WO2016042748A1 - ゴム組成物の製造方法及びゴム組成物 - Google Patents
ゴム組成物の製造方法及びゴム組成物 Download PDFInfo
- Publication number
- WO2016042748A1 WO2016042748A1 PCT/JP2015/004641 JP2015004641W WO2016042748A1 WO 2016042748 A1 WO2016042748 A1 WO 2016042748A1 JP 2015004641 W JP2015004641 W JP 2015004641W WO 2016042748 A1 WO2016042748 A1 WO 2016042748A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- kneading
- rubber
- hydrazide
- hydrazide compound
- solid
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J3/00—Processes of treating or compounding macromolecular substances
- C08J3/20—Compounding polymers with additives, e.g. colouring
- C08J3/203—Solid polymers with solid and/or liquid additives
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J3/00—Processes of treating or compounding macromolecular substances
- C08J3/20—Compounding polymers with additives, e.g. colouring
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/02—Elements
- C08K3/04—Carbon
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/16—Nitrogen-containing compounds
- C08K5/22—Compounds containing nitrogen bound to another nitrogen atom
- C08K5/24—Derivatives of hydrazine
- C08K5/25—Carboxylic acid hydrazides
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K9/00—Use of pretreated ingredients
- C08K9/12—Adsorbed ingredients, e.g. ingredients on carriers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L7/00—Compositions of natural rubber
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L9/00—Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L91/00—Compositions of oils, fats or waxes; Compositions of derivatives thereof
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2307/00—Characterised by the use of natural rubber
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2409/00—Characterised by the use of homopolymers or copolymers of conjugated diene hydrocarbons
- C08J2409/06—Copolymers with styrene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2411/00—Characterised by the use of homopolymers or copolymers of chloroprene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2415/00—Characterised by the use of rubber derivatives
- C08J2415/02—Rubber derivatives containing halogen
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2419/00—Characterised by the use of rubbers not provided for in groups C08J2407/00 - C08J2417/00
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/34—Silicon-containing compounds
- C08K3/36—Silica
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K9/00—Use of pretreated ingredients
- C08K9/04—Ingredients treated with organic substances
Definitions
- the present invention relates to a method for producing a rubber composition and a rubber composition produced thereby.
- Natural rubber increases in viscosity (gelation) during production, storage and transportation.
- the cause of this is that different bonds (aldehyde groups, etc.) in the isoprene chain react with proteins, amino acids, etc. in natural rubber to cause cross-linking and gelation, but the mechanism is clearly elucidated. Not.
- This gelation causes problems that the processability of natural rubber and the physical properties such as carbon black dispersibility are reduced when blended with a compounding agent to form a rubber composition.
- a gel kneading step for loosening the molecular aggregation of the rubber with a shearing force and cutting the molecular chain is performed to dissolve the gel formed in the natural rubber. It has been broken.
- the kneading process usually uses a kneading machine different from the kneading machine, or, after the kneading process, the natural rubber is once taken out and added to the kneading machine again for the kneading process, and then the compounding agent
- the kneading is carried out for a longer time than the preliminary kneading step of the kneading step performed for the purpose of improving the dispersibility of the kneading agent.
- a constant viscosity natural rubber in which a viscosity increase is suppressed by adding a viscosity stabilizer to the natural rubber during production is used.
- Patent Document 1 describes that a constant viscosity natural rubber is produced by adding a specific hydrazide compound to natural rubber.
- the present inventors also used a constant viscosity natural rubber without carrying out the mastication step by adding and kneading a specific hydrazide compound to a solid component in a specific step of the kneading step to a rubber component containing natural rubber.
- the present inventors have found that a rubber composition having good carbon black dispersibility can be obtained by improving the processability of natural rubber while suppressing energy consumption.
- the present invention represents a rubber component (A) containing natural rubber, at least one filler (B) selected from an inorganic filler and carbon black, and the following general formula (I) supported on a solid.
- the hydrazide compound (C) is a method for producing a rubber composition, wherein the kneading step is carried out by an arbitrary pre-kneading step and a plurality of steps of kneading, and is supported by the following general formula (I)
- the hydrazide compound (C) represented is added and kneaded in the preliminary kneading stage and / or the first stage of kneading.
- R-CONHNH 2 (I) (In the formula, R represents an alkyl group having 1 to 30 carbon atoms, a cycloalkyl group having 3 to 30 carbon atoms, or an aryl group.)
- the processability can be improved by adding the hydrazide compound (C) represented by the above general formula (I) supported on the solid not at the time of manufacturing the natural rubber but at the time of manufacturing the rubber composition, The mastication step can be omitted without using a constant viscosity natural rubber.
- the R group of the hydrazide compound (C) represented by the general formula (I) is preferably selected from the group consisting of alkyl groups having 1 to 10 carbon atoms. According to this configuration, an excellent constant viscosity effect can be exhibited.
- the hydrazide compound (C) represented by the general formula (I) is propionic acid hydrazide. According to this configuration, a rubber composition having a better unvulcanized viscosity can be produced.
- the solid is an inorganic compound composed of silica, aluminum hydroxide, clay, calcium carbonate and talc, an organic compound composed of carbon black, stearic acid, wax and an antioxidant, natural rubber, butadiene It is preferably selected from the group consisting of a polymer compound consisting of rubber, styrene butadiene rubber and polyisoprene rubber.
