WO2016039006A1 - 空気入りタイヤ - Google Patents

空気入りタイヤ Download PDF

Info

Publication number
WO2016039006A1
WO2016039006A1 PCT/JP2015/069831 JP2015069831W WO2016039006A1 WO 2016039006 A1 WO2016039006 A1 WO 2016039006A1 JP 2015069831 W JP2015069831 W JP 2015069831W WO 2016039006 A1 WO2016039006 A1 WO 2016039006A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
copolymer
rubber
hydrogenated
pneumatic tire
Prior art date
Application number
PCT/JP2015/069831
Other languages
English (en)
French (fr)
Inventor
亜由子 山名
裕平 山城
崇 石野
Original Assignee
住友ゴム工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友ゴム工業株式会社 filed Critical 住友ゴム工業株式会社
Priority to CN201580045221.3A priority Critical patent/CN106795335B/zh
Priority to EP15840502.7A priority patent/EP3181631B1/en
Priority to JP2015562973A priority patent/JP6627513B2/ja
Priority to US15/503,314 priority patent/US20170233562A1/en
Publication of WO2016039006A1 publication Critical patent/WO2016039006A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L15/00Compositions of rubber derivatives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L91/00Compositions of oils, fats or waxes; Compositions of derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L91/00Compositions of oils, fats or waxes; Compositions of derivatives thereof
    • C08L91/06Waxes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/02Hydrogenation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F236/00Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F236/02Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F236/04Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • C08F236/10Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated with vinyl-aromatic monomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/006Additives being defined by their surface area

