WO2016043045A1 - 熱硬化性樹脂を含む膜形成組成物 - Google Patents

熱硬化性樹脂を含む膜形成組成物 Download PDF

Info

Publication number
WO2016043045A1
WO2016043045A1 PCT/JP2015/074874 JP2015074874W WO2016043045A1 WO 2016043045 A1 WO2016043045 A1 WO 2016043045A1 JP 2015074874 W JP2015074874 W JP 2015074874W WO 2016043045 A1 WO2016043045 A1 WO 2016043045A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
film
formula
forming composition
polymer
Prior art date
Application number
PCT/JP2015/074874
Other languages
English (en)
French (fr)
Inventor
護 田村
中島 誠
榎本 智之
Original Assignee
日産化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学工業株式会社 filed Critical 日産化学工業株式会社
Priority to US15/512,220 priority Critical patent/US10253210B2/en
Priority to KR1020177004929A priority patent/KR102426418B1/ko
Priority to JP2016548825A priority patent/JP7109159B2/ja
Priority to CN201580043734.0A priority patent/CN106574033B/zh
Publication of WO2016043045A1 publication Critical patent/WO2016043045A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • C09D175/08Polyurethanes from polyethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/487Polyethers containing cyclic groups
    • C08G18/4879Polyethers containing cyclic groups containing aromatic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4887Polyethers containing carboxylic ester groups derived from carboxylic acids other than acids of higher fatty oils or other than resin acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/50Polyethers having heteroatoms other than oxygen
    • C08G18/5003Polyethers having heteroatoms other than oxygen having halogens
    • C08G18/5015Polyethers having heteroatoms other than oxygen having halogens having fluorine atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/50Polyethers having heteroatoms other than oxygen
    • C08G18/5021Polyethers having heteroatoms other than oxygen having nitrogen
    • C08G18/5051Polyethers having heteroatoms other than oxygen having nitrogen containing cyano groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/52Polythioethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/80Masked polyisocyanates
    • C08G18/8061Masked polyisocyanates masked with compounds having only one group containing active hydrogen
    • C08G18/807Masked polyisocyanates masked with compounds having only one group containing active hydrogen with nitrogen containing compounds
    • C08G18/8077Oximes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/042Coating with two or more layers, where at least one layer of a composition contains a polymer binder
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • C09D183/06Polysiloxanes containing silicon bound to oxygen-containing groups
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/28Applying non-metallic protective coatings
    • H05K3/285Permanent coating compositions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2475/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2475/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2483/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2483/04Polysiloxanes

