WO2016041294A1 - 基于链式分数阶积分电路模块的0.8阶Cang混沌系统电路实现 - Google Patents
基于链式分数阶积分电路模块的0.8阶Cang混沌系统电路实现 Download PDFInfo
- Publication number
- WO2016041294A1 WO2016041294A1 PCT/CN2015/000386 CN2015000386W WO2016041294A1 WO 2016041294 A1 WO2016041294 A1 WO 2016041294A1 CN 2015000386 W CN2015000386 W CN 2015000386W WO 2016041294 A1 WO2016041294 A1 WO 2016041294A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- pin
- chain
- integration circuit
- fractional
- resistor
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K19/00—Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L9/00—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
Definitions
- the invention relates to a universal fractional-order integration circuit module and a 0.8-order chaotic system circuit implementation thereof, in particular to a 0.8-order Cang chaotic system and an analog circuit implementation based on a chain-type fractional-order integration circuit module.
- the resistance and capacitance of the circuit implementing the fractional-order chaotic system are both unconventional resistors and capacitors, it is generally implemented by a series connection of resistors and capacitors.
- the main method of implementation is to combine the existing resistors and capacitors on the breadboard.
- the method has low reliability and stability, and is easy to make mistakes, and is difficult to find after an error.
- the present invention overcomes this problem and adopts a chain structure to design and manufacture a PCB circuit.
- the circuit is composed of four parts. Part of the general-purpose fractional-order integration module circuit consisting of four resistors in parallel with a potentiometer and four capacitors in parallel.
- the 0.8-order fractional-order integration circuit consists of five parts, so it is necessary to use two general-purpose fractional-order integration module circuits.
- the series is composed, and the 0.8-order fractional-order chaotic system circuit is realized by this method, which has high reliability and is not easy to be mistaken.
- the technical problem to be solved by the present invention is to provide a 0.8-order Cang chaotic system and an analog circuit implementation based on a chain-type fractional-order integration circuit module, and the present invention adopts the following technical means to achieve the object of the invention:
- a universal fractional-order integration circuit module characterized in that a resistor Rx is connected in parallel with a capacitor Cx to form a first portion, a resistor Ry is connected in parallel with a capacitor Cy to form a second portion, and a resistor Rz is connected in parallel with the capacitor Cz to form a third portion.
- the resistor Rw is connected in parallel with the capacitor Cw to form a fourth portion.
- the cascade input pins PI1, PI2 and the output pin P are connected to the first portion, the first portion is connected to the output pin P1 and the second portion, and the second portion is connected to the output pin P2.
- the third part the third part is connected to the output pin P3 and the fourth part, the fourth part is connected to the output pin P4 and the cascade output pin PO1, PO2.
- a universal fractional-order integration circuit module wherein said resistor Rx is composed of a potentiometer Rx1 and a resistor Rx2, Rx3, Rx4, Rx5 connected in series, said capacitor Cx being capacitor Cx1, Cx2 Cx3, Cx4 are composed in parallel;
- the resistor Ry is composed of a potentiometer Ry1 and a resistor Ry2, Ry3, Ry4, Ry5 connected in series, the capacitor Cy is composed of capacitors Cy1, Cy2, Cy3, Cy4 in parallel;
- the resistor Rz is composed of a potentiometer Rz1 and resistors Rz2, Rz3, Rz4, and Rz5 are formed in series, and the capacitor Cz is composed of capacitors Cz1, Cz2, Cz3, and Cz4 in parallel;
- the resistor Rw is composed of a potentiometer Rw1 and resistors Rw2, Rw3, Rw4, and Rw5 in series.
- the capacitor Cw is composed of capacitors Cw1, Cw2, Cw3, and Cw
- the 0.8-order integrating circuit module is characterized in that: the 0.8-order integrating circuit module is composed of a common fractional-order integrating circuit U1 and a general-order fractional-order integrating circuit U2, and the universal fractional-order integrating circuit U1 is cascaded input pins. PI1 and PI2 are suspended, and the general-purpose fractional-order integration circuit U1 outputs pins P1, P2, P3, and P4 are suspended, and the universal fractional-order integrated power is suspended.
- the U1 cascode output pin PO1 is turned on by the PI1 of the fractional integration circuit U2, the PO2 of the general fractional integration circuit U1 is turned on by the PI2 of the fractional integration circuit U2, and the P1, P2, P3, P4 of the general fractional integration circuit U2 is turned on.
- Rx3 3.3M
- Rx4 1M
- Rx5 1.5M
- Cx2 330nF
- Cx3 330nF
- Cx4 330nF
- the potentiometer Ry1 of the U1 is 1.5M
- Ry3 51K
- Ry4 2K
- Ry5 1K
- Cy2 1uF
- Cy3 200nF
- Cy4 200
- the capacitance of the U2 is C.sub.42.42uF
- the potentiometer Ry1 of the universal fractional integration circuit U2, the resistors Ry2, Ry3, Ry4, and Ry5 of the U2 are all suspended; the capacitances Cy1, Cy2, Cy3, Cy4 of the U2 are all suspended; the universal fractional integration
- the potentiometer Rz1 of the circuit U2, the resistors Rz2, Rz3, Rz4, Rz5 of the U2 are all suspended; the capacitances Cz1, Cz2, Cz3, Cz4 of the U2 are suspended; the potentiometer Rw1 of the universal fractional integration circuit U2,
- the resistors Rw2, Rw3, Rw4, and Rw5 of the U2 are all suspended; the capacitors Cw1, Cw2, Cw3, and Cw4 of the U2 are all suspended;
- a 0.8-order Cang chaotic system circuit based on a general fractional-order integral circuit module, characterized in that:
- the analog circuit is constructed, which uses the operational amplifier U1, the operational amplifier U2 and the resistor and the 0.8-order integral circuit module U5-U6, the 0.8-order integral circuit module U7-U8, and the 0.8-order integral circuit module U9- U10 constitutes an inverting adder and an inverting 0.8-order integrator, multiplying by U2 and multiplier U4, said operational amplifier U1 and operational amplifier U2 using LF347N, said multiplier U3 and multiplier U4 using AD633JN;
- the operational amplifier U1 is connected to an operational amplifier U2, a multiplier U3, a multiplier U4 and a 0.8-order integrating circuit module U5-U6, and an 0.8-order integrating circuit module U7-U8.
- the operational amplifier U2 is connected to a multiplier U3, a multiplier U4, and a 0.8-order integration circuit module U9-U10, the multiplier U3 is connected to the operational amplifier U1, the multiplier U4 is connected to the operational amplifier U2;
- the first pin of the operational amplifier U1 is connected to the sixth pin of U1 through the resistor R6, the second pin is connected to the first pin through the resistor R4, and the third, fifth, ten, and 12 pins are grounded.
- the 4th pin is connected to VCC
- the 11th pin is connected to VEE
- the 6th pin is connected to the P pin of the fractional integration circuit U7
- the 7th pin is connected to the output y
- the 9th pin is connected to the 9th pin through the resistor R2.
