WO2016043002A1 - 有機無機混成化合物、アミンヨウ化水素塩、光電変換素子用組成物、および光電変換素子 - Google Patents

有機無機混成化合物、アミンヨウ化水素塩、光電変換素子用組成物、および光電変換素子 Download PDF

Info

Publication number
WO2016043002A1
WO2016043002A1 PCT/JP2015/074092 JP2015074092W WO2016043002A1 WO 2016043002 A1 WO2016043002 A1 WO 2016043002A1 JP 2015074092 W JP2015074092 W JP 2015074092W WO 2016043002 A1 WO2016043002 A1 WO 2016043002A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
photoelectric conversion
formula
halogen atom
composition
Prior art date
Application number
PCT/JP2015/074092
Other languages
English (en)
French (fr)
Inventor
久 菅野
Original Assignee
株式会社クレハ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クレハ filed Critical 株式会社クレハ
Priority to US15/511,674 priority Critical patent/US20170260125A1/en
Priority to JP2016548802A priority patent/JP6181317B2/ja
Priority to CN201580048129.2A priority patent/CN106660941A/zh
Priority to EP15842842.5A priority patent/EP3196188A4/en
Publication of WO2016043002A1 publication Critical patent/WO2016043002A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/65Metal complexes of amines
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/01Compounds containing amino groups bound to a carbon skeleton having amino groups bound to acyclic carbon atoms
    • C07C211/02Compounds containing amino groups bound to a carbon skeleton having amino groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton
    • C07C211/15Compounds containing amino groups bound to a carbon skeleton having amino groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton the carbon skeleton being further substituted by halogen atoms or by nitro or nitroso groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C239/00Compounds containing nitrogen-to-halogen bonds; Hydroxylamino compounds or ethers or esters thereof
    • C07C239/08Hydroxylamino compounds or their ethers or esters
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C239/00Compounds containing nitrogen-to-halogen bonds; Hydroxylamino compounds or ethers or esters thereof
    • C07C239/08Hydroxylamino compounds or their ethers or esters
    • C07C239/20Hydroxylamino compounds or their ethers or esters having oxygen atoms of hydroxylamino groups etherified
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2004Light-sensitive devices characterised by the electrolyte, e.g. comprising an organic electrolyte
    • H01G9/2009Solid electrolytes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/30Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/81Electrodes
    • H10K30/82Transparent electrodes, e.g. indium tin oxide [ITO] electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/50Organic perovskites; Hybrid organic-inorganic perovskites [HOIP], e.g. CH3NH3PbI3
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention is formed using an organic-inorganic hybrid compound responsible for the photoelectric conversion function of a photoelectric conversion element, a composition for forming a photoelectric conversion portion of the photoelectric conversion element, a compound for forming the composition, and these.
  • the present invention relates to a photoelectric conversion element.
  • perovskite solar cells organic-inorganic hybrid compounds having a perovskite structure
  • perovskite compounds organic-inorganic hybrid compounds having a perovskite structure
  • Non-patent Document 1 Solid-type perovskite solar cells using only solid materials were produced, and research was actively promoted after the conversion efficiency of photoelectric conversion exceeded 10%.
  • Perovskite solar cells are attracting much attention as a new technology. Yes. Further, the perovskite solar cell has advantages in that the manufacturing process is easy and the material is inexpensive as compared with the silicon solar cell.
  • the X 3 portion of the perovskite compound may be a mixture of a plurality of halogen atoms such as I 3-x Cl x (Non-patent Document 2).
  • Non-patent Document 4 a compound in which a methylammonium group is converted to Cs + which is a monovalent inorganic cation.
  • Non-Patent Document 5 when using existing CH 3 NH 3 PbX 3 for a photoelectric conversion element, if an organic-inorganic hybrid compound having an ammonium group of a certain amino acid is added, photoelectric conversion activity or stability as a photoelectric conversion element is improved. It has been reported that it has a good effect (Non-Patent Document 5).
  • Japanese Published Patent Publication Japanese Unexamined Patent Publication No. 2014-56940” (published on March 27, 2014) Japanese Patent Publication “Japanese Patent Laid-Open No. 2014-72327” (published on April 21, 2014) European Patent Publication EP2693503A1 (published on February 5, 2014)
  • perovskite compounds used in perovskite solar cells have been sufficiently studied so far.
  • CH (NH 2 ) 2 PbX 3 using formamidinium is known as an example having a relatively high activity by actually replacing the methylammonium group of CH 3 NH 3 PbX 3 with another organic group. Only.
  • the present invention has been made in view of the above problems, and an object thereof is to provide a new compound and material that can be used for a perovskite solar cell.
  • an organic-inorganic hybrid compound according to the present invention has the following formula (I): R 1 CH 2 N + H 3 M 1 X 1 3 (I)
  • R 1 represents a C1-C5 alkyl group or a C2-C5 alkenyl group substituted with at least one halogen atom
  • M 1 represents a divalent metal ion
  • X 1 represents a monovalent It represents a halogen atom ion
  • X 1 3 is formed by a combination of 1 depending on the type of halogen atom ions, or two or more halogen atoms ion.
  • composition for a photoelectric conversion element is a composition for a photoelectric conversion element containing the above-described organic-inorganic hybrid compound in order to solve the above-described problems.
  • composition for a photoelectric conversion device is a compound represented by the following formula (II) in order to solve the above-described problems.
  • R 1 CH 2 N + H 3 X 2 (II) (In the formula (II), R 1 represents a C1-C5 alkyl group or C2-C5 alkenyl group substituted with at least one halogen atom, and X 2 represents a halogen atom ion.)
  • an amine hydrogen halide salt represented by the following formula (III) M 1 X 3 2 (III) (In formula (III), M 1 represents a divalent metal ion, and X 3 represents a monovalent halogen atom ion.) It is a composition for photoelectric conversion elements obtained by mixing with the metal halide shown by.
  • composition for photoelectric conversion elements is to solve the above-mentioned problems.
  • the following formula (II) R 1 CH 2 N + H 3 X 2 (II) (In the formula (II), R 1 represents a C1-C5 alkyl group or a C2-C5 alkenyl group substituted with at least one halogen atom, and X 2 represents a halogen atom ion) It is a composition for photoelectric conversion elements containing a salt.
  • an amine hydrogen iodide salt according to the present invention has the following formula (IIa): R 2 CH 2 NH 3 I (IIa) (In the formula (IIa), R 2 represents a C1-C5 alkyl group substituted with at least one fluorine atom.) It is an amine hydrogen iodide salt shown by these.
  • a photoelectric conversion element includes a transparent electrode, a counter electrode facing the transparent electrode, and a photoelectric conversion layer sandwiched between the transparent electrode and the counter electrode.
  • a photoelectric conversion element, wherein the photoelectric conversion layer is any one of the following layers (a) to (c): (A) a layer containing the above organic-inorganic hybrid compound, (B) a layer formed from the composition described above, and (C) The following formula (III) M 1 X 3 2 (III) (In formula (III), M 1 represents a divalent metal ion, and X 3 represents a monovalent halogen atom ion.)
  • organic-inorganic hybrid compound and the composition for a photoelectric conversion element according to the present invention a higher photoelectric effect can be obtained than the conventional compounds and compositions used in perovskite solar cells.
  • organic-inorganic hybrid compound is a compound represented by the following formula (I) (hereinafter referred to as organic-inorganic hybrid compound (I)).
  • R 1 CH 2 N + H 3 M 1 X 1 3 (I) (In the formula (I), R 1 represents a C1-C5 alkyl group or a C2-C5 alkenyl group substituted with at least one halogen atom, M 1 represents a divalent metal ion, and X 1 represents a monovalent It represents a halogen atom ion, X 1 3 is formed by a combination of 1 depending on the type of halogen atom ions, or two or more halogen atoms ion.) R 1 is a C1-C5 alkyl group or a C2-C5 alkenyl group substituted with at least one halogen atom.
  • the “Cm to Cn” hydrocarbon group represents a hydrocarbon group having m to n carbon atoms.
  • the halogen atom as a substituent include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom.
  • the plurality of halogen atoms may be the same type of halogen atom or different types of halogen atoms.
  • the halogen atom as a substituent is not particularly limited, but is preferably substituted with at least one fluorine atom. In this case, as long as it has at least one fluorine atom, the C1-C5 alkyl group and the C2-C5 alkenyl group may have a substitution with a halogen atom other than the fluorine atom.
  • the C1-C5 alkyl group a C1-C4 alkyl group is more preferred, a C1-C3 alkyl group is more preferred, and a C1-C2 alkyl group is particularly preferred.
  • the C2-C5 alkenyl group is more preferably a C2-C4 alkenyl group, and further preferably a C2-C3 alkenyl group.
  • R 1 is preferably a C1-C5 alkyl group or C2-C5 alkenyl group substituted with at least one fluorine atom, and a C1-C4 alkyl group or C2-C4 alkenyl group substituted with at least one fluorine atom.
  • a C1-C3 alkyl group substituted with at least one fluorine atom or a C2-C3 alkenyl group is more preferred
  • a C1-C3 alkyl group substituted with 1-5 fluorine atoms is particularly preferred, and 1-5
  • Most preferred are C1-C2 alkyl groups substituted with one fluorine atom.
  • C1-C5 alkyl groups substituted with at least one halogen atom include, for example, fluoromethyl group, difluoromethyl group, trifluoromethyl group, chlorodifluoromethyl group, bromodifluoromethyl group, iododifluoromethyl group, dichloro Fluoromethyl group, dibromofluoromethyl group, 2-fluoroethyl group, 2-chloro-2,2-difluoroethyl group, 2-bromo-2,2-difluoroethyl group, 2,2,2-trifluoroethyl group, 1,1,2,2,2-pentafluoroethyl group, 1,1,2,2-tetrafluoroethyl group, 2-chloro-2,2-difluoroethyl group, 2,2-dichloro-2-fluoroethyl Group, 2,2-dibromo-2-fluoroethyl group, 3-fluoropropyl group, 1,1,2,
  • fluoromethyl group, difluoromethyl group, trifluoromethyl group, 2-fluoroethyl group, 2,2,2-trifluoroethyl group, 1,1,2,2,2-pentafluoroethyl group, and 1, 1,2,2-tetrafluoroethyl group is preferred, and fluoromethyl group, difluoromethyl group, trifluoromethyl group, 2-fluoroethyl group, 2,2,2-trifluoroethyl group, 1,1,2,2 , 2-pentafluoroethyl group, and 1,1,2,2-tetrafluoroethyl group are more preferable, and fluoromethyl group, difluoromethyl group, trifluoromethyl group, 2,2,2-trifluoroethyl group and 1 , 1,2,2,2-pentafluoroethyl group is more preferable, trifluoromethyl group, 2,2,2-trifluoroethyl group and 1, , 2,2,2 pentafluor
  • Examples of the C2-C5 alkenyl group substituted with at least one fluorine atom include, for example, 2,2-difluoroethenyl group, 1,2,2-trifluoroethenyl group, 3,3-difluoro-2 -Propenyl group, 2,3,3-trifluoro-2-propenyl group, 1,3,3,3-tetrafluoro-1-propenyl group and the like.
  • M 1 represents a divalent metal ion.
  • the divalent metal ion include Pb 2+ , Sn 2+ , Sr 2+ , Cu 2+ , Zn 2+ , Mn 2+ , Fe 2+ , Ni 2+ , Co 2+ , V 2+ , Sm 2+ , Mg 2+ , Ca 2+ , Ge 2+ , Yb 2+ , Eu 2+ , Pd 2+ and Ge 2+ .
  • Pb 2+ , Sn 2+ , Sr 2+ , Cu 2+ , Zn 2+ , Mn 2+ , Fe 2+ , Ni 2+ , Co 2+ , V 2+ and Sm 2+ are preferable, and Pb 2+ and Sn 2+ are more preferable.
  • X 1 represents a monovalent halogen atom ion.
  • monovalent halogen atom ions include fluorine ions, chlorine ions, bromine ions and iodine ions. Of these, chlorine ion, bromine ion and iodine ion are preferable.
  • the plurality of X 1 are not limited to the case where all are the same halogen atom ions. That, X 1 3 is formed by the combination of one halogen atom or ion is formed by, or two or more halogen atoms ions.
  • the present invention is not limited to the case where the stoichiometric coefficient is set such that different halogen atom ionic species are included in a ratio of 2: 1 or 1: 1: 1, and X 1a 3-s X 1b s (s is 0 ⁇ A real number satisfying s ⁇ 3) or a combination expressed as X 1a 3 ⁇ s ⁇ t X 1b s X 1c t (s and t are positive real numbers satisfying 0 ⁇ s + t ⁇ 3) .
  • X 1a , X 1b and X 1c represent different monovalent halogen atom ions.
  • a preferred embodiment of the organic-inorganic hybrid compound (I) is a compound in which R 1 is a C1-C3 alkyl group substituted with 1 to 7 fluorine atoms in the above formula (I).
  • a more preferred embodiment of the organic-inorganic hybrid compound (I) is a compound in which R 1 is a C1-C2 alkyl group substituted with 1 to 5 fluorine atoms in the above formula (I).
  • R 1 is a fluoromethyl group, a difluoromethyl group, a trifluoromethyl group, a 2,2,2-trifluoroethyl group, or 1, It is a compound which is a 1,2,2,2-pentafluoroethyl group.
  • One particularly preferable aspect of the organic-inorganic hybrid compound (I) is a compound in which M 1 is Pb 2+ or Sn 2+ in each of the above aspects.
  • organic-inorganic hybrid compound (I) is that in the above formula (I), M 1 is Pb 2+ or Sn 2+ , R 1 is a trifluoromethyl group, 2,2,2-trifluoroethyl group Or a compound having a 1,1,2,2,2-pentafluoroethyl group, that is, a compound represented by the following formula (Ia).
  • R 3 CH 2 N + H 3 M 2 X 1 3
  • R 3 represents a trifluoromethyl group, a 2,2,2-trifluoroethyl group or a 1,1,2,2,2-pentafluoroethyl group
  • M 2 represents Pb 2+ or Sn represents 2+
  • X 1 is the same as X 1 in formula (I).
  • the organic-inorganic hybrid compound in this embodiment is presumed to have an organic-inorganic hybrid perovskite structure, but is limited to those having a perovskite structure as long as it has a composition represented by formula (I). I don't mean.
  • the organic-inorganic hybrid compound (I) includes an amine halide salt having a halogen-substituted hydrocarbon group (hereinafter referred to as amine hydrogen halide salt (II)) represented by the following formula (II), and the following formula (III): ) (Hereinafter referred to as “metal halide (III)”) in a solvent.
  • R 1 represents a C1-C5 alkyl group or a C2-C5 alkenyl group substituted with at least one halogen atom
  • X 2 represents a halogen atom ion.
  • M 1 represents a divalent metal ion
  • X 3 represents a monovalent halogen atom ion.
  • the amine hydrogen halide salt (II) used for the production of the organic-inorganic hybrid compound (I) is a halogen-substituted hydrocarbon amine halogen salt represented by the following formula (II).
  • R 1 CH 2 N + H 3 X 2 (II) R 1 is the same as R 1 in formula (I).
  • X 2 represents a monovalent halogen atom ion, and specifically, is a monovalent halogen atom ion contained in X 1 in the formula (I). Therefore, examples of monovalent halogen atom ions include fluorine ions, chlorine ions, bromine ions and iodine ions. Of these, chlorine ion, bromine ion and iodine ion are preferable.
  • the amine hydrogen halide (II) is a mixture of an amine represented by the following formula (IV) (hereinafter referred to as amine (IV)) and HX 2 which is a hydrogen halide corresponding to the halogen atom ion of X 2 in a solution. And then by distilling off the solvent.
  • the solvent used for mixing and washing is not particularly limited as long as it does not react with amines and hydrogen halides.
  • alcohols such as methanol, ethanol and isopropanol
  • halogenated hydrocarbons such as dichloromethane, chloroform and dichloroethane
  • Aromatic hydrocarbons such as benzene, toluene and xylene
  • Aliphatic hydrocarbons such as petroleum ether, hexane and methylcyclohexane
  • Ethers such as diethyl ether, tetrahydrofuran and dioxane
  • examples thereof include amides such as 2-pyrrolidinone and N, N-dimethylacetamide; esters such as ethyl acetate and ⁇ -butyrolactone.
  • water, acetonitrile water, acetonitrile,
  • the desired hydrogen halide salt can be obtained by salt exchange.
  • a) the other salt used for exchange is neutralized with a base such as sodium hydroxide in a solvent, and then the resulting amine is reacted with the target hydrogen halide.
  • B) an exchange method using an ion exchange resin, and the like are possible.
  • a commercially available amine (IV) may be used, or a halogenated compound represented by the following formula (V) (hereinafter referred to as halogen).
  • a sulfonic acid ester compound of an alcohol represented by the following formula (VI) (hereinafter referred to as a sulfonic acid ester compound (VI)) may be used.
  • R 1 CH 2 Z 1 (V) R 1 CH 2 OZ 2 (VI) In formula (V), R 1 is the same as R 1 in formula (IV), and Z 1 represents a halogen atom.
  • R 1 is the same as R 1 in formula (IV), and Z 2 represents a substituted sulfonyl group.
  • the substituted sulfonyl group include a methanesulfonyl group, a phenylsulfonyl group, a p-methylphenylsulfonyl group, a trichloromethanesulfonyl group, and a trifluoromethanesulfonyl group.
  • an N-substituted phthalimide compound or an N-substituted amide compound is obtained by reacting a halogenated compound (V) or a sulfonated compound (VI) with phthalimides or carboxamides under basic conditions.
  • the amine (IV) can then be obtained by removing the protecting group, phthalic acid or carboxylic acid.
  • phthalimides As phthalimides, phthalimide and the like can be used. As the carboxamides, benzamide, acetic acid amide, and the like can be used. For example, when phthalimide is used, it may be used after preparing an alkali metal salt such as potassium phthalimide.
  • the deprotection method may be a conventionally known method, for example, a method using hydrazine and a method of hydrolyzing with an acid or alkaline aqueous solution.
  • Z 2 is the case of such a methanesulfonyl group or a p- methylphenyl sulfonyl group, the substitution pattern of the halogen atom of group R 1, for electron-withdrawing group R 1 In some cases, the reactivity with phthalimides and carboxamides decreases, and the reaction progresses slowly.
  • Z 2 is preferably a substituted sulfonyl group having a high electron-withdrawing property such as a trichloromethanesulfonyl group or a trifluoromethanesulfonyl group.
  • the sulfonated compound (VI) can be obtained by reacting R 1 CH 2 OH with a sulfonyl halide such as trichloromethanesulfonyl chloride.
  • At least one halogen atom can be obtained by removing a phthalic acid after adding a hydrogen halide or a halogen molecule to N-substituted phthalimides whose substituent is an alkenyl group or an alkynyl group.
  • Amine (IV) containing an alkyl or alkenyl group substituted with an atom can be obtained.
  • the metal halide (III) is a metal halide represented by the following formula (III).
  • M 1 represents a divalent metal ion
  • X 3 represents a monovalent halogen atom ion.
  • M 1 is the same as M 1 in formula (I).
  • X 3 represents a monovalent halogen atom ion, specifically a monovalent halogen atom ion contained in X 1 in the formula (I). Therefore, examples of monovalent halogen atom ions include fluorine ions, chlorine ions, bromine ions and iodine ions. Of these, chlorine ion, bromine ion and iodine ion are preferable.
  • X 3 may be a halogen atom ion different from X 2 in the amine hydrogen halide (II), or may be the same halogen atom ion.
  • the organic-inorganic hybrid compound (I) is produced by reacting the amine hydrogen halide salt (II) with the metal halide (III) in a solvent.
  • the reaction principle is not limited to this.
  • the amount of the amine hydrogen halide (II) relative to the metal halide (III) is, for example, 0.01 times mole. It can be ⁇ 10 times mole, preferably 0.1 times mole to 5 times mole, more preferably 0.5 times mole to 2 times mole, and 0.8 times mole to 1.2 times mole. More preferably.
  • any solvent can be used as long as it can uniformly mix the amine hydrogen halide (II) and metal halide (III) to be reacted.
  • N, N-dimethylformamide, N, N-dimethylacetamide and N -Amides such as methyl-2-pyrrolidinone, esters such as ⁇ -butyrolactone, and dimethyl sulfoxide.
  • a polar solvent is preferable, and N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2 -Amides such as pyrrolidinone and solvents such as dimethyl sulfoxide are particularly preferred.
  • the temperature at which the amine hydrogen halide (II) and the metal halide (III) are mixed is, for example, ⁇ 20 to 150 ° C., preferably 0 to 100 ° C., and more preferably 10 to 60 ° C.
  • the method for producing the organic-inorganic hybrid compound (I) is not limited to the above-described method.
  • a metal halide (III) layer is formed in advance on a substrate, and an amine hydrogen halide salt (II) is formed thereon.
  • it can also be manufactured by a vapor deposition method, a solution process using steam, or the like.
  • composition for photoelectric conversion element is a composition used as a material for forming a photoelectric conversion layer that is a part responsible for photoelectric conversion of a photoelectric conversion element.
  • composition for photoelectric conversion elements The first aspect of the composition for photoelectric conversion elements is a composition for photoelectric conversion elements obtained by dissolving or dispersing the organic-inorganic hybrid compound (I) in a solvent (hereinafter referred to as composition A for photoelectric conversion elements). It is.
  • the photoelectric conversion layer of a photoelectric conversion element can be formed by apply
  • the solvent for dissolving or dispersing the organic-inorganic hybrid compound (I) is a solvent that can be used in coating techniques such as dipping, spin coating, and printing, and can dissolve the organic-inorganic hybrid compound (I) or organic There is no particular limitation as long as the inorganic hybrid compound (I) can be dispersed.