Definitions

  • the present invention relates to a pneumatic tire manufactured using a predetermined rubber composition.
  • a rubber composition for automobile tires a rubber composition containing a conjugated diene polymer such as polybutadiene and a butadiene-styrene copolymer, and a filler such as carbon black and silica is used.
  • Patent Document 1 proposes a method using a diene rubber (modified rubber) modified with an organosilicon compound containing an amino group and an alkoxy group.
  • the fuel efficiency is improved by such conventional techniques, it is also important to sufficiently secure the wear resistance and the fracture characteristics (rubber fracture strength) from the viewpoint of economy and safety.
  • the wear resistance which is contrary to the fuel economy is not sufficient, and there is a problem of causing a rubber chipping, and the rubber breaking strength and the wear resistance are improved. There is room.
  • An object of the present invention is to solve the above-mentioned problems, and to provide a pneumatic tire in which the rubber breaking strength and the wear resistance are favorably improved.
  • the present invention is a pneumatic tire produced using a rubber composition, wherein the rubber composition has a hydrogenation ratio of a conjugated diene portion obtained by copolymerizing an aromatic vinyl compound and a conjugated diene compound.
  • the water in 100% by mass of the rubber component, comprising a hydrogenated copolymer having 75% by mole or more, fine particle silica having a CTAB specific surface area of 160 m 2 / g or more, and a BET specific surface area of 170 m 2 / g or more and carbon black
  • the present invention relates to a pneumatic tire in which the content of the addition copolymer is 75% by mass or more and the content of the carbon black is 3 parts by mass or more with respect to 100 parts by mass of the rubber component.
  • the fine particle silica preferably has a CTAB specific surface area of 180 m 2 / g or more and a BET specific surface area of 185 m 2 / g or more.
  • the weight average molecular weight of the hydrogenated copolymer is preferably 200,000 to 2,000,000.
  • the hydrogenation rate of the said hydrogenated copolymer is 90 mol% or more.
  • the said hydrogenated copolymer is a hydrogenated styrene butadiene copolymer.
  • the hydrogenated styrene butadiene copolymer is preferably a hydrogenated modified styrene butadiene copolymer.
  • the styrene content of the hydrogenated styrene butadiene copolymer is preferably 5 to 40% by mass.
  • the content of the hydrogenated styrene-butadiene copolymer in 100% by mass of the rubber component is preferably 90 to 100% by mass.
  • the content of the fine particle silica is preferably 1 to 200 parts by mass with respect to 100 parts by mass of the rubber component.
  • the specific hydrogenated copolymer having a hydrogenation rate of the conjugated diene part of 75 mol% or more is contained in 100 mass% of the rubber component at 75 mass% or more and 100 mass parts of the rubber component Since it is a pneumatic tire produced using a rubber composition containing 3 parts by mass or more of carbon black and further containing particulate silica having a specific CTAB specific surface area and a BET specific surface area, it has good rubber breaking strength and abrasion resistance. Have.
  • the pneumatic tire of the present invention is a conjugated diene of a copolymer obtained by copolymerizing an aromatic vinyl compound and a conjugated diene compound (hereinafter also referred to as a copolymer of an aromatic vinyl compound and a conjugated diene compound).
  • the rubber composition is produced using a rubber composition which contains fine particle silica containing at least a part, and further having a CTAB specific surface area of 160 m 2 / g or more and a BET specific surface area of 170 m 2 / g or more.
  • 100 parts of a rubber component is a hydrogenated copolymer in which a conjugated diene portion of a copolymer of an aromatic vinyl compound and a conjugated diene compound is hydrogenated and the hydrogenation rate is 75 mol% or more. It contains 75% by mass or more in%, and 3 parts by mass or more of carbon black with respect to 100 parts by mass of the rubber component. Thereby, the rubber breaking strength and the wear resistance can be favorably improved while maintaining or improving the good fuel economy. Further, the rubber composition in the present invention further contains fine particle silica having a CTAB specific surface area of 160 m 2 / g or more and a BET specific surface area of 170 m 2 / g or more.
  • the silica is well dispersed, and low fuel consumption, rubber fracture strength and abrasion resistance (Especially, the rubber breaking strength and the abrasion resistance) can be synergistically improved.
  • the rubber composition according to the present invention is characterized in that it contains, as a rubber component, a hydrogenated copolymer in which a conjugated diene portion of a copolymer of an aromatic vinyl compound and a conjugated diene compound is hydrogenated.
  • a hydrogenated copolymer in which a conjugated diene portion of a copolymer of an aromatic vinyl compound and a conjugated diene compound is hydrogenated.
  • aromatic vinyl compound examples include styrene, ⁇ -methylstyrene, 1-vinylnaphthalene, 3-vinyltoluene, ethylvinylbenzene, divinylbenzene, 4-cyclohexylstyrene, 2,4,6-trimethylstyrene and the like. These may be used alone or in combination of two or more. Among them, practical aspects such as availability of monomers and the reason for the effects of the present invention to be obtained more suitably. Particularly preferred is styrene.
  • conjugated diene compounds include 1,3-butadiene, isoprene, 1,3-pentadiene, 2,3-dimethylbutadiene, 2-phenyl-1,3-butadiene, and 1,3-hexadiene. These may be used alone or in combination of two or more. Among them, practical aspects such as availability of monomers and the reason for the effects of the present invention to be obtained more suitably. 1,3-butadiene and isoprene are preferable, and 1,3-butadiene is more preferable.
  • a copolymer of an aromatic vinyl compound and a conjugated diene compound a copolymer of styrene and 1,3-butadiene (styrene-butadiene copolymer) is preferable. Therefore, as a hydrogenated copolymer, a hydrogenated styrene butadiene copolymer is preferable. Furthermore, the hydrogenated styrene butadiene copolymer is preferably a hydrogenated modified styrene butadiene copolymer modified by the method described later.
  • the order of copolymerization is not particularly limited as long as the above-mentioned styrene butadiene copolymer copolymerizes styrene and 1,3-butadiene, and may be random copolymerization or block copolymerization, but random copolymerization is preferable. .
  • copolymers of an aromatic vinyl compound other than a styrene butadiene copolymer and a conjugated diene compound are examples of an aromatic vinyl compound other than a styrene butadiene copolymer and a conjugated diene compound.
  • the hydrogenation rate of the hydrogenated copolymer is 75 mol% or more, preferably 80 mol% or more, More preferably, it is 90 mol% or more, still more preferably 93 mol% or more. If the hydrogenation rate is less than 75 mol%, it is difficult to improve the rubber fracture strength and the wear resistance.
  • the hydrogenation rate of the hydrogenated copolymer is preferably 99 mol% or less, more preferably 98 mol% or less. If the degree of hydrogenation exceeds 99 mol%, the rubber composition may become hard.
  • the hydrogenation rate can be calculated from the spectrum reduction rate of the unsaturated bond part of the spectrum obtained by measuring H 1 -NMR.
  • the weight average molecular weight (Mw) of the hydrogenated copolymer is preferably 200,000 or more, more preferably 400,000 or more. If Mw is less than 200,000, there is a possibility that good rubber fracture strength and abrasion resistance can not be obtained.
  • the Mw of the hydrogenated copolymer is preferably 2,000,000 or less, more preferably 1,000,000 or less, and still more preferably 700,000 or less. If the Mw exceeds 2,000,000, the processability tends to decrease.
  • weight average molecular weight (Mw) and number average molecular weight (Mn) are gel permeation chromatograph (GPC) (GPC-8000 series manufactured by Tosoh Corp., detector: differential refractometer, column: It can obtain
  • GPC gel permeation chromatograph
  • the glass transition temperature (Tg) of the hydrogenated copolymer is preferably ⁇ 45 ° C. or higher, more preferably ⁇ 35 ° C. or higher, still more preferably ⁇ 30 ° C. or higher, still more preferably ⁇ 25 ° C. or higher, ⁇ 24.5 C. or higher is particularly preferred, and -24.degree. C. or higher is most preferred. If the Tg is less than ⁇ 45 ° C., the heat buildup may be deteriorated. Also, the Tg of the hydrogenated copolymer is preferably less than ⁇ 10 ° C., more preferably less than ⁇ 12.5 ° C., still more preferably less than ⁇ 15 ° C., and particularly preferably less than ⁇ 20 ° C.
  • the glass transition temperature (Tg) of a hydrogenated copolymer is measured by the method of the statement of the below-mentioned Example.
  • the styrene content of the hydrogenated styrene butadiene copolymer is preferably 5% by mass or more, more preferably 10% by mass or more, and more preferably 15% by mass. % Or more, more preferably 20% by mass or more, particularly preferably 25% by mass or more. If the styrene content is less than 5% by mass, sufficient grip performance may not be obtained. Further, the styrene content of the hydrogenated styrene butadiene copolymer is preferably 40% by mass or less, more preferably 35% by mass or less.
  • styrene content exceeds 40% by mass, sufficient rubber fracture strength and abrasion resistance can not be obtained, and the fuel economy may also be deteriorated.
  • the styrene content is in the above range, the effects of the present invention are more suitably obtained.
  • styrene content is measured by the method as described in the Example mentioned later.
  • the hydrogenated copolymer can be synthesized, for example, by subjecting a polymer obtained by polymerizing an aromatic vinyl compound and a conjugated diene compound to a hydrogenation treatment, and specifically, it can be synthesized by the following method.
  • Polymerization method There is no restriction
  • the polymerization type may be either batch type or continuous type.
  • the monomer concentration in the solvent (the total of styrene and 1,3-butadiene in the case of a styrene butadiene copolymer) is preferably 5% by mass or more, and more preferably 10% by mass or more . If the monomer concentration in the solution is less than 5% by mass, the amount of the copolymer obtained is small, and the cost tends to be high. Moreover, 50 mass% or less is preferable, and, as for the monomer concentration in a solvent, 30 mass% or less is more preferable. If the monomer concentration in the solvent exceeds 50% by mass, the solution viscosity becomes too high, which makes stirring difficult and tends to make polymerization difficult.
  • the polymerization initiator is not particularly limited, but an organic lithium compound is preferably used.
  • the organic lithium compound is preferably one having an alkyl group having a carbon number of 2 to 20, and examples thereof include ethyllithium, n-propyllithium, isopropyllithium, n-butyllithium, sec-butyllithium, tert-butyllithium, tert- Octyllithium, n-decyllithium, phenyllithium, 2-naphthyllithium, 2-butyl-phenyllithium, 4-phenyl-butyllithium, cyclohexyllithium, cyclopentyllithium, reaction product of diisopropenylbenzene with butyllithium, etc.
  • n-butyllithium or sec-butyllithium is preferable from the viewpoint of availability
  • the polymerization reaction may be carried out in the presence of a compound (R) obtained by mixing at least one of the above-mentioned organic lithium compounds and a compound (B1) having a functional group that interacts with silica.
  • a functional group having an interaction with silica can be introduced at the polymerization initiation terminal of the copolymer. This gives a copolymer having a modified starting end.
  • reaction refers to an intermolecular force which forms a covalent bond between molecules or which is weaker than the covalent bond (eg, ion-dipole interaction, dipole-dipole interaction, It means to form an electromagnetic force acting between molecules such as hydrogen bond, van der Waals force, etc.
  • the “functional group that interacts with silica” refers to a group having at least one atom that interacts with silica, such as a nitrogen atom, a sulfur atom, a phosphorus atom, or an oxygen atom.
  • a reaction product of an organic lithium compound and a nitrogen-containing compound such as a secondary amine compound preferred is a reaction product of an organic lithium compound and a nitrogen-containing compound such as a secondary amine compound.
  • the nitrogen-containing compound include, for example, dimethylamine, diethylamine, dipropylamine, dibutylamine, dodecamethyleneimine, N, N'-dimethyl-N'-trimethylsilyl-1,6-diaminohexane, piperidine, pyrrolidine, Hexamethyleneimine, heptamethyleneimine, dicyclohexylamine, N-methylbenzylamine, di- (2-ethylhexyl) amine, diallylamine, morpholine, N- (trimethylsilyl) piperazine, N- (tert-butyldimethylsilyl) piperazine, 1,1 3-ditrimethylsilyl-1,3,5-triazinan and the like.
  • the compound (R) is prepared by mixing the organic lithium compound and the compound (B1) in advance, and the prepared compound (R) is added to the polymerization system
  • the polymerization may be carried out by adding it to Alternatively, the organic lithium compound and the compound (B1) may be added to the polymerization system, and the two may be mixed in the polymerization system to prepare the compound (R) for polymerization.
  • Method of anionic polymerization There is no restriction
  • the target copolymer such as a styrene butadiene copolymer can be obtained by anionically polymerizing styrene, 1,3-butadiene and the like in the presence of
  • the hydrocarbon-based solvent is preferably one having 3 to 8 carbon atoms, such as propane, n-butane, isobutane, n-pentane, isopentane, n-hexane, cyclohexane, propene, 1-butene, isobutene, trans-2 -Butene, cis-2-butene, 1-pentene, 2-pentene, 1-hexene, 2-hexene, benzene, toluene, xylene, ethylbenzene and the like. These may be used alone or in combination of two or more.
  • the randomizer refers to the control of the microstructure of the conjugated diene moiety in the copolymer, for example, the 1,2-bond in butadiene, the increase in 3,4-bond in isoprene, etc., or the composition of monomer units in the copolymer It is a compound having an action such as control of distribution, for example, randomization of styrene unit and butadiene unit in a styrene butadiene copolymer.
  • the randomizer is not particularly limited, and any one of known compounds generally used conventionally as randomizers can be used.
  • potassium salts such as potassium-t-amylate and potassium-t-butoxide, and sodium salts such as sodium-t-amylate can be used.
  • One of these randomizers may be used alone, or two or more thereof may be used in combination.
  • 0.01 molar equivalent or more is preferable with respect to 1 mol of organic lithium compounds, and, as for the usage-amount of a randomizer, 0.05 molar equivalent or more is more preferable. If the amount of randomizer used is less than 0.01 molar equivalent, the effect of addition is small and it tends to be difficult to randomize. Moreover, 1000 molar equivalent or less is preferable with respect to 1 mol of organic lithium compounds, and, as for the usage-amount of a randomizer, 500 molar equivalent or less is more preferable. When the amount of randomizer used exceeds 1000 molar equivalents, the reaction rate of the monomers changes significantly, and on the contrary, it tends to be difficult to randomize.
  • the Tg of the copolymer can be adjusted by adjusting the type and amount of the randomizer. For example, decreasing the amount of tetrahydrofuran can lower the Tg of the copolymer.
  • reaction temperature The reaction temperature in the anionic polymerization is not particularly limited as long as the reaction proceeds suitably, but it is preferably -10 ° C to 100 ° C, and more preferably 25 ° C to 70 ° C.
  • the polymerization end of the copolymer interacts with the silica.
  • Functional groups can be introduced. Thereby, a copolymer in which the polymerization termination end is modified is obtained.
  • end means a moiety other than a structure derived from a monomer having a carbon-carbon double bond, which is present at the end of a molecular chain.
  • the polymerization initiation end may be unmodified or may be modified.
  • the compound (B2) is not particularly limited as long as it is a compound having a functional group capable of interacting with silica and capable of reacting with the polymerization active terminal.
  • Preferred specific examples of the compound (B2) include, for example, (I) a compound (B2-1) represented by the following formula (1):
  • a 1 has at least one atom selected from the group consisting of a nitrogen atom, a phosphorus atom and a sulfur atom, has no active hydrogen and is a nitrogen atom with respect to R 5 , R 3 and R 4 are hydrocarbyl groups, R 5 is a hydrocarbylene group, and n is an integer of 0 to 2, provided that R 3 and R 4 are hydrocarbyl groups.
  • the plurality of R 3 and R 4 may be the same or different.
  • the (thio) carbonyl group indicates a carbonyl group and a thiocarbonyl group
  • the iso (thio) cyanate group indicates an isocyanate group and an isothiocyanate group.
  • a linear or branched alkyl group having 1 to 20 carbon atoms a cycloalkyl group having 3 to 20 carbon atoms, or a 6 to 20 carbon atoms It is preferable that it is an aryl group.
  • R 5 is preferably a linear or branched alkanediyl group having 1 to 20 carbon atoms, a cycloalkylene group having 3 to 20 carbon atoms, or an arylene group having 6 to 20 carbon atoms.
  • n is preferably 0 or 1 from the viewpoint of enhancing the reactivity with the copolymer.
  • a 1 has at least one atom selected from the group consisting of a nitrogen atom, a phosphorus atom and a sulfur atom (hereinafter also referred to as a specific atom), and is bonded to R 5 at these specific atoms.
  • the specific atom is not bonded to active hydrogen and may be protected by, for example, a trisubstituted hydrocarbylsilyl group.
  • active hydrogen refers to a hydrogen atom bonded to an atom other than a carbon atom, preferably to one having a lower bonding energy than the carbon-hydrogen bond of polymethylene.
  • a 1 is preferably a group which can be an onium ion by an onium salt generator.
  • a 1 for example, a nitrogen-containing group in which two hydrogen atoms of a primary amino group are substituted by two protecting groups, and one hydrogen atom of a secondary amino group is substituted by one protecting group
  • a hydrogen-containing group, a tertiary amino group, an imino group, a pyridyl group, a primary phosphino group and two hydrogen atoms are substituted by two protecting groups, and a hydrogen atom of one secondary phosphino group is 1
  • Examples include a phosphorus-containing group which is substituted by one protecting group, a tertiary phosphino group, and a sulfur-containing group which is obtained by substituting one hydrogen atom of a thiol group by one protecting group.
  • the “protecting group” is a functional group which converts A 1 into a functional group inactive to the polymerization active terminal, and examples thereof include a trisubstituted hydrocarbyl silyl group and the like.
  • N, N-bis (trimethylsilyl) aminopropyltrimethoxysilane, N, N-bis (trimethylsilyl) aminopropylmethyl for example, as a compound having a nitrogen-containing group or a tertiary amino group, and an alkoxysilyl group.
  • Phosphorus-containing group in which two hydrogen atoms of primary phosphino group are substituted by two protecting groups phosphorus-containing group in which one hydrogen atom of secondary phosphino group is substituted by one protecting group, tertiary phosphino group
  • Examples of compounds having a sulfur-containing group in which one hydrogen atom of a thiol group is substituted by one protecting group and an alkoxysilyl group include P, P-bis (trimethylsilyl) phosphinopropylmethyldimethoxysilane, P , P-Bis (trimethylsilyl) phosphinopropyltrimethoxysilane, 3-Dimethylphosphinopropyltrimethoxysilane, 3-Dimethylphosphinopropylmethyldimethoxysilane, 3-Diphenylphosphinopropyltrimethoxysilane, 3-Diphenylphosphinopropyl Triethoxysilane, 3- Phen
  • the compound (B2-2) is preferably a group in which the group (x2) contains a nitrogen atom which is not bonded to active hydrogen, and as a specific example thereof, a compound having a cyclic ether group is, for example, tetra Epoxyamine compounds such as glycidyl-1,3-bisaminomethylcyclohexane;
  • a compound having a (thio) carbonyl group for example, 4-aminoacetophenone such as 4-N, N-dimethylaminobenzophenone; and bis (dihydrocarbylaminoalkyl) such as 1,7-bis (methylethylamino) -4-heptanone Ketones; dihydrocarbylaminoalkyl (meth) acrylates such as 2-dimethylaminoethyl acrylate; hydrocarbyl imidazolidinones such as 1,3-dimethyl-2-imidazolidinone; N-hydrocarbyl pyrrolidone
  • Examples of the compound (B2-3) include 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, diphenylmethane diisocyanate, naphthalene diisocyanate, triphenylmethane triisocyanate, and p-phenylene di-isocyanate.
  • Isocyanate, tris (isocyanatophenyl) thiophosphate, xylene diisocyanate, benzene-1,2,4-triisocyanate, naphthalene-1,2,5,7-tetraisocyanate, 1,4-phenylene diisocyanate Ocyanato etc. can be mentioned.
  • the compound (B2) in particular, the compound (B2-1) is preferably used in that the affinity with silica is strong.
  • a silane compound (B2-1) in order to adjust the Mooney viscosity of a modified copolymer, a silicon tetrachloride, an epoxy containing compound (for example, tetraglycidyl 1, and a) with a silane compound (B2-1) 3-bisaminomethylcyclohexane etc. may be used.
  • the compounds (B2) exemplified above all have the same action in that it is possible to obtain a modified copolymer in which the polymerization termination end is modified. Thus, even those not described in the following examples can be used in the present invention.
  • R 6 is a hydrogen atom or a hydrocarbyl group, and a plurality of R 6 may be the same or different.
  • a 4 , R 3 , R 5 and n are as described above It is synonymous with A ⁇ 1 >, R ⁇ 3 >, R ⁇ 5 > and n of Formula (1).
  • the above-mentioned terminal modification reaction can be performed, for example, as a solution reaction.
  • This solution reaction may be carried out using a solution containing unreacted monomers after the completion of the polymerization reaction in the above polymerization step, and the copolymer contained in the solution is isolated and dissolved in a suitable solvent such as cyclohexane. You may go above.
  • the terminal modification reaction may be carried out using either a batch system or a continuous system.
  • the addition method of the compound (B2) is not particularly limited, and examples thereof include a method of adding all at once, a method of adding dividedly, and a method of adding continuously.
  • the amount of the compound (B2) to be used for the terminal modification reaction may be appropriately set according to the type of the compound to be used for the reaction, but is preferably 0. to the metal atom involved in the polymerization reaction of the polymerization initiator. It is 1 molar equivalent or more, more preferably 0.3 molar equivalent or more. By setting the amount to 0.1 molar equivalent or more, the modification reaction can be sufficiently advanced, and the dispersibility of the silica can be suitably improved.
  • the temperature of the terminal modification reaction is usually the same as the temperature of the above-mentioned polymerization reaction, preferably -20 to 150 ° C, more preferably 0 to 120 ° C, particularly preferably 20 to 100 ° C. preferable.
  • the reaction time of the denaturation reaction is preferably 1 minute to 5 hours, more preferably 2 minutes to 1 hour.
  • reaction terminator for example, polar solvents having active protons such as alcohols such as methanol, ethanol and isopropanol or acetic acid, and mixtures thereof, or polar solvents thereof and nonpolar solvents such as hexane and cyclohexane A mixed solution is mentioned.
  • the addition amount of the reaction terminator is usually sufficient in the same molar amount or about 2 times the molar amount with respect to the anionic polymerization initiator.
  • a coupling agent may be added to the hydrocarbon solution of the copolymer from the initiation of polymerization of the monomer to the recovery of the polymer described later.
  • the coupling agent include compounds represented by the following formula (2-1).
  • R 1 a ML 4-a (2-1) (In formula (2-1), R 1 represents an alkyl group, an alkenyl group, a cycloalkenyl group or an aryl group, M represents a silicon atom or a tin atom, L represents a halogen atom or a hydrocarbyloxy group, a represents Represents an integer of 0 to 2)
  • silicon tetrachloride methyltrichlorosilane, dimethyldichlorosilane, trimethylchlorosilane, tin tetrachloride, methyl trichlorotin, dimethyldichlorotin, trimethylchlorotin, tetramethoxy
  • Examples include silane, methyltrimethoxysilane, dimethoxydimethylsilane, methyltriethoxysilane, ethyltrimethoxysilane, dimethoxydiethylsilane, diethoxydimethylsilane, tetraethoxysilane, ethyltriethoxysilane, diethoxydiethylsilane and the like.
  • the amount of the coupling agent added is preferably 0.03 mol or more, more preferably 0.05 mol or more, per mol of alkali metal derived from the alkali metal catalyst in order to enhance the processability of the polymer. Moreover, in order to improve low fuel consumption, it is preferably 0.4 mol or less, more preferably 0.3 mol or less.
  • Hydrogenation method In the method for producing a hydrogenated copolymer, the above-described copolymer is hydrogenated to obtain a hydrogenated copolymer having a hydrogenation rate of 75 mol% or more.