- the P1 pin of the universal fractional integration circuit U8 is connected to the third pin of the multiplier U4, the eighth pin is connected to the output x, and is connected to the sixth pin through the resistor R5, and is connected to the first pin of the multiplier U3.
- the first pin of the multiplier U4 is connected to the P1 pin of the fractional integration circuit U6, and the ninth pin is turned on by the P pin of the fractional integration circuit U5, and the 13th and 14th pins are suspended;
- the first, second, sixth, seventh, thirteenth, and fourteenth pins of the operational amplifier U2 are left floating, the third, fifth, tenth, and twelfth pins are grounded, the fourth pin is connected to VCC, and the eleventh pin is connected to VEE, the eighth The pin output z is connected to the third pin of the multiplier U3, connected to the P1 pin of the fractional integration circuit U10, and the ninth pin is turned on by the P pin of the fractional integration circuit U9;
- the first pin of the multiplier U3 is connected to the eighth pin of U1, the third pin is connected to the eighth pin of U2, the second, fourth, and sixth pins are grounded, and the fifth pin is connected to VEE, the seventh reference The pin is connected to the 9th pin of U1 through the resistor R1, the second pin is connected through the resistor R3, and the 8th pin is connected to VCC;
- the first pin of the multiplier U4 is connected to the eighth pin of U1, the third pin is connected to the seventh pin of U1, the second, fourth, and sixth pins are grounded, and the fifth pin is connected to VEE, the seventh pin. Connected to the 9th pin of U2 through resistor R7, the 8th pin is connected to VCC;
- the PI1, PI2, P1, P2, P3, and P4 pins of U5 in the 0.8-order integrating circuit module U5-U6 are suspended, and the P pin is connected to the ninth pin of the operational amplifier U1, and the P, P1, and P3 of the U6.
- the P4 pin is left floating, the P2 pin is connected to the 8th pin of the operational amplifier U1, the U5 cascode output pin PO1 is connected to the PI1 of the U6, and the PO2 of the U5 is connected to the PI2 of the U6;
- the PI1, PI2, P1, P2, P3, and P4 pins of U7 in the 0.8-order integrating circuit module U7-U8 are suspended, and the P pin is connected to the sixth pin of the operational amplifier U1, and the P, P1, and P3 of the U8.
- the P4 pin is left floating, the P2 pin is connected to the 7th pin of the operational amplifier U1, the U7 cascode output pin PO1 is connected to the PI1 of the U8, and the PO2 of the U7 is connected to the PI2 of the U8;
- the PI1, PI2, P1, P2, P3, and P4 pins of U9 in the 0.8-order integrating circuit module U9-U10 are suspended, and the P pin is connected to the ninth pin of the operational amplifier U2, and the P, P1, and P3 of the U10.
- the P4 pin is left floating, the P2 pin is connected to the 8th pin of the operational amplifier U2, the U9 cascode output pin PO1 is connected to the PI1 of the U10, and the PO2 of the U9 is connected to the PI2 of the U10.
- the beneficial result of the invention is that a PCB structure is designed and manufactured by a chain structure, and the circuit is composed of four parts, each part is composed of four resistors and one potentiometer connected in series, and a universal fractional integration module composed of four capacitors in parallel.
- the circuit, the 0.8-order fractional-order integration circuit is composed of five parts. Therefore, two general-purpose fractional-order integral module circuits are used to form a series.
- the 0.8-order fractional-order chaotic system circuit is realized by this method, which has high reliability and is not prone to error.
- FIG. 1 is a schematic diagram of the internal structure of the chain type fractional integration circuit module of the present invention (a), an internal actual connection diagram (b), and an actual connection diagram (c) of a 0.8-order integration circuit.
- FIG. 2 is a schematic diagram of a circuit connection structure of a preferred embodiment of the present invention.
- 3 and 4 are actual connection diagrams of the circuit of the present invention.
- a universal fractional-order integration circuit module characterized in that a resistor Rx is connected in parallel with a capacitor Cx to form a first portion, a resistor Ry is connected in parallel with a capacitor Cy to form a second portion, and a resistor Rz is connected in parallel with the capacitor Cz to form a third portion.
- the resistor Rw is connected in parallel with the capacitor Cw to form a fourth portion.
- the cascade input pins PI1, PI2 and the output pin P are connected to the first portion, the first portion is connected to the output pin P1 and the second portion, and the second portion is connected to the output pin P2.
- the third part the third part is connected to the output pin P3 and the fourth part, the fourth part is connected to the output pin P4 and the cascade output pin PO1, PO2.
- a universal fractional-order integration circuit module wherein said resistor Rx is composed of a potentiometer Rx1 and a resistor Rx2, Rx3, Rx4, Rx5 connected in series, said capacitor Cx being capacitor Cx1, Cx2 Cx3, Cx4 are composed in parallel;
- the resistor Ry is composed of a potentiometer Ry1 and a resistor Ry2, Ry3, Ry4, Ry5 connected in series, the capacitor Cy is composed of capacitors Cy1, Cy2, Cy3, Cy4 in parallel;
- the resistor Rz is composed of a potentiometer Rz1 and resistors Rz2, Rz3, Rz4, and Rz5 are formed in series, and the capacitor Cz is composed of capacitors Cz1, Cz2, Cz3, and Cz4 in parallel;
- the resistor Rw is composed of a potentiometer Rw1 and resistors Rw2, Rw3, Rw4, and Rw5 in series.
- the capacitor Cw is composed of capacitors Cw1, Cw2, Cw3, and Cw
- a 0.8-order integration circuit module characterized in that: the 0.8-order integration circuit module is composed of a general-order fractional integration circuit U1 And a general-purpose fractional-order integration circuit U2 is cascaded, the common fractional-order integration circuit U1 is cascaded input pins PI1, PI2 are suspended, and the general-order fractional-order integration circuit U1 outputs pins P1, P2, P3, and P4 are suspended.
- the general fractional-order integration circuit U1 is connected to the output pin PO1, and the PI1 of the fractional-order integration circuit U2 is turned on.
- the PO2 of the general-order fractional-order integration circuit U1 is turned on by the PI2 of the fractional-order integration circuit U2, and the P of the general-order fractional integration circuit U2.
- a 0.8-order Cang chaotic system circuit based on a general fractional-order integral circuit module, characterized in that:
- the analog circuit is constructed, which uses the operational amplifier U1, the operational amplifier U2 and the resistor and the 0.8-order integral circuit module U5-U6, the 0.8-order integral circuit module U7-U8, and the 0.8-order integral circuit module U9- U10 constitutes an inverting adder and an inverting 0.8-order integrator, multiplying by U2 and multiplier U4, said operational amplifier U1 and operational amplifier U2 using LF347N, said multiplier U3 and multiplier U4 using AD633JN;
- the operational amplifier U1 is connected to an operational amplifier U2, a multiplier U3, a multiplier U4 and a 0.8-order integrating circuit module U5-U6, and an 0.8-order integrating circuit module U7-U8.