  • Such solvents include halogenated hydrocarbons such as dichloromethane, chloroform and dichloroethane; aromatic hydrocarbons such as benzene, toluene and xylene; aliphatic hydrocarbons such as petroleum ether, hexane and methylcyclohexane; N, Amides such as N-dimethylformamide, N, N-dimethylacetamide and N-methyl-2-pyrrolidinone; ethers such as diethyl ether, tetrahydrofuran and dioxane; alcohols such as methanol and ethanol; and acetone and methyl ethyl ketone Ketones are mentioned.
  • halogenated hydrocarbons such as dichloromethane, chloroform and dichloroethane
  • aromatic hydrocarbons such as benzene, toluene and xylene
  • aliphatic hydrocarbons such as petroleum ether, hexane and methylcyclohexane
  • water carbon disulfide, acetonitrile, ethyl acetate, ⁇ -butyrolactone, pyridine, dimethyl sulfoxide, and the like can be used as a solvent.
  • solvents may be used alone or in combination of two or more.
  • the content of the organic-inorganic hybrid compound (I) in the composition A for photoelectric conversion elements can be, for example, 0.01 to 90% by weight, preferably 0.1 to 80% by weight, and 1 to 60% by weight. %, More preferably 2 to 50% by weight.
  • the organic-inorganic hybrid compound (I) contained in the composition A for photoelectric conversion elements may be one type of organic-inorganic hybrid compound (I), and a mixture of a plurality of types of organic-inorganic hybrid compound (I). May be.
  • composition A for photoelectric conversion elements may contain other components as long as the function of photoelectric conversion by the organic-inorganic hybrid compound (I) is not inhibited.
  • the composition A for a photoelectric conversion element is an organic-inorganic hybrid compound that is known to be usable for a photoelectric conversion element in addition to the organic-inorganic hybrid compound (I), CH 3 N + H 3 PbX 4 3 , CH 3 N + H 3 SnX 4 3 or CH (NH 2 ) (N + H 2 ) PbX 4 3 (wherein X 4 represents a halogen atom ion) or the like may be included.
  • the monovalent inorganic cation used is not particularly limited, and examples of the monovalent inorganic cation that can be added include Li + , Na + , K + , Rb + , Cs + , Ag + , and Cu. + .
  • the ratio of the other component with respect to organic-inorganic hybrid compound (I) in composition A for photoelectric conversion elements may be 1000 weight% or less. Preferably, it is 500 wt% or less, more preferably 100 wt% or less.
  • Formamidinium ion refers to an ion in the form of H + ion added to formamidine (CH (NH 2 ) ⁇ NH), and several types of description methods can be considered from its resonance structure. Is described as CH (NH 2 ) (N + H 2 ).
  • Q 1 represents a C1-C6 alkyl group, a C3-C6 alkenyl group or a C3-C6 alkynyl group, and these groups are substituted with a halogen atom, a C1-C4 alkoxy group or a C1-C4 alkylthio group.
  • M 1 represents a divalent metal ion
  • X 1 represents a monovalent halogen atom ion
  • a plurality of X 1 s may be different halogen atom ions
  • Y 1 and Y 2 represents that either one is an oxygen atom and the other is a single bond.
  • organic-inorganic hybrid compound (X) an organic-inorganic hybrid compound (hereinafter referred to as organic-inorganic hybrid compound (X)).
  • Q 1 represents a substituted or unsubstituted C1-C6 alkyl group, C3-C6 alkenyl group or C3-C6 alkynyl group.
  • the substituent is a halogen atom, a C1-C4 alkoxy group or a C1-C4 alkylthio group.
  • Examples of the C1-C6 alkyl group include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, an n-pentyl group, and an n-hexyl group.
  • C1-C3 alkyl groups such as methyl group, ethyl group, isopropyl group and n-propyl group are preferable, and methyl group, ethyl group or n-propyl group is more preferable.
  • Examples of the C3-C6 alkenyl group include a 2-propenyl group, a 3-methyl-2-propenyl group, a 3,3-dimethyl-2-propenyl group, and a 2,4-pentadienyl group. Of these, C3-C4 alkenyl groups such as 2-propenyl group and 3-methyl-2-propenyl group are preferable.
  • Examples of the C3-C6 alkynyl group include a 2-propynyl group, a 3-methyl-2-propynyl group, a 3-ethyl-2-propynyl group, and a 2,4-pentadiynyl group. Of these, C3-C4 alkynyl groups such as 2-propynyl group and 3-methyl-2-propynyl group are preferable.
  • halogen atom examples include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom. Among these, a fluorine atom or a chlorine atom is preferable.
  • halogen-substituted C1-C6 alkyl group examples include a fluoromethyl group, a chloromethyl group, a bromomethyl group, a difluoromethyl group, a trifluoromethyl group, a 2-fluoroethyl group, a 2-bromoethyl group, a 2-iodoethyl group, 2, 2-difluoroethyl group, 2,2,2-trifluoroethyl group, 2-chloro-2,2-difluoroethyl group, 2-bromo-2,2-difluoroethyl group, 2,2-dichloro-2-fluoroethyl Group, 2,2-dibromo-2-fluoroethyl group, 3-fluoropropyl group, 3-chloro-3,3-difluoropropyl group, 3-bromo-3,3-difluoropropyl group, 3,3,3- Trifluoropropyl group,
  • halogen-substituted C3-C6 alkenyl groups include 3,3-difluoro-2-propenyl group, 3,3-dichloro-2-propenyl group, and 3,3-dibromo-2-propenyl group 2,3,3-trifluoro-2-propenyl group, 4,4-difluoro-3-butenyl group, 3,4,4-trifluoro-3-butenyl group and 2,4,4,4- Examples thereof include a tetrafluoro-2-butenyl group.
  • Halogen-substituted C3-C6 alkynyl groups include 3-fluoro-2-propynyl, 3-chloro-2-propynyl, 3-bromo-2-propynyl and 4,4,4-trifluoromethyl-2 -Butynyl group and the like.
  • Examples of the C1-C4 alkoxy group as a substituent include a methoxy group, an ethoxy group, an isopropoxy group, an n-propoxy group, and n-butoxy. Among these, a C1-C2 alkoxy group which is a methoxy group or an ethoxy group is preferable.
  • Examples of the C1-C6 alkyl group substituted with a C1-C4 alkoxy group include a methoxymethyl group, a methoxyethyl group, a methoxypropyl group, a methoxybutyl group, a methoxypentyl group, a methoxyhexyl group, an ethoxymethyl group, an ethoxyethyl group, Examples include ethoxypropyl group, n-propoxymethyl group, i-propoxymethyl group, n-propoxyethyl group, i-propoxyethyl group, n-propoxybutyl group and i-propoxybutyl group.
  • C3-C6 alkenyl groups substituted with C1-C4 alkoxy groups include 3,3-dimethoxy-2-propenyl, 3,3-diethoxy-2-propenyl, and 4,4-dimethoxy- Examples include 3-butenyl group.
  • Examples of the C3-C6 alkynyl group substituted with a C1-C4 alkoxy group include a 3-methoxy-2-propynyl group and a 3-ethoxy-2-propynyl group.
  • Examples of the C1-C4 alkylthio group as a substituent include a methylthio group, an ethylthio group, an isopropylthio group, an n-propylthio group, and an n-butylthio group. Among them, a C1-C2 alkylthio group which is a methylthio group or an ethylthio group is preferable.
  • Examples of the C1-C6 alkyl group substituted with a C1-C4 alkylthio group include a methylthiomethyl group, a methylthioethyl group, a methylthiopropyl group, a methylthiobutyl group, a methylthiopentyl group, a methylthiohexyl group, an ethylthiomethyl group, and an ethylthioethyl group.
  • C3-C6 alkenyl groups substituted with C1-C4 alkylthio groups include 3,3-di (methylthio) -2-propenyl group, 3,3-di (ethylthio) -2-propenyl group, and Examples include 4,4-di (methylthio) -3-butenyl group.
  • Examples of the C3-C6 alkynyl group substituted with a C1-C4 alkylthio group include a 3-methylthio-2-propynyl group and a 3-ethylthio-2-propynyl group.
  • Q 1 is preferably a C1 to C6 alkyl group, or a C1 to C6 alkyl group substituted with a halogen atom, a C1 to C4 alkoxy group or a C1 to C4 alkylthio group, and is preferably a C1 to C6 alkyl group. More preferably, it is more preferably a C1-C3 alkyl group.
  • M 1 and X 1 is the same as M 1 and X 1 in the organic-inorganic hybrid compound (I), respectively.
  • the organic-inorganic hybrid compound (X) includes a compound represented by the following formula (Xa) (hereinafter referred to as an organic-inorganic hybrid compound (Xa)) and a compound represented by the following formula (Xb) (hereinafter referred to as an organic-inorganic hybrid compound ( Xb)).
  • the organic-inorganic hybrid compound (Xa) corresponds to a compound in which Y 1 is an oxygen atom and Y 2 is a single bond in the formula (X), and the organic-inorganic hybrid compound (Xb) is represented by the formula (X ) In which Y 1 is a single bond and Y 2 is an oxygen atom.
  • organic-inorganic hybrid compounds (Xa) and (Xb) is that, in the above formulas (Xa) and (Xb), Q 1 is a C1-C6 alkyl group, a halogen atom, a C1-C4 alkoxy group or a C1-C4. A compound that is a C1-C6 alkyl group substituted with an alkylthio group.
  • a more preferred embodiment of the organic-inorganic hybrid compounds (Xa) and (Xb) is a compound in which Q 1 is a C1-C6 alkyl group in the above formulas (Xa) and (Xb).
  • a more preferred embodiment of the organic-inorganic hybrid compounds (Xa) and (Xb) is a compound in which Q 1 is a C1-C3 alkyl group in the above formulas (Xa) and (Xb).
  • One more preferable aspect of the organic-inorganic hybrid compounds (Xa) and (Xb) is a compound in which M 1 is Pb 2+ or Sn 2+ in each of the above aspects.
  • organic-inorganic hybrid compounds (Xa) and (Xb) are that, in the above formulas (Xa) and (Xb), M 1 is Pb 2+ or Sn 2+ , and Q 1 is a C1-C3 alkyl group Compounds, that is, compounds represented by the following formulas (Xa ′) and (Xb ′).
  • the organic-inorganic hybrid compound (X) includes an amine hydrogen halide salt having a halogen-substituted hydrocarbon group (hereinafter referred to as amine hydrogen halide salt (XI)) represented by the following formula (XI) and the above-described halogenated compound. It can be produced by reacting metal (III) in a solvent.
  • Q 1 , Y 1 and Y 2 are the same as Q 1 , Y 1 and Y 2 in formula (X), respectively.
  • X 2 is the same as X 2 in formula (II) described above.
  • the amine hydrohalide (XI) is specifically represented by the following formula (XIa), a hydroxylamine hydrohalide having a hydrocarbon substituent on the oxygen atom, or the following formula (XIb). , A hydrohalide salt of hydroxylamine having a hydrocarbon substituent on the nitrogen atom. Q 1 ON + H 3 X 2 ...
  • amine hydrogen halide salt (XI) is a solution of a substituted hydroxylamine represented by the following formula (XII) (hereinafter referred to as amine (XII)) and HX 2 which is a hydrogen halide corresponding to the halogen atom ion of X 2 in a solution. And then the solvent is distilled off.
  • XII a substituted hydroxylamine represented by the following formula (XII) (hereinafter referred to as amine (XII)) and HX 2 which is a hydrogen halide corresponding to the halogen atom ion of X 2 in a solution. And then the solvent is distilled off.
  • Q 1 Y 1 NHY 2 H (XII) In formula (XII), Q 1 , Y 1 and Y 2 are the same as Q 1 , Y 1 and Y 2 in formula (XI), respectively.
  • composition for photoelectric conversion elements (Second embodiment of composition for photoelectric conversion element)
  • the second aspect of the composition for photoelectric conversion elements is a composition for photoelectric conversion elements (hereinafter referred to as photoelectric conversion) obtained by mixing an amine hydrogen halide salt (II) and a metal halide (III) in a solvent.
  • photoelectric conversion a composition for photoelectric conversion elements obtained by mixing an amine hydrogen halide salt (II) and a metal halide (III) in a solvent.
  • the photoelectric conversion layer of a photoelectric conversion element can be formed by applying the composition B for photoelectric conversion elements to an object.
  • the solvent used in mixing the amine hydrogen halide (II) and the metal halide (III) can be the solvent shown in the first embodiment of the composition for photoelectric conversion elements. . Or both are mixed using solvents other than the solvent shown in the 1st aspect of the composition for photoelectric conversion elements, Then, the solvent shown in the 1st aspect of the composition for photoelectric conversion elements is further added. Also good.
  • the amount of the amine hydrogen halide salt (II) relative to the metal halide (III) can be, for example, 0.01-fold mole to 10-fold mole, preferably 0.1-fold mole to 5-fold mole,
  • the molar ratio is more preferably from 5 times to 2 times, and even more preferably from 0.8 times to 1.2 times.
  • 2,2,2-trifluoroethylamine hydrogen iodide is used as the amine hydrogen halide (II) and iodine as the metal (III) halide.
  • the photoelectric effect is obtained in the solar battery cell of Example 13 in which the amount of the amine hydrogen halide (II) with respect to the metal halide (III) is 3 times mole, but the metal halide (III).
  • the solar cell of Example 2 in which the amount of the amine hydrogen halide (II) with respect to 1) is 1 mol is more excellent in photoelectric effect.
  • the content of the amine hydrogen halide salt (II) in the composition B for photoelectric conversion elements can be, for example, 0.001 to 60% by weight, and preferably 0.1 to 50% by weight. More preferably, it is more preferably 2 to 30% by weight.
  • the content of the metal halide (III) in the composition B for photoelectric conversion elements can be, for example, 0.1 to 80% by weight, preferably 0.5 to 60% by weight. More preferably, it is more preferably 2% by weight to 40% by weight.
  • the metal halide (III) and amine hydrogen halide (II) contained in the composition B for photoelectric conversion elements may be one kind of metal halide (III) and amine hydrogen halide (II), respectively.
  • a plurality of types of metal halides (III) or a plurality of types of amine hydrogen halide salts (II) may be mixed and contained.
  • the composition B for photoelectric conversion elements includes CH 3 N + H 3 PbX 4 3 , CH 3 N + H 3 SnX 4 3 or CH, which are organic-inorganic hybrid compounds known to be usable for photoelectric conversion elements.
  • (NH 2 ) (N + H 2 ) PbX 4 3 (X 4 represents a halogen atom ion) or the like may be further added.
  • CsPbX 4 3 and CsSnX 4 3 in which methylammonium groups such as CH 3 N + H 3 PbX 4 3 and CH 3 N + H 3 SnX 4 3 are converted to monovalent inorganic cations. It may be.
  • the monovalent inorganic cation used is not particularly limited, and examples of the monovalent inorganic cation that can be added include Li + , Na + , K + , Rb + , Cs + , Ag + , and Cu. + .
  • CH 3 N + H 3 PbX 4 3 or CH (NH 2) (N + H 2) PbX 4 a third forming material CH 3 N + H 3 X 4 or CH (NH 2) (N + H 2 ) X 4 or the like may be further added.
  • monovalent inorganic cations such as LiX 4 , NaX 4 , KX 4 , RbX 4 , CsX 4 , AgX 4 , and CuX 4 that become a material for forming a compound containing a monovalent inorganic cation such as CsPbX 4 3.
  • a halide containing ions may be added.
  • the composition B for a photoelectric conversion element is prepared by mixing the amine hydrogen halide (II) and the metal halide (III) in a solvent
  • the amine hydrogen halide salt (XI) is used as another component. May be further mixed.
  • other components other than the amine hydrogen halide (II) and the metal halide (III) it was added for the purpose of producing the organic-inorganic hybrid compound (I) in the composition B for photoelectric conversion elements.
  • the ratio of the other components to the total of the amine hydrogen halide (II) and the metal halide (III) is preferably 1000% by weight or less, more preferably 500% by weight or less, and 100% by weight or less. More preferably.
  • the organic-inorganic hybrid compound (I) is formed before the application to the object or after the application to the object, thereby enabling the photoelectric conversion.
  • the mechanism of action is not limited.
  • composition for photoelectric conversion elements is a composition for photoelectric conversion elements (hereinafter referred to as “aluminum hydrogen halide salt (II)” dissolved or dispersed in a solvent without containing a metal halide (III)). , Referred to as composition C for photoelectric conversion elements). It is a new finding found by the present inventor that a composition containing an amine hydrogen halide (II) is suitably used for forming a photoelectric conversion layer of a photoelectric conversion element.
  • a photoelectric conversion layer of a photoelectric conversion element can be formed by applying the composition C for a photoelectric conversion element on a layer formed of a metal halide (III).
  • the solvent for dissolving or dispersing amine hydrogen halide (II) is a solvent that can be used for coating techniques such as dipping, spin coating, and printing, and dissolves amine hydrogen halide (II).
  • the solvent shown in the 1st aspect of the composition for photoelectric conversion elements can be used.
  • composition B for photoelectric conversion elements may be prepared by mixing the composition C for photoelectric conversion elements with metal halide (III).
  • the content of the amine hydrogen halide salt (II) in the composition C for photoelectric conversion elements can be, for example, 0.01 to 90% by weight, preferably 0.1 to 80% by weight, More preferably, it is ⁇ 70% by weight, and further preferably 1-60% by weight.
  • the amine hydrogen halide (II) contained in the composition C for photoelectric conversion elements may be one type of amine hydrogen halide (II), and a plurality of types of amine hydrogen halide (II) are mixed. It may be included.
  • composition C for photoelectric conversion elements in this aspect, other components may be included as long as the function of the photoelectric conversion layer formed by the composition C for photoelectric conversion elements is not impaired.
  • CH 3 N + H 3 X 4 or CH (NH 2 ) (N + H 2 ) X 4 or the like, which is a material for forming PbX 4 3 (X 4 represents a halogen atom ion) is further added. Good.
  • monovalent inorganic cations such as LiX 4 , NaX 4 , KX 4 , RbX 4 , CsX 4 , AgX 4 , and CuX 4 that become a material for forming a compound containing a monovalent inorganic cation such as CsPbX 4 3.
  • a halide containing ions may be added.
  • the ratio of the other components to the amine hydrogen halide (II) in the composition C for photoelectric conversion elements is 1000% by weight or less. It is preferably 500% by weight or less, more preferably 100% by weight or less.
  • the hydroiodide of fluoro-substituted alkylamines represented by the following formula (IIa) is a novel compound that has not been reported so far.
  • R 2 CH 2 NH 3 I (IIa) (In the formula (IIa), R 2 represents a C1-C5 alkyl group substituted with at least one fluorine atom.) Therefore, the hydrogen iodide salt of the fluoro-substituted alkylamine represented by the formula (IIa) is also included in the category of the present invention.
  • C1-C5 alkyl substituted with at least one fluorine atom in R 2 and preferred groups therein include C1-C5 alkyl substituted with at least one fluorine atom in R 1 and preferred groups Can be mentioned.
  • R 2 is preferably a C1-C3 alkyl group substituted with at least one fluorine atom, more preferably a C1-C2 alkyl group substituted with 1-5 fluorine atoms, and still more preferably Is a fluoromethyl group, a difluoromethyl group, a trifluoromethyl group, a 2,2,2-trifluoroethyl group and a 1,1,2,2,2-pentafluoroethyl group, particularly preferably a trifluoromethyl group 2,2,2-trifluoroethyl group and 1,1,2,2,2-pentafluoroethyl group.
  • hydroiodide salt of a fluoro-substituted alkylamine represented by the formula (IIa) can be produced with reference to the above-described method for producing an amine hydrogen halide salt (II).
  • amino acids include glycine, alanine, 3-aminopropionic acid, 4-aminobutanoic acid, 5-aminopentanoic acid and 6-aminohexanoic acid.
  • the amino group in these amino acid molecules is protonated to form an ammonium group.
  • each composition it mixes with the composition A for photoelectric conversion elements as an amino acid organic-inorganic hybrid compound such as R x N + H 3 PbX 4 3 .
  • R x is a residue obtained by removing an amino group from an amino acid.
  • R x is represented by —CH 2 COOH, and is bonded to an amino group at the hyphen ( ⁇ ) part.
  • the amino acid organic / inorganic hybrid compound is contained, the ratio of the amino acid organic / inorganic hybrid compound to the organic / inorganic hybrid compound (I) is preferably 100% by weight or less, more preferably 50% by weight or less, and 20% by weight. More preferably, it is as follows.
  • composition B for photoelectric conversion elements it may be added as R x N + H 3 PbX 4 3 , or may be added as an amino acid hydrogen halide salt used as a material for forming an amino acid organic-inorganic hybrid compound.
  • an amino acid organic / inorganic hybrid compound When an amino acid organic / inorganic hybrid compound is contained, the amino acid organic / inorganic added or formed in the composition with respect to the total of the amine hydrogen halide salt (II) and the metal halide (III) in the composition B for photoelectric conversion elements
  • the ratio of the hybrid compound is preferably 100% by weight or less, more preferably 50% by weight or less, and further preferably 20% by weight or less.
  • composition C for photoelectric conversion elements mixes with the composition C for photoelectric conversion elements as an amino acid hydrogen halide salt used as the formation material of an amino acid organic-inorganic hybrid compound.
  • the ratio of the amino acid hydrogen halide salt to the amine hydrogen halide salt (II) is preferably 100% by weight or less, more preferably 50% by weight or less, and further preferably 20% by weight or less.
  • the photoelectric conversion element in the present embodiment includes a transparent electrode, a counter electrode facing the transparent electrode, and a photoelectric conversion layer sandwiched between the transparent electrode and the counter electrode.
  • the photoelectric conversion element in the present embodiment may further have a configuration that other photoelectric conversion elements can have as long as it can function as a photoelectric conversion element.