- the hydrazide compound (C) can be supported on the solid simply by mixing the solid and the hydrazide compound (C).
- silica is particularly preferable. According to this configuration, it is possible to produce a rubber composition having favorable hysteresis loss, wet grip performance, wear resistance, and the like.
- the mass ratio of the hydrazide compound (C) and the solid carrying the hydrazide compound (C) is preferably 10: 1 to 1:30. According to this configuration, the hydrazide compound (C) can be supported in a relatively uniformly dispersed state on the solid surface, and the effect of preventing natural rubber from gelation can be sufficiently exhibited.
- the antioxidant is added and kneaded at the final stage of the kneading. According to this structure, deterioration of the hysteresis loss of the manufactured rubber composition can be prevented.
- the hydrazide compound (C) is added and kneaded in the preliminary kneading step. According to this configuration, the dispersibility of the filler (B) added in the first stage of subsequent kneading is further improved.
- the rubber composition of the present invention is characterized by being manufactured by the above manufacturing method.
- the rubber composition of the present invention can be produced with reduced energy consumption, and has good unvulcanized viscosity and carbon black dispersibility.
- a process for producing a rubber composition having good carbon black dispersibility is provided by improving the processability of natural rubber while suppressing energy consumption without performing a mastication step and without using a constant viscosity natural rubber. can do.
- the rubber composition which has favorable unvulcanized viscosity and carbon black dispersibility can also be provided with the manufacturing method.
- the rubber component (A) of the present invention contains natural rubber.
- the natural rubber used in the production method of the present invention is a solid natural rubber (raw rubber) obtained by coagulating natural rubber latex, technically rated rubber (TSR), smoked sheet (RSS), crepe, lower rubber, heba ram, oil. Examples include natural rubber. Among these natural rubbers, one kind can be used alone, or two or more kinds can be used in combination. Of the natural rubber component in the rubber component (A), one of the main rubber, the side chain, and the terminal, or two or more thereof is modified with any functional group and / or modified with a modifier. It can also be used as a part or all.
- the ratio of the natural rubber contained in the rubber component (A) of the present invention is not particularly limited, and the rubber component (A) can be composed only of natural rubber.
- the rubber component (A) of the present invention can contain synthetic rubber in addition to natural rubber.
- the type of synthetic rubber that can be included in the rubber component (A) of the present invention is not particularly limited, and examples thereof include styrene-butadiene rubber, butadiene rubber, isoprene rubber, butyl rubber, chloroprene rubber, nitrile rubber, ethylene-propylene rubber, and chlorosulfone.
- Polyethylene, acrylic rubber, fluorine rubber, hydrin rubber, silicone rubber, sulfide rubber, urethane rubber and the like can be mentioned.
- These synthetic rubbers can be used as a part or all of one of the main chain, side chain, and terminal, or two or more thereof modified with any functional group and / or modified with a modifier. .
- At least one filler (B) selected from carbon black and inorganic filler is used.
- the type of carbon black that can be used as the filler (B) is not particularly limited, and examples thereof include SAF, ISAF, HAF, FF, FEF, GPF, SRF, CF, FT, and MT grade carbon black. Among them, those having a nitrogen adsorption specific surface area (N 2 SA) of 40 to 250 m 2 / g or a DBP absorption of 20 to 200 mL / 100 g are preferable from the viewpoint of the reinforcing effect.
- N 2 SA nitrogen adsorption specific surface area
- Examples of the inorganic filler that can be used as the filler (B) of the present invention include silica and a general formula: mM ⁇ xSiO y ⁇ zH 2 O (II) [Wherein, M is a metal selected from the group consisting of aluminum, magnesium, titanium, calcium and zirconium, an oxide or hydroxide of these metals, and a hydrate thereof, or a carbonate of these metals. And m, x, y, and z are each an integer of 1 to 5, an integer of 0 to 10, an integer of 2 to 5, and an integer of 0 to 10. Etc. As the silica, wet silica, dry silica, colloidal silica, or the like can be used.
- inorganic compound (II) .gamma.-alumina, such as ⁇ - alumina alumina (Al 2 O 3); boehmite, alumina monohydrate such as diaspore (Al 2 O 3 ⁇ H 2 O);
- Aluminum hydroxide such as gibbsite and bayerite [Al (OH) 3 ]; aluminum carbonate [Al 2 (CO 3 ) 3 ], magnesium hydroxide [Mg (OH) 2 ], magnesium oxide (MgO), magnesium carbonate (MgCO 3), talc (3MgO ⁇ 4SiO 2 ⁇ H 2 O), attapulgite (5MgO ⁇ 8SiO 2 ⁇ 9H 2 O), titanium white (TiO 2), titanium black (TiO 2n-1), calcium oxide (CaO), water Calcium oxide [Ca (OH) 2 ], aluminum magnesium oxide (MgO.Al 2 O 3 ), clay (Al 2 O 3 .2SiO 2 ), kaolin (Al 2 O
- the blending amount of the filler (B) of the present invention is not particularly limited, and varies depending on the type and composition of the filler (B) and the rubber component (A) used, but with respect to 100 parts by weight of the rubber component (A). 5 to 100 parts by weight are preferred.
- the hydrazide compound (C) represented by the following general formula (I) is supported on a solid and used.