- the operational amplifier U2 is connected to a multiplier U3, a multiplier U4, and a 0.8-order integration circuit module U9-U10, the multiplier U3 is connected to the operational amplifier U1, the multiplier U4 is connected to the operational amplifier U2;
- the first pin of the operational amplifier U1 is connected to the sixth pin of U1 through the resistor R6, the second pin is connected to the first pin through the resistor R4, and the third, fifth, ten, and 12 pins are grounded.
- the 4th pin is connected to VCC
- the 11th pin is connected to VEE
- the 6th pin is connected to the P pin of the fractional integration circuit U7
- the 7th pin is connected to the output y
- the 9th pin is connected to the 9th pin through the resistor R2.
- the P1 pin of the universal fractional integration circuit U8 is connected to the third pin of the multiplier U4, the eighth pin is connected to the output x, and is connected to the sixth pin through the resistor R5, and is connected to the first pin of the multiplier U3.
- the first pin of the multiplier U4 is connected to the P1 pin of the fractional integration circuit U6, and the ninth pin is turned on by the P pin of the fractional integration circuit U5, and the 13th and 14th pins are suspended;
- the first, second, sixth, seventh, thirteenth, and fourteenth pins of the operational amplifier U2 are left floating, the third, fifth, tenth, and twelfth pins are grounded, the fourth pin is connected to VCC, and the eleventh pin is connected to VEE, the eighth The pin output z is connected to the third pin of the multiplier U3, connected to the P1 pin of the fractional integration circuit U10, and the ninth pin is turned on by the P pin of the fractional integration circuit U9;
- the first pin of the multiplier U3 is connected to the eighth pin of U1, the third pin is connected to the eighth pin of U2, the second, fourth, and sixth pins are grounded, and the fifth pin is connected to VEE, the seventh reference The pin is connected to the 9th pin of U1 through the resistor R1, connected to the 2nd pin of U1 through the resistor R3, and the 8th pin is connected to VCC;
- the first pin of the multiplier U4 is connected to the eighth pin of U1, the third pin is connected to the seventh pin of U1, the second, fourth, and sixth pins are grounded, and the fifth pin is connected to VEE, the seventh pin. Connected to the 9th pin of U2 through resistor R7, the 8th pin is connected to VCC;
- the PI1, PI2, P1, P2, P3, and P4 pins of U5 in the 0.8-order integrating circuit module U5-U6 are suspended, and the P pin is connected to the ninth pin of the operational amplifier U1, and the P, P1, and P3 of the U6.
- the P4 pin is left floating, the P2 pin is connected to the 8th pin of the operational amplifier U1, the U5 cascode output pin PO1 is connected to the PI1 of the U6, and the PO2 of the U5 is connected to the PI2 of the U6;
- the PI1, PI2, P1, P2, P3, and P4 pins of U7 in the 0.8-order integrating circuit module U7-U8 are suspended, and the P pin is connected to the sixth pin of the operational amplifier U1, and the P, P1, and P3 of the U8.
- the P4 pin is left floating, the P2 pin is connected to the 7th pin of the operational amplifier U1, the U7 cascode output pin PO1 is connected to the PI1 of the U8, and the PO2 of the U7 is connected to the PI2 of the U8;