  • the photoelectric conversion element in the present embodiment further includes a metal oxide semiconductor having a nanoporous structure, and a photoelectric conversion layer is formed on the metal oxide semiconductor.
  • a buffer layer, a charge (electron or hole) transport layer, or the like may be included depending on the mode.
  • the photoelectric conversion element in the present embodiment is a wet type photoelectric conversion element using an electrolytic solution containing a redox compound as a charge transport layer, and a solid type using a solid material capable of charge transport instead of the electrolytic solution. Any aspect of the photoelectric conversion element may be used.
  • the material of the transparent electrode is not particularly limited, and a conventionally known material can be used.
  • conductive metals such as platinum, gold, silver, copper, aluminum, indium and titanium; conductive carbon such as graphite, carbon black, carbon nanofibers and carbon nanotubes; fluorine-doped tin oxide (SnO 2 ) and oxidation Conductive metal oxides such as zinc (ZnO); and conductive complex metal oxides such as indium-tin oxide (ITO) and indium-zinc oxide (IZO).
  • a material having high transparency is preferable from the viewpoint of performing photoelectric conversion more efficiently, and for example, fluorine-doped tin oxide (SnO 2 ) or indium-tin oxide (ITO) is more preferable.
  • a transparent electrode can be obtained by forming a thin film of the above-described material on the surface of a transparent substrate.
  • the method for forming the thin film is not particularly limited, and examples thereof include a sputtering method, a vapor deposition method, and a method of applying a paste dispersion.
  • examples of the transparent substrate include a transparent glass substrate and a transparent plastic substrate.
  • Counter electrode As the material of the counter electrode, those exemplified as the material of the transparent electrode can be similarly used. Alternatively, sodium, sodium-potassium alloy, lithium, magnesium, aluminum, magnesium-silver mixture, magnesium-indium mixture, aluminum-lithium alloy, Al / Al 2 O 3 mixture, Al / LiF mixture, or the like can be used. Among these, conductive metals such as platinum, gold, silver, copper, aluminum, indium, and titanium, or conductive carbon such as graphite, carbon black, carbon nanofiber, and carbon nanotube are more preferable.
  • the counter electrode can be obtained by forming a thin film of the above-described material on the surface of the substrate or directly on the charge transport layer or the photoelectric conversion layer.
  • a thin film of the above-described material there is no restriction
  • examples of the substrate include a transparent glass substrate, a ceramic substrate, a plastic substrate, and a transparent plastic substrate.
  • a metal oxide semiconductor having a nanoporous structure is a metal oxide semiconductor in which nano-sized pores are formed in a network.
  • a metal element constituting the metal oxide semiconductor titanium, tin, zinc, iron, tungsten, zirconium, strontium, indium, cerium, yttrium, lanthanum, vanadium, niobium, tantalum, or the like is used.
  • Preferred examples of the metal oxide semiconductor include titanium oxide, titanium strontium oxide, zinc oxide, tin oxide, tungsten oxide, and niobium oxide. Among these, titanium oxide, zinc oxide, or tin oxide is more preferable, and titanium oxide (TiO 2 Is more preferable.
  • a metal oxide semiconductor having a nanoporous structure is prepared by preparing a viscous colloid or paste prepared by dispersing the above metal oxide semiconductor nanoparticles or a precursor thereof in a solvent, and applying the viscous dispersion on a transparent electrode. After coating, the coating layer can be obtained as a solid thin film by heating or baking.
  • a buffer layer is provided between the transparent electrode and the metal oxide semiconductor layer.
  • the buffer layer is a layer that separates the charge transport layer formed of a solid material from the transparent electrode and prevents electrical contact between them. Therefore, the buffer layer is a layer having a dense structure having no pores.
  • a preferable material for forming the buffer layer is a metal oxide, among which titanium oxide, zinc oxide, niobium oxide, tin oxide, zirconium oxide, and the like are preferable, and titanium oxide is more preferable.
  • a photoelectric conversion layer is formed on the surface of the metal oxide semiconductor having a nanoporous structure.
  • the photoelectric conversion layer in the present embodiment can be any of the following layers (a) to (c): (A) a layer containing an organic-inorganic hybrid compound (I), (B) a layer formed of the composition A for photoelectric conversion elements or the composition B for photoelectric conversion elements, (C) The layer formed by apply
  • the photoelectric conversion layer can be formed, for example, by the following method (i) or (ii): (I) The composition A for photoelectric conversion elements or the composition B for photoelectric conversion elements is apply
  • Charge transport layer For the charge transport layer, either a liquid material or a solid material can be used depending on the mode of the photoelectric conversion element.
  • a solution using an oxidation-reduction reaction between iodine ions and iodine which is often used for dye-sensitized solar cells, can be preferably used. That is, inorganic salts such as sodium iodide and potassium iodide, quaternary alkyl ammonium salts such as tetraethylammonium iodide, benzyltrimethylammonium iodide, 1-methyl-3-propyl-1H-imidazole-3-ium iodide, etc.
  • inorganic salts such as sodium iodide and potassium iodide
  • quaternary alkyl ammonium salts such as tetraethylammonium iodide, benzyltrimethylammonium iodide, 1-methyl-3-propyl-1H-imidazole-3-ium iodide, etc.
  • a mixed solution in which iodine is dissolved in a solvent such as an alcohol or a nitrile and an imidazolium salt of the above and various iodide salts such as pyridinium salts such as N-methylpyridinium iodide can be preferably used.
  • Solid materials that can form a charge transport layer include inorganic hole transport materials such as copper iodide and copper thiocyanide, and 2,2 ′, 7,7′-tetrakis (N, N-di (p-methoxy).
  • Organic hole transport materials such as phenyl) amino) -9,9′-bifluorene (spiro-OMeTAD), polytriarylamine, perylene, and poly (3-hexylthiophene-2,5-diyl) (P3HT)
  • P3HT poly (3-hexylthiophene-2,5-diyl)
  • the organic-inorganic hybrid compound according to the present invention has the following formula (I): R 1 CH 2 N + H 3 M 1 X 1 3 (I)
  • R 1 represents a C1-C5 alkyl group or a C2-C5 alkenyl group substituted with at least one halogen atom
  • M 1 represents a divalent metal ion
  • X 1 represents a monovalent It represents a halogen atom ion
  • X 1 3 is formed by a combination of 1 depending on the type of halogen atom ions, or two or more halogen atoms ion.
  • R 1 is preferably a C1-C5 alkyl group or a C2-C5 alkenyl group substituted with at least one fluorine atom.
  • R 1 is preferably a C1-C2 alkyl group substituted with 1-5 fluorine atoms.
  • R 1 is a fluoromethyl group, a difluoromethyl group, a trifluoromethyl group, a 2,2,2-trifluoroethyl group, or 1,1, A 2,2,2-pentafluoroethyl group is preferred.
  • R 1 is a trifluoromethyl group, a 2,2,2-trifluoroethyl group, or a 1,1,2,2,2-pentafluoro.
  • An ethyl group is preferred.
  • M 1 is Pb 2+ , Sn 2+ , Sr 2+ , Cu 2+ , Zn 2+ , Mn 2+ , Fe 2+ , Ni 2+ , Co 2+ , V 2+ or Sm 2+ is preferred.
  • M 1 is preferably Pb 2+ or Sn 2+ .
  • the organic-inorganic hybrid compound according to the present invention has the following formula (Ia): R 3 CH 2 N + H 3 M 2 X 1 3 (Ia)
  • R 3 represents a trifluoromethyl group, a 2,2,2-trifluoroethyl group or a 1,1,2,2,2-pentafluoroethyl group
  • M 2 represents Pb 2+ or represents sn 2+
  • X 1 is the same as X 1 in the above formula (I).
  • composition for a photoelectric conversion element is a composition for a photoelectric conversion element containing the above-mentioned organic-inorganic hybrid compound.
  • M 1 represents a divalent metal ion
  • X 1 represents a monovalent halogen atom ion
  • a plurality of X 1 s may be different halogen atom ions
  • Y 1 and Y 2 represents that either one is an oxygen atom and the other is a single bond.
  • composition for photoelectric conversion elements is represented by the following formula (II): R 1 CH 2 N + H 3 X 2 (II) (In the formula (II), R 1 represents a C1-C5 alkyl group or C2-C5 alkenyl group substituted with at least one halogen atom, and X 2 represents a halogen atom ion.) And an amine hydrogen halide salt represented by the following formula (III) M 1 X 3 2 (III) (In formula (III), M 1 represents a divalent metal ion, and X 3 represents a monovalent halogen atom ion.) It is a composition for photoelectric conversion elements obtained by mixing with the metal halide shown by.
  • the amount of the amine hydrogen halide salt with respect to the metal halide is preferably 0.5-fold mol to 2-fold mol. .
  • composition for photoelectric conversion elements which concerns on this invention, following formula (XI) Q 1 Y 1 N + H 2 (Y 2 H) X 2 ⁇ (XI)
  • Q 1 represents a C1-C6 alkyl group, a C3-C6 alkenyl group or a C3-C6 alkynyl group, and these groups are substituted with a halogen atom, a C1-C4 alkoxy group or a C1-C4 alkylthio group.
  • X 2 represents a halogen atom ion, and one of Y 1 and Y 2 represents an oxygen atom and the other represents a single bond.
  • An amine hydrogen halide salt represented by the formula (1) may be further mixed.
  • composition for a photoelectric conversion device is: The following formula (II) R 1 CH 2 N + H 3 X 2 (II) (In the formula (II), R 1 represents a C1-C5 alkyl group or a C2-C5 alkenyl group substituted with at least one halogen atom, and X 2 represents a halogen atom ion) It is a composition for photoelectric conversion elements containing a salt.
  • R 1 is a C1-C5 alkyl group or C2-C5 alkenyl substituted with at least one fluorine atom. It is preferably a group.
  • R 1 is a C1-C2 alkyl group substituted with 1 to 5 fluorine atoms. preferable.
  • R 1 is a fluoromethyl group, a difluoromethyl group, a trifluoromethyl group, 2,2,2- A trifluoroethyl group or a 1,1,2,2,2-pentafluoroethyl group is preferred.
  • R 1 is a trifluoromethyl group, a 2,2,2-trifluoroethyl group, or 1,1 2,2,2-pentafluoroethyl group is preferred.
  • composition for photoelectric conversion elements which concerns on this invention, following formula (XI) Q 1 Y 1 N + H 2 (Y 2 H) X 2 ⁇ (XI)
  • Q 1 represents a C1-C6 alkyl group, a C3-C6 alkenyl group or a C3-C6 alkynyl group, and these groups are substituted with a halogen atom, a C1-C4 alkoxy group or a C1-C4 alkylthio group.
  • X 2 represents a halogen atom ion, and one of Y 1 and Y 2 represents an oxygen atom and the other represents a single bond.
  • It may further contain an amine hydrogen halide salt represented by
  • the amine hydrogen iodide salt according to the present invention has the following formula (IIa) R 2 CH 2 NH 3 I (IIa) (In the formula (IIa), R 2 represents a C1-C5 alkyl group substituted with at least one fluorine atom.) It is an amine hydrogen iodide salt shown by these.
  • R 2 is preferably a C1 to C2 alkyl group substituted with 1 to 5 fluorine atoms.
  • R 2 is a fluoromethyl group, a difluoromethyl group, a trifluoromethyl group, a 2,2,2-trifluoroethyl group, or 1,1, A 2,2,2-pentafluoroethyl group is preferred.
  • R 2 is a trifluoromethyl group, a 2,2,2-trifluoroethyl group, or a 1,1,2,2,2-pentafluoro.
  • An ethyl group is preferred.
  • the photoelectric conversion element according to the present invention is a photoelectric conversion element comprising a transparent electrode, a counter electrode facing the transparent electrode, and the photoelectric conversion layer sandwiched between the transparent electrode and the counter electrode,
  • the layer is a photoelectric conversion element which is any one of the following (a) to (c): (A) a layer containing the above organic-inorganic hybrid compound, (B) a layer formed from the composition described above, and (C) The following formula (III) M 1 X 3 2 (III) (In formula (III), M 1 represents a divalent metal ion, and X 3 represents a monovalent halogen atom ion.)
  • the method for producing a composition for a photoelectric conversion element comprises: The following formula (II) R 1 CH 2 N + H 3 X 2 (II) (In the formula (II), R 1 represents a C1-C5 alkyl group or C2-C5 alkenyl group substituted with at least one halogen atom, and X 2 represents a halogen atom ion.)
  • the method for producing a photoelectric conversion element according to the present invention is a method for producing a photoelectric conversion element comprising a transparent electrode, a counter electrode facing the transparent electrode, and the photoelectric conversion layer sandwiched between the transparent electrode and the counter electrode.
  • a method for producing a photoelectric conversion element comprising forming the photoelectric conversion layer by any one of the following steps (a) to (c): (A) forming the photoelectric conversion layer using the organic-inorganic hybrid compound described above, (B) forming the photoelectric conversion layer using the composition described above, and (C) The following formula (III) M 1 X 3 2 (III) (In formula (III), M 1 represents a divalent metal ion, and X 3 represents a monovalent halogen atom ion.)
  • Example 1 After weighing 2,2,2-trifluoroethylamine hydrochloride and lead iodide to equimolar amounts, the total weight of 2,2,2-trifluoroethylamine hydrochloride and lead iodide is 20% by weight of the total solution. % was dissolved in dimethylformamide (DMF) to prepare a solution for a photoelectric conversion element.
  • DMF dimethylformamide
  • Titanium oxide baked glass electrode (4 cm ⁇ 2 cm, titanium oxide coated portion 3 cm ⁇ 2 cm; manufactured by Nishinoda Electric Co., Ltd.) in which nanoporous TiO 2 was previously formed on the glass electrode was fixed to the sample stage.
  • a spin coater (Mikasa Spinner 1H-D2, manufactured by Mikasa Co., Ltd.)
  • the prepared solution for a photoelectric conversion element was dropped onto a titanium oxide baked glass electrode while being spun at 60 rpm for 25 seconds. . After dripping, it was spun for 60 seconds at 550 rpm or 2000 rpm.
  • the titanium oxide baked glass electrode coated with the photoelectric conversion element solution was allowed to stand at room temperature for 10 minutes and then dried at 70 ° C. for 2 hours.
  • An electrolyte solution (an ethanol solution containing sodium iodide and iodine, manufactured by Nishinoda Electric Co., Ltd.) was dropped onto the obtained dried electrode, and one surface of the transparent glass electrode (4 cm ⁇ 2 cm, west Noda Denko Co., Ltd.) was placed on the glass substrate onto which the electrolytic solution was dropped with the side coated with a pencil inside, and a solar cell (photoelectric conversion element) was produced.
  • Example 2 A solar cell was produced in the same manner as in Example 1 except that 2,2,2-trifluoroethylamine hydrogen iodide was used instead of 2,2,2-trifluoroethylamine hydrochloride.
  • Example 3 A solar cell was produced in the same manner as in Example 1 except that 3,3,3-trifluoropropylamine hydrochloride was used instead of 2,2,2-trifluoroethylamine hydrochloride.
  • Example 4 A solar cell was produced in the same manner as in Example 1 except that 2,2,3,3,3-pentafluoropropylamine hydrochloride was used instead of 2,2,2-trifluoroethylamine hydrochloride.
  • Example 5 Example 1 except that 2,2,2-trifluoroethylamine hydrochloride and methylamine hydrochloride were mixed in a molar ratio of 3: 1 instead of 2,2,2-trifluoroethylamine hydrochloride.
  • a solar battery cell was produced in the same manner as described above.
  • Example 6 Example 2 except that 2,2,2-trifluoroethylamine hydrochloride and formamidinium hydrochloride were mixed in a molar ratio of 3: 1 instead of 2,2,2-trifluoroethylamine hydrochloride.
  • a solar battery cell was produced in the same manner as in Example 1.
  • Example 7 Examples were used except that 2,2,2-trifluoroethylamine hydrochloride and formamidinium hydrochloride were mixed in a molar ratio of 1: 1 instead of 2,2,2-trifluoroethylamine hydrochloride.
  • a solar battery cell was produced in the same manner as in Example 1.
  • Example 8 In place of 2,2,2-trifluoroethylamine hydrochloride, 2,2,2-trifluoroethylamine hydrochloride and cesium iodide are mixed at a molar ratio of 9: 1, and instead of DMF as the solvent to be dissolved A solar battery cell was produced in the same manner as in Example 1 except that DMF and dimethyl sulfoxide (DMSO) were mixed at a weight ratio of 1: 1.
  • DMSO dimethyl sulfoxide
  • Example 9 In place of lead iodide, lead iodide and tin iodide are mixed at a molar ratio of 9: 1, and as a solvent to be dissolved, DMF and DMSO are mixed at a weight ratio of 1: 1 instead of DMF.
  • a solar cell was produced in the same manner as in Example 1 except that it was used.
  • Example 10 A solar cell was produced in the same manner as in Example 1 except that 2,2,3,3,3-pentafluoropropylamine hydrogen iodide was used instead of 2,2,2-trifluoroethylamine hydrochloride. did.
  • Example 11 Instead of 2,2,2-trifluoroethylamine hydrochloride, 2,2,2-trifluoroethylamine hydrochloride and 5-aminovaleric hydrochloride (5-aminopentanoic acid hydrochloride) in a molar ratio of 8: 2.
  • a solar battery cell was produced in the same manner as in Example 1 except that the mixture was used.
  • Example 12 Other than using 2,2,2-trifluoroethylamine hydrochloride, 2,2,2-trifluoroethylamine hydrogen iodide and formamidinium hydrogen iodide in a 3: 1 molar ratio instead of 2,2,2-trifluoroethylamine hydrochloride Produced solar cells in the same manner as in Example 1.
  • Example 13 2,2,2-trifluoroethylamine hydrogen iodide is used in place of 2,2,2-trifluoroethylamine hydrochloride, and the amount of 2,2,2-trifluoroethylamine hydrogen iodide used is iodine.
  • a solar battery cell was produced in the same manner as in Example 1 except that the molar amount was 3 times that of lead chloride.
  • Example 14 Example 2, except that 2,2,2-trifluoroethylamine hydrochloride and glycine hydrochloride were mixed in a molar ratio of 9: 1 instead of 2,2,2-trifluoroethylamine hydrochloride. Similarly, a solar battery cell was produced.
  • Example 15 Example 1 except that 2,2,2-trifluoroethylamine hydrochloride and methoxyamine hydrochloride were mixed in a molar ratio of 1: 3 instead of 2,2,2-trifluoroethylamine hydrochloride.
  • a solar battery cell was produced in the same manner as described above.
  • Example 16 Example 1 except that 2,2,2-trifluoroethylamine hydrochloride and methoxyamine hydrochloride were mixed in a molar ratio of 1: 1 instead of 2,2,2-trifluoroethylamine hydrochloride.
  • a solar battery cell was produced in the same manner as described above.
  • Example 17 Example 1 except that 2,2,2-trifluoroethylamine hydrochloride and methoxyamine hydrochloride were mixed in a molar ratio of 3: 1 instead of 2,2,2-trifluoroethylamine hydrochloride.
  • a solar battery cell was produced in the same manner as described above.
  • Example 2 A solar battery cell was produced in the same manner as in Example 1 except that ethylamine hydrochloride was used instead of 2,2,2-trifluoroethylamine hydrochloride.
  • Example 3 A solar battery cell was produced in the same manner as in Example 1 except that methylamine hydrogen iodide was used instead of 2,2,2-trifluoroethylamine hydrochloride.
  • Example 5 A solar cell was produced in the same manner as in Example 1 except that formamidinium hydrogen iodide was used in place of 2,2,2-trifluoroethylamine hydrochloride.
  • Example 6 A solar cell was produced in the same manner as in Example 1 except that 5-aminovalerate hydrochloride was used instead of 2,2,2-trifluoroethylamine hydrochloride.
  • 2,2,2-trifluoroethylamine (5.0 g) was dissolved in methanol (50 ml), and a 57% aqueous hydroiodic acid solution (7.8 ml) was added dropwise while cooling the solution in an ice bath. After the dropping, hydroiodic acid remaining in the dropping funnel was washed with methanol (10 ml), and the washing solution was also added to the above solution. After stirring in an ice bath for about 10 minutes, the ice bath was removed and the mixture was stirred for 30 minutes. After concentrating the obtained reaction liquid, toluene was added and the operation which distilled off was repeated 3 times. The obtained crude solid was washed with diethyl ether and then dried under reduced pressure to obtain the desired product.
  • 2,2,3,3,3-Pentafluoropropylamine (4.5 g) was dissolved in methanol (50 ml), and this solution was cooled in an ice bath while a 57% hydroiodic acid aqueous solution (4.0 ml) ) was added dropwise. After the dropwise addition, the mixture was stirred for about 10 minutes in an ice bath, the ice bath was removed, and the mixture was stirred for 30 minutes. After concentrating the obtained reaction liquid, toluene was added and the operation of distilling off was repeated twice. The obtained crude solid was washed with toluene and diethyl ether and then dried under reduced pressure to obtain the desired product.
  • Tables 1 to 3 The results are shown in Tables 1 to 3.
  • Table 1 shows the measurement results of applying the photoelectric conversion element solution by spinning the sample at 550 rpm after dropping the photoelectric conversion element solution
  • Tables 2 and 3 are for the photoelectric conversion element.
  • the measurement result of what applied the solution for photoelectric conversion elements by spinning a sample at 2000 rpm after dripping a solution is shown.
  • the average value was made into the measured value.
  • the present invention can be used in the technical field related to solar cells.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Photovoltaic Devices (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