- R-CONHNH 2 (I) (In the formula, R represents an alkyl group having 1 to 30 carbon atoms, a cycloalkyl group having 3 to 30 carbon atoms, or an aryl group.)
- the hydrazide compound having an alkyl group having 1 to 30 carbon atoms includes, for example, acetohydrazide , Propionic hydrazide, isopropionic hydrazide, butanoic hydrazide, isobutanoic hydrazide, pentanoic hydrazide, isopentanoic hydrazide, hexanoic hydrazide, isohexanoic hydrazide, heptanoic hydrazide, isoheptanoic hydrazide, octanoic hydrazide, 2-eth
- Examples of the hydrazide compound having a cycloalkyl group having 3 to 30 carbon atoms include cyclopropyl hydrazide, cyclohexyl hydrazide, cycloheptyl hydrazide and the like.
- the hydrazide compound of an aryl group may have a substituent, for example, phenyl hydrazide (C 6 H 5 —CONHNH 2 ), o-, m-, p-tolyl hydrazide, p-methoxyphenyl hydrazide, 3, 5 -Xylylhydrazide, 1-naphthylhydrazide and the like.
- the general formula (I) selected from the group having a small number of carbon atoms in the R group, specifically, the group in which the R group is an alkyl group having 1 to 10 carbon atoms.
- the hydrazide compound is preferred. Since unvulcanized viscosity can be made better, propionic acid hydrazide is more preferable.
- the hydrazide compound of general formula (I) may be used individually by 1 type, and may be used in combination of 2 or more type.
- the hydrazide compounds represented by the above general formula are known substances, and their production methods are also known.
- the solid on which the hydrazide compound (C) represented by the general formula (I) is supported is not particularly limited, and is an inorganic compound such as silica, aluminum hydroxide, clay, calcium carbonate, talc, carbon black, stearic acid, wax. And organic compounds such as anti-aging agents, polymer compounds such as natural rubber, butadiene rubber, styrene butadiene rubber, and polyisoprene rubber. These solids may be those described above as the rubber component (A) or the filler (B). These solids may be used individually by 1 type, and may be used in combination of 2 or more type.
- silica and carbon black are preferable because hysteresis loss, wet grip performance, wear resistance, and the like of the rubber composition can be improved.
- silica wet silica, dry silica, colloidal silica, and the like can be used, and are not particularly limited, but wet silica is preferable from the viewpoint of improving hysteresis loss and wet grip performance.
- carbon black What was mentioned above about the filler (B) is preferable.
- the mass ratio of the hydrazide compound (C) to the solid on which it is supported is not particularly limited, but is preferably 10: 1 to 1:30, more preferably 1: 0.5 to 1:10, and 1: 2. ⁇ 1: 10 is even more preferred. If the mass ratio of the hydrazide compound (C) and the solid is within this range, the hydrazide compound (C) can be supported in a relatively uniformly dispersed state on the solid surface, and the gelation of natural rubber The prevention effect can be exhibited sufficiently.
- the blending amount of the hydrazide compound (C) represented by the general formula (I) is preferably 0.001 part by weight or more with respect to 100 parts by weight of natural rubber regardless of the mass of the solid to be supported. If the compounding quantity of a hydrazide compound (C) is 0.001 weight part or more, the gelatinization prevention effect of natural rubber can fully be exhibited.
- the blending amount of the hydrazide compound varies slightly depending on the type of natural rubber used and the type of hydrazide compound used. A preferred range is 0.1 to 3.0 parts by weight. For example, in each hydrazide compound having 1 to 10 carbon atoms in R, the blending amount is preferably 0.1 to 1.0 part by weight. This is because when the blending amount of the hydrazide compound (C) is within this range, the rubber composition has a good balance between physical properties (for example, carbon black macrodispersibility, hysteresis loss, etc.) and processability.
- physical properties for example, carbon
- the kneading step of the production method of the present invention is performed by an arbitrary preliminary kneading step and a plurality of kneading steps.
- the kneading step is a step in which a compounding agent such as a filler is mixed and dispersed in the rubber component.
- the pre-kneading step is performed in order to loosen the rubber component prior to kneading with a compounding agent such as a filler in a kneading apparatus that performs the kneading step.
- the preliminary kneading step is an optional step that may or may not be performed as necessary.
- kneading is to add a compounding agent such as a filler to the rubber component and knead following an optional preliminary kneading step.
- the first stage of kneading means the first stage of kneading in which the filler (B) is added to the rubber component (A) and mixed and dispersed.
- the kneading of the present invention is performed in a plurality of stages, that is, it has at least one stage other than the first stage.
- Such a stage other than the first stage may be a stage in which another compounding agent such as a vulcanizing agent (for example, sulfur) is added and mixed and dispersed.
- a vulcanizing agent for example, sulfur
- the stage of adding and mixing and dispersing the compounding agent other than the filler (B) and the hydrazide compound (C) supported on the solid there is no particular limitation on the stage of adding and mixing and dispersing the compounding agent other than the filler (B) and the hydrazide compound (C) supported on the solid.
- a part or all of such other compounding agents may be added and mixed and dispersed in the pre-kneading stage and / or the first stage of kneading, or may be added and mixed and dispersed in the second and subsequent stages of kneading.
- the hydrazide compound (C) supported on a solid is added in the preliminary kneading stage and / or the first stage of kneading. That is, the hydrazide compound (C) supported on a solid can be added in both the pre-kneading stage and the first stage of kneading, and can be added only in either the pre-kneading stage or the first stage of kneading. It can also be added.
