WO2016042914A1 - 水性ラテックス、セパレータ/中間層積層体、及び非水電解質二次電池用構造体 - Google Patents

水性ラテックス、セパレータ/中間層積層体、及び非水電解質二次電池用構造体 Download PDF

Info

Publication number
WO2016042914A1
WO2016042914A1 PCT/JP2015/070878 JP2015070878W WO2016042914A1 WO 2016042914 A1 WO2016042914 A1 WO 2016042914A1 JP 2015070878 W JP2015070878 W JP 2015070878W WO 2016042914 A1 WO2016042914 A1 WO 2016042914A1
Authority
WO
WIPO (PCT)
Prior art keywords
separator
positive electrode
negative electrode
intermediate layer
electrolyte secondary
Prior art date
Application number
PCT/JP2015/070878
Other languages
English (en)
French (fr)
Inventor
祐策 稲葉
尚子 遠宮
善幸 長澤
民人 五十嵐
Original Assignee
株式会社クレハ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クレハ filed Critical 株式会社クレハ
Priority to KR1020177008160A priority Critical patent/KR20170045312A/ko
Priority to CN201580048222.3A priority patent/CN107078254A/zh
Priority to US15/511,695 priority patent/US20170288189A1/en
Priority to EP15841847.5A priority patent/EP3196959B1/en
Publication of WO2016042914A1 publication Critical patent/WO2016042914A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/44Fibrous material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F214/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F214/18Monomers containing fluorine
    • C08F214/22Vinylidene fluoride
    • C08F214/225Vinylidene fluoride with non-fluorinated comonomers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D127/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers
    • C09D127/02Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment
    • C09D127/12Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C09D127/16Homopolymers or copolymers of vinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/02Homopolymers or copolymers of acids; Metal or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/04Homopolymers or copolymers of esters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/42Acrylic resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/423Polyamide resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • H01M50/434Ceramics
    • H01M50/437Glass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/443Particulate material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/451Separators, membranes or diaphragms characterised by the material having a layered structure comprising layers of only organic material and layers containing inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • H01M50/461Separators, membranes or diaphragms characterised by their combination with electrodes with adhesive layers between electrodes and separators
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to an aqueous latex, a separator / interlayer laminate, and a structure for a non-aqueous electrolyte secondary battery.
  • a non-aqueous electrolyte secondary battery using lithium is used as a battery capable of obtaining large energy with a small volume and mass.
  • a nonaqueous electrolyte secondary battery as an energy source for a hybrid car, an electric vehicle, etc., and its practical use has begun.
  • Patent Document 1 discloses a nonaqueous electrolyte secondary battery including a laminated electrode body in which a positive electrode plate and a negative electrode plate having a large area are stacked via a separator, and a specific nonaqueous electrolyte. .
  • the structure for a non-aqueous electrolyte secondary battery usually has a positive electrode and a negative electrode, and a separator for insulating the positive electrode and the negative electrode is disposed therebetween.
  • a separator for insulating the positive electrode and the negative electrode is disposed therebetween.
  • the positive electrode and the separator A gap and / or separation between the negative electrode and the separator is likely to occur, and a portion that does not contribute to charge / discharge tends to appear. As a result, it may be difficult to obtain a desired capacity.
  • the present invention is used to obtain a nonaqueous electrolyte secondary battery structure in which at least one of a positive electrode and a separator and between a negative electrode and a separator are firmly adhered to each other, and the nonaqueous electrolyte secondary battery structure. It is an object to provide aqueous latex and separator / interlayer laminates.
  • the present inventors have found that structural units derived from unsaturated dibasic acids and / or structural units derived from unsaturated dibasic acid monoesters and vinylidene fluoride.
  • the present invention has been completed by finding that the above-mentioned problems can be achieved by polymer particles containing a copolymer containing a structural unit derived from a system monomer.
  • the aqueous latex according to the present invention includes polymer particles dispersed in water, and the polymer particles are structural units derived from unsaturated dibasic acid and / or unsaturated dibasic acid monoester. And a copolymer containing a structural unit derived from a vinylidene fluoride monomer, the aqueous latex was laminated between a positive electrode, a negative electrode, and the positive electrode and the negative electrode In the structure for a non-aqueous electrolyte secondary battery having a separator, it is used for manufacturing an intermediate layer provided at least one between the positive electrode and the separator and between the negative electrode and the separator.
  • the ratio A 1740cm-1 / A 3020cm- 1 and absorbance A 3020cm-1 in the infrared absorption spectra in the absorbance A 1740 cm-1 and 3020cm -1 in the infrared absorption spectrum at 1740 cm -1 is 0. It is preferable that it is 10 or more.
  • the average particle diameter of the polymer particles is preferably 50 nm or more and 700 nm or less.
  • the polymer particles are preferably produced by emulsion polymerization.
  • the separator / intermediate layer laminate according to the present invention includes a separator for a nonaqueous electrolyte secondary battery and an intermediate layer provided on at least one main surface of the separator, and the intermediate layer includes an unsaturated two-layered body.
  • Polymer particles containing a copolymer comprising a structural unit derived from a basic acid and / or a structural unit derived from an unsaturated dibasic acid monoester and a structural unit derived from a vinylidene fluoride monomer are included.
  • the non-aqueous electrolyte secondary battery structure includes a positive electrode, a negative electrode, and a separator laminated between the positive electrode and the negative electrode, and the non-aqueous electrolyte secondary battery structure.
  • Polymer particles containing a copolymer containing a structural unit derived from a saturated dibasic acid monoester and a structural unit derived from a vinylidene fluoride monomer are included.
  • a nonaqueous electrolyte secondary battery structure in which at least one of a positive electrode and a separator and between a negative electrode and a separator are firmly adhered to each other, and the nonaqueous electrolyte secondary battery structure are obtained.
  • the aqueous latex used, and the separator / interlayer laminate can be provided. According to the structure for a nonaqueous electrolyte secondary battery according to the present invention, it is possible to efficiently and effectively achieve a large capacity and a large area of the nonaqueous electrolyte secondary battery.
  • the aqueous latex according to the present invention includes polymer particles dispersed in water, and the polymer particles are derived from a structural unit derived from an unsaturated dibasic acid and / or an unsaturated dibasic acid monoester.
  • the aqueous latex contains a positive electrode, a negative electrode, and a separator laminated between the positive electrode and the negative electrode.
  • the non-aqueous electrolyte secondary battery structure according to the present invention is used for manufacturing an intermediate layer provided between at least one of the positive electrode and the separator and between the negative electrode and the separator.
  • the polymer particles may be used alone or in combination of two or more.
  • the polymer particle includes a structural unit derived from an unsaturated dibasic acid and / or a structural unit derived from an unsaturated dibasic acid monoester and a structural unit derived from a vinylidene fluoride monomer. It contains.
  • the copolymer exhibits a polar interaction resulting from a carbonyl group of a structural unit derived from an unsaturated dibasic acid and / or a structural unit derived from an unsaturated dibasic acid monoester, and has an adhesive force with a substrate. Excellent.
  • the aqueous latex according to the present invention containing the polymer particles containing the copolymer is used in the production of the intermediate layer provided in at least one of the layers, the adhesive strength between the separator and the intermediate layer, the positive electrode and the intermediate layer And the adhesive strength between the negative electrode and the intermediate layer are likely to be excellent.
  • the copolymer may be used alone or in combination of two or more.
  • the unsaturated dibasic acid is preferably one having 5 to 8 carbon atoms.
  • unsaturated dibasic acid unsaturated dicarboxylic acid is mentioned, for example, More specifically, (anhydrous) maleic acid, citraconic acid, etc. are mentioned.
  • unsaturated dibasic acid monoester those having 5 to 8 carbon atoms are preferable.
  • unsaturated dibasic acid monoesters include unsaturated dicarboxylic acid monoesters. More specifically, maleic acid monomethyl ester, maleic acid monoethyl ester, citraconic acid monomethyl ester, citraconic acid monoethyl ester, etc. Can be mentioned.
  • An unsaturated dibasic acid monoester may be used independently and may be used in combination of 2 or more type.
  • vinylidene fluoride monomer examples include vinylidene fluoride, vinyl fluoride, trifluoroethylene (TrFE), tetrafluoroethylene (TFE), chlorotrifluoroethylene (CTFE), hexafluoropropylene (HFP), and the like. Can be mentioned.
  • the vinylidene fluoride monomer may be used alone or in combination of two or more.
  • the molar ratio of vinylidene fluoride and other vinylidene fluoride monomers in particular, the vinylidene fluoride monomer is vinylidene fluoride and hexafluoropropylene, tetrafluoroethylene, and / or chloro.
  • the molar ratio of vinylidene fluoride to hexafluoropropylene, tetrafluoroethylene, and / or chlorotrifluoroethylene is preferably 100: 0 to 80:20, more preferably 99.99. 5: 0.5 to 85:15, even more preferably 99: 1 to 90:10.
  • the copolymer may contain structural units derived from monomers other than unsaturated dibasic acid, unsaturated dibasic acid monoester and vinylidene fluoride monomer (hereinafter also referred to as other monomers). Other monomers are not particularly limited.
  • fluorine monomers copolymerizable with vinylidene fluoride monomers; hydrocarbon monomers such as ethylene and propylene; styrene, ⁇ -methylstyrene
  • Aromatic vinyl compounds such as; unsaturated nitrile compounds such as (meth) acrylonitrile; acrylic acid ester compounds; acrylamide compounds; epoxy group-containing unsaturated compounds such as glycidyl methacrylate; sulfone group-containing unsaturated compounds such as vinyl sulfonic acid; Carboxyl group-containing monomers other than unsaturated dibasic acids and unsaturated dibasic acid monoesters; carboxylic anhydride group-containing monomers.
  • Another monomer may be used independently and may be used in combination of 2 or more type.
  • the total content of the structural units derived from the unsaturated dibasic acid and the structural units derived from the unsaturated dibasic acid monoester is preferably 100 mol% in total of all the structural units. It is 0.02 mol% or more and 5.0 mol% or less, More preferably, it is 0.05 mol% or more and 4.0 mol% or less, More preferably, it is 0.07 mol% or more and 3.0 mol% or less. And most preferably 0.1 mol% or more and 2.0 mol% or less.
  • the content of structural units derived from the vinylidene fluoride monomer is preferably 50 mol% or more and 99.98 mol% or less with respect to 100 mol% in total of all structural units, More preferably, it is 80 mol% or more and 99.95 mol% or less, More preferably, it is 85 mol% or more and 99.93 mol% or less, Most preferably, it is 90 mol% or more and 99.9 mol% or less.
  • the content of the structural unit derived from the vinylidene fluoride monomer is preferably 95.0 mol% or more and 99.98 mol% or less with respect to 100 mol% in total of all the structural units. More preferably 96.0 mol% or more and 99.95 mol% or less, still more preferably 97.0 mol% or more and 99.93 mol% or less, and most preferably 98.0 mol% or more and 99.95 mol% or less.
  • the copolymer is a structural unit derived from an unsaturated dibasic acid and / or a structural unit derived from an unsaturated dibasic acid monoester, a structural unit derived from a vinylidene fluoride monomer, and other monomers.
  • the content of structural units derived from the vinylidene fluoride monomer is preferably 50 mol% or more and 98.98 mol% with respect to 100 mol% in total of all structural units.
  • the content of structural units derived from the other monomers in the copolymer is preferably 1.0 mol% with respect to 100 mol% in total of all structural units. 49 mol% or less, more preferably 2.0 mol% or more and 19.95 mol% or less, even more preferably 3.0 mol% or more and 14.93 mol% or less, and most preferably It is 4.0 mol% or more and 9.9 mol% or less.
  • fluorine monomer copolymerizable with the vinylidene fluoride monomer examples include perfluoroalkyl vinyl ethers typified by perfluoromethyl vinyl ether.
  • unsaturated monobasic acid and the like are preferable.
  • unsaturated monobasic acid include acrylic acid, methacrylic acid, 2-carboxyethyl acrylate, 2-carboxyethyl methacrylate and the like.
  • acrylic acid, methacrylic acid, maleic acid, and citraconic acid are preferable.
  • carboxyl group-containing monomer other than unsaturated dibasic acid and unsaturated dibasic acid monoester examples include acryloyloxyethyl succinic acid, methacryloyloxyethyl succinic acid, acryloyloxyethyl phthalic acid, methacryloyloxyethyl phthalic acid, acryloyl Oxypropyl succinic acid or the like may be used.
  • a crosslinked copolymer may be used.
  • a polyfunctional monomer may be used as the other monomer.
  • a cross-linking reaction is performed using the polyfunctional monomer. May be performed.
  • the copolymer includes a structural unit derived from an unsaturated dibasic acid and / or a structural unit derived from an unsaturated dibasic acid monoester, a structural unit derived from a vinylidene fluoride monomer, and vinylidene fluoride. And a copolymer containing a structural unit derived from the fluorinated monomer copolymerizable with the fluorinated monomer, specifically, vinylidene fluoride (VDF) -TFE-maleic acid monomethyl ester (MMM) copolymer.
  • VDF vinylidene fluoride
  • MMMM vinylidene fluoride
  • the method for obtaining the copolymer is not particularly limited, and examples thereof include polymerization methods such as emulsion polymerization, soap-free emulsion polymerization, miniemulsion polymerization, suspension polymerization, solution polymerization, and bulk polymerization.
  • a polymerization method capable of obtaining a copolymer as particles is preferable.
  • a treatment such as pulverization is required so that the copolymer can be used as the polymer particles. Therefore, as described above, it is preferable to adopt a method capable of obtaining a particulate copolymer, that is, a polymer particle containing the copolymer.
  • Examples of the method for obtaining polymer particles include emulsion polymerization, soap-free emulsion polymerization, miniemulsion polymerization, and suspension polymerization.
  • Emulsion polymerization that makes it easy to obtain polymer particles having an average particle size of 1 ⁇ m or less, Soap-free emulsion polymerization and miniemulsion polymerization are preferred, and emulsion polymerization is particularly preferred.
  • Emulsion polymerization is a method for obtaining polymer particles using a monomer, an emulsifier, water, and a polymerization initiator.
  • the emulsifier is not particularly limited as long as it forms micelles and can stably disperse the polymer particles to be generated, and an ionic emulsifier, a nonionic emulsifier, or the like can be used.
  • the polymerization initiator a water-soluble peroxide or a water-soluble azo compound is used, and a redox initiator system such as ascorbic acid monohydrogen peroxide is used.
  • Soap-free emulsion polymerization is emulsion polymerization that is performed without using a normal emulsifier such as that used in the aforementioned emulsion polymerization. Since the polymer particles obtained by soap-free emulsion polymerization do not leave the emulsifier in the polymer particles, the emulsifier bleeds out to the surface when an intermediate layer formed including the polymer particles is formed. This is preferable because there is not. Soap-free emulsion polymerization can be performed by changing the emulsifier in the emulsion polymerization to a reactive emulsifier. When the monomer is dispersed, soap-free polymerization can be performed without using a reactive emulsifier.
  • the reactive emulsifier is a substance having a polymerizable double bond in the molecule and acting as an emulsifier.
  • a reactive emulsifier When a reactive emulsifier is used, micelles are formed at the initial stage of polymerization as in the case where the aforementioned emulsifier is present in the system, but as the reaction proceeds, the reactive emulsifier is consumed as a monomer, and finally In the reaction system, the reactive emulsifier is hardly present in a free state.
  • Mini-emulsion polymerization is a method in which monomer droplets are refined to a submicron size by applying a strong shearing force using an ultrasonic oscillator or the like, and polymerization is performed. Mini-emulsion polymerization is performed by adding a hardly water-soluble substance called hydrohope in order to stabilize the refined monomer oil droplets. In miniemulsion polymerization, monomer oil droplets ideally polymerize, and each oil droplet turns into copolymer fine particles.
  • Suspension polymerization is a method in which a water-insoluble polymerization initiator is dissolved in a water-insoluble monomer, which is suspended in water by mechanical stirring and heated. In suspension polymerization, polymerization proceeds in monomer droplets, and a dispersion of polymer particles is obtained.
  • the particle size of the polymer particles obtained by suspension polymerization generally tends to be larger than the particle size of the polymer particles obtained by emulsion polymerization, soap-free emulsion polymerization, or miniemulsion polymerization.
  • stirring with high-speed shear is performed, the monomer droplets are refined, and the dispersion stabilizer is optimized to stabilize the fine monomer droplets, thereby reducing the particle size. Polymer particles can be obtained.
  • an emulsifier hereinafter also referred to as a surfactant
  • a dispersing agent used when dispersing particles obtained in the production of copolymerization or suspension polymerization in water remain inside the battery.
  • a surfactant emulsifier
  • a dispersing agent used when dispersing particles obtained in the production of copolymerization or suspension polymerization in water remain inside the battery.
  • Those having good oxidation-reduction resistance are preferred.
  • the aqueous latex according to the present invention may contain components added in the process of obtaining polymer particles, for example, the above-mentioned emulsifiers and dispersants.
  • the surfactant may be any of a nonionic surfactant, a cationic surfactant, an anionic surfactant, and an amphoteric surfactant, and a plurality of types may be used.
  • a nonionic surfactant e.g., a cationic surfactant, an anionic surfactant, and an amphoteric surfactant, and a plurality of types may be used.
  • the surfactant used in the polymerization those conventionally used for polymerization of polyvinylidene fluoride such as perfluorinated, partially fluorinated, and non-fluorinated surfactants are preferable.
  • anionic surfactant examples include higher alcohol sulfate sodium salt, alkylbenzene sulfonic acid sodium salt, succinic acid dialkyl ester sulfonic acid sodium salt, alkyl diphenyl ether disulfonic acid sodium salt, polyoxyethylene alkyl ether sodium sulfate salt, polyoxyethylene alkyl.
  • a phenyl ether sulfate sodium salt etc. can be mentioned.
  • sodium lauryl sulfate, sodium dodecylbenzene sulfonate, sodium polyoxyethylene alkyl ether sulfate, sodium polyoxyethylene alkyl phenyl ether sulfate and the like are preferable.
  • nonionic surfactant examples include polyoxyethylene alkyl ether, polyoxyethylene alkyl aryl ether, polyoxyethylene fatty acid ester, polyoxyethylene sorbitan fatty acid ester and the like.
  • amphoteric activators include lauryl betaine, hydroxyethyl imidazoline sulfate sodium salt, imidazoline sulfonate sodium salt and the like.
  • cationic surfactant examples include alkylpyridinium chloride, alkyltrimethylammonium chloride, dialkyldimethylammonium chloride, and alkyldimethylbenzylammonium chloride.
  • Fluorosurfactants include perfluoroalkyl sulfonic acids and salts thereof, perfluoroalkyl carboxylic acids and salts thereof, perfluoroalkyl phosphate esters, perfluoroalkyl polyoxyethylenes, perfluoroalkyl betaines, fluorocarbon chains or fluoropolyethers. Examples thereof include a fluorine-containing surfactant having a chain. Among them, it is preferable to use a fluorosurfactant.
  • Examples of the reactive emulsifier include polyoxyalkylene alkenyl ether, sodium alkylallylsulfosuccinate, sodium methacryloyloxypolyoxypropylene sulfate, alkoxy polyethylene glycol methacrylate, sodium styrenesulfonate, sodium allylalkylsulfonate, and the like. Is not limited to them.
  • the dispersant is not particularly limited, and a conventionally known dispersant can be used, and examples thereof include a fluorine-based dispersant.
  • Polymerization conditions such as a polymerization temperature when polymerization is performed by each of the above-described polymerization methods can be arbitrarily set.
  • the ratio A 1740cm-1 / A 3020cm- 1 and absorbance A 3020cm-1 in the infrared absorption spectra in the absorbance A 1740 cm-1 and 3020cm -1 in the infrared absorption spectrum at 1740 cm -1 is 0. It is preferable that it is 10 or more.
  • Absorption at 1740 cm -1 is due to the groups represented by -CO-O-
  • absorption at 3020cm -1 is -CH 2 - is due group represented by.
  • the group represented by —CO—O— is contained in a structural unit derived from an unsaturated dibasic acid and / or a structural unit derived from an unsaturated dibasic acid monoester, and —CH 2 — Is included in all structural units, the ratio A 1740 cm-1 / A 3020 cm -1 is the structural unit derived from unsaturated dibasic acid among all the structural units in the copolymer and It reflects the total proportion of structural units derived from unsaturated dibasic acid monoesters.