 太陽電池に用いられる新規な化合物を提供する。本発明に係る化合物は、式(I)で示される有機無機混成化合物である。 RCH  ・・・(I) (式(I)中、Rは少なくとも1つのハロゲン原子で置換されたC1~C5アルキル基またはC2~C5アルケニル基を表し、Mは二価の金属イオンを表し、Xは一価のハロゲン原子イオンを表しており、X は1種類のハロゲン原子イオンによって、または2種類以上のハロゲン原子イオンの組み合わせによって形成されている。)

Description

有機無機混成化合物、アミンヨウ化水素塩、光電変換素子用組成物、および光電変換素子
 本発明は、光電変換素子の光電変換機能を担う有機無機混成化合物、光電変換素子の光電変換部分を形成するための組成物、当該組成物を形成するための化合物、およびこれらを用いて形成される光電変換素子に関する。
 近年、有機無機混成型のペロブスカイト構造を有する化合物(以下、ペロブスカイト化合物)を用いた太陽電池(以下、ペロブスカイト型太陽電池)の研究および開発が盛んに行われている(特許文献1~3)。ペロブスカイト型太陽電池は、2009年に、色素増感型太陽電池の色素の代わりにペロブスカイト化合物であるCHNHPbX(X=ハロゲン)を用いたのが最初である(非特許文献1)。その後、2012年に、固体材料のみを用いた固体型のペロブスカイト型太陽電池が作製され、光電変換の変換効率が10%を超えたことをきっかけに盛んに研究が進められるようになった。その後の研究により、他の有機系太陽電池を凌ぎ、有機系太陽電池の実用化に期待される変換効率である17%をも超えており、ペロブスカイト型太陽電池は新技術として非常に注目されている。さらに、ペロブスカイト型太陽電池は、シリコン系の太陽電池と比較し、製造プロセスが容易であり、材料も安価であるという利点を有する。
 なお、ペロブスカイト化合物のX部分が、例えばI3-xCl等、複数のハロゲン原子の混成であってもよいことが知られている(非特許文献2)。
 また、CHNHSnX(X=ハロゲン)も光電変換効果を有することが知られている(非特許文献3)。
 これらの他にも、メチルアンモニウム基を一価の無機陽イオンであるCsに変換した化合物について、同様の特性が期待されることが報告されている(非特許文献4)。
 なお、既存のCHNHPbXを光電変換素子に使用する場合、ある種のアミノ酸のアンモニウム基を有する有機無機混成型の化合物を添加すると、光電変換活性または光電変換素子としての安定性に良好な影響を与えることが報告されている(非特許文献5)。
日本国公開特許公報「特開2014-56940号公報」(2014年3月27日公開) 日本国公開特許公報「特開2014-72327号公報」(2014年4月21日公開) 欧州特許公開公報EP2693503A1(2014年2月5日公開)
A. Kojima et. al., J. Am. Chem. Soc., (2009) 131, 6050-6051. S. D. Stranks et. al., Science, (2013) 342, 341-344. F. Hao et. al., Nature Photonics, (2014) 8, 489-494. C. Constantinos et. al., Inorg. Chem., (2013) 52, 9019-9038. Y. Ogomi et. al., J. Phys. Chem. C, (2014) 118, 16651-16659.
 ペロブスカイト型太陽電池の光電変換を担っているのが、ペロブスカイト化合物CHNHPbX(X=Cl、BrまたはI)である。しかしながら、ペロブスカイト型太陽電池に用いるペロブスカイト化合物の検討はこれまで十分になされているとは言えない。例えば、CHNHPbXのメチルアンモニウム基を実際に別の有機基に置換して比較的高い活性を有する例としては、ホルムアミジニウムを用いたCH(NHPbXが知られているのみである。
 そこで、本発明は上記の問題点に鑑みてなされたものであり、その目的は、ペロブスカイト型太陽電池に利用可能な新たな化合物および材料を提供することにある。
 本発明に係る有機無機混成化合物は、上記課題を解決するために、下記式(I)
CH  ・・・(I)
(式(I)中、Rは少なくとも1つのハロゲン原子で置換されたC1~C5アルキル基またはC2~C5アルケニル基を表し、Mは二価の金属イオンを表し、Xは一価のハロゲン原子イオンを表しており、X は1種類のハロゲン原子イオンによって、または2種類以上のハロゲン原子イオンの組み合わせによって形成されている。)
で示される有機無機混成化合物である。
 本発明に係る光電変換素子用組成物の一態様は、上記課題を解決するために、上述の有機無機混成化合物を含む光電変換素子用組成物である。
 本発明に係る光電変換素子用組成物の別の態様は、上記課題を解決するために、下記式(II)
CH ・・・(II)
(式(II)中、Rは少なくとも1つのハロゲン原子で置換されたC1~C5アルキル基またはC2~C5アルケニル基を表し、Xはハロゲン原子イオンを表す。)
で示されるアミンハロゲン化水素塩と、下記式(III)
 ・・・(III)
(式(III)中、Mは二価の金属イオンを表し、Xは一価のハロゲン原子イオンを表す。)
で示されるハロゲン化金属とを混合して得られる、光電変換素子用組成物である。
 本発明に係る光電変換素子用組成物のさらに別の態様は、上記課題を解決するために、
 下記式(II)
CH ・・・(II)
(式(II)中、Rは少なくとも1つのハロゲン原子で置換されたC1~C5アルキル基またはC2~C5アルケニル基を表し、Xはハロゲン原子イオンを表す。)で示されるアミンハロゲン化水素塩を含む、光電変換素子用組成物である。
 本発明に係るアミンヨウ化水素塩は、上記課題を解決するために、下記式(IIa)
CHNHI ・・・(IIa)
(式(IIa)中、Rは少なくとも1つのフッ素原子で置換されたC1~C5アルキル基を表す。)
で示されるアミンヨウ化水素塩である。
 本発明に係る光電変換素子は、上記課題を解決するために、透明電極と、該透明電極に対向する対向電極と、該透明電極および該対向電極に挟まれた光電変換層とを備える光電変換素子であって、上記光電変換層が、下記(a)~(c)の何れかの層である光電変換素子である:
(a)上述の有機無機混成化合物を含む層、
(b)上述の組成物により形成された層、および、
(c)下記式(III)
 ・・・(III)
(式(III)中、Mは二価の金属イオンを表し、Xは一価のハロゲン原子イオンを表す。)
で示されるハロゲン化金属上に上述の組成物を塗布することにより形成された層。
 本発明に係る有機無機混成化合物および光電変換素子用組成物によれば、ペロブスカイト型太陽電池に用いられている従来の化合物および組成物よりも、高い光電効果を得ることができる。
 以下、本発明に係る有機無機混成化合物、アミンヨウ化水素塩、光電変換素子用組成物、および光電変換素子の一実施形態について説明する。
 〔1.有機無機混成化合物〕
 本実施形態における有機無機混成化合物は、下記式(I)で示される化合物(以下、有機無機混成化合物(I)という)である。
CH  ・・・(I)
(式(I)中、Rは少なくとも1つのハロゲン原子で置換されたC1~C5アルキル基またはC2~C5アルケニル基を表し、Mは二価の金属イオンを表し、Xは一価のハロゲン原子イオンを表しており、X は1種類のハロゲン原子イオンによって、または2種類以上のハロゲン原子イオンの組み合わせによって形成されている。)
 Rは、少なくとも1つのハロゲン原子で置換されたC1~C5アルキル基またはC2~C5アルケニル基である。なお、本明細書において、「Cm~Cn」の炭化水素基とは、炭素数m~nの炭化水素基のことを表している。置換基としてのハロゲン原子は、フッ素原子、塩素原子、臭素原子およびヨウ素原子が挙げられる。置換により2つ以上のハロゲン原子を有している場合、複数あるハロゲン原子は互いに同じ種類のハロゲン原子でもよく、互いに異なる種類のハロゲン原子であってもよい。置換基としてのハロゲン原子に特に制限はないが、少なくとも1つのフッ素原子で置換されていることが好ましい。この場合、少なくとも1つのフッ素原子を有していれば、C1~C5アルキル基およびC2~C5アルケニル基は、フッ素原子以外のハロゲン原子による置換を有していてもよい。
 一方、C1~C5アルキル基としては、C1~C4アルキル基がより好ましく、C1~C3アルキル基がさらに好ましく、C1~C2アルキル基が特に好ましい。また、C2~C5アルケニル基としては、C2~C4アルケニル基がより好ましく、C2~C3アルケニル基がさらに好ましい。
 したがって、Rとしては、少なくとも1つのフッ素原子で置換されたC1~C5アルキル基またはC2~C5アルケニル基が好ましく、少なくとも1つのフッ素原子で置換されたC1~C4アルキル基またはC2~C4アルケニル基がより好ましく、少なくとも1つのフッ素原子で置換されたC1~C3アルキル基またはC2~C3アルケニル基がさらに好ましく、1~5つのフッ素原子で置換されたC1~C3アルキル基が特に好ましく、1~5つのフッ素原子で置換されたC1~C2アルキル基が最も好ましい。
 少なくとも1つのハロゲン原子で置換されたC1~C5アルキル基の例としては、例えば、フルオロメチル基、ジフルオロメチル基、トリフルオロメチル基、クロロジフルオロメチル基、ブロモジフルオロメチル基、ヨードジフルオロメチル基、ジクロロフルオロメチル基、ジブロモフルオロメチル基、2-フルオロエチル基、2-クロロ-2,2-ジフルオロエチル基、2-ブロモ-2,2-ジフルオロエチル基、2,2,2-トリフルオロエチル基、1,1,2,2,2-ペンタフルオロエチル基、1,1,2,2-テトラフルオロエチル基、2-クロロ-2,2-ジフルオロエチル基、2,2-ジクロロ-2-フルオロエチル基、2,2-ジブロモ-2-フルオロエチル基、3-フルオロプロピル基、1,1,2,3,3,3-ヘキサフルオロプロピル基、1,1,2,2,3,3,3-ヘプタフルオロプロピル基、2,3-ジブロモ-2,3,3-トリフルオロプロピル基、および2,3-ジクロロ-2,3,3-トリフルオロプロピル基等が挙げられる。中でも、フルオロメチル基、ジフルオロメチル基、トリフルオロメチル基、2-フルオロエチル基、2,2,2-トリフルオロエチル基、1,1,2,2,2-ペンタフルオロエチル基、および1,1,2,2-テトラフルオロエチル基が好ましく、フルオロメチル基、ジフルオロメチル基、トリフルオロメチル基、2-フルオロエチル基、2,2,2-トリフルオロエチル基、1,1,2,2,2-ペンタフルオロエチル基、および1,1,2,2-テトラフルオロエチル基がより好ましく、フルオロメチル基、ジフルオロメチル基、トリフルオロメチル基、2,2,2-トリフルオロエチル基および1,1,2,2,2-ペンタフルオロエチル基がさらに好ましく、トリフルオロメチル基、2,2,2-トリフルオロエチル基および1,1,2,2,2-ペンタフルオロエチル基が特に好ましい。
 また、少なくとも1つのフッ素原子で置換されたC2~C5アルケニル基の例としては、例えば、2,2-ジフルオロエテニル基、1,2,2-トリフルオロエテニル基、3,3-ジフルオロ-2-プロぺニル基、2,3,3-トリフルオロ-2-プロぺニル基、および1,3,3,3-テトラフルオロ-1-プロぺニル基等が挙げられる。
 Mは、二価の金属イオンを表している。二価の金属イオンとしては、例えば、Pb2+、Sn2+、Sr2+、Cu2+、Zn2+、Mn2+、Fe2+、Ni2+、Co2+、V2+、Sm2+、Mg2+、Ca2+、Ge2+、Yb2+、Eu2+、Pd2+およびGe2+が挙げられる。中でも、Pb2+、Sn2+、Sr2+、Cu2+、Zn2+、Mn2+、Fe2+、Ni2+、Co2+、V2+およびSm2+が好ましく、Pb2+およびSn2+がより好ましい。
 Xは、一価のハロゲン原子イオンを表している。一価のハロゲン原子イオンとしては、フッ素イオン、塩素イオン、臭素イオンおよびヨウ素イオンが挙げられる。中でも、塩素イオン、臭素イオンおよびヨウ素イオンが好ましい。なお、複数あるXは全てが同一のハロゲン原子イオンである場合に限定されない。すなわち、X は1種類のハロゲン原子イオンによって形成されているか、または2種類以上のハロゲン原子イオンの組み合わせによって形成されている。
 X が2種類以上のハロゲン原子イオンの組み合わせによって形成されている場合のX の例としては、ClI 3-、BrI 3-、BrCl3-、BrCl 3-、Cl3-、およびBr3-等が挙げられる。あるいは3つあるXが全て異なるハロゲン原子イオンの組み合わせでもよい。さらに、異なるハロゲン原子イオン種が2:1または1:1:1の割合で含まれるような、化学量論係数をとる場合に限定されず、X1a 3-s1b (sは、0<s<3を満たす実数)、あるいはX1a 3-s―t1b 1c (sおよびtは、0<s+t<3を満たす正の実数)として表される組み合わせであってもよい。ここで、X1a、X1bおよびX1cは、互いに異なる一価のハロゲン原子イオンを表している。
 有機無機混成化合物(I)の好ましい一態様は、上記式(I)中、Rが1~7個のフッ素原子で置換されたC1~C3アルキル基である化合物である。
 有機無機混成化合物(I)のより好ましい一態様は、上記式(I)中、Rが1~5個のフッ素原子で置換されたC1~C2アルキル基である化合物である。
 有機無機混成化合物(I)のさらに好ましい一態様は、上記式(I)中、Rがフルオロメチル基、ジフルオロメチル基、トリフルオロメチル基、2,2,2-トリフルオロエチル基または1,1,2,2,2-ペンタフルオロエチル基である化合物である。
 有機無機混成化合物(I)の特に好ましい一態様は、上記の各態様において、MがPb2+またはSn2+である化合物である。
 有機無機混成化合物(I)の最も好ましい一態様は、上記式(I)中、MがPb2+またはSn2+であり、Rがトリフルオロメチル基、2,2,2-トリフルオロエチル基または1,1,2,2,2-ペンタフルオロエチル基である化合物、すなわち、下記式(Ia)で示される化合物である。
CH  ・・・(Ia)
式(Ia)中、Rは、トリフルオロメチル基、2,2,2-トリフルオロエチル基または1,1,2,2,2-ペンタフルオロエチル基を表し、MはPb2+またはSn2+を表し、Xは式(I)におけるXと同じである。
 本実施形態における有機無機混成化合物は、有機無機混成型のペロブスカイト構造を有しているものと推定されるが、式(I)で表される組成を有する限り、ペロブスカイト構造を有するものに限定されるわけではない。
 〔2.有機無機混成化合物の製造方法〕
 有機無機混成化合物(I)は、下記式(II)で示される、ハロゲン置換炭化水素基を有するアミンのハロゲン化水素塩(以下、アミンハロゲン化水素塩(II)という)と、下記式(III)で示されるハロゲン化金属(以下、ハロゲン化金属(III)という)とを溶媒中で反応させることにより製造することができる。
CH ・・・(II)
 ・・・(III)
(式(II)中、Rは少なくとも1つのハロゲン原子で置換されたC1~C5アルキル基またはC2~C5アルケニル基を表し、Xはハロゲン原子イオンを表す。また、式(III)中、Mは二価の金属イオンを表し、Xは一価のハロゲン原子イオンを表す。)
 (アミンハロゲン化水素塩(II))
 有機無機混成化合物(I)の製造に使用されるアミンハロゲン化水素塩(II)は、下記式(II)で示されるハロゲン置換炭化水素アミンのハロゲン化水素塩である。
CH ・・・(II)
 Rは、式(I)におけるRと同じである。
 Xは、一価のハロゲン原子イオンを表しており、詳細には式(I)におけるXに含まれている一価のハロゲン原子イオンである。そのため、一価のハロゲン原子イオンとしては、フッ素イオン、塩素イオン、臭素イオンおよびヨウ素イオンが挙げられる。中でも、塩素イオン、臭素イオンおよびヨウ素イオンが好ましい。
 アミンハロゲン化水素塩(II)は、下記式(IV)で示されるアミン(以下、アミン(IV))と、Xのハロゲン原子イオンに対応するハロゲン化水素であるHXを溶液中で混合し、次いで溶媒を留去することにより製造することができる。
CHNH ・・・(IV)
 式(IV)中、Rは、式(II)におけるRと同じである。
 溶媒を留去した後、必要に応じ、溶媒による洗浄または再結晶等の精製工程を加えてもよい。混合および洗浄に使用される溶媒はアミンおよびハロゲン化水素と反応しなければ、特に限定はなく、例えば、メタノール、エタノールおよびイソプロパノール等のアルコール類;ジクロロメタン、クロロホルムおよびジクロロエタン等のハロゲン化炭化水素類;ベンゼン、トルエンおよびキシレン等の芳香族炭化水素類;石油エーテル、ヘキサンおよびメチルシクロヘキサン等の脂肪族炭化水素類;ジエチルエーテル、テトラヒドロフランおよびジオキサン等のエーテル類;N,N-ジメチルホルムアミド、N-メチル-2-ピロリジノン、N,N-ジメチルアセトアミド等のアミド類;酢酸エチル、γ-ブチロラクトン等のエステル類を挙げることができる。さらには、水、アセトニトリル、およびジメチルスルホキシド等も挙げられる。また、これらを2種類以上混合した溶媒も使用できる。
 具体的な条件等は、上記の特許文献1または特許文献3に記載されたメチルアミンヨウ化水素塩の製造方法を参照することで、当業者であれば適宜設定することができる。
 また、アミンの硫酸塩、または目的のハロゲン化水素塩以外のアミンのハロゲン化水素塩等の別の塩が入手可能である場合には、塩交換によって所望のハロゲン化水素塩を得ることができる。塩交換の方法としては、(a)交換に用いる当該別の塩を、溶媒中で水酸化ナトリウム等の塩基で中和し、次いで、生じたアミンと目的とするハロゲン化水素とを反応させることにより交換する方法、(b)イオン交換樹脂を用いて交換する方法、等が可能である。
 アミン(IV)からアミンハロゲン化水素塩(II)を調製する場合、アミン(IV)としては、市販のものを用いてもよく、あるいは、下記式(V)に示すハロゲン化化合物(以下、ハロゲン化化合物(V)という)または下記式(VI)に示すアルコールのスルホン酸エステル化化合物(以下、スルホン酸エステル化化合物(VI)という)を原料として調製したものを用いてもよい。
CH ・・・(V)
CHOZ ・・・(VI)