- the hydrazide compound (C) supported on a solid When the hydrazide compound (C) supported on a solid is added and kneaded in the pre-kneading stage and / or the first stage of kneading, the hydrazide compound (C) is sufficiently bonded with heterogeneous bonds (aldehyde group etc.) in the isoprene chain of natural rubber. This is because the cross-linking reaction between the heterogeneous bond in the isoprene chain and the protein or amino acid in the natural rubber is effectively inhibited, and the gelation of the natural rubber can be effectively prevented.
- heterogeneous bonds aldehyde group etc.
- the hydrazide compound (C) supported on a solid is preferably added at the preliminary kneading stage.
- the preliminary kneading stage when the hydrazide compound (C) supported on the solid is added and kneaded with the rubber component (A), the dispersibility of the filler (B) added in the first stage of the subsequent kneading is further improved. It is.
- the preliminary kneading step is performed at a temperature of 70 to 120 ° C. for 15 to 60 seconds.
- the first stage of kneading is performed at a starting temperature of 70 to 120 ° C. for 30 to 180 seconds.
- the starting temperature and time can be appropriately set according to the kind of the compounding agent to be added, for example, the stage of adding and mixing and dispersing the vulcanizing agent is from the first stage of kneading.
- Perform at a low temperature for example, at a starting temperature of 50-90 ° C. for 30-180 seconds.
- the kneading step may be carried out batchwise or continuously, and can be carried out using a commonly used rubber kneader such as a Banbury mixer, Brabender plastograph, roll or kneader.
- a commonly used rubber kneader such as a Banbury mixer, Brabender plastograph, roll or kneader.
- a compounding agent usually used in the rubber industry other than the filler (B) and the hydrazide compound (C) supported on a solid in the kneading step such as a vulcanizing agent, a vulcanizing agent, and the like.
- Sulfur aids, vulcanization accelerators, softeners, anti-aging agents, scorch inhibitors, processing aids, filler modifiers, tackifiers, foaming agents, colorants, etc. are appropriately blended according to the purpose and kneaded. can do.
- the order and stage of adding those other than the vulcanizing agent among these compounding agents are not particularly limited among the respective stages of kneading as described above. Moreover, a commercial item can be used for these compounding agents.
- the anti-aging agent is preferably blended at the final stage of kneading. This is because the hysteresis loss of the manufactured rubber composition can be prevented from deteriorating as compared with the case where it is blended in the pre-kneading stage of kneading or the stage before the final stage of kneading (for example, the first stage).
- the rubber composition thus kneaded can be subjected to a molding process, an assembly process, a heating / vulcanizing process, and the like according to the purpose to produce a desired rubber product.
- a wide variety of rubber products including, for example, tires, belts, hoses, footwear, anti-vibration rubber, rubber parts, and the like can be produced from the rubber composition produced by the production method of the present invention.
- hydrazide compound (C) [Preparation of solid support of hydrazide compound (C)]
- hydrazide compounds (C) propionic acid hydrazide, palmitic acid hydrazide, lauric acid hydrazide, stearic acid hydrazide
- silica (“Nipseal VN3” manufactured by Tosoh Silica Co., Ltd.) at a specific mass ratio to obtain several kinds.
- a silica carrier of the hydrazide compound was prepared and used in the examples.
- propionic acid hydrazide is used as the hydrazide compound (C) and mixed with carbon black (“Seast 3” manufactured by Tokai Carbon Co., Ltd., N 2 SA: 79 m 2 / g, DBP: 101 mL / 100 g) at a mass ratio described later.
- carbon black “Seast 3” manufactured by Tokai Carbon Co., Ltd., N 2 SA: 79 m 2 / g, DBP: 101 mL / 100 g
- a carbon black support of a hydrazide compound was prepared and used in the examples.
- a first kneading step is performed at a starting temperature of 90 ° C. for 2 minutes, and a final kneading step (second step) is performed at a starting temperature of 70 ° C. for 1 minute. It was. With respect to these Examples and Comparative Examples, the kneading energy required until the end of the kneading step, the unvulcanized viscosity of the obtained rubber composition, the macro dispersibility of carbon black, and the hysteresis loss were evaluated by the following methods.
- Unvulcanized viscosity In accordance with JIS-K6300-1: 2001, Mooney viscosity [ML] of an unvulcanized rubber composition at 130 ° C. using a Mooney viscometer (RPA manufactured by Monsanto) using an L-shaped rotor. 1 + 4 (130 ° C.)].
- the evaluation value of the unvulcanized viscosity was expressed as an index of the actual measurement values of the examples and the comparative examples, with the actual measurement value of the comparative example 1 being 100. The smaller the evaluation value (index value), the better the flowability of the unvulcanized rubber composition and the better the processability.
- Hysteresis loss (tan ⁇ ) A vulcanized rubber was obtained by vulcanizing the rubber composition at a mold temperature of 145 ° C. for 33 minutes. A test piece was prepared from the vulcanized rubber, and the loss tangent (tan ⁇ ) was measured using a viscoelasticity measuring apparatus (Spectrometer manufactured by Ueshima Seisakusho) under the conditions of 100 ° C., frequency 52 Hz, initial strain 10%, and dynamic strain 1%. It was measured. As the evaluation value, the numerical value of tan ⁇ of Comparative Example 1 was set to 100, and tan ⁇ of Examples and Comparative Examples was displayed as an index. The smaller the evaluation value, the smaller the tan ⁇ (hysteresis loss) value of the vulcanized rubber, and the lower the loss, that is, the lower the heat generation.