- the PI1, PI2, P1, P2, P3, and P4 pins of U9 in the 0.8-order integrating circuit module U9-U10 are suspended, and the P pin is connected to the ninth pin of the operational amplifier U2, and the P, P1, and P3 of the U10.
- the P4 pin is left floating, the P2 pin is connected to the 8th pin of the operational amplifier U2, the U9 cascode output pin PO1 is connected to the PI1 of the U10, and the PO2 of the U9 is connected to the PI2 of the U10.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Security & Cryptography (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Computing Systems (AREA)
- General Engineering & Computer Science (AREA)
- Mathematical Physics (AREA)
- Measurement Of Resistance Or Impedance (AREA)
- Analogue/Digital Conversion (AREA)
Abstract
一种基于链式分数阶积分电路模块的0.8阶Cang混沌系统电路,链式分数阶积分电路模块Ⅰ、Ⅱ包括:电阻Rx与电容Cx并联形成的第一部分,电阻Ry与电容Cy并联形成的第二部分,电阻Rz与电容Cz并联形成的第三部分,电阻Rw与电容Cw并联形成的第四部分,级联输入引脚PI1、PI2和输出引脚P接第一部分,第一部分接输出引脚P1和第二部分,第二部分接输出引脚P2和第三部分,第三部分接输出引脚P3和第四部分,第四部分接输出引脚P4和级联输出引脚PO1、PO2;混沌系统电路采用链式结构,设计制作了PCB电路,0.8阶分数阶积分电路由五部分组成,用2个链式分数阶积分电路模块串联组成,采用这种方法实现的混沌系统电路,可靠性高,不易出错。
Description
本发明涉及一种通用分数阶积分电路模块及其0.8阶混沌系统电路实现,特别涉及一个基于链式分数阶积分电路模块的0.8阶Cang混沌系统及模拟电路实现。
因为实现分数阶混沌系统的电路的电阻和电容都是非常规电阻和电容,一般采用电阻串联和电容并联的方法实现,目前,实现的主要方法是利用现有的电阻和电容在面包板上组合的方法,这种方法可靠性和稳定性比较低,并且存在容易出错,出错后不易查找等问题,本发明为克服这个问题,采用链式结构,设计制作了PCB电路,电路由四部分组成,每部分又由四个电阻和一个电位器串联后,与四个电容并联组成的通用分数阶积分模块电路,0.8阶分数阶积分电路由五部分组成,因此要用2个通用分数阶积分模块电路进行串联组成,采用这种方法的实现0.8阶分数阶混沌系统电路,可靠性高,不易出错。
发明内容
本发明要解决的技术问题是提供一种基于链式分数阶积分电路模块的0.8阶Cang混沌系统及模拟电路实现,本发明采用如下技术手段实现发明目的:
1、一种通用分数阶积分电路模块,其特征是在于:电阻Rx与电容Cx并联,形成第一部分,电阻Ry与电容Cy并联,形成第二部分,电阻Rz与电容Cz并联,形成第三部分,电阻Rw与电容Cw并联,形成第四部分,级联输入引脚PI1、PI2和输出引脚P接第一部分,第一部分接输出引脚P1和第二部分,第二部分接输出引脚P2和第三部分,第三部分接输出引脚P3和第四部分,第四部分接输出引脚P4和级联输出引脚PO1、PO2。
2、根据权利要求1一种通用分数阶积分电路模块所述,其特征在于:所述电阻Rx由电位器Rx1和电阻Rx2、Rx3、Rx4、Rx5串联组成,所述电容Cx由电容Cx1、Cx2、Cx3、Cx4并联组成;所述电阻Ry由电位器Ry1和电阻Ry2、Ry3、Ry4、Ry5串联组成,所述电容Cy由电容Cy1、Cy2、Cy3、Cy4并联组成;所述电阻Rz由电位器Rz1和电阻Rz2、Rz3、Rz4、Rz5串联组成,所述电容Cz由电容Cz1、Cz2、Cz3、Cz4并联组成;所述电阻Rw由电位器Rw1和电阻Rw2、Rw3、Rw4、Rw5串联组成,所述电容Cw由电容Cw1、Cw2、Cw3、Cw4并联组成。
3、0.8阶积分电路模块,其特征在于:所述0.8阶积分电路模块由通用分数阶积分电路U1和通用分数阶积分电路U2级联组成,所述通用分数阶积分电路U1级联输入引脚PI1、PI2悬空,所述通用分数阶积分电路U1输出引脚P1、P2、P3、P4悬空,所述通用分数阶积分电
路U1级联输出引脚PO1接通用分数阶积分电路U2的PI1,通用分数阶积分电路U1的PO2接通用分数阶积分电路U2的PI2,通用分数阶积分电路U2的P、P2、P3、P4和PO1、PO2均悬空,所述通用分数阶积分电路U1的电阻Rx=37.85M,所述U1的电位器Rx1=22M,所述U1的电阻Rx2=10M、Rx3=3.3M、Rx4=1M、Rx5=1.5M,所述U1的电容Cx=1.98uF,所述U1的电容Cx1=1uF、Cx2=330nF、Cx3=330nF、Cx4=330nF;所述通用分数阶积分电路U1的电阻Ry=1.754M,所述U1的电位器Ry1=1.5M,所述U1的电阻Ry2=200K、Ry3=51K、Ry4=2K、Ry5=1K,所述U1的电容Cy=2.4uF,所述U1的电容Cy1=1uF、Cy2=1uF、Cy3=200nF、Cy4=200nF;所述通用分数阶积分电路U1的电阻Rz=0.17M,所述U1的电位器Rz1=51K,所述U1的电阻Rz2=100K、Rz3=20K、Rz4=0K、Rz5=0K,所述U1的电容Cz=1.39uF,所述U1的电容Cz1=1uF、Cz2=330nF、Cz3=47nF、Cz4=10nF;所述通用分数阶积分电路U1的电阻Rw=0.017M,所述U1的电位器Rw1=5.1K,所述U1的电阻Rw2=10K、Rw3=2K、Rw4=0K、Rw5=0K,所述U1的电容Cw=0.42uF,所述U1的电容Cw1=220nF、Cw2=220nF、Cw3=330nF、Cw4=10nF;所述通用分数阶积分电路U2的电阻Rx=0.0018M,所述U2的电位器Rx1=1K,所述U2的电阻Rx2=0.47K、Rx3=0.33K、Rx4=0K、Rx5=0K,所述U2的电容Cx=0.42uF,所述U2的电容Cx1=220nF、Cx2=100nF、Cx3=100nF、Cx4悬空;所述通用分数阶积分电路U2的电位器Ry1,所述U2的电阻Ry2、Ry3、Ry4、Ry5均悬空;所述U2的电容Cy1、Cy2、Cy3、Cy4均悬空;所述通用分数阶积分电路U2的电位器Rz1,所述U2的电阻Rz2、Rz3、Rz4、Rz5均悬空;所述U2的电容Cz1、Cz2、Cz3、Cz4均悬空;所述通用分数阶积分电路U2的电位器Rw1,所述U2的电阻Rw2、Rw3、Rw4、Rw5均悬空;所述U2的电容Cw1、Cw2、Cw3、Cw4均悬空;
4、基于通用分数阶积分电路模块的0.8阶Cang混沌系统电路,其特征在于:
(1)Cang混沌系统i为:
(2)0.8阶Cang混沌系统ii为:
(3)根据0.8阶Cang混沌系统ii构造模拟电路,利用运算放大器U1、运算放大器U2及电阻和0.8阶积分电路模块U5-U6、0.8阶积分电路模块U7-U8、0.8阶积分电路模块U9-U10构成反相加法器和反相0.8阶积分器,利用乘法器U3和乘法器U4实现乘法运算,所述运算放大器U1和运算放大器U2采用LF347N,所述乘法器U3和乘法器U4采用AD633JN;
所述运算放大器U1连接运算放大器U2、乘法器U3、乘法器U4和0.8阶积分电路模块U5-U6、0.8阶积分电路模块U7-U8,所述运算放大器U2连接乘法器U3、乘法器U4和0.8阶积分电路模块U9-U10,所述乘法器U3连接运算放大器U1,所述乘法器U4连接运算放大器U2;
