WO2016039504A1 - 탄소 나노 입자 및 금속 유기 구조체를 포함하는 코어-쉘 구조의 나노 복합체, 이의 제조방법 및 이를 포함하는 기체 흡수용 조성물 - Google Patents

탄소 나노 입자 및 금속 유기 구조체를 포함하는 코어-쉘 구조의 나노 복합체, 이의 제조방법 및 이를 포함하는 기체 흡수용 조성물 Download PDF

Info

Publication number
WO2016039504A1
WO2016039504A1 PCT/KR2014/010572 KR2014010572W WO2016039504A1 WO 2016039504 A1 WO2016039504 A1 WO 2016039504A1 KR 2014010572 W KR2014010572 W KR 2014010572W WO 2016039504 A1 WO2016039504 A1 WO 2016039504A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
zif
core
metal
nanocomposite
Prior art date
Application number
PCT/KR2014/010572
Other languages
English (en)
French (fr)
Inventor
심진기
이창기
유종태
이상봉
이수현
Original Assignee
한국생산기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국생산기술연구원 filed Critical 한국생산기술연구원
Publication of WO2016039504A1 publication Critical patent/WO2016039504A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B1/00Nanostructures formed by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units

Definitions

  • the present invention relates to a core-shell structured nanocomposite including carbon nanoparticles and a metal organic structure, a method for preparing the same, and a gas absorption composition comprising the same.
  • MOFs Extremely high surface area metal organic structures generated by three-dimensional porous structures comprising a central metal and an organic linker are most promising because pore size and chemical affinity are easily controlled by modifying the metal and the linker. It is emerging as one of the gas absorber materials received. MOFs are being studied in various fields, including gas absorbers, gas separators, catalysts, and drug delivery systems (DDS) and cancer cell fluorescence imaging. Therefore, uniform decoration of the MOF is very important for many applications.
  • DDS drug delivery systems
  • ZIF zeolitic imidazolate framework
  • GQD graphene quantum dots
  • GO graphene
  • BTC Cu 3
  • ZIF-8 synthesized by 2-methylimidazole (hereinafter referred to as 2-MeIm) and zinc ions is CO 2 compared to other ZIFs such as ZIF-7, ZIF-22 and ZIF-90. It shows good separation properties for / CH 4 and CO 2 / N 2 .
  • the flexible structure which is opened by the rotation of 2-MeIm, is advantageous for controlling the shape such as the core shell structure.
  • ZIF-8 has been used as a material for the encapsulation of GQDs and for the preparation of complexes with polymers, CNTs and graphene oxide.
  • the formation of the coreshell structure using ZIF-8 as the shell has not been reported so far.
  • Carbon nanotubes are nanomaterials with remarkable electrical, thermal, optical and mechanical properties.
  • carbon nanotubes are attractive materials for gas storage due to their high surface area (50 to 1315 m 2 / g).
  • specific nano-spaces within CNT bundles such as interstitial channels and outer grooves, are aromatic molecules and gas molecules such as Ar, Ne, He, CF 4 , H 2 , N 2 , O 2 and C n H 2n + 2. Interact with and show selectivity for the molecule.
  • gas molecules such as Ar, Ne, He, CF 4 , H 2 , N 2 , O 2 and C n H 2n + 2.
  • the present inventors use a core portion made of carbon nanoparticles such as carbon nanotubes, and include a first shell portion formed of a structure inducing material as an intermediate layer to help uniformly arrange a metal organic structure on the core portion. And providing a core-shell structured nanocomposite including a second shell portion coated on the surface of the first shell portion with a metal organic structure, thereby improving gas absorption characteristics due to the uniform arrangement of the metal organic structures. And the present invention has been accomplished by confirming that it is not only applicable as a gas separation agent but also widely applicable to catalyst, drug delivery system (DDS) and cancer cell fluorescence imaging.
  • DDS drug delivery system
  • Another object of the present invention is to provide a method for producing the nano-composite of the core-shell structure.
  • Still another object of the present invention is to provide a use of the core-shell structured nanocomposite.
  • Core part made of carbon nanoparticles
  • a first shell portion formed of a structure directing agent on the surface of the carbon nanoparticles
  • nano-composite core-shell structure comprising a second shell portion coated with a metal-organic framework (MOF) on the surface of the first shell portion.
  • MOF metal-organic framework
  • the metal organic structure is not only one of the most promising gas absorbers or gas separator materials due to the extremely high surface area generated by the three-dimensional porous structure, but also has the ability to support catalyst materials or drugs. It can be widely applied to catalyst, drug delivery system (DDS) or cancer cell fluorescence imaging. In order to further improve the adsorption characteristics through the three-dimensional porous structure, a uniform arrangement of the metal organic structures should be formed.
  • the present invention provides a core-shell structured nanocomposite in which the metal organic structure is uniformly arranged, thereby further improving molecular adsorption characteristics due to the uniform arrangement of the metal organic structure, thereby supporting gas absorption or separation characteristics as well as supporting of the catalytic material or drug. It is characterized by providing a nanocomposite with improved ability.
  • a core part made of carbon nanoparticles is used as a support for forming a shell part made of a uniformly arranged metal organic structure, and a structure inducing material as an intermediate layer to help uniformly arrange the metal organic structure on the core part. It comprises a first shell portion formed with.
  • porosity refers to the ratio of the volume of the pore portion to the total volume in a material having a plurality of fine pores.
  • carbon nanoparticle refers to particles having a size of several nanometers (nm) to several hundred nanometers of carbon.
  • the carbon nanoparticles may be one or more selected from the group consisting of carbon nanotubes, carbon nanowires, graphene, graphene oxide and carbon black, but is not limited thereto.
  • carbon nanotubes may be used as the carbon nanoparticles.
  • Carbon nanotubes have a high surface area of 50 to 1315 m 2 / g and have excellent gas storage capacity, and have specific nano-spaces in CNT bundles such as inter-lattice channels and outer grooves, resulting in aromatic molecules and Ar, Ne, He, CF It interacts significantly with gas molecules such as 4 , H 2 , N 2 , O 2 and C n H 2n + 2 and exhibits selectivity towards the molecule.
  • gas molecules such as 4 , H 2 , N 2 , O 2 and C n H 2n + 2
  • there are limitations in application to gas sensors and separations due to the somewhat lower gas selectivity and storage capacity due to the ⁇ -conjugation surface of CNTs.
  • the ⁇ -conjugation surface on the surface of the carbon nanoparticles is covered with a second shell portion coated with a metal organic structure via a first shell portion formed of a structure inducing substance, thereby providing carbon nanotubes.
  • the gas absorption ability can be further improved and the gas selectivity can be improved.
  • structure directing agent refers to a material capable of inducing the formation of a metal organic structure.
  • the structure-inducing material may be at least one selected from the group consisting of polymers such as polyvinylpyrrolidone (PVP) and acidic materials such as citric acid, but is not limited thereto.
  • PVP polyvinylpyrrolidone
  • acidic materials such as citric acid
  • polyvinylpyrrolidone may be particularly preferred as a structure inducing material because it can serve as an excellent dispersant or stabilizer for carbon nanoparticles such as CNTs as well as a good structure inducing material for nanowire or coreshell structures. have.
  • polyvinylpyrrolidone has more structural selective properties for nucleation and growth of ZIF-8 crystals, so it may be more desirable when ZIF-8 is used as the metal organic structure.
  • Metal-Organic Framework refers to often rigid organic molecules, ie, forming one-, two- or three-dimensional structures that may be porous. It means a compound consisting of metal ions coordinated to an organic ligand.
  • the metal ion of the metal organic structure is Li + , Na + , K + , Rb + , Be 2+ , Mg 2+ , Ca 2+ , Sr 2+ , Ba 2+ , Sc 3+ , Y 3 + , Ti 4+ , Zr 4+ , Hf + , V 4+ , V 3+ , V 2+ , Nb 3+ , Ta 3+ , Cr 3+ , Mo 3+ , W 3+ , Mn 3+ , Mn 2+ , Re 3+ , Re 2+ , Fe 3+ , Fe 2+ , Ru 3+ , Ru 2+ , Os 3+ , Os 2+ , Co 3+ , Co 2+ , Rh 2+ , Rh + , Ir 2+ , Ir + , Ni 2+ , Ni + , Pd 2+ , Pd + , Pt 2+ , Pt + , Cu 2+ , Cu + , Ag + ,
  • the organic ligand of the metal organic structure may be one having two or more functional groups capable of binding to metal ions.
  • the organic ligand of the metal organic structure is 2-methylimidazole, ethanedioic acid, propanedioic acid, butanedioic acid, pentanedioic acid ), o - phthalic acid (o -phthalic acid), m - phthalate (m -phthalic acid), p - phthalic acid (p -phthalic acid), 2- hydroxy-1,2,3-tri-carboxylic acid (2 -hydroxy-1,2,3-propanetricarboxylic acid, benzene-1,3,5-tricarboxylic acid, 1H-1,2,3-triazole (1H -1,2,3-triazole), 1H-1,2,4-triazole and 3,4-dihydroxy-3-cyclobutene-1,2-dione (3,4-dihydroxy-3-cyclobutene-1,2-dione (3
  • zeolitic imidazolate framework ZIF
  • the use of ZIF-8, which is synthesized by 2-methylimidazole and zinc ions is more effective than CO 2 / CH 4 and CO 2 / N in comparison to other ZIFs such as ZIF-7, ZIF-22 and ZIF-90. More preferred is because it shows excellent separation properties for 2 .
  • polyvinylpyrrolidone is used as a structure inducing material for the preparation of the CNT @ ZIF-8 coreshell structure due to the morphologically selective properties of the inorganic nanowire and the coreshell structure as shown in FIG. Selected.
  • the strong interaction and high dispersion properties of the polyvinylpyrrolidone on the CNTs promote the formation of a uniform structure without aggregation of the CNTs.
  • graphene and graphene oxide were used as core materials, it was possible to prepare a composite having a similar core shell structure in which ZIF-8 particles of smaller size were uniformly modified.
  • the present invention is extremely well controlled by coating a metal organic structure such as ZIF-8 on the surface of carbon nanoparticles such as linear CNTs having an extremely high aspect ratio regardless of the surface shape of the carbon nanoparticles.
  • a metal organic structure such as ZIF-8
  • carbon nanoparticles such as linear CNTs having an extremely high aspect ratio regardless of the surface shape of the carbon nanoparticles.
  • the synthesis of the shell structure is possible.
  • the core-shell structure of the nanocomposite is characterized in that it has a gas absorption characteristics.
  • the core-shell structured nanocomposite is characterized by excellent gas absorption characteristics due to the uniform arrangement of the metal organic structure.
  • the core-shell structured nanocomposites are applicable as gas absorbers and gas separators due to these excellent gas absorption properties.