  • the lower limit of the ratio A 1740 cm-1 / A 3020 cm-1 is more preferably 0.12 or more, and still more preferably 0.15 or more. When the lower limit is within the above range, it is easy to obtain a copolymer sufficiently containing a structural unit derived from an unsaturated dibasic acid and / or a structural unit derived from an unsaturated dibasic acid monoester. .
  • the aqueous latex according to the present invention is used for the production of the intermediate layer provided in at least one of the layers, the adhesive strength between the separator and the intermediate layer, the adhesive strength between the positive electrode and the intermediate layer, and the negative electrode and the intermediate layer It tends to be excellent in adhesive strength.
  • the upper limit of the ratio A 1740 cm -1 / A 3020 cm -1 is preferably 5.0 or less, more preferably 4.0 or less, and even more preferably 3.0 or less.
  • the above upper limit is within the above range, it is not necessary to add an excessive amount of unsaturated dibasic acid and / or unsaturated dibasic acid monoester at the time of producing the copolymer. However, it is easy to obtain the copolymer. As a result, the amount of the polymerization initiator mixed in the aqueous latex according to the present invention can be effectively reduced, and the characteristics of the obtained nonaqueous electrolyte secondary battery are not easily impaired.
  • the lower limit of the average particle size of the polymer particles used in the present invention is preferably 50 nm or more, more preferably 100 nm or more, and even more preferably 150 nm or more. It is preferable for the lower limit to be within the above range because the air permeability of the intermediate layer produced using the aqueous latex according to the present invention and the air permeability of the laminate of the intermediate layer and the separator can be easily controlled.
  • the upper limit of the average particle size of the polymer particles used in the present invention is preferably 700 nm or less, more preferably 600 nm or less, and even more preferably 500 nm or less.
  • the average particle diameter is a cumulant average particle diameter determined by a dynamic light scattering method, and is measured using ELSZ-2 (manufactured by Otsuka Electronics).
  • the aqueous latex according to the present invention may be composed of the polymer particles and water, but contains components other than the polymer particles and water (hereinafter also referred to as other components). Also good.
  • the other components include water-soluble polymers, inorganic fillers, organic fillers, and the like.
  • Use of a water-soluble polymer can improve the adhesion between the intermediate layer and the separator, the adhesion between the intermediate layer and the electrode, and It is preferable from the viewpoint of adhering polymer particles that are in contact with each other.
  • Other components may be dissolved or dispersed in the aqueous latex according to the present invention.
  • the water-soluble polymer is usually dissolved in the aqueous latex.
  • an inorganic filler or an organic filler is used as the other component, the inorganic filler or the organic filler is dispersed in the aqueous latex.
  • the component with high specific gravity, such as an inorganic filler is included, it is preferable to use the said aqueous latex for formation of an intermediate
  • the water-soluble polymer is preferably a polymer having adhesion to the polymer particles, the electrodes, and the separator.
  • the water-soluble polymer include cellulose compounds such as carboxymethylcellulose (CMC), hydroxypropylmethylcellulose, and hydroxyethylcellulose, and ammonium salts or alkali metal salts thereof, polycarboxylic acids such as polyacrylic acid (PAA), and alkali metals thereof. Examples thereof include salts, polyvinylpyrrolidone (PVP), polypinyl alcohol (PVA), polyethylene oxide (PEO) and the like. Carboxymethyl cellulose (CMC), polypinyl alcohol (PVA) and the like are preferable from the viewpoint of long-term battery use. .
  • inorganic fillers conventionally used when a resin film (intermediate layer) is provided between the positive electrode or negative electrode and the separator in a nonaqueous electrolyte secondary battery can be used without limitation.
  • the inorganic filler examples include silicon dioxide (SiO 2 ), alumina (A1 2 0 3 ), titanium dioxide (TiO 2 ), calcium oxide (CaO), strontium oxide (SrO), barium oxide (BaO), and magnesium oxide (MgO).
  • Oxides such as zinc oxide (Zn0), barium titanate (BaTiO 3 ), magnesium hydroxide (Mg (OH) 2 ), calcium hydroxide (Ca (OH) 2 ), zinc hydroxide (Zn (OH)) 2 ), hydroxides such as aluminum hydroxide (Al (OH) 3 ), carbonates such as calcium carbonate (CaCO 3 ), sulfates such as barium sulfate, nitrides, clay minerals, and the like.
  • Al (OH) 3 aluminum hydroxide
  • carbonates such as calcium carbonate (CaCO 3 )
  • sulfates such as barium sulfate, nitrides, clay minerals, and the like.
  • the inorganic filler alumina, silicon dioxide, magnesium oxide, and zinc oxide are preferable from the viewpoint of battery safety and coating solution stability.
  • the average particle size of the inorganic filler is preferably 5 nm to 2 ⁇ m, and more preferably 10 nm to 1 ⁇ m.
  • AKP3000 manufactured by Sumitomo Chemical Co., Ltd.
  • high-purity alumina particles can be used.
  • the aqueous latex according to the present invention can contain a non-aqueous medium in addition to water from the viewpoint of improving the coating property.
  • the non-aqueous medium include amide compounds, hydrocarbons, alcohols, ketones, esters, amine compounds, lactones, sulfoxides, sulfone compounds, and the like, and one or more selected from these can be used.
  • the content thereof may be small, specifically, it is preferably 30% by mass or less, more preferably 10% by mass or less, still more preferably 5%, based on the entire aqueous latex. It is below mass%.
  • the content of the polymer particles in 100 parts by mass of components other than water is preferably 60 to 100 parts by mass, more preferably 65 to 100 parts by mass, and 70 to 70 parts by mass. Even more preferably, it is 100 parts by weight.
  • the intermediate layer produced using the aqueous latex according to the present invention contains polymer particles containing the copolymer. Therefore, by using the aqueous latex according to the present invention, an intermediate layer having air permeability can be formed without using an inorganic filler.
  • an inorganic filler When an inorganic filler is not used, it is possible to improve the weight energy density of the obtained nonaqueous electrolyte secondary battery.
  • an inorganic filler when an inorganic filler is used, in the obtained nonaqueous electrolyte secondary battery, even when the separator or polymer particles forming the intermediate layer are exposed to a high temperature that melts, The presence of the inorganic filler can be expected to increase safety such as prevention of short circuit.
  • the content of the water-soluble polymer is preferably 0.01 to 20 parts by mass, more preferably 0.01 to 15 parts in 100 parts by mass of the aqueous latex according to the present invention. Part by mass, particularly preferably 0.01 to 10 parts by mass.
  • the content of the inorganic filler and / or organic filler is preferably 0.01 to 40 parts by mass, more preferably 0.01 to 40 parts by mass, based on 100 parts by mass of the aqueous latex according to the present invention. Is 0.01 to 35 parts by mass, particularly preferably 0.01 to 30 parts by mass.
  • the content of water as a dispersion medium is preferably 30 to 99 parts by mass, more preferably 35 to 98 parts by mass.
  • the aqueous latex according to the present invention tends to be excellent in coating properties when coated on a substrate such as a positive electrode, a negative electrode, or a separator.
  • the polymer particles can be used not only in the aqueous latex according to the present invention but also in the separator / interlayer laminate according to the present invention and the nonaqueous electrolyte secondary battery structure according to the present invention. it can.
  • the aqueous latex according to the present invention includes a positive electrode, a negative electrode, and a non-aqueous electrolyte secondary battery structure including a separator laminated between the positive electrode and the negative electrode, and between the positive electrode and the separator, and It is used for manufacturing an intermediate layer provided on at least one of the negative electrode and the separator.
  • the positive electrode, the negative electrode, the separator, the nonaqueous electrolyte secondary battery structure, and the intermediate layer are as described later.
  • the non-aqueous electrolyte secondary battery structure includes a positive electrode, a negative electrode, and a separator laminated between the positive electrode and the negative electrode, and the non-aqueous electrolyte secondary battery structure.
  • Polymer particles containing a copolymer containing a structural unit derived from a saturated dibasic acid monoester and a structural unit derived from a vinylidene fluoride monomer are included.
  • the structure of the structure for a non-aqueous electrolyte secondary battery according to the present invention includes an intermediate layer produced using the aqueous latex according to the present invention at least between the positive electrode and the separator and between the negative electrode and the separator. Except for being provided on one side, it is the same as the conventional non-aqueous electrolyte secondary battery structure.
  • Any positive electrode, separator, and negative electrode can be used without limitation as long as they can form a structure for a nonaqueous electrolyte secondary battery, including known ones.
  • the positive electrode, the negative electrode, and / or the separator and the intermediate layer may be in direct contact with each other, or other positive electrode, the negative electrode, and / or another separator and the intermediate layer
  • the layer may be interposed, but from the viewpoint of the adhesive strength between the positive electrode and the intermediate layer, the adhesive strength between the negative electrode and the intermediate layer, and the adhesive strength between the separator and the intermediate layer, the positive electrode and the intermediate layer are in direct contact with each other, It is preferable that the negative electrode and the intermediate layer are in direct contact, and the separator and the intermediate layer are in direct contact.
  • the positive electrode and the negative electrode may be collectively referred to as “electrode”, and the positive electrode current collector and the negative electrode current collector may be collectively referred to as “current collector”.
  • the positive electrode included in the structure for a non-aqueous electrolyte secondary battery according to the present invention is not particularly limited as long as it has a positive electrode active material that plays a role in the positive electrode reaction and has a current collecting function.
  • it is composed of a positive electrode mixture layer containing a positive electrode active material and a positive electrode current collector that functions as a current collector and plays a role of holding the positive electrode mixture layer.
  • the nonaqueous electrolyte secondary battery structure according to the present invention has an intermediate layer produced using the aqueous latex according to the present invention between the positive electrode and the separator, the intermediate layer is It is preferable to arrange between the positive electrode mixture layer and the separator.
  • the positive electrode mixture layer contains a positive electrode active material and a binder, and can further contain a conductive auxiliary agent if necessary.
  • the mixing ratio of the positive electrode active material, the binder, and the conductive additive in the positive electrode mixture layer is set to a general mixing ratio used in non-aqueous electrolyte secondary batteries such as lithium ion secondary batteries. However, it can be adjusted as appropriate according to the type of the secondary battery.
  • the thickness of the positive electrode mixture layer is preferably 20 to 250 ⁇ m.
  • the positive electrode active material used in the non-aqueous electrolyte secondary battery structure according to the present invention can be used without particular limitation as long as it functions as a positive electrode active material, including a conventionally known electrode active material for a positive electrode. .
  • the positive electrode active material constituting the positive electrode mixture layer is preferably a lithium-based positive electrode active material containing at least lithium.
  • the lithium-based positive electrode active material include a general formula LiMY 2 (M is Co, Ni, Fe, Mn, Cr, V, etc.) such as LiCoO 2 and LiNi x Co 1-x O 2 (0 ⁇ x ⁇ 1).
  • At least one kind of transition metal, and Y is a chalcogen element such as O and S.
  • a composite metal chalcogen compound represented by: a composite metal oxide having a spinel structure such as LiMn 2 O 4 , an olivine type such as LiFePO 4 A lithium compound etc. are mentioned.
  • the specific surface area of the positive electrode active material is preferably 0.05 to 50 m 2 / g.
  • the specific surface area of the positive electrode active material can be determined by a nitrogen adsorption method.
  • the positive electrode active material constituting the non-aqueous electrolyte secondary battery structure according to the present invention is not limited to these, and can be appropriately selected according to the type of the secondary battery.
  • the positive electrode mixture layer may further contain a conductive aid as necessary.
  • This conductive auxiliary agent is added for the purpose of improving the conductivity of the positive electrode mixture layer when using an active material having a low electron conductivity such as LiCoO 2 , and carbon black, graphite fine powder, graphite fiber, Carbonaceous materials such as carbon nanotubes, metal fine powders or metal fibers made of nickel, aluminum or the like are used.
  • the binder plays a role of connecting the positive electrode active material and the conductive additive.
  • the binder is not particularly limited, but those widely used in conventionally known lithium ion secondary batteries can be suitably used.
  • polytetrafluoroethylene, polyvinylidene fluoride, fluororubber Fluorine-containing resins such as styrene-butadiene rubber and carboxymethyl cellulose, and heat-resinable resins such as polypropylene and polyethylene can be used.
  • Polyvinylidene fluoride is preferred for the positive electrode.
  • a vinylidene fluoride copolymer can be used as the fluorine-containing resin.
  • a vinylidene fluoride copolymer a vinylidene fluoride-maleic acid monomethyl ester copolymer or the like can be used.
  • the positive electrode current collector is not particularly limited as long as it has good conductivity so that electricity can be supplied to the outside of the secondary battery and does not hinder the electrode reaction in the secondary battery.
  • Examples of the positive electrode current collector include those generally used as a positive electrode current collector of a non-aqueous electrolyte secondary battery such as a lithium ion secondary battery.
  • the positive electrode current collector is preferably made of aluminum or an alloy thereof, and among them, an aluminum foil is preferable.
  • the positive electrode current collector is not limited to these, and may be appropriately selected according to the type of secondary battery.
  • the thickness of the positive electrode current collector is preferably 5 to 100 ⁇ m.
  • the method for producing the positive electrode comprising the positive electrode current collector and the positive electrode mixture layer is not particularly limited.
  • the positive electrode mixture containing each component constituting the positive electrode mixture layer is used as the current collector.
  • a method of obtaining a positive electrode by applying to at least one side, preferably both sides, and drying the applied positive electrode mixture may be mentioned.
  • the coating method is not particularly limited, and examples thereof include a method using a bar coater, a die coater, a comma coater, or the like.
  • the drying after the application is performed, for example, at a temperature of 50 to 150 ° C. for 10 seconds to 300 minutes.
  • the pressure in the case of drying is not specifically limited, Drying is performed under atmospheric pressure or pressure reduction.
  • heat treatment may be further performed after drying. Further, instead of the heat treatment, or after the heat treatment, press treatment may be further performed.
  • the press process is performed, for example, at 1 to 200 MPa-G. It is preferable to perform the press treatment because the electrode density can be improved.
  • the positive electrode active material, the binder, the non-aqueous solvent, and the conductive auxiliary agent used as necessary may be mixed so as to form a uniform slurry, and the order of mixing.
  • the non-aqueous solvent used for dispersing the positive electrode active material, the conductive additive, and the binder include N-methyl-2-pyrrolidone.
  • the binder in the case where an aqueous solvent is used include a particulate polyvinylidene fluoride polymer.
  • the separator which the structure for nonaqueous electrolyte secondary batteries which concerns on this invention has is not specifically limited.
  • the separator used in the present invention is a separator constituting a structure for a non-aqueous electrolyte secondary battery, and in the non-aqueous electrolyte secondary battery obtained from the structure, the positive electrode and the negative electrode are electrically insulated, It plays the role of holding the electrolyte.
  • polyolefin polymer for example, polyethylene, polypropylene, etc.
  • polyester polymer for example, polyethylene terephthalate etc.
  • polyimide polymer for example, aromatic
  • Polyamide polymer for example, polyetherimide, etc.
  • a monolayer or multilayer porous film comprising: nonwoven fabric; glass; paper and the like.
  • a modified polymer may be used as the aforementioned polymer.
  • a porous film of a polyolefin polymer for example, polyethylene, polypropylene, etc.
  • a polyolefin polymer porous membrane examples include a single-layer polypropylene separator, a single-layer polyethylene separator, and a polypropylene / polyethylene / polypropylene three-layer separator that are commercially available from Polypore Corporation under the trade name Celgard (registered trademark). Can be mentioned.
  • the separator may be surface-treated or may be coated with an inorganic particle layer in advance.
  • the separator is preferably larger than the positive electrode and the negative electrode in order to ensure insulation between the positive electrode and the negative electrode.
  • the negative electrode included in the non-aqueous electrolyte secondary battery structure according to the present invention is not particularly limited as long as it has a negative electrode active material that plays a role in negative electrode reaction and has a current collecting function.
  • the nonaqueous electrolyte secondary battery structure according to the present invention has an intermediate layer produced using the aqueous latex according to the present invention between the negative electrode and the separator, the intermediate layer is It is preferable to dispose between the negative electrode mixture layer and the separator.
  • the negative electrode mixture layer contains a negative electrode active material and a binder, and can further contain a conductive aid as necessary.
  • the compounding ratio of the negative electrode active material, the binder, and the conductive additive in the negative electrode mixture layer may be a general compounding ratio used in non-aqueous electrolyte secondary batteries such as lithium ion secondary batteries. However, it can be adjusted as appropriate according to the type of the secondary battery.
  • the thickness of the negative electrode mixture layer is preferably 20 to 250 ⁇ m.
  • the negative electrode active material used in the non-aqueous electrolyte secondary battery structure according to the present invention can be used without particular limitation as long as it functions as a negative electrode active material, including a conventionally known negative electrode active material. .
  • examples of the negative electrode active material constituting the negative electrode mixture layer include carbon-based materials, metal / alloy materials, metal oxides, Si-based negative electrode materials, Li-based negative electrode materials such as lithium titanate, etc. Material is preferred.
  • the carbon material artificial graphite, natural graphite, non-graphitizable carbon, graphitizable carbon and the like are used.
  • the said carbon material may be used individually by 1 type, or may use 2 or more types.
  • the artificial graphite can be obtained, for example, by carbonizing an organic material, further heat-treating it at a high temperature, and pulverizing and classifying it.
  • the non-graphitizable carbon can be obtained, for example, by firing a material derived from petroleum pitch at 1000 to 1500 ° C.
  • the specific surface area of the negative electrode active material is preferably 0.3 to 10 m 2 / g. When the specific surface area is 10 m 2 / g or less, the decomposition amount of the electrolytic solution is difficult to increase, and the initial irreversible capacity is difficult to increase.
  • the specific surface area of the negative electrode active material can be determined by a nitrogen adsorption method.
  • the negative electrode active material constituting the non-aqueous electrolyte secondary battery structure according to the present invention is not limited to these, and can be appropriately selected according to the type of the secondary battery.
  • the negative electrode mixture layer may further contain a conductive aid as necessary.
  • This conductive auxiliary agent is added for the purpose of improving the conductivity of the negative electrode mixture layer. It is a carbon fine substance such as carbon black, graphite fine powder, carbon nanotube, or graphite fiber, or metal fine particles made of nickel, aluminum, or the like. Powder or metal fibers are used.
  • the binder serves to bind the negative electrode active material and the conductive additive.