なお、式(V)中、Rは、式(IV)におけるRと同じであり、Zは、ハロゲン原子を表す。ハロゲン原子としては、例えば、塩素原子、臭素原子およびヨウ素原子が挙げられる。式(VI)中、Rは、式(IV)におけるRと同じであり、Zは、置換スルホニル基を表す。置換スルホニル基としては、例えば、メタンスルホニル基、フェニルスルホニル基、p-メチルフェニルスルホニル基、トリクロロメタンスルホニル基およびトリフルオロメタンスルホニル基等が挙げられる。
 まず、ハロゲン化化合物(V)またはスルホン酸エステル化化合物(VI)を、塩基性条件下で、フタルイミド類またはカルボキサミド類と反応させることにより、N-置換フタルイミド化合物またはN-置換アミド化合物を得る。次いで、保護基であるフタル酸またはカルボン酸を外すことによって、アミン(IV)を得ることができる。
 フタルイミド類としては、フタルイミド等を用いることができる。また、カルボキサミド類としては、ベンズアミド、および酢酸アミド等を用いることができる。例えば、フタルイミドを使用する場合、フタルイミドカリウム等のように、アルカリ金属塩に調製してから使用してもよい。
 脱保護の方法は、従来公知の方法でよく、例えば、ヒドラジンを使用する方法、および酸またはアルカリ水溶液で加水分解する方法が挙げられる。
 スルホン酸エステル化化合物(VI)において、Zが、メタンスルホニル基またはp-メチルフェニルスルホニル基等である場合、R基のハロゲン原子の置換様式によっては、R基の電子吸引性のためにフタルイミド類およびカルボキサミド類との反応性が低下し、反応の進行が緩慢になる場合がある。かかる場合においては、Zとしてはトリクロロメタンスルホニル基またはトリフルオロメタンスルホニル基等の電子吸引性の高い置換スルホニル基であることが好ましい。
 スルホン酸エステル化化合物(VI)は、RCHOHをトリクロロメタンスルホニルクロリド等のハロゲン化スルホニル類と反応させることにより得ることができる。
 また、上記の方法とは別に、置換基がアルケニル基またはアルキニル基であるN-置換フタルイミド類に対し、ハロゲン化水素またはハロゲン分子を付加させた後、フタル酸を外すことによって、少なくとも1つのハロゲン原子で置換されたアルキル基またはアルケニル基を含むアミン(IV)を得ることができる。
 (ハロゲン化金属(III))
 ハロゲン化金属(III)は、下記式(III)で示されるハロゲン化金属である。
 ・・・(III)
式(III)中、Mは二価の金属イオンを表し、Xは一価のハロゲン原子イオンを表す。
 Mは、式(I)におけるMと同じである。
 Xは、一価のハロゲン原子イオンを表しており、詳細には式(I)におけるXに含まれている一価のハロゲン原子イオンである。そのため、一価のハロゲン原子イオンとしては、フッ素イオン、塩素イオン、臭素イオンおよびヨウ素イオンが挙げられる。中でも、塩素イオン、臭素イオンおよびヨウ素イオンが好ましい。Xは、アミンハロゲン化水素塩(II)におけるXとは異なるハロゲン原子イオンでもよく、同一のハロゲン原子イオンでもよい。
 (製造方法)
 アミンハロゲン化水素塩(II)とハロゲン化金属(III)とを溶媒中で反応させることにより、有機無機混成化合物(I)は製造される。ここではアミンハロゲン化水素塩(II)とハロゲン化金属(III)とによる自己組織化反応が進行していると推定されるが、反応原理はこれに限定されるものではない。
 アミンハロゲン化水素塩(II)とハロゲン化金属(III)とを溶媒中で反応させる場合、ハロゲン化金属(III)に対するアミンハロゲン化水素塩(II)の量は、例えば、0.01倍モル~10倍モルであり得、0.1倍モル~5倍モルであることが好ましく、0.5倍モル~2倍モルであることがより好ましく、0.8倍モル~1.2倍モルであることがさらに好ましい。
 溶媒としては、反応させるアミンハロゲン化水素塩(II)とハロゲン化金属(III)とを均一に混合できるものであればよく、例えば、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミドおよびN-メチル-2-ピロリジノン等のアミド類、γ-ブチロラクトン等のエステル類、ならびにジメチルスルホキシド等が挙げられる。中でも、ハロゲン化金属(III)として、ハロゲン化鉛またはハロゲン化錫を用いる場合には、極性溶媒であることが好ましく、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリジノン等のアミド類、ならびにジメチルスルホキシド等の溶媒が特に好ましい。
 アミンハロゲン化水素塩(II)とハロゲン化金属(III)とを混合する際の温度は、例えば、-20~150℃であり、好適には、0~100℃であり、より好適には、10~60℃である。
 有機無機混成化合物(I)の製造方法は上述の方法に限らず、例えば、基体上にハロゲン化金属(III)の層を予め形成しておき、その上に、アミンハロゲン化水素塩(II)を含む溶液を塗布することにより、アミンハロゲン化水素塩(II)とハロゲン化金属(III)とを反応させて、有機無機混成化合物(I)を製造することも可能である。
 さらに、これらの方法以外にも、蒸着による方法、蒸気を利用した溶液プロセス等によっても製造することができる。
 〔3.光電変換素子用組成物〕
 本実施形態における光電変換素子用組成物は、光電変換素子の光電変換を担う部分である光電変換層を形成するための材料として用いられる組成物である。
 (光電変換素子用組成物の第一の態様)
 光電変換素子用組成物の第一の態様は、上述の有機無機混成化合物(I)が溶媒中に溶解または分散してなる光電変換素子用組成物(以下、光電変換素子用組成物Aという)である。
 光電変換素子用組成物Aを対象物に塗布することにより、光電変換素子の光電変換層を形成することができる。したがって、有機無機混成化合物(I)を溶解または分散させる溶媒としては、浸漬、スピンコートおよび印刷等の塗布技術に利用可能な溶媒であって、有機無機混成化合物(I)を溶解し、または有機無機混成化合物(I)を分散させることができれば特に限定されることはない。このような溶媒としては、ジクロロメタン、クロロホルムおよびジクロロエタン等のハロゲン化炭化水素類;ベンゼン、トルエンおよびキシレン等の芳香族炭化水素類;石油エーテル、ヘキサンおよびメチルシクロヘキサン等の脂肪族炭化水素類;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミドおよびN-メチル-2-ピロリジノン等のアミド類;ジエチルエーテル、テトラヒドロフランおよびジオキサンのようなエーテル類;メタノールおよびエタノール等のアルコール類;ならびにアセトンおよびメチルエチルケトン等のケトン類が挙げられる。また、これらの他にも、水、二硫化炭素、アセトニトリル、酢酸エチル、γ-ブチロラクトン、ピリジンおよびジメチルスルホキシド等を溶媒として用いることができる。以上の溶媒は、単独で用いてもよく、2種類以上を混合して用いてもよい。
 光電変換素子用組成物Aにおける有機無機混成化合物(I)の含有量は、例えば、0.01~90重量%であり得、0.1~80重量%であることが好ましく、1~60重量%であることがより好ましく、2~50重量%であることがさらに好ましい。光電変換素子用組成物Aに含まれる有機無機混成化合物(I)は、一種類の有機無機混成化合物(I)でもよく、複数の種類の有機無機混成化合物(I)が混合して含まれていてもよい。
 光電変換素子用組成物Aには、有機無機混成化合物(I)による光電変換の機能を阻害しない限り、他の成分を含んでいてもよい。例えば、光電変換素子用組成物Aは、有機無機混成化合物(I)の他に、光電変換素子に使用できることが知られている有機無機混成化合物であるCHPbX 、CHSnX またはCH(NH)(N)PbX (Xはいずれもハロゲン原子イオンを表す)等を含んでいてもよい。また、CHPbX およびCHSnX 等のメチルアンモニウム基が一価の無機陽イオンに変換された、CsPbX およびCsSnX 等の化合物が含まれていてもよい。ここで、使用される一価の無機陽イオンについては特に限定されず、添加され得る一価の無機陽イオンとしてはLi、Na、K、Rb、Cs、Ag、およびCuが挙げられる。有機無機混成化合物(I)以外の他の成分が含まれている場合、光電変換素子用組成物Aにおける有機無機混成化合物(I)に対する他の成分の割合は、1000重量%以下であることが好ましく、500重量%以下であることがより好ましく、100重量%以下であることがさらに好ましい。
 なお、ホルムアミジニウムイオンはホルムアミジン(CH(NH)=NH)にHイオンが加わった形のイオンを指しており、その共鳴構造から数種類の記載方法が考えられるが、本明細書においてはCH(NH)(N)と記載するものとする。
 さらに、光電変換素子用組成物Aに含めることのできる他の成分として、下記式(X)
(YH)M  ・・・(X)
(式(X)中、QはC1~C6アルキル基、C3~C6アルケニル基またはC3~C6アルキニル基を表し、これらの基はハロゲン原子、C1~C4アルコキシ基またはC1~C4アルキルチオ基で置換されていてもよく、Mは二価の金属イオンを表し、Xは一価のハロゲン原子イオンを表しており、複数あるXは互いに異なるハロゲン原子イオンであってもよく、YおよびYは何れか一方が酸素原子であり、他方が単結合であることを表している。)
で示される有機無機混成化合物(以下、有機無機混成化合物(X)という)が挙げられる。
 Qは、置換または無置換の、C1~C6アルキル基、C3~C6アルケニル基またはC3~C6アルキニル基を表している。また、置換されている場合の置換基は、ハロゲン原子、C1~C4アルコキシ基またはC1~C4アルキルチオ基である。
 C1~C6アルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、n-ペンチル基およびn-へキシル基等が挙げられる。中でも、メチル基、エチル基、イソプロピル基およびn-プロピル基等のC1~C3アルキル基が好ましく、メチル基、エチル基またはn-プロピル基がより好ましい。
 C3~C6アルケニル基としては、2-プロぺニル基、3-メチル-2-プロぺニル基、3,3-ジメチル-2-プロぺニル基および2,4-ペンタジエニル基が挙げられる。中でも、2-プロぺニル基および3-メチル-2-プロぺニル基等のC3~C4アルケニル基が好ましい。
 C3~C6アルキニル基としては、2-プロピニル基、3-メチル-2-プロピニル基、3-エチル-2-プロピニル基および2,4-ペンタジイニル基等が挙げられる。中でも、2-プロピニル基および3-メチル-2-プロピニル基等のC3~C4アルキニル基が好ましい。
 置換基としてのハロゲン原子としては、フッ素原子、塩素原子、臭素原子およびヨウ素原子が挙げられる。中でも、フッ素原子または塩素原子が好ましい。
 ハロゲン置換されたC1~C6アルキル基としては、フルオロメチル基、クロロメチル基、ブロモメチル基、ジフルオロメチル基、トリフルオロメチル基、2-フルオロエチル基、2-ブロモエチル基、2-ヨードエチル基、2,2-ジフルオロエチル基、2,2,2-トリフルオロエチル基、2-クロロ-2,2-ジフルオエチル基、2-ブロモ-2,2-ジフルオロエチル基、2,2-ジクロロ-2-フルオロエチル基、2,2-ジブロモ-2-フルオロエチル基、3-フルオロプロピル基、3-クロロ-3,3-ジフルオロプロピル基、3-ブロモ-3,3-ジフルオロプロピル基、3,3,3-トリフルオロプロピル基、2,2,3,3,3-ペンタフルオロプロピル基、2,2,3,3-テトラフルオロプロピル基、3-クロロ-3,3-ジフルオロプロピル基、3,3-ジクロロ-3-フルオロプロピル基、3,3-ジブロモ-3-フルオロプロピル基、4-フルオロブチル基、2,2,3,4,4,4-ヘキサフルオロブチル基、2,2,3,3,4,4,4-ヘプタフルオロブチル基、3,4-ジブロモ-3,4,4-トリフルオロブチル基および3,4-ジクロロ-3,4,4-トリフルオロブチル基等が挙げられる。
 ハロゲン置換されたC3~C6アルケニル基としては、3,3-ジフルオロ-2-プロぺニル基、3,3-ジクロロ-2-プロぺニル基、3,3-ジブロモ-2-プロぺニル基、2,3,3-トリフルオロ-2-プロぺニル基、4,4-ジフルオロ-3-ブテニル基、3,4,4-トリフルオロ-3-ブテニル基および2,4,4,4-テトラフルオロ-2-ブテニル基等が挙げられる。
 ハロゲン置換されたC3~C6アルキニル基としては、3-フルオロ-2-プロピニル基、3-クロロ-2-プロピニル基、3-ブロモ-2-プロピニル基および4,4,4-トリフルオロメチル-2-ブチニル基等が挙げられる。
 置換基であるC1~C4アルコキシ基としては、メトキシ基、エトキシ基、イソプロポキシ基、n-プロポキシ基およびn-ブトキシ等が挙げられる。中でも、メトキシ基またはエトキシ基であるC1~C2のアルコキシ基が好ましい。
 C1~C4アルコキシ基で置換されたC1~C6アルキル基としては、メトキシメチル基、メトキシエチル基、メトキシプロピル基、メトキシブチル基、メトキシペンチル基、メトキシへキシル基、エトキシメチル基、エトキシエチル基、エトキシプロピル基、n-プロポキシメチル基、i-プロポキシメチル基、n-プロポキシエチル基、i-プロポキシエチル基、n-プロポキシブチル基およびi-プロポキシブチル基等が挙げられる。
 C1~C4アルコキシ基で置換されたC3~C6アルケニル基としては、3,3-ジメトキシ-2-プロぺニル基、3,3-ジエトキシ-2-プロぺニル基、および4,4-ジメトキシ-3-ブテニル基等が挙げられる。
 C1~C4アルコキシ基で置換されたC3~C6アルキニル基としては、3-メトキシ-2-プロピニル基および3-エトキシ-2-プロピニル基等が挙げられる。
 置換基であるC1~C4アルキルチオ基としては、メチルチオ基、エチルチオ基、イソプロピルチオ基、n-プロピルチオ基およびn-ブチルチオ基等が挙げられる。中でも、メチルチオ基またはエチルチオ基であるC1~C2のアルキルチオ基が好ましい。
 C1~C4アルキルチオ基で置換されたC1~C6アルキル基としては、メチルチオメチル基、メチルチオエチル基、メチルチオプロピル基、メチルチオブチル基、メチルチオペンチル基、メチルチオへキシル基、エチルチオメチル基、エチルチオエチル基、エチルチオプロピル基、n-プロピルチオメチル基、i-プロピルチオメチル基、n-プロピルチオエチル基、i-プロピルチオエチル基、n-プロピルチオブチル基およびi-プロピルチオブチル基等が挙げられる。
 C1~C4アルキルチオ基で置換されたC3~C6アルケニル基としては、3,3-ジ(メチルチオ)-2-プロぺニル基、3,3-ジ(エチルチオ)-2-プロぺニル基、および4,4-ジ(メチルチオ)-3-ブテニル基等が挙げられる。
 C1~C4アルキルチオ基で置換されたC3~C6アルキニル基としては、3-メチルチオ-2-プロピニル基、および3-エチルチオ-2-プロピニル基等が挙げられる。
 Qとしては、中でも、C1~C6アルキル基、またはハロゲン原子、C1~C4アルコキシ基もしくはC1~C4アルキルチオ基で置換されているC1~C6アルキル基であることが好ましく、C1~C6アルキル基であることがより好ましく、C1~C3アルキル基であることがさらに好ましい。
 MおよびX、それぞれ有機無機混成化合物(I)におけるMおよびXと同じである。
 YおよびYは何れか一方が酸素原子であり、他方が単結合であることを表している。したがって、有機無機混成化合物(X)は、下記式(Xa)で示される化合物(以下、有機無機混成化合物(Xa)という)および下記式(Xb)で示される化合物(以下、有機無機混成化合物(Xb)という)の何れかの化合物である。
ON  ・・・(Xa)
(OH)M  ・・・(Xb)
 ここで、有機無機混成化合物(Xa)は、式(X)において、Yが酸素原子であり、Yが単結合である化合物に相当し、有機無機混成化合物(Xb)は、式(X)において、Yが単結合であり、Yが酸素原子である化合物に相当する。
 有機無機混成化合物(Xa)および(Xb)の好ましい一態様は、上記式(Xa)および(Xb)中、QがC1~C6アルキル基、またはハロゲン原子、C1~C4アルコキシ基もしくはC1~C4アルキルチオ基で置換されているC1~C6アルキル基である化合物である。
 有機無機混成化合物(Xa)および(Xb)のより好ましい一態様は、上記式(Xa)および(Xb)中、QがC1~C6アルキル基である化合物である。
 有機無機混成化合物(Xa)および(Xb)のより好ましい一態様は、上記式(Xa)および(Xb)中、QがC1~C3アルキル基である化合物である。
 有機無機混成化合物(Xa)および(Xb)のさらに好ましい一態様は、上記の各態様において、MがPb2+またはSn2+である化合物である。
 有機無機混成化合物(Xa)および(Xb)の特に好ましい一態様は、上記式(Xa)および(Xb)中、MがPb2+またはSn2+であり、QがC1~C3アルキル基である化合物、すなわち下記式(Xa’)および(Xb’)で示される化合物である。
ON  ・・・(Xa’)
(OH)M  ・・・(Xb’)
式(Xa’)および(Xb’)中、Qは、C1~C3アルキル基を表し、MはPb2+またはSn2+を表し、Xは式(X)におけるXと同じである。
 有機無機混成化合物(X)は、下記式(XI)で示される、ハロゲン置換炭化水素基を有するアミンのハロゲン化水素塩(以下、アミンハロゲン化水素塩(XI)という)と、上述のハロゲン化金属(III)とを溶媒中で反応させることにより製造することができる。
(YH)X ・・・(XI)
 式(XI)中、Q、YおよびYは、それぞれ式(X)におけるQ、YおよびYと同じである。Xは、上述した式(II)におけるXと同じである。
 アミンハロゲン化水素塩(XI)は、詳細には、下記式(XIa)で示される、酸素原子上に炭化水素置換基を有するヒドロキシルアミンのハロゲン化水素塩、または下記式(XIb)で示される、窒素原子上に炭化水素置換基を有するヒドロキシルアミンのハロゲン化水素塩である。
ON ・・・(XIa)
(OH)X ・・・(XIb)
 アミンハロゲン化水素塩(XI)は、下記式(XII)で示される置換ヒドロキシルアミン(以下、アミン(XII))と、Xのハロゲン原子イオンに対応するハロゲン化水素であるHXを溶液中で混合し、次いで溶媒を留去することにより製造することができる。
NHYH ・・・(XII)
 式(XII)中、Q、YおよびYは、それぞれ式(XI)におけるQ、YおよびYと同じである。