  • the gas is selected from the group consisting of CO 2 , Ar, Ne, He, CF 4 , H 2 , N 2 , O 2 and C n H 2n + 2 (where n is an integer of 1 to 4). It may be one or more selected, but is not limited thereto.
  • the core-shell structure of the nanocomposite is excellent in the carrying capacity of the catalyst material or drug, it is widely applicable to catalyst, drug delivery system (DDS) and cancer cell fluorescence imaging.
  • DDS drug delivery system
  • cancer cell fluorescence imaging
  • the present invention provides a method for producing the nanocomposite comprising the following steps.
  • step 1 1) dispersing the carbon nanoparticles in a solution of the structure derived material (step 1);
  • step 2 2) adding and stirring a metal ion compound and an organic ligand to form a metal organic structure in the dispersion (step 2).
  • the method may further include the step (step 1-1) of removing the excess structure-inducing material between the step 1 and step 2.
  • Step 1 is a step of dispersing the carbon nanoparticles in the solution of the structure-inducing material to form a first shell portion of the structure-inducing material on the surface of the core portion of the carbon nanoparticles.
  • the definition and type of the structure inducing substance of step 1 is the same as described in the description of the nanocomposite.
  • the concentration of the structure inducing substance may be 0.5 mg / ml to 5 mg / ml. If the concentration of the structure-inducing substance is less than 0.5 mg / ml, it may be difficult for the structure-inducing substance to play a role of inducing the formation of the metal organic structure, and if it is more than 5 mg / ml, it may be inefficient.
  • the definition and type of the carbon nanoparticles of step 1 are the same as described in the description of the nanocomposite.
  • the concentration of the carbon nanoparticles may be 0.2 mg / ml to 2 mg / ml. If the concentration of the carbon nanoparticles is less than 0.2 mg / ml may be inefficient because the yield of the nanocomposite is less than, if the concentration of more than 2 mg / ml may occur between the carbon nanoparticles.
  • the solvent of step 1) may be at least one selected from the group consisting of C 1-4 alcohol, water, dimethylformamide and acetone, but is not limited thereto.
  • Step 1-1 is a step of removing excess structure inducing material that may be present in the dispersion of step 1 to facilitate the formation of the metal organic structure in step 2 thereafter.
  • step 1-1 may be performed by removing the supernatant after centrifuging the dispersion of step 1.
  • Step 2 is a step of forming a second shell portion made of a metal organic structure by adding and stirring a metal ion compound and an organic ligand to form a metal organic structure to the dispersion.
  • the metal ion of the metal ion compound forming the metal organic structure is Li + , Na + , K + , Rb + , Be 2+ , Mg 2+ , Ca as mentioned in the description of the nanocomposite 2+ , Sr 2+ , Ba 2+ , Sc 3+ , Y 3+ , Ti 4+ , Zr 4+ , Hf + , V 4+ , V 3+ , V 2+ , Nb 3+ , Ta 3+ , Cr 3+ , Mo 3+ , W 3+ , Mn 3+ , Mn 2+ , Re 3+ , Re 2+ , Fe 3+ , Fe 2+ , Ru 3+ , Ru 2+ , Os 3+ , Os 2 + , Co 3+ , Co 2+ , Rh 2+ , Rh + , Ir 2+ , Ir + , Ir + , Ir + , Ir + , Ni 2+ , Ni + , Pd 2+
  • the metal ion compound may be in the form of a metal salt, and the anion that binds the metal ion in the metal salt may be a conventional anion, preferably an anion belonging to Group 14 to Group 17.
  • the metal salts include metal inorganic salts such as metal nitrate, metal sulfate, metal phosphate, and metal hydrochloride, but are not limited thereto.
  • the concentration of the metal ion compound forming the metal organic structure may be 5 mg / ml to 20 mg / ml. If the concentration of the metal ion compound forming the metal organic structure is less than 5 mg / ml may be difficult to form the metal organic structure, and if it is more than 20 mg / ml may be inefficient.
  • the type of the organic ligand forming the metal organic structure is the same as described in the description of the nanocomposite.
  • the concentration of the organic ligand forming the metal organic structure may be 10 mg / ml to 40 mg / ml. If the concentration of the organic ligand forming the metal organic structure is less than 10 mg / ml may be difficult to form the metal organic structure, and if it is more than 40 mg / ml may be inefficient.
  • the manufacturing process of the CNT @ ZIF-8 core-shell structure composite is schematically shown in FIG. Briefly explaining the manufacturing process of the CNT @ ZIF-8 core-shell structure composite shown in FIG. First, CNTs are added and dispersed in a PVP methanol solution to obtain PVP-functionalized CNTs (PVP-CNTs), and then, after removal of excess PVP, the PVP-CNTs are redispersed in methanol and in the presence of PVP-CNTs.
  • ZIF-8 was synthesized using 2-MeIm and zinc ions.
  • graphene and GO were used as support materials instead of CNTs, ie as core portions, to produce a coreshell structural composite.
  • the CNT @ ZIF-8 coreshell structure has been successfully prepared by in situ ZIF-8 synthesis in the presence of PVP-functionalized CNTs, and the ZIF-8 nanostructures in the complex are the starting point for the synthesis of ZIF-8. It was simply adjusted by changing the concentration of the substance. Similar uniform arrangements were possible with PVP-functionalized graphene and GO instead of PVP-functionalized CNTs. This homogeneous ZIF-8 arrangement played an important role in providing improved CO 2 gas absorption compared to composites prepared using PVP unmodified CNTs and graphene.
  • the method of the present invention presented for the uniform arrangement of ZIF-8 was very simple and the coated ZIF-8 shell structure could be easily controlled by adjusting the concentration of metal ions and organic ligands used to form ZIF-8. This indicates that the method can be quite useful for the design and synthesis of numerous nanomaterials, including catalysts, materials for DDS, and imaging bionanotechnology.
  • the present invention provides a composition for gas absorption or separation comprising the nano-composite of the core-shell structure.
  • the gas that can be absorbed or separated through the gas absorption or separation composition of the present invention is CO 2 , Ar, Ne, He, CF 4 , H 2 , N 2 , O 2 and C n H 2n + 2 (Where n is an integer of 1 to 4) may be one or more selected from the group consisting of, but is not limited thereto.
  • the present invention provides a method for absorbing or separating gas using the composition for gas absorption or separation.
  • the gas absorption or separation composition of the present invention has an improved molecular adsorption characteristic due to the uniform arrangement of the metal-organic structure in the nano-composite of the core-shell structure, thereby having an excellent gas absorption capacity and thereby excellent gas separation ability. May be (FIG. 11).
  • the present invention provides a core-shell structure including a core part made of carbon nanoparticles, a first shell part formed of a structure inducing material on the surface of the carbon nanoparticles, and a second shell part coated with a metal organic structure on the surface of the first shell part.
  • Providing the nanocomposite has an effect of providing a nanocomposite with improved gas absorption properties and carrying ability of the catalyst material or drug due to the uniform arrangement of the metal organic structure.
  • FIG. 1 is a conceptual diagram schematically showing a CNT @ ZIF-8 core-shell structure.
  • FIG. 2 is a conceptual diagram briefly illustrating a manufacturing process of a CNT @ ZIF-8 core-shell structure.
  • FIG. 3 is a scanning electron microscope (SEM) image of (A) CNT, (B) CNT / ZIF-8, and (C) PVP-CNT / ZIF-8.
  • SEM scanning electron microscope
  • FIG. 4 shows (A) graphene, (B) G / ZIF-8, (C) PVP-G / ZIF-8, (D) GO, (E) GO / ZIF-8, and (F) PVP-GO SEM image of / ZIF-8.
  • the scale bar is then 200 nm.
  • STEM 5 is a scanning electron microscope (STEM) image of (A) PVP-CNT / ZIF-8, (B) PVP-G / ZIF-8, and (C) PVP-GO / ZIF-8.
  • the scale bar is then 100 nm.
  • FIG. 7 shows ZIF-8, CNT, CNT / ZIF-8, PVP-CNT / ZIF-8, Graphene, G / ZIF-8, PVP-G / ZIF-8, GO, GO / ZIF-8 and PVP- Fourier transform infrared spectroscopy (FT-IR) spectra of GO / ZIF-8.
  • FT-IR Fourier transform infrared spectroscopy
  • FIG. 9 shows 2-MeIm of (A) concentrations of 22 and 11 mg / mL, (B) their concentrations twice, (C) their concentrations four times, and (D) their concentrations eight times And a SEM image of PVP-CNT / ZIF-8 prepared with zinc nitrate solution.
  • FIG. 11 shows mass changes due to adsorption and desorption of CO 2 gas obtained from PVP-CNT / ZIF-8, CNT / ZIF-8, CNT, PVP-G / ZIF-8, G / ZIF-8, and graphene. It is TGA to show.
  • FIG. 13 is a TGA showing mass changes due to adsorption and desorption of CO 2 gas obtained from PVP-GO / ZIF-8, GO / ZIF-8, and GO at temperatures of 70, 55, 40 and 25 ° C.
  • Example 1 CNT, graphene or GO cores; And preparation of core-shell composites of ZIF-8 shells
  • Multi-walled carbon nanotubes (C tube 120, metal oxide ⁇ 3 wt%, average diameter: ⁇ 20 nm, length: 1-25 ⁇ m, CNT Co., Ltd), graphene (3 nm graphene nanopowder , Grade AO-1, Graphene Supermarket), Graphene Oxide (GO) (dry platelet, Graphene Supermarket) and methanol (> 99.8%, JT Baker®) were used as received.
  • Polyvinylpyrrolidone (PVP) Mw: ⁇ 360,000
  • 2-methylimidazole 99%
  • zinc nitrate hexahydrate 98%) were purchased from Sigma-Aldrich.
  • FE-SEM Field emission scanning electron microscopy
  • STEM scanning transmission electron microscopy
  • Core-shell composites of carbon materials with ZIF-8 shells were prepared by in situ ZIF-8 synthesis as follows.
  • CNT (30 mg) was added to PVP methanol solution (2 mg / mL, 60 mL) and sonicated for 1 hour in a bath-type sonicator (JAC-3010, KODO). After centrifugation (20,000 g, 1 h), the supernatant is removed and the precipitate is redispersed in methanol (15 mL) and 2-methylimidazole (2-MeIm) in methanol (22 mg / mL, 60 mL) ) was then added carefully to the dispersion while stirring zinc nitrate hexahydrate (11 mg / mL, 12 mL) in methanol. The resulting precipitate was collected after centrifugation (20,000 g, 0.5 h), washed with methanol and dried in a vacuum oven at 40 ° C.
  • the ZIF-8 complex (PVP-CNT / ZIF-8) comprising PVP-CNT and the ZIF-8 complex (CNT / ZIF-8) comprising CNT are reliably defined by the original CNT. It was thicker than its diameter, indicating the formation of a ZIF-8 shell. 3 shows that ZIF-8 particles are rarely seen in the PVP-CNT / ZIF-8 complex, but in contrast, many ZIF-8 aggregates are observed in the CNT / ZIF-8 complex. Thus, it can be seen that PVP acted as a structure inducing agent on the CNT surface.
  • PVP-G / ZIF-8 showed greater CO 2 uptake than the original graphene and G / ZIF-8.
  • the CO 2 absorption rate was improved compared to raw GO, this improvement was not observed in PVP-GO / ZIF-8 (FIG. 13).
  • Stable reproducibility of CO 2 uptake on PVP-CNT / ZIF-8 was confirmed from cycling tests without any reduction in absorption capacity as shown in FIG. 14.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

