧を制御することによって、図5に示すインプットレンズ300を球面収差補正レンズとする場合と、図6に示すインプットレンズ300を加速型静電レンズにする場合と、を切り替えることができる。
電子分光装置では、インプットレンズの球面収差が電子分光器の感度に直接関係し、インプットレンズの色収差が同時に取り込むことができる電子のエネルギー範囲に直接関係する。そのため、インプットレンズ300を含む電子分光装置では、電子分光器の電子分光条件などに応じて、第1~第n電極L1~Lnに印加する電圧を制御することで、最適な条件で電子分光が可能である。
4. 第4実施形態
4.1. インプットレンズの構成
次に、第4実施形態に係るインプットレンズについて、図面を参照しながら説明する。図7は、第4実施形態に係るインプットレンズ400を模式的に示す断面図である。以下、第4実施形態に係るインプットレンズ400において、第1実施形態に係るインプットレンズ100、第2実施形態に係るインプットレンズ200、および第3実施形態に係るインプットレンズ300の構成部材と同様の機能を有する部材については同一の符号を付し、その詳細な説明を省略する。
インプットレンズ400では、図7に示すように、接地電極Lgを含む。接地電極Lgは、基準電極L0の外側に配置されている。接地電極Lgは、筒状であり、接地電極Lgの内側に基準電極L0が配置されている。図示の例では、接地電極Lgの内側には、基準電極L0、第1電極L1、第2電極L2が配置されている。接地電極Lgの電位は、接地電位である。
インプットレンズ400は、図示はしないが、基準電極L0に電圧を印加するための電
源を備えている。
4.2. インプットレンズの動作
インプットレンズ400では、基準電位は正の電位である。すなわち、基準電極L0および第1メッシュM1には、正の電圧が印加される。基準電極L0および第1メッシュM1に正の電圧を印加することによって、電子発生源P1から電子を効率よく第1メッシュM1に導くことができる。基準電極L0の電圧変化を電子分光器の測定エネルギーに比例させると、電子発生源P1から第1メッシュM1への取り込み立体角は全てのエネルギー範囲で一定となる。
ここで、X線光電子分光装置のように、試料にX線を照射する場合、インプットレンズから漏れ出る電場が大きくなっても、試料に照射されるX線に影響はない。これに対して、オージェ電子分光装置のように、試料に電子線を照射する場合、インプットレンズから漏れ出る電場の影響によって、電子線が偏向されてしまう。
また、例えば、オージェ電子分光装置において、電子源に対物レンズを使用すると、対物レンズから漏れる磁場が試料付近まで到達する場合がある。特に、高空間分解能な装置では、作動距離、すなわち、対物レンズ下面と試料との間の距離が短くなり、試料付近の磁場はさらに大きくなる。このとき、試料で発生した電子、特に低エネルギーの電子は、磁場の影響で電子発生源P1から第1メッシュM1に到達しなくなり、電子分光器の感度が低下する。
インプットレンズ400において、基準電極L0に正の固定値の電圧を印加すると、低エネルギーの電子を選択的に第1メッシュM1に引き込むことができる。そのため、対物レンズの磁場に由来する電子分光器の感度の低下を低減できる。また、第1メッシュM1に印加する電圧を大きくすることによって、低エネルギーの電子の感度を選択的に向上させることができる。
例えば、オージェ電子分光装置において、微小領域の観察や分析には電子線の線幅を細くすればよい。この場合、対物レンズをアウトレンズからセミインレンズ、さらにはインレンズにする必要がある。このとき、従来のインプットレンズを用いた場合、試料から放出される二次電子や、反射電子、オージェ電子は、対物レンズからの漏れ磁場によりインプットレンズに入射することができなくなり、電子分光器において感度が低下してしまう場合がある。特に、低エネルギーの電子に対する感度が低下してしまう。
これに対して、インプットレンズ400では、上述したように、基準電極L0に正の電圧を印加することによって、低エネルギーの電子を第1メッシュM1に引き込むことができる。そのため、オージェ電子分光装置において、対物レンズがセミインレンズやインレンズである場合でも、電子検出器における感度の低下を低減できる。
5. 第5実施形態
次に、第5実施形態に係るインプットレンズについて、図面を参照しながら説明する。図8は、第5実施形態に係るインプットレンズ500を模式的に示す断面図である。以下、第5実施形態に係るインプットレンズ500において、第1実施形態に係るインプットレンズ100、第2実施形態に係るインプットレンズ200、第3実施形態に係るインプットレンズ300、および第4実施形態に係るインプットレンズ400の構成部材と同様の機能を有する部材については同一の符号を付し、その詳細な説明を省略する。