所述运算放大器U1的第1引脚通过电阻R6与U1的第6引脚相接,第2引脚通过电阻R4与第1引脚相接,第3、5、10、12引脚接地,第4引脚接VCC,第11引脚接VEE,第6引脚接通用分数阶积分电路U7的P引脚,第7引脚接输出y,通过电阻R2与第9引脚相接,接通用分数阶积分电路U8的P1引脚,接乘法器U4的第3引脚,第8引脚接输出x,通过电阻R5与第6引脚相接,接乘法器U3的第1引脚,接乘法器U4的第1引脚,接通用分数阶积分电路U6的P1引脚,第9引脚接通用分数阶积分电路U5的P引脚,第13、14引脚悬空;
所述运算放大器U2的第1、2、6、7、13、14引脚悬空,第3、5、10、12引脚接地,第4引脚接VCC,第11引脚接VEE,第8引脚输出z,接乘法器U3的第3引脚,接接通用分数阶积分电路U10的P1引脚,第9引脚接通用分数阶积分电路U9的P引脚;
所述乘法器U3的第1引脚接U1的第8脚,第3引脚接U2的第8引脚,第2、4、6引脚均接地,第5引脚接VEE,第7引脚通过电阻R1接U1第9引脚,通过电阻R3接引第2引脚,第8引脚接VCC;
所述乘法器U4的第1引脚接U1的第8脚,第3引脚接U1的第7脚,第2、4、6引脚均接地,第5引脚接VEE,第7引脚通过电阻R7接U2第9引脚,第8引脚接VCC;
所述0.8阶积分电路模块U5-U6中的U5的PI1、PI2、P1、P2、P3、P4引脚悬空,P引脚接运算放大器U1的第9引脚,U6的P、P1、P3、P4引脚悬空,P2引脚接接运算放大器U1的第8引脚,U5级联输出引脚PO1接U6的PI1,U5的PO2接U6的PI2;
所述0.8阶积分电路模块U7-U8中的U7的PI1、PI2、P1、P2、P3、P4引脚悬空,P引脚接运算放大器U1的第6引脚,U8的P、P1、P3、P4引脚悬空,P2引脚接接运算放大器U1的第7引脚,U7级联输出引脚PO1接U8的PI1,U7的PO2接U8的PI2;
所述0.8阶积分电路模块U9-U10中的U9的PI1、PI2、P1、P2、P3、P4引脚悬空,P引脚接运算放大器U2的第9引脚,U10的P、P1、P3、P4引脚悬空,P2引脚接接运算放大器U2的第8引脚,U9级联输出引脚PO1接U10的PI1,U9的PO2接U10的PI2
本发明的有益果是:采用链式结构,设计制作了PCB电路,电路由四部分组成,每部分又由四个电阻和一个电位器串联后,与四个电容并联组成的通用分数阶积分模块电路,0.8阶分数阶积分电路由五部分组成,因此要用2个通用分数阶积分模块电路进行串联组成,采用这种方法的实现0.8阶分数阶混沌系统电路,可靠性高,不易出错。
图1为本发明的链式分数阶积分电路模块内部结构示意图(a)、内部实际连接图(b)和0.8阶积分电路实际连接图(c)。
图2为本发明优选实施例的电路连接结构示意图。
图3和图4为本发明的电路实际连接图。
下面结合附图和优选实施例对本发明作更进一步的详细描述,参见图1-图4。
1、一种通用分数阶积分电路模块,其特征是在于:电阻Rx与电容Cx并联,形成第一部分,电阻Ry与电容Cy并联,形成第二部分,电阻Rz与电容Cz并联,形成第三部分,电阻Rw与电容Cw并联,形成第四部分,级联输入引脚PI1、PI2和输出引脚P接第一部分,第一部分接输出引脚P1和第二部分,第二部分接输出引脚P2和第三部分,第三部分接输出引脚P3和第四部分,第四部分接输出引脚P4和级联输出引脚PO1、PO2。
2、根据权利要求1一种通用分数阶积分电路模块所述,其特征在于:所述电阻Rx由电位器Rx1和电阻Rx2、Rx3、Rx4、Rx5串联组成,所述电容Cx由电容Cx1、Cx2、Cx3、Cx4并联组成;所述电阻Ry由电位器Ry1和电阻Ry2、Ry3、Ry4、Ry5串联组成,所述电容Cy由电容Cy1、Cy2、Cy3、Cy4并联组成;所述电阻Rz由电位器Rz1和电阻Rz2、Rz3、Rz4、Rz5串联组成,所述电容Cz由电容Cz1、Cz2、Cz3、Cz4并联组成;所述电阻Rw由电位器Rw1和电阻Rw2、Rw3、Rw4、Rw5串联组成,所述电容Cw由电容Cw1、Cw2、Cw3、Cw4并联组成。
3、0.8阶积分电路模块,其特征在于:所述0.8阶积分电路模块由通用分数阶积分电路U1
和通用分数阶积分电路U2级联组成,所述通用分数阶积分电路U1级联输入引脚PI1、PI2悬空,所述通用分数阶积分电路U1输出引脚P1、P2、P3、P4悬空,所述通用分数阶积分电路U1级联输出引脚PO1接通用分数阶积分电路U2的PI1,通用分数阶积分电路U1的PO2接通用分数阶积分电路U2的PI2,通用分数阶积分电路U2的P、P2、P3、P4和PO1、PO2均悬空,所述通用分数阶积分电路U1的电阻Rx=37.85M,所述U1的电位器Rx1=22M,所述U1的电阻Rx2=10M、Rx3=3.3M、Rx4=1M、Rx5=1.5M,所述U1的电容Cx=1.98uF,所述U1的电容Cx1=1uF、Cx2=330nF、Cx3=330nF、Cx4=330nF;所述通用分数阶积分电路U1的电阻Ry=1.754M,所述U1的电位器Ry1=1.5M,所述U1的电阻Ry2=200K、Ry3=51K、Ry4=2K、Ry5=1K,所述U1的电容Cy=2.4uF,所述U1的电容Cy1=1uF、Cy2=1uF、Cy3=200nF、Cy4=200nF;所述通用分数阶积分电路U1的电阻Rz=0.17M,所述U1的电位器Rz1=51K,所述U1的电阻Rz2=100K、Rz3=20K、Rz4=0K、Rz5=0K,所述U1的电容Cz=1.39uF,所述U1的电容Cz1=1uF、Cz2=330nF、Cz3=47nF、Cz4=10nF;所述通用分数阶积分电路U1的电阻Rw=0.017M,所述U1的电位器Rw1=5.1K,所述U1的电阻Rw2=10K、Rw3=2K、Rw4=0K、Rw5=0K,所述U1的电容Cw=0.42uF,所述U1的电容Cw1=220nF、Cw2=220nF、Cw3=330nF、Cw4=10nF;所述通用分数阶积分电路U2的电阻Rx=0.0018M,所述U2的电位器Rx1=1K,所述U2的电阻Rx2=0.47K、Rx3=0.33K、Rx4=0K、Rx5=0K,所述U2的电容Cx=0.42uF,所述U2的电容Cx1=220nF、Cx2=100nF、Cx3=100nF、Cx4悬空;所述通用分数阶积分电路U2的电位器Ry1,所述U2的电阻Ry2、Ry3、Ry4、Ry5均悬空;所述U2的电容Cy1、Cy2、Cy3、Cy4均悬空;所述通用分数阶积分电路U2的电位器Rz1,所述U2的电阻Rz2、Rz3、Rz4、Rz5均悬空;所述U2的电容Cz1、Cz2、Cz3、Cz4均悬空;所述通用分数阶积分电路U2的电位器Rw1,所述U2的电阻Rw2、Rw3、Rw4、Rw5均悬空;所述U2的电容Cw1、Cw2、Cw3、Cw4均悬空;
4、基于通用分数阶积分电路模块的0.8阶Cang混沌系统电路,其特征在于:
(1)Cang混沌系统i为:
(2)0.8阶Cang混沌系统ii为:
(3)根据0.8阶Cang混沌系统ii构造模拟电路,利用运算放大器U1、运算放大器U2及电阻和0.8阶积分电路模块U5-U6、0.8阶积分电路模块U7-U8、0.8阶积分电路模块U9-U10构成反相加法器和反相0.8阶积分器,利用乘法器U3和乘法器U4实现乘法运算,所述运算放大器U1和运算放大器U2采用LF347N,所述乘法器U3和乘法器U4采用AD633JN;
所述运算放大器U1连接运算放大器U2、乘法器U3、乘法器U4和0.8阶积分电路模块U5-U6、0.8阶积分电路模块U7-U8,所述运算放大器U2连接乘法器U3、乘法器U4和0.8阶积分电路模块U9-U10,所述乘法器U3连接运算放大器U1,所述乘法器U4连接运算放大器U2;