본 발명은 탄소 나노 입자 및 금속 유기 구조체를 포함하는 코어-쉘 구조의 나노 복합체, 이의 제조방법 및 이를 포함하는 기체 흡수용 조성물에 관한 것으로, 더욱 상세하게는 탄소 나노 입자로 이루어진 코어부, 상기 탄소 나노 입자 표면에 구조 유도 물질로 형성된 제1 쉘부, 및 상기 제1 쉘부 표면에 금속 유기 구조체로 코팅된 제2 쉘부를 포함하는 코어-쉘 구조의 나노 복합체, 이의 제조방법 및 이를 포함하는 기체 흡수용 조성물에 관한 것이다.

Description

탄소 나노 입자 및 금속 유기 구조체를 포함하는 코어-쉘 구조의 나노 복합체, 이의 제조방법 및 이를 포함하는 기체 흡수용 조성물
본 발명은 탄소 나노 입자 및 금속 유기 구조체를 포함하는 코어-쉘 구조의 나노 복합체, 이의 제조방법 및 이를 포함하는 기체 흡수용 조성물에 관한 것이다.
중심 금속 및 유기 링커를 포함하는 3차원 다공 구조에 의해 발생된 극도의 고표면적을 갖는 금속 유기 구조체(MOF)는, 기공 크기 및 화학적 친화도가 금속 및 링커를 개질시킴으로써 쉽게 조절되기 때문에, 가장 촉망받는 기체 흡수제 물질 중 하나로 대두되고 있다. MOF는 기체 흡수제, 기체 분리제, 촉매, 및 약물 전달 시스템(DDS) 및 암세포 형광 이미징을 포함하는 다양한 분야에서 연구되고 있다. 따라서, MOF의 균일한 배열(decoration)은 수많은 적용에 있어 매우 중요하다.
MOF중 하나인 제올라이트 이미다졸레이트 구조체(zeolitic imidazolate framework, ZIF)는 MOF 부류 사이에서 가장 높은 열적 및 화학적인 안정성을 가진 것으로 알려져 있고, 이의 쉬운 합성 방법은 다양한 중합체, 그래핀 양자점(GQD), 산화 그래핀(GO), Cu3(BTC)2-개질된 CNT 등과 함께 복합체 형성을 가능하게 한다. 특히, 2-메틸이미다졸(2-methylimidazole, 이하, 2-MeIm) 및 아연 이온에 의해 합성되는 ZIF-8은 ZIF-7, ZIF-22 및 ZIF-90과 같은 다른 ZIF와 비교하여 CO2/CH4 및 CO2/N2에 대해 우수한 분리 특성을 보여준다. 2-MeIm의 회전에 의해 개방되는 유연한 구조는 코어쉘 구조와 같은 형태를 조절하는데 유리하다. ZIF-8은 GQD의 캡슐화, 및 중합체, CNT 및 산화 그래핀과의 복합체 제조를 위한 물질로 사용되어 왔다. 그러나, 쉘로서 ZIF-8을 사용한 코어쉘 구조의 형성은 아직까지 보고된 바 없다.
한편, 탄소나노튜브(CNT)는 주목할만한 전기적, 열적, 광학적 및 기계적 특성을 갖는 나노물질이다. 또한, 탄소나노튜브는 고표면적(50 ~ 1315 m2/g)으로 인하여 기체 저장을 위한 매력적인 물질이다. 특히, 격자간 채널 및 외부 홈과 같은 CNT 번들 내의 특이적인 나노-공간은 방향족 분자 및 Ar, Ne, He, CF4, H2, N2, O2 및 CnH2n+2와 같은 기체 분자와 상당한 상호작용을 하고, 또한 분자에 대해 선택성을 나타낸다. 그러나, CNT의 π-컨쥬게이션 표면으로 인한 다소 낮은 기체 선택성 및 저장 용량 때문에 기체 센서 및 분리에 적용하는데 제한이 있다. 이러한 문제점을 보완하기 위해, 공유적 작용기화 또는 비공유적 작용기화 등이 수행되어 왔다.
이러한 배경 하에서, 본 발명자들은 탄소나노튜브와 같은 탄소 나노 입자로 이루어진 코어부를 사용하며, 상기 코어부 상에 금속 유기 구조체의 균일한 배열을 돕기 위한 매개 층으로서 구조 유도 물질로 형성된 제1 쉘부를 포함하고, 상기 제1 쉘부 표면에 금속 유기 구조체로 코팅된 제2 쉘부를 포함하는 코어-쉘 구조의 나노 복합체를 제공함으로써 금속 유기 구조체의 균일한 배열로 인하여 기체 흡수 특성이 더욱 향상될 수 있어 기체 흡수제 및 기체 분리제로서 적용 가능할 뿐만 아니라 촉매, 약물 전달 시스템(DDS) 및 암세포 형광 이미징에도 광범위하게 적용 가능할 수 있음을 확인하고 본 발명을 완성하였다.
본 발명의 목적은 금속 유기 구조체의 균일한 배열로 인하여 향상된 기체 흡착 특성을 지니는 코어-쉘 구조의 나노 복합체를 제공하는 것이다.
본 발명의 다른 목적은 상기 코어-쉘 구조의 나노 복합체를 제조하는 방법을 제공하는 것이다.
본 발명의 또 다른 목적은 상기 코어-쉘 구조의 나노 복합체의 용도를 제공하는 것이다.
상기 과제를 해결하기 위해, 본 발명은
탄소 나노 입자로 이루어진 코어부,
상기 탄소 나노 입자 표면에 구조 유도 물질(structure directing agent)로 형성된 제1 쉘부, 및
상기 제1 쉘부 표면에 금속 유기 구조체(Metal-Organic Framework, MOF)로 코팅된 제2 쉘부를 포함하는 코어-쉘 구조의 나노 복합체를 제공한다.
이하 본 발명의 구성을 상세히 설명한다.
금속 유기 구조체(MOF)는, 3차원 다공 구조에 의해 발생된 극도의 고표면적을 갖는 기공 크기로 인하여 가장 촉망받는 기체 흡수제 또는 기체 분리제 물질 중 하나일 뿐만 아니라 촉매 물질 또는 약물의 담지 능력을 가질 수 있어 촉매, 약물 전달 시스템(DDS) 또는 암세포 형광 이미징에도 광범위하게 적용 가능하다. 이러한 3차원 다공 구조를 통한 흡착 특성을 더욱 향상시키기 위해서는 금속 유기 구조체의 균일한 배열이 형성되어야 한다.
본 발명은 금속 유기 구조체가 균일하게 배열된 코어-쉘 구조의 나노 복합체를 제공함으로써 금속 유기 구조체의 균일한 배열로 인하여 더욱 향상된 분자흡착특성을 가져 기체 흡수 또는 분리 특성은 물론 촉매 물질 또는 약물의 담지 능력이 더욱 향상된 나노 복합체를 제공하는 것을 특징으로 한다. 본 발명에서는 균일하게 배열된 금속 유기 구조체로 이루어진 쉘부를 형성하기 위한 지지체로서 탄소 나노 입자로 이루어진 코어부를 사용하며, 상기 코어부 상에 금속 유기 구조체의 균일한 배열을 돕기 위한 매개 층으로서 구조 유도 물질로 형성된 제1 쉘부를 포함한다.
본 발명에서 사용되는 용어, "다공도(porosity)"는 다수의 미세한 구멍을 갖는 물질에서, 구멍 부분의 부피가 전체 부피에 대하여 차지하는 비율을 의미한다.
본 발명에서 사용되는 용어, "탄소 나노 입자(carbon nanoparticle)"는 탄소(carbon)로 이루어진 수 나노미터(nm) 내지 수백 나노미터의 크기를 가진 입자를 의미한다.
본 발명에서, 상기 탄소 나노 입자는 탄소나노튜브, 탄소나노와이어, 그래핀, 산화 그래핀 및 카본 블랙으로 이루어진 군으로부터 선택되는 1종 이상일 수 있으며, 이에 제한되는 것은 아니다.
본 발명에서, 상기 탄소 나노 입자로서 특히 바람직하기로 탄소나노튜브(CNT)를 사용할 수 있다. 탄소나노튜브는 50 ~ 1315 m2/g의 고표면적을 가져 우수한 기체 저장 능력을 가지며 격자간 채널 및 외부 홈과 같은 CNT 번들 내의 특이적인 나노-공간을 가져 방향족 분자 및 Ar, Ne, He, CF4, H2, N2, O2 및 CnH2n+2와 같은 기체 분자와 상당한 상호작용을 하고 분자에 대해 선택성을 나타낸다. 그러나, CNT의 π-컨쥬게이션 표면으로 인한 다소 낮은 기체 선택성 및 저장 용량 때문에 기체 센서 및 분리에 적용하는데 제한이 있다. 그러나, 본 발명의 나노 복합체는 상기 탄소 나노 입자 표면 상의 π-컨쥬게이션 표면이, 구조 유도 물질로 형성된 제1 쉘부를 매개로 하여, 금속 유기 구조체로 코팅된 제2 쉘부로 덮임으로써, 탄소나노튜브를 단독으로 사용하는 경우에 비해 기체 흡수 능력이 더욱 향상되고 기체 선택성도 향상될 수 있다.
본 발명에서 사용되는 용어, "구조 유도 물질(structure directing agent)"은 금속 유기 구조체의 형성을 유도하는 역할을 할 수 있는 물질을 의미한다.
본 발명에서, 상기 구조 유도 물질은 폴리비닐피롤리돈(polyvinylpyrrolidone, PVP) 등의 고분자, 구연산 (Citric acid) 등의 산성 물질로 이루어진 군으로부터 선택되는 1종 이상일 수 있으며, 이에 제한되는 것은 아니다.
특히, 폴리비닐피롤리돈은 나노와이어 또는 코어쉘 구조를 위한 우수한 구조 유도 물질일 뿐만 아니라 CNT와 같은 탄소 나노 입자를 위한 우수한 분산제 또는 안정화제로서의 역할을 할 수 있어 구조 유도 물질로서 특히 바람직할 수 있다. 본 발명에서, 폴리비닐피롤리돈은 ZIF-8 결정의 핵형성 및 성장을 위한 구조 선택적 특성을 가짐에 따라 금속 유기 구조체로서 ZIF-8을 사용할 경우 더욱 바람직할 수 있다.