- a carrier having a mass ratio of propionate hydrazide to silica of * 2 above is 1: 2.
- Carrier having a mass ratio of propionic acid hydrazide to silica of * 2 above is 1:10.
- "UBEPOL-BR150B” manufactured by Ube Industries * 10) "Seast 3" made by Tokai Carbon, N 2 SA: 79 m 2 / g, DBP: 101 mL / 100 g * 11) "Seast 7HM” made by Tokai Carbon, N 2 SA: 126 m 2 / g, DBP: 125 mL / 100 g * 12) “Seast 9” manufactured by Tokai Carbon Co., Ltd.
- Carrier having a mass ratio of palmitic acid hydrazide compound to silica of * 2 above is 1: 2.
- the kneading process was performed by adding the hydrazide compound (C) supported on the solid without performing the mastication process in the preliminary kneading stage and / or the first stage of kneading.
- Examples 1 to 25 not only reduced the kneading energy required for the completion of the kneading process by 30% or more, but also had an unvulcanized viscosity which is equal to or better than that of Comparative Examples 1 to 3 in which the mastication process was performed.
- a rubber composition having carbon black dispersibility could be obtained.
- the production method of the present invention can improve the processability of natural rubber while suppressing energy consumption without performing a mastication step and without using a constant viscosity natural rubber, and a rubber having good carbon black dispersibility A composition can be produced.
- CO 2 emission and energy consumption can be greatly reduced as compared with a conventional production method having a mastication step.
- the production cost can be reduced without suffering from a shortage of supply of the constant viscosity natural rubber.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Processes Of Treating Macromolecular Substances (AREA)
Abstract
Description
R-CONHNH2 ・・・(I)
(式中のRは、炭素数1~30のアルキル基、炭素数3~30のシクロアルキル基、又はアリール基を示す。)
前記固体に担持させた上記一般式(I)で表わされるヒドラジド化合物(C)を、天然ゴムの製造時ではなく、ゴム組成物の製造時に添加することによっても加工性を改良することができ、恒粘度天然ゴムを用いずに素練り工程を省略することができる。
[式中、Mは、アルミニウム、マグネシウム、チタン、カルシウム及びジルコニウムからなる群から選ばれる金属、これらの金属の酸化物又は水酸化物、及びそれらの水和物、又はこれらの金属の炭酸塩から選ばれる少なくとも一種であり;m、x、y及びzは、それぞれ1~5の整数、0~10の整数、2~5の整数、及び0~10の整数である]で表される無機化合物等を挙げることができる。前記シリカとしては、湿式シリカ、乾式シリカ及びコロイダルシリカ等を用いることができる。上記一般式(II)の無機化合物としては、γ-アルミナ、α-アルミナ等のアルミナ(Al2O3);ベーマイト、ダイアスポア等のアルミナ一水和物(Al2O3・H2O);ギブサイト、バイヤライト等の水酸化アルミニウム[Al(OH)3];炭酸アルミニウム[Al2(CO3)3]、水酸化マグネシウム[Mg(OH)2]、酸化マグネシウム(MgO)、炭酸マグネシウム(MgCO3)、タルク(3MgO・4SiO2・H2O)、アタパルジャイト(5MgO・8SiO2・9H2O)、チタン白(TiO2)、チタン黒(TiO2n-1)、酸化カルシウム(CaO)、水酸化カルシウム[Ca(OH)2]、酸化アルミニウムマグネシウム(MgO・Al2O3)、クレー(Al2O3・2SiO2)、カオリン(Al2O3・2SiO2・2H2O)、パイロフィライト(Al2O3・4SiO2・H2O)、ベントナイト(Al2O3・4SiO2・2H2O)、ケイ酸アルミニウム(Al2SiO5、Al4・3SiO4・5H2O等)、ケイ酸マグネシウム(Mg2SiO4、MgSiO3等)、ケイ酸カルシウム(Ca2SiO4等)、ケイ酸アルミニウムカルシウム(Al2O3・CaO・2SiO2等)、ケイ酸マグネシウムカルシウム(CaMgSiO4)、炭酸カルシウム(CaCO3)、酸化ジルコニウム(ZrO2)、水酸化ジルコニウム[ZrO(OH)2・nH2O]、炭酸ジルコニウム[Zr(CO3)2]、各種ゼオライトのように電荷を補正する水素、アルカリ金属又はアルカリ土類金属を含む結晶性アルミノケイ酸塩等を挙げることができる。これら充填材は、1種を単独で用いてもよく、2種以上を混合して用いてもよい。