  • examples of the binder include binders similar to those described in the above section [Positive electrode], but polyvinylidene fluoride, a mixture of styrene butadiene rubber and carboxymethyl cellulose, and polyvinylidene fluoride particles. A mixture of carboxymethylcellulose and the like is preferred.
  • the negative electrode current collector is not particularly limited as long as it has good conductivity so that electricity can be supplied to the outside of the secondary battery and does not hinder the electrode reaction in the secondary battery.
  • As said negative electrode collector what is generally used as a negative electrode collector of nonaqueous electrolyte secondary batteries, such as a lithium ion secondary battery, is mentioned.
  • the negative electrode current collector is preferably made of copper, and copper foil is particularly preferable.
  • the negative electrode current collector is not limited to these, and may be appropriately selected according to the type of secondary battery.
  • the thickness of the negative electrode current collector is preferably 5 to 100 ⁇ m.
  • the method for producing the negative electrode comprising the negative electrode current collector and the negative electrode mixture layer is not particularly limited.
  • the negative electrode mixture containing each component constituting the negative electrode mixture layer is used as the current collector.
  • the same method as the method for preparing the positive electrode mixture and the method for manufacturing the positive electrode in the above-mentioned [positive electrode] can be used.
  • the structure for a non-aqueous electrolyte secondary battery according to the present invention includes an intermediate layer produced using the aqueous latex according to the present invention between at least one of a positive electrode and a separator and between a negative electrode and a separator. Have.
  • the non-aqueous electrolyte secondary potential structure according to the present invention has an intermediate layer produced by using the aqueous latex according to the present invention at least between the positive electrode and the separator and between the negative electrode and the separator. However, it is preferable to have the intermediate layer between the positive electrode and the separator and between the negative electrode and the separator.
  • the nonaqueous electrolyte secondary potential structure according to the present invention has an intermediate layer produced using the aqueous latex according to the present invention between the positive electrode and the separator, the adhesion strength between the positive electrode and the intermediate layer is increased. It is preferable because it is easy to improve and the redox resistance of the separator is improved.
  • the nonaqueous electrolyte secondary potential structure according to the present invention has an intermediate layer produced using the aqueous latex according to the present invention between the negative electrode and the separator, the negative electrode and the intermediate layer are bonded. Strength is easy to improve.
  • the thickness of the intermediate layer is preferably 0.2 to 25 ⁇ m, more preferably 0.5 to 5 ⁇ m.
  • the intermediate layer is mainly formed using polymer particles as a raw material. When the SEM observation is performed on the intermediate layer, it is preferable that the polymer particles can be confirmed to exist in a state where the particle shape is maintained. That is, in the structure for a nonaqueous electrolyte secondary battery according to the present invention, it is preferable that the polymer particles constituting the intermediate layer are not melted and integrated.
  • the intermediate layer preferably has a structure in which a plurality of polymer particles are bonded to each other directly or via a water-soluble polymer.
  • the polymer particles may not be bonded to each other or by a water-soluble polymer, and the nonaqueous electrolyte secondary battery structure
  • the polymer particles may be joined by dissolving or swelling the surface of the particles by the electrolyte injected when producing the nonaqueous electrolyte secondary battery.
  • the intermediate layer is formed between the polymer particles. It is preferable to have a structure in which they are directly joined to each other. In this structure, each particle can be observed by SEM or the like, but the polymer particles are integrated by being directly joined to each other.
  • the polymer particles when polymer particles having no adhesiveness are used as the polymer particles, or when heat treatment is not performed in the process of forming the intermediate layer, the polymer particles come into contact with each other and have high water solubility. It preferably has a structure joined by molecules. The structure is formed by producing an intermediate layer using a liquid containing the polymer particles, a water-soluble polymer and the like. In this structure, each particle can be observed by SEM or the like, and a water-soluble polymer exists between the particles.
  • the intermediate layer can be formed by any of the following (1) to (4), for example.
  • the intermediate layer is formed by applying the aqueous latex according to the present invention to at least one selected from a positive electrode, a separator, and a negative electrode, and drying the aqueous latex.
  • the aqueous latex according to the present invention at least one selected from a positive electrode, a separator, and a negative electrode is immersed, and after the aqueous latex is taken out, the intermediate layer is dried by drying the aqueous latex.
  • the intermediate layer is formed by applying the aqueous latex according to the present invention to a substrate and drying the aqueous latex, and then peeling the formed coating film from the substrate.
  • the intermediate layer formed on the substrate is preferably uniform, but may have a pattern such as a hole pattern or a dot pattern for the purpose of releasing gas generated during the charge / discharge process.
  • a base material made of polyethylene terephthalate (PET) or the like can be used as the base material.
  • the intermediate layer when using the intermediate layer obtained by peeling from the base material, the intermediate layer is disposed between the positive electrode and the separator or between the negative electrode and the separator after the intermediate layer is peeled from the base material. Is done.
  • suitable temperature and time depend on the system. Although different, it is preferably 40 to 190 ° C., more preferably 50 to 180 ° C.
  • the drying time is preferably 1 second to 15 hours.
  • the temperature in the case of performing the heat treatment it is necessary to consider the melting point, decomposition temperature, etc. of the separator, electrode, substrate, polymer particles, and other components. Although different, it is preferably 60 to 220 ° C, more preferably 65 to 215 ° C.
  • the heat treatment time is preferably 1 second to 15 hours.
  • an intermediate layer produced using the aqueous latex according to the present invention is provided between a positive electrode and a separator, and between a negative electrode and a separator.
  • a method similar to the conventional method can be used except that it includes a step of providing at least one of the above.
  • the method for manufacturing a structure for a non-aqueous electrolyte secondary battery according to the present invention is characterized in that the intermediate layer is formed by any one of (1) to (4).
  • the structure for nonaqueous electrolyte secondary batteries which concerns on this invention uses the separator in which the said intermediate
  • the nonaqueous electrolyte secondary battery structure according to the present invention includes the intermediate layer between the positive electrode and the separator, and the It can be produced by the same method as in the prior art except that a step of arranging at least one between the negative electrode and the separator is required.
  • the intermediate layer is manufactured using the aqueous latex according to the present invention. Therefore, it is preferable because an electrolyte injection path can be formed in the intermediate layer without performing the porous step.
  • the adhesive strength between the separator and the intermediate layer is The adhesive strength between the positive electrode and the intermediate layer and the adhesive strength between the negative electrode and the intermediate layer are likely to be excellent. Therefore, even if the nonaqueous electrolyte secondary battery structure according to the present invention and the nonaqueous electrolyte secondary battery described later have a large area, between the positive electrode and the separator and / or the negative electrode, Deviation or peeling due to external force is unlikely to occur between the separator and battery performance can be maintained over a long period of time. Moreover, a desired capacity is easily obtained.
  • the separator / intermediate layer laminate includes a separator for a nonaqueous electrolyte secondary battery and an intermediate layer provided on at least one main surface of the separator, and the intermediate layer includes an unsaturated two-layered body.
  • Polymer particles containing a copolymer comprising a structural unit derived from a basic acid and / or a structural unit derived from an unsaturated dibasic acid monoester and a structural unit derived from a vinylidene fluoride monomer are included.
  • the separator and the intermediate layer may be in direct contact, or another layer may be interposed between the separator and the intermediate layer.
  • the separator, intermediate layer, and polymer particles used in the separator / interlayer laminate according to the present invention are the same as described above.
  • the non-aqueous electrolyte secondary battery according to the present invention is obtained from the non-aqueous electrolyte secondary battery structure.
  • the battery structure of the nonaqueous electrolyte secondary battery include known battery structures such as a coin-type battery, a button-type battery, a cylindrical battery, and a square battery.
  • members constituting the nonaqueous electrolyte secondary battery include a nonaqueous electrolyte solution, a cylindrical can, and a laminate pouch other than the nonaqueous electrolyte secondary battery structure.
  • the nonaqueous electrolytic solution is obtained by dissolving an electrolyte in a nonaqueous solvent.
  • the non-aqueous solvent include an aprotic organic solvent capable of transporting a cation and an anion constituting an electrolyte and substantially not impairing the function of the secondary battery.
  • examples of such non-aqueous solvents include organic solvents commonly used as non-aqueous electrolytes for lithium ion secondary batteries, such as carbonates, halogenated hydrocarbons, ethers, ketones, nitriles, lactones, Esters, oxolane compounds and the like can be used.
  • propylene carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, 1,2-dimethoxyethane, 1,2-diethoxyethane, methyl propionate, ethyl propionate, succinonitrile, 1,3-propane Sultone, fluoroethylene carbonate, vinylene carbonate and the like are preferable.
  • a non-aqueous solvent may be used individually by 1 type, or may use 2 or more types.
  • a non-aqueous electrolyte secondary battery when a lithium ion secondary battery, taking as an example an electrolyte that can be used, LiPF 6, LiAsF 6, lithium salt of fluoro complex anion of LBF 4 or the like, Inorganic lithium salts such as LiClO 4 , LiCl and LiBr, and sulfonic acid lithium salts such as LiCH 3 SO 3 and LiCF 3 SO 3 , Li (CF 3 OSO 2 ) 2 N, Li (CF 3 OSO 2 ) 3 C, Examples thereof include organic lithium salts such as Li (CF 3 SO 2 ) 2 N and Li (CF 3 SO 2 ) 3 C.
  • the electrolyte may be used alone or in combination of two or more.
  • the non-aqueous electrolyte secondary battery according to the present invention can be obtained from the above-described non-aqueous electrolyte secondary battery structure, but the intermediate layer of the non-aqueous electrolyte secondary battery structure is used when manufacturing the battery.
  • the adhesiveness between the positive electrode and the negative electrode can be improved by swelling with the electrolyte injected into the electrode and further hot pressing.
  • the temperature at which the hot pressing is performed is preferably from room temperature to 160 ° C., and more preferably from 40 to 120 ° C.
  • the pressure during the hot pressing is preferably h0.01 to 10 MPa, more preferably 0.1 to 8 MPa.
  • the preheating time is preferably 1 second to 1 hour, and the pressing time is preferably 1 second to 1 hour.
  • the nonaqueous electrolyte secondary battery as described above can form an electrode having excellent adhesion between the positive electrode-intermediate layer-separator and / or the negative electrode-intermediate layer-separator.
  • Lithium cobaltate (Cellseed C5-H, manufactured by Nippon Chemical Industry Co., Ltd.), conductive additive (SuperP, manufactured by TIMCAL), and PVDF (polyvinylidene fluoride, KF # 1100, manufactured by Kureha) at a mass ratio of 93: 3: 4 -Mix-2-pyrrolidone was mixed to prepare a slurry having a solid content of 69% by mass.
  • the slurry was coated on an aluminum foil using a 115 ⁇ m spacer, dried at 120 ° C. for 3 hours, and then pressed to obtain a positive electrode having a bulk density of 3.6 g / cm 3 and a basis weight of 150 g / m 2 . .
  • BTR918 modified natural graphite, manufactured by BTR
  • conductive additive SuperP, manufactured by TIMCAL
  • SBR styrene butadiene rubber latex, BM-400, manufactured by Nippon Zeon
  • CMC carboxymethylcellulose, Cellogen 4H, Daiichi Kogyo Seiyaku
  • Example 1 280 parts by mass of water was put into an autoclave, and after deaeration, 0.5 parts by mass of perfluorooctanoic acid (PFOA) ammonium salt and 0.05 parts by mass of ethyl acetate were added, and then 20 parts by mass of vinylidene fluoride. (VDF) and 5 parts by mass of hexafluoropropylene (HFP) were added.
  • PFOA perfluorooctanoic acid
  • VDF vinylidene fluoride
  • HFP hexafluoropropylene
  • the obtained VDF-HFP-MMM copolymer latex was dried at 80 ° C. for 3 hours, and the resin concentration was measured. As a result, it was 22.7% by mass. Further, the average particle diameter was determined using ELSZ-2 manufactured by Otsuka Electronics Co., Ltd., and as a result, it was 187 nm.
  • the slurry obtained by salting out the obtained latex with an aqueous 0.5% by mass calcium chloride solution was washed twice with water and then dried at 80 ° C. for 21 hours to obtain a powder. The obtained powder was pressed at 200 ° C. and the IR spectrum was measured. As a result, the absorbance ratio (A 1740 cm ⁇ 1 / A 3020 cm ⁇ 1 ) was 0.16. In addition, the measurement result of IR spectrum is shown in FIG.
  • VDF-HFP-MMM copolymer latex VDF-HFP-MMM copolymer latex
  • CMC Serogen 4H, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.
  • the resulting aqueous dispersion was mixed on both sides of the separator (Hypore ND420, manufactured by Asahi Kasei Co., Ltd.) with a wet coating amount of 36 g / m 2 using a wire bar. Dry at 70 ° C. for 10 minutes.
  • the air permeability of the obtained coating separator (that is, intermediate layer / separator / intermediate layer laminate) was measured using a Gurley type densometer (manufactured by Toyo Seiki Seisakusho), and was 432 s / 100 ml.
  • the air permeability of the separator (Hypore ND420) before coating was 320 s / 100 ml.
  • the thickness of the coating film was 0.7 ⁇ m on one side.
  • the positive electrode and the negative electrode are cut into 2.5 cm ⁇ 5.0 cm, the obtained coating separator is cut into 3.0 cm ⁇ 6.0 cm, and the positive electrode, the coating separator, and the negative electrode are stacked in this order, and an electrolytic solution (ethylene carbonate / dimethyl).
  • an electrolytic solution ethylene carbonate / dimethyl.
  • the 180 ° peel strength between the positive electrode and the coating separator, and the coating separator and the negative electrode was 1.48 gf / mm as a result of measuring the 180 ° peel strength between them using a Tensilon universal testing machine (manufactured by A & D Co., Ltd.).
  • the 180 ° peel strength between the separator and the negative electrode was 0.33 gf / mm. The measurement result of the peel strength is shown in FIG.
  • Example 2 The amount of ammonium persulfate added was changed from 0.3 parts by weight to 0.5 parts by weight, the amount of monomethyl maleate added was changed from 0.3 parts by weight to 0.5 parts by weight, and the concentration of the monomethyl maleate aqueous solution was changed. In the same manner as in Example 1, except that the amount of the aqueous solution was changed from 3% by mass to 5% by mass and the amount of the aqueous solution added was changed from 0.02 parts by mass to 0.033 parts by mass in terms of monomethyl maleate. A MMM copolymer latex was obtained.
  • Example 2 Using the obtained VDF-HFP-MMM copolymer latex, a coating separator was obtained in the same manner as in Example 1. When the air permeability of the obtained coating separator was measured in the same manner as in Example 1, the air permeability was 478 s / 100 ml. The thickness of the coating film was 1.0 ⁇ m on one side.
  • 180 ° peel strength between the positive electrode and the coating separator and 180 ° peel strength between the coating separator and the negative electrode were measured in the same manner as in Example 1. As a result, 180 ° peel between the positive electrode and the coating separator was measured. The strength was 1.66 gf / mm, and the 180 ° peel strength between the coating separator and the negative electrode was 0.54 gf / mm. The measurement result of the peel strength is shown in FIG.
  • Example 1 A VDF-HFP copolymer latex was obtained in the same manner as in Example 1 except that the amount of ammonium persulfate added was changed from 0.3 parts by mass to 0.06 parts by mass and monomethyl maleate was not added. .
  • the resin concentration, average particle size, and absorbance ratio were measured in the same manner as in Example 1. As a result, the resin concentration was 24.6% by mass, the average particle size was 195 nm, and the absorbance ratio (A 1740 cm-1 / A 3020 cm -1 ). Was 0.06.
  • the measurement result of IR spectrum is shown in FIG.
  • Example 2 Using the obtained VDF-HFP copolymer latex, a coating separator was obtained in the same manner as in Example 1.
  • the air permeability of the obtained coating separator was measured in the same manner as in Example 1, the air permeability was 405 s / 100 ml.
  • the thickness of the coating film was 0.7 ⁇ m on one side.
  • 180 ° peel strength between the positive electrode and the coating separator and 180 ° peel strength between the coating separator and the negative electrode were measured in the same manner as in Example 1. As a result, 180 ° peel between the positive electrode and the coating separator was measured. The strength was 1.28 gf / mm, and the 180 ° peel strength between the coating separator and the negative electrode was 0.12 gf / mm. The measurement result of the peel strength is shown in FIG.
  • Example 1 and Example 2 in which latex was obtained using monomethyl maleate, the absorbance ratio (A 1740 cm ⁇ 1 / A 3020 cm ⁇ 1 ) was 0.10 or more.
  • Comparative Example 1 in which latex was obtained without using monomethyl maleate the absorbance ratio (A 1740 cm ⁇ 1 / A 3020 cm ⁇ 1 ) was less than 0.10.
  • both 180 degree peel strength between a positive electrode and a coating separator and 180 degree peel strength between a coating separator and a negative electrode are both. In particular, the 180 ° peel strength between the coating separator and the negative electrode was significantly improved.
  • Example 3 280 parts by mass of water was put into an autoclave, and after deaeration, 0.5 parts by mass of perfluorooctanoic acid (PFOA) ammonium salt and 0.05 parts by mass of ethyl acetate were added, and then 20 parts by mass of vinylidene fluoride. (VDF) and 5 parts by mass of hexafluoropropylene (HFP) were added.
  • PFOA perfluorooctanoic acid
  • VDF vinylidene fluoride
  • HFP hexafluoropropylene
  • the obtained VDF-HFP-MA copolymer latex was dried at 80 ° C. for 3 hours, and the resin concentration was measured. As a result, it was 22.9% by mass. Further, the average particle diameter was determined using ELSZ-2 manufactured by Otsuka Electronics Co., Ltd., and as a result, it was 185 nm.
  • the slurry obtained by salting out the obtained latex with an aqueous 0.5% by mass calcium chloride solution was washed twice with water and then dried at 80 ° C. for 21 hours to obtain a powder. The obtained powder was pressed at 200 ° C. and the IR spectrum was measured. As a result, the absorbance ratio (A 1740 cm ⁇ 1 / A 3020 cm ⁇ 1 ) was 0.13. In addition, the measurement result of IR spectrum is shown in FIG.
  • the mixture was mixed to a concentration of 8.9% by mass, and the obtained aqueous dispersion was sequentially coated on both sides of the separator (Hypore ND420, manufactured by Asahi Kasei) with a wet coating amount of 36 g / m 2 using a wire bar. Dry at 70 ° C. for 10 minutes.
  • the air permeability of the obtained coating separator was measured using a Gurley type densometer (manufactured by Toyo Seiki Seisakusho), it was 410 s / 100 ml.
  • the thickness of the coating film was 0.6 ⁇ m on one side.
  • the positive electrode and the negative electrode are cut into 2.5 cm ⁇ 5.0 cm, the obtained coating separator is cut into 3.0 cm ⁇ 6.0 cm, and the positive electrode, the coating separator, and the negative electrode are stacked in this order, and an electrolytic solution (ethylene carbonate / dimethyl).
  • an electrolytic solution ethylene carbonate / dimethyl.
  • the 180 ° peel strength between the positive electrode and the coating separator, and the coating separator and the negative electrode was 1.46 gf / mm as a result of measuring the 180 ° peel strength between them using a Tensilon universal testing machine (manufactured by A & D Co., Ltd.).
  • the 180 ° peel strength between the electrode and the negative electrode was 0.30 gf / mm. The measurement result of the peel strength is shown in FIG.
  • Example 4 [Battery fabrication and cycle test] (Preparation of positive electrode) Lithium cobaltate (Cell Seed C5, manufactured by Nippon Chemical Industry Co., Ltd.), carbon nanotubes (CNT, manufactured by C-nano), and PVDF (KF # 7300, manufactured by Kureha) were mixed at a mass ratio of 97.5: 1: 1.5 N Mixing with methyl-2-pyrrolidone, a slurry having a solid content of 65% by mass was prepared. The slurry was coated on an aluminum foil using a 120 ⁇ m spacer, dried at 120 ° C. for 3 hours, and then pressed to obtain a positive electrode having a bulk density of 3.6 g / cm 2 and a basis weight of 97 g / m 2 . .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Cell Separators (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