Definitions

  • the present invention relates to a film-forming composition using a thermosetting resin. More specifically, the present invention relates to an insulating film formed on the back surface of a wafer processed using TSV (Through Silicon Via) technology in a process of forming a laminated body such as a semiconductor product such as an IC chip or an optical system product. .
  • TSV Three Silicon Via
  • TSV technology for providing through-holes, and filling the through-holes with a conductive material such as copper to form electrodes on the back surface, and then forming an insulating film on the back surface of the wafer on which the electrodes are formed, and another semiconductor element There is a step of electrically bonding to a chip or wafer on which is formed.
  • the insulating film formed on the back surface of the wafer has electrical insulation properties such as current leakage between electrodes and prevention of migration of conductive material, solvent resistance in the photolithography process after forming the insulating film, heat resistance in the electrode bonding process, etc.
  • it is required to exhibit the characteristics at a lower firing temperature.
  • Examples of known insulating films include insulating films formed by spin coating such as polyimide, polybenzoxazole, and aromatic polyether.
  • polyimide and polybenzoxazole for example, cannot obtain good insulation and solvent resistance at a baking temperature of about 180 ° C., and the reaction of unreacted sites further proceeds by the heat process after formation, and the film shrinks.
  • Aromatic polyethers have poor solvent resistance due to lack of thermal crosslinking sites, and have a problem that the resin melts in electrode bonding because the softening point of the resin is low.
  • a passivation film containing a polymer such as a polyether or polyether ketone having an organic group containing a double bond or a triple bond in the terminal or side chain of the polymer has been disclosed (see Patent Document 1).
  • the aromatic polyether described in Patent Document 1 cannot obtain sufficient characteristics at 180 ° C.
  • a resin composition containing a polyether compound and a benzoxazine compound and using a crosslinking agent is disclosed (see Patent Document 2).
  • Isocyanates are disclosed as crosslinking agents.
  • the present invention provides a film-forming composition for coating a substrate and forming a film capable of obtaining good electrical insulation, heat resistance and solvent resistance by heating at a relatively low temperature (for example, about 180 ° C.).
  • the formula (1) (In Formula (1), T 1 represents an arylene group or a combination of an arylene group and T 0 , T 0 represents an alkylene group, a fluorinated alkylene group, a carbonyl group, a sulfonyl group, or a combination thereof; 1 represents a carboxyl group, an amino group, or an imino group, n1 represents an integer of 1 to 6, and a compound having a unit structure represented by (A) and at least two isocyanate groups or blocked isocyanate groups
  • a film-forming composition comprising (B)
  • the polymer (A) has a unit structure represented by the formula (1), or a unit structure represented by the formula (1) and the formula (2):
  • T 1 , R 1 and n1 represent the meanings described in the first aspect
  • T 2 represents an arylene group or a combination of an arylene group and T 0 , (0-1 represents an al
  • T 1 , T 2 , T 3 , and T 4 in the above formulas (1) to (4) are the following formulas (t-1) to (t-7):
  • Ar 1 to Ar 14 each represent a benzene ring, a naphthalene ring, or a fluorene ring
  • the polymer (A) contains the structures (A-1) :( A-2) containing these structures in a ratio of 10:90 to 40:60.
  • the film-forming composition according to the aspect As a sixth aspect, the film-forming composition according to any one of the first to fifth aspects, wherein the polymer (A) has a weight average molecular weight of 500 to 5000000, As a seventh aspect, the isocyanate group or blocked isocyanate group of the compound (B) having at least two isocyanate groups or blocked isocyanate groups with respect to 1 mol of the carboxyl group, amino group, or imino group in the polymer (A).
  • the film forming composition according to any one of the first to sixth aspects which is included in a ratio of 0.5 mol to 1.5 mol
  • the film forming composition according to any one of the first aspect to the seventh aspect further including a solvent
  • an insulating film made of a cured film of the film forming composition according to any one of the first aspect to the eighth aspect As a tenth aspect, an adhesion reinforcing film-forming composition containing polysiloxane is applied to a substrate and cured to form an adhesion reinforcing film, and the film formation according to any one of the first to eighth aspects is formed thereon.
  • a method for producing an insulating film comprising a step of applying and curing the composition;
  • the insulating film according to the ninth aspect or the tenth aspect used as a film covering the polished surface of a thinned wafer, and as a twelfth aspect, a circuit surface on which a circuit of the thinned wafer is formed It is an insulating film as described in the 9th viewpoint or 10th viewpoint used as a film
  • a composition comprising the polymer having an aromatic polyether structure described above and a compound having at least two isocyanate groups or blocked isocyanate groups, a relatively low temperature (for example, about 180 ° C.) Even with this heating, it is possible to form an insulating film that can achieve good electrical insulation, heat resistance, and solvent resistance.
  • the present invention is a film-forming composition
  • the solid content of the film-forming composition of the present invention is 0.1 to 80% by mass, preferably 1 to 60% by mass. Solid content is shown by the ratio of the remainder which remove
  • the proportion of the polymer (A) in the solid content can be 30 to 99.9% by mass, or 50 to 99.9% by mass, or 50 to 90% by mass.
  • the isocyanate group or blocked isocyanate group of the compound (B) having at least two isocyanate groups or blocked isocyanate groups is 0.5 to 1 with respect to 1 mol of the carboxyl group, amino group, or imino group in the polymer (A).
  • the compound (B) is contained at a ratio of 0.05 to 50 parts by mass or 0.1 to 50 parts by mass with respect to 1 part by mass of the polymer (A). Can do.
  • T 1 represents an arylene group or a combination of an arylene group and T 0, and T 0 represents an alkylene group, a fluorinated alkylene group, a carbonyl group, a sulfonyl group, or a combination thereof.
  • R 1 represents a carboxyl group, an amino group, or an imino group.
  • n1 represents an integer of 1 to 4, or 1 to 5, or 1 to 6.
  • the arylene group is a divalent aromatic ring or aromatic condensed ring, and includes a phenylene group derived from benzene, a naphthylene group derived from naphthalene, a fluorene group derived from fluorene, and an anthrylene group derived from anthracene. It is done.
  • an arylene group containing a heterocyclic ring containing nitrogen, sulfur or oxygen can also be used.
  • the alkylene group is an alkylene group having 1 to 40 carbon atoms or 1 to 10 carbon atoms. For example, methylene group, ethylene group, propylene group, butylene group, propane-2,2-diyl group, butane-2,2- A diyl group etc. are mentioned.
  • the cyclic alkylene group is a cyclic alkylene group having 3 to 30 carbon atoms, such as a cyclopropylene group, a cyclobutylene group, a cyclohexylene group, a 1-methyl-cyclopentylene group, or a 2-methyl-cyclopentylene group.
  • the fluorinated alkylene group is an organic group in which part or all of the hydrogen atoms of the alkylene group are replaced with fluorine atoms. Examples thereof include a difluoromethylene group, a hexafluoropropane-2,2-diyl group, an octafluorobutane-2,2-diyl group, and the like.
  • T 1 some of the hydrogen atoms of the arylene group and the alkylene group are substituted with a carboxyl group, an amino group, or an imino group.
  • a carboxyl group, an amino group, or an imino group is present in a ratio of 1 to 4, or 1 to 5, or 1 to 6 in the entire T 1 .
  • These carboxyl group, amino group, or imino group can react with the isocyanate group or blocked isocyanate group of the compound (B) having an isocyanate group or blocked isocyanate group to form a crosslinked structure.
  • the polymer (A) has a unit structure represented by the above formula (1) or a combination of the unit structure represented by the above formula (1) and the unit structure represented by the above formula (2) (A-1) structure. It can be set as the polymer containing.
  • T 2 represents an arylene group or a combination of an arylene group and T 0, and T 0 represents an alkylene group, a fluorinated alkylene group, a carbonyl group, a sulfonyl group, or a combination thereof.
  • Examples of the arylene group and examples of the alkylene group and the fluorinated alkylene group which T 0 means can include the above examples.
  • the polymer (A) is a copolymer containing the (A-1) structure and the (A-2) structure, and the (A-2) structure is a unit structure represented by the above formula (3), or A combination of the unit structure represented by the formula (3) and the unit structure represented by the formula (4) can be included.
  • T 3 and T 4 each represent an arylene group or a combination of an arylene group and T 0, and T 0 represents an alkylene group, a fluorinated alkylene group, a carbonyl group, a sulfonyl group, Or a combination thereof.
  • Examples of the arylene group and the alkylene group and fluorinated alkylene group which T 0 means can include the above examples.
  • T 1 , T 2 , T 3 , and T 4 can be organic groups selected from the above formulas (t-1) to (t-7), respectively.
  • Ar 1 to Ar 14 in the formulas (t-1) to (t-7) each represent a benzene ring, a naphthalene ring, or a fluorene ring.
  • Polymer (A) contains these structures in a ratio of (A-1) structure: (A-2) structure in a molar ratio of 10:90 to 40:60.
  • the polymer (A) can have a weight average molecular weight in the range of 500 to 5000000, or 5000 to 100,000.
  • Each of T 1 , T 2 , T 3 , and T 4 may have an arbitrary substituent. These substituents include hydroxyl group, allyl group, allyloxy group, amino group, cyano group, nitro group, acyl group, acyloxy group, carboxyl group and the like.
  • the unit structure of the polymer used for this invention can be illustrated below.
  • Examples of (A-1) structures are (A-1-1) to (A-1-28), and examples of (A-2) structures are (A-2-1) to (A-2-15). Shown in
  • Examples of the polymer used in the present invention include: Formula (A-1-1) structure: polymer (A11) having the structure of formula (A-2-4) at a molar ratio of 30:70, Formula (A-1-2) structure: polymer (A12) having the structure of formula (A-2-4) at a molar ratio of 30:70, Formula (A-1-17) structure: polymer (A13) having the structure of formula (A-2-4) at a molar ratio of 20:80, Formula (A-1-17) Structure: Formula (A-2-2) Structure: Polymer (A14) having the structure of formula (A-2-4) at a molar ratio of 30:50:20, Formula (A-1-17) Structure: Formula (A-2-11) Structure: Polymer (A15) having the structure of formula (A-2-4) at a molar ratio of 20:50:30, And a polymer (A16) having a structure of the formula (A-1-17) structure: the formula (A-2-2) structure: the formula (A-2-4) at a
  • the compound (B) having at least two isocyanate groups or blocked isocyanate groups used in the present invention acts as a crosslinking agent and reacts with a carboxyl group, an amino group, or an imino group in the polymer (A) to form a crosslinked structure. Can be formed.
  • the compound (B) has at least two isocyanate groups or blocked isocyanate groups, and examples of the skeleton thereof include an aromatic ring structure, an aliphatic structure, an aliphatic cyclic structure, and a heterocyclic structure.
  • aromatic ring structure examples include aromatic rings such as benzene ring, naphthalene ring, anthracene ring, and fluorene ring, and aromatic condensed rings.
  • Examples of the aliphatic structure include a linear or branched aliphatic chain structure.
  • Examples of the aliphatic cyclic structure include monocyclic aliphatic structures such as 5-membered rings, 6-membered rings, and 7-membered rings, and polycyclic aliphatic structures such as norbornene.
  • heterocyclic structure examples include nitrogen-containing ring structures such as pyrrole, imidazole, pyrazole, piperidine, pyridine, indole and triazinetrione rings, and ring structures containing oxygen and sulfur such as furan and thiophene.
  • the blocked isocyanate group is an organic group in which an isocyanate group (—N ⁇ C ⁇ O) is blocked with a suitable protective group.
  • a blocked isocyanate group can be formed by reacting an isocyanate group with a blocking agent. When reacting with the carboxyl group, amino group, or imino group in the polymer (A), the blocking agent is eliminated, and the carboxyl group, amino group, or imino group reacts with the isocyanate group to form a crosslinked structure.
  • the blocking agent is an active hydrogen-containing compound capable of reacting with isocyanate, such as alcohol, phenol, polycyclic phenol, amide, imide, imine, thiol, oxime, lactam, active hydrogen-containing heterocyclic ring, and active methylene-containing compound. Can be mentioned.
  • alcohols having 1 to 40 carbon atoms such as methanol, ethanol, propanol, isopropanol, butanol, pentanol, hexanol, octanol, ethylene chlorohydrin, 1,3-dichloro-2-propanol.
  • phenols having 6 to 20 carbon atoms such as phenol, chlorophenol, and nitrophenol.
  • examples of the phenol derivative as the blocking agent include phenol derivatives having 6 to 20 carbon atoms such as para-t-butylphenol, cresol, xylenol, resorcinol and the like.
  • polycyclic phenols examples include polycyclic phenols having 10 to 20 carbon atoms, which are aromatic condensed rings having a phenolic hydroxyl group, and examples thereof include hydroxynaphthalene and hydroxyanthracene.
  • amides having 1 to 20 carbon atoms such as acetanilide, hexaneamide, octanediamide, succinamide, benzenesulfonamide, and ethanediamide.
  • imide as the blocking agent examples include imides having 6 to 20 carbon atoms, such as cyclohexane dicarboximide, cyclohexaene dicarboximide, benzene dicarboximide, cyclobutane dicarboximide, and carbodiimide.
  • Examples of the imine as the blocking agent include imines having 1 to 20 carbon atoms such as hexane-1-imine, 2-propaneimine, ethane-1,2-imine and the like.
  • Examples of the thiol as the blocking agent include thiols having 1 to 20 carbon atoms, such as ethanethiol, butanethiol, thiophenol, 2,3-butanedithiol, and the like.
  • the oxime as the blocking agent is, for example, an oxime having 1 to 20 carbon atoms, such as acetoxime, methyl ethyl ketoxime, cyclohexanone oxime, dimethyl ketoxime, methyl isobutyl ketoxime, methyl amyl ketoxime, formamide oxime, acetoaldoxime, diacetyl monooxime.
  • acetoxime methyl ethyl ketoxime
  • cyclohexanone oxime dimethyl ketoxime
  • methyl isobutyl ketoxime methyl amyl ketoxime
  • formamide oxime acetoaldoxime
  • diacetyl monooxime Benzophenone oxime, cyclohexane oxime and the like.
  • the lactam as the blocking agent is, for example, a lactam having 4 to 20 carbon atoms, and examples thereof include ⁇ -caprolactam, ⁇ -valerolactam, ⁇ -butyrolactam, ⁇ -propyllactam, ⁇ -pyrrolidone, and lauryllactam.
  • the active hydrogen-containing heterocyclic compound as the blocking agent is, for example, an active hydrogen-containing heterocyclic compound having 3 to 30 carbon atoms, such as pyrrole, imidazole, pyrazole, piperidine, piperazine, morpholine, pyringin, indole, indazole, purine, carbazole, etc. Is exemplified.
  • Examples of the active methylene-containing compound as the blocking agent are compounds having 3 to 20 carbon atoms, such as dimethyl malonate, diethyl malonate, methyl acetoacetate, ethyl acetoacetate, acetylacetone and the like.
  • the film-forming composition of the present invention can be dissolved using an organic solvent for spin coating. It can be set as the coating liquid which shows a spin coat property in the range which a polymer melt
  • the organic solvent is not particularly limited as long as it is a solvent that can be used in other semiconductor processes, but ketones such as cyclohexanone, methyl isoamyl ketone, and 2-heptanone; ethylene glycol, ethylene glycol monoacetate, diethylene glycol, diethylene glycol monoacetate, Polyhydric alcohols such as propylene glycol, propylene glycol monoacetate, dipropylene glycol or dipropylene glycol monoacetate, such as monomethyl ether, monoethyl ether, monopropyl ether, monobutyl ether or monophenyl ether and their derivatives; cyclic such as dioxane Ethers; and methyl lactate, ethyl lactate, methyl acetate, ethyl acetate, butyl acetate, methyl pyruvate, ethyl pyruvate, Methyl acid, are preferably used esters such as ethyl ethoxypropionat
  • a miscible additive for example, a surfactant for improving coating performance, an additional agent, and the like, as long as the essential characteristics of the present invention are not impaired.
  • Conventionally used resins and stabilizers can be added.
  • Surfactants include polyoxyethylene lauryl ether, polyoxyethylene stearyl ether, polyoxyethylene cetyl ether, polyoxyethylene alkyl ethers such as polyoxyethylene oleyl ether, polyoxyethylene octyl phenol ether, polyoxyethylene nonyl phenol Polyoxyethylene alkyl allyl ethers such as ether, polyoxyethylene / polyoxypropylene block copolymers, sorbitan monolaurate, sorbitan monopalmitate, sorbitan monostearate, sorbitan monooleate, sorbitan trioleate, sorbitan tristearate Sorbitan fatty acid esters such as polyoxyethylene sorbitan monolaurate, polyoxyethylene sorbitan Nonionic surfactants such as polyoxyethylene sorbitan fatty acid esters such as nopalmitate, polyoxyethylene sorbitan monostearate, polyoxyethylene sorbitan trioleate, polyoxyethylene sorbitan tristearate, Ftop (register
  • Surfactants, and Organosiloxane polymer KP341 mention may be made of Shin-Etsu Chemical Co.,. These surfactants may be added alone or in combinations of two or more. The blending amount is, for example, 0.01% by mass to 10% by mass in the total solid content.
  • an additional resin polymer
  • an addition polymerization polymer or a condensation polymerization polymer such as polyester, polystyrene, polyimide, acrylic polymer, methacrylic polymer, polyvinyl ether, phenol novolak, naphthol novolak, polyether, polyamide, and polycarbonate should be used.
  • a polymer having an aromatic ring structure such as a benzene ring, naphthalene ring, anthracene ring, triazine ring, quinoline ring and quinoxaline ring is preferably used.
  • Examples of such an additional resin include benzyl acrylate, benzyl methacrylate, phenyl acrylate, naphthyl acrylate, anthryl methacrylate, anthryl methyl methacrylate, styrene, hydroxystyrene, benzyl vinyl ether, and N-phenylmaleimide.
  • Examples include addition polymerization polymers containing an addition polymerizable monomer as a structural unit, and condensation polymerization polymers such as phenol novolac and naphthol novolak.
  • the additional resin polymer
  • a polymer having no aromatic ring structure can be used as the additional resin (polymer).
  • examples of such polymers include only addition polymerizable monomers having no aromatic ring structure such as alkyl acrylate, alkyl methacrylate, vinyl ether, alkyl vinyl ether, acrylonitrile, maleimide, N-alkylmaleimide, and maleic anhydride.
  • An addition polymerization polymer containing as a structural unit is mentioned.
  • the polymer When an addition polymerization polymer is used as the additional resin (polymer), the polymer may be a homopolymer or a copolymer.
  • An addition polymerizable monomer is used for the production of the addition polymerization type polymer. Examples of such addition polymerizable monomers include acrylic acid, methacrylic acid, acrylic ester compounds, methacrylic ester compounds, acrylamide compounds, methacrylamide compounds, vinyl compounds, styrene compounds, maleimide compounds, maleic anhydride, and acrylonitrile. Can be mentioned.