 アミン(XII)からアミンハロゲン化水素塩(XI)を製造する方法、およびアミンハロゲン化水素塩(XI)とハロゲン化金属(III)とから有機無機混成化合物(X)を製造する方法の詳細は、それぞれアミンハロゲン化水素塩(II)を調製する方法、および有機無機混成化合物(I)を製造する方法と同様である。したがって、当業者であれば、上述したアミンハロゲン化水素塩(II)を製造する方法、および有機無機混成化合物(I)を製造する方法の説明に基づき、有機無機混成化合物(X)を製造することができる。
 (光電変換素子用組成物の第二の態様)
 光電変換素子用組成物の第二の態様は、アミンハロゲン化水素塩(II)と、ハロゲン化金属(III)とを溶媒に混合して得られる、光電変換素子用組成物(以下、光電変換素子用組成物Bという)である。
 本態様においても、光電変換素子用組成物Bを対象物に塗布することにより、光電変換素子の光電変換層を形成することができる。したがって、アミンハロゲン化水素塩(II)と、ハロゲン化金属(III)とを混合する際に使用される溶媒は、光電変換素子用組成物の第一の態様において示される溶媒を用いることができる。あるいは、光電変換素子用組成物の第一の態様において示される溶媒以外の溶媒を用いて両者を混合し、その後、光電変換素子用組成物の第一の態様において示される溶媒をさらに添加してもよい。
 ハロゲン化金属(III)に対するアミンハロゲン化水素塩(II)の量は、例えば、0.01倍モル~10倍モルであり得、0.1倍モル~5倍モルであることが好ましく、0.5倍モル~2倍モルであることがより好ましく、0.8倍モル~1.2倍モルであることがさらに好ましい。例えば、後述する実施例2および実施例13に示されるように、アミンハロゲン化水素塩(II)として2,2,2-トリフルオロエチルアミンヨウ化水素塩を用い、ハロゲン化金属(III)としてヨウ化鉛を用いた場合、ハロゲン化金属(III)に対するアミンハロゲン化水素塩(II)の量が3倍モルである実施例13の太陽電池セルで光電効果は得られるものの、ハロゲン化金属(III)に対するアミンハロゲン化水素塩(II)の量が1倍モルである実施例2の太陽電池セルの方が、より優れた光電効果を得ることができる。
 光電変換素子用組成物Bにおけるアミンハロゲン化水素塩(II)の含有量は、例えば、0.001~60重量%であり得、0.1~50重量%であることが好ましく、1~40重量%であることがより好ましく、2~30重量%であることがさらに好ましい。また、光電変換素子用組成物Bにおけるハロゲン化金属(III)の含有量は、例えば、0.1~80重量%であり得、0.5~60重量%であることが好ましく、1~50重量%であることがより好ましく、2~40重量%であることがさらに好ましい。光電変換素子用組成物Bに含まれるハロゲン化金属(III)およびアミンハロゲン化水素塩(II)は、それぞれ、一種類のハロゲン化金属(III)およびアミンハロゲン化水素塩(II)でもよく、複数の種類のハロゲン化金属(III)または複数の種類のアミンハロゲン化水素塩(II)が混合して含まれていてもよい。
 本態様においても、光電変換素子用組成物Bにより形成される光電変換層の機能が損なわれない限り、他の成分を含んでいてもよい。例えば、光電変換素子用組成物Bには、光電変換素子に使用できることが知られている有機無機混成化合物であるCHPbX 、CHSnX またはCH(NH)(N)PbX (Xはいずれもハロゲン原子イオンを表す)等がさらに添加されていてもよい。また、CHPbX およびCHSnX 等のメチルアンモニウム基が一価の無機陽イオンに変換された、CsPbX およびCsSnX 等の化合物が含まれていてもよい。ここで、使用される一価の無機陽イオンについては特に限定されず、添加され得る一価の無機陽イオンとしてはLi、Na、K、Rb、Cs、Ag、およびCuが挙げられる。あるいは、CHPbX またはCH(NH)(N)PbX の形成材料となるCHまたはCH(NH)(N)X等がさらに添加されていてもよい。同様に、CsPbX 等の一価の無機陽イオンを含む化合物の形成材料になるLiX、NaX、KX、RbX、CsX、AgX、およびCuX等の一価の無機陽イオンを含むハロゲン化物が添加されていてもよい。また、アミンハロゲン化水素塩(II)と、ハロゲン化金属(III)とを溶媒に混合して光電変換素子用組成物Bを調製する際に、他の成分としてアミンハロゲン化水素塩(XI)をさらに混合させてもよい。アミンハロゲン化水素塩(II)およびハロゲン化金属(III)以外の他の成分が含まれている場合、光電変換素子用組成物Bにおける有機無機混成化合物(I)を作製する目的で添加されたアミンハロゲン化水素塩(II)およびハロゲン化金属(III)の合計に対する他の成分の割合は、1000重量%以下であることが好ましく、500重量%以下であることがより好ましく、100重量%以下であることがさらに好ましい。
 光電変換素子用組成物Bを用いた場合、対象物へ塗布するより前、または対象物へ塗布した後に、有機無機混成化合物(I)が形成されることにより光電変換を可能にしていると推定されるが、光電変換素子用組成物Bを用いて光電変換を実現できる限り、その作用機序は限定されるものではない。
 (光電変換素子用組成物の第三の態様)
 光電変換素子用組成物の第三の態様は、ハロゲン化金属(III)を含まずに、アミンハロゲン化水素塩(II)が溶媒中に溶解または分散してなる光電変換素子用組成物(以下、光電変換素子用組成物Cという)である。アミンハロゲン化水素塩(II)を含む組成物が、光電変換素子の光電変換層を形成するために好適に用いられることは、本願発明者が見出した新たな知見である。
 第三の態様に関しては、光電変換素子用組成物Cを、ハロゲン化金属(III)により形成された層の上に塗布することにより、光電変換素子の光電変換層を形成することができる。したがって、アミンハロゲン化水素塩(II)を溶解または分散させる溶媒としては、浸漬、スピンコートおよび印刷等の塗布技術に利用可能な溶媒であって、アミンハロゲン化水素塩(II)を溶解し、またはアミンハロゲン化水素塩(II)を分散させることができれば特に限定されることはない。このような溶媒としては、光電変換素子用組成物の第一の態様において示した溶媒を用いることができる。
 また、光電変換素子用組成物Cをハロゲン化金属(III)と混合することにより、上記の光電変換素子用組成物Bを調製してもよい。
 光電変換素子用組成物Cにおけるアミンハロゲン化水素塩(II)の含有量は、例えば、0.01~90重量%であり得、0.1~80重量%であることが好ましく、0.5~70重量%であることがより好ましく、1~60重量%であることがさらに好ましい。光電変換素子用組成物Cに含まれるアミンハロゲン化水素塩(II)は、一種類のアミンハロゲン化水素塩(II)でもよく、複数の種類のアミンハロゲン化水素塩(II)が混合して含まれていてもよい。
 本態様における光電変換素子用組成物Cにおいても、光電変換素子用組成物Cにより形成される光電変換層の機能が損なわれない限り、他の成分を含んでいてもよい。例えば、光電変換素子用組成物Cには、光電変換素子に使用できることが知られている有機無機混成化合物であるCHPbX またはCH(NH)(N)PbX (Xはいずれもハロゲン原子イオンを表す)の形成材料となるCHまたはCH(NH)(N)X等がさらに添加されていてもよい。同様に、CsPbX 等の一価の無機陽イオンを含む化合物の形成材料になるLiX、NaX、KX、RbX、CsX、AgX、およびCuX等の一価の無機陽イオンを含むハロゲン化物が添加されていてもよい。また、他の成分として、アミンハロゲン化水素塩(XI)を含んでいてもよい。アミンハロゲン化水素塩(II)以外の他の成分が含まれている場合、光電変換素子用組成物Cにおけるアミンハロゲン化水素塩(II)に対する他の成分の割合は、1000重量%以下であることが好ましく、500重量%以下であることがより好ましく、100重量%以下であることがさらに好ましい。
 なお、アミンハロゲン化水素塩(II)のうち、下記式(IIa)で示されるフルオロ置換アルキルアミンのヨウ化水素塩は、これまでに報告のない新規な化合物である。
CHNHI ・・・(IIa)
(式(IIa)中、Rは少なくとも1つのフッ素原子で置換されたC1~C5アルキル基を表す。)
 したがって、式(IIa)で示されるフルオロ置換アルキルアミンのヨウ化水素塩も本願発明の範疇に含まれる。
 式(IIa)中、Rにおける少なくとも1つのフッ素原子で置換されたC1~C5アルキルおよびその中の好ましい基としては、Rにおける少なくとも1つのフッ素原子で置換されたC1~C5アルキルおよび好ましい基を挙げることができる。そのため、Rは、好ましくは、少なくとも1つのフッ素原子で置換されたC1~C3アルキル基であり、より好ましくは、1~5つのフッ素原子で置換されたC1~C2アルキル基であり、さらに好ましくは、フルオロメチル基、ジフルオロメチル基、トリフルオロメチル基、2,2,2-トリフルオロエチル基および1,1,2,2,2-ペンタフルオロエチル基であり、特に好ましくはトリフルオロメチル基、2,2,2-トリフルオロエチル基および1,1,2,2,2-ペンタフルオロエチル基である。
 式(IIa)で示されるフルオロ置換アルキルアミンのヨウ化水素塩は、上述のアミンハロゲン化水素塩(II)の製造方法を参照して製造することができる。
 また、既存のCHPbX を光電変換素子用組成物に使用する場合、ある種のアミノ酸のアンモニウム基を有する有機無機混成化合物を添加すると、光電変換活性または素子としての安定性に良好な影響を与えることが報告されている。本発明の光電変換素子用組成物においても、形成される光電変換層の機能が損なわれない限り、アミノ酸のアンモニウム基を有する有機無機混成化合物またはその形成材料を含んでいてもよい。
 具体的なアミノ酸の例としてはグリシン、アラニン、3-アミノプロピオン酸、4-アミノブタン酸、5-アミノペンタン酸および6-アミノヘキサン酸等が挙げられる。これらアミノ酸の分子内にあるアミノ基がプロトン化されて、アンモニウム基を形成する。
 各組成物への混合形式においては光電変換素子用組成物Aに対しては、RPbX 等のアミノ酸有機無機混成化合物として混合される。ここで、Rはアミノ酸からアミノ基を除いた残基である。例えばグリシンである場合には、Rは-CHCOOHで表され、ハイフン(-)部でアミノ基と結合しているものである。アミノ酸有機無機混成化合物を含む場合、有機無機混成化合物(I)に対するアミノ酸有機無機混成化合物の割合は、100重量%以下であることが好ましく、50重量%以下であることがより好ましく、20重量%以下であることがさらに好ましい。
 光電変換素子用組成物Bに対しては、RPbX として添加されてもよく、あるいはアミノ酸有機無機混成化合物の形成材料となるアミノ酸ハロゲン化水素塩として添加されていてもよい。アミノ酸有機無機混成化合物を含む場合、光電変換素子用組成物Bにおけるアミンハロゲン化水素塩(II)およびハロゲン化金属(III)の合計に対する、添加されるもしくは組成物内で形成されるアミノ酸有機無機混成化合物の割合は、100重量%以下であることが好ましく、50重量%以下であることがより好ましく、20重量%以下であることがさらに好ましい。
 また、光電変換素子用組成物Cに対しては、アミノ酸有機無機混成化合物の形成材料となるアミノ酸ハロゲン化水素塩として混合される。アミンハロゲン化水素塩(II)に対するアミノ酸ハロゲン化水素塩の割合は、100重量%以下であることが好ましく、50重量%以下であることがより好ましく、20重量%以下であることがさらに好ましい。
 〔4.光電変換素子〕
 本実施形態における光電変換素子は、透明電極、透明電極に対向する対向電極、および透明電極と対向電極に挟まれた光電変換層を備えている。
 本実施形態における光電変換素子は、光電変換素子として機能し得る限り、他の光電変換素子が有し得る構成をさらに有し得る。例えば、本実施形態における光電変換素子は、さらにナノ多孔質構造を有する金属酸化物半導体を有し、この金属酸化物半導体上に、光電変換層が形成されている構成である。他にも、その態様に応じて、バッファー層、および電荷(電子または正孔)輸送層等を有し得る。
 本実施形態における光電変換素子は、電荷輸送層として、酸化還元化合物を含む電解液を用いている湿式の光電変換素子、および電解液の代わりに電荷輸送可能な固体材料を用いている固体型の光電変換素子の何れの態様でもあり得る。
 (透明電極)
 透明電極の材料は特に限定されず、従来公知の材料を用いることができる。例えば、白金、金、銀、銅、アルミニウム、インジウムおよびチタン等の導電性金属類;黒鉛、カーボンブラック、カーボンナノファイバーおよびカーボンナノチューブ等の導電性炭素;フッ素ドープした酸化スズ(SnO)および酸化亜鉛(ZnO)等の導電性金属酸化物;ならびにインジウム‐スズ酸化物(ITO)およびインジウム-亜鉛酸化物(IZO)等の導電性複合金属酸化物が挙げられる。これらの中でも、光電変換をより効率的に行う観点から透明度の高い材料が好ましく、例えば、フッ素ドープした酸化スズ(SnO)またはインジウム-スズ酸化物(ITO)等がより好ましい。
 透明電極は、透明基板の表面に上記した材料の薄膜を形成することで得られる。薄膜の形成方法に特に制限はなく、スパッタ法、蒸着法、およびペースト分散物を塗布する方法等が挙げられる。
 また、透明基板としては、透明ガラス基板、および透明プラスチック基板等が挙げられる。
 (対向電極)
 対向電極の素材としては、透明電極の素材として例示したものを同様に用いることができる。あるいは、ナトリウム、ナトリウム-カリウム合金、リチウム、マグネシウム、アルミニウム、マグネシウム-銀混合物、マグネシウム-インジウム混合物、アルミニウム-リチウム合金、Al/Al混合物、Al/LiF混合物等を用いることもできる。中でも、白金、金、銀、銅、アルミニウム、インジウムおよびチタン等の導電性金属類、または黒鉛、カーボンブラック、カーボンナノファイバーおよびカーボンナノチューブ等の導電性炭素がより好ましい。
 対向電極は、基板の表面に、または電荷輸送層もしくは光電変換層の上部に直接、上記した材料の薄膜を形成することで得られる。薄膜の形成方法に特に制限はなく、スパッタ法、蒸着法、および分散物を塗布する方法等が挙げられる。
 また、基板としては、透明ガラス基板、セラミック基板、プラスチック基板、および透明プラスチック基板等が挙げられる。
 (ナノ多孔質構造を有する金属酸化物半導体)
 ナノ多孔質構造を有する金属酸化物半導体は、ナノサイズの細孔が内部に網目状に形成されている金属酸化物半導体である。金属酸化物半導体を構成する金属元素としては、チタン、スズ、亜鉛、鉄、タングステン、ジルコニウム、ストロンチウム、インジウム、セリウム、イットリウム、ランタン、バナジウム、ニオブおよびタンタル等が用いられる。金属酸化物半導体として好ましくは、酸化チタン、酸化チタンストロンチウム、酸化亜鉛、酸化スズ、酸化タングステン、および酸化ニオブが挙げられ、中でも、酸化チタン、酸化亜鉛または酸化スズがより好ましく、酸化チタン(TiO)がさらに好ましい。
 ナノ多孔質構造を有する金属酸化物半導体は、上記の金属酸化物半導体のナノ粒子もしくはその前駆体を溶媒に分散して調製する粘性のコロイドもしくはペーストを準備し、この粘性分散物を透明電極上に塗布したのち、塗布層を加熱もしくは焼成することによって固体薄膜として得ることができる。
 (バッファー層)
 光電変換素子を固体型の光電変換素子とする場合には、透明電極と、金属酸化物半導体層との間に、バッファー層が設けられている。バッファー層は、固体材料により形成された電荷輸送層と、透明電極を隔離し、両者の電気的接触を防止する役割を果たす層である。そのため、バッファー層は、細孔を有していない緻密な構造からなる層である。バッファー層を形成する材料として好ましいものは、金属酸化物であり、中でも酸化チタン、酸化亜鉛、酸化ニオブ、酸化スズおよび酸化ジルコニウム等が好ましく、酸化チタンがより好ましい。
 (光電変換層)
 ナノ多孔質構造を有する金属酸化物半導体の表面に、光電変換層が形成されている。本実施形態における光電変換層は、下記(a)~(c)の何れかの層であり得る:
(a)有機無機混成化合物(I)を含む層、
(b)光電変換素子用組成物Aまたは光電変換素子用組成物Bにより形成された層、
(c)ハロゲン化金属(III)上に、光電変換素子用組成物Cを塗布することにより形成された層。
 光電変換層は、例えば、以下の(i)または(ii)の方法によって形成することができる:
(i)光電変換素子用組成物A、または光電変換素子用組成物Bを、ナノ多孔質構造を有する金属酸化物半導体の層上に塗布する。
(ii)ナノ多孔質構造を有する金属酸化物半導体の層上に、ハロゲン化金属(III)を含む塗布剤を塗布して予めハロゲン化金属(III)の層を形成し、そこに、光電変換素子用組成物Cを塗布する。
 各光電変換素子用組成物、およびハロゲン化金属(III)を含む塗布剤を塗布する方法としては、浸漬法、スピンコート法、および印刷等、従来の塗布技術を用いることができる。
 (電荷輸送層)
 電荷輸送層は、光電変換素子の態様に応じて、液体材料および固体材料の何れをも用いることができる。
 電荷輸送層を形成し得る液体材料としては、色素増感型太陽電池によく使用される、ヨウ素イオン-ヨウ素間の酸化還元反応を利用した溶液を好ましく使用できる。すなわち、ヨウ化ナトリウムおよびヨウ化カリウム等の無機塩、ヨウ化テトラエチルアンモニウム、ヨウ化ベンジルトリメチルアンモニウム等の4級アルキルアンモニウム塩、ヨウ化1-メチル-3-プロピル-1H-イミダゾール-3-イウム等のイミダゾリウム塩、ならびにヨウ化N-メチルピリニジウム等のピリジニウム塩等の各種ヨウ化物塩と、ヨウ素とをアルコールまたはニトリル類等の溶媒に溶解した混合溶液を好ましく使用できる。
 電荷輸送層を形成し得る固体材料としては、ヨウ化銅およびチオシアン化銅等の無機系正孔輸送材料、ならびに2,2’,7,7’-テトラキス(N,N-ジ(p-メトキシフェニル)アミノ)-9,9’-バイフルオレン(spiro-OMeTAD)、ポリトリアリールアミン、ぺリレンおよびポリ(3-ヘキシルチオフェン-2,5-ジイル)(P3HT)等の有機系正孔輸送材料を含有する材料等が挙げられる。また、これらを使用する場合、リチウムビス(トリフルオロメチルスルホニル)イミド等の助剤を加えてもよい。