 正極とセパレータ同士、及び、負極とセパレータ同士の少なくとも一方が互いに強固に密着した非水電解質二次電池用構造体、上記非水電解質二次電池用構造体を得るのに用いられる水性ラテックス、及びセパレータ/中間層積層体を提供する。 本発明に係る水性ラテックスは、水中に分散した重合体粒子を含むものであって、前記重合体粒子は、不飽和二塩基酸に由来する構造単位及び/又は不飽和二塩基酸モノエステルに由来する構造単位とフッ化ビニリデン系単量体に由来する構造単位とを含む共重合体を含有し、前記水性ラテックスは、正極、負極、及び前記正極と前記負極との間に積層されたセパレータを有する非水電解質二次電池用構造体において、前記正極と前記セパレータとの間、及び、前記負極と前記セパレータとの間の少なくとも一方に設けられる中間層の製造に用いられる。

Description

水性ラテックス、セパレータ/中間層積層体、及び非水電解質二次電池用構造体
 本発明は、水性ラテックス、セパレータ/中間層積層体、及び非水電解質二次電池用構造体に関する。
 近年電子技術の発展はめざましく、各種の機器が小型化、軽量化されている。この電子機器の小型化、軽量化と相まって、その電源となる電池の小型化、軽量化が求められている。小さい容積及び質量で大きなエネルギーを得ることができる電池として、リチウムを用いた非水電解質二次電池が用いられている。また、非水電解質二次電池を、ハイブリッドカー、電気自動車等のエネルギー源として用いることも提案されており、実用化が始まっている。
 非水電解質二次電池の用途がタブレット端末やスマートフォンの分野、自動車分野等に拡大するにつれ、非水電解質二次電池の大容量化及び大面積化も求められるようになっている。例えば、特許文献1には、大面積の正極極板及び負極極板をセパレータを介して積層した積層型電極体と、特定の非水電解質とを備える非水電解質二次電池が開示されている。
特開2013-206724号公報
 非水電解質二次電池用構造体は、通常、正極と負極とを有し、この間に正極と負極とを絶縁するためのセパレータが配置されている。大容量化を達成するために大面積化された非水電解質二次電池用構造体においては、正極、セパレータ、及び負極を備える積層体がごく小さな外力により歪んだだけでも、正極とセパレータとの間、及び/又は、負極とセパレータとの間でずれや剥離が生じやすく、充放電に寄与しない部分が出現しやすい。その結果、所望の容量が得られにくくなる恐れがある。そのため、上記のようなずれや剥離が生じにくくなるよう、正極とセパレータ同士、及び、負極とセパレータ同士が互いに強固に密着した非水電解質二次電池用構造体が求められている。
 本発明は、正極とセパレータ同士、及び、負極とセパレータ同士の少なくとも一方が互いに強固に密着した非水電解質二次電池用構造体、上記非水電解質二次電池用構造体を得るのに用いられる水性ラテックス、及びセパレータ/中間層積層体を提供することを目的とする。
 本発明者らは、上記課題を達成するために、鋭意研究を重ねた結果、不飽和二塩基酸に由来する構造単位及び/又は不飽和二塩基酸モノエステルに由来する構造単位とフッ化ビニリデン系単量体に由来する構造単位とを含む共重合体を含有する重合体粒子により上記課題を達成することができることを見出し、本発明を完成させた。
 即ち、本発明に係る水性ラテックスは、水中に分散した重合体粒子を含むものであって、前記重合体粒子は、不飽和二塩基酸に由来する構造単位及び/又は不飽和二塩基酸モノエステルに由来する構造単位とフッ化ビニリデン系単量体に由来する構造単位とを含む共重合体を含有し、前記水性ラテックスは、正極、負極、及び前記正極と前記負極との間に積層されたセパレータを有する非水電解質二次電池用構造体において、前記正極と前記セパレータとの間、及び、前記負極と前記セパレータとの間の少なくとも一方に設けられる中間層の製造に用いられる。
 前記重合体粒子について、1740cm-1における赤外吸収スペクトルの吸光度A1740cm-1と3020cm-1における赤外吸収スペクトルの吸光度A3020cm-1との比A1740cm-1/A3020cm-1が0.10以上であることが好ましい。
 前記重合体粒子の平均粒径が50nm以上700nm以下であることが好ましい。
 前記重合体粒子が乳化重合により製造されるものであることが好ましい。
 本発明に係るセパレータ/中間層積層体は、非水電解質二次電池用のセパレータと、前記セパレータの少なくとも一方の主面に設けられた中間層とを有し、前記中間層は、不飽和二塩基酸に由来する構造単位及び/又は不飽和二塩基酸モノエステルに由来する構造単位とフッ化ビニリデン系単量体に由来する構造単位とを含む共重合体を含有する重合体粒子を含む。
 本発明に係る非水電解質二次電池用構造体は、正極、負極、及び前記正極及び前記負極との間に積層されたセパレータを有するものであって、前記非水電解質二次電池用構造体は、前記正極と前記セパレータとの間、及び、前記負極と前記セパレータとの間の少なくとも一方に中間層を有し、前記中間層は、不飽和二塩基酸に由来する構造単位及び/又は不飽和二塩基酸モノエステルに由来する構造単位とフッ化ビニリデン系単量体に由来する構造単位とを含む共重合体を含有する重合体粒子を含む。
 本発明によれば、正極とセパレータ同士、及び、負極とセパレータ同士の少なくとも一方が互いに強固に密着した非水電解質二次電池用構造体、上記非水電解質二次電池用構造体を得るのに用いられる水性ラテックス、及びセパレータ/中間層積層体を提供することができる。本発明に係る非水電解質二次電池用構造体によれば、非水電解質二次電池の大容量化及び大面積化を効率的かつ効果的に達成することができる。
実施例又は比較例で得られた水性ラテックス由来の粉末についてIRスペクトル測定を行って得られたグラフを示す図である。 実施例又は比較例において、正極/コーティングセパレータ/負極積層体(即ち、正極/中間層/セパレータ/中間層/負極積層体)において、正極とコーティングセパレータとの間の180°剥離強度、及び、コーティングセパレータと負極との間の180°剥離強度を測定して得られたグラフを示す図である。 実施例において得られたコーティングセパレータを用いて得た非水電解質二次電池のサイクル試験の結果を示す図である。
<水性ラテックス>
 本発明に係る水性ラテックスは、水中に分散した重合体粒子を含むものであって、前記重合体粒子は、不飽和二塩基酸に由来する構造単位及び/又は不飽和二塩基酸モノエステルに由来する構造単位とフッ化ビニリデン系単量体に由来する構造単位とを含む共重合体を含有し、前記水性ラテックスは、正極、負極、及び前記正極と前記負極との間に積層されたセパレータを有する非水電解質二次電池用構造体において、前記正極と前記セパレータとの間、及び、前記負極と前記セパレータとの間の少なくとも一方に設けられる中間層の製造に用いられる。前記水性ラテックスにおいて、重合体粒子は、単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 前記重合体粒子は、不飽和二塩基酸に由来する構造単位及び/又は不飽和二塩基酸モノエステルに由来する構造単位とフッ化ビニリデン系単量体に由来する構造単位とを含む共重合体を含有するものである。上記共重合体は、不飽和二塩基酸に由来する構造単位及び/又は不飽和二塩基酸モノエステルに由来する構造単位が有するカルボニル基に起因する極性相互作用を示し、基材との接着力に優れる。よって、正極、負極、及び前記正極と前記負極との間に積層されたセパレータを有する非水電解質二次電池用構造体において、前記正極と前記セパレータとの間、及び、前記負極と前記セパレータとの間の少なくとも一方に設けられる中間層の製造に、上記共重合体を含有する重合体粒子を含む本発明に係る水性ラテックスを用いた場合、セパレータと中間層との接着強度、正極と中間層との接着強度、及び負極と中間層との接着強度が優れたものとなりやすい。前記重合体粒子において、前記共重合体は、単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 不飽和二塩基酸としては、炭素数5~8のものが好ましい。不飽和二塩基酸としては、例えば、不飽和ジカルボン酸が挙げられ、より具体的には、(無水)マレイン酸、シトラコン酸等が挙げられる。
 不飽和二塩基酸モノエステルとしては、炭素数5~8のものが好ましい。不飽和二塩基酸モノエステルとしては、例えば、不飽和ジカルボン酸モノエステルが挙げられ、より具体的には、マレイン酸モノメチルエステル、マレイン酸モノエチルエステル、シトラコン酸モノメチルエステル、シトラコン酸モノエチルエステル等を挙げることができる。不飽和二塩基酸モノエステルは、単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 フッ化ビニリデン系単量体としては、例えば、フッ化ビニリデン、フッ化ビニル、トリフルオロエチレン(TrFE)、テトラフルオロエチレン(TFE)、クロロトリフルオロエチレン(CTFE)、ヘキサフルオロプロピレン(HFP)等を挙げることができる。フッ化ビニリデン系単量体は、単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 前記共重合体において、フッ化ビニリデンと他のフッ化ビニリデン系単量体とのモル比、特に、フッ化ビニリデン系単量体がフッ化ビニリデンとヘキサフルオロプロピレン、テトラフルオロエチレン、及び/又はクロロトリフルオロエチレンとの組み合わせである場合、フッ化ビニリデンとヘキサフルオロプロピレン、テトラフルオロエチレン、及び/又はクロロトリフルオロエチレンとのモル比は、好ましくは100:0~80:20、より好ましくは99.5:0.5~85:15、更により好ましくは99:1~90:10である。
 前記共重合体は、不飽和二塩基酸、不飽和二塩基酸モノエステル及びフッ化ビニリデン系単量体以外のモノマー(以下、他のモノマーとも記す。)に由来する構造単位を含んでもよい。他のモノマーとしては、特に限定はないが、例えば、フッ化ビニリデン系単量体と共重合可能なフッ素系単量体;エチレン、プロピレン等の炭化水素系単量体;スチレン、α-メチルスチレン等の芳香族ビニル化合物;(メタ)アクリロニトリル等の不飽和ニトリル化合物;アクリル酸エステル化合物;アクリルアミド化合物;メタクリル酸グリシジル等のエポキシ基含有不飽和化合物;ビニルスルホン酸等のスルホン基含有不飽和化合物;不飽和二塩基酸及び不飽和二塩基酸モノエステル以外のカルボキシル基含有モノマー;カルボン酸無水物基含有モノマーが挙げられる。他のモノマーは、単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 前記共重合体において、不飽和二塩基酸に由来する構造単位及び不飽和二塩基酸モノエステルに由来する構造単位の合計の含有量は、全構造単位の合計100モル%に対して、好ましくは0.02モル%以上5.0モル%以下であり、より好ましくは0.05モル%以上4.0モル%以下であり、更により好ましくは0.07モル%以上3.0モル%以下であり、最も好ましくは0.1モル%以上2.0モル%以下である。
 前記共重合体において、フッ化ビニリデン系単量体に由来する構造単位の含有量は、全構造単位の合計100モル%に対して、好ましくは50モル%以上99.98モル%以下であり、より好ましくは80モル%以上99.95モル%以下であり、更により好ましくは85モル%以上99.93モル%以下であり、最も好ましくは90モル%以上99.9モル%以下である。特に、前記共重合体が不飽和二塩基酸に由来する構造単位及び/又は不飽和二塩基酸モノエステルに由来する構造単位とフッ化ビニリデン系単量体に由来する構造単位とからなる場合、前記共重合体において、フッ化ビニリデン系単量体に由来する構造単位の含有量は、全構造単位の合計100モル%に対して、好ましくは95.0モル%以上99.98モル%以下であり、より好ましくは96.0モル%以上99.95モル%以下であり、更により好ましくは97.0モル%以上99.93モル%以下であり、最も好ましくは98.0モル%以上99.9モル%以下である。また、前記共重合体が不飽和二塩基酸に由来する構造単位及び/又は不飽和二塩基酸モノエステルに由来する構造単位とフッ化ビニリデン系単量体に由来する構造単位と他のモノマーとからなる場合、前記共重合体において、フッ化ビニリデン系単量体に由来する構造単位の含有量は、全構造単位の合計100モル%に対して、好ましくは50モル%以上98.98モル%以下であり、より好ましくは80モル%以上97.95モル%以下であり、更により好ましくは85モル%以上96.93モル%以下であり、最も好ましくは90モル%以上95.9モル%以下である。
 前記共重合体が他のモノマーを含む場合、前記共重合体において、他のモノマーに由来する構造単位の含有量は、全構造単位の合計100モル%に対して、好ましくは1.0モル%以上49.98モル%以下であり、より好ましくは2.0モル%以上19.95モル%以下であり、更により好ましくは3.0モル%以上14.93モル%以下であり、最も好ましくは4.0モル%以上9.9モル%以下である。
 フッ化ビニリデン系単量体と共重合可能な前記フッ素系単量体としては、ペルフルオロメチルビニルエーテルに代表されるペルフルオロアルキルビニルエーテル等を挙げることができる。
 不飽和二塩基酸及び不飽和二塩基酸モノエステル以外の前記カルボキシル基含有モノマーとしては、不飽和一塩基酸等が好ましい。前記不飽和一塩基酸としては、アクリル酸、メタクリル酸、2-カルボキシエチルアクリレート、2-カルボキシエチルメタクリレート等が挙げられる。中でも、不飽和二塩基酸及び不飽和二塩基酸モノエステル以外の前記カルボキシル基含有モノマーとしては、アクリル酸、メタクリル酸、マレイン酸、シトラコン酸が好ましい。また、不飽和二塩基酸及び不飽和二塩基酸モノエステル以外の前記カルボキシル基含有モノマーとしては、アクリロイルオキシエチルコハク酸、メタクリロイルオキシエチルコハク酸、アクリロイルオキシエチルフタル酸、メタクリロイルオキシエチルフタル酸、アクリロイルオキシプロピルコハク酸等を用いてもよい。
 本発明に用いられる共重合体としては、架橋された共重合体を用いてもよい。共重合体として、架橋されたものを用いる場合には、前記他のモノマーとして、多官能性モノマーを用いてもよく、未架橋の重合体を得た後に、多官能性モノマーを用いて架橋反応を行ってもよい。
 共重合体としては、不飽和二塩基酸に由来する構造単位及び/又は不飽和二塩基酸モノエステルに由来する構造単位と、フッ化ビニリデン系単量体に由来する構造単位と、フッ化ビニリデン系単量体と共重合可能な前記フッ素系単量体に由来する構造単位とを含む共重合体が好ましく、具体的にはフッ化ビニリデン(VDF)-TFE-マレイン酸モノメチルエステル(MMM)共重合体、VDF-TFE-HFP-MMM共重合体、VDF-HFP-MMM共重合体、VDF-CTFE-MMM共重合体、VDF-TFE-CTFE-MMM共重合体、VDF-HFP-CTFE-MMM共重合体、VDF-TFE-MA共重合体、VDF-TFE-HFP-MA共重合体、VDF-HFP-MA共重合体、VDF-CTFE-MA共重合体、VDF-TFE-CTFE-MA共重合体、VDF-HFP-CTFE-MA共重合体が好ましく、VDF-TFE-HFP-MMM共重合体、VDF-HFP-MMM共重合体、VDF-CTFE-MMM共重合体、VDF-HFP-CTFE-MMM共重合体、VDF-TFE-HFP-MA共重合体、VDF-HFP-MA共重合体、VDF-CTFE-MA共重合体、VDF-HFP-CTFE-MA共重合体がより好ましい。
 共重合体を得る方法としては、特に限定はなく、例えば、乳化重合、ソープフリー乳化重合、ミニエマルション重合、懸濁重合、溶液重合、塊状重合等の重合法が挙げられる。これらの中でも、共重合体を粒子として得ることが可能な重合法が好ましい。粒子以外の形状で共重合体が得られた場合には、重合体粒子として用いることができるよう、粉砕等の処理が必要となる。よって、前述の通り、粒子状の共重合体、即ち、共重合体を含有する重合体粒子を得ることが可能な方法を採用することが好ましい。
 重合体粒子を得る方法としては、例えば、乳化重合、ソープフリー乳化重合、ミニエマルション重合、懸濁重合が挙げられるが、平均粒径が1μm以下の重合体粒子を得ることが容易な乳化重合、ソープフリー乳化重合、ミニエマルション重合が好ましく、乳化重合が特に好ましい。
 乳化重合は、モノマー、乳化剤、水、重合開始剤を用いて、重合体粒子を得る方法である。乳化剤は、ミセルを形成するとともに、生成する重合体粒子を安定に分散することができるものであればよく、イオン性乳化剤、非イオン性乳化剤等を用いることができる。重合開始剤としては水溶性過酸化物又は水溶性アゾ系化合物等が用いられるほか、アスコルビン酸一過酸化水素等のレドックス開始剤系が用いられる。