  • acrylic ester compounds include methyl acrylate, ethyl acrylate, normal hexyl acrylate, isopropyl acrylate, cyclohexyl acrylate, benzyl acrylate, phenyl acrylate, anthryl methyl acrylate, 2-hydroxyethyl acrylate, 3-chloro-2-hydroxypropyl acrylate, 2-hydroxypropyl acrylate, 2,2,2-trifluoroethyl acrylate, 2,2,2-trichloroethyl acrylate, 2-bromoethyl acrylate, 4-hydroxybutyl acrylate, 2-methoxyethyl acrylate, tetrahydrofurfuryl acrylate, 2-Methyl-2-adamantyl acrylate, 5-acryloyloxy-6-hydroxynorbornene-2-carboxy Examples thereof include silic-6-lactone, 3-acryloxypropyltriethoxysilane, and glycidyl acryl
  • Methacrylic acid ester compounds include methyl methacrylate, ethyl methacrylate, normal hexyl methacrylate, isopropyl methacrylate, cyclohexyl methacrylate, benzyl methacrylate, phenyl methacrylate, anthryl methyl methacrylate, 2-hydroxyethyl methacrylate, 2-hydroxypropyl methacrylate, 2,2, 2-trifluoroethyl methacrylate, 2,2,2-trichloroethyl methacrylate, 2-bromoethyl methacrylate, 4-hydroxybutyl methacrylate, 2-methoxyethyl methacrylate, tetrahydrofurfuryl methacrylate, 2-methyl-2-adamantyl methacrylate, 5 -Methacryloyloxy-6-hydroxynorbornene-2-carboxyl Examples thereof include cu-6-lactone, 3-methacryloxypropyltriethoxysilane,
  • acrylamide compounds include acrylamide, N-methyl acrylamide, N-ethyl acrylamide, N-benzyl acrylamide, N-phenyl acrylamide, N, N-dimethyl acrylamide, N-anthryl acrylamide, and the like.
  • methacrylamide compounds include methacrylamide, N-methylmethacrylamide, N-ethylmethacrylamide, N-benzylmethacrylamide, N-phenylmethacrylamide, N, N-dimethylmethacrylamide, and N-anthrylacrylamide. It is done.
  • vinyl compounds include vinyl alcohol, 2-hydroxyethyl vinyl ether, methyl vinyl ether, ethyl vinyl ether, benzyl vinyl ether, vinyl acetic acid, vinyl trimethoxysilane, 2-chloroethyl vinyl ether, 2-methoxyethyl vinyl ether, vinyl naphthalene, and vinyl anthracene. Is mentioned.
  • styrene compound examples include styrene, hydroxystyrene, chlorostyrene, bromostyrene, methoxystyrene, cyanostyrene, and acetylstyrene.
  • maleimide compounds include maleimide, N-methylmaleimide, N-phenylmaleimide, N-cyclohexylmaleimide, N-benzylmaleimide, and N-hydroxyethylmaleimide.
  • the molecular weight of the additional resin (polymer) used in the film-forming composition of the present invention is, for example, 1,000 to 1,000,000, or 3,000 to 300,000, or 5,000 to 100,000 as the weight average molecular weight.
  • thermosetting resin composition of the present invention does not necessarily require a crosslinking agent other than an isocyanate group or a blocked isocyanate group.
  • the crosslinking agent includes, for example, a methoxymethyl group, an ethoxymethyl group, a butoxymethyl group.
  • nitrogen-containing compounds having a nitrogen atom substituted with an alkoxymethyl group such as a hexyloxymethyl group or a hydroxymethyl group.
  • a phenol group-containing compound, an allyl group-containing compound, an allyl group-containing polymer, an isocyanate group-containing compound or an isocyanate group-containing polymer can be used as a crosslinking agent.
  • nitrogen-containing compound examples include hexamethoxymethyl melamine, tetramethoxymethyl benzoguanamine, 1,3,4,6-tetrakis (butoxymethyl) glycoluril, 1,3,4,6-tetrakis (hydroxymethyl) glycoluril. 1,3-bis (hydroxymethyl) urea, 1,1,3,3-tetrakis (butoxymethyl) urea, 1,1,3,3-tetrakis (methoxymethyl) urea, 1,3-bis (hydroxymethyl) ) -4,5-dihydroxy-2-imidazolinone, 1,3-bis (methoxymethyl) -4,5-dimethoxy-2-imidazolinone and the like nitrogen-containing compounds.
  • crosslinking agent examples include methoxymethyl type melamine compounds (trade names: CYMEL (registered trademark) 300, 301, 303, 350) manufactured by Nippon Cytec Industries, Ltd., butoxymethyl type melamine compounds (trade name: My Coat (registered trademark) 506, 508), glycoluril compound (trade name: CYMEL (registered trademark) 1170, POWDERLINK (registered trademark) 1174), methylated urea resin (trade name: UFR65), butylated urea resin ( Product names: UFR300, U-VAN10S60, U-VAN10R, U-VAN11HV), urea / formaldehyde resin manufactured by DIC Corporation (high condensation type, product names: Beccamin (registered trademark) J-300S, P-955, N) can be mentioned commercially available compounds
  • the cross-linking agent can use only one kind of compound, or two or more kinds of compounds can be used in combination. 1% to 50% by mass, or 8% to 40% by mass, or 15% to 30% by mass of a crosslinking agent is used with respect to the polymer contained in the thermosetting resin composition of the present invention. Can do.
  • the thermosetting resin composition of the present invention can contain a crosslinking catalyst together with the crosslinking agent.
  • a crosslinking catalyst By using a crosslinking catalyst, the reaction of the crosslinking agent is promoted.
  • the crosslinking catalyst include p-toluenesulfonic acid, trifluoromethanesulfonic acid, methanesulfonic acid, pyridinium-p-toluenesulfonate, salicylic acid, camphorsulfonic acid, 5-sulfosalicylic acid, citric acid, benzoic acid, and hydroxybenzoic acid.
  • the said crosslinking catalyst can use only 1 type, and can also be used in combination of 2 or more type. 0.01 mass% to 10 mass%, or 0.05 mass% to 8 mass%, or 0.1 mass% to 5 mass% with respect to the polymer contained in the thermosetting resin composition of the present invention, or 0.3% to 3% by weight or 0.5% to 1% by weight of a crosslinking catalyst can be used.
  • the content thereof is, for example, 0 to 40% by mass, 0 to 20% by mass, or 1 to 19% by mass.
  • the present invention also relates to an insulating film comprising a cured film of the film forming composition of the present invention.
  • an insulating film is obtained by applying the film-forming composition on a substrate and curing it.
  • the thickness of the film obtained by applying the film-forming composition on the substrate by spin coating with an apparatus such as a spin coater can be 0.1 ⁇ m or more and 100 ⁇ m or less. If this thickness is too thin, sufficient insulation may not be obtained, and if it is too thick, cracks may occur in the insulating film. Therefore, it is preferably 0.5 ⁇ m to 10 ⁇ m. Further, the temperature is about 100 to 350 ° C., 100 to 300 ° C., or 100 to 250 ° C.
  • the film-forming composition After the film-forming composition is applied to a substrate and the solvent is removed by drying, the polymer and the crosslinking agent contained as solid components can be cured at a relatively low temperature. It can be used as a protective film by covering the polished surface of the thinned wafer, or as a film for protecting the circuit surface formed on the back surface of the thinned wafer.
  • an insulating film comprising a step of applying an adhesion-strengthening film-forming composition containing polysiloxane to a substrate and curing to form an adhesion-strengthening film, and applying and curing the above-mentioned film-forming composition thereon It also relates to the manufacturing method.
  • the adhesion-strengthening film-forming composition contains polysiloxane and a solvent, and can contain a curing catalyst such as a surfactant, an onium salt, or an amine as necessary.
  • the solid content is 0.01 to 10% by mass.
  • the polysiloxane in the solid content is 50 to 100% by mass, or 90 to 99% by mass.
  • Polysiloxane is obtained by hydrolyzing alkoxysilane with an acid or alkali as a hydrolysis catalyst in an organic solvent, and has a weight average molecular weight of about 500 to 100,000, or about 500 to 10,000.
  • the insulating film can be used as a film that covers the polished surface of a thinned wafer. Moreover, it can also be used as a film for protecting the circuit surface on which the circuit of the thinned wafer is formed.
  • the obtained polyether was a polymer containing the structure of formula (A-1-1): formula (A-2-4) at a molar ratio of 30:70.
  • the weight average molecular weight was 11800 in standard polystyrene conversion.
  • the obtained polyether was a polymer having a structure (A-1-2) structure: formula (A-2-5) structure molar ratio of 30:70.
  • the weight average molecular weight was 17300 in standard polystyrene conversion.
  • the obtained polyether was a polymer containing the structure of formula (A-1-17): formula (A-2-5) at a molar ratio of 20:80.
  • the weight average molecular weight was 41900 in standard polystyrene conversion.
  • the obtained polyether was a polymer containing the structure of formula (A-1-17): structure of formula (A-2-2): structure of formula (A-2-5) at a molar ratio of 30:50:20. .
  • the weight average molecular weight was 12200 in standard polystyrene conversion.
  • Formula (A-1-17) structure Formula (A-2-11) structure: A polymer containing the structure of formula (A-2-5) in a molar ratio of 20:50:30.
  • the weight average molecular weight was 14000 in standard polystyrene conversion.
  • the solution was dissolved in 82.93 g of potassium carbonate, and the system was replaced with nitrogen.
  • the obtained polyether was a polymer containing the structure of formula (A-1-17): formula (A-2-2): structure of formula (A-2-5) at a molar ratio of 20:50:30. .
  • the weight average molecular weight was 12800 in standard polystyrene conversion.
  • the obtained polyether was a polyether containing the structure of formula (A-2-4). When the GPC analysis of the obtained aromatic polyether was conducted, the weight average molecular weight was 24000 in standard polystyrene conversion.
  • the obtained polymer was a polymer containing a unit structure represented by the formula (C-1-1).
  • the weight average molecular weight was 14000 in standard polystyrene conversion.
  • the polymer was changed to the formula (C-1-1 ′) after heating.
  • the system was cooled to a temperature of 80 ° C., 373.50 g of propargyl bromide dissolved in 1578.81 g of 1-methyl-2-pyrrolidinone, 621.95 g of potassium carbonate, 373.24 g of potassium iodide And stirred at 80 ° C. for 20 hours to react with the phenol group and amino group at the end of the polymer.
  • the obtained polymer was a polymer containing the structure of formula (C-1-2): formula (A-2-9) at a molar ratio of 50:50.
  • the weight average molecular weight was 12000 in standard polystyrene conversion.
  • the solution is cooled to room temperature, 36.00 g of propylene glycol monomethyl ether acetate is added to the reaction solution, ethanol, water, hydrochloric acid, and acetone as reaction by-products are distilled off under reduced pressure, and concentrated to obtain a hydrolysis-condensation product (polymer) propylene.
  • a glycol monomethyl ether acetate solution was obtained, a solid residue at 140 ° C.
  • the weight average molecular weight was 1300 in terms of standard polystyrene.
  • reaction solution is cooled to room temperature, 36.00 g of propylene glycol monomethyl ether acetate is added to the reaction solution, and ethanol, methanol, water, hydrochloric acid, and acetone as reaction by-products are distilled off under reduced pressure and concentrated to hydrolytic condensation.
  • a product (polymer) propylene glycol monomethyl ether acetate solution was obtained. It adjusted so that it might become 30 weight% in conversion of the solid residue in 140 degreeC.
  • the weight average molecular weight was 1200 in terms of standard polystyrene.
  • thermosetting resin composition 20.00 g of the aromatic polyether obtained in Synthesis Example 1 above and polyfunctional blocked isocyanate VESTANAT, B1358 / 100 (manufactured by EVONIC INDUSTRIES, block polyisocyanate protected with an oxime group based on the isophorone diisocyanate structure) 6.00 g was dissolved in 60.67 g of propylene glycol monomethyl ether acetate, and then filtered using a polyethylene microfilter having a pore size of 1.0 ⁇ m to prepare a resin solution containing 30% by mass as a solid content.
  • Example 2 20.00 g of the aromatic polyether obtained in Synthesis Example 2 above, and polyfunctional blocked isocyanate VESTANAT, B1358 / 100 (EVONIC INDUSTRIES, based on isophorone diisocyanate structure, blocked polyisocyanate protected with an oxime group) 6.00 g was dissolved in 60.67 g of propylene glycol monomethyl ether acetate, and then filtered using a polyethylene microfilter having a pore size of 1.0 ⁇ m to prepare a resin solution containing 30% by mass as a solid content.
  • Example 3 20.00 g of the aromatic polyether obtained in Synthesis Example 3 above, and polyfunctional blocked isocyanate VESTANAT, B1358 / 100 (manufactured by EVONIC INDUSTRIES, block polyisocyanate protected with an oxime group based on the isophorone diisocyanate structure) 6.00 g was dissolved in 60.67 g of propylene glycol monomethyl ether acetate, and then filtered using a polyethylene microfilter having a pore size of 1.0 ⁇ m to prepare a resin solution containing 30% by mass as a solid content.
  • Example 4 20.00 g of the aromatic polyether obtained in Synthesis Example 4 above, and polyfunctional blocked isocyanate VESTANAT, B1358 / 100 (manufactured by EVONIC INDUSTRIES, block polyisocyanate protected with an oxime group based on the isophorone diisocyanate structure) 9.00 g was dissolved in 67.67 g of propylene glycol monomethyl ether acetate, and then filtered using a polyethylene microfilter having a pore diameter of 1.0 ⁇ m to prepare a resin solution containing 30% by mass as a solid content.
  • Example 5 20.00 g of the aromatic polyether obtained in Synthesis Example 4 above, and polyfunctional blocked isocyanate VESTANAT, B1358 / 100 (Evonic Industries Ltd., block polyisocyanate protected with an oxime group based on isophorone diisocyanate structure) 6.00 g was dissolved in 60.67 g of propylene glycol monomethyl ether acetate, and then filtered using a polyethylene microfilter having a pore size of 1.0 ⁇ m to prepare a resin solution containing 30% by mass as a solid content.
  • Example 6 20.00 g of the aromatic polyether obtained in Synthesis Example 5 above, and polyfunctional blocked isocyanate VESTANAT, B1358 / 100 (Evonic Industries, manufactured by EVONIC INDUSTRIES, blocked polyisocyanate protected with an oxime group) 6.00 g was dissolved in 60.67 g of propylene glycol monomethyl ether acetate, and then filtered using a polyethylene microfilter having a pore size of 1.0 ⁇ m to prepare a resin solution containing 30% by mass as a solid content.
  • VESTANAT, B1358 / 100 Evonic Industries, manufactured by EVONIC INDUSTRIES, blocked polyisocyanate protected with an oxime group
  • Example 7 20.00 g of the aromatic polyether obtained in Synthesis Example 6 above and polyfunctional blocked isocyanate VESTANAT, B1358 / 100 (manufactured by EVONIC INDUSTRIES, block polyisocyanate protected with an oxime group based on an isophorone diisocyanate structure) 6.00 g was dissolved in 60.67 g of propylene glycol monomethyl ether acetate, and then filtered using a polyethylene microfilter having a pore size of 1.0 ⁇ m to prepare a resin solution containing 30% by mass as a solid content.
  • Comparative Example 1 26.00 g of the aromatic polyether obtained in Comparative Synthesis Example 1 was dissolved in 60.67 g of propylene glycol monomethyl ether acetate, and then filtered using a polyethylene microfilter having a pore size of 1.0 ⁇ m to obtain a solid content of 30. A resin solution containing mass% was prepared.
  • Comparative Example 2 26.00 g of the polyamic acid obtained in Comparative Synthesis Example 2 was dissolved in 60.67 g of cyclohexanone, and then filtered using a polyethylene microfilter having a pore size of 1.0 ⁇ m to obtain a resin solution containing 30% by mass as a solid content. Prepared.
  • thermosetting resin composition ⁇ Evaluation of thermosetting resin composition> With respect to the resin solutions obtained in Examples 1 to 7 and Comparative Examples 1 to 3, solvent resistance, adhesion, electrical insulation, and heat resistance were evaluated.
  • a leakage current density of less than 1 ⁇ 10 ⁇ 8 was evaluated as “ ⁇ ”, 1 ⁇ 10 ⁇ 8 or more and less than 1 ⁇ 10 ⁇ 7 was evaluated as “ ⁇ ”, and 1 ⁇ 10 ⁇ 7 or more was determined as “ ⁇ ”.
  • the results are shown in Table 3.
  • thermosetting resin composition obtained from the present invention is good in any of solvent resistance, adhesion, electrical insulation, and heat resistance.
  • the general aromatic polyether of Comparative Example 1 cannot be cross-linked, so that it cannot obtain solvent resistance, and further melts at a temperature higher than the glass transition point in the heat resistance test. It was. Since the imidization reaction does not proceed sufficiently at a relatively low temperature in the polyimide resin of Comparative Example 2, sufficient solvent resistance cannot be obtained, and at high temperatures during the heat resistance test, heat shrinkage due to the progress of imidization or residual amic acid Electrical characteristics were bad. Furthermore, adhesion to the wafer could not be obtained due to high internal stress due to heat shrinkage. In the aromatic polyether of Comparative Example 3, sufficient solvent resistance could not be obtained at a baking temperature of 180 ° C., and electrical insulation was significantly deteriorated in a heat resistance test.
  • maleic acid is MA
  • N- (3-triethoxysilylpropyl) -4,5-dihydroimidazole is IMIDTEOS
  • propylene glycol monomethyl ether acetate is PGMEA
  • propylene glycol monoethyl ether is PGEE
  • propylene glycol monomethyl ether is Abbreviated as PGME.
  • water ultrapure water was used. Each addition amount was shown in parts by mass.
  • Example 10 ⁇ Preparation of adhesion evaluation sample> (Example 10)
  • the adhesion enhancing film forming composition prepared in Example 8 was applied onto a silicon wafer using a spin coater and baked at 140 ° C. for 1 minute to form an adhesion film.
  • the resin solution prepared in Example 7 was applied thereon using a spin coater and baked at 180 ° C. for 60 minutes to form a resin film.
  • Example 11 The adhesion enhancing film forming composition prepared in Example 9 was applied onto a silicon wafer using a spin coater and baked at 140 ° C. for 1 minute to form an adhesion film.
  • the resin solution prepared in Example 7 was applied thereon using a spin coater and baked at 180 ° C. for 60 minutes to form a resin film.
  • Comparative Example 4 The resin solution prepared in Comparative Example 1 was applied on a silicon wafer using a spin coater and baked at 180 ° C. for 60 minutes to form a resin film.
  • Comparative Example 5 The resin solution prepared in Comparative Example 3 was applied onto a silicon wafer using a spin coater, and baked at 180 ° C. for 60 minutes to form a resin film.
  • thermosetting resin composition obtained from the present invention can be applied with the adhesion-strengthening film-forming composition to obtain high adhesion even when exposed to a high temperature and high humidity environment.
  • Comparative Example 4 and Comparative Example 5 were deteriorated in adhesion due to exposure to a high temperature and high humidity environment.
  • Example 12 The adhesion enhancing film-forming composition prepared in Example 8 was applied onto a silicon wafer with low electrical resistance using a spin coater, and baked at 140 ° C. for 1 minute to form an adhesion film.
  • the resin solution prepared in Example 7 was applied thereon using a spin coater and baked at 180 ° C. for 60 minutes to form a resin film.
  • Example 13 The adhesion enhancing film forming composition prepared in Example 9 was applied onto a silicon wafer with low electrical resistance using a spin coater and baked at 140 ° C. for 1 minute to form an adhesion film.
  • the resin solution prepared in Example 7 was applied thereon using a spin coater and baked at 180 ° C. for 60 minutes to form a resin film.
  • the electric field strength of 1 MV / cm, 3 MV / cm, and 5 MV / cm by a mercury prober (CVmap92-A manufactured by Four Dimensions, Inc.) was applied to the resin film.
  • the leakage current density A / cm 2 at the time of application was measured.
  • a leakage current density of less than 1 ⁇ 10 ⁇ 8 was evaluated as “ ⁇ ”, 1 ⁇ 10 ⁇ 8 or more and less than 1 ⁇ 10 ⁇ 7 was evaluated as “ ⁇ ”, and 1 ⁇ 10 ⁇ 7 or more was determined as “ ⁇ ”.
  • the results are shown in Table 7.
  • thermosetting resin composition obtained from the present invention exhibited excellent insulating properties even when an adhesion reinforcing film was formed.
  • the film-forming composition used in the present invention is coated on a substrate, and a film having good electrical insulation, heat resistance, and solvent resistance can be obtained by low-temperature heating.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Paints Or Removers (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Polyethers (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