R-CONHNH2 ・・・ (I)
(式中のRは、炭素数1~30のアルキル基、炭素数3~30のシクロアルキル基、又はアリール基を示す。)炭素数1~30のアルキル基のヒドラジド化合物は、例えば、アセトヒドラジド、プロピオン酸ヒドラジド、イソプロピオン酸ヒドラジド、ブタン酸ヒドラジド、イソブタン酸ヒドラジド、ペンタン酸ヒドラジド、イソペンタン酸ヒドラジド、ヘキサン酸ヒドラジド、イソヘキサン酸ヒドラジド、ヘプタン酸ヒドラジド、イソヘプタン酸ヒドラジド、オクタン酸ヒドラジド、2-エチルヘキサン酸ヒドラジド、ノナン酸ヒドラジド、デカン酸ヒドラジド、ウンデカン酸ヒドラジド、ラウリン酸ヒドラジド、パルミチン酸ヒドラジド、ステアリン酸ヒドラジド等が挙げられる。炭素数3~30のシクロアルキル基のヒドラジド化合物としては、例えば、シクロプロピルヒドラジド、シクロヘキシルヒドラジド、シクロヘプチルヒドラジド等が挙げられる。アリール基のヒドラジド化合物は、置換基を有してもよく、例えば、フェニルヒドラジド(C6H5-CONHNH2)、o-,m-,p-トリルヒドラジド、p-メトキシフェニルヒドラジド、3,5-キシリルヒドラジド、1-ナフチルヒドラジド等が挙げられる。中でも、優れた恒粘度効果を発揮することができるため、R基の炭素数が少ないもの、具体的にはR基が炭素数1~10のアルキル基よりなる群から選ばれる一般式(I)のヒドラジド化合物が好ましい。未加硫粘度をより良好にすることができるため、より好ましくは、プロピオン酸ヒドラジドである。一般式(I)のヒドラジド化合物は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。上記一般式で表されるヒドラジド化合物は、公知物質であり、それらの製造方法も知られている。
数種類のヒドラジド化合物(C)(プロピオン酸ヒドラジド、パルミチン酸ヒドラジド、ラウリン酸ヒドラジド、ステアリン酸ヒドラジド)各々を、特定の質量比でシリカ(東ソーシリカ株式会社製「ニプシールVN3」)と混合して、数種類のヒドラジド化合物のシリカ担持体を調製し、実施例に用いた。
また、ヒドラジド化合物(C)としてプロピオン酸ヒドラジドを用い、後述する質量比でカーボンブラック(東海カーボン製「シースト3」、N2SA:79m2/g、DBP:101mL/100g)と混合して、ヒドラジド化合物のカーボンブラック担持体を調製し、実施例に用いた。
ラボプラストミル(東洋精機社製)を用い、下記表1~3に示す配合で、実施例及び比較例のゴム組成物を調製した。比較例1~3では、開始温度90℃で2分間素練り工程を行った後に、混練工程を行った。実施例1~25及び比較例4~22では、素練り工程を行わず、混練工程のみ行った。混練工程では、任意の予備練り段階を開始温度90℃で30秒間、混練の第一段階を開始温度90℃で2分間、混練の最終段階(第二段階)を開始温度70℃で1分間行った。これら実施例及び比較例について、混練工程終了までに要した練りエネルギー、得られたゴム組成物の未加硫粘度、カーボンブラックのマクロ分散性及びヒステリシスロスを、下記の方法で評価した。
ラボプラストミル(東洋精機社製)を用い、混練工程終了までの練りに要したトルク(仕事率)を測定し、その大きさを比較した。評価値は、比較例1の実測値を100として、実施例及び比較例の実測値を指数表示した。評価値(指数値)が小さいほど、混練工程終了までに要した練りエネルギーが少なく、製造方法全体のCO2排出量及び消費エネルギーを低減することができる。
ISO 11345:2006に準拠して1~10の値で評価したカーボンブラックの分散の程度をマクロ分散性として示した。評価値は、比較例1の値を100として、実施例及び比較例の値を指数表示した。評価値(指数値)が大きいほど、ゴム組成物中のカーボンブラックのマクロ分散性が高く、製品とした際の耐破壊性に優れる。
JIS-K6300-1:2001に準拠し、ムーニー粘度計(モンサント社製RPA)でL型ローターを用い、130℃にて、未加硫ゴム組成物のムーニー粘度[ML1+4(130℃)]を測定した。未加硫粘度の評価値は、比較例1の実測値を100として、実施例及び比較例の実測値を指数表示した。評価値(指数値)が小さいほど、未加硫ゴム組成物の流れ性が良く、加工性に優れる。
ゴム組成物を145℃の金型温度にて33分間加硫することにより、加硫ゴムを得た。加硫ゴムから試験片を作製し、粘弾性測定装置(上島製作所製スペクトロメーター)を用いて、100℃、周波数52Hz、初期歪み10%、動歪1%の条件で、損失正接(tanδ)を測定した。評価値は、比較例1のtanδの数値を100として、実施例及び比較例のtanδを指数表示した。評価値が小さいほど、加硫ゴムのtanδ(ヒステリシスロス)の値が小さく、低ロス性、すなわち、低発熱性である。
*2)東ソーシリカ株式会社製「ニプシールVN3」
*3)三共油化工業(株)製「A/O MIX」
*4)大内新興化学工業社製「ノクラック6C」、
N-1,3-ジメチルブチル-N'-フェニル-p-フェニレンジアミン
*5)プロピオン酸ヒドラジドと上記*2のシリカとの質量比が1:2である担持体
*6)プロピオン酸ヒドラジドと上記*2のシリカとの質量比が1:10である担持体
*7)プロピオン酸ヒドラジドと上記*2のシリカとの質量比が10:1である担持体
*8)プロピオン酸ヒドラジドと下記*10のカーボンブラックとの質量比が1:2である担持体
*9)宇部興産社製「UBEPOL-BR150B」
*10)東海カーボン製「シースト3」、
N2SA:79m2/g、DBP:101mL/100g
*11)東海カーボン製「シースト7HM」、
N2SA:126m2/g、DBP:125mL/100g
*12)東海カーボン社製「シースト9」、
N2SA:142m2/g、DBP:139mL/100g
*13)パルミチン酸ヒドラジド化合物と上記*2のシリカとの質量比が1:2である担持体
*14)ラウリン酸ヒドラジド化合物と上記*2のシリカとの質量比が1:2である担持体
*15)ステアリン酸ヒドラジド化合物と上記*2のシリカとの質量比が1:2である担持体
*16)大内新興化学工業社製「ノクセラーCZ」、
N-シクロヘキシル-2-ベンゾチアゾールスルフェンアミド
Claims (9)
- 天然ゴムを含むゴム成分(A)と、無機充填材及びカーボンブラックから選ばれる少なくとも1種の充填材(B)と、固体に担持させた下記一般式(I)で表されるヒドラジド化合物(C)とを含むゴム組成物の製造方法であって、混練工程を任意の予備練り段階と複数段階の混練とで行い、予備練り段階及び/又は混練の第一段階で該固体に担持させたヒドラジド化合物(C)を加えて混練することを特徴とする、ゴム組成物の製造方法。