  • the heat resistance is improved.
  • the degree of hydrogenation is low, the effect of improving the rubber fracture strength and the wear resistance can not be sufficiently obtained.
  • the method of hydrogenation and the reaction conditions there is no particular limitation on the method of hydrogenation and the reaction conditions, and known methods and conditions may be used for the hydrogenation. It is usually carried out in the presence of a hydrogenation catalyst under hydrogen pressure of 20 to 150 ° C. and 0.1 to 10 MPa.
  • the hydrogenation rate can be arbitrarily selected by changing the amount of hydrogenation catalyst, hydrogen pressure at the time of hydrogenation reaction, reaction time and the like.
  • a hydrogenation catalyst usually, a compound containing any of Group 4-11 metals of the periodic table of the elements can be used.
  • a compound containing Ti, V, Co, Ni, Zr, Ru, Rh, Pd, Hf, Re, and Pt atoms can be used as a hydrogenation catalyst.
  • More specific hydrogenation catalysts include metallocene compounds such as Ti, Zr, Hf, Co, Ni, Pd, Pt, Ru, Rh and Re; carbons such as Pd, Ni, Pt, Rh and Ru; A supported heterogeneous catalyst supported on a carrier such as silica, alumina or diatomaceous earth; a homogeneous Ziegler catalyst in which an organic salt of a metal element such as Ni or Co or an acetylacetone salt is combined with a reducing agent such as organoaluminum; Examples thereof include organic metal compounds or complexes such as Ru and Rh; fullerenes having absorbed hydrogen; and carbon nanotubes.
  • metallocene compounds such as Ti, Zr, Hf, Co, Ni, Pd, Pt, Ru, Rh and Re
  • carbons such as Pd, Ni, Pt, Rh and Ru
  • a supported heterogeneous catalyst supported on a carrier such as silica, alumina or diatomaceous earth
  • metallocene compounds containing any of Ti, Zr, Hf, Co and Ni are preferable in that they can be hydrogenated in a homogeneous system in an inert organic solvent. Furthermore, metallocene compounds containing any of Ti, Zr and Hf are preferable.
  • a hydrogenation catalyst in which a titanocene compound and an alkyllithium are reacted is preferable because it is an inexpensive and industrially particularly useful catalyst.
  • these hydrogenation catalysts can be used individually by 1 type or in combination of 2 or more types.
  • the content of the hydrogenated copolymer in 100% by mass of the rubber component is 75% by mass or more, preferably 80% by mass or more, more preferably 90% by mass or more, and still more preferably 100% by mass. is there.
  • the content of the hydrogenated copolymer is less than 75% by mass, it is difficult to obtain the effect of improving the rubber fracture strength and the wear resistance (particularly, the rubber fracture strength).
  • the hydrogenated copolymer is a hydrogenated styrene butadiene copolymer
  • the content of the hydrogenated styrene butadiene copolymer in 100 mass% of the rubber component is preferably 90 mass% or more, more preferably Is at least 95% by mass, more preferably 100% by mass.
  • rubber components that can be used other than the above-mentioned hydrogenated copolymer, conventional styrene butadiene copolymer rubber (SBR), polybutadiene rubber (BR), butadiene isoprene copolymer rubber, butyl rubber and the like can be mentioned.
  • SBR styrene butadiene copolymer rubber
  • BR polybutadiene rubber
  • NR natural rubber
  • ethylene propylene copolymer ethylene octene copolymer and the like
  • These rubber components may be used in combination of two or more.
  • NR is not particularly limited, and, for example, SIR20, RSS # 3, TSR20, etc., which are common in the tire industry, can be used.
  • the content of NR in 100% by mass of the rubber component is preferably 5% by mass or more.
  • the content of the NR is preferably 25% by mass or less, more preferably 15% by mass or less.
  • the rubber composition in the present invention contains particulate silica having a CTAB specific surface area of 160 m 2 / g or more and a BET specific surface area of 170 m 2 / g or more.
  • silica having a CTAB specific surface area of 180 m 2 / g or more and a BET specific surface area of 185 m 2 / g or more is used as the fine particle silica, better fuel economy, rubber fracture strength and wear resistance can be obtained.
  • silica examples include dry method silica (anhydrous silica), wet method silica (hydrous silica) and the like, but wet method silica is preferable because it has many silanol groups.
  • the CTAB (cetyltrimethyl ammonium bromide) specific surface area of fine particle silica is 160 m 2 / g or more, preferably 180 m 2 / g or more, more preferably 190 m 2 / g or more, still more preferably 195 m 2 / g or more, particularly preferably 197 m 2 / g or more. If the CTAB specific surface area is less than 160 m 2 / g, it tends to be difficult to obtain sufficient improvement in the rubber fracture strength and the wear resistance.
  • the CTAB specific surface area is preferably 600 m 2 / g or less, more preferably 300 m 2 / g or less, still more preferably 250 m 2 / g or less.
  • CTAB specific surface area exceeds 600 m 2 / g, the dispersibility will be poor and it will aggregate, so the processability, fuel economy, rubber breaking strength and abrasion resistance tend to be lowered.
  • the CTAB specific surface area of silica is measured in accordance with ASTM D 3765-92.
  • the BET specific surface area of the particulate silica is 170 m 2 / g or more, preferably 185 m 2 / g or more, more preferably 190 m 2 / g or more, still more preferably 195 m 2 / g or more, particularly preferably 210 m 2 / g or more .
  • the BET specific surface area is preferably 600 m 2 / g or less, more preferably 300 m 2 / g or less, and still more preferably 260 m 2 / g or less.
  • the BET specific surface area of silica is measured according to ASTM D3037-81.
  • the aggregate size of the particulate silica is preferably 30 nm or more, more preferably 35 nm or more, still more preferably 40 nm or more, still more preferably 45 nm or more, still more preferably 50 nm or more, still more preferably 55 nm or more, most preferably 60 nm It is above. Also, the aggregate size is preferably 100 nm or less, more preferably 80 nm or less, still more preferably 70 nm or less, particularly preferably 65 nm or less. By having such an aggregate size, it is possible to provide excellent fuel economy and rubber breaking strength while having good dispersibility (processability).
  • the aggregate size of fine particle silica can be measured by the method described in JP-A-2011-140613.
  • the average primary particle size of the particulate silica is preferably 25 nm or less, more preferably 22 nm or less, still more preferably 17 nm or less, and particularly preferably 14 nm or less.
  • the lower limit of the average primary particle size is not particularly limited, but is preferably 3 nm or more, more preferably 5 nm or more, and still more preferably 7 nm or more.
  • the dispersibility (processability) of silica can be further improved by the structure like carbon black having the above aggregate size, and low fuel consumption and rubber fracture strength The wear resistance can be further improved.
  • the average primary particle diameter of fine particle silica can be obtained by observing 400 or more primary particles of silica observed in a field of view by observation with a transmission type or a scanning electron microscope.
  • the D50 of the particulate silica is preferably 7.0 ⁇ m or less, more preferably 5.5 ⁇ m or less, and still more preferably 4.5 ⁇ m or less. If it exceeds 7.0 ⁇ m, it indicates that the dispersibility of silica is rather worse.
  • the D50 of the fine particle silica is preferably 2.0 ⁇ m or more, more preferably 2.5 ⁇ m or more, and still more preferably 3.0 ⁇ m or more. When the particle size is less than 2.0 ⁇ m, the aggregate size also decreases, and it tends to be difficult to obtain sufficient dispersibility as particulate silica.
  • D50 is the median diameter of the particulate silica, and 50% by mass of the particles are smaller than the median diameter.
  • the ratio of a particle diameter of larger than 18 micrometers 6 mass% or less is preferable, as for fine particle silica, 4 mass% or less is more preferable, and 1.5 mass% or less is still more preferable. This gives good dispersibility of the silica and gives the desired performance.
  • the D50 of fine particle silica and the proportion of silica having a predetermined particle diameter can be measured by the method described in JP-A-2011-140613.
  • the pore distribution width W of the pore volume of the particulate silica is preferably 0.7 or more, more preferably 1.0 or more, still more preferably 1.3 or more, and particularly preferably 1.5 or more.
  • the pore distribution width W is preferably 5.0 or less, more preferably 4.0 or less, still more preferably 3.0 or less, and particularly preferably 2.0 or less. Such a broad porous distribution can improve the dispersibility of the silica to obtain the desired performance.
  • the pore distribution width W of the pore volume of silica can be measured by the method described in JP-A-2011-140613.
  • the diameter Xs (nm) giving the peak value Ys of the pore volume in the pore distribution curve of the fine particle silica is preferably 10 nm or more, more preferably 15 nm or more, still more preferably 18 nm or more, particularly preferably 20 nm or more Further, it is preferably 60 nm or less, more preferably 35 nm or less, still more preferably 28 nm or less, and particularly preferably 25 nm or less. If it is in the said range, it will become fine particle silica excellent in the dispersibility and reinforcement (rubber fracture strength), and can fully exhibit the effect of this invention.
  • the compounding amount of the fine particle silica is preferably 1 part by mass or more, more preferably 10 parts by mass or more, still more preferably 15 parts by mass or more, particularly preferably 100 parts by mass of the rubber component. Is at least 20 parts by mass, and most preferably at least 50 parts by mass. If the amount is less than 1 part by mass, sufficient fuel economy and rubber breaking strength tend not to be obtained.
  • the amount of the fine particle silica to be added is preferably 200 parts by mass or less, more preferably 150 parts by mass or less, still more preferably 120 parts by mass or less, and particularly preferably 100 parts by mass or less. If the amount is more than 200 parts by mass, processability is deteriorated and it becomes difficult to ensure good dispersibility, which may lower the fuel consumption and the rubber fracture strength.
  • the rubber composition in the present invention may contain silica other than the fine particle silica.
  • the total content of silica is preferably 1 part by mass or more, more preferably 10 parts by mass or more, still more preferably 20 parts by mass or more, particularly preferably 50 parts by mass or more, per 100 parts by mass of the rubber component. is there.
  • the total content is preferably 200 parts by mass or less, more preferably 150 parts by mass or less, and still more preferably 120 parts by mass or less. In the case of less than the lower limit or in the case of exceeding the upper limit, there is a tendency similar to the above-mentioned blending amount of fine particle silica.
  • the rubber composition in the present invention is characterized by containing carbon black as a filler.
  • the carbon black contained in the rubber composition in the present invention includes carbon black such as SAF, ISAF, HAF, MAF, FEF, SRF, GPF, APF, FF, CF, SCF and ECF (furnace carbon (furnace carbon) Black); acetylene black (acetylene carbon black); thermal blacks such as FT and MT (thermal carbon black); channel blacks such as EPC, MPC and CC (channel carbon black); graphite and the like. These can be used alone or in combination of two or more.
  • the nitrogen adsorption specific surface area (N 2 SA) of carbon black is usually 5 to 200 m 2 / g, and the lower limit is preferably 50 m 2 / g, and more preferably 80 m 2 / g.
  • the upper limit is preferably 150 m 2 / g, more preferably 120 m 2 / g.
  • the dibutyl phthalate (DBP) absorption amount of carbon black is usually 5 to 300 ml / 100 g, and the lower limit is preferably 80 ml / 100 g and the upper limit is preferably 180 ml / 100 g.
  • the amount of N 2 SA or DBP absorbed by carbon black is less than the lower limit of the above range, the reinforcing effect tends to be small and the abrasion resistance tends to decrease, and if it exceeds the upper limit of the above range, the dispersibility is poor and hysteresis loss increases. There is a tendency for fuel economy to decrease.
  • the nitrogen adsorption specific surface area is measured according to ASTM D 4820-93, and the DBP absorption is measured according to ASTM D 2414-93.
  • the content of carbon black is 3 parts by mass or more with respect to 100 parts by mass of the rubber component. If the amount is less than 3 parts by mass, sufficient reinforcement may not be obtained.
  • the content of carbon black is preferably 60 parts by mass or less, more preferably 30 parts by mass or less, and still more preferably 15 parts by mass or less. If the amount is more than 60 parts by mass, fuel economy tends to deteriorate.
  • the rubber composition in the present invention may further contain other fillers other than the above-mentioned silica and carbon black.
  • the filler is added to the rubber composition for the purpose of reinforcing the rubber, and for example, calcium carbonate, mica such as sericite, aluminum hydroxide, magnesium oxide, magnesium hydroxide, clay, Examples thereof include white fillers such as talc, alumina, titanium oxide and mica.
  • the content of the particulate silica in 100% by mass of the filler is preferably 80% by mass or more, more preferably 90% by mass or more. If the amount is less than 80% by mass, the effects of the present invention may not be sufficiently obtained.
  • the rubber composition in the present invention preferably uses a silane coupling agent in combination with silica.
  • a silane coupling agent in combination with silica.
  • silane coupling agent conventionally known ones can be used.
  • silane coupling agents may be used alone or in combination of two or more.
  • sulfide-based silane coupling agents are preferable from the viewpoint of coupling effect by a silane coupling agent, processability, and cost, and bis (3-triethoxysilylpropyl) tetrasulfide, bis (3-triethoxysilylpropyl) Disulfide is more preferred.
  • 3 mass parts or more are preferable with respect to 100 mass parts of silicas, and, as for content of a silane coupling agent, 5 mass parts or more are more preferable. If the amount is less than 3 parts by mass, the coupling effect is insufficient, high silica dispersion can not be obtained, and the effect of the present invention tends not to be sufficiently obtained. Therefore, there is a possibility that fuel economy and rubber destructive strength may fall. Moreover, 15 mass parts or less are preferable with respect to 100 mass parts of silicas, and, as for content of a silane coupling agent, 10 mass parts or less are more preferable. If it exceeds 15 parts by mass, excess silane coupling agent may remain, which may lead to deterioration of the processability and the fracture characteristics of the obtained rubber composition.
  • a vulcanizing agent such as sulfur, etc .
  • thiazole-based vulcanization accelerator such as sulfur, etc .
  • thiuram-based vulcanization accelerator such as thiuram-based vulcanization accelerator
  • sulfenamide-based vulcanization accelerator such as guanidine-based vulcanization acceleration Accelerators
  • thickeners such as thickeners
  • vulcanization activators such as stearic acid and zinc oxide
  • organic peroxides such as extender oils (oils) and lubricants
  • processing aids such as extender oils (oils) and lubricants
  • additive can be used.
  • the extender oil oil
  • aromatic mineral oil viscosity specific gravity constant (VGC value) 0.900 to 1.049
  • naphthenic mineral oil VG. C. value 0. 850 to 0.899
  • paraffinic mineral oil V.G.C. value 0.790 to 0.849
  • the polycyclic aromatic content of the extender oil is preferably less than 3% by mass, more preferably less than 1% by mass.
  • the polycyclic aromatic content is measured according to the British Petroleum Institute 346/92 method.
  • the aromatic compound content (CA) of the extender oil is preferably 20% by mass or more.
  • thiazole-based vulcanization accelerators such as 2-mercaptobenzothiazole, dibenzothiazyldisulfide, N-cyclohexyl-2-benzothiazylsulfenamide, etc .; tetramethylthiuram monosulfide, tetramethylthiuram disulfide N-cyclohexyl-2-benzothiazolesulfenamide, N-t-butyl-2-benzothiazolesulfenamide, N-oxyethylene-2-benzothiazolesulfenamide, N- Sulfenamide-based vulcanization accelerators such as oxyethylene-2-benzothiazole sulfenamide, N, N'-diisopropyl-2-benzothiazole sulfenamide, etc .; such as diphenyl guanidine, diorto tolyl guanidine, ortho tolyl biguanidine and the like Guani It can be
  • sulfenamide-based vulcanization accelerators are preferable, and N-cyclohexyl-2-benzothiazolesulfenamide is more preferable, because the effects of the present invention are more suitably obtained. Furthermore, it is also preferable to use a guanidine-based vulcanization accelerator in combination.
  • the amount of the vulcanization accelerator used is preferably 0.1 to 5 parts by mass, more preferably 0.2 to 4 parts by mass with respect to 100 parts by mass of the rubber component.
  • the vulcanizing agent is not particularly limited, but sulfur can be suitably used.
  • the content of sulfur is preferably 0.5 to 5 parts by mass, more preferably 1 to 3 parts by mass with respect to 100 parts by mass of the rubber component. Thereby, the effect of the present invention is more suitably acquired.
  • the rubber composition in the present invention is produced by a general method. That is, it can manufacture by the method etc. which knead
  • the rubber composition in the present invention can be used for each component (tread, sidewall, carcass, belt, bead, clinch apex, etc.) of a tire, and is suitably used as a tire tread among others.
  • a tire tread In the case of a two-layer tread, it is composed of a surface layer (cap tread) and an inner layer (base tread).
  • the tread of the multilayer structure is manufactured by a method of bonding sheet-like ones in a predetermined shape, or a method of charging two or more extruders and forming two or more layers at the outlet of the extruder. Can.
  • the pneumatic tire of the present invention is manufactured by the usual method using the above rubber composition. That is, a rubber composition containing a hydrogenated copolymer and, if necessary, a rubber composition blended with the above-mentioned various compounding agents is extruded at the unvulcanized stage according to the shape of each tire member such as a tread, and the like
  • An unvulcanized tire is formed by molding the tire member of the present invention on a tire molding machine according to a conventional method. By heating and pressing this unvulcanized tire in a vulcanizer, the pneumatic tire of the present invention is obtained.
  • the pneumatic tire according to the present invention is suitably used as a passenger car tire, a truck / bus tire, a two-wheeled vehicle tire, a competition tire or the like, and particularly suitably used as a passenger car tire.
  • n-hexane Kanto Chemical Co., Ltd.
  • styrene Kanto Chemical Co. butadiene: Tokyo Chemical Industry Co., Ltd.
  • 1,3-butadiene TMEDA Kanto Chemical Co. N, N, N ', N '-Tetramethylethylenediamine n-butyllithium solution: Kanto Chemical Co., Ltd. 1.6 M n-butyllithium hexane solution 2, 6-di-tert-butyl-p-cresol: Ouchi Emerging Chemical Industry Co., Ltd. No crack 200 Alcohol: Ethanolamine based modifier manufactured by Kanto Chemical Co., Ltd .: N, N-bis (trimethylsilyl) aminopropylmethyldiethoxysilane
  • the H 1 -NMR was measured at 25 ° C. using a JEOL JNM-A 400 NMR apparatus, and the phenyl proton and 4.9 to 5.4 ppm butadiene based on 6.5 to 7.2 ppm of styrene units determined from the spectrum
  • the styrene content was determined from the ratio of vinyl protons based on units.
  • the weight average molecular weight (Mw) and number average molecular weight (Mn) of the copolymer were determined by gel permeation chromatography (GPC) (GPC-8000 series manufactured by Tosoh Corp., detector: differential refractometer, column: Tosoh (stock It calculated
  • GPC gel permeation chromatography
  • Mw and Mn were measured before carrying out the modifying treatment. This is because when the copolymer having a modifying group is measured, the modifying group and the silica gel of the column interact with each other and accurate Mw and Mn can not be obtained.
  • the glass transition temperature (Tg) should be measured according to JIS K 7121, using a differential scanning calorimeter (Q200) manufactured by TA Instruments Japan, while raising the temperature at a heating rate of 10 ° C./min. It calculated
  • copolymer (1) had a weight average molecular weight (Mw) of 490,000 and a styrene content of 30% by mass.
  • Synthesis Example 2 (Synthesis of copolymer (2): hydrogenation rate 60 mol%, hydrogenated SBR) A copolymer (2) was obtained in the same manner as the copolymer (1) except that the obtained polymer was hydrogenated. That is, after the polymerization conversion reaction in the copolymer (1), the alcohol is not added to stop the polymerization reaction, and then stirring is performed for 20 minutes while supplying hydrogen gas at a pressure of 0.4 MPa-gauge, and unreacted polymer It was reacted with terminal lithium to give lithium hydride. The hydrogen gas supply pressure was 0.7 MPa-gauge, the reaction temperature was 90 ° C., and hydrogenation was performed using a catalyst consisting mainly of titanocene dichloride.
  • the reaction temperature is brought to normal temperature when hydrogen absorption reaches the target hydrogen addition rate, hydrogen pressure is returned to normal pressure, hydrogen pressure is removed from the reaction vessel, the reaction solution is stirred into water, and the solvent is steamed. Removal by stripping gave a copolymer (2).
  • the hydrogenation rate of the obtained copolymer (2) was 60 mol%, and the weight average molecular weight (Mw) was 450,000.
  • Synthesis Example 3 (Synthesis of copolymer (3): hydrogenation rate 80 mol%, hydrogenated SBR) A copolymer (3) was obtained by the same formulation as the copolymer (2) except that the cumulative amount of hydrogen suction was adjusted so as to obtain a target hydrogenation rate.
  • the hydrogenation rate of the obtained copolymer (3) was 80 mol%, and the weight average molecular weight (Mw) was 480,000.
  • Synthesis Example 4 (Synthesis of copolymer (4): hydrogenation rate 95 mol%, hydrogenated SBR) A copolymer (4) was obtained by the same formulation as the copolymer (2) except that the cumulative amount of hydrogen suction was adjusted so as to obtain a target hydrogenation rate. The hydrogenation rate of the obtained copolymer (4) was 95 mol%, and the weight average molecular weight (Mw) was 450,000.
  • Synthesis Example 5 (Synthesis of copolymer (5): hydrogenation rate 95 mol%, hydrogenated modified SBR) Add 2000 ml of n-hexane, 60 g of styrene, 140 g of 1,3-butadiene, 0.93 g of TMEDA, and 0.45 mmol of n-butyllithium to a heat-resistant reaction vessel fully purged with nitrogen, and stir at 50 ° C for 5 hours to carry out the polymerization reaction went. Thereafter, 0.15 mol of an amine modifier was added, and the mixture was stirred at 0 ° C. for 1 hour.
  • copolymer (5) was obtained in the same manner as copolymer (2) except that the cumulative amount of hydrogen suction was adjusted.
  • the hydrogenation rate of the obtained copolymer (5) was 95 mol%, and the weight average molecular weight (Mw) before modification was 440,000.
  • Copolymers (1) to (5) Synthetic natural rubber as described above: TSR 20 Carbon black: Diablack N339 (N 2 SA: 96 m 2 / g, DBP absorption amount: 124 ml / 100 g) manufactured by Mitsubishi Chemical Corporation Oil: Japan Energy Corporation X-140 Silica (1): ULTRASIL VN3 (CTAB specific surface area: 165 m 2 / g, BET specific surface area: 172 m 2 / g, average primary particle size: 15 nm, aggregate size: 35 nm, D50: 7.0 ⁇ m, 18 ⁇ m) manufactured by EVONIK Fraction of particles exceeding 6.0% by mass, pore distribution width W: 0.3, diameter Xs giving a pore volume peak value in a pore distribution curve: 17 nm) Silica (2): Zeosil HRS 1200 MP (CTAB specific surface area: 195 m 2 / g, BET specific surface area
  • Stearic acid Beads manufactured by NOF Corporation, Ltd. beads stearic acid zinc oxide, manufactured by NOF Corporation, and zinc oxide No. 1 manufactured by Mitsui Mining & Smelting Co., Ltd.
  • Sulfur Powdered sulfur vulcanization accelerator manufactured by Tsurumi Chemical Industry Co., Ltd. (1): Succinol CZ (N-cyclohexyl-2-benzothiazolylsulfenamide) manufactured by Sumitomo Chemical Co., Ltd.
  • Vulcanization accelerator (2) Succinol D (1,3-diphenylguanidine) manufactured by Sumitomo Chemical Co., Ltd.
  • Example and Comparative Example Materials other than sulfur and a vulcanization accelerator are knead
  • sulfur and a vulcanization accelerator were added to the obtained kneaded product, and kneaded using an open roll for 5 minutes at 80 ° C. to obtain an unvulcanized rubber composition.
  • the obtained unvulcanized rubber composition was press vulcanized with a 0.5 mm-thick mold at 170 ° C. for 20 minutes to obtain a vulcanized rubber composition.
  • the volume loss of each vulcanized rubber composition was measured using a LAT tester (Laboratory Abration and Skid Tester) under a load of 50 N, a speed of 20 km / h and a slip angle of 5 °.
  • the volume loss amount of Comparative Example 1 is indicated by an index of 100. The larger the value, the better the wear resistance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Tires In General (AREA)