 ソープフリー乳化重合は、前述の乳化重合を行う際に用いるような通常の乳化剤を用いることなく行われる乳化重合である。ソープフリー乳化重合により得られた重合体粒子は、乳化剤が重合体粒子中に残存しないため、重合体粒子を含んで形成される中間層を形成した際に、乳化剤が表面にブリードアウトすること等がないため好ましい。ソープフリー乳化重合は、前記乳化重合における乳化剤を、反応性乳化剤に変えることにより行うことができる。また、モノマーが分散する場合には、反応性乳化剤を用いずに、ソープフリー重合を行うことができる。
 なお、反応性乳化剤とは、分子中に重合性の二重結合をもち、かつ乳化剤としても作用する物質である。反応性乳化剤を用いると、重合の初期には系中に前述の乳化剤が存在する場合と同様にミセルを形成するが、反応が進行するに従い、該反応性乳化剤がモノマーとして消費され、最終的には反応系中には、反応性乳化剤は、ほとんど遊離した状態では存在しないこととなる。
 ミニエマルション重合は、超音波発振器等を用いて強いせん断力をかけることでモノマー液滴をサブミクロンサイズまで微細化して、重合を行なう方法である。ミニエマルション重合では、微細化されたモノマー油滴を安定化するために、ハイドロホープという難水溶性物質を添加して行われる。ミニエマルション重合では、理想的にはモノマー油滴が重合し、各油滴が、それぞれ共重合体の微粒子に変わる。
 懸濁重合は、非水溶性の重合開始剤を非水溶性のモノマーに溶かし、これを水中に機械的撹拌により懸濁させて加温することにより、重合を行う方法である。懸濁重合では、モノマー液滴中で重合が進行し、重合体粒子の分散溶液が得られる。懸濁重合で得られる重合体粒子の粒径は、一般には、前述の乳化重合、ソープフリー乳化重合、ミニエマルシヨン重合により得られた重合体粒子の粒径と比べて、大きくなる傾向があるが、前記機械的撹拌において、高速せん断を伴う撹拌を行い、モノマー液滴を微細化し、分散安定剤の最適化を行うことにより、微細なモノマー液滴を安定化させることにより、粒径の小さい重合体粒子を得ることができる。
 共重合の製造や、懸濁重合等で得られた粒子を水に分散させる際に使用される乳化剤(以下、界面活性剤とも記す)や、分散剤は、電池の内部に残留することに鑑み、耐酸化還元性のよいものが好ましい。本発明に係る水性ラテックスは、重合体粒子を得る過程で添加された成分、例えば、上記の乳化剤、分散剤等をふくむものであってもよい。
 前記界面活性剤は、非イオン界面活性剤、カチオン界面活性剤、アニオン界面活性剤、両性界面活性剤のいずれでもよく、複数種類でもよい。重合において使用される界面活性剤は、過フッ素化、部分フッ素化、及び非フッ素化界面活性剤等、ポリフッ化ビニリデンの重合に従来から使用されるものが好適である。アニオン界面活性剤としては、例えば高級アルコール硫酸エステルナトリウム塩、アルキルベンゼンスルホン酸ナトリウム塩、コハク酸ジアルキルエステルスルホン酸ナトリウム塩、アルキルジフェニルエーテルジスルホン酸ナトリウム塩、ポリオキシエチレンアルキルエーテル硫酸ナトリウム塩、ポリオキシエチレンアルキルフェニルエーテル硫酸ナトリウム塩等を挙げることができる。これらのうち、ラウリル硫酸エステルナトリウム塩、ドデシルベンゼンスルホン酸ナトリウム塩、ポリオキシエチレンアルキルエーテル硫酸ナトリウム塩、ポリオキシエチレンアルキルフェニルエーテル硫酸ナトリウム塩等が好ましい。非イオン性界面活性剤としてはポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルアリールエーテル、ポリオキシエチレン脂肪酸エステル、ポリオキシエチレンソルビタン脂肪酸エステル等を挙げることができる。両性活性剤としてはラウリルベタイン、ヒドロキシエチルイミダゾリン硫酸エステルナトリウム塩、イミダゾリンスルホン酸ナトリウム塩等を挙げることができる。カチオン性界面活性剤としては、アルキルピリジニウムクロライド、アルキルトリメチルアンモニウムクロライド、ジアルキルジメチルアンモニウムクロライド、アルキルジメチルベンジルアンモニウムクロライド等を挙げることができる。フッ素系界面活性剤としてはパーフルオロアルキルスルホン酸及びその塩、パーフルオロアルキルカルボン酸及びその塩、パーフルオロアルキルリン酸エステル、パーフルオロアルキルポリオキシエチレン、パーフルオロアルキルベタイン、フルオロカーボン鎖又はフルオロポリエーテル鎖を有するフッ素系界面活性剤等を挙げることができる。それらのうちフッ素系界面活性剤を使用することが好ましい。
 また、前記反応性乳化剤としては、ポリオキシアルキレンアルケニルエーテル、アルキルアリルスルホコハク酸ナトリウム、メタクリロイルオキシポリオキシプロピレン硫酸エステルナトリウム、アルコキシポリエチレングリコールメタクリレート、スチレンスルホン酸ナトリウム塩、アリルアルキルスルホン酸ナトリウム等が挙げられるがそれらに限定されない。
 分散剤としては、特に限定されず、従来公知のものを用いることができ、例えば、フッ素系の分散剤が挙げられる。
 前述の各重合方法で重合を行う際の重合温度等の重合条件も任意に設定することができる。
 前記重合体粒子について、1740cm-1における赤外吸収スペクトルの吸光度A1740cm-1と3020cm-1における赤外吸収スペクトルの吸光度A3020cm-1との比A1740cm-1/A3020cm-1が0.10以上であることが好ましい。1740cm-1における吸収は、-CO-O-で表される基によるものであり、3020cm-1における吸収は-CH-で表される基によるものである。共重合体において、-CO-O-で表される基は、不飽和二塩基酸に由来する構造単位及び/又は不飽和二塩基酸モノエステルに由来する構造単位に含まれ、-CH-で表される基は、全構成単位に含まれることから、比A1740cm-1/A3020cm-1は、共重合体中の全構成単位のうち、不飽和二塩基酸に由来する構造単位及び不飽和二塩基酸モノエステルに由来する構造単位の合計の割合を反映している。
 比A1740cm-1/A3020cm-1の下限は、0.12以上であることがより好ましく、0.15以上であることが更により好ましい。上記下限が上記範囲内であると、不飽和二塩基酸に由来する構造単位及び/又は不飽和二塩基酸モノエステルに由来する構造単位を十分に含有する共重合体を得ることが容易である。よって、正極、負極、及び前記正極と前記負極との間に積層されたセパレータを有する非水電解質二次電池用構造体において、前記正極と前記セパレータとの間、及び、前記負極と前記セパレータとの間の少なくとも一方に設けられる中間層の製造に、本発明に係る水性ラテックスを用いた場合、セパレータと中間層との接着強度、正極と中間層との接着強度、及び負極と中間層との接着強度が優れたものとなりやすい。
 比A1740cm-1/A3020cm-1の上限は、5.0以下であることが好ましく、4.0以下であることがより好ましく、3.0以下であることが更により好ましい。上記上限が上記範囲内であると、共重合体の製造時に過剰量の不飽和二塩基酸及び/又は不飽和二塩基酸モノエステルを添加する必要がないため、重合開始剤を過剰に用いなくても、上記共重合体を得ることが容易である。その結果、本発明に係る水性ラテックス中に混入する重合開始剤の量を効果的に減らすことができ、得られる非水電解質二次電池の特性が損なわれにくい。
 本発明に用いられる重合体粒子の平均粒径の下限は、50nm以上であることが好ましく、100nm以上であることがより好ましく、150nm以上であることが更により好ましい。上記下限が上記範囲内であると、本発明に係る水性ラテックスを用いて製造される中間層の透気度や、上記中間層とセパレータとの積層体の透気度をコントロールしやすいため好ましい。
 本発明に用いられる重合体粒子の平均粒径の上限は、700nm以下であることが好ましく、600nm以下であることがより好ましく、500nm以下であることが更により好ましい。上記上限が上記範囲内であると、本発明に係る水性ラテックスを用いて製造される中間層の厚みをコントロールしやすいため好ましい。
 なお、上記平均粒径は、動的光散乱法により求められるキュムラント平均粒子径であり、ELSZ-2(大塚電子製)を用いて測定される。
 本発明に係る水性ラテックスは、上記重合体粒子と水とからなるものであってもよいが、上記重合体粒子及び水以外の成分(以下、他の成分とも記す。)を含むものであってもよい。
 前記他の成分としては、水溶性高分子、無機フィラー、有機フィラー等が挙げられ、水溶性高分子を用いることが、中間層とセパレータとの接着性、中間層と電極との接着性、及び相互に接触する重合体粒子を接着する観点から好ましい。他の成分は、本発明に係る水性ラテックス中に溶解していても分散していてもよい。例えば、他の成分として水溶性高分子を用いた場合、水溶性高分子は、通常、上記水性ラテックス中に溶解している。また、例えば、他の成分として、無機フィラー又は有機フィラーを用いた場合、無機フィラー又は有機フィラーは、上記水性ラテックス中に分散している。なお、無機フィラー等の比重の高い成分を含む場合には、上記水性ラテックスは、調製後速やかに中間層の形成に用いること、又は事前に再分散することが好ましい。
 前記水溶性高分子としては、前記重合体粒子、前記電極、セパレータに対して接着性を有する高分子が好ましい。前記水溶性高分子としては、例えば、カルボキシメチルセルロース(CMC)、ヒドロキシプロピルメチルセルロース、ヒドロキシエチルセルロース等のセルロース化合物及びそのアンモニウム塩又はアルカリ金属塩、ポリアクリル酸(PAA)等のポリカルボン酸及びそのアルカリ金属塩、ポリビニルピロリドン(PVP)、ポリピニルアルコール(PVA)、ポリエチレンオキシド(PEO)等が挙げられ、カルボキシメチルセルロース(CMC)、ポリピニルアルコール(PVA)等が長期にわたる電池使用時の観点から好ましい。
 前記無機フィラーとしては、非水電解質二次電池において、正極又は負極とセパレータとの間に樹脂膜(中間層)を設けた際に従来から用いられる無機フィラー等を制限なく用いることができる。
 前記無機フィラーとしては、二酸化ケイ素(SiO)、アルミナ(A1)、二酸化チタン(TiO)、酸化カルシウム(CaO)、酸化ストロンチウム(SrO)、酸化バリウム(BaO)、酸化マグネシウム(MgO)、酸化亜鉛(Zn0)、チタン酸バリウム(BaTiO)等の酸化物、水酸化マグネシウム(Mg(OH))、水酸化カルシウム(Ca(OH))、水酸化亜鉛(Zn(OH))、水酸化アルミニウム(Al(OH))等の水酸化物、炭酸カルシウム(CaCO)等の炭酸塩、硫酸バリウム等の硫酸塩、窒化物、粘土鉱物等が挙げられる。無機フィラーとしては、一種単独でも二種以上を用いてもよい。
 無機フィラーとしては、電池の安全性、塗液安定性の観点からアルミナ、二酸化ケイ素、酸化マグネシウム、酸化亜鉛が好ましい。
 無機フィラーの平均粒子径としては5nm~2μmが好ましく、10nm~1μmがより好ましい。
 本発明に用いられる無機フィラーとしては、市販品を用いてもよい。例えば高純度アルミナ粒子として市販されている、AKP3000(住友化学製)等を用いることができる。
 本発明に係る水性ラテックスは、その塗布性を改善する観点から、水以外に非水媒体を含有することができる。非水媒体としては、アミド化合物、炭化水素、アルコール、ケトン、エステル、アミン化合物、ラクトン、スルホキシド、スルホン化合物等を挙げることができ、これらのうちから選択される1種以上を使用することができる。非水媒体を使用する場合、その含有量は少量でよく、具体的には、水性ラテックス全体に対して、好ましくは30質量%以下、より好ましくは10質量%以下である、更により好ましくは5質量%以下である。
 本発明に係る水性ラテックスにおいて、水以外の成分100質量部中、重合体粒子の含有量は、60~100質量部であることが好ましく、65~100質量部であることがより好ましく、70~100質量部であることが更により好ましい。
 本発明に係る水性ラテックスを用いて製造される中間層は、上記共重合体を含有する重合体粒子を含む。よって、本発明に係る水性ラテックスを用いることにより、無機フィラーを用いなくても、透気度を有する中間層を形成することが可能である。無機フィラーを用いない場合には、得られる非水電解質二次電池の重量エネルギー密度を改善することが可能である。また、無機フィラーを用いる場合には、得られる非水電解質二次電池において、セパレータや、中間層を形成する重合体粒子が溶融するような高温にさらされた場合であっても、中間層に無機フィラーが存在することにより、短絡の防止等の、安全性を高める効果が期待できる。
 また、水溶性高分子を用いる場合、水溶性高分子の含有量は、本発明に係る水性ラテックス100質量部中、好ましくは0.01~20質量部であり、より好ましくは0.01~15質量部であり、特に好ましくは0.01~10質量部である。
 また、無機フィラー及び/又は有機フィラーを用いる場合、無機フィラー及び/又は有機フィラーの含有量は、本発明に係る水性ラテックス100質量部中、好ましくは0.01~40質量部であり、より好ましくは0.01~35質量部であり、特に好ましくは0.01~30質量部である。
 また、本発明に係る水性ラテックスにおいて、上記水性ラテックス全体を100質量部とすると、分散媒である水の含有量は、好ましくは30~99質量部、より好ましくは35~98質量部である。上記含有量が上記範囲内であると、本発明に係る水性ラテックスを正極、負極、セパレータ等の基材に塗布する際の塗布性が優れたものとなりやすい。
 なお、上記重合体粒子は、本発明に係る水性ラテックスだけでなく、本発明に係るセパレータ/中間層積層体及び本発明に係る非水電解質二次電池用構造体にも、同様に用いることができる。
 本発明に係る水性ラテックスは、正極、負極、及び前記正極と前記負極との間に積層されたセパレータを有する非水電解質二次電池用構造体において、前記正極と前記セパレータとの間、及び、前記負極と前記セパレータとの間の少なくとも一方に設けられる中間層の製造に用いられる。正極、負極、セパレータ、非水電解質二次電池用構造体、及び中間層は、後述の通りである。
<非水電解質二次電池用構造体>
 本発明に係る非水電解質二次電池用構造体は、正極、負極、及び前記正極及び前記負極との間に積層されたセパレータを有するものであって、前記非水電解質二次電池用構造体は、前記正極と前記セパレータとの間、及び、前記負極と前記セパレータとの間の少なくとも一方に中間層を有し、前記中間層は、不飽和二塩基酸に由来する構造単位及び/又は不飽和二塩基酸モノエステルに由来する構造単位とフッ化ビニリデン系単量体に由来する構造単位とを含む共重合体を含有する重合体粒子を含む。
 本発明に係る非水電解質二次電池用構造体の構成は、本発明に係る水性ラテックスを用いて製造される中間層を、正極とセパレータとの間、及び、負極とセパレータとの間の少なくとも一方に設ける以外は、従来の非水電解質二次電池用構造体と同様である。正極、セパレータ、及び負極としては、公知のものを含め、非水電解質二次電池用構造体を構成可能なものであれば制限なく用いることができる。上記非水電解質二次電池用構造体において、正極、負極、及び/又はセパレータと中間層とは直接接していてもよいし、正極、負極、及び/又はセパレータと中間層との間に他の層が介在していてもよいが、正極と中間層との接着強度、負極と中間層との接着強度、及びセパレータと中間層との接着強度の観点から、正極と中間層とは直接接し、負極と中間層とは直接接し、かつ、セパレータと中間層とは直接接していることが好ましい。
 なお、本明細書において、正極及び負極を包括して「電極」と記す場合があり、正極集電体及び負極集電体を包括して「集電体」と記す場合がある。
〔正極〕
 本発明に係る非水電解質二次電池用構造体が有する正極としては、正極反応の担い手となる正極活物質を有し、かつ、集電機能を有するものであれば特に限定されないものの、多くの場合、正極活物質を含む正極合剤層と、集電体として機能するとともに正極合剤層を保持する役割を果たす正極集電体とからなる。
 本発明に係る非水電解質二次電池用構造体が、本発明に係る水性ラテックスを用いて製造される中間層を、前記正極とセパレータとの間に有する場合には、該中間層は、前記正極合剤層とセパレータとの間に配置されることが好ましい。
 本発明において、正極合剤層は、正極活物質及び結着剤を含んでおり、必要により、導電助剤を更に含むことができる。
 ここで、正極合剤層における、正極活物質、結着剤、導電助剤の配合比は、リチウムイオン二次電池等の非水電解質二次電池で用いられる一般的な配合比とすることができるが、二次電池の種類に応じて適宜調整しうる。
 この正極合剤層の厚さは、20~250μmであることが好ましい。
 本発明に係る非水電解質二次電池用構造体において用いられる正極活物質は、従来公知の正極用の電極活物質を含め、正極活物質として作用するものであれば特に制限なく用いることができる。
 ここで、非水電解質二次電池がリチウムイオン二次電池の場合、正極合剤層を構成する正極活物質としては、少なくともリチウムを含むリチウム系正極活物質が好ましい。