【課題】 基板に被覆し、低温の加熱で良好な電気絶縁性、耐熱性、耐溶剤性が得られる膜を形成するための膜形成組成物を提供する。 【解決手段】 式(1):AA(式(1)中、Tはアリーレン基、又はアリーレン基とTとの組み合わせを示し、Tはアルキレン基、フッ素化アルキレン基、カルボニル基、スルホニル基、又はそれらの組み合わせを示し、Rはカルボキシル基、アミノ基、又はイミノ基を示す。n1は1乃至6の整数を示す。)で示される単位構造を含むポリマー(A)、及び少なくとも2つのイソシアネート基又はブロックイソシアネート基を有する化合物(B)を含む膜形成組成物。ポリマー(A)が、式(1)で示される単位構造又は、該式(1)で示される単位構造と式(2):BBで示される単位構造との組み合わせである(A-1)構造を含む重合体である。

Description

熱硬化性樹脂を含む膜形成組成物
 本発明は熱硬化性樹脂を用いた膜形成組成物に関するものである。さらに詳しくは、ICチップなどの半導体製品や光学系製品などの積層体を形成する工程において、TSV(Through Silicon Via)技術等を用いて加工されたウェハーの裏面に形成する絶縁膜に関するものである。
 近年、携帯電話やICカード等の電子機器の高機能化、小型化に伴い、半導体デバイスの高集積化、実装面積の小面積化、配線間距離の縮小による配線抵抗の低減が求められている。その手法として、半導体素子間を縦方向に積み上げる積層構造が検討されている。
スタック構造作製方法の一例として、半導体素子が形成されたウェハーを仮止めの接着剤等を使用して支持基板と接着後にウェハーの裏面を薄化し、その後に異方性ドライエッチングなどの技術を用いて貫通孔を設けるTSV技術(Through Silicon Via)、その貫通孔に銅などの導電材を充填して裏面に電極を形成した後、電極形成したウェハー裏面に絶縁膜を形成し、別の半導体素子が形成されたチップあるいはウェハーと電気的に接合する工程が挙げられる。
 上記工程において、ウェハー裏面に形成する絶縁膜は、電極間の電流リークや導電材料のマイグレーション防止などの電気絶縁性や、絶縁膜形成後のフォトリソグラフィー工程における溶媒耐性、電極接合工程における耐熱性などの特性を有し、更に部材の耐熱性の観点からより低い焼成温度で特性を発現することが求められる。
 公知の絶縁膜として、ポリイミドやポリベンゾオキサゾール、芳香族ポリエーテルなどスピンコートによって形成される絶縁膜が挙げられる。しかしながら、ポリイミドやポリベンゾオキサゾールは例えば180℃程度の焼成温度では、良好な絶縁性や溶媒耐性が得られず、また、形成後の熱工程によって未反応部位の反応が更に進行し、膜が収縮する問題がある。
芳香族ポリエーテルは、熱架橋部位がないため溶媒耐性に乏しく、また樹脂の軟化点が低いため、電極接合において樹脂が溶融する問題がある。
 ポリマーの末端や、側鎖に二重結合や三重結合を含む有機基を有するポリエーテル、ポリエーテルケトン等のポリマーを含むパッシベーション膜が開示されている(特許文献1参照)。しかしながら、特許文献1に記載の芳香族ポリエーテルでは、180℃では十分な特性が得られない。更に、高温プロセスによって電気絶縁性が劣化する問題がある。
 ポリエーテル化合物とベンゾオキサジン化合物とを含有し、架橋剤を使用する樹脂組成物が開示されている(特許文献2参照)。架橋剤としてはイソシアネートが開示されている。
国際公開WO2013/118871号パンフレット 特開2011-75987
 本発明は基板に被覆し、比較的低温(例えば180℃程度)の加熱で良好な電気絶縁性、耐熱性、耐溶剤性が得られる膜を形成するための膜形成組成物を提供する。
本発明は第1観点として、式(1):
Figure JPOXMLDOC01-appb-C000005







(式(1)中、Tはアリーレン基、又はアリーレン基とTとの組み合わせを示し、Tはアルキレン基、フッ素化アルキレン基、カルボニル基、スルホニル基、又はそれらの組み合わせを示し、Rはカルボキシル基、アミノ基、又はイミノ基を示す。n1は1乃至6の整数を示す。)で示される単位構造を含むポリマー(A)、及び少なくとも2つのイソシアネート基又はブロックイソシアネート基を有する化合物(B)を含む膜形成組成物、
第2観点として、ポリマー(A)が、式(1)で示される単位構造、又は該式(1)で示される単位構造と式(2):
Figure JPOXMLDOC01-appb-C000006







(式(1)中、T、R及びn1は第1観点に記載した意味を表し、式(2)中、Tはアリーレン基、又はアリーレン基とTとの組み合わせを示し、Tはアルキレン基、フッ素化アルキレン基、カルボニル基、スルホニル基、又はそれらの組み合わせを示す。)で示される単位構造との組み合わせである(A-1)構造を含む重合体である第1観点に記載の膜形成組成物、
第3観点として、ポリマー(A)が、第2観点に記載の(A-1)構造と(A-2)構造を含む共重合体であり、該(A-2)構造は式(3)で示される単位構造、又は該式(3)で示される単位構造と式(4)で示される単位構造との組み合わせ:
Figure JPOXMLDOC01-appb-C000007







(式(3)及び式(4)中、T及びTはそれぞれアリーレン基、又はアリーレン基とTとの組み合わせを示し、Tはアルキレン基、フッ素化アルキレン基、カルボニル基、スルホニル基、又はそれらの組み合わせを示す。)である第1観点又は第2観点に記載の膜形成組成物、
第4観点として、上記式(1)乃至式(4)におけるT、T、T、及びTはそれぞれ下記式(t-1)乃至式(t-7):
Figure JPOXMLDOC01-appb-C000008







(式(t-1)乃至式(t-7)中、Ar乃至Ar14はそれぞれベンゼン環、ナフタレン環、又はフルオレン環を示す。)からなる群より選ばれる有機基を示す第1観点乃至第3観点のいずれか一つに記載の膜形成組成物、
第5観点として、ポリマー(A)は、(A-1)構造:(A-2)構造のモル比が10:90乃至40:60となる割合でこれらの構造を含む第3観点又は第4観点に記載の膜形成組成物、
第6観点として、ポリマー(A)の重量平均分子量が500乃至5000000である第1観点乃至第5観点のいずれか一つに記載の膜形成組成物、
第7観点として、ポリマー(A)中のカルボキシル基、アミノ基、又はイミノ基の1モルに対して、少なくとも2つのイソシアネート基又はブロックイソシアネート基を有する化合物(B)のイソシアネート基又はブロックイソシアネート基が0.5モル乃至1.5モルとなる割合で含まれる第1観点乃至第6観点のいずれか一つに記載の膜形成組成物、
第8観点として、更に溶剤を含む第1観点乃至第7観点のいずれか一つに記載の膜形成組成物、
第9観点として、第1観点乃至第8観点のいずれか一つに記載の膜形成組成物の硬化膜からなる絶縁膜、
第10観点として、ポリシロキサンを含む密着強化膜形成組成物を基板に塗布し硬化して密着強化膜を形成し、その上に第1観点乃至第8観点のいずれか一つに記載の膜形成組成物を塗布して硬化する工程を含む絶縁膜の製造方法、
第11観点として、薄化したウェハーの研磨面を被覆する膜として用いられる第9観点又は第10観点に記載の絶縁膜、及び
第12観点として、薄化したウェハーの回路が形成された回路面を保護する膜として用いられる第9観点又は第10観点に記載の絶縁膜である。
 本発明によれば、上記に記載の芳香族ポリエーテル構造を有するポリマーと少なくとも2つのイソシアネート基又はブロックイソシアネート基を有する化合物とを含む組成物を用いることにより、比較的低温(例えば180℃程度)の加熱であっても、良好な電気絶縁性、耐熱性、溶媒耐性が達成可能な絶縁膜を形成することができる。
 本発明は上記式(1)で示される単位構造を含むポリマー(A)、及び少なくとも2つのイソシアネート基又はブロックイソシアネート基を有する化合物(B)を含む膜形成組成物である。
 本発明の膜形成組成物の固形分は、0.1乃至80質量%、好ましくは1乃至60質量%である。固形分は該膜形成組成物から溶剤を取り除いた残部の割合で示される。固形分中に占めるポリマー(A)の割合は30乃至99.9質量%、又は50乃至99.9質量%、又は50乃至90質量%とすることが可能である。
 ポリマー(A)中のカルボキシル基、アミノ基、又はイミノ基の1モルに対して、少なくとも2つのイソシアネート基又はブロックイソシアネート基を有する化合物(B)のイソシアネート基又はブロックイソシアネート基が0.5乃至1.5モルとなる割合で含まれるが、ポリマー(A)1質量部に対して、化合物(B)は0.05乃至50質量部、又は0.1乃至50質量部となる割合で含有することができる。
式(1)中、Tはアリーレン基、又はアリーレン基とTとの組み合わせを示し、Tはアルキレン基、フッ素化アルキレン基、カルボニル基、スルホニル基、又はそれらの組み合わせを示す。Rはカルボキシル基、アミノ基、又はイミノ基を示す。n1は1乃至4、又は1乃至5、又は1乃至6の整数を示す。
上記アリーレン基としては、2価の芳香族環又は芳香族縮合環であり、ベンゼンに由来するフェニレン基、ナフタレンに由来するナフチレン基、フルオレンに由来するフルオレン基、及びアントラセンに由来するアントリレン基が挙げられる。また、アリーレン基としては、窒素やイオウや酸素を含む複素環を含むアリーレン基も用いることができる。
アルキレン基としては炭素数1乃至40、又は炭素数1乃至10のアルキレン基であり、例えばメチレン基、エチレン基、プロピレン基、ブチレン基、プロパン-2,2-ジイル基、ブタン-2,2-ジイル基等が挙げられる。
環状アルキレン基としては、炭素数が3乃至30の環状アルキレン基であり、例えば、シクロプロピレン基、シクロブチレン基、シクロヘキシレン基、1-メチル-シクロペンチレン基、2-メチル-シクロペンチレン基、3-メチル-シクロペンチレン基、1-エチル-シクロブチレン基、2-エチル-シクロブチレン基、3-エチル-シクロブチレン基、1,2-ジメチル-シクロブチレン基、1,3-ジメチル-シクロブチレン基、2,2-ジメチル-シクロブチレン基、2,3-ジメチル-シクロブチレン基、2,4-ジメチル-シクロブチレン基、3,3-ジメチル-シクロブチレン基、1-n-プロピル-シクロプロピレン基、2-n-プロピル-シクロプロピレン基、1-i-プロピル-シクロプロピレン基、2-i-プロピル-シクロプロピレン基、1,2,2-トリメチル-シクロプロピレン基、1,2,3-トリメチル-シクロプロピレン基、2,2,3-トリメチル-シクロプロピレン基、1-エチル-2-メチル-シクロプロピレン基、2-エチル-1-メチル-シクロプロピレン基、2-エチル-2-メチル-シクロプロピレン基及び2-エチル-3-メチル-シクロプロピレ基等が挙げられる。また、アダマンタン、ノルボルネンから誘導される2価の有機基を用いることができる。
フッ素化アルキレン基としては上記アルキレン基の水素原子の一部又は全部をフッ素原子で置き換えた有機基である。例えばジフルオルメチレン基、ヘキサフルオロプロパン-2,2-ジイル基、オクタフルオロブタン-2,2-ジイル基等が挙げられる。
はアリーレン基、アルキレン基の水素原子の一部をカルボキシル基、アミノ基、又はイミノ基で置換されている。カルボキシル基、アミノ基、又はイミノ基はT全体中で1乃至4個、又は1乃至5、又は1乃至6個の割合で存在する。これらカルボキシル基、アミノ基、又はイミノ基はイソシアネート基又はブロックイソシアネート基を有する化合物(B)のイソシアネート基又はブロックイソシアネート基と反応し架橋構造を形成することができる。
ポリマー(A)は、上記式(1)で示される単位構造、又は該式(1)で示される単位構造と上記式(2)で示される単位構造との組み合わせである(A-1)構造を含む重合体とすることができる。式(2)中、Tはアリーレン基、又はアリーレン基とTとの組み合わせを示し、Tはアルキレン基、フッ素化アルキレン基、カルボニル基、スルホニル基、又はそれらの組み合わせを示す。アリーレン基の例示とTが意味するところのアルキレン基及びフッ素化アルキレン基の例示は上記例を挙げることができる。
 また、ポリマー(A)が、(A-1)構造と(A-2)構造を含む共重合体であって、該(A-2)構造は上記式(3)で示される単位構造、又は該式(3)で示される単位構造と上記式(4)で示される単位構造との組み合わせを含むことができる。式(3)及び式(4)中、T及びTはそれぞれアリーレン基、又はアリーレン基とTとの組み合わせを示し、Tはアルキレン基、フッ素化アルキレン基、カルボニル基、スルホニル基、又はそれらの組み合わせを示す。アリーレン基とTが意味するところのアルキレン基及びフッ素化アルキレン基の例示は上記例を挙げることができる。
 上記式(1)乃至式(4)における、T、T、T、及びTはそれぞれ上記式(t-1)乃至式(t-7)から選ばれる有機基とすることができる。式(t-1)乃至式(t-7)中のAr乃至Ar14はそれぞれベンゼン環、ナフタレン環、又はフルオレン環を示す。
 ポリマー(A)は、(A-1)構造:(A-2)構造をモル比で10:90乃至40:60となる割合でこれらの構造を含む。
 また、ポリマー(A)は重量平均分子量を500乃至5000000、又は5000乃至100000の範囲にすることができる。
 上記T、T、T、及びTはそれぞれ任意の置換基を有することができる。これらの置換基はヒドロキシル基、アリル基、アリロキシ基、アミノ基、シアノ基、ニトロ基、アシル基、アシルオキシ基、カルボキシル基等が挙げられる。
 本発明に用いられるポリマーの単位構造は以下に例示することができる。(A-1)構造の例を(A-1-1)乃至(A-1-28)に、(A-2)構造の例を(A-2-1)乃至(A-2-15)に示す。
Figure JPOXMLDOC01-appb-C000009