Abstract

本発明は、ゴム破壊強度及び耐摩耗性が良好に改善された空気入りタイヤを提供する。 本発明は、ゴム組成物を用いて作製した空気入りタイヤであって、前記ゴム組成物は、芳香族ビニル化合物及び共役ジエン化合物を共重合して得られた、共役ジエン部の水素添加率が75モル%以上である水添共重合体と、CTAB比表面積160m/g以上、BET比表面積170m/g以上の微粒子シリカと、カーボンブラックとを含み、ゴム成分100質量%中の前記水添共重合体の含有量が75質量%以上であり、ゴム成分100質量部に対する前記カーボンブラックの含有量が3質量部以上である空気入りタイヤに関する。

Description

空気入りタイヤ
本発明は、所定のゴム組成物を用いて作製した空気入りタイヤに関する。
近年、環境問題への関心の高まりから、自動車に対して低燃費化の要求が強くなっており、自動車用タイヤに用いるゴム組成物に対しても、低燃費性に優れることが求められている。自動車タイヤ用のゴム組成物としては、ポリブタジエンやブタジエン-スチレン共重合体などの共役ジエン系重合体と、カーボンブラックやシリカなどの充填剤とを含有するゴム組成物などが用いられている。
低燃費性を改善する方法として、例えば、特許文献1では、アミノ基及びアルコキシ基を含有する有機ケイ素化合物で変性されたジエン系ゴム(変性ゴム)を用いる方法が提案されている。このような従来技術により低燃費性は改善されるものの、経済性及び安全性の観点からは、耐摩耗性及び破壊特性(ゴム破壊強度)を充分に確保することも重要な課題である。上記課題に対し、従来技術では、低燃費性に対して背反性能となる耐摩耗性が充分でなく、また、ゴム欠けを引き起こしてしまう問題があり、ゴム破壊強度及び耐摩耗性については改善の余地がある。
特開2000-344955号公報
本発明は、上記課題を解決し、ゴム破壊強度及び耐摩耗性が良好に改善された空気入りタイヤを提供することを目的とする。
本発明は、ゴム組成物を用いて作製した空気入りタイヤであって、前記ゴム組成物は、芳香族ビニル化合物及び共役ジエン化合物を共重合して得られた、共役ジエン部の水素添加率が75モル%以上である水添共重合体と、CTAB比表面積160m/g以上、BET比表面積170m/g以上の微粒子シリカと、カーボンブラックとを含み、ゴム成分100質量%中の前記水添共重合体の含有量が75質量%以上であり、ゴム成分100質量部に対する前記カーボンブラックの含有量が3質量部以上である空気入りタイヤに関する。
前記微粒子シリカが、CTAB比表面積180m/g以上、BET比表面積185m/g以上であることが好ましい。
前記水添共重合体の重量平均分子量が200,000~2,000,000であることが好ましい。
前記水添共重合体の水素添加率が90モル%以上であることが好ましい。
前記水添共重合体が水添スチレンブタジエン共重合体であることが好ましい。
前記水添スチレンブタジエン共重合体が水添変性スチレンブタジエン共重合体であることが好ましい。
前記水添スチレンブタジエン共重合体のスチレン含有量が5~40質量%であることが好ましい。
ゴム成分100質量%中の前記水添スチレンブタジエン共重合体の含有量が90~100質量%であることが好ましい。
ゴム成分100質量部に対して、前記微粒子シリカの含有量が1~200質量部であることが好ましい。
本発明によれば、共役ジエン部の水素添加率が75モル%以上である特定の水添共重合体をゴム成分100質量%中に75質量%以上含むとともに、ゴム成分100質量部に対してカーボンブラックを3質量部以上含み、更に、特定のCTAB比表面積及びBET比表面積を有する微粒子シリカを含むゴム組成物を用いて作製した空気入りタイヤであるので、良好なゴム破壊強度及び耐摩耗性を有する。
本発明の空気入りタイヤは、芳香族ビニル化合物及び共役ジエン化合物を共重合して得られた共重合体(以下においては、芳香族ビニル化合物及び共役ジエン化合物の共重合体ともいう)の共役ジエン部が水素添加され、水素添加率が75モル%以上である水添共重合体を、ゴム成分100質量%中に75質量%以上含むとともに、ゴム成分100質量部に対してカーボンブラックを3質量部以上含み、更に、CTAB比表面積160m/g以上、BET比表面積170m/g以上の微粒子シリカを含むゴム組成物を用いて作製したものである。
本発明におけるゴム組成物は、芳香族ビニル化合物及び共役ジエン化合物の共重合体の共役ジエン部が水素添加され、水素添加率が75モル%以上である水添共重合体を、ゴム成分100質量%中に75質量%以上含み、かつゴム成分100質量部に対してカーボンブラックを3質量部以上含んでいる。これにより、良好な低燃費性を維持又は改善しつつ、ゴム破壊強度及び耐摩耗性を良好に改善できる。また、本発明におけるゴム組成物は更に、CTAB比表面積160m/g以上、BET比表面積170m/g以上の微粒子シリカを含んでいる。ゴム成分として前記水添共重合体、シリカとして特定のCTAB比表面積及びBET比表面積を有する微粒子シリカを併用することで、該シリカが良好に分散し、低燃費性、ゴム破壊強度及び耐摩耗性(特にゴム破壊強度、耐摩耗性)を相乗的に改善できる。
本発明におけるゴム組成物は、ゴム成分として、芳香族ビニル化合物及び共役ジエン化合物の共重合体の共役ジエン部が水素添加された水添共重合体を含んでいることを特徴としている。通常のゴムは、架橋の反応点となる二重結合部が多数存在するため、架橋の疎密が発生してしまい、この架橋疎密が応力集中による破壊の起点になると考えられる。本発明では、水添処理により二重結合部を減らすことで、架橋の反応点を減らしている。これにより、架橋疎密が低減され、応力集中が緩和されることで、耐摩耗性等が向上すると予想される。
芳香族ビニル化合物としては、例えばスチレン、α-メチルスチレン、1-ビニルナフタレン、3-ビニルトルエン、エチルビニルベンゼン、ジビニルベンゼン、4-シクロヘキシルスチレン、2,4,6-トリメチルスチレンなどが挙げられる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよいが、これらの中で、モノマーの入手容易性などの実用面の観点及び本発明の効果がより好適に得られるという理由からスチレンが特に好ましい。
共役ジエン化合物としては、例えば1,3-ブタジエン、イソプレン、1,3-ペンタジエン、2,3-ジメチルブタジエン、2-フェニル-1,3-ブタジエン、1,3-ヘキサジエンなどが挙げられる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよいが、これらの中で、モノマーの入手容易性などの実用面の観点及び本発明の効果がより好適に得られるという理由から1,3-ブタジエン、イソプレンが好ましく、1,3-ブタジエンがより好ましい。
芳香族ビニル化合物及び共役ジエン化合物の共重合体としては、スチレン及び1,3-ブタジエンの共重合体(スチレンブタジエン共重合体)が好ましい。従って、水添共重合体としては、水添スチレンブタジエン共重合体が好ましい。更に、水添スチレンブタジエン共重合体は、後述の方法で変性された水添変性スチレンブタジエン共重合体であることが好ましい。
上記スチレンブタジエン共重合体は、スチレン及び1,3-ブタジエンを共重合させるものである限り、共重合させる順序に特に限定はなく、ランダム共重合でもブロック共重合でもよいが、ランダム共重合が好ましい。スチレンブタジエン共重合体以外の芳香族ビニル化合物及び共役ジエン化合物の共重合体の場合も同様である。
水添共重合体の水素添加率(芳香族ビニル化合物及び共役ジエン化合物の共重合体の共役ジエン部に対して水素添加された割合)は75モル%以上であり、好ましくは80モル%以上、より好ましくは90モル%以上、更に好ましくは93モル%以上である。水素添加率が75モル%未満では、ゴム破壊強度及び耐摩耗性の改善が困難である。また、水添共重合体の水素添加率は、好ましくは99モル%以下、より好ましくは98モル%以下である。水素添加率が99モル%を超えると、ゴム組成物が硬くなるおそれがある。
なお、水素添加率は、H-NMRを測定して得られたスペクトルの不飽和結合部のスペクトル減少率から計算することができる。
水添共重合体の重量平均分子量(Mw)は、好ましくは200,000以上、より好ましくは400,000以上である。Mwが200,000未満では、良好なゴム破壊強度及び耐摩耗性が得られないおそれがある。また、水添共重合体のMwは、好ましくは2,000,000以下、より好ましくは1,000,000以下であり、更に好ましくは700,000以下である。Mwが2,000,000を超えると、加工性が低下する傾向がある。
なお、本明細書において、重量平均分子量(Mw)、数平均分子量(Mn)は、ゲルパーミエーションクロマトグラフ(GPC)(東ソー(株)製GPC-8000シリーズ、検出器:示差屈折計、カラム:東ソー(株)製のTSKGEL SUPERMULTIPORE HZ-M)による測定値を基に標準ポリスチレン換算により求めることができる。
水添共重合体のガラス転移温度(Tg)は、-45℃以上が好ましく、-35℃以上がより好ましく、-30℃以上が更に好ましく、-25℃以上が更により好ましく、-24.5℃以上が特に好ましく、-24℃以上が最も好ましい。Tgが-45℃未満であると、発熱性が悪化するおそれがある。また、水添共重合体のTgは、-10℃未満が好ましく、-12.5℃未満がより好ましく、-15℃未満が更に好ましく、-20℃未満が特に好ましい。Tgが-10℃以上であると、耐摩耗性が悪化するおそれがある。
なお、水添共重合体のガラス転移温度(Tg)は、後述の実施例の記載の方法により測定される。
水添共重合体が水添スチレンブタジエン共重合体である場合、水添スチレンブタジエン共重合体のスチレン含有量は、好ましくは5質量%以上、より好ましくは10質量%以上、より好ましくは15質量%以上、更に好ましくは20質量%以上、特に好ましくは25質量%以上である。スチレン含有量が5質量%未満であると、充分なグリップ性能が得られないおそれがある。また、水添スチレンブタジエン共重合体のスチレン含有量は、好ましくは40質量%以下、より好ましくは35質量%以下である。スチレン含有量が40質量%を超えると、充分なゴム破壊強度及び耐摩耗性が得られず、低燃費性も悪化するおそれがある。スチレン含有量が上記範囲内であると、本発明の効果がより好適に得られる。
なお、スチレン含有量は、後述する実施例に記載の方法により測定される。
上記水添共重合体は、例えば、芳香族ビニル化合物及び共役ジエン化合物を重合して得られた重合体に水素添加処理を施すことで合成でき、具体的には以下の方法で合成できる。
<共重合体の製造方法>
(重合方法)
芳香族ビニル化合物及び共役ジエン化合物の共重合体の重合方法については特に制限はなく、溶液重合法、気相重合法、バルク重合法のいずれも用いることができるが、特に溶液重合法が好ましい。また、重合形式は、回分式及び連続式のいずれであってもよい。
溶液重合法を用いた場合には、溶媒中のモノマー濃度(スチレンブタジエン共重合体の場合はスチレン、1,3-ブタジエンの合計)は、5質量%以上が好ましく、10質量%以上がより好ましい。溶液中のモノマー濃度が5質量%未満では、得られる共重合体の量が少なく、コストが高くなる傾向がある。また、溶媒中のモノマー濃度は50質量%以下が好ましく、30質量%以下がより好ましい。溶媒中のモノマー濃度が50質量%を超えると、溶液粘度が高くなりすぎて撹拌が困難となり、重合しにくくなる傾向がある。
(アニオン重合における重合開始剤)
アニオン重合を行う場合、重合開始剤としては特に制限はないが、有機リチウム化合物が好ましく用いられる。前記有機リチウム化合物としては、炭素数2~20のアルキル基を有するものが好ましく、例えばエチルリチウム、n-プロピルリチウム、イソプロピルリチウム、n-ブチルリチウム、sec-ブチルリチウム、tert-ブチルリチウム、tert-オクチルリチウム、n-デシルリチウム、フェニルリチウム、2-ナフチルリチウム、2-ブチルーフェニルリチウム、4-フェニル-ブチルリチウム、シクロヘキシルリチウム、シクロペンチルリチウム、ジイソプロペニルベンゼンとブチルリチウムとの反応生成物などが挙げられるが、これらの中で、入手容易性、安全性等の観点からn-ブチルリチウムまたはsec-ブチルリチウムが好ましい。
また、重合反応は、上記の有機リチウム化合物のうち少なくともいずれかと、シリカと相互作用する官能基を有する化合物(B1)とを混合して得られる化合物(R)の存在下で行ってもよい。当該化合物(R)の存在下で重合を行うことにより、共重合体の重合開始末端に、シリカと相互作用を有する官能基を導入することができる。これにより、開始末端が変性された共重合体が得られる。なお、本明細書において「相互作用」とは、分子間で共有結合を形成するか、又は共有結合よりも弱い分子間力(例えば、イオン-双極子相互作用、双極子-双極子相互作用、水素結合、ファンデルワールス力等といった分子間に働く電磁気学的な力)を形成することを意味する。また、「シリカと相互作用する官能基」は、窒素原子、硫黄原子、リン原子、酸素原子などのシリカと相互作用する原子を少なくとも1つ有する基を示す。
上記化合物(R)としては、中でも有機リチウム化合物と、第2級アミン化合物などの窒素含有化合物との反応生成物であることが好ましい。当該窒素含有化合物の具体例としては、例えばジメチルアミン、ジエチルアミン、ジプロピルアミン、ジブチルアミン、ドデカメチレンイミン、N,N’-ジメチル-N’-トリメチルシリル-1,6-ジアミノヘキサン、ピペリジン、ピロリジン、ヘキサメチレンイミン、ヘプタメチレンイミン、ジシクロヘキシルアミン、N-メチルベンジルアミン、ジ-(2-エチルヘキシル)アミン、ジアリルアミン、モルホリン、N-(トリメチルシリル)ピペラジン、N-(tert-ブチルジメチルシリル)ピペラジン、1,3-ジトリメチルシリル-1,3,5-トリアジナン等が挙げられる。なお、化合物(R)の存在下で重合を行う場合、有機リチウム化合物と、化合物(B1)とを予め混合することにより化合物(R)を調製し、その調製した化合物(R)を重合系中に添加して重合を行ってもよい。あるいは、重合系中に、有機リチウム化合物と、化合物(B1)とを添加し、重合系中で両者を混合することにより化合物(R)を調製して重合を行ってもよい。
(アニオン重合の方法)
前記重合開始剤を用いてアニオン重合し、共重合体を製造する方法としては、特に制限はなく、従来公知の方法を用いることができる。
具体的には、反応に不活性な有機溶剤、例えば脂肪族、脂環族、芳香族炭化水素化合物などの炭化水素系溶剤中において、例えばブチルリチウムを重合開始剤とし、必要に応じてランダマイザーの存在下でスチレン及び1,3-ブタジエン等をアニオン重合させることにより、スチレンブタジエン共重合体等の目的の共重合体を得ることができる。
(アニオン重合における炭化水素系溶剤)
前記炭化水素系溶剤としては、炭素数3~8のものが好ましく、例えばプロパン、n-ブタン、イソブタン、n-ペンタン、イソペンタン、n-ヘキサン、シクロヘキサン、プロペン、1-ブテン、イソブテン、トランス-2-ブテン、シス-2-ブテン、1-ペンテン、2-ペンテン、1-ヘキセン、2-ヘキセン、ベンゼン、トルエン、キシレン、エチルベンゼンなどを挙げることができる。これらは単独で用いてもよく、2種以上を混合して用いてもよい。
(アニオン重合におけるランダマイザー)