インプットレンズ500は、図8に示すように、第1メッシュM1を有していない。第1メッシュM1を取り外すことによって、第1メッシュM1が取り付けられている場合と
比べて、電子検出器の感度を向上できる。具体的には、第1メッシュM1の電子の透過率は100%でないため、「1-透過率」の分だけ、電子検出器の感度を向上できる。
第1メッシュM1を取り外すと、インプットレンズ500の先端からの漏れ電場が変化する。この漏れ電場は、例えば、基準電極L0に印加する電圧で調整できる。
6. 第6実施形態
次に、第6実施形態に係る電子分光装置について、図面を参照しながら説明する。図9は、第6実施形態に係る電子分光装置1000の構成を示す図である。
電子分光装置1000は、オージェ電子分光により試料6の分析を行うための装置である。オージェ電子分光とは、電子線等により励起されて試料6から放出されるオージェ電子のエネルギーを測定することによって、元素分析を行う手法である。
電子分光装置1000は、図9に示すように、電子源10と、光学系20と、試料ステージ30と、インプットレンズ100と、電子分光器40と、検出器50と、を含む。
電子源10は、電子線を発生させる。電子源10は、例えば、陰極から放出された電子を陽極で加速し電子線を放出する電子銃である。光学系20は、電子源10から放出された電子線を試料6に照射する。光学系20は、集束レンズ22と、対物レンズ24と、偏向器26と、を含む。
集束レンズ22および対物レンズ24は、電子源10から放出された電子線を集束させる。集束レンズ22および対物レンズ24によって電子源10から放出された電子線を集束させることで電子プローブを形成することができる。偏向器26は、集束レンズ22および対物レンズ24によって集束された電子線を偏向させる。偏向器26は、例えば、電子線を試料6上で走査するために用いられる。
試料ステージ30は、試料6を保持している。試料ステージ30は、試料6を水平方向に移動させる水平方向移動機構、試料6を高さ方向に移動させる高さ方向移動機構、および試料6を傾斜させる傾斜機構を備えている。試料ステージ30によって、試料6を位置決めすることができる。
電子分光器40は、電子線が試料6に照射されることによって試料6から発生するオージェ電子を分光する。電子分光器40は、例えば、静電半球型アナライザーである。
試料6に電子線が照射されてオージェ電子が発生する電子発生源と、電子分光器40との間には、インプットレンズ100が配置されている。インプットレンズ100は、入射した電子を取り込んで、電子分光器40に導く。例えば、インプットレンズ100は、電子を減速させることによってエネルギー分解能を可変にする。インプットレンズ100において、電子を減速させるほど分解能は良くなるが、感度は低下する。
電子分光器40は、内半球電極と、外半球電極と、を有している。電子分光器40では、内半球電極と外半球電極との間に電圧を印加することで、印加した電圧に応じたエネルギー範囲の電子を取り出すことができる。検出器50は、電子分光器40で分光された電子を検出する。
電子分光装置1000では、電子の取り込み立体角θの大きいインプットレンズ100を含むため、試料から放出されるオージェ電子を感度よく検出できる。
なお、上記では、電子分光装置1000がインプットレンズ100を含む場合について説明したが、電子分光装置1000は、上述したインプットレンズ200,300,400を含んでいてもよい。
また、上記では、電子分光装置1000がオージェ電子分光装置である場合について説明したが、電子分光装置1000は、X線光電子分光装置などのその他の電子分光装置であってもよい。
本発明は、上述した実施形態に限定されるものではなく、さらに種々の変形が可能である。例えば、本発明は、実施形態で説明した構成と実質的に同一の構成を含む。実質的に同一の構成とは、例えば、機能、方法、及び結果が同一の構成、あるいは目的及び効果が同一の構成である。また、本発明は、実施形態で説明した構成の本質的でない部分を置き換えた構成を含む。また、本発明は、実施形態で説明した構成と同一の作用効果を奏する構成又は同一の目的を達成することができる構成を含む。また、本発明は、実施形態で説明した構成に公知技術を付加した構成を含む。
2…内面、4…突出部、6…試料、10…電子源、20…光学系、22…集束レンズ、24…対物レンズ、26…偏向器、30…試料ステージ、40…電子分光器、50…検出器、100…インプットレンズ、200…インプットレンズ、300…インプットレンズ、400…インプットレンズ、500…インプットレンズ、1000…電子分光装置、L0…基準電極、L1…第1電極、L2…第2電極、L3…第3電極、L4…第4電極、L5…第5電極、Ln-1、第Ln-1電極、Ln…第n電極、Lg…接地電極、M1…第1メッシュ、M2…第2メッシュ、O…光軸、P1…電子発生源、S…スリット