Figure JPOXMLDOC01-appb-C000010







Figure JPOXMLDOC01-appb-C000011







Figure JPOXMLDOC01-appb-C000012






Figure JPOXMLDOC01-appb-C000013







Figure JPOXMLDOC01-appb-C000014







Figure JPOXMLDOC01-appb-C000015







Figure JPOXMLDOC01-appb-C000016






Figure JPOXMLDOC01-appb-C000017







Figure JPOXMLDOC01-appb-C000018







Figure JPOXMLDOC01-appb-C000019







Figure JPOXMLDOC01-appb-C000020






 本発明に用いられるポリマーは例えば、
式(A-1-1)構造:式(A-2-4)構造をモル比30:70で有するポリマー(A11)、
式(A-1-2)構造:式(A-2-4)構造をモル比30:70で有するポリマー(A12)、
式(A-1-17)構造:式(A-2-4)構造をモル比20:80で有するポリマー(A13)、
式(A-1-17)構造:式(A-2-2)構造:式(A-2-4)構造をモル比30:50:20で有するポリマー(A14)、
式(A-1-17)構造:式(A-2-11)構造:式(A-2-4)構造をモル比20:50:30で有するポリマー(A15)、
式(A-1-17)構造:式(A-2-2)構造:式(A-2-4)構造をモル比20:50:30で有するポリマー(A16)等が挙げられる。
 本発明に用いられる少なくとも2つのイソシアネート基又はブロックイソシアネート基を有する化合物(B)は、架橋剤として作用し、ポリマー(A)中のカルボキシル基、アミノ基、又はイミノ基と反応し、架橋構造を形成することができる。
 化合物(B)は少なくとも2つのイソシアネート基又はブロックイソシアネート基を有するものであり、その骨格は芳香族環構造、脂肪族構造、脂肪族環状構造、ヘテロ環構造が挙げられる。
 芳香族環構造としては、ベンゼン環、ナフタレン環、アントラセン環、フルオレン環等の芳香環や芳香族縮合環が挙げられる。
 脂肪族構造は直鎖や分岐を有する脂肪族鎖状構造が挙げられる。脂肪族環状構造は5員環、6員環、7員環等の単環脂肪族構造や、ノルボルネン等の多環脂肪族構造が挙げられる。
 ヘテロ環構造としてはピロール、イミダゾール、ピラゾール、ピペリジン、ピリジン、インドール、トリアジントリオン環等の含窒素環構造や、フラン、チオフェン等の酸素、イオウを含む環構造が挙げられる。
 ブロックイソシアネート基とは、イソシアネート基(-N=C=O)が適当な保護基によりブロックされた有機基である。
 ブロックイソシアネート基は、イソシアネート基とブロック化剤を反応させてブロックイソシアネート基を形成することができる。
 ポリマー(A)中のカルボキシル基、アミノ基、又はイミノ基と反応する時にはブロック化剤が脱離して、カルボキシル基、アミノ基、又はイミノ基とイソシアネート基が反応し架橋構造を形成する。
 ブロック化剤としては、イソシアネートと反応可能な活性水素含有化合物であり、例えばアルコール、フェノール、多環フェノール、アミド、イミド、イミン、チオール、オキシム、ラクタム、活性水素含有複素環、活性メチレン含有化合物が挙げられる。
 ブロック化剤としてのアルコールは例えば炭素数1乃至40のアルコールが挙げられ、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、ペンタノール、ヘキサノール、オクタノール、エチレンクロルヒドリン、1,3-ジクロロ-2-プロパノール、t-ブタノール、t-ペンタノール、2-エチルヘキサノール、シクロヘキサノール、ラウリルアルコール、エチレングリコール、ブチレングリコール、トリメチロールプロパン、グリセリン、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、ベンジルアルコール等が例示される。
 ブロック化剤としてのフェノールは例えば炭素数6乃至20のフェノール類が挙げられ、フェノール、クロロフェノール、ニトロフェノール等が例示される。
ブロック化剤としてのフェノール誘導体は例えば炭素数6乃至20のフェノール誘導体が挙げられ、パラ-t-ブチルフェノール、クレゾール、キシレノール、レゾルシノール等が例示される。
 ブロック化剤としての多環フェノールは例えば炭素数10乃至20の多環フェノールが挙げられ、それらはフェノール性水酸基を有する芳香族縮合環であり、ヒドロキシナフタレン、ヒドロキシアントラセン等が例示される。
 ブロック化剤としてのアミドは例えば炭素数1乃至20のアミドが挙げられ、アセトアニリド、ヘキサンアミド、オクタンジアミド、スクシンアミド、ベンゼンスルホンアミド、エタンジアミド等が例示される。
 ブロック化剤としてのイミドは例えば炭素数6乃至20のイミドが挙げられ、シクロヘキサンジカルボキシイミド、シクロヘキサエンジカルボキシイミド、ベンゼンジカルボキシイミド、シクロブタンジカルボキシイミド、カルボジイミド等が例示される。
 ブロック化剤としてのイミンは例えば炭素数1乃至20のイミンが挙げられ、ヘキサン-1-イミン、2-プロパンイミン、エタン-1,2-イミン等が例示される。
ブロック化剤としてのチオールは例えば炭素数1乃至20のチオールが挙げられ、エタンチオール、ブタンチオール、チオフェノール、2,3-ブタンジチオール等が例示される。
 ブロック化剤としてのオキシムは例えば炭素数1乃至20のオキシムであり、アセトキシム、メチルエチルケトオキシム、シクロヘキサノンオキシム、ジメチルケトオキシム、メチルイソブチルケトオキシム、メチルアミルケトオキシム、ホルムアミドオキシム、アセトアルドキシム、ジアセチルモノオキシム、ベンゾフェノンオキシム、シクロヘキサンオキシム等が例示される。
 ブロック化剤としてのラクタムは例えば炭素数4乃至20のラクタムであり、ε-カプロラクタム、δ-バレロラクタム、γ-ブチロラクタム、β-プロピルラクタム、γ-ピロリドン、ラウリルラクタム等が例示される。
 ブロック化剤としての活性水素含有複素環化合物は例えば炭素数3乃至30の活性水素含有複素環化合物であり、ピロール、イミダゾール、ピラゾール、ピペリジン、ピペラジン、モルホリン、ピリンジン、インドール、インダゾール、プリン、カルバゾール等が例示される。
 ブロック化剤としての活性メチレン含有化合物としては例えば炭素数3乃至20の活性メチレン含有化合物であり、マロン酸ジメチル、マロン酸ジエチル、アセト酢酸メチル、アセト酢酸エチル、アセチルアセトン等が例示される。
 本発明の膜形成組成物は、スピン塗布するために有機溶剤を用いて溶解させることができる。ポリマーが有機溶剤に溶解し、溶液粘度が0.001乃至5000Pa・sの粘度を示す範囲でスピンコート性を示す塗布液とすることができる。
 上記有機溶剤としては、その他半導体工程で使用できる溶媒であれば特に限定はないが、シクロヘキサノン、メチルイソアミルケトン、2-ヘプタノン等のケトン類;エチレングリコール、エチレングリコールモノアセテート、ジエチレングリコール、ジエチレングリコールモノアセテート、プロピレングリコール、プロピレングリコールモノアセテート、ジプロピレングリコール又はジプロピレングリコールモノアセテートのモノメチルエーテル、モノエチルエーテル、モノプロピルエーテル、モノブチルエーテル又はモノフェニルエーテル等の多価アルコール類及びその誘導体;ジオキサン等の環式エーテル類;及び乳酸メチル、乳酸エチル、酢酸メチル、酢酸エチル、酢酸ブチル、ピルビン酸メチル、ピルビン酸エチル、メトキシプロピオン酸メチル、エトキシプロピオン酸エチル等のエステル類を用いることが好ましい。これらは単独で用いてもよく、2種以上を混合して用いてもよい。
 本実施の形態に係る膜形成組成物には、本発明における本質的な特性を損なわない範囲で、さらに、混和性のある添加剤、例えば塗布性能の改良するための界面活性剤や、付加的樹脂、安定剤などの慣用されているものを添加することができる。
 界面活性剤としては、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンセチルエーテル、ポリオキシエチレンオレイルエーテル等のポリオキシエチレンアルキルエーテル類、ポリオキシエチレンオクチルフエノールエーテル、ポリオキシエチレンノニルフエノールエーテル等のポリオキシエチレンアルキルアリルエーテル類、ポリオキシエチレン・ポリオキシプロピレンブロックコポリマー類、ソルビタンモノラウレート、ソルビタンモノパルミテート、ソルビタンモノステアレート、ソルビタンモノオレエート、ソルビタントリオレエート、ソルビタントリステアレート等のソルビタン脂肪酸エステル類、ポリオキシエチレンソルビタンモノラウレート、ポリオキシエチレンソルビタンモノパルミテート、ポリオキシエチレンソルビタンモノステアレート、ポリオキシエチレンソルビタントリオレエート、ポリオキシエチレンソルビタントリステアレート等のポリオキシエチレンソルビタン脂肪酸エステル類等のノニオン系界面活性剤、エフトップ(登録商標)EF301、同EF303、同EF352((株)ジェムコ製)、メガファック(登録商標)F171、同F173、同R30、R-30N、R-40LM(DIC(株)製)、フロラードFC430、同FC431(住友スリーエム(株)製)、アサヒガード(登録商標)AG710、サーフロン(登録商標)S-382、同SC101、同SC102、同SC103、同SC104、同SC105、同SC106(旭硝子(株)製)等のフッ素系界面活性剤、及びオルガノシロキサンポリマーKP341(信越化学工業(株)製)を挙げることができる。これらの界面活性剤は単独で添加してもよいし、二種以上の組合せで添加することもできる。配合量は全固形分中で例えば0.01質量%乃至10質量%である。
付加的樹脂(ポリマー)としては、ポリエステル、ポリスチレン、ポリイミド、アクリルポリマー、メタクリルポリマー、ポリビニルエーテル、フェノールノボラック、ナフトールノボラック、ポリエーテル、ポリアミド、及びポリカーボネート等の付加重合ポリマーまたは縮重合ポリマーを使用することができる。ベンゼン環、ナフタレン環、アントラセン環、トリアジン環、キノリン環、及びキノキサリン環等の芳香環構造を有するポリマーが好ましく使用される。
 そのような付加的樹脂(ポリマー)としては、例えば、ベンジルアクリレート、ベンジルメタクリレート、フェニルアクリレート、ナフチルアクリレート、アントリルメタクリレート、アントリルメチルメタクリレート、スチレン、ヒドロキシスチレン、ベンジルビニルエーテル、及びN-フェニルマレイミド等の付加重合性モノマーをその構造単位として含む付加重合ポリマーや、フェノールノボラック、及びナフトールノボラック等の縮重合ポリマーが挙げられる。
 また、付加的樹脂(ポリマー)としては芳香環構造を有さないポリマーを使用することができる。そのようなポリマーとしては、例えば、アルキルアクリレート、アルキルメタクリレート、ビニルエーテル、アルキルビニルエーテル、アクリロニトリル、マレイミド、N-アルキルマレイミド、及びマレイン酸無水物等の芳香環構造を有さない付加重合性モノマーのみをその構造単位として含む付加重合ポリマーが挙げられる。
 付加的樹脂(ポリマー)として付加重合ポリマーが使用される場合、そのポリマーは単独重合体でもよく共重合体であってもよい。付加重合系ポリマーの製造には付加重合性モノマーが使用される。そのような付加重合性モノマーとしてはアクリル酸、メタクリル酸、アクリル酸エステル化合物、メタクリル酸エステル化合物、アクリルアミド化合物、メタクリルアミド化合物、ビニル化合物、スチレン化合物、マレイミド化合物、マレイン酸無水物、及びアクリロニトリル等が挙げられる。
 アクリル酸エステル化合物としては、メチルアクリレート、エチルアクリレート、ノルマルヘキシルアクリレート、イソプロピルアクリレート、シクロヘキシルアクリレート、ベンジルアクリレート、フェニルアクリレート、アントリルメチルアクリレート、2-ヒドロキシエチルアクリレート、3-クロロ-2-ヒドロキシプロピルアクリレート、2-ヒドロキシプロピルアクリレート、2,2,2-トリフルオロエチルアクリレート、2,2,2-トリクロロエチルアクリレート、2-ブロモエチルアクリレート、4-ヒドロキシブチルアクリレート、2-メトキシエチルアクリレート、テトラヒドロフルフリルアクリレート、2-メチル-2-アダマンチルアクリレート、5-アクリロイルオキシ-6-ヒドロキシノルボルネン-2-カルボキシリック-6-ラクトン、3-アクリロキシプロピルトリエトキシシラン、及びグリシジルアクリレート等が挙げられる。
 メタクリル酸エステル化合物としては、メチルメタクリレート、エチルメタクリレート、ノルマルヘキシルメタクリレート、イソプロピルメタクリレート、シクロヘキシルメタクリレート、ベンジルメタクリレート、フェニルメタクリレート、アントリルメチルメタクリレート、2-ヒドロキシエチルメタクリレート、2-ヒドロキシプロピルメタクリレート、2,2,2-トリフルオロエチルメタクリレート、2,2,2-トリクロロエチルメタクリレート、2-ブロモエチルメタクリレート、4-ヒドロキシブチルメタクリレート、2-メトキシエチルメタクリレート、テトラヒドロフルフリルメタクリレート、2-メチル-2-アダマンチルメタクリレート、5-メタクリロイルオキシ-6-ヒドロキシノルボルネン-2-カルボキシリック-6-ラクトン、3-メタクリロキシプロピルトリエトキシシラン、グリシジルメタクリレート、2-フェニルエチルメタクリレート、ヒドロキシフェニルメタクリレート、及びブロモフェニルメタクリレート等が挙げられる。
 アクリルアミド化合物としては、アクリルアミド、N-メチルアクリルアミド、N-エチルアクリルアミド、N-ベンジルアクリルアミド、N-フェニルアクリルアミド、N,N-ジメチルアクリルアミド、及びN-アントリルアクリルアミド等が挙げられる。
 メタクリルアミド化合物としては、メタクリルアミド、N-メチルメタクリルアミド、N-エチルメタクリルアミド、N-ベンジルメタクリルアミド、N-フェニルメタクリルアミド、N,N-ジメチルメタクリルアミド、及びN-アントリルアクリルアミド等が挙げられる。
 ビニル化合物としては、ビニルアルコール、2-ヒドロキシエチルビニルエーテル、メチルビニルエーテル、エチルビニルエーテル、ベンジルビニルエーテル、ビニル酢酸、ビニルトリメトキシシラン、2-クロロエチルビニルエーテル、2-メトキシエチルビニルエーテル、ビニルナフタレン、及びビニルアントラセン等が挙げられる。
 スチレン化合物としては、スチレン、ヒドロキシスチレン、クロロスチレン、ブロモスチレン、メトキシスチレン、シアノスチレン、及びアセチルスチレン等が挙げられる。
 マレイミド化合物としては、マレイミド、N-メチルマレイミド、N-フェニルマレイミド、N-シクロヘキシルマレイミド、N-ベンジルマレイミド、及びN-ヒドロキシエチルマレイミド等が挙げられる。
 本発明の膜形成組成物に使用される付加的樹脂(ポリマー)の分子量としては、重量平均分子量として、例えば、1000乃至1000000であり、または3000乃至300000であり、または5000乃至100000である。