また、前記ランダマイザーとは、共重合体中の共役ジエン部分のミクロ構造制御、例えばブタジエンにおける1,2-結合、イソプレンにおける3,4-結合の増加など、あるいは共重合体におけるモノマー単位の組成分布の制御、例えばスチレンブタジエン共重合体におけるスチレン単位、ブタジエン単位のランダム化などの作用を有する化合物のことである。このランダマイザーとしては、特に制限はなく、従来ランダマイザーとして一般に使用されている公知の化合物の中から任意のものを用いることができる。例えば、ジメトキシベンゼン、テトラヒドロフラン、ジメトキシエタン、ジエチレングリコールジブチルエーテル、ジエチレングリコールジメチルエーテル、ビステトラヒドロフリルプロパン、トリエチルアミン、ピリジン、N-メチルモルホリン、N,N,N’,N’-テトラメチルエチレンジアミン、1,2-ジピペリジノエタンなどのエーテル類及び第三級アミン類などを挙げることができる。また、カリウム-t-アミレート、カリウム-t-ブトキシドなどのカリウム塩類、ナトリウム-t-アミレートなどのナトリウム塩類も用いることができる。これらのランダマイザーは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。また、ランダマイザーの使用量は、有機リチウム化合物1モル当たり、0.01モル当量以上が好ましく、0.05モル当量以上がより好ましい。ランダマイザーの使用量が0.01モル当量未満では、添加効果が小さく、ランダム化しにくい傾向がある。また、ランダマイザーの使用量は、有機リチウム化合物1モル当たり1000モル当量以下が好ましく、500モル当量以下がより好ましい。ランダマイザーの使用量が1000モル当量を超えると、モノマーの反応速度が大きく変化してしまい、逆にランダム化しにくくなる傾向がある。
ランダマイザーの種類や使用量を調整することにより、共重合体のTgを調整することができる。例えば、テトラヒドロフランの量を減量することにより、共重合体のTgを低くできる。
(反応温度)
アニオン重合の際の反応温度は、好適に反応が進行する限り特に限定はないが、通常-10℃~100℃であることが好ましく、25℃~70℃であることがより好ましい。
(変性工程)
上記重合の工程により得られた共重合体の活性末端と、シリカと相互作用する官能基を有する化合物(B2)とを反応させる工程により、共重合体の重合終了末端に、シリカと相互作用する官能基を導入することができる。これにより、重合終了末端が変性された共重合体が得られる。なお、本発明において末端とは、分子鎖の端に存在する、炭素-炭素二重結合を有するモノマーに由来する構造以外の部分を意味する。
上記変性反応(以下、末端変性反応ともいう。)に用いる共重合体は、活性末端を有している限り、重合開始末端が未変性のものでもよいし、変性されたものでもよい。また、化合物(B2)としては、シリカと相互作用する官能基を有し、かつ重合活性末端と反応し得る化合物であれば特に限定しない。化合物(B2)の好ましい具体例としては、例えば
(I)下記式(1)で表される化合物(B2-1);
Figure JPOXMLDOC01-appb-C000001
(式(1)中、Aは、窒素原子、リン原子及び硫黄原子からなる群より選択される少なくとも一種の原子を有し、活性水素を有さず、かつRに対して窒素原子、リン原子又は硫黄原子で結合する1価の官能基である。R及びRはヒドロカルビル基であり、Rはヒドロカルビレン基であり、nは0~2の整数である。但し、R及びRが複数存在する場合、複数のR及びRは、それぞれ同じでも異なっていてもよい。)
(II)分子中に、環状エーテル基、(チオ)カルボニル基及びイソ(チオ)シアナート基からなる群より選択される少なくとも1種の官能基(x1)と、窒素原子、リン原子、酸素原子及び硫黄原子からなる群より選択される少なくとも一種の原子(但し、窒素原子、リン原子及び硫黄原子は、少なくともいずれかが3置換のヒドロカルビルシリル基で保護されていてもよい。)を有し、かつ活性水素を有していない、前記官能基(x1)とは異なる基(x2)と、を各々1つ以上有する化合物(B2-2);
(III)分子中に、イソ(チオ)シアナート基を2つ以上有する化合物(B2-3);
等が挙げられる。化合物(B2)としては、これらを一種単独で又は二種以上を組み合わせて使用することができる。なお、本明細書において、(チオ)カルボニル基は、カルボニル基及びチオカルボニル基を示し、イソ(チオ)シアナート基は、イソシアナート基及びイソチオシアナート基を示す。
上記式(1)において、R及びRのヒドロカルビル基としては、炭素数1~20の直鎖状若しくは分岐状のアルキル基、炭素数3~20のシクロアルキル基又は炭素数6~20のアリール基であることが好ましい。
は、炭素数1~20の直鎖状若しくは分岐状のアルカンジイル基、炭素数3~20のシクロアルキレン基又は炭素数6~20のアリーレン基であることが好ましい。
nは、共重合体との反応性を高める観点から、0又は1が好ましい。
は、窒素原子、リン原子及び硫黄原子からなる群より選択される少なくとも一種の原子(以下、特定原子ともいう。)を有し、これら特定原子でRに結合する。特定原子は活性水素に結合しておらず、例えば3置換のヒドロカルビルシリル基等で保護されていてもよい。なお、ここでいう「活性水素」とは、炭素原子以外の原子に結合した水素原子をいい、好ましくはポリメチレンの炭素-水素結合よりも結合エネルギが低いものを指す。
は、中でも、オニウム塩生成剤によってオニウムイオンになり得る基であることが好ましい。化合物(B2)がこのような基(A)を有することにより、変性共重合体に対して優れた形状保持性を付与することができる。
の具体例としては、例えば1級アミノ基の2つの水素原子が2つの保護基によって置換されてなる窒素含有基、2級アミノ基の1つの水素原子が1つの保護基によって置換されてなる窒素含有基、3級アミノ基、イミノ基、ピリジル基、1級ホスフィノ基の2つの水素原子が2つの保護基によって置換されてなるリン含有基、2級ホスフィノ基の1つの水素原子が1つの保護基によって置換されてなるリン含有基、3級ホスフィノ基、及び、チオール基の1つの水素原子が1つの保護基によって置換されてなる硫黄含有基等が挙げられる。これらの中でも、シリカとの親和性が良好である観点から、窒素原子を有する基であることが好ましい。なお、「保護基」とは、Aを重合活性末端に対して不活性な官能基に変換しておく官能基であり、例えば3置換のヒドロカルビルシリル基等が挙げられる。
上記化合物(B2-1)の具体例としては、1級アミンの2つの水素原子が2つの保護基によって置換されてなる窒素含有基、2級アミンの1つの水素原子が1つの保護基によって置換されてなる窒素含有基、又は3級アミノ基と、アルコキシシリル基とを有する化合物として、例えば、N,N-ビス(トリメチルシリル)アミノプロピルトリメトキシシラン、N,N-ビス(トリメチルシリル)アミノプロピルメチルジエトキシシラン、N,N’,N’-トリス(トリメチルシリル)-N-(2-アミノエチル)-3-アミノプロピルトリエトキシシラン、3-(4-トリメチルシリル-1-ピペラジノ)プロピルメチルジメトキシシラン、等を挙げることができる。
イミノ基又はピリジル基と、アルコキシシリル基とを有する化合物としては、N-(1,3-ジメチルブチリデン)-3-(トリエトキシシリル)-1-プロパンアミン、N-(1-メチルプロピリデン)-3-(トリエトキシシリル)-1-プロパンアミン、N-(4-N,N-ジメチルアミノベンジリデン)-3-(トリエトキシシリル)-1-プロパンアミン、N-(シクロヘキシリデン)-3-(トリエトキシシリル)-1-プロパンアミン及びこれらのトリエトキシシリル化合物に対応するトリメトキシシリル化合物、メチルジエトキシシリル化合物、エチルジメトキシシリル化合物、N-(3-トリメトキシシリルプロピル)-4,5-ジヒドロイミダゾール、N-(3-トリエトキシシリルプロピル)-4,5-ジヒドロイミダゾール、N-(3-トリメトキシシリルプロピル)-4,5-イミダゾール、N-(3-トリエトキシシリルプロピル)-4,5-イミダゾール、3-ヘキサメチレンイミノプロピルトリメトキシシラン、3-ヘキサメチレンイミノプロピルメチルジメトキシシラン、並びに上記化合物中のアルキル基、アルカンジイル基を、各々炭素数1~6のアルキル基、炭素数1~6のアルカンジイル基に置き換えた化合物等が挙げられる。
1級ホスフィノ基の2つの水素原子が2つの保護基によって置換されてなるリン含有基、2級ホスフィノ基の1つの水素原子が1つの保護基によって置換されてなるリン含有基、3級ホスフィノ基、又はチオール基の1つの水素原子が1つの保護基によって置換されてなる硫黄含有基と、アルコキシシリル基とを有する化合物としては、P,P-ビス(トリメチルシリル)ホスフィノプロピルメチルジメトキシシラン、P,P-ビス(トリメチルシリル)ホスフィノプロピルトリメトキシシラン、3-ジメチルフォスフィノプロピルトリメトキシシラン、3-ジメチルフォスフィノプロピルメチルジメトキシシラン、3-ジフェニルフォスフィノプロピルトリメトキシシラン、3-ジフェニルフォスフィノプロピルトリエトキシシラン、3-ジフェニルフォスフィノプロピルメリルジメトキシシラン、S-トリメチルシリルメルカプトプロピルメチルジメトキシシラン、S-トリメチルシリルメルカプトプロピルトリメトキシシラン、S-トリメチルシリルメルカプトプロピルトリエトキシシラン、S-トリメチルシリルメルカプトプロピルメチルジエトキシシラン、及び上記化合物中のアルキル基、アルカンジイル基を、各々炭素数1~6のアルキル基、炭素数1~6のアルカンジイル基に置き換えた化合物等を挙げることができる。その他、イソ(チオ)シアナート基を有する化合物として、3-イソシアナトプロピルトリメトキシシラン、3-イソシアナトプロピルトリエトキシシラン等を挙げることができる。
上記化合物(B2-2)は、上記基(x2)が、活性水素に結合していない窒素原子を含む基であることが好ましく、その具体例としては、環状エーテル基を有する化合物として、例えばテトラグリシジル-1,3-ビスアミノメチルシクロヘキサン等のエポキシアミン化合物などを;
(チオ)カルボニル基を有する化合物として、例えば4-N,N-ジメチルアミノベンゾフェノン等の4-アミノアセトフェノン;1,7-ビス(メチルエチルアミノ)-4-ヘプタノン等のビス(ジヒドロカルビルアミノアルキル)ケトン;2-ジメチルアミノエチルアクリレート等のジヒドロカルビルアミノアルキル(メタ)アクリレート;1,3-ジメチル-2-イミダゾリジノン等のヒドロカルビルイミダゾリジノン;1-フェニル-2-ピロリドン等のN-ヒドロカルビルピロリドン;N-メチル-ε-カプロラクタム等のN-ヒロドカルビルカプトラクタム;N,N-ジエチルホルムアミド等のN-ジヒドロカルビルホルムアミド;N,N-ジメチルアセトアミド等のN,N-ジヒドロカルビルアセトアミド;N,N-ジメチルアクリルアミド等の(メタ)アクリルアミド;などを;
イソ(チオ)シアナート基を有する化合物として、例えば3-イソシアナトプロピルトリメトキシシランなどを;挙げることができる。
上記化合物(B2-3)としては、例えば2,4-トリレンジイソシアナート、2,6-トリレンジイソシアナート、ジフェニルメタンジイソシアナート、ナフタレンジイソシアナート、トリフェニルメタントリイソシアナート、p-フェニレンジイソシアナート、トリス(イソシアナートフェニル)チオホスフェート、キシレンジイソシアナート、ベンゼン-1,2,4-トリイソシアナート、ナフタレン-1,2,5,7-テトライソシアナート、1,4-フェニレンジイソチオシアナートなどを挙げることができる。
化合物(B2)としては、シリカとの親和性が強い点において、特に化合物(B2-1)を用いることが好ましい。なお、シラン化合物(B2-1)を用いる場合、変性共重合体のムーニー粘度を調整する目的で、シラン化合物(B2-1)と共に、四塩化ケイ素、エポキシ含有化合物(例えば、テトラグリシジル-1,3-ビスアミノメチルシクロヘキサンなど)などを用いてもよい。上記で例示した化合物(B2)は、重合終了末端が変性された変性共重合体を得ることが可能である点において、いずれも同様の作用を有するものである。したがって、後述の実施例に記載されていないものであっても、本発明において使用することが可能である。なお、上記式(1)で表される化合物と変性共重合体との反応によって下記式(1-1)で表される構造が重合体末端に導入される。
Figure JPOXMLDOC01-appb-C000002
(一般式(1-1)中、Rは水素原子またはヒドロカルビル基であり、複数存在するRは同じであっても異なっていてもよい。A、R、R及びnは上記式(1)のA、R、R及びnと同義である。)
上記の末端変性反応は、例えば溶液反応として行うことができる。この溶液反応は、上記重合工程における重合反応の終了後の未反応モノマーを含む溶液を用いて行ってもよく、当該溶液に含まれる共重合体を単離し、シクロヘキサン等の適当な溶媒に溶解した上で行ってもよい。また、末端変性反応は、回分式及び連続式のいずれを用いて行ってもよい。このとき、化合物(B2)の添加方法は特に制限されず、一括して添加する方法、分割して添加する方法、連続的に添加する方法などが挙げられる。
末端変性反応に使用する化合物(B2)の量は、反応に使用する化合物の種類に応じて適宜設定すればよいが、重合開始剤が有する重合反応に関与する金属原子に対し、好ましくは0.1モル当量以上、より好ましくは0.3モル当量以上である。0.1モル当量以上とすることにより、変性反応を十分に進行させることができ、シリカの分散性を好適に改良することができる。
末端変性反応の温度は、通常、上記重合反応の温度と同じであり、-20~150℃であることが好ましく、0~120℃であることがより好ましく、20~100℃であることが特に好ましい。変性反応の温度が低いと、変性共重合体の粘度が上昇する傾向がある。一方、変性反応の温度が高いと、重合活性末端が失活しやすくなる。変性反応の反応時間は、好ましくは1分~5時間であり、より好ましくは2分~1時間である。
(反応停止)
上記アニオン重合は、この分野で通常使用する反応停止剤の添加により、停止させることができる。そのような反応停止剤としては、例えば、メタノール、エタノール、イソプロパノールなどのアルコールまたは酢酸などの活性プロトンを有する極性溶媒およびこれらの混液、またはそれらの極性溶媒とヘキサン、シクロヘキサンなどの無極性溶媒との混液が挙げられる。反応停止剤の添加量は、通常、アニオン重合開始剤に対し、同モル量もしくは2倍モル量程度で充分である。
<カップリング>
上記共重合体の製造方法においては、単量体の重合開始から、後述する重合体の回収までに、共重合体の炭化水素溶液にカップリング剤を添加してもよい。カップリング剤としては、下記式(2-1)で表される化合物を挙げることができる。
  R ML4-a      (2-1)
(式(2-1)中、Rはアルキル基、アルケニル基、シクロアルケニル基またはアリール基を表し、Mはケイ素原子またはスズ原子を表し、Lはハロゲン原子またはヒドロカルビルオキシ基を表し、aは0~2の整数を表す。)
上記式(2-1)で表されるカップリング剤としては、四塩化ケイ素、メチルトリクロロシラン、ジメチルジクロロシラン、トリメチルクロロシラン、四塩化スズ、メチルトリクロロスズ、ジメチルジクロロスズ、トリメチルクロロスズ、テトラメトキシシラン、メチルトリメトキシシラン、ジメトキシジメチルシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、ジメトキシジエチルシラン、ジエトキシジメチルシラン、テトラエトキシシラン、エチルトリエトキシシラン、ジエトキシジエチルシランなどを挙げることができる。