所述运算放大器U1的第1引脚通过电阻R6与U1的第6引脚相接,第2引脚通过电阻R4与第1引脚相接,第3、5、10、12引脚接地,第4引脚接VCC,第11引脚接VEE,第6引脚接通用分数阶积分电路U7的P引脚,第7引脚接输出y,通过电阻R2与第9引脚相接,接通用分数阶积分电路U8的P1引脚,接乘法器U4的第3引脚,第8引脚接输出x,通过电阻R5与第6引脚相接,接乘法器U3的第1引脚,接乘法器U4的第1引脚,接通用分数阶积分电路U6的P1引脚,第9引脚接通用分数阶积分电路U5的P引脚,第13、14引脚悬空;
所述运算放大器U2的第1、2、6、7、13、14引脚悬空,第3、5、10、12引脚接地,第4引脚接VCC,第11引脚接VEE,第8引脚输出z,接乘法器U3的第3引脚,接接通用分数阶积分电路U10的P1引脚,第9引脚接通用分数阶积分电路U9的P引脚;
所述乘法器U3的第1引脚接U1的第8脚,第3引脚接U2的第8引脚,第2、4、6引脚均接地,第5引脚接VEE,第7引脚通过电阻R1接U1第9引脚,通过电阻R3接U1第2引脚,第8引脚接VCC;
所述乘法器U4的第1引脚接U1的第8脚,第3引脚接U1的第7脚,第2、4、6引脚均接地,第5引脚接VEE,第7引脚通过电阻R7接U2第9引脚,第8引脚接VCC;
所述0.8阶积分电路模块U5-U6中的U5的PI1、PI2、P1、P2、P3、P4引脚悬空,P引脚接运算放大器U1的第9引脚,U6的P、P1、P3、P4引脚悬空,P2引脚接接运算放大器U1的第8引脚,U5级联输出引脚PO1接U6的PI1,U5的PO2接U6的PI2;
所述0.8阶积分电路模块U7-U8中的U7的PI1、PI2、P1、P2、P3、P4引脚悬空,P引脚接运算放大器U1的第6引脚,U8的P、P1、P3、P4引脚悬空,P2引脚接接运算放大器U1的第7引脚,U7级联输出引脚PO1接U8的PI1,U7的PO2接U8的PI2;
所述0.8阶积分电路模块U9-U10中的U9的PI1、PI2、P1、P2、P3、P4引脚悬空,P引脚接运算放大器U2的第9引脚,U10的P、P1、P3、P4引脚悬空,P2引脚接接运算放大器U2的第8引脚,U9级联输出引脚PO1接U10的PI1,U9的PO2接U10的PI2
电路中电阻R1=R3=R4=R6=R7=10kΩ,R5=R8=100kΩ,R2=25kΩ。
当然,上述说明并非对本发明的限制,本发明也不仅限于上述举例,本技术领域的普通技术人员在本发明的实质范围内所做出的变化、改型、添加或替换,也属于本发明的保护范围。
Claims (4)
- 一种链式分数阶积分电路模块,其特征是在于:电阻Rx与电容Cx并联,形成第一部分,电阻Ry与电容Cy并联,形成第二部分,电阻Rz与电容Cz并联,形成第三部分,电阻Rw与电容Cw并联,形成第四部分,级联输入引脚PI1、PI2和输出引脚P接第一部分,第一部分接输出引脚P1和第二部分,第二部分接输出引脚P2和第三部分,第三部分接输出引脚P3和第四部分,第四部分接输出引脚P4和级联输出引脚PO1、PO2。
- 根据权利要求1所述一种链式分数阶积分电路模块,其特征在于:所述电阻Rx由电位器Rx1和电阻Rx2、Rx3、Rx4、Rx5串联组成,所述电容Cx由电容Cx1、Cx2、Cx3、Cx4并联组成;所述电阻Ry由电位器Ry1和电阻Ry2、Ry3、Ry4、Ry5串联组成,所述电容Cy由电容Cy1、Cy2、Cy3、Cy4,并联组成;所述电阻Rz由电位器Rz1和电阻Rz2、Rz3、Rz4、Rz5串联组成,所述电容Cz由电容Cz1、Cz2、Cz3、Cz4并联组成;所述电阻Rw由电位器Rw1和电阻Rw2、Rw3、Rw4、Rw5串联组成,所述电容Cw由电容Cw1、Cw2、Cw3、Cw4并联组成。
- 根据权利要求1所述一种链式分数阶积分电路模块,所述0.8阶积分电路模块,其特征在于:所述0.8阶积分电路模块由链式分数阶积分电路I和链式分数阶积分电路II级联组成,所述链式分数阶积分电路I级联输入引脚PI1、PI2悬空,所述链式分数阶积分电路I输出引脚P1、P2、P3、P4悬空,所述链式分数阶积分电路I级联输出引脚PO1接链式分数阶积分电路II的PI1,链式分数阶积分电路I的PO2接链式分数阶积分电路II的PI2,链式分数阶积分电路II的P、P2、P3、P4和PO1、PO2均悬空,所述链式分数阶积分电路I的电阻Rx=37.85M,所述链式分数阶积分电路I的电位器Rx1=22M,所述链式分数阶积分电路I的电阻Rx2=10M、Rx3=3.3M、Rx4=1M、Rx5=1.5M,所述链式分数阶积分电路I的电容Cx=1.98uF,所述链式分数阶积分电路I的电容Cx1=1uF、Cx2=330nF、Cx3=330nF、Cx4=330nF;所述链式分数阶积分电路I的电阻Ry=1.754M,所述链式分数阶积分电路I的电位器Ry1=1.5M,所述链式分数阶积分电路I的电阻Ry2=200K、Ry3=51K、Ry4=2K、Ry5=1K,所述链式分数阶积分电路I的电容Cy=2.4uF,所述链式分数阶积分电路I的电容Cy1=1uF、Cy2=1uF、Cy3=200nF、Cy4=200nF;所述链式分数阶积分电路I的电阻Rz=0.17M,所述链式分数阶积分电路I的电位器Rz1=51K,所述链式分数阶积分电路I的电阻Rz2=100K、Rz3=20K、Rz4=0K、Rz5=0K,所述链式分数阶积分电路I的电容Cz=1.39uF,所述链式分数阶积分电路I的电容Cz1=1uF、Cz2=330nF、Cz3=47nF、Cz4=10nF;所述链式分数阶积分电路I的电阻Rw=0.017M,所述链式分数阶积分电路I的电位器Rw1=5.1K,所述链式分数阶积分电路I的电阻Rw2=10K、Rw3=2K、Rw4=0K、Rw5=0K,所述链式分数阶积分电 路I的电容Cw=0.42uF,所述链式分数阶积分电路I的电容Cw1=220nF、Cw2=220nF、Cw3=330nF、Cw4=10nF;所述链式分数阶积分电路II的电阻Rx=0.0018M,所述链式分数阶积分电路II的电位器Rx1=1K,所述链式分数阶积分电路II的电阻Rx2=0.47K、Rx3=0.33K、Rx4=0K、Rx5=0K,所述链式分数阶积分电路II的电容Cx=0.42uF,所述链式分数阶积分电路II的电容Cx1=220nF、Cx2=100nF、Cx3=100nF、Cx4悬空;所述链式分数阶积分电路II的电位器Ry1,所述链式分数阶积分电路II的电阻Ry2、Ry3、Ry4、Ry5均悬空;所述链式分数阶积分电路II的电容Cy1、Cy2、Cy3、Cy4均悬空;所述链式分数阶积分电路II的电位器Rz1,所述链式分数阶积分电路II的电阻Rz2、Rz3、Rz4、Rz5均悬空;所述链式分数阶积分电路II的电容Cz1、Cz2、Cz3、Cz4均悬空;所述链式分数阶积分电路II的电位器Rw1,所述链式分数阶积分电路II的电阻Rw2、Rw3、Rw4、Rw5均悬空;所述链式分数阶积分电路II的电容Cw1、Cw2、Cw3、Cw4均悬空;
- 基于链式分数阶积分电路模块的0.8阶Cang混沌系统电路,其特征在于:(1)Cang混沌系统i为:(2)0.8阶Cang混沌系统ii为:(3)根据0.8阶Cang混沌系统ii构造模拟电路,利用运算放大器U1、运算放大器U2及电阻和0.8阶积分电路模块U5-U6、0.8阶积分电路模块U7-U8、0.8阶积分电路模块U9-U10构成反相加法器和反相0.8阶积分器,利用乘法器U3和乘法器U4实现乘法运算,所述运算放大器U1和运算放大器U2采用LF347N,所述乘法器U3和乘法器U4采用AD633JN;所述运算放大器U1连接运算放大器U2、乘法器U3、乘法器U4和0.8阶积分电路模块U5-U6、0.8阶积分电路模块U7-U8,所述运算放大器U2连接乘法器U3、乘法器U4和0.8 