 リチウム系正極活物質としては例えば、LiCoO、LiNiCo1-x(0≦x≦1)等の一般式LiMY(Mは、Co、Ni、Fe、Mn、Cr、V等の遷移金属の少なくとも一種であり、YはO、S等のカルコゲン元素である。)で表わされる複合金属カルコゲン化合物、LiMn等のスピネル構造をとる複合金属酸化物、LiFePO等のオリビン型リチウム化合物等が挙げられる。なお、前記正極活物質としては市販品を用いてもよい。
 前記正極活物質の比表面積は、0.05~50m/gであることが好ましい。
 なお、正極活物質の比表面積は、窒素吸着法により求めることができる。
 ただ、本発明に係る非水電解質二次電池用構造体を構成する正極活物質は、これらのものに限られるものではなく、二次電池の種類に応じて適宜選択しうる。
 本発明において、正極合剤層は、必要により導電助剤を更に含んでいてもよい。この導電助剤は、LiCoO等の電子伝導性の小さい活物質を使用する場合に、正極合剤層の導電性を向上する目的で添加するもので、カーボンブラック、黒鉛微粉末、黒鉛繊維、カーボンナノチューブ等の炭素質物質やニッケル、アルミニウム等からなる金属微粉末又は金属繊維が使用される。
 前記結着剤は、上記正極活物質及び導電助材を繋ぎ止める役割を果たす。
 ここで、結着剤としては、特に限定されないものの、従来公知のリチウムイオン二次電池において広く用いられているものを好適に用いることができ、例えば、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、フッ素ゴム等の含フッ素樹脂、スチレンブタジエンゴムとカルボキシメチルセルロースとの混合物、ポリプロピレン、ポリエチレン等の熱可型性樹脂を用いることができるが、正極においてはポリフッ化ビニリデンが好ましい。また、前記含フッ素樹脂としては、フッ化ビニリデン系共重合体を用いることもできる。フッ化ビニリデン系共重合体としては、フッ化ビニリデン-マレイン酸モノメチルエステル共重合体等を用いることができる。
 前記正極集電体としては、二次電池の外部に電気を供給できるよう良好な導電性を有し、二次電池における電極反応を妨げないものであれば、特に限定されない。
 前記正極集電体としては、リチウムイオン二次電池等の非水電解質二次電池の正極集電体として一般的に用いられているものが挙げられる。
 非水電解質二次電池がリチウムイオン二次電池である場合には、正極集電体として、アルミニウム又はその合金からなるものが好ましく、その中でもアルミニウム箔が好ましい。前記正極集電体は、これらに限定されるものではなく、二次電池の種類に応じて、適宜選択すればよい。前記正極集電体の厚さは、5~100μmであることが好ましい。
 本発明において、前記正極集電体及び正極合剤層からなる正極の製造方法としては、特に限定されず、例えば、正極合剤層を構成する各成分を含有する正極合剤を集電体の少なくとも片面、好ましくは両面に塗布し、塗布された上記正極合剤を乾燥することにより正極を得る方法が挙げられる。塗布方法としては、特に限定されず、バーコーター、ダイコーター、コンマコーター等で塗布する方法が挙げられる。また、塗布後の乾燥は、例えば、50~150℃の温度で10秒~300分間行われる。また、乾燥の際の圧力は特に限定されず、乾燥は、大気圧下又は減圧下で行われる。なお、乾燥を行った後には熱処理を更に行ってもよい。また、前記熱処理に代えて、又は、前記熱処理の後に、プレス処理を更に行ってもよい。プレス処理は、例えば、1~200MPa-Gで行われる。プレス処理を行うと電極密度を向上することができるため好ましい。
 前記正極合剤を調製する際には、上記正極活物質、結着剤、非水系溶媒、及び必要によって用いられる導電助剤を均一なスラリーとなるように混合すればよく、混合する際の順序は特に限定されない。これら正極活物質、導電助剤、結着剤を分散させるために用いられる非水系溶媒として、例えば、N-メチル-2-ピロリドン等が挙げられる。水系溶媒が用いられる場合の結着剤としては、例えば、粒子状のポリフッ化ビニリデン系重合体等が挙げられる。
〔セパレータ〕
 本発明に係る非水電解質二次電池用構造体が有するセパレータは、特に限定されない。
 本発明に用いられるセパレータは、非水電解質二次電池用構造体を構成するセパレータであり、該構造体から得られた非水電解質二次電池において、正極と負極とを電気的に絶縁し、電解液を保持する役割を果たすものである。本発明で用いられるセパレータとしては、特に限定されないものの、例えば、ポリオレフィン系高分子(例えば、ポリエチレン、ポリプロピレン等)、ポリエステル系高分子(例えば、ポリエチレンテレフタレート等)、ポリイミド系高分子(例えば、芳香族ポリアミド系高分子、ポリエーテルイミド等)、ポリエーテルスルホン、ポリスルホン、ポリエーテルケトン、ポリスチレン、ポリエチレンオキサイド、ポリカーボネート、ポリ塩化ビニル、ポリアクリロニトリル、ポリメチルメタクリレート、セラミックス等、及びこれらの少なくとも2種の混合物からなる単層又は多層の多孔膜;不織布;ガラス;紙等を挙げることができる。なお、前述のポリマーとしては、変性されたものを用いてもよい。
 特にポリオレフィン系高分子(例えば、ポリエチレン、ポリプロピレン等)の多孔膜を用いることが好ましい。ポリオレフィン系高分子多孔膜としては、例えば、ポリポア株式会社からセルガード(登録商標)の商品名で市販されている、単層ポリプロピレンセパレータ、単層ポリエチレンセパレータ、及びポリプロピレン/ポリエチレン/ポリプロピレン3層セパレータ等を挙げることができる。なお、セパレータは、表面処理が施されていてもよく、無機粒子の層が予めコートされていてもよい。
 なお、セパレータは、正極と負極との絶縁を担保するため、正極及び負極よりも更に大きいものとするのが好ましい。
〔負極〕
 本発明に係る非水電解質二次電池用構造体が有する負極としては、負極反応の担い手となる負極活物質を有し、かつ、集電機能を有するものであれば特に限定されないものの、多くの場合、負極活物質を含む負極合剤層と、集電体として機能するとともに負極合剤層を保持する役割を果たす負極集電体とからなる。
 本発明に係る非水電解質二次電池用構造体が、本発明に係る水性ラテックスを用いて製造される中間層を、前記負極とセパレータとの間に有する場合には、該中間層は、前記負極合剤層と、セパレータとの間に配置されることが好ましい。
 本発明において、負極合剤層は、負極活物質及び結着剤を含んでおり、必要により、導電助剤を更に含むことができる。
 ここで、負極合剤層における、負極活物質、結着剤、導電助剤の配合比は、リチウムイオン二次電池等の非水電解質二次電池で用いられる一般的な配合比とすることができるが、二次電池の種類に応じて適宜調整しうる。
 この負極合剤層の厚さは、20~250μmであることが好ましい。
 本発明に係る非水電解質二次電池用構造体において用いられる負極活物質は、従来公知の負極用の電極活物質を含め、負極活物質として作用するものであれば特に制限なく用いることができる。
 ここで、負極合剤層を構成する負極活物質として、例えば、炭素材料、金属・合金材料、金属酸化物、Si系負極材料、チタン酸リチウムといったLi系負極材料等が挙げられるが、中でも炭素材料が好ましい。
 前記炭素材料としては、人造黒鉛、天然黒鉛、難黒鉛化炭素、易黒鉛化炭素等が用いられる。また、前記炭素材料は、1種単独で用いても、2種以上を用いてもよい。
 このような炭素材料を使用すると、電池のエネルギー密度を高くすることができる。
 前記人造黒鉛としては、例えば、有機材料を炭素化し更に高温で熱処理を行い、粉砕・分級することにより得られる。前記難黒鉛化炭素としては、例えば、石油ピッチ由来の材料を1000~1500℃で焼成することにより得られる。
 これらの負極活物質としては市販品を用いてもよい。
 前記負極活物質の比表面積は、0.3~10m/gであることが好ましい。比表面積が10m/g以下であると、電解液の分解量が増加しにくく、初期の不可逆容量が増えにくい。
 なお、負極活物質の比表面積は、窒素吸着法により求めることができる。
 ただ、本発明に係る非水電解質二次電池用構造体を構成する負極活物質は、これらのものに限られるものではなく、二次電池の種類に応じて適宜選択しうる。
 本発明において、負極合剤層は、必要により導電助剤を更に含んでいてもよい。この導電助剤は、負極合剤層の導電性を向上する目的で添加するもので、カーボンブラック、黒鉛微粉末、カーボンナノチューブ、又は黒鉛繊維等の炭素質物質やニッケル、アルミニウム等からなる金属微粉末又は金属繊維が使用される。
 前記結着剤は、上記負極活物質及び導電助材を繋ぎ止める役割を果たす。
 ここで、結着剤としては、上述の〔正極〕の項で記載したものと同様の結着剤が挙げられるが、ポリフッ化ビニリデンや、スチレンブタジエンゴムとカルボキシメチルセルロースとの混合物、ポリフッ化ビニリデン粒子とカルボキシメチルセルロースとの混合物等が好ましい。
 前記負極集電体としては、二次電池の外部に電気を供給できるよう良好な導電性を有し、二次電池における電極反応を妨げないものであれば、特に限定されない。
 前記負極集電体としては、リチウムイオン二次電池等の非水電解質二次電池の負極集電体として一般的に用いられているものが挙げられる。
 前記負極集電体としては、銅からなるものが好ましく、その中でも銅箔が好ましい。前記負極集電体は、これらに限定されるものではなく、二次電池の種類に応じて、適宜選択すればよい。前記負極集電体の厚さは、5~100μmであることが好ましい。
 本発明において、前記負極集電体及び負極合剤層からなる負極の製造方法としては、特に限定されず、例えば、負極合剤層を構成する各成分を含有する負極合剤を集電体の少なくとも片面、好ましくは両面に塗布し、塗布された上記負極合剤を乾燥することにより負極を得る方法が挙げられる。前記負極合剤を調製する方法、負担を製造する方法としては、上述の〔正極〕の項における正極合剤を調製する方法、正極を製造する方法と同様の方法を用いることができる。
〔中間層〕
 本発明に係る非水電解質二次電池用構造体は、正極とセパレータとの間、及び、負極とセパレータとの間の少なくとも一方に、本発明に係る水性ラテックスを用いて製造される中間層を有する。
 本発明に係る非水電解質二次電位用構造体は、本発明に係る水性ラテックスを用いて製造される中間層を、正極とセパレータとの間、及び、負極とセパレータとの間の少なくとも一方に有するが、上記中間層を、正極とセパレータとの間、及び、前記負極とセパレータとの間に有することが好ましい。本発明に係る非水電解質二次電位用構造体が、正極とセパレータとの間に、本発明に係る水性ラテックスを用いて製造される中間層を有すると、正極と中間層との接着強度が向上しやすいとともに、セパレータの耐酸化還元性が向上するため好ましい。また、本発明に係る非水電解質二次電位用構造体が、負極とセパレータとの間に、本発明に係る水性ラテックスを用いて製造される中間層を有すると、負極と中間層との接着強度が向上しやすい。
 前記中間層の厚さは、好ましくは0.2~25μm、より好ましくは0.5~5μmである。
 前記中間層は、主に重合体粒子を原料として形成される。前記中間層についてSEM観察を行った際に、重合体粒子が粒子形状を保った状態で存在することが確認できることが好ましい。即ち、本発明に係る非水電解質二次電池用構造体では、中間層を構成する重合体粒子が溶融し一体化していることはないことが好ましい。前記中間層は、複数の重合体粒子が直接又は水溶性高分子を介して互いに接合されている構造を有することが好ましい。また、本発明に係る非水電解質二次電池用構造体の段階では、重合体粒子は、相互に接合又は水溶性高分子により接合されていなくてもよく、該非水電解質二次電池用構造体から非水電解質二次電池を製造する際に注入される電解液によって、粒子表面が溶解又は膨潤することにより、重合体粒子が接合されてもよい。
 重合体粒子として、接着性を有する重合体粒子を用いた場合や、中間層を形成する過程で粒子表面近傍が溶融する条件で熱処理を行った場合には、前記中間層は、重合体粒子同士が相互に直接接合する構造を有することが好ましい。該構造では、SEM等によって各粒子を観察することは可能であるが、重合体粒子は相互に直接接合することにより一体化している。
 また、重合体粒子として、接着性を有しない重合体粒子を用いた場合や、中間層を形成する過程で熱処理を行わない場合には、前記重合体粒子が、相互に接触し、水溶性高分子により接合される構造を有することが好ましい。該構造は、前記重合体粒子、水溶性高分子等を含む液を用いて中間層を製造することによって形成される。該構造では、SEM等によって各粒子を観察することが可能であり、各粒子の間に水溶性高分子が存在する。
 前記中間層は、例えば、下記(1)~(4)のいずれかにより形成することができる。
 (1)正極、セパレータ、及び負極から選択される少なくとも一種に、本発明に係る水性ラテックスを塗布し、上記水性ラテックスを乾燥することにより、前記中間層を形成する。
 (2)本発明に係る水性ラテックスに、正極、セパレータ、及び負極から選択される少なくとも一種を浸漬し、これを上記水性ラテックスから取り出した後、上記水性ラテックスを乾燥することにより、前記中間層を形成する。
 (3)本発明に係る水性ラテックスを基材に塗布し、上記水性ラテックスを乾燥した後、形成された塗膜を前記基材から剥離することにより、前記中間層を形成する。
 (4)本発明に係る水性ラテックスに基材を浸漬し、上記基材を上記水性ラテックスから取り出した後、上記水性ラテックスを乾燥した後、形成された塗膜を前記基材から剥離することにより、前記中間層を形成する。
 なお、本発明に係る水性ラテックスを、正極、セパレータ、負極、基材に塗布する場合には、少なくとも一面(即ち、片面又は両面)に塗布すればよい。
 塗布を行う際の方法としては特に限定はなく、バーコーター;ダイコーター;コンマコーター;ダイレクトグラビア方式、リバースグラビア方式、キスリバースグラビア方式、オフセットグラビア方式等のグラビアコーター;リバースロールコーター;マイクログラビアコーター;エアナイフコーター;ディップコーター等を用いて基材上への塗布を行う方法が挙げられる。基材上へ形成された中間層は均一であることが好ましいが、充放電の過程で発生したガスを逃がす目的で穴模様があったり点在したりする等の模様があってもよい。
 また、必要に応じて、乾燥した後に熱処理をおこなってもよい。なお、前記他の成分として、水溶性高分子を用いない場合には、熱処理を行うことが好ましい。
 なお、前記基材としては、ポリエチレンテレフタレート(PET)製の基材等を用いることができる。
 なお、基材から剥離することにより得られた中間層を用いる場合、該中間層は、該中間層を基材から剥離した後に、正極とセパレータとの間や、負極とセパレータとの間に配置される。
 なお、前記乾燥を行う際の温度としては、セパレータ、電極、基材、重合体粒子、及び他の成分の融点、分解温度等を考慮する必要があるため、適した温度や時間はその系によって異なるが、40~190℃であることが好ましく、50~180℃であることがより好ましい。前記乾燥を行う時間は、1秒~15時間であることが好ましい。
 また、前記熱処理を行う場合の温度としては、セパレータ、電極、基材、重合体粒子、及び他の成分の融点、分解温度等を考慮する必要があるため、適した温度や時間はその系によって異なるが、60~220℃であることが好ましく、65~215℃であることがより好ましい。前記熱処理を行う時間は、1秒~15時間であることが好ましい。
 なお、前記乾燥及び熱処理において温度等の条件が重複する部分があるが、前記乾燥及び熱処理は、明確に区別される必要はなく、連続的に行われてもよい。
 本発明に係る非水電解質二次電池用構造体の製造方法としては、本発明に係る水性ラテックスを用いて製造される中間層を、正極とセパレータとの間、及び、負極とセパレータとの間の少なくとも一方に設ける工程を有する以外は、従来と同様の方法を用いることができる。本発明に係る非水電解質二次電池用構造体の製造方法は、前述の通り、前記中間層が前記(1)~(4)のいずれかにより形成されることを特徴とする。
 なお、前記中間層をセパレータ又は電極上に形成した場合、本発明に係る非水電解質二次電池用構造体は、前記中間層が形成されたセパレータ又は前記中間層が形成された電極を用いる以外は、従来と同様の方法で製造することができる。また、前記中間層を基材から剥離することにより形成した場合には、本発明に係る非水電解質二次電池用構造体は、前記中間層を、前記正極とセパレータとの間、及び、前記負極とセパレータとの間の少なくとも一方に配置する工程が必要になる以外は、従来と同様の方法で製造することができる。
 なお、本発明に係る非水電解質二次電池用構造体においては、本発明に係る水性ラテックスを用いて中間層が製造される。よって、多孔化工程を行わなくても、中間層に電解液注入経路を作製することができるため好ましい。
 本発明に係る非水電解質二次電池用構造体及び後述の非水電解質二次電池において、中間層は、本発明に係る水性ラテックスを用いて製造されるため、セパレータと中間層との接着強度、正極と中間層との接着強度、及び負極と中間層との接着強度が優れたものとなりやすい。よって、本発明に係る非水電解質二次電池用構造体及び後述の非水電解質二次電池は、大面積化されたものであっても、正極とセパレータとの間、及び/又は、負極とセパレータとの間で、外力によるずれや剥離が生じにくく、長期にわたって電池性能を維持できる。また、所望の容量が得られやすい。
<セパレータ/中間層積層体>
 本発明に係るセパレータ/中間層積層体は、非水電解質二次電池用のセパレータと、前記セパレータの少なくとも一方の主面に設けられた中間層とを有し、前記中間層は、不飽和二塩基酸に由来する構造単位及び/又は不飽和二塩基酸モノエステルに由来する構造単位とフッ化ビニリデン系単量体に由来する構造単位とを含む共重合体を含有する重合体粒子を含む。上記セパレータ/中間層積層体において、セパレータと中間層とは直接接していてもよいし、セパレータと中間層との間に他の層が介在していてもよい。
 本発明に係るセパレータ/中間層積層体に用いられるセパレータ、中間層、及び重合体粒子は、上記で説明したのと同様である。
<非水電解質二次電池>
 本発明に係る非水電解質二次電池は、前記非水電解質二次電池用構造体から得られる。
 非水電解質二次電池の電池構造としては、例えば、コイン型電池、ボタン型電池、円筒型電池、角型電池等の公知の電池構造が挙げられる。
 非水電解質二次電池を構成する部材としては、前記非水電解質二次電池用構造体以外には、例えば、非水電解液、円筒缶、ラミネートパウチ等が挙げられる。
 前記非水電解液は、非水系溶媒に電解質を溶解させてなるものである。
 前記非水系溶媒として、電解質を構成するカチオン及びアニオンを輸送可能な非プロトン性の有機溶媒であって、かつ、実質的に二次電池の機能を損なわないものが挙げられる。そのような非水系溶媒として、リチウムイオン二次電池の非水電解液として通常用いられる有機溶媒が挙げられ、例えば、カーボネート類、ハロゲン化炭化水素、エーテル類、ケトン類、ニトリル類、ラクトン類、エステル類、オキソラン化合物等を用いることができる。中でも、プロピレンカーボネート、エチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、1,2-ジメトキシエタン、1,2-ジエトキシエタン、プロピオン酸メチル、プロピオン酸エチル、スクシノニトリル、1,3-プロパンスルトン、炭酸フルオロエチレン、炭酸ビニレン等が好ましい。
 非水系溶媒は、1種単独で用いても2種以上を用いてもよい。
 また、電解質としては、上記非水系溶媒によって、構成カチオン及びアニオンが輸送可能なものであって、かつ、実質的に二次電池の機能を損なわないものである限り、その種類が特に限定されるものではない。ここで、非水電解質二次電池が、リチウムイオン二次電池である場合に、用いることが可能な電解質を例にとると、LiPF、LiAsF、LBF等のフルオロ錯アニオンのリチウム塩、LiClO、LiCl、LiBr等の無機リチウム塩、及び、LiCHSO、LiCFSO等のスルホン酸リチウム塩、Li(CFOSON、Li(CFOSOC、Li(CFSON、Li(CFSOC等の有機リチウム塩が挙げられる。電解質は、1種単独で用いても2種以上を用いてもよい。
 なお、前述の非水電解質二次電池用構造体から本発明に係る非水電解質二次電池は得られるが、前記非水電解質二次電池用構造体が有する中間層は、電池を製造する際に注入される電解液によって膨潤し、更に熱プレスすることにより正極及び負極との密着性を高めることができる。
 前記熱プレスを行う際の温度としては、常温~160℃であることが好ましく、40~120℃であることがより好ましい。前記熱プレスを行う際の圧力は、好ましくh0.01~10MPa、より好ましくは0.1~8MPaである。前記熱プレスを行う際、予熱時間は1秒~1時間であることが好ましく、プレス時間は1秒から1時間であることが好ましい。
 上記のような非水電解質二次電池は正極-中間層-セパレータ及び/又は負極-中間層-セパレータ間の密着に優れた電極を形成することができる。
 次に本発明について実施例を示して更に詳細に説明するが、本発明はこれらによって限定されるものではない。
[正極の作製]
 コバルト酸リチウム(セルシードC5-H、日本化学工業製)、導電助剤(SuperP、TIMCAL製)、及びPVDF(ポリフッ化ビニリデン、KF#1100、クレハ製)を93:3:4の質量比でN-メチル-2-ピロリドンと混合して、固形分濃度69質量%のスラリーを作製した。115μmのスペーサーを用いてこのスラリーをアルミニウム箔にコートした後、120℃で3時間乾燥し、その後、プレスして、嵩密度3.6g/cm、目付け量150g/mの正極を得た。
[負極の作製]
 BTR918(改質天然黒鉛、BTR製)、導電助剤(SuperP、TIMCAL製)、SBR(スチレンブタジエンゴムラテックス、BM-400、日本ゼオン製)、及びCMC(カルボキシメチルセルロース、セロゲン4H、第一工業製薬)を90:2:3:1の質量比で水と混合して、固形分濃度53質量%のスラリーを作製した。90μmのスペーサーを用いてこのスラリーを銅箔にコートした後、120℃で3時間乾燥し、その後、プレスして、嵩密度1.5g/cm、目付け量56g/mの負極を得た。
[実施例1]
 オートクレーブに280質量部の水をいれ、脱気後、0.5質量部のパーフルオロオクタン酸(PFOA)アンモニウム塩と0.05質量部の酢酸エチルとを入れ、次いで20質量部のフッ化ビニリデン(VDF)と5質量部のヘキサフルオロプロピレン(HFP)とを入れた。
 80℃に昇温後、0.3質量部の過硫酸アンモニウム(APS)を入れて重合し、更に75質量部のVDFと0.3質量部のマレイン酸モノメチル(MMM)とを添加した。その際、マレイン酸モノメチルを3質量%の水溶液の形態で用い、VDF5質量部が消費される毎にマレイン酸モノメチル換算で0.02質量部に相当する量の上記水溶液を添加した。缶内圧力が1.5MPaに下がった所で重合反応の終了とし、VDF-HFP-MMM共重合体ラテックスを得た。
 得られたVDF-HFP-MMM共重合体ラテックスを80℃で3時間乾燥し、樹脂濃度を測定した結果、22.7質量%であった。また、大塚電子製ELSZ-2を用いて平均粒径を求めた結果、187nmであった。得られたラテックスを0.5質量%塩化カルシウム水溶液で塩析して得たスラリーを2回水洗した後、80℃で21時間乾燥して粉末を得た。得られた粉末を200℃でプレスしてIRスペクトルを測定した結果、吸光度比(A1740cm-1/A3020cm-1)は0.16であった。なお、IRスペクトルの測定結果を図1に示す。
 得られたVDF-HFP-MMM共重合体ラテックスとCMC(セロゲン4H、第一工業製薬製)と水とを、VDF-HFP-MMM共重合体:CMC(質量比)=95:5、固形分濃度8.2質量%となるように混ぜ、得られた水分散液をセパレータ(ハイポアND420、旭化成製)の両面にウェット塗布量36g/mでワイヤーバーを用いて逐次コートし、各面とも70℃で10分間乾燥した。得られたコーティングセパレータ(即ち、中間層/セパレータ/中間層積層体)の透気度を、ガーレー式デンソメーター(東洋精機製作所製)を用いて測定したところ、432s/100mlであった。なお、コーティング前のセパレータ(ハイポアND420)の透気度は320s/100mlであった。塗膜の厚みは片面0.7μmであった。
 前記正極及び負極を2.5cm×5.0cmに切り、得られたコーティングセパレータを3.0cm×6.0cmに切って、正極、コーティングセパレータ、及び負極の順に重ね、電解液(エチレンカーボネート/ジメチルカーボネート/エチルメチルカーボネート(体積比)=1/2/2、LiPF:1.3M)を100mg浸み込ませた後、真空シーラーを用いてアルミニウムパウチ内に真空脱気封入した。次いで、これに対して、100℃において、3分間の余熱の後、1分間、約4MPaで熱プレスを行った。得られた正極/コーティングセパレータ/負極積層体(即ち、正極/中間層/セパレータ/中間層/負極積層体)において、正極とコーティングセパレータとの間の180°剥離強度、及び、コーティングセパレータと負極との間の180°剥離強度を、テンシロン万能試験機(株式会社エーアンドディー製)を用いて測定した結果、正極とコーティングセパレータとの間の180°剥離強度は1.48gf/mmであり、コーティングセパレータと負極との間の180°剥離強度は0.33gf/mmであった。なお、上記剥離強度の測定結果を図2に示す。
[実施例2]
 過硫酸アンモニウムの添加量を0.3質量部から0.5質量部に変更し、マレイン酸モノメチルの添加量を0.3質量部から0.5質量部に変更し、マレイン酸モノメチル水溶液の濃度を3質量%から5質量%に変更し、上記水溶液の添加量をマレイン酸モノメチル換算で0.02質量部から0.033質量部に変更した以外は、実施例1と同様にして、VDF-HFP-MMM共重合体ラテックスを得た。樹脂濃度、平均粒径、及び吸光度比を実施例1と同様にして測定したところ、樹脂濃度は23.8質量%、平均粒径は187nm、吸光度比(A1740cm-1/A3020cm-1)は0.21であった。なお、IRスペクトルの測定結果を図1に示す。
 得られたVDF-HFP-MMM共重合体ラテックスを用いて、実施例1と同様にして、コーティングセパレータを得た。得られたコーティングセパレータの透気度を実施例1と同様にして測定したところ、上記透気度は478s/100mlであった。塗膜の厚みは片面1.0μmであった。
 正極とコーティングセパレータとの間の180°剥離強度、及び、コーティングセパレータと負極との間の180°剥離強度を実施例1と同様にして測定した結果、正極とコーティングセパレータとの間の180°剥離強度は1.66gf/mmであり、コーティングセパレータと負極との間の180°剥離強度は0.54gf/mmであった。なお、上記剥離強度の測定結果を図2に示す。
[比較例1]
 過硫酸アンモニウムの添加量を0.3質量部から0.06質量部に変更し、マレイン酸モノメチルを添加しなかった以外は、実施例1と同様にして、VDF-HFP共重合体ラテックスを得た。樹脂濃度、平均粒径、及び吸光度比を実施例1と同様にして測定したところ、樹脂濃度は24.6質量%、平均粒径は195nm、吸光度比(A1740cm-1/A3020cm-1)は0.06であった。なお、IRスペクトルの測定結果を図1に示す。
 得られたVDF-HFP共重合体ラテックスを用いて、実施例1と同様にして、コーティングセパレータを得た。得られたコーティングセパレータの透気度を実施例1と同様にして測定したところ、上記透気度は405s/100mlであった。塗膜の厚みは片面0.7μmであった。
 正極とコーティングセパレータとの間の180°剥離強度、及び、コーティングセパレータと負極との間の180°剥離強度を実施例1と同様にして測定した結果、正極とコーティングセパレータとの間の180°剥離強度は1.28gf/mmであり、コーティングセパレータと負極との間の180°剥離強度は0.12gf/mmであった。なお、上記剥離強度の測定結果を図2に示す。
[評価]
 マレイン酸モノメチルを用いてラテックスを得た実施例1及び実施例2では、吸光度比(A1740cm-1/A3020cm-1)が0.10以上であった。これに対し、マレイン酸モノメチルを用いずにラテックスを得た比較例1では、吸光度比(A1740cm-1/A3020cm-1)が0.10未満であった。
 また、実施例1及び実施例2では、比較例1と比較して、正極とコーティングセパレータとの間の180°剥離強度、及び、コーティングセパレータと負極との間の180°剥離強度のいずれもが高く、特に、コーティングセパレータと負極との間の180°剥離強度の向上が著しかった。
[実施例3]
 オートクレーブに280質量部の水をいれ、脱気後、0.5質量部のパーフルオロオクタン酸(PFOA)アンモニウム塩と0.05質量部の酢酸エチルとを入れ、次いで20質量部のフッ化ビニリデン(VDF)と5質量部のヘキサフルオロプロピレン(HFP)を入れた。
 80℃に昇温後、0.1質量部の過硫酸アンモニウム(APS)を入れて重合し、更に75質量部のVDFと0.06質量部のマレイン酸(MA)とを添加した。その際、マレイン酸を5質量%の水溶液の形態で用い、VDFの累積の添加量が65、70、又は75質量部となった各時点においてマレイン酸換算で0.02質量部に相当する量の上記水溶液を添加した。缶内圧力が1.5MPaに下がった所で重合反応の終了とし、VDF-HFP-MA共重合体ラテックスを得た。
 得られたVDF-HFP-MA共重合体ラテックスを80℃3時間乾燥し、樹脂濃度を測定した結果、22.9質量%であった。また、大塚電子製ELSZ-2を用いて平均粒径を求めた結果、185nmであった。得られたラテックスを0.5質量%塩化カルシウム水溶液で塩析して得たスラリーを2回水洗した後、80℃で21時間乾燥して粉末を得た。得られた粉末を200℃でプレスしてIRスペクトルを測定した結果、吸光度比(A1740cm-1/A3020cm-1)は0.13であった。なお、IRスペクトルの測定結果を図1に示す。
 得られたVDF-HFP-MA共重合体ラテックスとCMC(セロゲン4H、第一工業製薬製)と水とを、VDF-HFP-MA共重合体:CMC(質量比)=95:5、固形分濃度8.9質量%となるように混ぜ、得られた水分散液をセパレータ(ハイポアND420、旭化成製)の両面にウェット塗布量36g/mでワイヤーバーを用いて逐次コートし、各面とも70℃で10分間乾燥した。得られたコーティングセパレータの透気度を、ガーレー式デンソメーター(東洋精機製作所製)を用いて測定したところ、410s/100mlであった。塗膜の厚みは片面0.6μmであった。
 前記正極及び負極を2.5cm×5.0cmに切り、得られたコーティングセパレータを3.0cm×6.0cmに切って、正極、コーティングセパレータ、及び負極の順に重ね、電解液(エチレンカーボネート/ジメチルカーボネート/エチルメチルカーボネート(体積比)=1/2/2、LiPF:1.3M)を100mg浸み込ませた後、真空シーラーを用いてアルミニウムパウチ内に真空脱気封入した。次いで、これに対して、100℃において、3分間の余熱の後、1分間、約4MPaで熱プレスを行った。得られた正極/コーティングセパレータ/負極積層体(即ち、正極/中間層/セパレータ/中間層/負極積層体)において、正極とコーティングセパレータとの間の180°剥離強度、及びコーティングセパレータと負極との間の180°剥離強度を、テンシロン万能試験機(株式会社エーアンドディー製)を用いて測定した結果、正極とコーティングセパレータとの間の180°剥離強度は1.46gf/mmであり、コーティングセパレータと負極との間の180°剥離強度は0.30gf/mmであった。なお、上記剥離強度の測定結果を図2に示す。
[実施例4]
[電池の作製とサイクル試験]
(正極の作製)
 コバルト酸リチウム(セルシードC5、日本化学工業製)、カーボンナノチューブ(CNT、C-nano製)、及びPVDF(KF#7300、クレハ製)を97.5:1:1.5の質量比でN-メチル-2-ピロリドンと混合して、固形分濃度65質量%のスラリーを作製した。120μmのスペーサーを用いてこのスラリーをアルミニウム箔にコートした後、120℃で3時間乾燥し、その後、プレスして、嵩密度3.6g/cm、目付け量97g/mの正極を得た。
(負極の作製)
 上海杉杉(黒鉛、上海杉杉製)、導電助剤(SuperP、TIMCAL製)、SBR(スチレンブタジエンゴムラテックス、BM-400、日本ゼオン製)、及びCMC(カルボキシメチルセルロース、セロゲン4H、第一工業製薬)を96:2:1:1の質量比で水と混合して、固形分濃度59質量%のスラリーを作製した。70μmのスペーサーを用いてこのスラリーを銅箔にコートした後、120℃で3時間乾燥し、その後、プレスして、嵩密度1.5g/cm、目付け量41g/mの負極を得た。
 実施例1~3のいずれかで得られたコーティングセパレータを介して、正極と負極とを接合させ、電解液(エチレンカーボネート/エチルメチルカーボネート(体積比)=3/7、LiPF:1.2M、ビニレンカーボネート:1質量%)を浸み込ませた後、真空シーラーを用いてアルミニウムパウチ中に真空脱気封入し、ラミネートセルを得た。
 0.1C、4.2Vの定電流定電圧充電と0.1C、3Vカットオフの定電流放電とからなる第1充放電サイクルを3サイクル行った後、1C、4.2Vの定電流定電圧充電と1C、3Vカットオフの定電流放電とからなる第2充放電サイクルを100サイクル行い、1Cでの放電容量維持率をプロットした。結果を図3に示す。なお、第2充放電サイクルにおける1サイクル目の放電容量を100%とした。
[評価]
 本発明に係る水性ラテックスをコートしたセパレータを用いて得た非水電解質二次電池は、そのサイクル試験結果から、電池として問題なく動作することが分かった。