カップリング剤の添加量は重合体の加工性を高めるために、アルカリ金属触媒由来のアルカリ金属1mol当たり、好ましくは0.03mol以上、より好ましくは0.05mol以上である。また低燃費性を高めるために、好ましくは0.4mol以下、より好ましくは0.3mol以下である。
<水素添加方法>
水添共重合体の製造方法においては、これまでに説明した共重合体を水素添加して、水素添加率が75モル%以上の水添共重合体を得る。共重合体を水素添加することによって、耐熱性が向上するという利点がある。また、水素添加率が低いと、ゴム破壊強度及び耐摩耗性の改善効果が充分に得られない。
水素添加の方法、反応条件については特に限定はなく、公知の方法、公知の条件で水素添加すればよい。通常は、20~150℃、0.1~10MPaの水素加圧下、水添触媒の存在下で実施される。なお、水素添加率は、水添触媒の量、水添反応時の水素圧力、反応時間等を変えることにより、任意に選定することができる。水添触媒として、通常は、元素周期表4~11族金属のいずれかを含む化合物を用いることができる。例えば、Ti、V、Co、Ni、Zr、Ru、Rh、Pd、Hf、Re、Pt原子を含む化合物を水添触媒として用いることができる。より具体的な水添触媒としては、Ti、Zr、Hf、Co、Ni、Pd、Pt、Ru、Rh、Re等のメタロセン系化合物;Pd、Ni、Pt、Rh、Ru等の金属をカーボン、シリカ、アルミナ、ケイソウ土等の担体に担持させた担持型不均一系触媒;Ni、Co等の金属元素の有機塩又はアセチルアセトン塩と有機アルミニウム等の還元剤とを組み合わせた均一系チーグラー型触媒;Ru、Rh等の有機金属化合物又は錯体;水素を吸蔵させたフラーレンやカーボンナノチューブ等を挙げることができる。
これらのうち、Ti、Zr、Hf、Co、Niのいずれかを含むメタロセン化合物は、不活性有機溶媒中、均一系で水添反応できる点で好ましい。更に、Ti、Zr、Hfのいずれかを含むメタロセン化合物が好ましい。特に、チタノセン化合物とアルキルリチウムとを反応させた水添触媒は、安価で工業的に特に有用な触媒であるので好ましい。具体的な例として、例えば、特開平1-275605号公報、特開平5-271326号公報、特開平5-271325号公報、特開平5-222115号公報、特開平11-292924号公報、特開2000-37632号公報、特開昭59-133203号公報、特開昭63-5401号公報、特開昭62-218403号公報、特開平7-90017号公報、特公昭43-19960号公報、特公昭47-40473号公報に記載の水添触媒を挙げることができる。なお、これらの水添触媒は、一種単独で又は二種以上を組み合わせて用いることができる。
ゴム成分100質量%中の水添共重合体の含有量は、75質量%以上であり、好ましくは80質量%以上であり、より好ましくは90質量%以上であり、更に好ましくは100質量%である。水添共重合体の含有量が75質量%未満であると、ゴム破壊強度及び耐摩耗性(特にゴム破壊強度)の改善効果が得られにくい傾向がある。
特に、上記水添共重合体が水添スチレンブタジエン共重合体である場合、ゴム成分100質量%中の水添スチレンブタジエン共重合体の含有量は、好ましくは90質量%以上であり、より好ましくは95質量%以上であり、更に好ましくは100質量%である。
上記水添共重合体以外に使用できるその他のゴム成分としては、従来のスチレンブタジエン共重合体ゴム(SBR)、ポリブタジエンゴム(BR)、ブタジエンイソプレン共重合体ゴム、ブチルゴムなどを挙げることができる。また、天然ゴム(NR)、エチレンプロピレン共重合体、エチレンオクテン共重合体なども挙げることができる。これらのゴム成分は、2種以上組み合わせて用いてもよい。
ゴム成分としてNRを含む場合、NRとしては特に限定されず、例えば、SIR20、RSS♯3、TSR20等、タイヤ工業において一般的なものを使用できる。
ゴム成分100質量%中のNRの含有量は、好ましくは5質量%以上である。該NRの含有量は、好ましくは25質量%以下、より好ましくは15質量%以下である。上記量のNRを配合することにより、良好な低燃費性が得られ、低燃費性、ゴム破壊強度及び耐摩耗性の性能バランスがより良好となる。
本発明におけるゴム組成物は、CTAB比表面積160m/g以上、BET比表面積170m/g以上の微粒子シリカを含む。上記水添共重合体と、上記微粒子シリカを併用することで、低燃費性、ゴム破壊強度及び耐摩耗性(特に、ゴム破壊強度、耐摩耗性)を相乗的に改善できる。特に、上記微粒子シリカとして、CTAB比表面積180m/g以上、BET比表面積185m/g以上のシリカを使用した場合に、より良好な低燃費性、ゴム破壊強度及び耐摩耗性が得られる。
シリカとしては例えば、乾式法シリカ(無水シリカ)、湿式法シリカ(含水シリカ)などが挙げられるが、シラノール基が多いという理由から、湿式法シリカが好ましい。
微粒子シリカのCTAB(セチルトリメチルアンモニウムブロミド)比表面積は、160m/g以上、好ましくは180m/g以上、より好ましくは190m/g以上、更に好ましくは195m/g以上、特に好ましくは197m/g以上である。CTAB比表面積が160m/g未満であると、ゴム破壊強度及び耐摩耗性の充分な向上が得られにくくなる傾向がある。該CTAB比表面積は、好ましくは600m/g以下、より好ましくは300m/g以下、更に好ましくは250m/g以下である。CTAB比表面積が600m/gを超えると、分散性に劣り、凝集してしまうため、加工性、低燃費性、ゴム破壊強度及び耐摩耗性が低下する傾向がある。
なお、シリカのCTAB比表面積は、ASTM D3765-92に準拠して測定される。
微粒子シリカのBET比表面積は、170m/g以上、好ましくは185m/g以上、より好ましくは190m/g以上、更に好ましくは195m/g以上、特に好ましくは210m/g以上である。BET比表面積が170m/g未満であると、ゴム破壊強度及び耐摩耗性の充分な向上が得られにくくなる傾向がある。該BET比表面積は、好ましくは600m/g以下、より好ましくは300m/g以下、更に好ましくは260m/g以下である。BET比表面積が600m/gを超えると、分散性に劣り、凝集してしまうため、加工性、低燃費性、ゴム破壊強度及び耐摩耗性が低下する傾向がある。
なお、シリカのBET比表面積は、ASTM D3037-81に準じて測定される。
微粒子シリカのアグリゲートサイズは、好ましくは30nm以上、より好ましくは35nm以上、更に好ましくは40nm以上、より更に好ましくは45nm以上、より更に好ましくは50nm以上、より更に好ましくは55nm以上、最も好ましくは60nm以上である。また、該アグリゲートサイズは、好ましくは100nm以下、より好ましくは80nm以下、更に好ましくは70nm以下、特に好ましくは65nm以下である。このようなアグリゲートサイズを有することにより、良好な分散性(加工性)を有しながら、優れた低燃費性、ゴム破壊強度を与えることができる。
なお、微粒子シリカのアグリゲートサイズは、特開2011-140613号公報に記載の方法により測定できる。
微粒子シリカの平均一次粒子径は、好ましくは25nm以下、より好ましくは22nm以下、更に好ましくは17nm以下、特に好ましくは14nm以下である。該平均一次粒子径の下限は特に限定されないが、好ましくは3nm以上、より好ましくは5nm以上、更に好ましくは7nm以上である。このような小さい平均一次粒子径を有しているものの、上記のアグリゲートサイズを有するカーボンブラックのような構造により、シリカの分散性(加工性)をより改善でき、低燃費性、ゴム破壊強度、耐摩耗性を更に改善できる。
なお、微粒子シリカの平均一次粒子径は、透過型又は走査型電子顕微鏡により観察し、視野内に観察されたシリカの一次粒子を400個以上測定し、その平均により求めることができる。
微粒子シリカのD50は、好ましくは7.0μm以下、より好ましくは5.5μm以下、更に好ましくは4.5μm以下である。7.0μmを超えると、シリカの分散性がかえって悪くなっていることを示す。該微粒子シリカのD50は、好ましくは2.0μm以上、より好ましくは2.5μm以上、更に好ましくは3.0μm以上である。2.0μm未満であると、アグリゲートサイズも小さくなり、微粒子シリカとしては充分な分散性を得にくくなる傾向がある。
ここで、D50は、微粒子シリカの中央直径であって粒子の50質量%がその中央直径よりも小さい。
また、微粒子シリカは、粒子径が18μmより大きいものの割合が、6質量%以下が好ましく、4質量%以下がより好ましく、1.5質量%以下が更に好ましい。これにより、シリカの良好な分散性が得られ、所望の性能が得られる。
なお、微粒子シリカのD50、所定の粒子径を有するシリカの割合は、特開2011-140613号公報に記載の方法により測定できる。
微粒子シリカの細孔容積の細孔分布幅Wは、好ましくは0.7以上、より好ましくは1.0以上、更に好ましくは1.3以上、特に好ましくは1.5以上である。また、該細孔分布幅Wは、好ましくは5.0以下、より好ましくは4.0以下、更に好ましくは3.0以下、特に好ましくは2.0以下である。このようなブロードなポーラスの分布により、シリカの分散性を改善でき、所望の性能が得られる。
なお、シリカの細孔容積の細孔分布幅Wは、特開2011-140613号公報に記載の方法により測定できる。
微粒子シリカの細孔分布曲線中の細孔容量のピーク値Ysを与える直径Xs(nm)は、好ましくは10nm以上、より好ましくは15nm以上、更に好ましくは18nm以上、特に好ましくは20nm以上であり、また、好ましくは60nm以下、より好ましくは35nm以下、更に好ましくは28nm以下、特に好ましくは25nm以下である。上記範囲内であれば、分散性と補強性(ゴム破壊強度)に優れた微粒子シリカとなり、本発明の効果を充分に発揮することができる。
本発明におけるゴム組成物において、上記微粒子シリカの配合量は、ゴム成分100質量部に対して、好ましくは1質量部以上、より好ましくは10質量部以上、更に好ましくは15質量部以上、特に好ましくは20質量部以上、最も好ましくは50質量部以上である。1質量部未満であると、充分な低燃費性、ゴム破壊強度が得られない傾向がある。該微粒子シリカの配合量は、好ましくは200質量部以下、より好ましくは150質量部以下、更に好ましくは120質量部以下、特に好ましくは100質量部以下である。200質量部を超えると、加工性が悪化するとともに良好な分散性を確保するのが困難となり、低燃費性、ゴム破壊強度が低下するおそれがある。
本発明におけるゴム組成物では、上記微粒子シリカ以外のシリカを含んでもよい。この場合、シリカの合計含有量は、ゴム成分100質量部に対して、好ましくは1質量部以上、より好ましくは10質量部以上、更に好ましくは20質量部以上、特に好ましくは50質量部以上である。また、該合計含有量は、好ましくは200質量部以下、より好ましくは150質量部以下であり、更に好ましくは120質量部以下である。下限未満の場合や上限を超える場合は、前述の微粒子シリカの配合量と同様の傾向がある。
本発明におけるゴム組成物は、充填剤としてカーボンブラックを含んでいることを特徴とする。
本発明におけるゴム組成物が含有するカーボンブラックとしては、カーボンブラックとしては、SAF、ISAF、HAF、MAF、FEF、SRF、GPF、APF、FF、CF、SCF及びECFのようなファーネスブラック(ファーネスカーボンブラック);アセチレンブラック(アセチレンカーボンブラック);FT及びMTのようなサーマルブラック(サーマルカーボンブラック);EPC、MPC及びCCのようなチャンネルブラック(チャンネルカーボンブラック);グラファイトなどをあげることができる。これらは1種または2種以上組み合わせて用いることができる。
カーボンブラックの窒素吸着比表面積(NSA)は、通常5~200m/gであり、下限は50m/gであることが好ましく、80m/gであることがより好ましい。また、上限は150m/gであることが好ましく、120m/gであることがより好ましい。また、カーボンブラックのジブチルフタレート(DBP)吸収量は、通常5~300ml/100gであり、下限は80ml/100g、上限は180ml/100gであることが好ましい。カーボンブラックのNSAやDBP吸収量が上記範囲の下限未満では、補強効果が小さく耐摩耗性が低下する傾向があり、上記範囲の上限を超えると、分散性が悪く、ヒステリシスロスが増大し低燃費性が低下する傾向がある。
該窒素吸着比表面積は、ASTM D4820-93に従って測定され、該DBP吸収量は、ASTM D2414-93に従って測定される。
カーボンブラックの含有量は、ゴム成分100質量部に対して、3質量部以上である。3質量部未満では、充分な補強性が得られないおそれがある。カーボンブラックの含有量は、好ましくは60質量部以下、より好ましくは30質量部以下、更に好ましくは15質量部以下である。60質量部を超えると、低燃費性が悪化する傾向がある。
本発明におけるゴム組成物は、上記シリカやカーボンブラック以外の他の充填剤を更に含んでもよい。本明細書において、充填剤は、ゴムの補強を目的にゴム組成物に配合されるものであり、例えば、炭酸カルシウム、セリサイトなどの雲母、水酸化アルミニウム、酸化マグネシウム、水酸化マグネシウム、クレー、タルク、アルミナ、酸化チタン、マイカ等の白色充填剤等が挙げられる。
充填剤100質量%中の微粒子シリカの含有量は、好ましくは80質量%以上、より好ましくは90質量%以上である。80質量%未満であると、本発明の効果が充分に得られないおそれがある。
本発明におけるゴム組成物は、シリカとともにシランカップリング剤を併用することが好ましい。本発明では、水素添加率の高い上記水添共重合体を使用するため、充分な架橋密度が得られないおそれがあるが、上記水添共重合体と共に、シリカ、シランカップリング剤を配合することにより、良好な架橋ネットワークを形成でき、本発明の効果がより好適に得られる。
シランカップリング剤としては、従来から公知のものを用いることができ、たとえば、ビス(3-トリエトキシシリルプロピル)テトラスルフィド、ビス(2-トリエトキシシリルエチル)テトラスルフィド、ビス(3-トリメトキシシリルプロピル)テトラスルフィド、ビス(2-トリメトキシシリルエチル)テトラスルフィド、ビス(3-トリエトキシシリルプロピル)トリスルフィド、ビス(3-トリメトキシシリルプロピル)トリスルフィド、ビス(3-トリエトキシシリルプロピル)ジスルフィド、ビス(3-トリメトキシシリルプロピル)ジスルフィド、3-トリメトキシシリルプロピル-N,N-ジメチルチオカルバモイルテトラスルフィド、3-トリメトキシシリルプロピルベンゾチアゾリルテトラスルフィド、3-トリエトキシシリルプロピルベンゾチアゾールテトラスルフィド、3-トリエトキシシリルプロピルメタクリレートモノスルフィド、3-トリメトキシシリルプロピルメタクリレートモノスルフィド等のスルフィド系、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルトリエトキシシラン、2-メルカプトエチルトリメトキシシラン、2-メルカプトエチルトリエトキシシラン等のメルカプト系、ビニルトリエトキシシラン、ビニルトリメトキシシラン等のビニル系、3-アミノプロピルトリエトキシシラン、3-アミノプロピルトリメトキシシラン、3-(2-アミノエチル)アミノプロピルトリエトキシシラン、3-(2-アミノエチル)アミノプロピルトリメトキシシラン等のアミノ系、γ-グリシドキシプロピルトリエトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルメチルジエトキシシラン、γ-グリシドキシプロピルメチルジメトキシシラン等のグリシドキシ系、3-ニトロプロピルトリメトキシシラン、3-ニトロプロピルトリエトキシシラン等のニトロ系、3-クロロプロピルトリメトキシシラン、3-クロロプロピルトリエトキシシラン、2-クロロエチルトリメトキシシラン、2-クロロエチルトリエトキシシラン等のクロロ系が挙げられる。なお、上記のシランカップリング剤は、単独で用いてもよく、2種以上を組み合わせて用いてもよい。なかでも、シランカップリング剤によるカップリング効果、加工性、コストの観点から、スルフィド系シランカップリング剤が好ましく、ビス(3-トリエトキシシリルプロピル)テトラスルフィド、ビス(3-トリエトキシシリルプロピル)ジスルフィドがより好ましい。