阶积分电路模块U9-U10,所述乘法器U3连接运算放大器U1,所述乘法器U4连接运算放大器U2;所述运算放大器U1的第1引脚通过电阻R6与U1的第6引脚相接,第2引脚通过电阻R4与第1引脚相接,第3、5、10、12引脚接地,第4引脚接VCC,第11引脚接VEE,第6引脚接链式分数阶积分电路U7的P引脚,第7引脚接输出y,通过电阻R2与第9引脚相接,接链式分数阶积分电路U8的P1引脚,接乘法器U4的第3引脚,第8引脚接输出x,通过电阻R5与第6引脚相接,接乘法器U3的第1引脚,接乘法器U4的第1引脚,接链式分数阶积分电路U6的P1引脚,第9引脚接链式分数阶积分电路U5的P引脚,第13、14引脚悬空;所述运算放大器U2的第1、2、6、7、13、14引脚悬空,第3、5、10、12引脚接地,第4引脚接VCC,第11引脚接VEE,第8引脚输出z,接乘法器U3的第3引脚,接接链式分数阶积分电路U10的P1引脚,第9引脚接链式分数阶积分电路U9的P引脚;所述乘法器U3的第1引脚接U1的第8脚,第3引脚接U2的第8引脚,第2、4、6引脚均接地,第5引脚接VEE,第7引脚通过电阻R1接U1第9引脚,通过电阻R3接U1第2引脚,第8引脚接VCC;所述乘法器U4的第1引脚接U1的第8脚,第3引脚接U1的第7脚,第2、4、6引脚均接地,第5引脚接VEE,第7引脚通过电阻R7接U2第9引脚,第8引脚接VCC;所述0.8阶积分电路模块U5-U6中的U5的PI1、PI2、P1、P2、P3、P4引脚悬空,P引脚接运算放大器U1的第9引脚,U6的P、P1、P3、P4引脚悬空,P2引脚接接运算放大器U1的第8引脚,U5级联输出引脚PO1接U6的PI1,U5的PO2接U6的PI2;所述0.8阶积分电路模块U7-U8中的U7的PI1、PI2、P1、P2、P3、P4引脚悬空,P引脚接运算放大器U1的第6引脚,U8的P、P1、P3、P4引脚悬空,P2引脚接接运算放大器U1的第7引脚,U7级联输出引脚PO1接U8的PI1,U7的PO2接U8的PI2;所述0.8阶积分电路模块U9-U10中的U9的PI1、PI2、P1、P2、P3、P4引脚悬空,P引脚接运算放大器U2的第9引脚,U10的P、P1、P3、P4引脚悬空,P2引脚接接运算放大器U2的第8引脚,U9级联输出引脚PO1接U10的PI1,U9的P02接U10的PI2。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410483780.XA CN104283672B (zh) | 2014-09-19 | 2014-09-19 | 基于链式分数阶积分电路模块的0.8阶Cang混沌系统电路实现 |
CN201410483780.X | 2014-09-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016041294A1 true WO2016041294A1 (zh) | 2016-03-24 |
Family
ID=52258186
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2015/000386 WO2016041294A1 (zh) | 2014-09-19 | 2015-06-05 | 基于链式分数阶积分电路模块的0.8阶Cang混沌系统电路实现 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN104283672B (zh) |
WO (1) | WO2016041294A1 (zh) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104283672B (zh) * | 2014-09-19 | 2015-09-02 | 山东省滨州公路工程监理处 | 基于链式分数阶积分电路模块的0.8阶Cang混沌系统电路实现 |
CN104202150B (zh) * | 2014-09-19 | 2015-09-23 | 国网冀北电力有限公司信息通信分公司 | 基于链式分数阶积分电路模块的0.2阶Chen混沌系统电路 |
CN104270241A (zh) * | 2014-09-19 | 2015-01-07 | 胡春华 | 基于链式分数阶积分电路模块的0.3 阶Lü混沌系统电路实现 |
CN104202149A (zh) * | 2014-09-19 | 2014-12-10 | 韩敬伟 | 基于链式分数阶积分电路模块的0.6阶Qi混沌系统电路实现 |
CN104202151B (zh) * | 2014-09-19 | 2015-09-09 | 国家电网公司 | 基于链式分数阶积分电路模块的0.9阶Zhou混沌系统电路 |
CN105049187A (zh) * | 2015-08-19 | 2015-11-11 | 王春梅 | 一种0.8阶混合型与链式分数阶积分切换方法及电路 |
CN105099655A (zh) * | 2015-08-19 | 2015-11-25 | 王宏国 | 一种0.8阶链式与t型分数阶积分切换方法及电路 |
CN109510698B (zh) * | 2018-09-19 | 2021-06-08 | 安顺学院 | 一种异分数阶超混沌信号发生器 |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6049614A (en) * | 1996-12-30 | 2000-04-11 | Daewoo Heavy Industries Ltd. | Synchronized chaotic system and communication system using synchronized chaotic system |
WO2002065721A1 (en) * | 2001-02-15 | 2002-08-22 | Massachusetts Institute Of Technology | Modulator and demodulator for lorenz-based chaotic signals |
CN102903282A (zh) * | 2012-10-26 | 2013-01-30 | 玉林师范学院 | 整数阶分数阶多功能混沌实验仪 |
CN103178952A (zh) * | 2013-03-15 | 2013-06-26 | 南京师范大学 | 分数阶混沌系统电路 |
CN103368723A (zh) * | 2013-07-03 | 2013-10-23 | 淄博职业学院 | 分数阶四个系统自动切换混沌系统方法及模拟电路 |
CN104184577A (zh) * | 2014-09-19 | 2014-12-03 | 胡春华 | 基于链式分数阶积分电路模块的0.7阶Zhang混沌系统电路实现 |
CN104202152A (zh) * | 2014-09-19 | 2014-12-10 | 王春梅 | 基于链式分数阶积分电路模块的0.4 阶Liu混沌系统电路实现 |
CN104202149A (zh) * | 2014-09-19 | 2014-12-10 | 韩敬伟 | 基于链式分数阶积分电路模块的0.6阶Qi混沌系统电路实现 |
CN104202153A (zh) * | 2014-09-19 | 2014-12-10 | 王忠林 | 基于链式分数阶积分电路模块的0.1阶Muthuswamy-Chua混沌系统电路 |
CN104202154A (zh) * | 2014-09-19 | 2014-12-10 | 王忠林 | 基于链式分数阶积分电路模块的0.5 阶Lorenz混沌系统电路实现 |
CN104202151A (zh) * | 2014-09-19 | 2014-12-10 | 王晓红 | 基于链式分数阶积分电路模块的0.9阶Zhou混沌系统电路 |
CN104270241A (zh) * | 2014-09-19 | 2015-01-07 | 胡春华 | 基于链式分数阶积分电路模块的0.3 阶Lü混沌系统电路实现 |
CN104283672A (zh) * | 2014-09-19 | 2015-01-14 | 李敏 | 基于链式分数阶积分电路模块的0.8 阶Cang混沌系统电路实现 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006112976A2 (en) * | 2005-03-11 | 2006-10-26 | Wavelength Electronics, Inc. | Electrical component with fractional order impedance |