 〔5.まとめ〕
 以上のように、本発明に係る有機無機混成化合物は、下記式(I)
CH  ・・・(I)
(式(I)中、Rは少なくとも1つのハロゲン原子で置換されたC1~C5アルキル基またはC2~C5アルケニル基を表し、Mは二価の金属イオンを表し、Xは一価のハロゲン原子イオンを表しており、X は1種類のハロゲン原子イオンによって、または2種類以上のハロゲン原子イオンの組み合わせによって形成されている。)
で示される有機無機混成化合物である。
 また、本発明に係る有機無機混成化合物では、上記式(I)中、Rは少なくとも1つのフッ素原子で置換されたC1~C5アルキル基またはC2~C5アルケニル基であることが好ましい。
 また、本発明に係る有機無機混成化合物では、上記式(I)中、Rは1~5つのフッ素原子で置換されたC1~C2アルキル基であることが好ましい。
 また、本発明に係る有機無機混成化合物では、上記式(I)中、Rはフルオロメチル基、ジフルオロメチル基、トリフルオロメチル基、2,2,2-トリフルオロエチル基または1,1,2,2,2-ペンタフルオロエチル基であることが好ましい。
 また、本発明に係る有機無機混成化合物では、上記式(I)中、Rはトリフルオロメチル基、2,2,2-トリフルオロエチル基または1,1,2,2,2-ペンタフルオロエチル基であることが好ましい。
 また、本発明に係る有機無機混成化合物では、上記式(I)中、MはPb2+、Sn2+、Sr2+、Cu2+、Zn2+、Mn2+、Fe2+、Ni2+、Co2+、V2+またはSm2+であることが好ましい。
 また、本発明に係る有機無機混成化合物では、上記式(I)中、MはPb2+またはSn2+であることが好ましい。
 また、本発明に係る有機無機混成化合物は、下記式(Ia)
CH  ・・・(Ia)
(式(Ia)中、Rは、トリフルオロメチル基、2,2,2-トリフルオロエチル基または1,1,2,2,2-ペンタフルオロエチル基を表し、MはPb2+またはSn2+を表し、Xは、上記式(I)におけるXと同じである。)
で示される有機無機混成化合物であることが好ましい。
 本発明に係る光電変換素子用組成物の一態様は、上述の有機無機混成化合物を含む光電変換素子用組成物である。
 また、本発明に係る光電変換素子用組成物の上記の一態様においては、下記式(X)
(YH)M  ・・・(X)
(式(X)中、QはC1~C6アルキル基、C3~C6アルケニル基またはC3~C6アルキニル基を表し、これらの基はハロゲン原子、C1~C4アルコキシ基またはC1~C4アルキルチオ基で置換されていてもよく、Mは二価の金属イオンを表し、Xは一価のハロゲン原子イオンを表しており、複数あるXは互いに異なるハロゲン原子イオンであってもよく、YおよびYは何れか一方が酸素原子であり、他方が単結合であることを表している。)
で示される有機無機混成化合物をさらに含んでいてもよい。
 本発明に係る光電変換素子用組成物の別の態様は、下記式(II)
CH ・・・(II)
(式(II)中、Rは少なくとも1つのハロゲン原子で置換されたC1~C5アルキル基またはC2~C5アルケニル基を表し、Xはハロゲン原子イオンを表す。)
で示されるアミンハロゲン化水素塩と、下記式(III)
 ・・・(III)
(式(III)中、Mは二価の金属イオンを表し、Xは一価のハロゲン原子イオンを表す。)
で示されるハロゲン化金属とを混合して得られる、光電変換素子用組成物である。
 また、本発明に係る光電変換素子用組成物の上記の別の態様においては、上記ハロゲン化金属に対する上記アミンハロゲン化水素塩の量が、0.5倍モル~2倍モルであることが好ましい。
 また、本発明に係る光電変換素子用組成物の上記の別の態様においては、下記式(XI)
(YH)X ・・・(XI)
(式(XI)中、QはC1~C6アルキル基、C3~C6アルケニル基またはC3~C6アルキニル基を表し、これらの基はハロゲン原子、C1~C4アルコキシ基またはC1~C4アルキルチオ基で置換されていてもよく、Xはハロゲン原子イオンを表しており、YおよびYは何れか一方が酸素原子であり、他方が単結合であることを表している。)
で示されるアミンハロゲン化水素塩がさらに混合されていてもよい。
 本発明に係る光電変換素子用組成物のさらに別の態様は、
 下記式(II)
CH ・・・(II)
(式(II)中、Rは少なくとも1つのハロゲン原子で置換されたC1~C5アルキル基またはC2~C5アルケニル基を表し、Xはハロゲン原子イオンを表す。)で示されるアミンハロゲン化水素塩を含む、光電変換素子用組成物である。
 また、本発明に係る光電変換素子用組成物の上記のさらなる別の態様では、上記式(II)中、Rは少なくとも1つのフッ素原子で置換されたC1~C5アルキル基またはC2~C5アルケニル基であることが好ましい。
 また、本発明に係る光電変換素子用組成物の上記のさらなる別の態様では、上記式(II)中、Rは1~5つのフッ素原子で置換されたC1~C2アルキル基であることが好ましい。
 また、本発明に係る光電変換素子用組成物の上記のさらなる別の態様では、上記式(II)中、Rはフルオロメチル基、ジフルオロメチル基、トリフルオロメチル基、2,2,2-トリフルオロエチル基または1,1,2,2,2-ペンタフルオロエチル基であることが好ましい。
 また、本発明に係る光電変換素子用組成物の上記のさらなる別の態様では、上記式(II)中、Rはトリフルオロメチル基、2,2,2-トリフルオロエチル基または1,1,2,2,2-ペンタフルオロエチル基であることが好ましい。
 また、本発明に係る光電変換素子用組成物の上記のさらなる別の態様では、下記式(XI)
(YH)X ・・・(XI)
(式(XI)中、QはC1~C6アルキル基、C3~C6アルケニル基またはC3~C6アルキニル基を表し、これらの基はハロゲン原子、C1~C4アルコキシ基またはC1~C4アルキルチオ基で置換されていてもよく、Xはハロゲン原子イオンを表しており、YおよびYは何れか一方が酸素原子であり、他方が単結合であることを表している。)
で示されるアミンハロゲン化水素塩をさらに含んでいてもよい。
 本発明に係るアミンヨウ化水素塩は、下記式(IIa)
CHNHI ・・・(IIa)
(式(IIa)中、Rは少なくとも1つのフッ素原子で置換されたC1~C5アルキル基を表す。)
で示されるアミンヨウ化水素塩である。
 また、本発明に係るアミンヨウ化水素塩では、上記式(IIa)中、Rは1~5つのフッ素原子で置換されたC1~C2アルキル基であることが好ましい。
 また、本発明に係るアミンヨウ化水素塩では、上記式(IIa)中、Rはフルオロメチル基、ジフルオロメチル基、トリフルオロメチル基、2,2,2-トリフルオロエチル基または1,1,2,2,2-ペンタフルオロエチル基であることが好ましい。
 また、本発明に係るアミンヨウ化水素塩では、上記式(IIa)中、Rはトリフルオロメチル基、2,2,2-トリフルオロエチル基または1,1,2,2,2-ペンタフルオロエチル基であることが好ましい。
 本発明に係る光電変換素子は、透明電極と、該透明電極に対向する対向電極と、該透明電極および該対向電極に挟まれた光電変換層とを備える光電変換素子であって、上記光電変換層が、下記(a)~(c)の何れかの層である光電変換素子である:
(a)上述の有機無機混成化合物を含む層、
(b)上述の組成物により形成された層、および、
(c)下記式(III)
 ・・・(III)
(式(III)中、Mは二価の金属イオンを表し、Xは一価のハロゲン原子イオンを表す。)
で示されるハロゲン化金属上に上述の組成物を塗布することにより形成された層。
 本発明に係る光電変換素子用組成物の製造方法は、
 下記式(II)
CH ・・・(II)
(式(II)中、Rは少なくとも1つのハロゲン原子で置換されたC1~C5アルキル基またはC2~C5アルケニル基を表し、Xはハロゲン原子イオンを表す。)
で示されるアミンハロゲン化水素塩と、
 下記式(III)
 ・・・(III)
(式(III)中、Mは二価の金属イオンを表し、Xは一価のハロゲン原子イオンを表す。)
で示されるハロゲン化金属とを混合する工程を含む。
 本発明に係る光電変換素子の製造方法は、透明電極と、該透明電極に対向する対向電極と、該透明電極および該対向電極に挟まれた光電変換層とを備える光電変換素子の製造方法であって、
 下記(a)~(c)の何れかの工程により上記光電変換層を形成することを含む、光電変換素子の製造方法である:
(a)上述の有機無機混成化合物を用いて上記光電変換層を形成する工程、
(b)上述の組成物を用いて上記光電変換層を形成する工程、および、
(c)下記式(III)
 ・・・(III)
(式(III)中、Mは二価の金属イオンを表し、Xは一価のハロゲン原子イオンを表す。)
で示されるハロゲン化金属上に上述の組成物を塗布することにより上記光電変換層を形成する工程。
 以下に実施例を示し、本発明の実施の形態についてさらに詳しく説明する。もちろん、本発明は以下の実施例に限定されるものではなく、細部については様々な態様が可能であることはいうまでもない。さらに、本発明は上述した実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、それぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。また、本明細書中に記載された文献の全てが参考として援用される。
 〔太陽電池セルの作製〕
 (実施例1)
 2,2,2-トリフルオロエチルアミン塩酸塩およびヨウ化鉛を等モルとなるように秤量したのち、2,2,2-トリフルオロエチルアミン塩酸塩およびヨウ化鉛の合計重量が溶液全体の20重量%となるように、ジメチルホルムアミド(DMF)に溶解し、光電変換素子用溶液を調製した。
 ナノ多孔質状TiOがガラス電極上に予め形成されている酸化チタン焼付済みガラス電極(4cm×2cm、酸化チタン塗布部3cm×2cm;西野田電工社製)を試料台に固定した。スピンコーター(ミカサスピナー1H-D2、ミカサ社製)を用いて、60rpm、25秒間の条件でスピンさせている間に、酸化チタン焼付済みガラス電極上に、調製した光電変換素子用溶液を滴下した。滴下後、550rpmまたは2000rpmで60秒間スピンさせた。光電変換素子用溶液が塗布された酸化チタン焼付済みガラス電極を10分間室温で放置した後、70℃で2時間乾燥した。
 得られた乾燥後の電極に、電解液(ヨウ化ナトリウムおよびヨウ素を含むエタノール溶液、西野田電工社製)を滴下し、一方の表面を鉛筆で黒く塗った透明ガラス電極(4cm×2cm、西野田電工社製)を、鉛筆で塗った方の面を内側にして、電解液を滴下したガラス基板の上に載せて、太陽電池セル(光電変換素子)を作製した。
 (実施例2)
 2,2,2-トリフルオロエチルアミン塩酸塩の代わりに2,2,2-トリフルオロエチルアミンヨウ化水素塩を用いた以外は、実施例1と同様にして太陽電池セルを作製した。
 (実施例3)
 2,2,2-トリフルオロエチルアミン塩酸塩の代わりに3,3,3-トリフルオロプロピルアミン塩酸塩を用いた以外は、実施例1と同様にして太陽電池セルを作製した。
 (実施例4)
 2,2,2-トリフルオロエチルアミン塩酸塩の代わりに2,2,3,3,3-ペンタフルオロプロピルアミン塩酸塩を用いた以外は、実施例1と同様にして太陽電池セルを作製した。
 (実施例5)
 2,2,2-トリフルオロエチルアミン塩酸塩の代わりに2,2,2-トリフルオロエチルアミン塩酸塩とメチルアミン塩酸塩とを3:1のモル比で混合して用いた以外は、実施例1と同様にして太陽電池セルを作製した。
 (実施例6)
 2,2,2-トリフルオロエチルアミン塩酸塩の代わりに2,2,2-トリフルオロエチルアミン塩酸塩とホルムアミジニウム塩酸塩とを3:1のモル比で混合して用いた以外は、実施例1と同様にして太陽電池セルを作製した。
 (実施例7)
 2,2,2-トリフルオロエチルアミン塩酸塩の代わりに2,2,2-トリフルオロエチルアミン塩酸塩とホルムアミジニウム塩酸塩とを1:1のモル比で混合して用いた以外は、実施例1と同様にして太陽電池セルを作製した。
 (実施例8)
 2,2,2-トリフルオロエチルアミン塩酸塩の代わりに2,2,2-トリフルオロエチルアミン塩酸塩とヨウ化セシウムとを9:1のモル比で混合し、かつ、溶解する溶媒としてDMFの代わりにDMFとジメチルスルホキシド(DMSO)とを1:1の重量比で混合して用いた以外は、実施例1と同様にして太陽電池セルを作製した。
 (実施例9)
 ヨウ化鉛の代わりにヨウ化鉛とヨウ化錫とを9:1のモル比で混合し、かつ、溶解する溶媒としてDMFの代わりにDMFとDMSOとを1:1の重量比で混合して用いた以外は、実施例1と同様にして太陽電池セルを作製した。
 (実施例10)
 2,2,2-トリフルオロエチルアミン塩酸塩の代わりに2,2,3,3,3-ペンタフルオロプロピルアミンヨウ化水素塩を用いた以外は、実施例1と同様にして太陽電池セルを作製した。
 (実施例11)
 2,2,2-トリフルオロエチルアミン塩酸塩の代わりに2,2,2-トリフルオロエチルアミン塩酸塩と5-アミノ吉草酸塩酸塩(5-アミノペンタン酸塩酸塩)とを8:2のモル比で混合して用いた以外は、実施例1と同様にして太陽電池セルを作製した。
 (実施例12)
 2,2,2-トリフルオロエチルアミン塩酸塩の代わりに2,2,2-トリフルオロエチルアミンヨウ化水素塩とホルムアミジニウムヨウ化水素塩とを3:1のモル比で混合して用いた以外は、実施例1と同様にして太陽電池セルを作製した。
 (実施例13)
 2,2,2-トリフルオロエチルアミン塩酸塩の代わりに2,2,2-トリフルオロエチルアミンヨウ化水素塩を用い、かつ、2,2,2-トリフルオロエチルアミンヨウ化水素塩の使用量をヨウ化鉛の3倍モルとした以外は、実施例1と同様にして太陽電池セルを作製した。
 (実施例14)
 2,2,2-トリフルオロエチルアミン塩酸塩の代わりに2,2,2-トリフルオロエチルアミン塩酸塩とグリシン塩酸塩とを9:1のモル比で混合して用いた以外は、実施例1と同様にして太陽電池セルを作製した。
 (実施例15)
 2,2,2-トリフルオロエチルアミン塩酸塩の代わりに2,2,2-トリフルオロエチルアミン塩酸塩とメトキシアミン塩酸塩とを1:3のモル比で混合して用いた以外は、実施例1と同様にして太陽電池セルを作製した。
 (実施例16)
 2,2,2-トリフルオロエチルアミン塩酸塩の代わりに2,2,2-トリフルオロエチルアミン塩酸塩とメトキシアミン塩酸塩とを1:1のモル比で混合して用いた以外は、実施例1と同様にして太陽電池セルを作製した。
 (実施例17)
 2,2,2-トリフルオロエチルアミン塩酸塩の代わりに2,2,2-トリフルオロエチルアミン塩酸塩とメトキシアミン塩酸塩とを3:1のモル比で混合して用いた以外は、実施例1と同様にして太陽電池セルを作製した。
 (比較例1)
 2,2,2-トリフルオロエチルアミン塩酸塩の代わりにメチルアミン塩酸塩を用いた以外は、実施例1と同様にして太陽電池セルを作製した。
 (比較例2)
 2,2,2-トリフルオロエチルアミン塩酸塩の代わりにエチルアミン塩酸塩を用いた以外は、実施例1と同様にして太陽電池セルを作製した。
 (比較例3)
 2,2,2-トリフルオロエチルアミン塩酸塩の代わりにメチルアミンヨウ化水素塩を用いた以外は、実施例1と同様にして太陽電池セルを作製した。
 (比較例4)
 光電変換素子用溶液を用いなかった以外は、実施例1と同様にして太陽電池セルを作製した。
 (比較例5)
 2,2,2-トリフルオロエチルアミン塩酸塩の代わりにホルムアミジニウムヨウ化水素塩を用いた以外は、実施例1と同様にして太陽電池セルを作製した。
 (比較例6)
 2,2,2-トリフルオロエチルアミン塩酸塩の代わりに5-アミノ吉草酸塩酸塩を用いた以外は、実施例1と同様にして太陽電池セルを作製した。
 (参考例1)
 2,2,2-トリフルオロエチルアミン塩酸塩の代わりにメトキシアミン塩酸塩を用いた以外は、実施例1と同様にして太陽電池セルを作製した。
 (2,2,2-トリフルオロエチルアミンヨウ化水素塩の製造例)
 実施例2で使用した2,2,2-トリフルオロエチルアミンヨウ化水素塩は以下のようにして調製した。
 2,2,2-トリフルオロエチルアミン(5.0g)をメタノール(50ml)に溶解した後、この溶液を氷浴で冷却しながら、57%ヨウ化水素酸水溶液(7.8ml)を滴下した。滴下後、滴下ロートに残存したヨウ化水素酸をメタノール(10ml)を用いて洗い、洗液も上記溶液に加えた。約10分間、氷浴下で撹拌した後、氷浴を除き、30分間撹拌した。得られた反応液を濃縮した後、トルエンを加え、留去する操作を3回繰り返した。得られた粗固体をジエチルエーテルで洗浄した後、減圧下乾燥して目的物を得た。収量11.1g 収率97% 融点129℃
 (2,2,3,3,3-ペンタフルオロプロピルアミンヨウ化水素塩の製造例)
 実施例11で使用した2,2,3,3,3-ペンタフルオロプロピルアミンヨウ化水素塩は以下のようにして調製した。
 2,2,3,3,3-ペンタフルオロプロピルアミン(4.5g)をメタノール(50ml)に溶解した後、この溶液を氷浴で冷却しながら、57%ヨウ化水素酸水溶液(4.0ml)を滴下した。滴下後、約10分間、氷浴下で撹拌した後、氷浴を除き、30分間撹拌した。得られた反応液を濃縮した後、トルエンを加え、留去する操作を2回繰り返した。得られた粗固体をトルエンおよびジエチルエーテルで洗浄した後、減圧下乾燥して目的物を得た。収量7.93g 収率95% 融点(分解点)約260℃
 〔太陽電池セルの評価〕
 作製した太陽電池セルを太陽電池分析計(PROVA社製)に接続し、短絡電流、解放電圧および最大出力電力を測定した。測定は、300Wソーラーシュミレーター(Newport Stratford製)下で、各太陽電池セルに同一光量の光を照射して実施した。
 結果を表1~表3に示す。表1は、光電変換素子用溶液を滴下した後、550rpmで試料をスピンさせることで、光電変換素子用溶液を塗布したものの測定結果を示しており、表2および表3は、光電変換素子用溶液を滴下した後、2000rpmで試料をスピンさせることで、光電変換素子用溶液を塗布したものの測定結果を示している。なお、複数回測定を実施したものに関しては、その平均値を測定値とした。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 本発明は、太陽電池に関する技術分野に利用することができる。