シランカップリング剤の含有量は、シリカ100質量部に対して、3質量部以上が好ましく、5質量部以上がより好ましい。3質量部未満では、カップリング効果が不充分であり、高いシリカ分散も得られず、また、本発明の効果が充分に得られない傾向がある。そのため低燃費性やゴム破壊強度が低下してしまうおそれがある。また、シランカップリング剤の含有量は、シリカ100質量部に対して、15質量部以下が好ましく、10質量部以下がより好ましい。15質量部を超えると、余分なシランカップリング剤が残存し、得られるゴム組成物の加工性及び破壊特性の低下を招くおそれがある。
本発明におけるゴム組成物には、前記成分以外にも、硫黄などの加硫剤;チアゾール系加硫促進剤、チウラム系加硫促進剤、スルフェンアミド系加硫促進剤、グアニジン系加硫促進剤などの加硫促進剤;ステアリン酸、酸化亜鉛などの加硫活性化剤;有機過酸化物;伸展油(オイル)、滑剤などの加工助剤;老化防止剤などの従来ゴム工業で使用される配合剤を用いることができる。
伸展油(オイル)としては、アロマチック系鉱物油(粘度比重恒数(V.G.C.値)0.900~1.049)、ナフテン系鉱物油(V.G.C.値0.850~0.899)、パラフィン系鉱物油(V.G.C.値0.790~0.849)などを挙げることができる。伸展油の多環芳香族含有量は、好ましくは3質量%未満であり、より好ましくは1質量%未満である。該多環芳香族含有量は、英国石油学会346/92法に従って測定される。また、伸展油の芳香族化合物含有量(CA)は、好ましくは20質量%以上である。これらの伸展油は、2種以上組み合わされて用いられてもよい。
加硫促進剤としては、2-メルカプトベンゾチアゾール、ジベンゾチアジルジサルファイド、N-シクロヘキシル-2-ベンゾチアジルスルフェンアミド等のチアゾール系加硫促進剤;テトラメチルチウラムモノスルフィド、テトラメチルチウラムジスルフィド等のチウラム系加硫促進剤;N-シクロヘキシル-2-ベンゾチアゾールスルフェンアミド、N-t-ブチル-2-ベンゾチアゾールスルフェンアミド、N-オキシエチレン-2-ベンゾチアゾールスルフェンアミド、N-オキシエチレン-2-ベンゾチアゾールスルフェンアミド、N,N’-ジイソプロピル-2-ベンゾチアゾールスルフェンアミド等のスルフェンアミド系加硫促進剤;ジフェニルグアニジン、ジオルトトリルグアニジン、オルトトリルビグアニジン等のグアニジン系加硫促進剤を挙げることができる。なかでも、本発明の効果がより好適に得られるという理由から、スルフェンアミド系加硫促進剤が好ましく、N-シクロヘキシル-2-ベンゾチアゾールスルフェンアミドがより好ましい。また、更にグアニジン系加硫促進剤を併用することも好ましい。加硫促進剤の使用量は、ゴム成分100質量部に対して0.1~5質量部が好ましく、さらに好ましくは0.2~4質量部である。
加硫剤としては、特に限定されないが、硫黄を好適に使用できる。硫黄の含有量は、ゴム成分100質量部に対して、好ましくは0.5~5質量部、より好ましくは1~3質量部である。これにより、本発明の効果がより好適に得られる。
本発明におけるゴム組成物は、一般的な方法で製造される。すなわち、バンバリーミキサーやニーダー、オープンロールなどで上記各成分を混練りし、その後加硫する方法等により製造できる。
本発明におけるゴム組成物は、タイヤの各部材(トレッド、サイドウォール、カーカス、ベルト、ビード、クリンチエイペックス等)に使用でき、なかでも、タイヤのトレッドとして好適に用いられる。2層構造のトレッドの場合には、表面層(キャップトレッド)及び内面層(ベーストレッド)から構成される。
多層構造のトレッドは、シート状にしたものを、所定の形状に貼り合わせる方法や、2本以上の押出し機に装入して押出し機のヘッド出口で2層以上に形成する方法により作製することができる。
本発明の空気入りタイヤは、上記ゴム組成物を用いて通常の方法により製造される。すなわち、水添共重合体を含むゴム成分及び必要に応じて上記各種配合剤を配合したゴム組成物を、未加硫の段階でトレッドなどの各タイヤ部材の形状に合わせて押し出し加工し、他のタイヤ部材とともに、タイヤ成型機上にて通常の方法で成形することにより、未加硫タイヤを形成する。この未加硫タイヤを加硫機中で加熱加圧することで、本発明の空気入りタイヤが得られる。
本発明の空気入りタイヤは、乗用車用タイヤ、トラック・バス用タイヤ、二輪車用タイヤ、競技用タイヤ等として好適に用いられ、特に乗用車用タイヤとして好適に用いられる。
実施例に基づいて、本発明を具体的に説明するが、本発明はこれらのみに限定されるものではない。
以下、合成、重合時に用いた各種薬品について、まとめて説明する。なお、薬品は必要に応じて定法に従い精製を行った。
n-ヘキサン:関東化学(株)製
スチレン:関東化学(株)製
ブタジエン:東京化成工業(株)製の1,3-ブタジエン
TMEDA:関東化学(株)製のN,N,N’,N’-テトラメチルエチレンジアミン
n-ブチルリチウム溶液:関東化学(株)製の1.6M n-ブチルリチウムヘキサン溶液
2,6-ジ-tert-ブチル-p-クレゾール:大内新興化学工業(株)製のノクラック200
アルコール:関東化学(株)製のエタノール
アミン系変性剤:N,N-ビス(トリメチルシリル)アミノプロピルメチルジエトキシシラン
また、得られた共重合体の評価方法について、以下にまとめて説明する。
(共重合体の共役ジエン部の水素添加率の測定)
四塩化炭素を溶媒として用いて15質量%濃度の溶液を調製して、100MHzのH-NMRの不飽和結合部のスペクトル減少率から算出した。
(スチレン含有量の測定)
25℃にてJEOL JNM-A 400NMR装置を用いてH-NMRを測定し、そのスペクトルより求めた6.5~7.2ppmのスチレン単位に基づくフェニルプロトンと4.9~5.4ppmのブタジエン単位に基づくビニルプロトンの比からスチレン含有量を決定した。
(重量平均分子量(Mw)、数平均分子量(Mn)の測定)
共重合体の重量平均分子量(Mw)及び数平均分子量(Mn)は、ゲルパーミエーションクロマトグラフ(GPC)(東ソー(株)製GPC-8000シリーズ、検出器:示差屈折計、カラム:東ソー(株)製のTSKGEL SUPERMULTIPORE HZ-M)による測定値を基に標準ポリスチレン換算により求めた。また、共重合体が変性基を有する場合、変性処理を実施する前にMw、Mnを測定した。これは、変性基を有する共重合体を測定した場合、変性基とカラムのシリカゲルとが相互作用を起こし、正確なMw、Mnが得られないためである。
(ガラス転移温度(Tg)の測定)
ガラス転移温度(Tg)は、JIS K 7121に従い、ティー・エイ・インスツルメント・ジャパン社製の示差走査熱量計(Q200)を用いて昇温速度10℃/分で昇温しながら測定することにより、ガラス転移開始温度として求めた。
<共重合体の製造例>
合成例1(共重合体(1)の合成:水素添加率0モル%、SBR)
十分に窒素置換した耐熱反応容器にn-ヘキサン2000ml、スチレン60g、ブタジエン140g、TMEDA0.93g、n-ブチルリチウム0.45mmolを加えて、50℃で5時間攪拌し、重合反応を行った。その後、アルコールを加えて反応を止め、反応溶液に2,6-ジ-tert-ブチル-p-クレゾール1gを添加後、再沈殿精製により共重合体(1)を得た。得られた共重合体(1)は重量平均分子量(Mw)490,000、スチレン含有量30質量%であった。
合成例2(共重合体(2)の合成:水素添加率60モル%、水添SBR)
得られた重合体を水素添加する以外は、共重合体(1)と同様の処方にて共重合体(2)を得た。すなわち、共重合体(1)において重合転化反応後、アルコールを加えて重合反応を停止させず、次いで、水素ガスを0.4MPa-Gaugeの圧力で供給しながら20分間撹拌し、未反応のポリマー末端リチウムと反応させ、水素化リチウムとした。水素ガス供給圧力を0.7MPa-Gauge、反応温度を90℃とし、チタノセンジクロリドを主体とする触媒を用いて水素添加を行った。水素の吸収が目的の水素添加率となる積算量に達した時点で、反応温度を常温とし、水素圧を常圧に戻して反応容器より抜き出し、反応溶液を水中に撹拌投入して溶媒をスチームストリッピングにより除去することによって、共重合体(2)を得た。得られた共重合体(2)の水素添加率は60モル%であり、重量平均分子量(Mw)は450,000であった。
合成例3(共重合体(3)の合成:水素添加率80モル%、水添SBR)
目的の水素添加率となるように、水素の吸引の積算量を調整した以外は、共重合体(2)と同様の処方により、共重合体(3)を得た。得られた共重合体(3)の水素添加率は80モル%であり、重量平均分子量(Mw)は480,000であった。
合成例4(共重合体(4)の合成:水素添加率95モル%、水添SBR)
目的の水素添加率となるように、水素の吸引の積算量を調整した以外は、共重合体(2)と同様の処方により、共重合体(4)を得た。得られた共重合体(4)の水素添加率は95モル%であり、重量平均分子量(Mw)は450,000であった。
合成例5(共重合体(5)の合成:水素添加率95モル%、水添変性SBR)
十分に窒素置換した耐熱反応容器にn-ヘキサン2000ml、スチレン60g、1,3-ブタジエン140g、TMEDA0.93g、n-ブチルリチウム0.45mmolを加えて、50℃で5時間攪拌し、重合反応を行った。その後アミン系変性剤を0.15mol加えて、0℃で1時間撹拌した。その後の工程については、水素の吸引の積算量を調整した以外は、共重合体(2)と同様の処方により、共重合体(5)を得た。得られた共重合体(5)の水素添加率は95モル%であり、変性前の重量平均分子量(Mw)は440,000であった。
Figure JPOXMLDOC01-appb-T000003
以下に、実施例及び比較例で用いた各種薬品について説明する。
共重合体(1)~(5):上記方法で合成
天然ゴム:TSR20
カーボンブラック:三菱化学(株)製のダイアブラックN339(NSA:96m/g、DBP吸収量:124ml/100g)
オイル:(株)ジャパンエナジー製のX-140
シリカ(1):EVONIK社製のULTRASIL VN3(CTAB比表面積:165m/g、BET比表面積:172m/g、平均一次粒子径:15nm、アグリゲートサイズ:35nm、D50:7.0μm、18μmを超える粒子の割合:6.0質量%、細孔分布幅W:0.3、細孔分布曲線中の細孔容量ピーク値を与える直径Xs:17nm)
シリカ(2):Rhodia社製のZeosil HRS 1200MP(CTAB比表面積:195m/g、BET比表面積:200m/g、平均一次粒子径:15nm、アグリゲートサイズ:40nm、D50:6.5μm、18μmを超える粒子の割合:5.0質量%、細孔分布幅W:0.40、細孔分布曲線中の細孔容量ピーク値を与える直径Xs:18.8nm)
シリカ(3):Rhodia社製のZeosil Premium 200MP(CTAB比表面積:200m/g、BET比表面積:220m/g、平均一次粒子径:10nm、アグリゲートサイズ:65nm、D50:4.2μm、18μmを超える粒子の割合:1.0質量%、細孔分布幅W:1.57、細孔分布曲線中の細孔容量ピーク値を与える直径Xs:21.9nm)
シリカ(4):Rhodia社製のZeosil 1115MP(CTAB比表面積:105m/g、BET比表面積:115m/g、平均一次粒子径:25nm、アグリゲートサイズ:92nm、細孔分布幅W:0.63、細孔分布曲線中の細孔容量ピーク値を与える直径Xs:60.3nm)
シランカップリング剤:デグッサ社製のSi69(ビス(3-トリエトキシシリルプロピル)テトラスルフィド)
老化防止剤:住友化学(株)製のアンチゲン3C
ステアリン酸:日油(株)製のビーズステアリン酸つばき
酸化亜鉛:三井金属鉱業(株)製の亜鉛華1号
ワックス:大内新興化学工業(株)製のサンノックN
硫黄:鶴見化学工業(株)製の粉末硫黄
加硫促進剤(1):住友化学(株)製のソクシノールCZ(N-シクロヘキシル-2-ベンゾチアゾリルスルフェンアミド)
加硫促進剤(2):住友化学(株)製のソクシノールD(1,3-ジフェニルグアニジン)
(実施例及び比較例)
表2に示す配合内容に従い、(株)神戸製鋼所製の1.7Lバンバリーミキサーを用いて、硫黄及び加硫促進剤以外の材料を150℃の条件下で5分間混練りし、混練り物を得た。次に、得られた混練り物に硫黄及び加硫促進剤を添加し、オープンロールを用いて、80℃の条件下で5分間練り込み、未加硫ゴム組成物を得た。得られた未加硫ゴム組成物を170℃で20分間、0.5mm厚の金型でプレス加硫し、加硫ゴム組成物を得た。
<評価項目及び試験方法>
得られた加硫ゴム組成物について、下記の評価を行った。結果を表2に示す。
(ゴム破壊強度)
上記加硫ゴム組成物について、JIS K 6251に準じて引張試験を行い、破断伸びを測定した。測定結果を、比較例1を100とした指数で示した。指数が大きいほどゴム破壊強度が大きいことを示している。
(ゴム破壊強度指数)=(各配合のゴム破壊強度)/(比較例1のゴム破壊強度)×100
(耐摩耗性)
LAT試験機(Laboratory Abration and Skid Tester)を用い、荷重50N、速度20km/h、スリップアングル5°の条件にて、各加硫ゴム組成物の容積損失量を測定した。比較例1の容積損失量を100として指数表示した。数値が大きいほど耐摩耗性に優れることを示している。
(低燃費性)
(株)上島製作所製スペクトロメーターを用いて、動的歪振幅1%、周波数10Hz、温度50℃で加硫ゴム組成物のtanδを測定した。tanδの逆数の値について比較例1を100として指数表示した。数値が大きいほど転がり抵抗が小さく、低燃費性に優れることを示している。なお、指数が98以上の場合に、良好と判断した。
Figure JPOXMLDOC01-appb-T000004
表2より、水素添加率が75モル%以上である水添スチレンブタジエン共重合体をゴム成分100質量%中に75質量%以上含むとともに、ゴム成分100質量部に対してカーボンブラックを3質量部以上含み、更に、CTAB比表面積160m/g以上、BET比表面積170m/g以上の微粒子シリカ(シリカ(1)~(3))を含むゴム組成物を用いた実施例1~7では、良好な低燃費性を維持又は改善しつつ、ゴム破壊強度及び耐摩耗性を良好に改善できることが明らかとなった。特に前記水添共重合体とCTAB比表面積180m/g以上、BET比表面積185m/g以上の微粒子シリカ(シリカ(2)、(3))とを併用した実施例では、前記すべての性能を改善し、性能バランスを顕著に改善した。