R-CONHNH2 ・・・(I)
(式中のRは、炭素数1~30のアルキル基、炭素数3~30のシクロアルキル基、又はアリール基を示す。) - 前記一般式(I)で表されるヒドラジド化合物(C)のR基が炭素数1~10のアルキル基よりなる群から選ばれることを特徴とする、請求項1に記載の製造方法。
- 前記一般式(I)で表されるヒドラジド化合物(C)がプロピオン酸ヒドラジドであることを特徴とする、請求項2項に記載の製造方法。
- 前記固体が、シリカ、水酸化アルミニウム、クレー、炭酸カルシウム、タルク、カーボンブラック、ステアリン酸、ワックス、老化防止剤、天然ゴム、ブタジエンゴム、スチレンブタジエンゴム及びポリイソプレンゴムよりなる群より選択されることを特徴とする、請求項1~3のいずれか1項に記載の製造方法。
- 前記固体がシリカであることを特徴とする、請求項4に記載の製造方法。
- 前記ヒドラジド化合物(C)とそれを担持する前記固体との質量比が、10:1~1:30であることを特徴とする、請求項1~5のいずれか1項に記載の製造方法。
- 前記混練の最終段階で、老化防止剤の一部または全部を加えて混練することを特徴とする、請求項1~6のいずれか1項に記載の製造方法。
- 前記予備練り段階で、前記ヒドラジド化合物(C)を加えて混練することを特徴とする、請求項1~7のいずれか1項に記載の製造方法。
- 請求項1~8のいずれか1項に記載の製造方法で製造した、ゴム組成物。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP15842183.4A EP3196232B1 (en) | 2014-09-19 | 2015-09-11 | Method for manufacturing rubber composition, and rubber composition |
JP2016548555A JP6580577B2 (ja) | 2014-09-19 | 2015-09-11 | ゴム組成物の製造方法及びゴム組成物 |
US15/512,164 US10087292B2 (en) | 2014-09-19 | 2015-09-11 | Method for producing rubber composition, and rubber composition |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014-191725 | 2014-09-19 | ||
JP2014191725 | 2014-09-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016042748A1 true WO2016042748A1 (ja) | 2016-03-24 |
Family
ID=55532805
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/004641 WO2016042748A1 (ja) | 2014-09-19 | 2015-09-11 | ゴム組成物の製造方法及びゴム組成物 |
Country Status (4)
Country | Link |
---|---|
US (1) | US10087292B2 (ja) |
EP (1) | EP3196232B1 (ja) |
JP (1) | JP6580577B2 (ja) |
WO (1) | WO2016042748A1 (ja) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06256570A (ja) * | 1993-03-02 | 1994-09-13 | Bridgestone Corp | 天然ゴム用添加剤、その添加剤を含有したゴム組成物及びその添加剤による天然ゴムの粘度上昇抑制方法 |
WO2014156111A1 (ja) * | 2013-03-28 | 2014-10-02 | 株式会社ブリヂストン | ゴム組成物の製造方法及びゴム組成物 |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0625670A (ja) | 1992-07-10 | 1994-02-01 | Japan Synthetic Rubber Co Ltd | 液晶配向剤 |
JPH0748404A (ja) | 1993-08-03 | 1995-02-21 | Bridgestone Corp | 天然ゴム及びその製造方法 |
US5710200A (en) | 1993-03-02 | 1998-01-20 | Bridgestone Corporation | Natural rubber treated with viscosity stabilizers and production thereof |
JPH0748405A (ja) | 1993-08-03 | 1995-02-21 | Bridgestone Corp | 天然ゴム及びその製造方法 |
JPH0827315A (ja) | 1994-07-15 | 1996-01-30 | Bridgestone Corp | ゴム組成物の混練り方法 |
DE60029707T2 (de) * | 1999-02-05 | 2007-08-09 | Bridgestone Corp. | Kautschukzusammensetzung und luftreifen |
JP4541475B2 (ja) | 1999-12-16 | 2010-09-08 | 株式会社ブリヂストン | ゴム組成物の製造方法及びゴム組成物 |
ES2234780T3 (es) * | 2000-09-01 | 2005-07-01 | Bridgestone Corporation | Composicion de caucho y cubierta neumatica robusta que utiliza la composicion de caucho. |
JP3698699B2 (ja) * | 2000-11-07 | 2005-09-21 | 株式会社ブリヂストン | ラテックスからの天然ゴム及びそれを含む組成物 |
JP5175835B2 (ja) * | 2007-03-05 | 2013-04-03 | 株式会社ブリヂストン | 空気入りタイヤ |
JP2009108204A (ja) * | 2007-10-30 | 2009-05-21 | Bridgestone Corp | 変性天然ゴム及びその製造方法、並びにそれを用いたゴム組成物及びタイヤ |