Claims (9)

  1. 電子分光装置において、電子発生源と電子分光器との間に配置されるインプットレンズであって、
    基準電位の基準電極と、
    スリットと、
    前記基準電極と前記スリットとの間に配置された第1~第n電極(nは3以上の整数)と、
    前記第1電極に取付けられたメッシュと、
    を含み、
    前記第1~第n電極は、光軸に沿ってこの順で配置され、
    前記メッシュの電位は、前記基準電位よりも高く、
    第m電極(m=2,3,・・・,n-1)と前記光軸との間の距離は、第m-1電極と前記光軸との間の距離、および第m+1電極と前記光軸との間の距離よりも小さい、インプットレンズ。
  2. 請求項1において、
    前記基準電極と前記メッシュとの間に形成される電場によって、正の球面収差が生じ、
    前記第2~第n電極が形成する電場によって、負の球面収差が生じる、インプットレンズ。
  3. 請求項1または2において、
    前記基準電極および前記第1~第n電極は筒状であり、
    前記第1電極は、前記基準電極の内面から前記光軸に向かって突出している、インプットレンズ。
  4. 請求項1ないしのいずれか1項において、
    前記第1~第n電極に印加される電圧は、可変である、インプットレンズ。
  5. 請求項1ないしのいずれか1項において、
    前記基準電極に取り付けられた他のメッシュを含む、インプットレンズ。
  6. 請求項1ないしのいずれか1項において、
    前記基準電位は、正の電位である、インプットレンズ。
  7. 請求項において、
    前記基準電極の外側に配置され、接地電位の接地電極を含む、インプットレンズ。
  8. 請求項1ないしのいずれか1項において、
    前記基準電位は、接地電位である、インプットレンズ。
  9. 請求項1ないしのいずれか1項に記載のインプットレンズと、
    電子分光器と、
    を含み、
    前記インプットレンズは、電子発生源と前記電子分光器との間に配置されている、電子分光装置。
JP2019178816A 2019-09-30 2019-09-30 インプットレンズおよび電子分光装置 Active JP7030089B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019178816A JP7030089B2 (ja) 2019-09-30 2019-09-30 インプットレンズおよび電子分光装置
US17/032,092 US11404260B2 (en) 2019-09-30 2020-09-25 Input lens and electron spectrometer
EP20198606.4A EP3799108A1 (en) 2019-09-30 2020-09-28 Input lens and electron spectrometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019178816A JP7030089B2 (ja) 2019-09-30 2019-09-30 インプットレンズおよび電子分光装置

Publications (2)

Publication Number Publication Date
JP2021057178A JP2021057178A (ja) 2021-04-08
JP7030089B2 true JP7030089B2 (ja) 2022-03-04

Family

ID=72659758

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019178816A Active JP7030089B2 (ja) 2019-09-30 2019-09-30 インプットレンズおよび電子分光装置

Country Status (3)