 本発明の熱硬化性樹脂組成物はイソシアネート基又はブロックイソシアネート基以外架橋剤を必ずしも必要としないが、もし使用するなら、当該架橋剤としては、例えば、メトキシメチル基、エトキシメチル基、ブトキシメチル基、ヘキシルオキシメチル基等のアルコキシメチル基又はヒドロキシメチル基で置換された窒素原子を有する含窒素化合物を挙げることができる。さらに、フェノール基含有化合物、アリル基含有化合物、アリル基含有ポリマー、イソシアネート基含有化合物又はイソシアネート基含有ポリマーを架橋剤として用いることができる。
 上記含窒素化合物としては、例えば、ヘキサメトキシメチルメラミン、テトラメトキシメチルベンゾグアナミン、1,3,4,6-テトラキス(ブトキシメチル)グリコールウリル、1,3,4,6-テトラキス(ヒドロキシメチル)グリコールウリル、1,3-ビス(ヒドロキシメチル)尿素、1,1,3,3-テトラキス(ブトキシメチル)尿素、1,1,3,3-テトラキス(メトキシメチル)尿素、1,3-ビス(ヒドロキシメチル)-4,5-ジヒドロキシ-2-イミダゾリノン、1,3-ビス(メトキシメチル)-4,5-ジメトキシ-2-イミダゾリノン等の含窒素化合物が挙げられる。上記架橋剤としては、また、日本サイテックインダストリーズ(株)製メトキシメチルタイプメラミン化合物(商品名:CYMEL(登録商標)300、同301、同303、同350)、ブトキシメチルタイプメラミン化合物(商品名:マイコート(登録商標)506、同508)、グリコールウリル化合物(商品名:CYMEL(登録商標)1170、POWDERLINK(登録商標)1174)、メチル化尿素樹脂(商品名:UFR65)、ブチル化尿素樹脂(商品名:UFR300、U-VAN10S60、U-VAN10R、U-VAN11HV)、DIC(株)製尿素/ホルムアルデヒド系樹脂(高縮合型、商品名:ベッカミン(登録商標)J-300S、同P-955、同N)の市販されている化合物を挙げることができる。
 上記架橋剤は、一種の化合物のみを使用することができ、また、二種以上の化合物を組み合わせて用いることもできる。本発明の熱硬化性樹脂組成物に含まれる重合体に対して、1質量%乃至50質量%、又は8質量%乃至40質量%、又は15質量%乃至30質量%の架橋剤を使用することができる。
 本発明の熱硬化性樹脂組成物は、上記架橋剤と共に架橋触媒を含むことができる。架橋触媒を使用することにより、上記架橋剤の反応が促進される。架橋触媒としては、例えば、p-トルエンスルホン酸、トリフルオロメタンスルホン酸、メタンスルホン酸、ピリジニウム-p-トルエンスルホナート、サリチル酸、カンファースルホン酸、5-スルホサリチル酸、クエン酸、安息香酸、ヒドロキシ安息香酸、4-クロロベンゼンスルホン酸、4-ヒドロキシベンゼンスルホン酸、ベンゼンジスルホン酸及び1-ナフタレンスルホン酸を挙げることができる。上記架橋触媒は、一種のみを使用することができ、また、二種以上を組み合わせて用いることもできる。本発明の熱硬化性樹脂組成物に含まれる重合体に対して0.01質量%乃至10質量%、又は0.05質量%乃至8質量%、又は0.1質量%乃至5質量%、又は0.3質量%乃至3質量%、又は0.5質量%乃至1質量%の架橋触媒を使用することができる。
 本発明の膜形成組成物に付加的樹脂(ポリマー)が含まれる場合、その含有量としては、固形分中で例えば0乃至40質量%であり、または0乃至20質量%であり、または1乃至19質量%である。
 本発明は上記本発明の膜形成組成物の硬化膜からなる絶縁膜にも関する。具体的には上記膜形成組成物を基板上に塗布し、硬化することにより絶縁膜が得られる。
 本発明では、基板上に膜形成組成物をスピンコーター等の装置でスピンコートで塗布した膜の厚さが0.1μm以上100μm以下とすることができる。この厚さが薄すぎると絶縁性が十分得られない可能性があり、厚すぎると絶縁膜にクラックが生じる可能性がある。よって好ましくは0.5μm乃至10μmである。
また、塗布後に100乃至350℃、100乃至300℃、又は100乃至250℃程度の温度であり、典型的には比較的低温である180℃前後の温度を含む150℃乃至200℃の温度範囲であり、0.5分乃至180分、0.5分乃至120分、又は1分乃至60分程度の硬化焼成を行うことができる。
 上記膜形成組成物は基板に塗布し、乾燥によって溶剤を除去したあと、固形分成分として含まれる上記ポリマーと上記架橋剤は比較的低温で硬化することが可能である。薄化したウェハーの研磨面を被覆し保護膜として用いることや、薄化したウェハーの裏面に形成された回路面を保護する膜として用いることができる。
 さらに本発明では、ポリシロキサンを含む密着強化膜形成組成物を基板に塗布し硬化して密着強化膜を形成し、その上に上記の膜形成組成物を塗布して硬化する工程を含む絶縁膜の製造方法にも関する。
 密着強化膜形成組成物はポリシロキサンと溶剤を含み、必要に応じて界面活性剤やオニウム塩やアミン等の硬化触媒を含有することができる。固形分としては0.01乃至10質量%である。固形分中のポリシロキサンは50乃至100質量%、又は90乃至99質量%である。ポリシロキサンは有機溶剤中でアルコキシシランを酸やアルカリを加水分解触媒として加水分解して得られ、重量平均分子量は500乃至100000,又は500乃至10000程度である。
 溶剤や界面活性剤は上記例示を用いることができる。
 上記絶縁膜は、薄化したウェハーの研磨面を被覆する膜として用いることができる。また、薄化したウェハーの回路が形成された回路面を保護する膜として用いることもできる。
以下、本発明を実施例、比較例により更に具体的に説明するが、これによって本発明が限定されるものではない。
<膜形成組成物用樹脂の合成>
(合成例1)
攪拌機、温度計、ジムロート冷却管を備えた三口フラスコに2,6-ジフルオロベンゾニトリル16.52gと、ジフェノール酸8.59g、2,2-ビス(4-ヒドロキシフェニル)ヘキサフルオロプロパン23.54gを1-メチル-2-ピロリジノン194.58gに溶解させ、炭酸カリウム27.64gを加え、系内を窒素置換した。160℃のオイルバスで20時間反応させた。反応終了後、反応溶液を桐山ロートで吸引濾過し、得られたろ液に2N-塩酸:1-メチル-2-ピロリジノン=1:9の溶液を酸性になるまで加え、pH試験紙を用いて溶液が酸性条件であることを確認した。その後、得られた溶液を水:メタノール=1:9の混合液に滴下し、再沈殿した。滴下後、ブフナーロートで吸引濾過し、水:メタノール=1:9の混合液で洗浄し、得られた粉体を60℃に加熱した減圧乾燥機で12時間乾燥させ、芳香族ポリエーテルを得た。得られたポリエーテルは式(A-1-1)構造:式(A-2-4)構造をモル比として30:70で含むポリマーであった。得られた芳香族ポリエーテルのGPC分析を行ったところ、標準ポリスチレン換算にて重量平均分子量は11800であった。
(合成例2)
攪拌機、温度計、ジムロート冷却管を備えた三口フラスコに4,4’-ジフルオロベンゾフェノン20.73gと、ジフェノール酸8.59g、2,2-ビス(4-ヒドロキシフェニル)ヘキサフルオロプロパン23.54gを1-メチル-2-ピロリジノン211.42gに溶解させ、炭酸カリウム27.64gを加え、系内を窒素置換した。160℃のオイルバスで20時間反応させた。反応終了後、反応溶液を桐山ロートで吸引濾過し、得られたろ液に2N-塩酸:1-メチル-2-ピロリジノン=1:9の溶液を酸性になるまで加え、pH試験紙を用いて溶液が酸性条件であることを確認した。その後、得られた溶液を水:メタノール=1:9の混合液に滴下し、再沈殿した。滴下後、ブフナーロートで吸引濾過し、水:メタノール=1:9の混合液で洗浄し、得られた粉体を60℃に加熱した減圧乾燥機で12時間乾燥させ、芳香族ポリエーテルを得た。得られたポリエーテルは式(A-1-2)構造:式(A-2-5)構造モル比として30:70で含むポリマーであった。得られた芳香族ポリエーテルのGPC分析を行ったところ、標準ポリスチレン換算にて重量平均分子量は17300であった。
(合成例3)
攪拌機、温度計、ジムロート冷却管を備えた三口フラスコに4,4’-ジフルオロベンゾフェノン20.73gと、2,2-ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパン7.33g、2,2-ビス(4-ヒドロキシフェニル)ヘキサフルオロプロパン26.90gを1-メチル-2-ピロリジノン219.81gに溶解させ、炭酸カリウム27.64gを加え、系内を窒素置換した。160℃のオイルバスで20時間反応させた。反応終了後、反応溶液を桐山ロートで吸引濾過し、得られたろ液に2N-塩酸:1-メチル-2-ピロリジノン=1:9の溶液を酸性になるまで加え、pH試験紙を用いて溶液が酸性条件であることを確認した。その後、得られた溶液を水:メタノール=1:9の混合液に滴下し、再沈殿した。滴下後、ブフナーロートで吸引濾過し、水:メタノール=1:9の混合液で洗浄し、得られた粉体を60℃に加熱した減圧乾燥機で12時間乾燥させ、芳香族ポリエーテルを得た。得られたポリエーテルは式(A-1-17)構造:式(A-2-5)構造をモル比として20:80で含むポリマーであった。得られた芳香族ポリエーテルのGPC分析を行ったところ、標準ポリスチレン換算にて重量平均分子量は41900であった。
(合成例4)
攪拌機、温度計、ジムロート冷却管を備えた三口フラスコに4,4’-ジフルオロベンゾフェノン31.09gと、2,2-ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパン16.48g、1,3-ビス[2-(4-ヒドロキシフェニル)-2-プロピル]ベンゼン25.98g、2,2-ビス(4-ヒドロキシフェニル)ヘキサフルオロプロパン10.09gを1-メチル-2-ピロリジノン334.59gに溶解させ、炭酸カリウム41.46gを加え、系内を窒素置換した。160℃のオイルバスで20時間反応させた。反応終了後、反応溶液を桐山ロートで吸引濾過し、得られたろ液に2N-塩酸:1-メチル-2-ピロリジノン=1:9の溶液を酸性になるまで加え、pH試験紙を用いて溶液が酸性条件であることを確認した。その後、得られた溶液を水:メタノール=1:9の混合液に滴下し、再沈殿した。滴下後、ブフナーロートで吸引濾過し、水:メタノール=1:9の混合液で洗浄し、得られた粉体を60℃に加熱した減圧乾燥機で12時間乾燥させ、芳香族ポリエーテルを得た。得られたポリエーテルは式(A-1-17)構造:式(A-2-2)構造:式(A-2-5)構造をモル比として30:50:20で含むポリマーであった。得られた芳香族ポリエーテルのGPC分析を行ったところ、標準ポリスチレン換算にて重量平均分子量は12200であった。
(合成例5)
攪拌機、温度計、ジムロート冷却管を備えた三口フラスコに4,4’-ジフルオロベンゾフェノン31.09gと、2,2-ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパン10.99g、9,9-ビス(4-ヒドロキシフェニル)フルオレン26.28g、2,2-ビス(4-ヒドロキシフェニル)ヘキサフルオロプロパン15.13gを1-メチル-2-ピロリジノン333.97gに溶解させ、炭酸カリウム41.46gを加え、系内を窒素置換した。160℃のオイルバスで20時間反応させた。反応終了後、反応溶液を桐山ロートで吸引濾過し、得られたろ液に2N-塩酸:1-メチル-2-ピロリジノン=1:9の溶液を酸性になるまで加え、pH試験紙を用いて溶液が酸性条件であることを確認した。その後、得られた溶液を水:メタノール=1:9の混合液に滴下し、再沈殿した。滴下後、ブフナーロートで吸引濾過し、水:メタノール=1:9の混合液で洗浄し、得られた粉体を60℃に加熱した減圧乾燥機で12時間乾燥させ、芳香族ポリエーテルを得た。式(A-1-17)構造:式(A-2-11)構造:式(A-2-5)構造をモル比として20:50:30で含むポリマーであった。得られた芳香族ポリエーテルのGPC分析を行ったところ、標準ポリスチレン換算にて重量平均分子量は14000であった。
(合成例6)
攪拌機、温度計、ジムロート冷却管を備えた三口フラスコに4,4’-ジフルオロベンゾフェノン62.19gと、2,2-ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパン21.98g、1,3-ビス[2-(4-ヒドロキシフェニル)-2-プロピル]ベンゼン51.97g、2,2-ビス(4-ヒドロキシフェニル)ヘキサフルオロプロパン30.26gを1-メチル-2-ピロリジノン665.57gに溶解させ、炭酸カリウム82.93gを加え、系内を窒素置換した。160℃のオイルバスで20時間反応させた。反応終了後、反応溶液を桐山ロートで吸引濾過し、得られたろ液に2N-塩酸:1-メチル-2-ピロリジノン=1:9の溶液を酸性になるまで加え、pH試験紙を用いて溶液が酸性条件であることを確認した。その後、得られた溶液を水:メタノール=1:9の混合液に滴下し、再沈殿した。滴下後、ブフナーロートで吸引濾過し、水:メタノール=1:9の混合液で洗浄し、得られた粉体を60℃に加熱した減圧乾燥機で12時間乾燥させ、芳香族ポリエーテルを得た。得られたポリエーテルは式(A-1-17)構造:式(A-2-2)構造:式(A-2-5)構造をモル比として20:50:30で含むポリマーであった。得られた芳香族ポリエーテルのGPC分析を行ったところ、標準ポリスチレン換算にて重量平均分子量は12800であった。
(比較合成例1)
攪拌機、温度計、ジムロート冷却管を備えた三口フラスコに4,4’-ジフルオロベンゾフェノン10.36gと、2,2-ビス(4-ヒドロキシフェニル)ヘキサフルオロプロパン16.81gを1-メチル-2-ピロリジノン108.70gに溶解させ、炭酸カリウム27.64gを加え、系内を窒素置換した。160℃のオイルバスで20時間反応させた。反応終了後、反応溶液を桐山ロートで吸引濾過し、得られたろ液に2N-塩酸:1-メチル-2-ピロリジノン=1:9の溶液を酸性になるまで加え、pH試験紙を用いて溶液が酸性条件であることを確認した。その後、得られた溶液をメタノールに滴下し、再沈殿した。滴下後、ブフナーロートで吸引濾過し、メタノールで洗浄し、得られた粉体を80℃に加熱した減圧乾燥機で12時間乾燥させ、芳香族ポリエーテルを得た。得られたポリエーテルは式(A-2-4)構造を含むポリエーテルであった。得られた芳香族ポリエーテルのGPC分析を行ったところ、標準ポリスチレン換算にて重量平均分子量は24000であった。
(比較合成例2)
攪拌機、温度計、ジムロート冷却管を備えた三口フラスコに4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物13.33gと、4,4’-ジアミノジフェニルスルホン7.08gを1-メチル-2-ピロリジノン81.62gに溶解させ、系内を窒素置換し、50℃のオイルバスで20時間反応させた。反応終了後、得られた溶液を水:イソプロピルアルコール=1:9の混合液に滴下し、再沈殿した。滴下後、ブフナーロートで吸引濾過し、水イソプロピルアルコール=1:9の混合液で洗浄し、得られた粉体を50℃に加熱した減圧乾燥機で12時間乾燥させ、ポリイミド前駆体であるポリアミック酸を得た。得られたポリマーは式(C-1-1)で示される単位構造を含むポリマーであった。得られたポリアミック酸のGPC分析を行ったところ、標準ポリスチレン換算にて重量平均分子量は14000であった。得られたポリマーを含む膜形成組成物による膜は、加熱後にポリマーが式(C-1-1’)に変化した。
Figure JPOXMLDOC01-appb-C000021