CN102970130B (zh) * | 2012-11-19 | 2015-02-18 | 合肥工业大学 | 一种新分数阶混沌电路 |
CN103780373A (zh) * | 2014-02-22 | 2014-05-07 | 滨州学院 | 一种分数阶次不同的经典chen混沌切换系统方法及电路 |
-
2014
- 2014-09-19 CN CN201410483780.XA patent/CN104283672B/zh not_active Expired - Fee Related
-
2015
- 2015-06-05 WO PCT/CN2015/000386 patent/WO2016041294A1/zh active Application Filing
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6049614A (en) * | 1996-12-30 | 2000-04-11 | Daewoo Heavy Industries Ltd. | Synchronized chaotic system and communication system using synchronized chaotic system |
WO2002065721A1 (en) * | 2001-02-15 | 2002-08-22 | Massachusetts Institute Of Technology | Modulator and demodulator for lorenz-based chaotic signals |
CN102903282A (zh) * | 2012-10-26 | 2013-01-30 | 玉林师范学院 | 整数阶分数阶多功能混沌实验仪 |
CN103178952A (zh) * | 2013-03-15 | 2013-06-26 | 南京师范大学 | 分数阶混沌系统电路 |
CN103368723A (zh) * | 2013-07-03 | 2013-10-23 | 淄博职业学院 | 分数阶四个系统自动切换混沌系统方法及模拟电路 |
CN104184577A (zh) * | 2014-09-19 | 2014-12-03 | 胡春华 | 基于链式分数阶积分电路模块的0.7阶Zhang混沌系统电路实现 |
CN104202152A (zh) * | 2014-09-19 | 2014-12-10 | 王春梅 | 基于链式分数阶积分电路模块的0.4 阶Liu混沌系统电路实现 |
CN104202149A (zh) * | 2014-09-19 | 2014-12-10 | 韩敬伟 | 基于链式分数阶积分电路模块的0.6阶Qi混沌系统电路实现 |
CN104202153A (zh) * | 2014-09-19 | 2014-12-10 | 王忠林 | 基于链式分数阶积分电路模块的0.1阶Muthuswamy-Chua混沌系统电路 |
CN104202154A (zh) * | 2014-09-19 | 2014-12-10 | 王忠林 | 基于链式分数阶积分电路模块的0.5 阶Lorenz混沌系统电路实现 |
CN104202151A (zh) * | 2014-09-19 | 2014-12-10 | 王晓红 | 基于链式分数阶积分电路模块的0.9阶Zhou混沌系统电路 |
CN104270241A (zh) * | 2014-09-19 | 2015-01-07 | 胡春华 | 基于链式分数阶积分电路模块的0.3 阶Lü混沌系统电路实现 |
CN104283672A (zh) * | 2014-09-19 | 2015-01-14 | 李敏 | 基于链式分数阶积分电路模块的0.8 阶Cang混沌系统电路实现 |
Also Published As
Publication number | Publication date |
---|---|
CN104283672B (zh) | 2015-09-02 |
CN104283672A (zh) | 2015-01-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016041294A1 (zh) | 基于链式分数阶积分电路模块的0.8阶Cang混沌系统电路实现 | |
WO2016041297A1 (zh) | 基于链式分数阶积分电路模块的0.4阶Liu混沌系统电路实现 | |
WO2016041295A1 (zh) | 基于链式分数阶积分电路模块的0.7阶Zhang混沌系统电路实现 | |
WO2016041296A1 (zh) | 基于链式分数阶积分电路模块的0.6阶Qi混沌系统电路实现 | |
WO2016041293A1 (zh) | 基于链式分数阶积分电路模块的0.9阶Zhou混沌系统电路 | |
WO2016041104A1 (zh) | 基于链式分数阶积分电路模块的0.3阶lu混沌系统电路 | |
WO2016041105A1 (zh) | 基于链式分数阶积分电路模块的0.2阶Chen混沌系统电路 | |
WO2016029617A1 (zh) | 基于五项最简混沌系统的四维无平衡点超混沌系统及模拟电路 | |
WO2017106101A3 (en) | Techniques for metadata processing | |
CN104202154B (zh) | 基于链式分数阶积分电路模块的0.5 阶Lorenz混沌系统电路 | |
WO2016029618A1 (zh) | 基于Rikitake系统的四维无平衡点超混沌系统及模拟电路 | |
JP2018014260A5 (zh) | ||
WO2016029619A1 (zh) | 基于Rikitake系统的无平衡点四维超混沌系统及模拟电路 | |
CN104202153A (zh) | 基于链式分数阶积分电路模块的0.1阶Muthuswamy-Chua混沌系统电路 | |
CN104301092B (zh) | 基于0.7阶混合型分数阶积分电路模块的含x方Qi混沌系统电路 | |
CN105553642B (zh) | 基于T型分数阶积分电路模块的0.6阶含xy的Liu混沌系统电路 | |
WO2015123803A1 (zh) | 一种分数阶次不同的经典chen混沌切换系统方法及电路 | |
CN105553643A (zh) | 一种0.2阶t型分数阶积分电路模块 | |
CN104506302A (zh) | 基于T型分数阶积分电路模块的0.9阶含y方Lü混沌系统电路实现 | |
CN104468076A (zh) | 基于链式分数阶积分电路模块的0.8阶Liu混沌系统电路实现 | |
CN104468075B (zh) | 0.3阶混合型分数阶积分电路模块和基于其的含x方Lü混沌系统电路实现 | |
WO2016033917A1 (zh) | 一种通用混沌系统的电路设计 | |
CN104468084B (zh) | 一种0.8阶t型分数阶积分电路模块 | |
CN104468086A (zh) | 基于T型分数阶积分电路模块的0.3阶含y方Lorenz型混沌系统电路 | |
Ahmadi et al. | A graph related to the join of subgroups of a finite group |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15842083 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15842083 Country of ref document: EP Kind code of ref document: A1 |