본 발명에서 사용되는 용어, "금속 유기 구조체(Metal-Organic Framework, MOF)"는 다공성일 수 있는 1차원, 2차원 또는 3차원 구조를 형성하는, 개방형 경직성 유기 분자(often rigid organic molecule), 즉 유기 리간드에 배위결합된 금속 이온으로 이루어진 화합물을 의미한다.
본 발명에서, 상기 금속 유기 구조체의 금속 이온은 Li+, Na+, K+, Rb+, Be2+, Mg2+, Ca2+, Sr2+, Ba2+, Sc3+, Y3+, Ti4+, Zr4+, Hf+, V4+, V3+, V2+, Nb3+, Ta3+, Cr3+, Mo3+, W3+, Mn3+, Mn2+, Re3+, Re2+, Fe3+, Fe2+, Ru3+, Ru2+, Os3+, Os2+, Co3+, Co2+, Rh2+, Rh+, Ir2+, Ir+, Ni2+, Ni+, Pd2+, Pd+, Pt2+, Pt+, Cu2+, Cu+, Ag+, Au+, Zn2+, Cd2+, Hg2+, Al3+, Ga3+, In3+, Tl3+, Si4+, Si2+, Ge4+, Ge2+, Sn4+, Sn2+, Pb4+, Pb2+, As5+, As3+, As+, Sb5+, Sb3+, Sb+, Bi5+, Bi3+ 및 Bi+로 이루어진 군으로부터 선택되는 1종 이상일 수 있으며, 이에 제한되는 것은 아니다.
본 발명에서, 상기 금속 유기 구조체의 유기 리간드는 금속 이온과 결합할 수 있는 두 자리 이상의 작용기를 갖는 것일 수 있다. 상기 금속 유기 구조체의 유기 리간드는 2-메틸이미다졸(2-methylimidazole), 에탄디오산(ethanedioic acid), 프로판디오산(propanedioic acid), 부탄디오산(butanedioic acid), 펜탄디오산(pentanedioic acid), o-프탈산(o-phthalic acid), m-프탈산(m-phthalic acid), p-프탈산(p-phthalic acid), 2-히드록시-1,2,3-프로판트리카르복실산(2-hydroxy-1,2,3-propanetricarboxylic acid), 벤젠-1,3,5-트리카르복실산(benzene-1,3,5-tricarboxylic acid), 1H-1,2,3-트리아졸(1H-1,2,3-triazole), 1H-1,2,4-트리아졸(1H-1,2,4-triazole) 및 3,4-디히드록시-3-사이클로부텐-1,2-디온(3,4-dihydroxy-3-cyclobutene-1,2-dione)으로 이루어진 군으로부터 선택되는 1종 이상일 수 있으며, 이에 제한되는 것은 아니다.
본 발명에서는 특히 금속 유기 구조체로서 제올라이트 이미다졸레이트 구조체(zeolitic imidazolate framework, ZIF)를 사용하는 것이 이의 열적 및 화학적인 안정성 및 간단한 합성 방법으로 인하여 바람직하다. 특히, 2-메틸이미다졸 및 아연 이온에 의해 합성되는 ZIF-8을 사용하는 것이 ZIF-7, ZIF-22 및 ZIF-90과 같은 다른 ZIF와 비교하여 CO2/CH4 및 CO2/N2에 대해 우수한 분리 특성을 보여주기 때문에 더욱 바람직하다.
본 발명의 일 실시예에서는, 도 1에 도시한 바와 같이 무기 나노와이어 및 코어쉘 구조에 대한 형태 선택적 특성 때문에 폴리비닐피롤리돈을 CNT@ZIF-8 코어쉘 구조의 제조를 위한 구조 유도 물질로서 선택하였다. 이때, 폴리비닐피롤리돈의 CNT에 대한 강한 상호작용 및 고분산 특성이 CNT의 응집없이 균일한 구조를 형성하도록 촉진한다. 또한, 그래핀 및 산화 그래핀을 코어 물질로서 사용하여도 보다 작은 사이즈의 ZIF-8 입자가 균일하게 수식된 유사 코어쉘 구조의 복합체를 제조할 수 있었다.
본 발명은 탄소나노입자의 표면 형상과 관계없이, 극단적으로는 높은 종횡비(aspect ratio)를 갖는 선형의 CNT와 같은 탄소나노입자의 표면에도 ZIF-8과 같은 금속 유기 구조체를 코팅한 극히 잘 조절된 쉘 구조의 합성이 가능한 장점을 갖는다.
본 발명에서, 상기 코어-쉘 구조의 나노 복합체는 기체 흡수 특성을 갖는 것을 특징으로 한다. 상기 코어-쉘 구조의 나노 복합체는 금속 유기 구조체의 균일한 배열로 인하여 기체 흡수 특성이 우수한 것을 특징으로 한다. 상기 코어-쉘 구조의 나노 복합체는 이러한 우수한 기체 흡수 특성으로 인하여 기체 흡수제 및 기체 분리제로서 적용 가능하다.
본 발명에서, 상기 기체는 CO2, Ar, Ne, He, CF4, H2, N2, O2 및 CnH2n+2(여기에서, n은 1 내지 4의 정수)로 이루어진 군으로부터 선택되는 1종 이상일 수 있으며, 이에 제한되는 것은 아니다.
또한, 상기 코어-쉘 구조의 나노 복합체는 촉매 물질 또는 약물의 담지 능력이 우수하여 촉매, 약물 전달 시스템(DDS) 및 암세포 형광 이미징에도 광범위하게 적용 가능하다.
또한, 본 발명은 하기 단계를 포함하는 상기 나노 복합체의 제조방법을 제공한다.
1) 구조 유도 물질 용액에 탄소 나노 입자를 분산시키는 단계(단계 1); 및
2) 상기 분산액에 금속 유기 구조체를 형성하는 금속이온 화합물 및 유기 리간드를 첨가하고 교반하는 단계(단계 2).
바람직하기로, 상기 단계 1과 단계 2 사이에 과량의 구조 유도 물질을 제거하는 단계(단계 1-1)를 추가로 포함할 수 있다.
상기 단계 1은, 구조 유도 물질 용액에 탄소 나노 입자를 분산시켜 탄소 나노 입자로 이루어진 코어부의 표면상에 구조 유도 물질로 이루어진 제1 쉘부를 형성시키는 단계이다.
본 발명에서, 상기 단계 1의 구조 유도 물질의 정의 및 종류는 상기 나노 복합체에 대한 내용에서 설명한 바와 동일하다.
본 발명에서, 상기 구조 유도 물질의 농도는 0.5 ㎎/㎖ 내지 5 ㎎/㎖일 수 있다. 만일 상기 구조 유도 물질의 농도가 0.5 ㎎/㎖ 미만이면 구조 유도 물질이 금속 유기 구조체의 형성을 유도하는 역할을 수행하기 어려울 수 있고 5 ㎎/㎖ 초과이면 비효율적일 수 있다.
본 발명에서, 상기 단계 1의 탄소 나노 입자의 정의 및 종류는 상기 나노 복합체에 대한 내용에서 설명한 바와 동일하다.
본 발명에서, 상기 탄소 나노 입자의 농도는 0.2 ㎎/㎖ 내지 2 ㎎/㎖일 수 있다. 만일 상기 탄소 나노 입자의 농도가 0.2 ㎎/㎖ 미만이면 나노 복합체의 수율이 적어 비효율적일 수 있고 2 ㎎/㎖ 초과이면 탄소 나노 입자 간의 응집이 일어날 수 있다.
본 발명에서, 상기 단계 1)의 용매는 C1-4 알콜, 물, 디메틸포름아미드 및 아세톤으로 이루어진 군으로부터 선택되는 1종 이상일 수 있으며, 이에 제한되는 것은 아니다.
상기 단계 1-1은, 이후 단계 2에서 금속 유기 구조체 형성을 용이하게 수행할 수 있도록 상기 단계 1의 분산액에 존재할 수 있는 과량의 구조 유도 물질을 제거하는 단계이다.
본 발명에서, 상기 단계 1-1은 단계 1의 분산액을 원심분리한 후 상층액을 제거함으로써 수행할 수 있다.
상기 단계 2는, 상기 분산액에 금속 유기 구조체를 형성하는 금속이온 화합물 및 유기 리간드를 첨가하고 교반하여 금속 유기 구조체로 이루어진 제2 쉘부를 형성시키는 단계이다.
본 발명에서, 상기 금속 유기 구조체를 형성하는 금속이온 화합물의 금속 이온은 상기 나노 복합체에 대한 내용에서 언급한 바와 같이 Li+, Na+, K+, Rb+, Be2+, Mg2+, Ca2+, Sr2+, Ba2+, Sc3+, Y3+, Ti4+, Zr4+, Hf+, V4+, V3+, V2+, Nb3+, Ta3+, Cr3+, Mo3+, W3+, Mn3+, Mn2+, Re3+, Re2+, Fe3+, Fe2+, Ru3+, Ru2+, Os3+, Os2+, Co3+, Co2+, Rh2+, Rh+, Ir2+, Ir+, Ni2+, Ni+, Pd2+, Pd+, Pt2+, Pt+, Cu2+, Cu+, Ag+, Au+, Zn2+, Cd2+, Hg2+, Al3+, Ga3+, In3+, Tl3+, Si4+, Si2+, Ge4+, Ge2+, Sn4+, Sn2+, Pb4+, Pb2+, As5+, As3+, As+, Sb5+, Sb3+, Sb+, Bi5+, Bi3+ 및 Bi+로 이루어진 군으로부터 선택되는 1종 이상일 수 있으며, 이에 제한되는 것은 아니다. 상기 금속이온 화합물은 금속염 형태일 수 있으며, 금속염에서 금속이온과 결합하는 음이온은 통상적인 음이온으로, 바람직하게 14족에서 17족에 속한 음이온일 수 있다. 상기 금속염으로는 금속질산염, 금속황산염, 금속인산염, 금속염산염 등의 금속 무기산염을 예로 들 수 있으나 이에 제한되는 것은 아니다.