FR2940299B1 (fr) * | 2008-12-23 | 2012-08-03 | Michelin Soc Tech | Composant de pneumatique sans contact avec l'air a base de caoutchouc naturel, d'une charge renforcante et d'un dihydrazide. |
JP6075943B2 (ja) | 2011-10-17 | 2017-02-08 | 住友ゴム工業株式会社 | タイヤ用ゴム組成物及び空気入りタイヤ |
-
2015
- 2015-09-11 EP EP15842183.4A patent/EP3196232B1/en not_active Not-in-force
- 2015-09-11 JP JP2016548555A patent/JP6580577B2/ja not_active Expired - Fee Related
- 2015-09-11 US US15/512,164 patent/US10087292B2/en active Active
- 2015-09-11 WO PCT/JP2015/004641 patent/WO2016042748A1/ja active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06256570A (ja) * | 1993-03-02 | 1994-09-13 | Bridgestone Corp | 天然ゴム用添加剤、その添加剤を含有したゴム組成物及びその添加剤による天然ゴムの粘度上昇抑制方法 |
WO2014156111A1 (ja) * | 2013-03-28 | 2014-10-02 | 株式会社ブリヂストン | ゴム組成物の製造方法及びゴム組成物 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3196232A4 * |
Also Published As
Publication number | Publication date |
---|---|
JPWO2016042748A1 (ja) | 2017-07-06 |
US20170267818A1 (en) | 2017-09-21 |
EP3196232A1 (en) | 2017-07-26 |
US10087292B2 (en) | 2018-10-02 |
EP3196232B1 (en) | 2018-07-04 |
JP6580577B2 (ja) | 2019-09-25 |
EP3196232A4 (en) | 2017-09-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5418141B2 (ja) | ゴム組成物 | |
JP2009108204A (ja) | 変性天然ゴム及びその製造方法、並びにそれを用いたゴム組成物及びタイヤ | |
JP6561847B2 (ja) | タイヤ用ゴム組成物の製造方法および空気入りタイヤ | |
JP2004091715A (ja) | タイヤ | |
JP2015183062A (ja) | タイヤ用ゴム組成物 | |
JP6417318B2 (ja) | ゴム組成物の製造方法及びゴム組成物 | |
JP5401923B2 (ja) | 改質天然ゴムの製造方法 | |
JP6619965B2 (ja) | 変性ジエン系ゴム、ゴム組成物、タイヤ、変性ジエン系ゴムの製造方法及び添加剤 | |
JP4934323B2 (ja) | 変性天然ゴム及びその製造方法、並びにそれを用いたゴム組成物及びタイヤ | |
JP5401924B2 (ja) | ゴム組成物の製造方法 | |
JP5592219B2 (ja) | ゴム組成物の製造方法 | |
JP2009215338A (ja) | シリカ配合ゴム組成物とその架橋物、及びその製造方法。 | |
JP2017115112A (ja) | 変性ジエン系ゴム、それを含むタイヤ用ゴム組成物およびその製造方法 | |
JP6580577B2 (ja) | ゴム組成物の製造方法及びゴム組成物 | |
JP7197238B2 (ja) | ゴム用添加剤、ゴム用添加剤組成物、タイヤ用ゴム組成物、タイヤ用架橋ゴム組成物、タイヤ用ゴム製品、及びタイヤ | |
JP2009179658A (ja) | タイヤトレッド用ゴム組成物及びその製造方法 | |
JP2009173698A (ja) | ゴム組成物の製造方法、ゴム組成物およびそれを用いたタイヤ | |
JP2009013311A (ja) | ゴム組成物 | |
WO2023199974A1 (ja) | ゴム組成物 | |
JP2004091717A (ja) | ゴム組成物用添加剤、ゴム組成物用添加剤組成物及びそれを用いたゴム組成物並びにタイヤ | |
JP2008156548A (ja) | 混合・熱処理ゴム、それを用いたゴム組成物及び空気入りタイヤ | |
JP2009173739A (ja) | ゴム組成物の製造方法、ゴム組成物およびそれを用いたタイヤ | |
JP2009173737A (ja) | ゴム組成物の製造方法、ゴム組成物およびそれを用いたタイヤ | |
JP2010013551A (ja) | タイヤトレッド用ゴム組成物 | |
JP2009173697A (ja) | ゴム組成物の製造方法、ゴム組成物およびそれを用いたタイヤ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15842183 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2016548555 Country of ref document: JP Kind code of ref document: A |
|
REEP | Request for entry into the european phase |
Ref document number: 2015842183 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2015842183 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15512164 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |