WO2016042607A1 - 電動パワーステアリング装置 - Google Patents

電動パワーステアリング装置 Download PDF

Info

Publication number
WO2016042607A1
WO2016042607A1 PCT/JP2014/074482 JP2014074482W WO2016042607A1 WO 2016042607 A1 WO2016042607 A1 WO 2016042607A1 JP 2014074482 W JP2014074482 W JP 2014074482W WO 2016042607 A1 WO2016042607 A1 WO 2016042607A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotation angle
electric power
angle
power steering
angle detection
Prior art date
Application number
PCT/JP2014/074482
Other languages
English (en)
French (fr)
Inventor
恭正 瓜生
紳 熊谷
Original Assignee
日本精工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本精工株式会社 filed Critical 日本精工株式会社
Priority to US15/504,723 priority Critical patent/US9932067B2/en
Priority to PCT/JP2014/074482 priority patent/WO2016042607A1/ja
Priority to JP2016504411A priority patent/JP6061117B2/ja
Priority to EP14902264.2A priority patent/EP3196096B1/en
Priority to CN201480081907.3A priority patent/CN106715242B/zh
Priority to BR112017005076-5A priority patent/BR112017005076B1/pt
Publication of WO2016042607A1 publication Critical patent/WO2016042607A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/0481Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such monitoring the steering system, e.g. failures
    • B62D5/0484Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such monitoring the steering system, e.g. failures for reaction to failures, e.g. limp home
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/046Controlling the motor
    • B62D5/0463Controlling the motor calculating assisting torque from the motor based on driver input
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/0481Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such monitoring the steering system, e.g. failures
    • B62D5/0487Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such monitoring the steering system, e.g. failures detecting motor faults
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/0481Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such monitoring the steering system, e.g. failures
    • B62D5/049Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such monitoring the steering system, e.g. failures detecting sensor failures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/08Arrangements for controlling the speed or torque of a single motor
    • H02P6/085Arrangements for controlling the speed or torque of a single motor in a bridge configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/12Monitoring commutation; Providing indication of commutation failure
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position

Definitions

  • the present invention relates to an electric power steering apparatus that performs PWM control of a brushless motor by an inverter based on a current command value, performs current control by detecting a rotation angle of the brushless motor, and performs assist control of a steering system.
  • the rotation angle of the brushless motor is detected by the three rotation angle detection systems, and the normal / abnormality (including failure) of each system is diagnosed.
  • the present invention relates to a highly reliable electric power steering apparatus in which assist control is continued using a detection angle of the rotation angle detection system.
  • An electric power steering apparatus that applies a steering assist force (assist force) to a vehicle steering mechanism by a rotational force of a motor is provided with a steering shaft or a rack shaft by a transmission mechanism such as a gear or a belt via a speed reduction mechanism.
  • a steering assist force is applied to the vehicle.
  • Such a conventional electric power steering device (EPS) performs feedback control of the motor current in order to accurately generate the torque of the steering assist force.
  • the motor applied voltage is adjusted so that the difference between the steering assist command value (current command value) and the motor current detection value is small.
  • the adjustment of the motor applied voltage is generally performed by PWM (pulse width). This is done by adjusting the duty of modulation) control.
  • a column shaft (steering shaft, handle shaft) 2 of a handle 1 is a reduction gear 3, universal joints 4a and 4b, a pinion rack mechanism 5, a tie rod 6a, 6b is further connected to the steering wheels 8L and 8R via hub units 7a and 7b. Further, the column shaft 2 is provided with a torque sensor 10 for detecting the steering torque of the handle 1 and a steering angle sensor 14 for detecting the steering angle ⁇ , and the motor 20 for assisting the steering force of the handle 1 is provided with the reduction gear 3.
  • the control unit (ECU) 30 that controls the electric power steering apparatus is supplied with electric power from the battery 13 and also receives an ignition key signal via the ignition key 11.
  • the control unit 30 calculates a current command value of an assist (steering assistance) command based on the steering torque Th detected by the torque sensor 10 and the vehicle speed Vel detected by the vehicle speed sensor 12, and compensates the current command value.
  • the current supplied to the motor 20 is controlled by the voltage control command value Vref subjected to.
  • the steering angle sensor 14 is not essential and may not be arranged.
  • the control unit 30 is connected to a CAN (Controller Area Network) 50 that transmits and receives various types of vehicle information, and the vehicle speed Vel can also be received from the CAN 50.
  • the control unit 30 is also connected to a non-CAN 51 that exchanges communications other than the CAN 50, analog / digital signals, radio waves, and the like.
  • the control unit 30 is mainly composed of a CPU (including MCU, MPU, etc.), and general functions executed by programs in the CPU are as shown in FIG.
  • the function and operation of the control unit 30 will be described with reference to FIG. 2.
  • the steering torque Th detected by the torque sensor 10 and the vehicle speed Vel detected by the vehicle speed sensor 12 (or from the CAN 50) are expressed as a current command value Iref1.
  • the current command value calculation unit 31 to be calculated is input.
  • the current command value calculation unit 31 calculates a current command value Iref1, which is a control target value of the current supplied to the motor 20, using an assist map or the like based on the input steering torque Th and vehicle speed Vel.
  • the current command value Iref1 is input to the current limiter 33 through the adder 32A, and the current command value Irefm whose maximum current is limited is input to the subtractor 32B, and the deviation I (Irefm) from the fed back motor current value Im.
  • the inverter circuit 37 uses an FET as a drive element, and is configured by an FET bridge circuit.
  • the motor 20 when the motor 20 is a brushless motor, it is necessary to apply a current to the motor coil in accordance with the rotation angle of the motor, and therefore a rotation sensor 21 using a resolver or a magnetoresistive element (MR sensor) is required. Become.
  • the output signal of the rotation sensor 21 is input to the angle detection circuit 22 and processed.
  • the angle detection circuit 22 detects the rotation angle ⁇ , and the angular velocity calculation unit 23 calculates the motor angular velocity ⁇ .
  • a compensation signal CM from the compensation signal generator 34 is added to the adder 32A, and the compensation of the steering system system is performed by adding the compensation signal CM to improve the convergence and inertia characteristics.
  • the compensation signal generation unit 34 adds the self-aligning torque (SAT) 343 and the inertia 342 by the addition unit 344, and further adds the convergence 341 to the addition result by the addition unit 345, and compensates the addition result of the addition unit 345.
  • the signal CM is used.
  • Patent Document 1 discloses a brushless motor control method in which redundancy is provided and reliability is improved.
  • the first sensor group is composed of a plurality of hall sensors, and detects the magnetism of the rotor magnet to detect the rotor rotational position
  • the first sensor group is composed of a plurality of hall sensors arranged on the hall sensor at intervals of a deviation angle.
  • the Hall sensor operates normally, the overlap energization control is performed using both sensor groups. If the Hall sensor fails, the sensor group that does not include the failure sensor is used. The rectangular wave control is implemented.
  • abnormality detection by the comparison of duplication, there is a lack of abnormality detection means when assist control is continued using a rotation sensor of a normal system after a failure of one system, and a highly reliable motor Control cannot be performed. For this reason, in the electric power steering apparatus, means for stopping the assist control after a failure of one system is adopted, and it is a problem that the driver is burdened.
  • the present invention has been made under the circumstances as described above, and an object of the present invention is to use three rotation angle detection systems and to detect abnormality (including failure) by majority of three detection signals and to detect rotation angle.
  • the present invention calculates a current command value based on at least the steering torque, performs PWM control of the brushless motor by an inverter based on the current command value, performs current control by detecting the rotation angle of the brushless motor, and performs steering.
  • the above-described object of the present invention relates to an electric power steering apparatus configured to perform assist control of the system, and includes three rotation angle detection systems that detect the rotation angle of the brushless motor and the three rotation angle detection systems.
  • An angle diagnosis unit that compares the absolute value of each output difference with a threshold value to diagnose and process normality / abnormality of the rotation angle detection system, and is diagnosed as normal by the angle diagnosis unit This is achieved by continuing the assist control using the output angle of the system.
  • the object of the present invention is that the angle diagnosis unit diagnoses normal when the absolute value of each angle difference is smaller than the threshold value, and diagnoses abnormality when the absolute value of the angle difference is equal to or greater than the threshold value. Or when the absolute value of each angle difference is smaller than the threshold value, any one of the three systems is output as an output angle, or one of the absolute values of each angle difference is When the threshold value is smaller than the threshold, the assist control is continued using the normal two system output angles other than the system diagnosed as abnormal, or the normal two system output angles are diagnosed. By continuing or when the system that diagnoses the abnormality is 2 or more, the assist control is stopped or the sensorless drive is performed, so that Results to be achieved.
  • the rotation angle detection system has three systems, and abnormality (including failure) is detected by the majority of the three detection signals, and any of the rotation angle detection systems becomes abnormal.
  • the abnormal system can be identified instantaneously, and the assist control can be continued by performing highly reliable angle detection using the remaining normal angle detection signals. Since mutual monitoring is possible in the two systems even after the first system abnormality occurs, there is an advantage that the possibility of stopping the assist control is reduced even after the single abnormality occurs. Therefore, the load burden on the driver is reduced.
  • the rotation angle of the brushless motor is detected by three rotation angle detection systems, and the normal / abnormality (including failure) of each system is diagnosed by majority decision.
  • This is a highly reliable electric power steering device in which the assist control is continued using the output angles of the other two rotation angle detection systems.
  • Three rotation angle detection systems are used to detect abnormalities (including faults) by majority of the three detection signals, and even if one of the rotation angle detection systems becomes abnormal, the abnormal system can be instantly identified and the remaining normal Assist control can be continued by performing highly reliable angle detection using a simple angle detection signal.
  • the rotation sensor used in the present invention is a resolver, MR sensor, etc., and the angle signal from each system is assumed to be a digital output such as a SENT communication standard or an analog output corresponding to the angle value.
  • FIG. 3 shows a configuration example of the present invention corresponding to FIG. 2.
  • the brushless motor 20 includes rotation sensors 101, 102, 103 such as a resolver and an MR sensor connected in three systems.
  • Reference numerals 102, 103 are connected to angle detection circuits 111, 112, 113 for processing signals, respectively, and the detected rotation angles ⁇ a, ⁇ b, ⁇ c are output from the angle detection circuits 111, 112, 113.
  • the rotation sensor 101 and the angle detection circuit 111 constitute an a-system rotation angle detection system
  • the rotation sensor 102 and the angle detection circuit 112 constitute a b-system rotation angle detection system
  • the rotation sensor 103 and the angle detection circuit 113 constitute a c
  • a system rotation angle detection system is configured, and a total of three system rotation angle detection systems are configured.
  • the detected rotation angles ⁇ a to ⁇ c from the angle detection circuits 111 to 113 are input to the angle diagnosis unit 100, and a threshold value ⁇ th for abnormality determination is also input to the angle diagnosis unit 100.
  • the angle diagnosis unit 100 diagnoses the normality / abnormality (including failure) of the three rotation angle detection systems based on the input detection angles ⁇ a to ⁇ c and the threshold value ⁇ th, and stops the rotation angle ⁇ , assist control, or sensorless drive
  • An abnormal signal AS for performing is output.
  • the angle diagnosis unit 100 is configured as shown in FIG. 4, the detection angle ⁇ a is input to the difference calculation units 121 and 123, the detection angle ⁇ b is input to the difference calculation units 121 and 122, and the detection angle ⁇ c is the difference calculation. Input to the sections 122 and 123.
  • a predetermined threshold value ⁇ th is input to the comparison units 141 to 143, and the comparison units 141 to 143 respectively compare the absolute values D1 to D3 with the threshold value ⁇ th, and normal / abnormal determination results DS1 to DS3 are determined by the determination unit 120. Is input. Detection rotation angles ⁇ a to ⁇ c are also input to the determination unit 120.
  • the determination unit 120 outputs the angle ⁇ based on the determination results DS1 to DS3, or outputs an abnormal signal AS for assist stop or sensorless driving. Output.
  • the rotation sensors 101 to 103 are rotated at the same time, and the rotation angles ⁇ a to ⁇ c are detected by the angle detection circuits 111 to 113 (step S1).
  • the rotation angle ⁇ b is input to the difference calculation units 121 and 122
  • the rotation angle ⁇ c is input to the difference calculation units 122 and 123, and the following angle diagnosis is performed.
  • the comparison units 141 to 143 compare the absolute values D1 to D3 with the threshold value ⁇ th, and input the determination results DS1 to DS3 to the determination unit 120.
  • the comparisons of the comparison units 141 to 143 are whether or not
  • the determination unit 120 determines whether two or more of
  • ⁇ th are satisfied based on the input determination results DS1 to DS3.
  • Step S3 If two or more are satisfied, the three rotation angle detection systems are normal (Step S4), and the detection angles ⁇ a to ⁇ c of any of the systems are output as the rotation angle ⁇ . (Step S5), thereby continuing the assist control (Step S6).
  • step S10 it is first determined whether or not there is only one expression. If it is determined that there is only one expression (Yes), it is first determined whether or not only
  • step S11 it is determined whether or not only
  • step S20 it is determined whether or not only
  • the order of the comparison determination is arbitrary and can be changed as appropriate.
  • the assist control is continued using one of the rotation angles of the normal system, and the abnormality is compared with the detected value of the other normal system. Is detected.
  • the abnormality signal AS is output and the assist control is stopped, or Japanese Patent Application Laid-Open No. 2011-244678.
  • the sensorless drive as disclosed in Japanese Patent Publication (Patent Document 2) is performed (step S30).
  • a torque command value to be applied to the drive target is set, and an addition angle is set to zero the deviation between the detected torque and the torque command value.
  • the motor torque is controlled so that a torque according to the torque command value is applied to the object to be driven, and the motor torque corresponds to the coordinate axis of the rotating coordinate system according to the magnetic pole direction of the rotor. This corresponds to the load angle, which is the amount of deviation from the virtual axis.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)
  • Power Steering Mechanism (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

【課題】回転角度検出系を3系統として異常検出を行うと共に、回転角度検出系のいずれかが異常となっても瞬時に異常系統を特定でき、残りの正常な角度検出信号を利用して信頼性の高い角度検出を行ってアシスト制御を継続する電動パワーステアリング装置を提供する。 【解決手段】少なくとも操舵トルクに基づいて電流指令値を演算し、電流指令値に基づいてインバータによりブラシレスモータをPWM制御すると共に、ブラシレスモータの回転角度を検出して電流制御を行い、操舵系をアシスト制御するようになっている電動パワーステアリング装置において、ブラシレスモータの回転角度を検出する3系統の回転角度検出系と、3系統の回転角度検出系から出力される各角度の差の絶対値を閾値と比較して、回転角度検出系の正常/異常を診断して処理する角度診断部とを具備し、角度診断部で正常と診断された系統の出力角度を用いてアシスト制御を継続する。

Description

電動パワーステアリング装置
 本発明は、電流指令値に基づいてインバータによりブラシレスモータをPWM制御すると共に、ブラシレスモータの回転角度を検出して電流制御を行い、操舵系をアシスト制御するようになっている電動パワーステアリング装置に関し、特にブラシレスモータの回転角度の検出を3系統の回転角度検出系で行うと共に、各系統の正常/異常(故障を含む)を診断し、1系統のみの異常である場合には他の2系統の回転角度検出系の検出角度を用いてアシスト制御を継続するようにした信頼性の高い電動パワーステアリング装置に関する。
 車両のステアリング機構にモータの回転力で操舵補助力(アシスト力)を付与する電動パワーステアリング装置は、モータの駆動力を減速機構を介してギア又はベルト等の伝達機構により、ステアリングシャフト或いはラック軸に操舵補助力を付与するようになっている。かかる従来の電動パワーステアリング装置(EPS)は、操舵補助力のトルクを正確に発生させるため、モータ電流のフィードバック制御を行っている。フィードバック制御は、操舵補助指令値(電流指令値)とモータ電流検出値との差が小さくなるようにモータ印加電圧を調整するものであり、モータ印加電圧の調整は、一般的にPWM(パルス幅変調)制御のデューティの調整で行っている。
 電動パワーステアリング装置の一般的な構成を図1に示して説明すると、ハンドル1のコラム軸(ステアリングシャフト、ハンドル軸)2は減速ギア3、ユニバーサルジョイント4a及び4b、ピニオンラック機構5、タイロッド6a,6bを経て、更にハブユニット7a,7bを介して操向車輪8L,8Rに連結されている。また、コラム軸2には、ハンドル1の操舵トルクを検出するトルクセンサ10及び操舵角θを検出する舵角センサ14が設けられており、ハンドル1の操舵力を補助するモータ20が減速ギア3を介してコラム軸2に連結されている。電動パワーステアリング装置を制御するコントロールユニット(ECU)30には、バッテリ13から電力が供給されると共に、イグニションキー11を経てイグニションキー信号が入力される。コントロールユニット30は、トルクセンサ10で検出された操舵トルクThと車速センサ12で検出された車速Velとに基づいてアシスト(操舵補助)指令の電流指令値の演算を行い、電流指令値に補償等を施した電圧制御指令値Vrefによってモータ20に供給する電流を制御する。舵角センサ14は必須のものではなく、配設されていなくても良い。
 コントロールユニット30には、車両の各種情報を授受するCAN(Controller Area Network)50が接続されており、車速VelはCAN50から受信することも可能である。また、コントロールユニット30には、CAN50以外の通信、アナログ/ディジタル信号、電波等を授受する非CAN51も接続されている。
 コントロールユニット30は主としてCPU(MCU、MPU等も含む)で構成されるが、そのCPU内部においてプログラムで実行される一般的な機能を示すと図2のようになる。
 図2を参照してコントロールユニット30の機能及び動作を説明すると、トルクセンサ10で検出された操舵トルクTh及び車速センサ12で検出された(若しくはCAN50からの)車速Velは、電流指令値Iref1を演算する電流指令値演算部31に入力される。電流指令値演算部31は、入力された操舵トルクTh及び車速Velに基づいてアシストマップ等を用いて、モータ20に供給する電流の制御目標値である電流指令値Iref1を演算する。電流指令値Iref1は加算部32Aを経て電流制限部33に入力され、最大電流を制限された電流指令値Irefmが減算部32Bに入力され、フィードバックされているモータ電流値Imとの偏差I(Irefm-Im)が演算され、その偏差Iが操舵動作の特性改善のためのPI制御部35に入力される。PI制御部35で特性改善された電圧制御指令値VrefがPWM制御部36に入力され、更に駆動部としてのインバータ37を介してモータ20がPWM駆動される。モータ20の電流値Imはモータ電流検出器38で検出され、減算部32Bにフィードバックされる。インバータ回路37は駆動素子としてFETが用いられ、FETのブリッジ回路で構成されている。
 また、モータ20がブラシレスモータである場合には、モータの回転角度に応じてモータコイルに電流を通電させる必要があるため、レゾルバや磁気抵抗素子(MRセンサ)を用いた回転センサ21が必要となる。回転センサ21の出力信号は角度検出回路22に入力されて処理され、角度検出回路22で回転角度θを検出し、更に角速度演算部23でモータ角速度ωを演算するようになっている。
 加算部32Aには補償信号生成部34からの補償信号CMが加算されており、補償信号CMの加算によって操舵システム系の特性補償を行い、収れん性や慣性特性等を改善するようになっている。補償信号生成部34は、セルフアライニングトルク(SAT)343と慣性342を加算部344で加算し、その加算結果に更に収れん性341を加算部345で加算し、加算部345の加算結果を補償信号CMとしている。
 このような電動パワーステアリング装置で高い操作性と信頼性が求められる場合には、回転角検出手段の高い精度、高い故障検出性が要求される。このため、角度検出手段の2系統化、センサモジュールからECUへの信号伝達手段のディジタル化(SENT(Single Edge Nibble Transmission)規格などノイズに強いため)の要求が強まっている。
 例えば特開2004-194490号公報(特許文献1)には、冗長性を持たせて信頼性を向上したブラシレスモータの制御方法が開示されている。即ち、複数のホールセンサから成り、ロータマグネットの磁気を検知してロータ回転位置を検出する第1のセンサ群と、ホールセンサに偏倚角だけ間隔をあけて配置された複数のホールセンサから成る第2のセンサ群を設け、ホールセンサが正常に作動するときは、両センサ群を用いてオーバーラップ通電制御を行い、ホールセンサが故障した場合には、故障センサを含まない方のセンサ群を用いて矩形波制御を実施している。
特開2004-194490号公報 特開2011-244678号公報
 しかしながら、2重化の比較による故障(異常)検出では、1系統が故障した後に、正常な系統の回転センサを用いてアシスト制御を継続する場合の異常検出の手段が乏しく、信頼性の高いモータ制御を実施できない。このため、電動パワーステアリング装置では、1系統故障した後にアシスト制御を停止する手段が採用されており、運転者に負担がかかることが課題となっている。
 本発明は上述のような事情よりなされたものであり、本発明の目的は、回転角度検出系を3系統とし、3検出信号の多数決で異常(故障を含む)検出を行うと共に、回転角度検出系のいずれかが異常となっても瞬時に異常系統を特定でき、残りの正常な角度検出信号を利用して信頼性の高い角度検出を行ってアシスト制御を継続できる機能を具備した電動パワーステアリング装置を提供することにある。
 本発明は、少なくとも操舵トルクに基づいて電流指令値を演算し、前記電流指令値に基づいてインバータによりブラシレスモータをPWM制御すると共に、前記ブラシレスモータの回転角度を検出して電流制御を行い、操舵系をアシスト制御するようになっている電動パワーステアリング装置に関し、本発明の上記目的は、前記ブラシレスモータの回転角度を検出する3系統の回転角度検出系と、前記3系統の回転角度検出系から出力される各角度の差の絶対値を閾値と比較して、前記回転角度検出系の正常/異常を診断して処理する角度診断部とを具備し、前記角度診断部で正常と診断された系統の出力角度を用いて前記アシスト制御を継続することにより達成される。
 本発明の上記目的は、前記角度診断部は、各角度差の絶対値が前記閾値より小さいときに正常と診断し、前記各角度の差の絶対値が前記閾値以上のときに異常と診断することにより、或いは前記各角度差の絶対値が全て前記閾値より小さいとき、前記3系統のいずれかを出力角度として出力するようになっていることにより、或いは前記各角度差の絶対値の1つが前記閾値より小さいとき、異常と診断した系統以外の正常な2系統の出力角度を用いて前記アシスト制御を継続するようになっていることにより、或いは前記正常な2系統の出力角度について異常診断を継続することにより、或いは前記異常と診断する系統が2以上であるとき、前記アシスト制御を停止するか又はセンサレス駆動を実施するようになっていることにより、より効果的に達成される。
 本発明に係る電動パワーステアリング装置によれば、回転角度検出系を3系統とし、3検出信号の多数決で異常(故障を含む)検出を行うと共に、回転角度検出系のいずれかが異常となっても瞬時に異常系統を特定でき、残りの正常な角度検出信号を利用して信頼性の高い角度検出を行ってアシスト制御を継続できる。1系統目の異常発生後も2系統で相互監視が可能なため、1重異常発生後もアシスト制御停止の可能性が減少する利点がある。そのため、運転者への負荷負担も軽減される。
電動パワーステアリング装置の概要を示す構成図である。 電動パワーステアリング装置の制御系の構成例を示すブロック図である。 本発明の構成例を示すブロック線図である。 本発明に係る診断制御部の構成例を示すブロック図である。 本発明の動作例を示すフローチャートの一部である。 本発明の動作例を示すフローチャートの一部である。
 本発明は、ブラシレスモータの回転角度の検出を3系統の回転角度検出系で行うと共に、各系統の正常/異常(故障を含む)を多数決で診断し、1系統のみの異常である場合には他の2系統の回転角度検出系の出力角度を用いてアシスト制御を継続するようにした信頼性の高い電動パワーステアリング装置である。回転角度検出系を3系統とし、3検出信号の多数決で異常(故障を含む)検出を行うと共に、回転角度検出系のいずれかが異常となっても瞬時に異常系統を特定でき、残りの正常な角度検出信号を利用して信頼性の高い角度検出を行ってアシスト制御を継続できる。
 本発明で使用する回転センサはレゾルバ、MRセンサ等であり、それぞれの系統からの角度信号はSENT通信規格などのディジタル出力、又は角度値に応じたアナログ出力を想定する。
 以下に、本発明の実施の形態を、図面を参照して詳細に説明する。
 図3は本発明の構成例を図2に対応させて示しており、ブラシレスモータ20にはレゾルバ、MRセンサ等の回転センサ101,102,103が3系統に連結されており、回転センサ101,102,103にはそれぞれ信号を処理する角度検出回路111,112,113が接続されており、角度検出回路111,112,113から検出回転角度θa,θb,θcが出力される。回転センサ101及び角度検出回路111でa系統の回転角度検出系を構成し、回転センサ102及び角度検出回路112でb系統の回転角度検出系を構成し、回転センサ103及び角度検出回路113でc系統の回転角度検出系を構成し、全体で3系統の回転角度検出系を構成している。
 角度検出回路111~113からの検出回転角度θa~θcは角度診断部100に入力され、角度診断部100には異常判定用の閾値θthも入力されている。角度診断部100は入力された検出角度θa~θc及び閾値θthに基づいて3系統の回転角度検出系の正常/異常(故障を含む)を診断し、回転角度θ又はアシスト制御の停止若しくはセンサレス駆動を実施する異常信号ASを出力する。
 角度診断部100は例えば図4に示すような構成であり、検出角度θaは差演算部121及び123に入力され、検出角度θbは差演算部121及び122に入力され、検出角度θcは差演算部122及び123に入力される。差演算部121で演算された差d1(=θa-θb)は、絶対値部131で絶対値D1(=|θa-θb|)にされて比較部141に入力される。また、差演算部122で演算された差d2(=θb-θc)は、絶対値部132で絶対値D2(=|θb-θc|)にされて比較部142に入力され、差演算部123で演算された差d3(=θc-θa)は、絶対値部133で絶対値D3(=|θc-θa|)にされて比較部143に入力される。比較部141~143には所定の閾値θthが入力されており、それぞれ比較部141~143で絶対値D1~D3と閾値θthとが比較され、正常/異常の判定結果DS1~DS3が判定部120に入力される。判定部120には検出回転角度θa~θcも入力されており、判定部120は、判定結果DS1~DS3に基づいて角度θを出力するか、或いはアシスト停止又はセンサレス駆動のための異常信号ASを出力する。
 このような構成において、その動作例を図5及び図6のフローチャートを参照して説明する。
 アシスト制御のためにブラシレスモータ20が駆動されると、同時に回転センサ101~103も回転し、角度検出回路111~113によって回転角度θa~θcが検出され(ステップS1)、回転角度θaは角度診断部100内の差演算部121及び123に入力され、回転角度θbは差演算部121及び122に入力され、回転角度θcは差演算部122及び123に入力され、以下のような角度診断が実施される(ステップS2)。即ち、差演算部121は差d1(=θa-θb)を演算し、絶対値部131は差d1の絶対値D1(=|θa-θb|)を求めて比較部141に入力する。また、差演算部122は差d2(=θb-θc)を演算し、絶対値部132は差d2の絶対値D2(=|θb-θc|)を求めて比較部142に入力し、差演算部123は差d3(=θc-θa)を演算し、絶対値部133は差d3の絶対値D3(=|θc-θa|)を求めて比較部143に入力する。そして、比較部141~143は絶対値D1~D3と閾値θthを比較し、その判定結果DS1~DS3を判定部120に入力する。比較部141~143の比較はそれぞれ|θa-θb|<θthであるか否か、|θb-θc|<θthであるか否か、|θc-θa|<θthであるか否かであり、その結果が判定結果DS1~DS3となっている。
 判定部120は、入力された判定結果DS1~DS3に基づいて、|θa-θb|<θth、|θb-θc|<θth、|θc-θa|<θthの2つ以上が成立するか否かを判定し(ステップS3)、2つ以上が成立する場合には3系統の回転角度検出系が正常であり(ステップS4)、いずれかの系統の検出角度θa~θcを回転角度θとして出力し(ステップS5)、これによりアシスト制御を継続する(ステップS6)。
 一方、上記ステップS3において、2つ以上が成立していないと判定された場合には、先ず成立式が1つであるか否かを判定する(ステップS10)。成立式が1つであると判定された場合(Yesの場合)、最初に|θa-θb|<θthのみが成立するか否かを判定し(ステップS11)、|θa-θb|<θthのみが成立する場合には系統cの異常と判定し(ステップS12)、以後は系統a,bの信号、つまり回転角度θa、θbを使用してアシスト制御を継続する(ステップS13)。
 上記ステップS11においてNoと判定された場合には、|θb-θc|<θthのみが成立するか否かを判定し(ステップS20)、|θb-θc|<θthのみが成立する場合(Yesの場合)には系統aの異常と判定し(ステップS21)、以後は系統b,cの信号、つまり回転角度θb、θcを使用してアシスト制御を継続する(ステップS22)。
 また、上記ステップS20においてNoと判定された場合には、|θc-θa|<θthのみが成立するか否かを判定し(ステップS23)、|θc-θa|<θthのみが成立する場合(Yesの場合)には系統bの異常と判定し(ステップS24)、以後は系統c,aの信号、つまり回転角度θc、θaを使用してアシスト制御を継続する(ステップS25)。なお、上記比較判定の順番は任意であり、適宜変更可能である。
 上述のように3系統中異常な系統が判断された場合は、正常な系統のいずれかの回転角度を使用してアシスト制御を継続し、正常なもう1系統の検出値と相互比較して異常を検出する。この結果、更に異常検出された場合、つまり上記ステップS10においてNoの場合、又は上記ステップS23においてNoの場合には、異常信号ASを出力してアシスト制御を停止するか、或いは特開2011-244678号公報(特許文献2)に開示されているようなセンサレス駆動を実施する(ステップS30)。
 センサレス駆動は、例えば、駆動対象に加えられるモータトルク以外のトルクが検出され、駆動対象に作用させるべきトルク指令値が設定され、検出トルクとトルク指令値との偏差をゼロにすべく加算角が演算され、これにより、トルク指令値に応じたトルクが駆動対象に加えられる状態となるように、モータトルクが制御されるものであり、モータトルクは、ロータの磁極方向に従う回転座標系の座標軸と仮想軸とのずれ量である負荷角に対応している。
1          ハンドル
2          コラム軸(ステアリングシャフト、ハンドル軸)
10         トルクセンサ
12         車速センサ
14         舵角センサ
20         モータ(ブラシレスモータ)
30         コントロールユニット(ECU)
31         電流指令値演算部
33         電流制限部
34         補償信号生成部
35         PI制御部
36         PWM制御部
37         インバータ
50         CAN
100        角度診断部
101~103    回転センサ
111~113    角度検出回路
120        判定部
121~123    差演算部
131~133    絶対値部
141~143    比較部   

Claims (6)

  1. 少なくとも操舵トルクに基づいて電流指令値を演算し、前記電流指令値に基づいてインバータによりブラシレスモータをPWM制御すると共に、前記ブラシレスモータの回転角度を検出して電流制御を行い、操舵系をアシスト制御するようになっている電動パワーステアリング装置において、
    前記ブラシレスモータの回転角度を検出する3系統の回転角度検出系と、前記3系統の回転角度検出系から出力される各角度の差の絶対値を閾値と比較して、前記回転角度検出系の正常/異常を診断して処理する角度診断部とを具備し、
    前記角度診断部で正常と診断された系統の出力角度を用いて前記アシスト制御を継続することを特徴とする電動パワーステアリング装置。
  2. 前記角度診断部は、各角度差の絶対値が前記閾値より小さいときに正常と診断し、前記各角度の差の絶対値が前記閾値以上のときに異常と診断する請求項1に記載の電動パワーステアリング装置。
  3. 前記各角度差の絶対値が全て前記閾値より小さいとき、前記3系統のいずれかを出力角度として出力するようになっている請求項2に記載の電動パワーステアリング装置。
  4. 前記各角度差の絶対値の1つが前記閾値より小さいとき、異常と診断した系統以外の正常な2系統の出力角度を用いて前記アシスト制御を継続するようになっている請求項3に記載の電動パワーステアリング装置。
  5. 前記正常な2系統の出力角度について異常診断を継続する請求項4に記載の電動パワーステアリング装置。
  6. 前記異常と診断する系統が2以上であるとき、前記アシスト制御を停止するか又はセンサレス駆動を実施するようになっている請求項2に記載の電動パワーステアリング装置。
PCT/JP2014/074482 2014-09-17 2014-09-17 電動パワーステアリング装置 WO2016042607A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US15/504,723 US9932067B2 (en) 2014-09-17 2014-09-17 Electric power steering apparatus
PCT/JP2014/074482 WO2016042607A1 (ja) 2014-09-17 2014-09-17 電動パワーステアリング装置
JP2016504411A JP6061117B2 (ja) 2014-09-17 2014-09-17 電動パワーステアリング装置
EP14902264.2A EP3196096B1 (en) 2014-09-17 2014-09-17 Electric power steering device
CN201480081907.3A CN106715242B (zh) 2014-09-17 2014-09-17 电动助力转向装置
BR112017005076-5A BR112017005076B1 (pt) 2014-09-17 2014-09-17 Aparelho de direção elétrica

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/074482 WO2016042607A1 (ja) 2014-09-17 2014-09-17 電動パワーステアリング装置

Publications (1)

Publication Number Publication Date
WO2016042607A1 true WO2016042607A1 (ja) 2016-03-24

Family

ID=55532676

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/074482 WO2016042607A1 (ja) 2014-09-17 2014-09-17 電動パワーステアリング装置

Country Status (6)

Country Link
US (1) US9932067B2 (ja)
EP (1) EP3196096B1 (ja)
JP (1) JP6061117B2 (ja)
CN (1) CN106715242B (ja)
BR (1) BR112017005076B1 (ja)
WO (1) WO2016042607A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106218716A (zh) * 2016-08-25 2016-12-14 湖北华舟重工应急装备股份有限公司 一种电控式半挂车随动转向角度检测装置
WO2018008628A1 (ja) * 2016-07-05 2018-01-11 日本精工株式会社 検出装置及び電動パワーステアリング装置
JP2018113834A (ja) * 2017-01-13 2018-07-19 日本精工株式会社 モータ制御装置、電動パワーステアリング装置及び車両
JP2019119417A (ja) * 2018-01-11 2019-07-22 株式会社デンソー 電動パワーステアリング装置
JPWO2021166648A1 (ja) * 2020-02-18 2021-08-26

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110196583B (zh) * 2018-02-27 2020-11-20 长城汽车股份有限公司 故障诊断方法、装置及车辆
JP7280099B2 (ja) * 2019-04-19 2023-05-23 株式会社ジェイテクト モータの制御システム、およびモータの制御装置
CN111976832B (zh) * 2019-05-21 2021-12-21 上海汽车集团股份有限公司 一种方向盘转角数据的计算方法、装置及电子设备
CN113978545B (zh) * 2021-11-25 2024-05-14 联创汽车电子有限公司 Eps控制器

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10258757A (ja) * 1997-03-19 1998-09-29 Toyota Motor Corp 操舵制御装置
JP2002081961A (ja) * 2000-09-07 2002-03-22 Koyo Seiko Co Ltd 回転角度検出装置、ブラシレスモータ及び電動パワーステアリング装置
JP2004194490A (ja) * 2002-12-13 2004-07-08 Mitsuba Corp ブラシレスモータ制御方法
JP2004291923A (ja) * 2003-03-28 2004-10-21 Toyoda Mach Works Ltd 電気式動力舵取装置
JP2005274484A (ja) * 2004-03-26 2005-10-06 Toyota Motor Corp 角度検出装置
JP2005345284A (ja) * 2004-06-03 2005-12-15 Favess Co Ltd トルク検出装置
JP2010149678A (ja) * 2008-12-25 2010-07-08 Nissan Motor Co Ltd 車両用操舵制御装置及び車両用操舵制御方法
JP2010155501A (ja) * 2008-12-26 2010-07-15 Nsk Ltd 電動パワーステアリング装置
JP2011025872A (ja) * 2009-07-28 2011-02-10 Jtekt Corp 電動パワーステアリング装置
JP2011157004A (ja) * 2010-02-02 2011-08-18 Toyota Motor Corp 電動パワーステアリング装置
JP2014054871A (ja) * 2012-09-11 2014-03-27 Toyota Motor Corp センサ装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005108943A1 (ja) 2004-05-11 2005-11-17 Jtekt Corporation トルク検出装置
JP4793008B2 (ja) * 2006-02-09 2011-10-12 株式会社デンソー 車両用操舵装置
JP4329792B2 (ja) * 2006-08-10 2009-09-09 トヨタ自動車株式会社 電動パワーステアリング装置
JP5614583B2 (ja) 2009-11-17 2014-10-29 株式会社ジェイテクト モータ制御装置および車両用操舵装置
JP5797960B2 (ja) * 2010-08-24 2015-10-21 アスモ株式会社 ブラシレスモータの駆動方法及びブラシレスモータの駆動回路、並びに、ブラシレスモータの回転位置の検出方法及びブラシレスモータの回転位置の検出回路
JP5862135B2 (ja) * 2011-09-12 2016-02-16 株式会社ジェイテクト 電動パワーステアリング装置

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10258757A (ja) * 1997-03-19 1998-09-29 Toyota Motor Corp 操舵制御装置
JP2002081961A (ja) * 2000-09-07 2002-03-22 Koyo Seiko Co Ltd 回転角度検出装置、ブラシレスモータ及び電動パワーステアリング装置
JP2004194490A (ja) * 2002-12-13 2004-07-08 Mitsuba Corp ブラシレスモータ制御方法
JP2004291923A (ja) * 2003-03-28 2004-10-21 Toyoda Mach Works Ltd 電気式動力舵取装置
JP2005274484A (ja) * 2004-03-26 2005-10-06 Toyota Motor Corp 角度検出装置
JP2005345284A (ja) * 2004-06-03 2005-12-15 Favess Co Ltd トルク検出装置
JP2010149678A (ja) * 2008-12-25 2010-07-08 Nissan Motor Co Ltd 車両用操舵制御装置及び車両用操舵制御方法
JP2010155501A (ja) * 2008-12-26 2010-07-15 Nsk Ltd 電動パワーステアリング装置
JP2011025872A (ja) * 2009-07-28 2011-02-10 Jtekt Corp 電動パワーステアリング装置
JP2011157004A (ja) * 2010-02-02 2011-08-18 Toyota Motor Corp 電動パワーステアリング装置
JP2014054871A (ja) * 2012-09-11 2014-03-27 Toyota Motor Corp センサ装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3196096A4 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018008628A1 (ja) * 2016-07-05 2018-01-11 日本精工株式会社 検出装置及び電動パワーステアリング装置
CN109416293A (zh) * 2016-07-05 2019-03-01 日本精工株式会社 检测装置以及电动助力转向装置
US10850769B2 (en) 2016-07-05 2020-12-01 Nsk Ltd. Detecting apparatus and electric power steering apparatus
CN109416293B (zh) * 2016-07-05 2021-08-03 日本精工株式会社 检测装置以及电动助力转向装置
CN106218716A (zh) * 2016-08-25 2016-12-14 湖北华舟重工应急装备股份有限公司 一种电控式半挂车随动转向角度检测装置
JP2018113834A (ja) * 2017-01-13 2018-07-19 日本精工株式会社 モータ制御装置、電動パワーステアリング装置及び車両
JP2019119417A (ja) * 2018-01-11 2019-07-22 株式会社デンソー 電動パワーステアリング装置
JPWO2021166648A1 (ja) * 2020-02-18 2021-08-26
WO2021166648A1 (ja) * 2020-02-18 2021-08-26 日立Astemo株式会社 電子制御装置、電動パワーステアリング装置、及び電動パワーステアリング装置の制御装置
JP7320122B2 (ja) 2020-02-18 2023-08-02 日立Astemo株式会社 電子制御装置、電動パワーステアリング装置、及び電動パワーステアリング装置の制御装置

Also Published As

Publication number Publication date
BR112017005076B1 (pt) 2023-02-14
CN106715242B (zh) 2019-05-03
EP3196096A1 (en) 2017-07-26
CN106715242A (zh) 2017-05-24
EP3196096B1 (en) 2019-02-20
BR112017005076A8 (pt) 2022-07-12
US20170267278A1 (en) 2017-09-21
BR112017005076A2 (pt) 2018-07-31
JPWO2016042607A1 (ja) 2017-04-27
JP6061117B2 (ja) 2017-01-18
US9932067B2 (en) 2018-04-03
EP3196096A4 (en) 2018-04-18

Similar Documents

Publication Publication Date Title
JP6061117B2 (ja) 電動パワーステアリング装置
US11084523B2 (en) Vehicle-mounted device actuator and power steering device
US9975572B2 (en) In-vehicle device controller and power steering device
US12005975B2 (en) Method for providing steering assistance for an electromechanical steering system of a motor vehicle comprising a redundantly designed control device
US10053142B2 (en) Electric power steering apparatus
JP6635127B2 (ja) 電動パワーステアリング装置
JP5621598B2 (ja) モータ制御装置及び電動パワーステアリング装置
US10046792B2 (en) Limp aside steering assist with estimated motor current
JP6179646B2 (ja) 車両用舵角検出装置及びそれを搭載した電動パワーステアリング装置
KR20160000617A (ko) 전동식 파워 스티어링 시스템 및 전자 제어 장치의 페일 세이프 처리 방법
WO2017098839A1 (ja) 電動パワーステアリング装置
JP2009001055A (ja) 電動パワーステアリング装置及び異常検出方法
JP2020001477A (ja) 車両用ステアリングシステム
JP2012006463A (ja) 電動パワーステアリング装置
JP5999289B2 (ja) 電動パワーステアリング装置の電源電圧診断装置
JP2008132920A (ja) 電動パワーステアリング装置の制御装置
JP2014156151A (ja) ステアリング制御装置、ステアリング制御方法
JP2015214212A (ja) 車両転舵制御装置
JP3336401B2 (ja) 電動パワーステアリング装置
JP5131435B2 (ja) 電動パワーステアリング装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016504411

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14902264

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15504723

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2014902264

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014902264

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112017005076

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112017005076

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20170314