(比較合成例3)
攪拌機、温度計、ジムロート冷却管を備えた三口フラスコに4,4’-ジフルオロベンゾフェノン278.23gと、2,2-ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパン274.72g、4,4’-ジヒドロキシジフェニルスルホン187.70gを1-メチル-2-ピロリジノン2221.81gに溶解させ、炭酸カリウム626.57gを加え、系内を窒素置換した。160℃のオイルバスで20時間反応させた。
反応終了後、系内の温度が80℃になるまで冷却し、1-メチル-2-ピロリジノン1578.81gに溶解させたプロパルギルブロミド373.50gと、炭酸カリウム621.95g、ヨウ化カリウム373.24gを加えて、80℃で20時間攪拌し、ポリマー末端のフェノール基およびアミノ基に反応させた。
反応終了後、反応溶液を桐山ロートで吸引濾過し、得られたろ液に2N-塩酸:1-メチル-2-ピロリジノン=1:9の溶液を酸性になるまで加え、pH試験紙を用いて溶液が酸性条件であることを確認した。その後、得られた溶液を水:メタノール=1:9の混合液に滴下し、再沈殿した。滴下後、ブフナーロートで吸引濾過し、水:メタノール=1:9の混合液で洗浄し、得られた粉体を50℃に加熱した減圧乾燥機で12時間乾燥させ、芳香族ポリエーテルを得た。得られたポリマーは式(C-1-2)構造:式(A-2-9)構造をモル比として50:50で含むポリマーであった。
得られた芳香族ポリエーテルのGPC分析を行ったところ、標準ポリスチレン換算にて重量平均分子量は12000であった。
Figure JPOXMLDOC01-appb-C000022






<密着強化膜形成組成物用樹脂の合成>
(合成例7)
テトラエトキシシラン6.20g(50mol%)、(3-(トリエトキシシリルプロピル)ジアリルイソシアヌレート12.30g(50mol%)、アセトン27.75gを100mlのフラスコに入れ、混合溶液をマグネチックスターラーにて撹拌しながら0.01mol/lの塩酸3.75gを混合溶液に滴下した。添加後、85℃に調整されたオイルバスにフラスコを移し、加温還流下で240分反応させた。その後、反応溶液を室温まで冷却し、反応溶液にプロピレングリコールモノメチルエーテルアセテート36.00gを加え、反応副生物であるエタノール、水、塩酸、アセトンを減圧留去し、濃縮して加水分解縮合物(ポリマー)プロピレングリコールモノメチルエーテルアセテート溶液を得た。140℃における固形残物換算で30重量パーセントとなるように調整した。得られたポリシロキサンのGPC分析をおこなったところ、標準ポリスチレン換算にて重量平均分子量は1300であった。
(合成例8)
テトラエトキシシラン7.64g(50mol%)、(4-(1-エトキシエトキシ)フェニル)トリメトキシシラン10.51g(50mol%)、アセトン27.75gを100mlのフラスコに入れ、混合溶液をマグネチックスターラーにて撹拌しながら0.01mol/lの塩酸4.63gを混合溶液に滴下した。添加後、85℃に調整されたオイルバスにフラスコを移し、加温還流下で240分反応させた。その後、反応溶液を室温まで冷却し、反応溶液にプロピレングリコールモノメチルエーテルアセテート36.00gを加え、反応副生物であるエタノール、メタノール、水、塩酸、アセトンを減圧留去し、濃縮して加水分解縮合物(ポリマー)プロピレングリコールモノメチルエーテルアセテート溶液を得た。140℃における固形残物換算で30重量パーセントとなるように調整した。得られたポリシロキサンのGPC分析をおこなったところ、標準ポリスチレン換算にて重量平均分子量は1200であった。
<熱硬化性樹脂組成物の調製>
(実施例1)
上記合成例1で得た芳香族ポリエーテル20.00gと、多官能ブロックイソシアネートVESTANAT、B1358/100(EVONIC INDUSTRIES社製、イソホロンジイソシアネート構造に基づき、オキシム基で保護されたブロックポリイソシアネート)6.00gをプロピレグリコールモノメチルエーテルアセテート60.67gに溶解させ、その後、孔径1.0μmのポリエチレン製ミクロフィルターを用いて濾過し、固形分として30質量%含有する樹脂溶液を調製した。
(実施例2)
上記合成例2で得た芳香族ポリエーテル20.00gと、多官能ブロックイソシアネートVESTANAT、B1358/100(EVONIC INDUSTRIES社製、イソホロンジイソシアネート構造に基づき、オキシム基で保護されたブロックポリイソシアネート)6.00gをプロピレグリコールモノメチルエーテルアセテート60.67gに溶解させ、その後、孔径1.0μmのポリエチレン製ミクロフィルターを用いて濾過し、固形分として30質量%含有する樹脂溶液を調製した。
(実施例3)
上記合成例3で得た芳香族ポリエーテル20.00gと、多官能ブロックイソシアネートVESTANAT、B1358/100(EVONIC INDUSTRIES社製、イソホロンジイソシアネート構造に基づき、オキシム基で保護されたブロックポリイソシアネート)6.00gをプロピレグリコールモノメチルエーテルアセテート60.67gに溶解させ、その後、孔径1.0μmのポリエチレン製ミクロフィルターを用いて濾過し、固形分として30質量%含有する樹脂溶液を調製した。
(実施例4)
上記合成例4で得た芳香族ポリエーテル20.00gと、多官能ブロックイソシアネートVESTANAT、B1358/100(EVONIC INDUSTRIES社製、イソホロンジイソシアネート構造に基づき、オキシム基で保護されたブロックポリイソシアネート)9.00gをプロピレグリコールモノメチルエーテルアセテート67.67gに溶解させ、その後、孔径1.0μmのポリエチレン製ミクロフィルターを用いて濾過し、固形分として30質量%含有する樹脂溶液を調製した。
(実施例5)
上記合成例4で得た芳香族ポリエーテル20.00gと、多官能ブロックイソシアネートVESTANAT、B1358/100(EVONIC INDUSTRIES社製、イソホロンジイソシアネート構造に基づき、オキシム基で保護されたブロックポリイソシアネート)6.00gをプロピレグリコールモノメチルエーテルアセテート60.67gに溶解させ、その後、孔径1.0μmのポリエチレン製ミクロフィルターを用いて濾過し、固形分として30質量%含有する樹脂溶液を調製した。
(実施例6)
上記合成例5で得た芳香族ポリエーテル20.00gと、多官能ブロックイソシアネートVESTANAT、B1358/100(EVONIC INDUSTRIES社製、イソホロンジイソシアネート構造に基づき、オキシム基で保護されたブロックポリイソシアネート)6.00gをプロピレグリコールモノメチルエーテルアセテート60.67gに溶解させ、その後、孔径1.0μmのポリエチレン製ミクロフィルターを用いて濾過し、固形分として30質量%含有する樹脂溶液を調製した。
(実施例7)
上記合成例6で得た芳香族ポリエーテル20.00gと、多官能ブロックイソシアネートVESTANAT、B1358/100(EVONIC INDUSTRIES社製、イソホロンジイソシアネート構造に基づき、オキシム基で保護されたブロックポリイソシアネート)6.00gをプロピレグリコールモノメチルエーテルアセテート60.67gに溶解させ、その後、孔径1.0μmのポリエチレン製ミクロフィルターを用いて濾過し、固形分として30質量%含有する樹脂溶液を調製した。
(比較例1)
上記比較合成例1で得た芳香族ポリエーテル26.00gをプロピレグリコールモノメチルエーテルアセテート60.67gに溶解させ、その後、孔径1.0μmのポリエチレン製ミクロフィルターを用いて濾過し、固形分として30質量%含有する樹脂溶液を調製した。
(比較例2)
上記比較合成例2で得たポリアミック酸26.00gをシクロヘキサノン60.67gに溶解させ、その後、孔径1.0μmのポリエチレン製ミクロフィルターを用いて濾過し、固形分として30質量%含有する樹脂溶液を調製した。
上記比較合成例3で得た芳香族ポリエーテル26.00gをシクロヘキサノン60.67gに溶解させ、その後、孔径1.0μmのポリエチレン製ミクロフィルターを用いて濾過し、固形分として30質量%含有する樹脂溶液を調製した。
<熱硬化性樹脂組成物評価>
 実施例1乃至7及び比較例1乃至3で得られた樹脂溶液についてそれぞれ、溶剤耐性、密着性、電気絶縁性、耐熱性を評価した。
<溶剤耐性>
実施例1乃至7及び比較例1乃至3で得られた樹脂溶液をそれぞれシリコンウェハー上にスピンコーターを用いて塗布し、180℃で60分間ベークを行い、樹脂膜を形成した。この形成した膜の溶媒耐性を、プロピレングリコールモノメチエルエーテル(PGME)、プロピレングリコールモノメチルエーテルアセテート(PGMEA)、シクロヘキサノン(CYH)、N-メチル-2-ピロリジノン(NMP)に23℃で1分間浸漬した後の残膜率から評価した。残膜率が90%以上を◎とし、80%以上90%未満を○とし、80%未満を×と判断した。結果を表1に記載した。
<密着性評価>
実施例1乃至7及び比較例1乃至3で得られた樹脂溶液をそれぞれシリコンウェハー上にスピンコーターを用いて塗布し、180℃で60分間ベークを行い、樹脂膜を形成した。この形成した膜について碁盤目試験(JIS、K5400)を実施し、ウェハーに残ったマス数から密着性を評価した。100マス中、残マス数が100を◎とし、90乃至99を○とし、89以下を×と判断した。結果を表2に記載した。
<電気絶縁性評価>
実施例1乃至7及び比較例1乃至3で得られた樹脂溶液をそれぞれ電気抵抗の低いシリコンウェハー上にスピンコーターを用いて塗布し、180℃で60分間ベークを行い、樹脂膜を形成した。この膜の電気絶縁性について、水銀プローバ(FourDimensions社製、CVmap92-A)による1MV/cm、3MV/cm、5MV/cmの電界強度を樹脂膜に与えた際のリーク電流密度A/cmを測定した。リーク電流密度が1×10-8未満を◎とし、1×10-8以上1×10-7未満を○とし、1×10-7以上を×と判断した。結果を表3に記載した。
<耐熱性評価>
実施例1乃至7及び比較例1乃至3で得られた樹脂溶液をそれぞれシリコンウェハー上にスピンコーターを用いて塗布し、180℃で60分間ベークを行い、樹脂膜を形成した。この形成した膜について260℃で60分間の耐熱試験を行い、耐熱性を評価した。
(タック性)
1cm角のシリコンウェハーを、形成した樹脂膜上に置き、耐熱試験後にシリコンウェハーをピンセットではがしタック性の発現の有無を評価した。シリコンウェハーが樹脂膜から剥がれたものはタック性が発現しなかったと判断して◎とし、剥がせなかったものはタック性が発現したと判断して×とした。
(収縮性)
 耐熱試験前後の膜の収縮率を評価した。収縮率が1%未満を◎とし、1%以上5%未満を○とし、5%以上を×と判断した。
(電気絶縁性)
 耐熱試験を行った樹脂膜について、水銀プローバ(Four Dimensions社製、CVmap92-A)による3MV/cmの電界強度を樹脂膜に与えた際のリーク電流密度A/cmを評価し、耐熱試験後のリーク電流密度値が、耐熱試験前のリーク電流密度値と比較して1.5倍以下を◎、2倍未満を○、2倍以上を×と判断した。
結果を表4に記載した。
Figure JPOXMLDOC01-appb-T000023






Figure JPOXMLDOC01-appb-T000024






Figure JPOXMLDOC01-appb-T000025






Figure JPOXMLDOC01-appb-T000026






表1乃至表4に示されるように、本発明から得られた熱硬化性樹脂組成物は、溶剤耐性、密着性、電気絶縁性、耐熱性のいずれにおいても良好であることがわかる。
一方、比較例1の一般的な芳香族ポリエーテルでは、架橋が行われないため、溶剤耐性を得ることができず、更に耐熱試験においてガラス転移点以上の温度となったことで溶融してしまった。比較例2のポリイミド樹脂は比較的低温ではイミド化反応が十分進行しないため、十分な溶剤耐性が得られず、耐熱試験時の高い温度ではイミド化の進行に伴う熱収縮や、残存アミック酸によって電気特性が悪かった。更に熱収縮による高い内部応力によってウェハーとの密着性が得られなかった。比較例3の芳香族ポリエーテルでは、180℃の焼成温度では十分な溶媒耐性が得られず、また耐熱試験において電気絶縁性が著しく悪化した。
<密着強化膜形成組成物の調製>
上記合成例7及び8で得られたポリシロキサン、酸、硬化触媒、溶媒、水を表5に示す割合になるように混合し、0.02μmのフッ素樹脂製のフィルターで濾過することによって、密着膜形成組成物の溶液をそれぞれ調製した。表5中のポリマーの割合はポリマー溶液の質量ではなく、ポリマー自体の質量を示した。
表5中でマレイン酸はMA、N-(3-トリエトキシシリルプロピル)-4,5-ジヒドロイミダゾールはIMIDTEOS、プロピレングリコールモノメチルエーテルアセテートはPGMEA、プロピレングリコールモノエチルエーテルはPGEE、プロピレングリコールモノメチルエーテルはPGMEと略した。水は超純水を用いた。各添加量は質量部で示した。
Figure JPOXMLDOC01-appb-T000027