Claims (6)

  1.  水中に分散した重合体粒子を含む水性ラテックスであって、
     前記重合体粒子は、不飽和二塩基酸に由来する構造単位及び/又は不飽和二塩基酸モノエステルに由来する構造単位とフッ化ビニリデン系単量体に由来する構造単位とを含む共重合体を含有し、
     正極、負極、及び前記正極と前記負極との間に積層されたセパレータを有する非水電解質二次電池用構造体において、前記正極と前記セパレータとの間、及び、前記負極と前記セパレータとの間の少なくとも一方に設けられる中間層の製造に用いられる水性ラテックス。
  2.  前記重合体粒子について、1740cm-1における赤外吸収スペクトルの吸光度A1740cm-1と3020cm-1における赤外吸収スペクトルの吸光度A3020cm-1との比A1740cm-1/A3020cm-1が0.10以上である請求項1に記載の水性ラテックス。
  3.  前記重合体粒子の平均粒径が50nm以上700nm以下である請求項1又は2に記載の水性ラテックス。
  4.  前記重合体粒子が乳化重合により製造されるものである請求項1~3のいずれか1項に記載の水性ラテックス。
  5.  非水電解質二次電池用のセパレータと、前記セパレータの少なくとも一方の主面に設けられた中間層とを有し、
     前記中間層は、不飽和二塩基酸に由来する構造単位及び/又は不飽和二塩基酸モノエステルに由来する構造単位とフッ化ビニリデン系単量体に由来する構造単位とを含む共重合体を含有する重合体粒子を含むセパレータ/中間層積層体。
  6.  正極、負極、及び前記正極及び前記負極との間に積層されたセパレータを有する非水電解質二次電池用構造体であって、
     前記非水電解質二次電池用構造体は、前記正極と前記セパレータとの間、及び、前記負極と前記セパレータとの間の少なくとも一方に中間層を有し、
     前記中間層は、不飽和二塩基酸に由来する構造単位及び/又は不飽和二塩基酸モノエステルに由来する構造単位とフッ化ビニリデン系単量体に由来する構造単位とを含む共重合体を含有する重合体粒子を含む非水電解質二次電池用構造体。
PCT/JP2015/070878 2014-09-19 2015-07-22 水性ラテックス、セパレータ/中間層積層体、及び非水電解質二次電池用構造体 WO2016042914A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020177008160A KR20170045312A (ko) 2014-09-19 2015-07-22 수성 라텍스, 세퍼레이터/중간층 적층체, 및 비수 전해질 이차전지용 구조체
CN201580048222.3A CN107078254A (zh) 2014-09-19 2015-07-22 水性胶乳、隔膜/中间层叠层体和非水电解质二次电池用结构体
US15/511,695 US20170288189A1 (en) 2014-09-19 2015-07-22 Aqueous latex, separator/intermediate layer laminate, and structure for non-aqueous electrolyte secondary batteries
EP15841847.5A EP3196959B1 (en) 2014-09-19 2015-07-22 Intermediate layer, separator/intermediate layer laminate, and structure for nonaqueous electrolyte secondary batteries

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014191590A JP2016062835A (ja) 2014-09-19 2014-09-19 水性ラテックス、セパレータ/中間層積層体、及び非水電解質二次電池用構造体
JP2014-191590 2014-09-19

Publications (1)

Publication Number Publication Date
WO2016042914A1 true WO2016042914A1 (ja) 2016-03-24

Family

ID=55532959

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/070878 WO2016042914A1 (ja) 2014-09-19 2015-07-22 水性ラテックス、セパレータ/中間層積層体、及び非水電解質二次電池用構造体

Country Status (7)

Country Link
US (1) US20170288189A1 (ja)
EP (1) EP3196959B1 (ja)
JP (1) JP2016062835A (ja)
KR (1) KR20170045312A (ja)
CN (1) CN107078254A (ja)
TW (1) TWI619783B (ja)
WO (1) WO2016042914A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017183212A (ja) * 2016-03-31 2017-10-05 東レバッテリーセパレータフィルム株式会社 電池用セパレータおよびその製造方法
WO2018124176A1 (ja) * 2016-12-27 2018-07-05 東レ株式会社 電池用セパレータ、電極体及び非水電解質二次電池
WO2018168835A1 (ja) * 2017-03-17 2018-09-20 東レ株式会社 電池用セパレータ、電極体及び非水電解質二次電池
CN109478625A (zh) * 2016-07-28 2019-03-15 东丽株式会社 层合卷绕体
EP3523335B1 (en) 2016-10-05 2020-07-08 Solvay Specialty Polymers Italy S.p.A. Vinylidene fluoride and trifluoroethylene containing polymers latexes

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6933478B2 (ja) 2017-03-21 2021-09-08 株式会社クレハ ゲル状電解質
JP2018154802A (ja) 2017-03-21 2018-10-04 株式会社クレハ 樹脂組成物、二次電池のセパレータ、および二次電池
US11485804B2 (en) * 2017-10-17 2022-11-01 Solvay Specialty Polymers Italy S.P.A. Method for the synthesis of fluoropolymers
WO2019230075A1 (ja) * 2018-05-31 2019-12-05 株式会社クレハ 非水電解質二次電池用樹脂組成物、ならびにこれを用いた非水電解質二次電池用セパレータ、電極合剤層用樹脂組成物、非水電解質二次電池用電極、および非水電解質二次電池
CN108878748A (zh) * 2018-06-25 2018-11-23 宁德新能源科技有限公司 电化学装置
CN112262189B (zh) * 2018-07-06 2022-05-03 楠本化成株式会社 水性涂料用表面调整剂、水性涂料组合物、涂膜以及多层涂膜
CN114560973B (zh) * 2021-01-29 2023-05-16 深圳市研一新材料有限责任公司 一种锂离子电池正极水性粘结剂及其制备方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06172452A (ja) * 1992-12-02 1994-06-21 Kureha Chem Ind Co Ltd フッ化ビニリデン系共重合体
JP2008041504A (ja) * 2006-08-08 2008-02-21 Sony Corp 非水電解質電池
JP2008098055A (ja) * 2006-10-13 2008-04-24 Sony Corp 電池
JP2012104291A (ja) * 2010-11-08 2012-05-31 Sony Corp 耐収縮性微多孔膜および電池用セパレータ
JP2012227066A (ja) * 2011-04-21 2012-11-15 Sony Corp セパレータおよび非水電解質電池、ならびに電池パック、電子機器、電動車両、蓄電装置および電力システム
JP2013051076A (ja) * 2011-08-30 2013-03-14 Jsr Corp 蓄電デバイス電極用バインダー組成物、蓄電デバイス電極用スラリー、蓄電デバイス電極、および蓄電デバイス
WO2013133074A1 (ja) * 2012-03-09 2013-09-12 帝人株式会社 非水系二次電池用セパレータ、その製造方法および非水系二次電池
WO2014185378A1 (ja) * 2013-05-15 2014-11-20 株式会社クレハ 非水電解質二次電池用構造体、非水電解質二次電池および該構造体の製造方法
JP2015076350A (ja) * 2013-10-11 2015-04-20 ソニー株式会社 二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
JP2015076351A (ja) * 2013-10-11 2015-04-20 ソニー株式会社 二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3467499B2 (ja) * 1995-06-29 2003-11-17 呉羽化学工業株式会社 エポキシ基含有フッ化ビニリデン系共重合体、これを含有する樹脂組成物、電極構造体および二次電池
KR100759541B1 (ko) * 2001-06-21 2007-09-18 삼성에스디아이 주식회사 폴리머 리튬 전지 및 그 제조방법
EP2226338B1 (en) * 2007-12-27 2012-08-15 Kureha Corporation Adhesive vinylidene fluoride resin sheet
CN103588922A (zh) * 2012-08-14 2014-02-19 中化蓝天集团有限公司 一种偏氟乙烯共聚物、其制备方法及应用

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06172452A (ja) * 1992-12-02 1994-06-21 Kureha Chem Ind Co Ltd フッ化ビニリデン系共重合体
JP2008041504A (ja) * 2006-08-08 2008-02-21 Sony Corp 非水電解質電池
JP2008098055A (ja) * 2006-10-13 2008-04-24 Sony Corp 電池
JP2012104291A (ja) * 2010-11-08 2012-05-31 Sony Corp 耐収縮性微多孔膜および電池用セパレータ
JP2012227066A (ja) * 2011-04-21 2012-11-15 Sony Corp セパレータおよび非水電解質電池、ならびに電池パック、電子機器、電動車両、蓄電装置および電力システム
JP2013051076A (ja) * 2011-08-30 2013-03-14 Jsr Corp 蓄電デバイス電極用バインダー組成物、蓄電デバイス電極用スラリー、蓄電デバイス電極、および蓄電デバイス
WO2013133074A1 (ja) * 2012-03-09 2013-09-12 帝人株式会社 非水系二次電池用セパレータ、その製造方法および非水系二次電池
WO2014185378A1 (ja) * 2013-05-15 2014-11-20 株式会社クレハ 非水電解質二次電池用構造体、非水電解質二次電池および該構造体の製造方法
JP2015076350A (ja) * 2013-10-11 2015-04-20 ソニー株式会社 二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
JP2015076351A (ja) * 2013-10-11 2015-04-20 ソニー株式会社 二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3196959A4 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017183212A (ja) * 2016-03-31 2017-10-05 東レバッテリーセパレータフィルム株式会社 電池用セパレータおよびその製造方法
CN109478625A (zh) * 2016-07-28 2019-03-15 东丽株式会社 层合卷绕体
EP3523335B1 (en) 2016-10-05 2020-07-08 Solvay Specialty Polymers Italy S.p.A. Vinylidene fluoride and trifluoroethylene containing polymers latexes
EP3523335B2 (en) 2016-10-05 2024-05-15 Solvay Specialty Polymers Italy S.p.A. Vinylidene fluoride and trifluoroethylene containing polymers latexes
WO2018124176A1 (ja) * 2016-12-27 2018-07-05 東レ株式会社 電池用セパレータ、電極体及び非水電解質二次電池
CN109661736A (zh) * 2016-12-27 2019-04-19 东丽株式会社 电池用隔膜、电极体和非水电解质二次电池
JPWO2018124176A1 (ja) * 2016-12-27 2019-10-31 東レ株式会社 電池用セパレータ、電極体及び非水電解質二次電池
JP7229775B2 (ja) 2016-12-27 2023-02-28 東レ株式会社 電池用セパレータ、電極体及び非水電解質二次電池
WO2018168835A1 (ja) * 2017-03-17 2018-09-20 東レ株式会社 電池用セパレータ、電極体及び非水電解質二次電池
CN110249449A (zh) * 2017-03-17 2019-09-17 东丽株式会社 电池用隔膜、电极体和非水电解质二次电池
JPWO2018168835A1 (ja) * 2017-03-17 2020-01-16 東レ株式会社 電池用セパレータ、電極体及び非水電解質二次電池
JP7330885B2 (ja) 2017-03-17 2023-08-22 東レ株式会社 電池用セパレータ、電極体及び非水電解質二次電池

Also Published As

Publication number Publication date
CN107078254A (zh) 2017-08-18
KR20170045312A (ko) 2017-04-26
EP3196959A4 (en) 2017-09-27
TW201612255A (en) 2016-04-01
JP2016062835A (ja) 2016-04-25
EP3196959B1 (en) 2020-05-13
TWI619783B (zh) 2018-04-01
EP3196959A1 (en) 2017-07-26
US20170288189A1 (en) 2017-10-05

Similar Documents

Publication Publication Date Title
WO2016042914A1 (ja) 水性ラテックス、セパレータ/中間層積層体、及び非水電解質二次電池用構造体
JP6357469B2 (ja) 非水電解質二次電池用構造体、非水電解質二次電池および該構造体の製造方法
JP6456741B2 (ja) セパレータ/中間層積層体、非水電解質二次電池用構造体、及び水性ラテックス
JP6038141B2 (ja) 樹脂組成物、非水電解質二次電池用フィラー含有樹脂膜、および非水電解質二次電池用フィラー含有樹脂膜の製造方法
WO2014002937A1 (ja) 非水電解質二次電池用樹脂膜の製造方法および非水電解質二次電池用樹脂膜
JP6959751B2 (ja) フッ化ビニリデン共重合体粒子及びその利用
KR102647091B1 (ko) 전기 화학 소자 전극용 도전재 분산액, 전기 화학 소자 전극용 슬러리 조성물 및 그 제조 방법, 전기 화학 소자용 전극, 및 전기 화학 소자
US20150132643A1 (en) Lithium ion secondary battery
KR102231591B1 (ko) 코어 쉘형 입자 및 이의 용도 및 제조 방법
WO2011122297A1 (ja) リチウムイオン二次電池
JP6864523B2 (ja) コアシェル型粒子ならびにその用途および製造方法
JP6891346B2 (ja) 接着性組成物、セパレータ構造体、電極構造体、非水電解質二次電池およびその製造方法
JP7445772B2 (ja) 樹脂組成物およびこれを含むコーティング組成物、積層用電極、積層用セパレータ、ならびに非水電解質二次電池およびその製造方法
JP2019071294A (ja) 水性ラテックス、セパレータ/中間層積層体、及び非水電解質二次電池用構造体
WO2019004460A1 (ja) 電気化学素子用バインダー組成物、電気化学素子機能層用スラリー組成物、電気化学素子接着層用スラリー組成物、および複合膜

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15841847

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15511695

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177008160

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015841847

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015841847

Country of ref document: EP