Claims (26)

  1.  下記式(I)
    CH  ・・・(I)
    (式(I)中、Rは少なくとも1つのハロゲン原子で置換されたC1~C5アルキル基またはC2~C5アルケニル基を表し、Mは二価の金属イオンを表し、Xは一価のハロゲン原子イオンを表しており、X は1種類のハロゲン原子イオンによって、または2種類以上のハロゲン原子イオンの組み合わせによって形成されている。)
    で示される有機無機混成化合物。
  2.  上記式(I)中、Rは少なくとも1つのフッ素原子で置換されたC1~C5アルキル基またはC2~C5アルケニル基である、請求項1に記載の有機無機混成化合物。
  3.  上記式(I)中、Rは1~5つのフッ素原子で置換されたC1~C2アルキル基である、請求項1または2に記載の有機無機混成化合物。
  4.  上記式(I)中、Rはフルオロメチル基、ジフルオロメチル基、トリフルオロメチル基、2,2,2-トリフルオロエチル基または1,1,2,2,2-ペンタフルオロエチル基である、請求項1~3の何れか一項に記載の有機無機混成化合物。
  5.  上記式(I)中、Rはトリフルオロメチル基、2,2,2-トリフルオロエチル基または1,1,2,2,2-ペンタフルオロエチル基である、請求項1~4の何れか一項に記載の有機無機混成化合物。
  6.  上記式(I)中、MはPb2+、Sn2+、Sr2+、Cu2+、Zn2+、Mn2+、Fe2+、Ni2+、Co2+、V2+またはSm2+である、請求項1~5の何れか一項に記載の有機無機混成化合物。
  7.  上記式(I)中、MはPb2+またはSn2+である、請求項1~6の何れか一項に記載の有機無機混成化合物。
  8.  下記式(Ia)
    CH  ・・・(Ia)
    (式(Ia)中、Rは、トリフルオロメチル基、2,2,2-トリフルオロエチル基または1,1,2,2,2-ペンタフルオロエチル基を表し、MはPb2+またはSn2+を表し、Xは、上記式(I)におけるXと同じである。)
    で示される、請求項1に記載の有機無機混成化合物。
  9.  請求項1~8の何れか一項に記載の有機無機混成化合物を含む、光電変換素子用組成物。
  10.  下記式(X)
    (YH)M  ・・・(X)
    (式(X)中、QはC1~C6アルキル基、C3~C6アルケニル基またはC3~C6アルキニル基を表し、これらの基はハロゲン原子、C1~C4アルコキシ基またはC1~C4アルキルチオ基で置換されていてもよく、Mは二価の金属イオンを表し、Xは一価のハロゲン原子イオンを表しており、複数あるXは互いに異なるハロゲン原子イオンであってもよく、YおよびYは何れか一方が酸素原子であり、他方が単結合であることを表している。)
    で示される有機無機混成化合物をさらに含む、請求項9に記載の光電変換素子用組成物。
  11.  下記式(II)
    CH ・・・(II)
    (式(II)中、Rは少なくとも1つのハロゲン原子で置換されたC1~C5アルキル基またはC2~C5アルケニル基を表し、Xはハロゲン原子イオンを表す。)
    で示されるアミンハロゲン化水素塩と、
     下記式(III)
     ・・・(III)
    (式(III)中、Mは二価の金属イオンを表し、Xは一価のハロゲン原子イオンを表す。)
    で示されるハロゲン化金属とを混合して得られる、光電変換素子用組成物。
  12.  上記ハロゲン化金属に対する上記アミンハロゲン化水素塩の量が、0.5倍モル~2倍モルである、請求項11に記載の光電変換素子用組成物。
  13.  下記式(XI)
    (YH)X ・・・(XI)
    (式(XI)中、QはC1~C6アルキル基、C3~C6アルケニル基またはC3~C6アルキニル基を表し、これらの基はハロゲン原子、C1~C4アルコキシ基またはC1~C4アルキルチオ基で置換されていてもよく、Xはハロゲン原子イオンを表しており、YおよびYは何れか一方が酸素原子であり、他方が単結合であることを表している。)
    で示されるアミンハロゲン化水素塩がさらに混合されている、請求項11または12に記載の光電変換素子用組成物。
  14.  下記式(II)
    CH ・・・(II)
    (式(II)中、Rは少なくとも1つのハロゲン原子で置換されたC1~C5アルキル基またはC2~C5アルケニル基を表し、Xはハロゲン原子イオンを表す。)
    で示されるアミンハロゲン化水素塩を含む、光電変換素子用組成物。
  15.  上記式(II)中、Rは少なくとも1つのフッ素原子で置換されたC1~C5アルキル基またはC2~C5アルケニル基である、請求項14に記載の光電変換素子用組成物。
  16.  上記式(II)中、Rは1~5つのフッ素原子で置換されたC1~C2アルキル基である、請求項14または15に記載の光電変換素子用組成物。
  17.  上記式(II)中、Rはフルオロメチル基、ジフルオロメチル基、トリフルオロメチル基、2,2,2-トリフルオロエチル基または1,1,2,2,2-ペンタフルオロエチル基である、請求項14~16の何れか一項に記載の光電変換素子用組成物。
  18.  上記式(II)中、Rはトリフルオロメチル基、2,2,2-トリフルオロエチル基または1,1,2,2,2-ペンタフルオロエチル基である、請求項14~17の何れか一項に記載の光電変換素子用組成物。
  19.  下記式(XI)
    (YH)X ・・・(XI)
    (式(XI)中、QはC1~C6アルキル基、C3~C6アルケニル基またはC3~C6アルキニル基を表し、これらの基はハロゲン原子、C1~C4アルコキシ基またはC1~C4アルキルチオ基で置換されていてもよく、Xはハロゲン原子イオンを表しており、YおよびYは何れか一方が酸素原子であり、他方が単結合であることを表している。)
    で示されるアミンハロゲン化水素塩をさらに含む、請求項14~18の何れか一項に記載の光電変換素子用組成物。
  20.  下記式(IIa)
    CHNHI ・・・(IIa)
    (式(IIa)中、Rは少なくとも1つのフッ素原子で置換されたC1~C5アルキル基を表す。)
    で示されるアミンヨウ化水素塩。
  21.  上記式(IIa)中、Rは1~5つのフッ素原子で置換されたC1~C2アルキル基である、請求項20に記載のアミンヨウ化水素塩。
  22.  上記式(IIa)中、Rはフルオロメチル基、ジフルオロメチル基、トリフルオロメチル基、2,2,2-トリフルオロエチル基または1,1,2,2,2-ペンタフルオロエチル基である、請求項20または21に記載のアミンヨウ化水素塩。
  23.  上記式(IIa)中、Rはトリフルオロメチル基、2,2,2-トリフルオロエチル基または1,1,2,2,2-ペンタフルオロエチル基である、請求項20~22の何れか一項に記載のアミンヨウ化水素塩。
  24.  透明電極と、該透明電極に対向する対向電極と、該透明電極および該対向電極に挟まれた光電変換層とを備える光電変換素子であって、
     上記光電変換層が、下記(a)~(c)の何れかの層であることを特徴とする光電変換素子:
    (a)請求項1~8の何れか一項に記載の有機無機混成化合物を含む層、
    (b)請求項9~13の何れか一項に記載の組成物により形成された層、および、
    (c)下記式(III)
     ・・・(III)
    (式(III)中、Mは二価の金属イオンを表し、Xは一価のハロゲン原子イオンを表す。)
    で示されるハロゲン化金属上に請求項14~19の何れか一項に記載の組成物を塗布することにより形成された層。
  25.  下記式(II)
    CH ・・・(II)
    (式(II)中、Rは少なくとも1つのハロゲン原子で置換されたC1~C5アルキル基またはC2~C5アルケニル基を表し、Xはハロゲン原子イオンを表す。)
    で示されるアミンハロゲン化水素塩と、
     下記式(III)
     ・・・(III)
    (式(III)中、Mは二価の金属イオンを表し、Xは一価のハロゲン原子イオンを表す。)
    で示されるハロゲン化金属とを混合する工程を含む、光電変換素子用組成物の製造方法。
  26.  透明電極と、該透明電極に対向する対向電極と、該透明電極および該対向電極に挟まれた光電変換層とを備える光電変換素子の製造方法であって、
     下記(a)~(c)の何れかの工程により上記光電変換層を形成することを含む、光電変換素子の製造方法:
    (a)請求項1~8の何れか一項に記載の有機無機混成化合物を用いて上記光電変換層を形成する工程、
    (b)請求項9~13の何れか一項に記載の組成物を用いて上記光電変換層を形成する工程、および、
    (c)下記式(III)
     ・・・(III)
    (式(III)中、Mは二価の金属イオンを表し、Xは一価のハロゲン原子イオンを表す。)
    で示されるハロゲン化金属上に請求項14~19の何れか一項に記載の組成物を塗布することにより上記光電変換層を形成する工程。
PCT/JP2015/074092 2014-09-16 2015-08-26 有機無機混成化合物、アミンヨウ化水素塩、光電変換素子用組成物、および光電変換素子 WO2016043002A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/511,674 US20170260125A1 (en) 2014-09-16 2015-08-26 Organic-inorganic hybrid compound, amine hydrogen iodide salt, composition for photoelectric conversion element, and photoelectric conversion element
JP2016548802A JP6181317B2 (ja) 2014-09-16 2015-08-26 光電変換素子用組成物、および光電変換素子
CN201580048129.2A CN106660941A (zh) 2014-09-16 2015-08-26 有机无机混成化合物、胺氢碘酸盐、光电转换元件用组合物及光电转换元件
EP15842842.5A EP3196188A4 (en) 2014-09-16 2015-08-26 Organic-inorganic hybrid compound, amine hydroiodide salt, composition for photoelectric conversion element, and photoelectric conversion element

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014-188255 2014-09-16
JP2014188255 2014-09-16
JP2014-188260 2014-09-16
JP2014188260 2014-09-16

Publications (1)

Publication Number Publication Date
WO2016043002A1 true WO2016043002A1 (ja) 2016-03-24

Family

ID=55533043

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2015/074092 WO2016043002A1 (ja) 2014-09-16 2015-08-26 有機無機混成化合物、アミンヨウ化水素塩、光電変換素子用組成物、および光電変換素子
PCT/JP2015/074091 WO2016043001A1 (ja) 2014-09-16 2015-08-26 有機無機混成化合物、アミンヨウ化水素塩、光電変換素子用組成物、および光電変換素子

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/074091 WO2016043001A1 (ja) 2014-09-16 2015-08-26 有機無機混成化合物、アミンヨウ化水素塩、光電変換素子用組成物、および光電変換素子

Country Status (5)

Country Link
US (1) US20170260125A1 (ja)
EP (1) EP3196188A4 (ja)
JP (1) JP6181317B2 (ja)
CN (1) CN106660941A (ja)
WO (2) WO2016043002A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018076249A (ja) * 2016-11-08 2018-05-17 旭化成株式会社 化合物

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016043002A1 (ja) * 2014-09-16 2016-03-24 株式会社クレハ 有機無機混成化合物、アミンヨウ化水素塩、光電変換素子用組成物、および光電変換素子
CN106910828B (zh) * 2017-01-12 2019-10-11 华南师范大学 一种具有双层钙钛矿薄膜结构的太阳能电池及其制备方法
CN108417648B (zh) 2017-02-10 2023-04-04 松下知识产权经营株式会社 光吸收材料、光吸收材料的制造方法以及使用光吸收材料的太阳能电池
US10947119B2 (en) * 2017-10-10 2021-03-16 Florida State University Research Foundation, Inc. Metal halide crystals having a nanotube structure and methods

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2693503A1 (en) * 2012-08-03 2014-02-05 Ecole Polytechnique Fédérale de Lausanne (EPFL) Organo metal halide perovskite heterojunction solar cell and fabrication thereof
JP2015046582A (ja) * 2013-07-31 2015-03-12 富士フイルム株式会社 光電変換素子および太陽電池

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201208793D0 (en) * 2012-05-18 2012-07-04 Isis Innovation Optoelectronic device
WO2016043002A1 (ja) * 2014-09-16 2016-03-24 株式会社クレハ 有機無機混成化合物、アミンヨウ化水素塩、光電変換素子用組成物、および光電変換素子

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2693503A1 (en) * 2012-08-03 2014-02-05 Ecole Polytechnique Fédérale de Lausanne (EPFL) Organo metal halide perovskite heterojunction solar cell and fabrication thereof
JP2015046582A (ja) * 2013-07-31 2015-03-12 富士フイルム株式会社 光電変換素子および太陽電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SOURISSEAU,S. ET AL.: "Reduced Band Gap Hybrid Perovskites Resulting from Combined Hydrogen and Halogen Bonding at the Organic-Inorganic Interface", CHEMISTRY OF MATERIALS, vol. 19, no. 3, 2007, pages 600 - 607, XP055371623 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018076249A (ja) * 2016-11-08 2018-05-17 旭化成株式会社 化合物

Also Published As

Publication number Publication date
EP3196188A4 (en) 2017-08-09
US20170260125A1 (en) 2017-09-14
JP6181317B2 (ja) 2017-08-16
WO2016043001A1 (ja) 2016-03-24
JPWO2016043002A1 (ja) 2017-08-03
EP3196188A1 (en) 2017-07-26
CN106660941A (zh) 2017-05-10

Similar Documents

Publication Publication Date Title
JP6181317B2 (ja) 光電変換素子用組成物、および光電変換素子
US10937964B2 (en) Organic semiconductor material
US8057712B2 (en) Radialene compounds and their use
KR101188391B1 (ko) 라디알렌 화합물 및 이들의 용도
JP5281863B2 (ja) 色素、色素増感太陽電池及びその製造方法
TWI639678B (zh) 有機薄膜、其製造方法、使用其的有機半導體元件及有機電晶體
JP2009067976A (ja) 色素、色素増感太陽電池及びその製造方法
TWI723007B (zh) 半導體材料及其萘并呋喃基質化合物
JP6864754B2 (ja) 光電変換素子、太陽電池及び正孔輸送材料
JP5763677B2 (ja) 電解質配合物
JP5193218B2 (ja) 新規の高導電性の有機電荷キャリア輸送材料
Hasan et al. Solvent toolkit for electrochemical characterization of hybrid perovskite films
Yu et al. 2D lead iodide perovskite with mercaptan-containing amine and its exceptional water stability
Hou et al. Multifunctional Dapsone Additives Prepare Efficient and Stable Perovskite Solar Cells
TW201215646A (en) Photoelectric conversion element, dye for the same and compound
JP7133750B2 (ja) 含ヨウ素縮合環化合物、及び含ヨウ素縮合環化合物を用いた有機電子材料
JP2014175392A (ja) 有機薄膜の製造方法、及び有機半導体デバイス
JP2024053844A (ja) トリアリールアミン化合物、並びに組成物及び発電デバイス
WO2022210445A1 (ja) スルホン酸塩基を有する化合物、および該化合物を用いた光電変換素子
WO2023054393A1 (ja) スルホン酸塩基を有する化合物、正孔輸送材料、光電変換素子用正孔輸送材料組成物、光電変換素子および太陽電池
Grotevent et al. Additive‐Free Oxidized Spiro‐MeOTAD Hole Transport Layer Significantly Improves Thermal Solar Cell Stability
JP2016149413A (ja) 色素増感材、その製造方法及び色素増感型太陽電池
JP6578912B2 (ja) イオン導電性固体電解質
JP2022027575A (ja) 化合物、光電変換素子用正孔輸送材料、およびそれを用いた光電変換素子ならびに太陽電池
JP5952576B2 (ja) 溶解性に優れた液晶性スチリル誘導体、その製造方法、導電性液晶材料及び有機半導体素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15842842

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016548802

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15511674

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015842842

Country of ref document: EP