<密着性評価サンプルの作製>
(実施例10)
実施例8で調整した密着強化膜形成組成物をシリコンウェハー上にスピンコーターを用いて塗布し、140℃で1分間ベークを行い、密着膜を形成した。その上に実施例7で調整した樹脂溶液を、スピンコーターを用いて塗布し、180℃で60分間ベークを行い、樹脂膜を形成した。
(実施例11)
実施例9で調整した密着強化膜形成組成物をシリコンウェハー上にスピンコーターを用いて塗布し、140℃で1分間ベークを行い、密着膜を形成した。その上に実施例7で調整した樹脂溶液を、スピンコーターを用いて塗布し、180℃で60分間ベークを行い、樹脂膜を形成した。
(比較例4)
比較例1で調整した樹脂溶液を、シリコンウェハー上にスピンコーターを用いて塗布し、180℃で60分間ベークを行い、樹脂膜を形成した。
(比較例5)
比較例3で調整した樹脂溶液を、シリコンウェハー上にスピンコーターを用いて塗布し、180℃で60分間ベークを行い、樹脂膜を形成した。
<密着性評価>
実施例10乃至11及び比較例4乃至5で作成した膜の密着性について、168時間の85℃85%RH高温高湿試験を行う前後での、碁盤目試験(JIS K5400)によるウェハーに残ったマス数から評価した。100マス中、残マス数が100を◎とし、90乃至99を○とし、89以下を×と判断した。結果を表6に記載した。
Figure JPOXMLDOC01-appb-T000028






表6に示されるように、本発明から得られた熱硬化性樹脂組成物は密着強化膜形成組成物を塗布することで、高温高湿環境下に曝されても、高い密着性が得られることがわかる。一方、比較例4及び比較例5は、高温高湿環境下に曝されたことで密着力が低下してしまった。
<電気絶縁性評価>
(実施例12)
実施例8で調整した密着強化膜形成組成物を電気抵抗の低いシリコンウェハー上にスピンコーターを用いて塗布し、140℃で1分間ベークを行い、密着膜を形成した。その上に実施例7で調整した樹脂溶液を、スピンコーターを用いて塗布し、180℃で60分間ベークを行い、樹脂膜を形成した。
(実施例13)
実施例9で調整した密着強化膜形成組成物を電気抵抗の低いシリコンウェハー上にスピンコーターを用いて塗布し、140℃で1分間ベークを行い、密着膜を形成した。その上に実施例7で調整した樹脂溶液を、スピンコーターを用いて塗布し、180℃で60分間ベークを行い、樹脂膜を形成した。
実施例12及び実施例13で得られた樹脂膜の電気絶縁性について、水銀プローバ(Four Dimensions社製、CVmap92-A)による1MV/cm、3MV/cm、5MV/cmの電界強度を樹脂膜に与えた際のリーク電流密度A/cmを測定した。リーク電流密度が1×10-8未満を◎とし、1×10-8以上1×10-7未満を○とし、1×10-7以上を×と判断した。結果を表7に記載した。
Figure JPOXMLDOC01-appb-T000029







表7に示されるように、本発明から得られた熱硬化性樹脂組成物は密着強化膜が形成された場合でも優れた絶縁性が得られた。
本発明で用いられる膜形成組成物は、基板に被覆し、低温の加熱で良好な電気絶縁性、耐熱性、耐溶剤性を有する膜が得られる。

Claims (12)

  1. 式(1):
    Figure JPOXMLDOC01-appb-C000001







    (式(1)中、Tはアリーレン基、又はアリーレン基とTとの組み合わせを示し、Tはアルキレン基、フッ素化アルキレン基、カルボニル基、スルホニル基、又はそれらの組み合わせを示し、Rはカルボキシル基、アミノ基、又はイミノ基を示す。n1は1乃至6の整数を示す。)で示される単位構造を含むポリマー(A)、及び少なくとも2つのイソシアネート基又はブロックイソシアネート基を有する化合物(B)を含む膜形成組成物。
  2. ポリマー(A)が、式(1)で示される単位構造、又は該式(1)で示される単位構造と式(2):
    Figure JPOXMLDOC01-appb-C000002







    (式(1)中、T、R及びn1は請求項1に記載した意味を表し、式(2)中、Tはアリーレン基、又はアリーレン基とTとの組み合わせを示し、Tはアルキレン基、フッ素化アルキレン基、カルボニル基、スルホニル基、又はそれらの組み合わせを示す。)で示される単位構造との組み合わせである(A-1)構造を含む重合体である請求項1に記載の膜形成組成物。
  3. ポリマー(A)が、請求項2記載の(A-1)構造と(A-2)構造を含む共重合体であり、該(A-2)構造は式(3)で示される単位構造、又は該式(3)で示される単位構造と式(4)で示される単位構造との組み合わせ:
    Figure JPOXMLDOC01-appb-C000003







    (式(3)及び式(4)中、T及びTはそれぞれアリーレン基、又はアリーレン基とTとの組み合わせを示し、Tはアルキレン基、フッ素化アルキレン基、カルボニル基、スルホニル基、又はそれらの組み合わせを示す。)である請求項1又は請求項2に記載の膜形成組成物。
  4. 上記式(1)乃至式(4)におけるT、T、T、及びTはそれぞれ下記式(t-1)乃至式(t-7):
    Figure JPOXMLDOC01-appb-C000004







    (式(t-1)乃至式(t-7)中、Ar乃至Ar14はそれぞれベンゼン環、ナフタレン環、又はフルオレン環を示す。)からなる群より選ばれる有機基を示す請求項1乃至請求項3のいずれか1項に記載の膜形成組成物。
  5. ポリマー(A)は、(A-1)構造:(A-2)構造のモル比が10:90乃至40:60となる割合でこれらの構造を含む請求項3又は請求項4に記載の膜形成組成物。
  6. ポリマー(A)の重量平均分子量が500乃至5000000である請求項1乃至請求項5のいずれか1項に記載の膜形成組成物。
  7. ポリマー(A)中のカルボキシル基、アミノ基、又はイミノ基の1モルに対して、少なくとも2つのイソシアネート基又はブロックイソシアネート基を有する化合物(B)のイソシアネート基又はブロックイソシアネート基が0.5モル乃至1.5モルとなる割合で含まれる請求項1乃至請求項6のいずれか1項に記載の膜形成組成物。
  8. 更に溶剤を含む請求項1乃至請求項7のいずれか1項に記載の膜形成組成物。
  9. 請求項1乃至請求項8のいずれか1項に記載の膜形成組成物の硬化膜からなる絶縁膜。
  10. ポリシロキサンを含む密着強化膜形成組成物を基板に塗布し硬化して密着強化膜を形成し、その上に請求項1乃至請求項8のいずれか1項に記載の膜形成組成物を塗布して硬化する工程を含む絶縁膜の製造方法。
  11. 薄化したウェハーの研磨面を被覆する膜として用いられる請求項9又は請求項10に記載の絶縁膜。
  12. 薄化したウェハーの回路が形成された回路面を保護する膜として用いられる請求項9又は請求項10に記載の絶縁膜。
PCT/JP2015/074874 2014-09-17 2015-09-01 熱硬化性樹脂を含む膜形成組成物 WO2016043045A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/512,220 US10253210B2 (en) 2014-09-17 2015-09-01 Film-forming composition including thermosetting resin
KR1020177004929A KR102426418B1 (ko) 2014-09-17 2015-09-01 열경화성 수지를 포함하는 막형성 조성물
JP2016548825A JP7109159B2 (ja) 2014-09-17 2015-09-01 熱硬化性樹脂を含む膜形成組成物
CN201580043734.0A CN106574033B (zh) 2014-09-17 2015-09-01 包含热固性树脂的膜形成用组合物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014188495 2014-09-17
JP2014-188495 2014-09-17

Publications (1)

Publication Number Publication Date
WO2016043045A1 true WO2016043045A1 (ja) 2016-03-24

Family

ID=55533085

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/074874 WO2016043045A1 (ja) 2014-09-17 2015-09-01 熱硬化性樹脂を含む膜形成組成物

Country Status (6)

Country Link
US (1) US10253210B2 (ja)
JP (1) JP7109159B2 (ja)
KR (1) KR102426418B1 (ja)
CN (1) CN106574033B (ja)
TW (1) TWI718994B (ja)
WO (1) WO2016043045A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020194819A (ja) * 2019-05-24 2020-12-03 株式会社ダイセル 半導体装置
JP2020194820A (ja) * 2019-05-24 2020-12-03 株式会社ダイセル 半導体装置
CN115109553A (zh) * 2022-08-15 2022-09-27 中铁山桥集团有限公司 一种焊缝防腐密封胶组合物以及密封胶
CN115109553B (zh) * 2022-08-15 2024-05-24 中铁山桥集团有限公司 一种焊缝防腐密封胶组合物以及密封胶

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016158271A1 (ja) * 2015-03-30 2016-10-06 日産化学工業株式会社 樹脂組成物及びそれを用いたパターン形成方法、並びに重合体の合成方法
CN115417986B (zh) * 2022-10-09 2023-08-18 中国科学院兰州化学物理研究所 一种烯丙基接枝聚芳醚酮齐聚物及其制备方法、光敏材料及其应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4885692A (ja) * 1970-07-27 1973-11-13
JPS512091B2 (ja) * 1971-01-26 1976-01-23
JPS62123453A (ja) * 1985-11-22 1987-06-04 Fuji Photo Film Co Ltd 感光性組成物
JPH01256512A (ja) * 1988-04-06 1989-10-13 Mitsubishi Gas Chem Co Inc 樹脂組成物
JPH04178413A (ja) * 1990-11-09 1992-06-25 Asahi Chem Ind Co Ltd 熱可塑性ポリエステル樹脂組成物
JPH0598148A (ja) * 1991-10-14 1993-04-20 Sumitomo Chem Co Ltd 樹脂組成物
JP2000003032A (ja) * 1998-06-12 2000-01-07 Fuji Photo Film Co Ltd 感光性組成物

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3178917B2 (ja) * 1992-10-28 2001-06-25 旭化成株式会社 硬化性樹脂組成物および硬化性複合材料
EP0979854B1 (en) * 1997-03-31 2006-10-04 Hitachi Chemical Company, Ltd. Circuit connecting material, and structure and method of connecting circuit terminal
JP2005255801A (ja) * 2004-03-10 2005-09-22 Nippon Shokubai Co Ltd ポリエーテル組成物
DE102004062201A1 (de) * 2004-12-23 2006-07-13 Basf Ag Urethanverbindung, die ein Polyethergruppen-haltiges Siliconderivat und einen Stickstoffheterocyclus eingebaut enthält
WO2010081132A1 (en) * 2009-01-12 2010-07-15 University Of Massachusetts Lowell Polyisobutylene-based polyurethanes
JP2011075987A (ja) 2009-10-01 2011-04-14 Fujifilm Corp 樹脂組成物、および硬化レリーフパターンの形成方法
WO2012029499A1 (ja) * 2010-08-30 2012-03-08 長瀬産業株式会社 1,4-シクロヘキシレンジメチレンテレフタレートと1,4-シクロヘキシレンジメチレンイソフタレートとの共重合体フィルム、太陽電池モジュール用保護シート、及び、太陽電池モジュール
US20140228488A1 (en) * 2011-09-08 2014-08-14 Nissan Chemical Industries, Ltd. Polymer and composition including same, and adhesive composition
WO2013118871A1 (ja) 2012-02-09 2013-08-15 日産化学工業株式会社 炭素と炭素の多重結合を有する樹脂を含むパッシベーション膜形成用組成物

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4885692A (ja) * 1970-07-27 1973-11-13
JPS512091B2 (ja) * 1971-01-26 1976-01-23
JPS62123453A (ja) * 1985-11-22 1987-06-04 Fuji Photo Film Co Ltd 感光性組成物
JPH01256512A (ja) * 1988-04-06 1989-10-13 Mitsubishi Gas Chem Co Inc 樹脂組成物
JPH04178413A (ja) * 1990-11-09 1992-06-25 Asahi Chem Ind Co Ltd 熱可塑性ポリエステル樹脂組成物
JPH0598148A (ja) * 1991-10-14 1993-04-20 Sumitomo Chem Co Ltd 樹脂組成物
JP2000003032A (ja) * 1998-06-12 2000-01-07 Fuji Photo Film Co Ltd 感光性組成物

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020194819A (ja) * 2019-05-24 2020-12-03 株式会社ダイセル 半導体装置
JP2020194820A (ja) * 2019-05-24 2020-12-03 株式会社ダイセル 半導体装置
JP7324049B2 (ja) 2019-05-24 2023-08-09 株式会社ダイセル 半導体装置
CN115109553A (zh) * 2022-08-15 2022-09-27 中铁山桥集团有限公司 一种焊缝防腐密封胶组合物以及密封胶
CN115109553B (zh) * 2022-08-15 2024-05-24 中铁山桥集团有限公司 一种焊缝防腐密封胶组合物以及密封胶

Also Published As

Publication number Publication date
KR102426418B1 (ko) 2022-07-28
KR20170059977A (ko) 2017-05-31
US10253210B2 (en) 2019-04-09
JPWO2016043045A1 (ja) 2017-06-29
JP7109159B2 (ja) 2022-07-29
US20170253764A1 (en) 2017-09-07
TWI718994B (zh) 2021-02-21
CN106574033B (zh) 2019-07-05
TW201623477A (zh) 2016-07-01
CN106574033A (zh) 2017-04-19

Similar Documents

Publication Publication Date Title
JP6098825B2 (ja) 重合体及びそれを含む組成物並びに接着剤用組成物
JP7109159B2 (ja) 熱硬化性樹脂を含む膜形成組成物
US10174168B2 (en) Composition for forming passivation film, including resin having carbon-carbon multiple bond
JP6226141B2 (ja) 接着剤組成物又はアンダーフィル組成物
US9657128B2 (en) Thermosetting resin composition containing polymer having specific terminal structure
TWI555809B (zh) 含有芳香族聚醚衍生物之接著劑組成物
US9567435B2 (en) Thermosetting resin composition
TW201533198A (zh) 接著組成物及具有其的接著膜、帶有接著組成物的基板、半導體裝置及其製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15842864

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016548825

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20177004929

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15512220

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 15842864

Country of ref document: EP

Kind code of ref document: A1