Country Link
US (1) US11404260B2 (ja)
EP (1) EP3799108A1 (ja)
JP (1) JP7030089B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7105261B2 (ja) * 2020-02-18 2022-07-22 日本電子株式会社 オージェ電子分光装置および分析方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006185598A (ja) 2004-12-24 2006-07-13 National Institute Of Advanced Industrial & Technology 飛行時間型分析装置
WO2008114684A1 (ja) 2007-03-16 2008-09-25 National University Corporation NARA Institute of Science and Technology エネルギー分析器、2次元表示型エネルギー分析器および光電子顕微鏡
US20100163725A1 (en) 2007-01-15 2010-07-01 Ian Richard Barkshire Charged particle analyser and method
WO2017010529A1 (ja) 2015-07-15 2017-01-19 国立大学法人奈良先端科学技術大学院大学 静電レンズ、並びに、該レンズとコリメータを用いた平行ビーム発生装置及び平行ビーム収束装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04343054A (ja) * 1991-05-20 1992-11-30 Nippondenso Co Ltd 光電子分光装置
JPH0510897A (ja) * 1991-07-02 1993-01-19 Jeol Ltd X線光電子分光イメージング装置
US5444242A (en) * 1992-09-29 1995-08-22 Physical Electronics Inc. Scanning and high resolution electron spectroscopy and imaging
US5315113A (en) 1992-09-29 1994-05-24 The Perkin-Elmer Corporation Scanning and high resolution x-ray photoelectron spectroscopy and imaging
JP3347491B2 (ja) * 1994-10-12 2002-11-20 日本電子株式会社 球面収差補正静電型レンズ
US5583336A (en) * 1995-10-30 1996-12-10 Kelly; Michael A. High throughput electron energy analyzer
GB9718012D0 (en) * 1997-08-26 1997-10-29 Vg Systems Ltd A spectrometer and method of spectroscopy
DE19929185A1 (de) * 1999-06-25 2001-01-04 Staib Instr Gmbh Vorrichtung und Verfahren zur energie- und winkelaufgelösten Elektronenspektroskopie
WO2006008840A1 (ja) * 2004-07-15 2006-01-26 National University Corporation NARA Institute of Science and Technology 球面収差補正静電型レンズ、インプットレンズ、電子分光装置、光電子顕微鏡、および測定システム
JP4900389B2 (ja) * 2006-07-26 2012-03-21 国立大学法人 奈良先端科学技術大学院大学 球面収差補正減速型レンズ、球面収差補正レンズシステム、電子分光装置および光電子顕微鏡
GB0720901D0 (en) * 2007-10-24 2007-12-05 Shimadzu Res Lab Europe Ltd Charged particle energy analysers
US10586625B2 (en) * 2012-05-14 2020-03-10 Asml Netherlands B.V. Vacuum chamber arrangement for charged particle beam generator
WO2014185074A1 (en) * 2013-05-15 2014-11-20 Okinawa Institute Of Science And Technology School Corporation Leed for sem
CN109983386B (zh) * 2016-11-21 2021-10-29 株式会社尼康 变倍光学系统、光学设备以及摄像设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006185598A (ja) 2004-12-24 2006-07-13 National Institute Of Advanced Industrial & Technology 飛行時間型分析装置
US20100163725A1 (en) 2007-01-15 2010-07-01 Ian Richard Barkshire Charged particle analyser and method
WO2008114684A1 (ja) 2007-03-16 2008-09-25 National University Corporation NARA Institute of Science and Technology エネルギー分析器、2次元表示型エネルギー分析器および光電子顕微鏡
WO2017010529A1 (ja) 2015-07-15 2017-01-19 国立大学法人奈良先端科学技術大学院大学 静電レンズ、並びに、該レンズとコリメータを用いた平行ビーム発生装置及び平行ビーム収束装置

Also Published As

Publication number Publication date
EP3799108A1 (en) 2021-03-31
US20210098244A1 (en) 2021-04-01
JP2021057178A (ja) 2021-04-08
US11404260B2 (en) 2022-08-02

Similar Documents

Publication Publication Date Title
JP5690863B2 (ja) 粒子光学装置
JP7336926B2 (ja) 性能が向上されたマルチ電子ビーム撮像装置
US11328918B2 (en) Device and method for electron transfer from a sample to an energy analyzer and electron spectrometer device
US7838830B2 (en) Charged particle beam apparatus and method for operating a charged particle beam apparatus
KR100443761B1 (ko) 하전 입자 장치
JP7030089B2 (ja) インプットレンズおよび電子分光装置
EP1793410B1 (en) Spherical aberration correction electrostatic lens, input lens, electron spectroscopic device, photoelectron microscope, and measurement system
JP2021162590A (ja) 電子エネルギー損失分光検出器を備えた透過型荷電粒子顕微鏡
TW201707038A (zh) 用於以具有經濾波能量擴展之電子束來成像樣本之系統與方法
JP7328477B2 (ja) 光電子顕微鏡
TWI743262B (zh) 用於電子束系統中之像差校正之系統
JPWO2019216348A1 (ja) 減速比可変球面収差補正静電レンズ、広角エネルギーアナライザ、及び、二次元電子分光装置
JP3896043B2 (ja) 電子顕微鏡の球面収差補正装置
JP2006278069A (ja) ウィーンフィルタ型エネルギーアナライザ及び放出電子顕微鏡
US10446360B2 (en) Particle source for producing a particle beam and particle-optical apparatus
JP6339734B2 (ja) 荷電粒子線応用装置、及び、収差補正器
WO2022018782A1 (ja) エネルギーフィルタ、およびそれを備えたエネルギーアナライザおよび荷電粒子ビーム装置
JP2010102938A (ja) 荷電粒子線装置及び集束イオンビーム装置
JP6876519B2 (ja) 荷電粒子線装置
GB2064213A (en) Electron Spectrometer
JP2021005442A (ja) モノクロメーターおよび荷電粒子線装置
JP2001235439A (ja) 放射電子顕微鏡
JPH1027571A (ja) トロイダル型分光器を有する分光装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210706

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220221

R150 Certificate of patent or registration of utility model

Ref document number: 7030089

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150