본 발명에서, 상기 금속 유기 구조체를 형성하는 금속이온 화합물의 농도는 5 ㎎/㎖ 내지 20 ㎎/㎖일 수 있다. 만일 상기 금속 유기 구조체를 형성하는 금속이온 화합물의 농도가 5 ㎎/㎖ 미만이면 금속 유기 구조체의 형성이 어려울 수 있고 20 ㎎/㎖ 초과이면 비효율적일 수 있다.
본 발명에서, 상기 금속 유기 구조체를 형성하는 유기 리간드의 종류는 상기 나노 복합체에 대한 내용에서 설명한 바와 동일하다.
본 발명에서, 상기 금속 유기 구조체를 형성하는 유기 리간드의 농도는 10 ㎎/㎖ 내지 40 ㎎/㎖일 수 있다. 만일 상기 금속 유기 구조체를 형성하는 유기 리간드의 농도가 10 ㎎/㎖ 미만이면 금속 유기 구조체의 형성이 어려울 수 있고 40 ㎎/㎖ 초과이면 비효율적일 수 있다.
본 발명의 일 실시예로서, CNT@ZIF-8 코어쉘 구조 복합체의 제조 과정을 도 2에 개략적으로 나타내었다. 도 2에 도시된 CNT@ZIF-8 코어쉘 구조 복합체의 제조 과정을 간략히 설명하면 다음과 같다. 먼저, CNT를 PVP 메탄올 용액 중에 첨가하여 분산시킴으로써 PVP-기능화된 CNT(PVP-CNT)를 얻은 다음, 과량의 PVP를 제거한 후, 상기 PVP-CNT를 메탄올에서 재분산시키고, PVP-CNT의 존재하에 2-MeIm 및 아연 이온을 사용하여 ZIF-8을 합성하였다. 또한, 그래핀 및 GO를 CNT 대신 지지 물질로서, 즉 코어부로서 사용하여 코어쉘 구조 복합체를 제조하였다.
본 발명에서, CNT@ZIF-8 코어쉘 구조는 PVP-기능화된 CNT의 존재 하에 인 시츄 ZIF-8 합성에 의해 성공적으로 제조되었으며, 복합체 내의 ZIF-8 나노구조는 ZIF-8의 합성을 위한 출발 물질의 농도를 변화시킴으로써 간단하게 조절되었다. PVP-기능화된 CNT를 대신하여 PVP-기능화된 그래핀 및 GO를 사용한 경우에도 유사하게 균일한 배열이 가능하였다. 이러한 균일한 ZIF-8 배열은 PVP 개질되지 않은 CNT 및 그래핀을 사용하여 제조된 복합체와 비교하여 향상된 CO2 기체 흡수능을 제공하는데 중요한 역할을 하였다.
ZIF-8의 균일한 배열을 위해 제시된 본 발명의 방법은 매우 간단하고 코팅된 ZIF-8 쉘 구조는 ZIF-8을 형성하기 위해 사용되는 금속 이온 및 유기 리간드의 농도를 조절함으로써 쉽게 제어할 수 있었으며, 이는 상기 방법이 촉매, DDS를 위한 물질 및 이미징 바이오나노기술 등을 포함하는 수많은 나노물질의 설계와 합성에 상당히 유용할 수 있음을 나타낸다.
또한, 본 발명은 상기 코어-쉘 구조의 나노 복합체를 포함하는 기체 흡수 또는 분리용 조성물을 제공한다.
본 발명에서, 상기 본 발명의 기체 흡수 또는 분리용 조성물을 통해 흡수 또는 분리가 가능한 기체는 CO2, Ar, Ne, He, CF4, H2, N2, O2 및 CnH2n+2(여기에서, n은 1 내지 4의 정수)로 이루어진 군으로부터 선택되는 1종 이상일 수 있으며, 이에 제한되는 것은 아니다.
또한, 본 발명은 상기 기체 흡수 또는 분리용 조성물을 사용하여 기체를 흡수 또는 분리하는 방법을 제공한다.
본 발명의 기체 흡수 또는 분리용 조성물은, 코어-쉘 구조의 나노 복합체 내의 금속 유기 구조체의 균일한 배열로 인하여 더욱 향상된 분자흡착특성을 가짐에 따라 우수한 기체 흡수 용량 및 이로 인한 우수한 기체 분리 능력을 가질 수 있다(도 11).
본 발명은 탄소 나노 입자로 이루어진 코어부, 상기 탄소 나노 입자 표면에 구조 유도 물질로 형성된 제1 쉘부, 및 상기 제1 쉘부 표면에 금속 유기 구조체로 코팅된 제2 쉘부를 포함하는 코어-쉘 구조의 나노 복합체를 제공함으로써 금속 유기 구조체의 균일한 배열로 인하여 기체 흡수 특성 및 촉매 물질 또는 약물의 담지 능력이 더욱 향상된 나노 복합체를 제공할 수 있는 효과가 있다.
도 1은 CNT@ZIF-8 코어-쉘 구조를 도식적으로 나타낸 개념도이다.
도 2는 CNT@ZIF-8 코어-쉘 구조의 제조 과정을 간략히 나타낸 개념도이다.
도 3은 (A) CNT, (B) CNT/ZIF-8, 및 (C) PVP-CNT/ZIF-8의 주사전자현미경(SEM) 이미지이다. 이때 (B) 내의 화살표 표시는 ZIF-8 나노입자의 응집을 나타내며, 스케일 바는 200 nm이다.
도 4는 (A) 그래핀, (B) G/ZIF-8, (C) PVP-G/ZIF-8, (D) GO, (E) GO/ZIF-8, 및 (F) PVP-GO/ZIF-8의 SEM 이미지이다. 이때 스케일 바는 200 nm이다.
도 5는 (A) PVP-CNT/ZIF-8, (B) PVP-G/ZIF-8, 및 (C) PVP-GO/ZIF-8의 주사투과전자현미경(STEM) 이미지이다. 이때 스케일 바는 100 nm이다.
도 6은 CNT, CNT/ZIF-8, PVP-CNT/ZIF-8, 그래핀, G/ZIF-8, PVP-G/ZIF-8, GO, GO/ZIF-8 및 PVP-GO/ZIF-8의 라만 스펙트럼이다.
도 7은 ZIF-8, CNT, CNT/ZIF-8, PVP-CNT/ZIF-8, 그래핀, G/ZIF-8, PVP-G/ZIF-8, GO, GO/ZIF-8 및 PVP-GO/ZIF-8의 Fourier transform infrared spectroscopy (FT-IR) 스펙트럼이다.
도 8은 ZIF-8, CNT, CNT/ZIF-8, PVP-CNT/ZIF-8, 그래핀, G/ZIF-8, PVP-G/ZIF-8, GO, GO/ZIF-8 및 PVP-GO/ZIF-8의 X-ray 회절(XRD) 패턴이다.
도 9는 (A) 각각 22 및 11 mg/mL의 농도, (B) 이들의 2배의 농도, (C) 이들의 4배의 농도, 및 (D) 이들의 8배의 농도의 2-MeIm 및 질산아연 용액으로 제조된 PVP-CNT/ZIF-8의 SEM 이미지이다.
도 10은 각각 (A) 15분, (B) 60분, (C) 240분 동안 ZIF-8의 인 시츄 합성 후 수집된 PVP-CNT/ZIF-8의 SEM 이미지이다.
도 11은 PVP-CNT/ZIF-8, CNT/ZIF-8, CNT, PVP-G/ZIF-8, G/ZIF-8, 및 그래핀으로부터 얻어진 CO2 기체의 흡착 및 탈착으로 인한 질량 변화를 보여주는 TGA이다.
도 12는 PVP-CNT/ZIF-8, CNT/ZIF-8, CNT, PVP-G/ZIF-8, G/ZIF-8, 그래핀, PVP-GO/ZIF-8, GO/ZIF-8, 및 GO의 TGA이다. 이때 비교를 위해 ZIF-8의 TGA를 함께 나타내었다.
도 13은 70, 55, 40 및 25℃의 온도에서 PVP-GO/ZIF-8, GO/ZIF-8, 및 GO로부터 얻어진 CO2 기체의 흡착 및 탈착으로 인한 질량 변화를 보여주는 TGA이다.
도 14는 PVP-CNT/ZIF-8 상에서의 CO2 흡착의 사이클링 테스트 결과이다.
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 범위가 이들 실시예에 의해 제한되는 것은 아니다.
실시예 1: CNT, 그래핀 또는 GO 코어; 및 ZIF-8 쉘의 코어-쉘 복합체의 제조
재료
다중벽 탄소나노튜브(MWNT)(Ctube120, 금속 산화물<3 중량%, 평균직경: ~20 nm, 길이: 1-25 μm, CNT Co., Ltd), 그래핀(3 nm 그래핀 나노분말, 등급 AO-1, Graphene Supermarket), 산화 그래핀(GO) (건조 플레이트렛, Graphene Supermarket) 및 메탄올(> 99.8 %, J. T. Baker®)은 공급받은 그대로 사용하였다. 폴리비닐피롤리돈(polyvinylpyrrolidone, PVP)(Mw: ~360,000), 2-메틸이미다졸(2-methylimidazole)(99 %) 및 질산 아연 육수화물(98 %)은 시그마-알드리치로부터 구입하였다.
측정방법
전계 방출 주사전자현미경(FE-SEM) 및 주사투과전자현미경(STEM) 측정법은 1 kV 및 30 kV에서 SU-8020(Hitachi, Tokyo, Japan)을 사용하여 수행하였다. 532 nm 레이저를 사용한 푸리에 변환 적외선(Fourier transform infrared, FT-IR) 및 라만 분광학(Raman spectroscopy) 측정법은 각각 Varian 660-IR (Varian Medical Systems, Inc., California, USA) 및 SENTERRA 라만 현미경 분광기(Bruker Corporation, Billerica, MA, USA)로 수행하였다. 1°< 2θ < 30°범위의 X-ray 회절(XRD) 측정은 40 kV 및 30 mA (CuKα radiation, λ = 0.154 nm)에서 SmartLab(Rigaku)로 수행하였다.
CNT, 그래핀 또는 GO 코어; 및 ZIF-8 쉘의 코어-쉘 복합체의 제조
ZIF-8 쉘을 갖는 탄소 재료의 코어-쉘 복합체를 하기와 같이 인 시츄(in situ) ZIF-8 합성으로 제조하였다.
CNT(30 mg)을 PVP 메탄올 용액(2 mg/mL, 60 mL)에 첨가한 후, 욕(bath) 타입 초음파기(JAC-3010, KODO)에서 1시간 동안 초음파 처리하였다. 원심분리(20,000 g, 1 h) 후에, 상층액을 제거하고, 상기 침전물을 메탄올(15 mL) 중에 재분산시키고 메탄올 중의 2-메틸이미다졸(2-MeIm)(22 mg/mL, 60 mL)을 첨가한 다음, 메탄올 중의 질산 아연 육수화물(11 mg/mL, 12 mL)을 교반하면서 상기 분산액에 조심스럽게 첨가하였다. 생생된 침전물을 원심분리(20,000 g, 0.5 h) 후에 수집한 다음, 메탄올로 세척하고 40℃의 진공오븐에서 건조하였다.
ZIF-8 쉘을 갖는 그래핀 및 GO 코어-쉘 복합체도 동일한 과정으로 제조하였다.
실험예 1: CNT, 그래핀 또는 GO 코어; 및 ZIF-8 쉘의 코어-쉘 복합체의 형태 조사
도 3에 도시된 바와 같이, PVP-CNT를 포함하는 ZIF-8 복합체(PVP-CNT/ZIF-8) 및 CNT를 포함하는 ZIF-8 복합체(CNT/ZIF-8)는 확실하게 원래의 CNT의 직경보다 더욱 두꺼웠는데, 이는 ZIF-8 쉘의 형성을 나타낸다. 도 3을 통해, ZIF-8 입자가 PVP-CNT/ZIF-8 복합체에서는 거의 보여지지 않으나, 현저히 대조적으로, 많은 ZIF-8 응집물이 CNT/ZIF-8 복합체에서는 관찰되는 것을 알 수 있었다. 따라서, PVP가 CNT 표면상에서 구조유도제로서 작용하였음을 알 수 있다.
또한, PVP-기능화된 그래핀(PVP-G) 및 PVP-기능화된 GO(PVP-GO)을 사용할 경우에도 유사한 거동이 나타났다(도 4). PVP-G을 포함하는 ZIF-8 복합체(PVP-G/ZIF-8) 및 PVP-GO를 포함하는 ZIF-8 복합체(PVP-GO/ZIF-8)에서, 배열된(decorated) ZIF-8 나노입자의 크기는 도 4에서 볼 수 있는 것처럼 원래의 그래핀을 포함하는 ZIF-8 복합체(G/ZIF-8) 및 원래의 GO를 포함하는 ZIF-8 복합체(GO/ZIF-8)보다 더욱 작고 유의적으로 더욱 균일하였다. 도 5에 도시된 바와 같이, PVP-CNT/ZIF-8의 주사투과전자현미경(STEM) 이미지는 각각의 분산된 CNT 표면상에 쉘 구조를 확실하게 보여주고, PVP-G/ZIF-8 및 PVP-GO/ZIF-8 상에 배열된 ZIF-8 나노입자의 직경은 35nm 이하로 나타났다.
모든 복합체는 라만 스펙트럼에서 특징적인 피크를 보였다. 구체적으로, CNT, 그래핀 및 GO의 G-밴드(~1590 cm-1) 및 D-band(~1350 cm-1)를 보였다(도 6).
또한, Fourier transform infrared spectroscopy (FT-IR) 피크를 관찰한 결과, 지지되는 탄소 물질없이 제조된 ZIF-8과 거의 같은 파수(wavenumber)가 나타났다(도 7). 또한, 복합체의 X-ray 회절(XRD) 패턴은 ZIF-8과 유사한 패턴을 보여주었다(도 8). 상기 FT-IR 및 XRD 결과를 통해, ZIF-8 결정의 형성을 확인할 수 있으며, 이를 통해 ZIF-8-배열된 나노구조체의 형성을 알 수 있다.
실험예 2: 본 발명의 코어-쉘 복합체 제조시 금속 유기 구조체 형성 금속이온 화합물 및 유기 리간드의 농도의 영향
CNT@ZIF-8 코어쉘 구조체의 합성시, 금속 유기 구조체 형성 단위체인 2-MeIm 및 질산아연 육수화물의 농도를 달리하여 ZIF-8 쉘 형성에 미치는 영향을 조사하였다. 그 결과, 금속 유기 구조체 형성 단위체의 농도가 쉘 형성에 중요한 역할을 하는 것을 알 수 있었다. 구체적으로, 적절한 농도는 22 mg/mL의 2-MeIm 및 11 mg/mL의 질산아연 육수화물임을 확인할 수 있었다. 그러나, 4배 및 8배 더 높은 농도를 사용하였을 때, 도 9에 도시된 바와 같이 ZIF-8의 급속한 핵형성 및 성장으로 인하여 CNT@ZIF-8 코어쉘 구조체가 형성되지 않았다. 2배 더 높은 농도를 사용하였을 때, 케밥-유사(kebab-like) 구조체가 PVP-CNT/ZIF-8에서 관찰되었다(도 9B). 상기 결과를 통해, PVP-CNT의 표면 상의 ZIF-8 형성은 2-MeIm 및 질산아연 육수화물의 농도를 변화시킴으로써 간단하게 조절할 수 있음을 알 수 있다. 대조적으로, 상기 실험을 22 mg/mL의 2-MeIm 및 11 mg/mL의 질산아연 육수화물의 적절한 농도로 240분 이상 동안 교반하면서 수행한 경우에도, 반응 시간은 PVP-CNT/ZIF-8의 나노구조체에 영향을 주지 않았다(도 10).
실험예 3: 본 발명의 코어-쉘 복합체의 CO₂흡수 능력 조사
CO2 흡수 실험은 이전에 보고된 방법을 사용하여 TGA Q500(TA Instruments, New Castle, USA)로 수행하였다(E. P. Dillon et al., ACS Nano, 2008, 2, 156-164; E. A. Roth et al., Energy Fuels, 2013, 27, 4129-4136; W. Wang et al., Appl. Energy, 2014, 113, 334-341). 질소(N2) 및 이산화탄소(CO2) 기체는 각각 40 및 60 mL/min의 유속으로 퍼지(purge) 및 퍼니스(furnace) 기체로서 사용하였다. 시료에서 수분 및 기체를 제거하기 위해 100℃에서 4 시간 동안 N2 흘린 후에 중량 감소가 없는 것을 확인한 후에 모든 실험을 수행하였다. 퍼니스의 온도는 20℃/min의 속도로 70℃로 올리고, 이어서 퍼니스 기체를 CO2로 바뀌었다. 각각의 온도(70, 55, 40, 및 25℃)에서 1시간 동안의 등온 과정 후에, 퍼니스 기체를 25℃로부터 70℃로 가열 동안 CO2로부터 N2로 바꾸었다. 리사이클 테스트를 25℃에서 유사한 방법으로 수행하고, 열중량 분석(TGA)은 5℃/min의 속도로 900℃까지 가열하여 N2 분위기 하에 수행하였다.
그 결과를 도 11 내지 도 14에 나타내었다.
도 11에 도시된 바와 같이, PVP-CNT/ZIF-8 내에 CO2 흡수는 원래의 CNT 및 CNT/ZIF-8과 비교하여 유의적으로 향상되었다. 더욱 작은 크기를 갖는 나노입자의 균일한 배열이 수소 기체의 흡수 용량을 향상시킬 수 있는 것으로 보고된 바 있기 때문에(L. Wang et al., J. Phys. Chem. C, 2011, 115, 4793-4799), PVP-CNT/ZIF-8 내의 ZIF-8 함량이 CNT/ZIF-8 보다 더 낮음에도 불구하고, PVP-CNT/ZIF-8 상에 입자 크기가 작은 ZIF-8의 균일한 배열이 흡수 특성을 유의적으로 향상시킨 것임을 알 수 있었다(도 12).
또한, PVP-G/ZIF-8은 원래의 그래핀 및 G/ZIF-8보다 큰 CO2 흡수를 보여주었다. 그러나, CO2 흡수 속도가 가공하지 않은 GO와 비교하여 향상되었음에도 불구하고 이러한 향상은 PVP-GO/ZIF-8에서는 관찰되지 않았다(도 13). PVP-CNT/ZIF-8 상에서의 CO2 흡수의 안정한 재현성은 도 14에 도시한 바와 같이 흡수 용량에서 임의의 감소가 없는 사이클링 테스트로부터 확인하였다.

Claims (21)

  1. 탄소 나노 입자로 이루어진 코어부,
    상기 탄소 나노 입자 표면에 구조 유도 물질(structure directing agent)로 형성된 제1 쉘부, 및
    상기 제1 쉘부 표면에 금속 유기 구조체(Metal-Organic Framework, MOF)로 코팅된 제2 쉘부를 포함하는 코어-쉘 구조의 나노 복합체.
  2. 제1항에 있어서, 상기 탄소 나노 입자는 탄소나노튜브, 탄소나노와이어, 그래핀, 산화 그래핀 및 카본 블랙으로 이루어진 군으로부터 선택되는 1종 이상인 코어-쉘 구조의 나노 복합체.
  3. 제1항에 있어서, 상기 구조 유도 물질은 폴리비닐피롤리돈 및 구연산 (Citric acid)으로 이루어진 군으로부터 선택되는 1종 이상인 코어-쉘 구조의 나노 복합체.
  4. 제1항에 있어서, 상기 금속 유기 구조체의 금속 이온은 Li+, Na+, K+, Rb+, Be2+, Mg2+, Ca2+, Sr2+, Ba2+, Sc3+, Y3+, Ti4+, Zr4+, Hf+, V4+, V3+, V2+, Nb3+, Ta3+, Cr3+, Mo3+, W3+, Mn3+, Mn2+, Re3+, Re2+, Fe3+, Fe2+, Ru3+, Ru2+, Os3+, Os2+, Co3+, Co2+, Rh2+, Rh+, Ir2+, Ir+, Ni2+, Ni+, Pd2+, Pd+, Pt2+, Pt+, Cu2+, Cu+, Ag+, Au+, Zn2+, Cd2+, Hg2+, Al3+, Ga3+, In3+, Tl3+, Si4+, Si2+, Ge4+, Ge2+, Sn4+, Sn2+, Pb4+, Pb2+, As5+, As3+, As+, Sb5+, Sb3+, Sb+, Bi5+, Bi3+ 및 Bi+로 이루어진 군으로부터 선택되는 1종 이상인 코어-쉘 구조의 나노 복합체.
  5. 제1항에 있어서, 상기 금속 유기 구조체의 유기 리간드는 2-메틸이미다졸(2-methylimidazole), 에탄디오산(ethanedioic acid), 프로판디오산(propanedioic acid), 부탄디오산(butanedioic acid), 펜탄디오산(pentanedioic acid), o-프탈산(o-phthalic acid), m-프탈산(m-phthalic acid), p-프탈산(p-phthalic acid), 2-히드록시-1,2,3-프로판트리카르복실산(2-hydroxy-1,2,3-propanetricarboxylic acid), 벤젠-1,3,5-트리카르복실산(benzene-1,3,5-tricarboxylic acid), 1H-1,2,3-트리아졸(1H-1,2,3-triazole), 1H-1,2,4-트리아졸(1H-1,2,4-triazole) 및 3,4-디히드록시-3-사이클로부텐-1,2-디온(3,4-dihydroxy-3-cyclobutene-1,2-dione)으로 이루어진 군으로부터 선택되는 1종 이상인 코어-쉘 구조의 나노 복합체.
  6. 제1항에 있어서, 기체 흡수 특성을 갖는 것을 특징으로 하는 코어-쉘 구조의 나노 복합체.
  7. 제6항에 있어서, 상기 기체는 CO2, Ar, Ne, He, CF4, H2, N2, O2 및 CnH2n+2(여기에서, n은 1 내지 4의 정수)로 이루어진 군으로부터 선택되는 1종 이상인 코어-쉘 구조의 나노 복합체.
  8. 하기 단계를 포함하는 제1항의 나노 복합체의 제조방법:
    구조 유도 물질 용액에 탄소 나노 입자를 분산시키는 단계(단계 1); 및
    상기 분산액에 금속 유기 구조체를 형성하는 금속이온 화합물 및 유기 리간드를 첨가하고 교반하는 단계(단계 2).
  9. 제8항에 있어서, 상기 단계 1과 단계 2 사이에 과량의 구조 유도 물질을 제거하는 단계(단계 1-1)를 추가로 포함하는 나노 복합체의 제조방법.
  10. 제9항에 있어서, 상기 단계 1-1은 단계 1의 분산액을 원심분리한 후 상층액을 제거함으로써 수행하는 것을 특징으로 하는 나노 복합체의 제조방법.
  11. 제8항에 있어서, 상기 구조 유도 물질은 폴리비닐피롤리돈 및 구연산 (Citric acid)으로 이루어진 군으로부터 선택되는 1종 이상인 나노 복합체의 제조방법.
  12. 제8항에 있어서, 상기 구조 유도 물질의 농도는 0.5 ㎎/㎖ 내지 5 ㎎/㎖인 나노 복합체의 제조방법.
  13. 제8항에 있어서, 상기 탄소 나노 입자는 탄소나노튜브, 탄소나노와이어, 그래핀, 산화 그래핀 및 카본 블랙으로 이루어진 군으로부터 선택되는 1종 이상인 나노 복합체의 제조방법.
  14. 제8항에 있어서, 상기 탄소 나노 입자의 농도는 0.2 ㎎/㎖ 내지 2 ㎎/㎖인 나노 복합체의 제조방법.
  15. 제8항에 있어서, 상기 단계 1)의 용매는 C1-4 알콜, 물, 디메틸포름아미드 및 아세톤으로 이루어진 군으로부터 선택되는 1종 이상인 나노 복합체의 제조방법.
  16. 제8항에 있어서, 상기 금속 유기 구조체를 형성하는 금속이온 화합물의 금속 이온은 Li+, Na+, K+, Rb+, Be2+, Mg2+, Ca2+, Sr2+, Ba2+, Sc3+, Y3+, Ti4+, Zr4+, Hf+, V4+, V3+, V2+, Nb3+, Ta3+, Cr3+, Mo3+, W3+, Mn3+, Mn2+, Re3+, Re2+, Fe3+, Fe2+, Ru3+, Ru2+, Os3+, Os2+, Co3+, Co2+, Rh2+, Rh+, Ir2+, Ir+, Ni2+, Ni+, Pd2+, Pd+, Pt2+, Pt+, Cu2+, Cu+, Ag+, Au+, Zn2+, Cd2+, Hg2+, Al3+, Ga3+, In3+, Tl3+, Si4+, Si2+, Ge4+, Ge2+, Sn4+, Sn2+, Pb4+, Pb2+, As5+, As3+, As+, Sb5+, Sb3+, Sb+, Bi5+, Bi3+ 및 Bi+로 이루어진 군으로부터 선택되는 1종 이상인 나노 복합체의 제조방법.
  17. 제8항에 있어서, 상기 금속 유기 구조체를 형성하는 금속이온 화합물의 농도는 5 ㎎/㎖ 내지 20 ㎎/㎖인 나노 복합체의 제조방법.
  18. 제8항에 있어서, 상기 금속 유기 구조체를 형성하는 유기 리간드는 2-메틸이미다졸(2-methylimidazole), 에탄디오산(ethanedioic acid), 프로판디오산(propanedioic acid), 부탄디오산(butanedioic acid), 펜탄디오산(pentanedioic acid), o-프탈산(o-phthalic acid), m-프탈산(m-phthalic acid), p-프탈산(p-phthalic acid), 2-히드록시-1,2,3-프로판트리카르복실산(2-hydroxy-1,2,3-propanetricarboxylic acid), 벤젠-1,3,5-트리카르복실산(benzene-1,3,5-tricarboxylic acid), 1H-1,2,3-트리아졸(1H-1,2,3-triazole), 1H-1,2,4-트리아졸(1H-1,2,4-triazole) 및 3,4-디히드록시-3-사이클로부텐-1,2-디온(3,4-dihydroxy-3-cyclobutene-1,2-dione)으로 이루어진 군으로부터 선택되는 1종 이상인 나노 복합체의 제조방법.
  19. 제8항에 있어서, 상기 금속 유기 구조체를 형성하는 유기 리간드의 농도는 10 ㎎/㎖ 내지 40 ㎎/㎖인 나노 복합체의 제조방법.
  20. 제1항 내지 제7항 중 어느 한 항의 코어-쉘 구조의 나노 복합체를 포함하는 기체 흡수 또는 분리용 조성물.
  21. 제20항에 있어서, 상기 기체는 CO2, Ar, Ne, He, CF4, H2, N2, O2 및 CnH2n+2(여기에서, n은 1 내지 4의 정수)로 이루어진 군으로부터 선택되는 1종 이상인 기체 흡수 또는 분리용 조성물.
PCT/KR2014/010572 2014-09-12 2014-11-05 탄소 나노 입자 및 금속 유기 구조체를 포함하는 코어-쉘 구조의 나노 복합체, 이의 제조방법 및 이를 포함하는 기체 흡수용 조성물 WO2016039504A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2014-0121357 2014-09-12
KR1020140121357A KR101638049B1 (ko) 2014-09-12 2014-09-12 탄소 나노 입자 및 금속 유기 구조체를 포함하는 코어-쉘 구조의 나노 복합체, 이의 제조방법 및 이를 포함하는 기체 흡수용 조성물

Publications (1)

Publication Number Publication Date
WO2016039504A1 true WO2016039504A1 (ko) 2016-03-17

Family

ID=55459236

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/010572 WO2016039504A1 (ko) 2014-09-12 2014-11-05 탄소 나노 입자 및 금속 유기 구조체를 포함하는 코어-쉘 구조의 나노 복합체, 이의 제조방법 및 이를 포함하는 기체 흡수용 조성물

Country Status (2)

Country Link
KR (1) KR101638049B1 (ko)
WO (1) WO2016039504A1 (ko)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106058215A (zh) * 2016-08-05 2016-10-26 中南大学 十二面体多孔Co3ZnC/C复合材料的制备方法及在锂离子电池中的应用
CN106366327A (zh) * 2016-08-26 2017-02-01 苏州大学 一种镉基取代苯基间苯二甲酸金属配位聚合物及其制备方法
CN110037052A (zh) * 2019-04-11 2019-07-23 浙江工商大学 一种光催化杀菌剂及其制备方法和应用
WO2019147093A1 (ko) * 2018-01-26 2019-08-01 주식회사 엘지화학 도전재, 이를 포함하는 전극 형성용 슬러리, 전극 및 이를 이용하여 제조되는 리튬 이차 전지
CN110379638A (zh) * 2019-08-26 2019-10-25 合肥工业大学 一种通过新型配体合成中空球状Ni-CoMOF材料的方法与应用
CN111710991A (zh) * 2020-06-24 2020-09-25 大连理工大学 螺旋碳纳米线圈/核壳结构磁性纳米颗粒复合材料、制备方法及其在电磁波领域的应用
CN112816524A (zh) * 2019-11-18 2021-05-18 新唐科技股份有限公司 气体感测器
CN112853378A (zh) * 2021-01-18 2021-05-28 南昌航空大学 一种用于二氧化碳电还原的Bi-NC催化剂的制备方法
CN113122238A (zh) * 2019-12-31 2021-07-16 Tcl集团股份有限公司 纳米材料及其制备方法、薄膜和发光器件
CN113437279A (zh) * 2021-08-26 2021-09-24 河南师范大学 一种MOFs包覆高导电多壁碳纳米管复合材料的制备方法及其在钾离子电池中的应用
CN114042450A (zh) * 2021-11-19 2022-02-15 华侨大学 一种核壳型钯铂复合纳米多孔材料及其制备方法和应用
CN115301206A (zh) * 2021-05-07 2022-11-08 中国石油化工股份有限公司 一种金属有机骨架材料合成母液的再利用方法
CN115837286A (zh) * 2022-11-14 2023-03-24 北京师范大学 一种用于过氧化物活化的限域纳米反应器及其制备方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106268706B (zh) * 2016-08-10 2018-08-10 南开大学 一种磁性纳米无机砷吸附剂的制备方法及其应用
CN107913674B (zh) * 2017-10-27 2020-08-04 苏州大学 负载mof的3d钌/石墨烯气凝胶复合材料及其制备方法与在持续处理co中的应用
CN108559098B (zh) * 2018-05-11 2020-06-26 西北大学 一种金属有机框架化合物和制备方法及应用
CN109305697B (zh) * 2018-08-27 2020-11-20 临沂大学 一种含氮分级孔碳纳米管膜的制备方法
CN112652778B (zh) * 2019-10-10 2022-08-02 华中科技大学 一种石墨烯负载氮掺杂碳纳米管复合材料及其制备和应用
KR20230036052A (ko) * 2021-09-06 2023-03-14 주식회사 엘지화학 유기금속 나노 구조체 분말을 포함하는 복합체 및 그 제조방법
CN115430405B (zh) * 2022-09-13 2024-03-01 昆明理工大学 一种修饰锆基mof吸附剂及其制备方法与应用
WO2024107531A1 (en) * 2022-11-15 2024-05-23 Numat Technologies, Inc Hybrid adsorbent granules and filters made with the granules

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130157837A1 (en) * 2011-12-15 2013-06-20 Council Of Scientific And Industrial Research Confinement of nanosized metal organic framework in nano carbon morphologies

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130157837A1 (en) * 2011-12-15 2013-06-20 Council Of Scientific And Industrial Research Confinement of nanosized metal organic framework in nano carbon morphologies

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CHEN, LIYONG ET AL.: "Synthesis of Au@ ZIF-8 single-or multi-core-shell structures for photocatalysis", CHEMICAL COMMUNICATIONS, vol. 50, no. 63, pages 8651 - 8654 *
DUMEE, LUDOVIC ET AL.: "Seeded growth of ZIF-8 on the surface of carbon nanotubes towards self-supporting gas separation membranes", JOURNAL OF MATERIALS CHEMISTRY A, vol. 1, no. 32, 2013, pages 9208 - 9214 *
XIANG, ZHONGHUA ET AL.: "Metal-organic frameworks with incorporated carbon nanotubes: improving carbon dioxide and methane storage capacities by lithium doping", ANGEWANDTE CHEMIE INTEMATIONAL EDITION, vol. 50, no. 2, 2011, pages 491 - 494, XP055033804, DOI: doi:10.1002/anie.201004537 *
YOO, JONGTAE ET AL.: "Homogeneous decoration of zeolitic imidazolate framework-8 (ZIF-8) with core-shell structures on carbon nanotubes", RSC ADVANCES, vol. 4, no. 91, 26 September 2014 (2014-09-26), pages 49614 - 49619 *

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106058215A (zh) * 2016-08-05 2016-10-26 中南大学 十二面体多孔Co3ZnC/C复合材料的制备方法及在锂离子电池中的应用
CN106366327A (zh) * 2016-08-26 2017-02-01 苏州大学 一种镉基取代苯基间苯二甲酸金属配位聚合物及其制备方法
CN106366327B (zh) * 2016-08-26 2019-04-26 苏州大学 一种镉基取代苯基间苯二甲酸金属配位聚合物及其制备方法
WO2019147093A1 (ko) * 2018-01-26 2019-08-01 주식회사 엘지화학 도전재, 이를 포함하는 전극 형성용 슬러리, 전극 및 이를 이용하여 제조되는 리튬 이차 전지
US11411222B2 (en) 2018-01-26 2022-08-09 Korea Advanced Institute Of Science And Technology Conductive agent, slurry for forming electrode including same, electrode, and lithium secondary battery manufactured using same
CN110037052A (zh) * 2019-04-11 2019-07-23 浙江工商大学 一种光催化杀菌剂及其制备方法和应用
CN110379638A (zh) * 2019-08-26 2019-10-25 合肥工业大学 一种通过新型配体合成中空球状Ni-CoMOF材料的方法与应用
CN110379638B (zh) * 2019-08-26 2021-02-05 合肥工业大学 一种通过新型配体合成中空球状Ni-CoMOF材料的方法与应用
CN112816524A (zh) * 2019-11-18 2021-05-18 新唐科技股份有限公司 气体感测器
CN113122238A (zh) * 2019-12-31 2021-07-16 Tcl集团股份有限公司 纳米材料及其制备方法、薄膜和发光器件
CN111710991A (zh) * 2020-06-24 2020-09-25 大连理工大学 螺旋碳纳米线圈/核壳结构磁性纳米颗粒复合材料、制备方法及其在电磁波领域的应用
CN112853378A (zh) * 2021-01-18 2021-05-28 南昌航空大学 一种用于二氧化碳电还原的Bi-NC催化剂的制备方法
CN112853378B (zh) * 2021-01-18 2023-10-10 南昌航空大学 一种用于二氧化碳电还原的Bi-NC催化剂的制备方法
CN115301206A (zh) * 2021-05-07 2022-11-08 中国石油化工股份有限公司 一种金属有机骨架材料合成母液的再利用方法
CN113437279A (zh) * 2021-08-26 2021-09-24 河南师范大学 一种MOFs包覆高导电多壁碳纳米管复合材料的制备方法及其在钾离子电池中的应用
CN113437279B (zh) * 2021-08-26 2021-11-16 河南师范大学 一种MOFs包覆高导电多壁碳纳米管复合材料的制备方法及其在钾离子电池中的应用
CN114042450A (zh) * 2021-11-19 2022-02-15 华侨大学 一种核壳型钯铂复合纳米多孔材料及其制备方法和应用
CN115837286A (zh) * 2022-11-14 2023-03-24 北京师范大学 一种用于过氧化物活化的限域纳米反应器及其制备方法

Also Published As

Publication number Publication date
KR101638049B1 (ko) 2016-07-11
KR20160031672A (ko) 2016-03-23

Similar Documents

Publication Publication Date Title
WO2016039504A1 (ko) 탄소 나노 입자 및 금속 유기 구조체를 포함하는 코어-쉘 구조의 나노 복합체, 이의 제조방법 및 이를 포함하는 기체 흡수용 조성물
JP5034544B2 (ja) カーボンナノチューブ集合体、その製造方法
JP7350378B2 (ja) 小分子系自立フィルムおよびハイブリッド材料
US10335765B2 (en) Complex of carbon structure and covalent organic framework, preparation method therefor, and use thereof
US6203814B1 (en) Method of making functionalized nanotubes
Yoo et al. Homogeneous decoration of zeolitic imidazolate framework-8 (ZIF-8) with core–shell structures on carbon nanotubes
EP2835375A1 (en) Bis-salphen compounds and carbonaceous material composites comprising them
JP2008508183A (ja) バンドギャップによるカーボンナノチューブのバルク分離
Qian et al. Multiphase separation of copper nanowires
WO2008011623A2 (en) Complexes of carbon nanotubes and fullerenes with molecular-clips and use thereof
KR101608850B1 (ko) 중공형 다공성 탄소입자 및 이의 제조방법
KR20010085825A (ko) 단일벽 탄소 나노튜브의 용매화를 용이하게 하기 위한단일벽 탄소 나노튜브의 화학적 유도체화 및 그유도체화된 나노튜브의 용도
CN101125649B (zh) 分离金属性单壁碳纳米管的方法
Okutan et al. Synthesis of a dendrimeric phenoxy-substituted cyclotetraphosphazene and its non-covalent interactions with multiwalled carbon nanotubes
Cui et al. Doped polyaniline/multiwalled carbon nanotube composites: Preparation and characterization
US20160276052A1 (en) Self-Assembly of Nanotubes
JP5686416B2 (ja) カーボンナノチューブでコーティングされた粒子およびその製造方法
Coutinho et al. Mesoporous benzene silica functionalized with various amine groups
Lei et al. Preparation and characterization of carbon nanotubes-polymer/CdSe hybrid nanocomposites through combining electrostatic adsorption and ATRP technique
KR102120377B1 (ko) 금속나노와이어 및 이의 제조방법
KR20180044252A (ko) 금속나노와이어 및 이의 제조방법
Xu et al. Synthesis, functionalization, and characterization
Voggu et al. Selective synthesis of metallic and semiconducting single-walled carbon nanotubes
KR102145538B1 (ko) 기능화된 탄소나노튜브의 제조 방법
Hong et al. Implications of passivated conductive fillers on dielectric behavior of nanocomposites

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14901465

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14901465

Country of ref document: EP

Kind code of ref document: A1