Claims (9)

  1. ゴム組成物を用いて作製した空気入りタイヤであって、
    前記ゴム組成物は、芳香族ビニル化合物及び共役ジエン化合物を共重合して得られた、共役ジエン部の水素添加率が75モル%以上である水添共重合体と、CTAB比表面積160m/g以上、BET比表面積170m/g以上の微粒子シリカと、カーボンブラックとを含み、
    ゴム成分100質量%中の前記水添共重合体の含有量が75質量%以上であり、
    ゴム成分100質量部に対する前記カーボンブラックの含有量が3質量部以上である空気入りタイヤ。
  2. 前記微粒子シリカが、CTAB比表面積180m/g以上、BET比表面積185m/g以上である請求項1記載の空気入りタイヤ。
  3. 前記水添共重合体の重量平均分子量が200,000~2,000,000である請求項1又は2に記載の空気入りタイヤ。
  4. 前記水添共重合体の水素添加率が90モル%以上である請求項1~3のいずれかに記載の空気入りタイヤ。
  5. 前記水添共重合体が水添スチレンブタジエン共重合体である請求項1~4のいずれかに記載の空気入りタイヤ。
  6. 前記水添スチレンブタジエン共重合体が水添変性スチレンブタジエン共重合体である請求項5に記載の空気入りタイヤ。
  7. 前記水添スチレンブタジエン共重合体のスチレン含有量が5~40質量%である請求項5又は6に記載の空気入りタイヤ。
  8. ゴム成分100質量%中の前記水添スチレンブタジエン共重合体の含有量が90~100質量%である請求項5~7のいずれかに記載の空気入りタイヤ。
  9. ゴム成分100質量部に対して、前記微粒子シリカの含有量が1~200質量部である請求項1~8のいずれかに記載の空気入りタイヤ。
PCT/JP2015/069831 2014-09-08 2015-07-10 空気入りタイヤ WO2016039006A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201580045221.3A CN106795335B (zh) 2014-09-08 2015-07-10 充气轮胎
EP15840502.7A EP3181631B1 (en) 2014-09-08 2015-07-10 Pneumatic tire
JP2015562973A JP6627513B2 (ja) 2014-09-08 2015-07-10 空気入りタイヤ
US15/503,314 US20170233562A1 (en) 2014-09-08 2015-07-10 Pneumatic tire

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-182387 2014-09-08
JP2014182387 2014-09-08

Publications (1)

Publication Number Publication Date
WO2016039006A1 true WO2016039006A1 (ja) 2016-03-17

Family

ID=55458768

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/069831 WO2016039006A1 (ja) 2014-09-08 2015-07-10 空気入りタイヤ

Country Status (5)

Country Link
US (1) US20170233562A1 (ja)
EP (1) EP3181631B1 (ja)
JP (1) JP6627513B2 (ja)
CN (1) CN106795335B (ja)
WO (1) WO2016039006A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016056349A (ja) * 2014-09-08 2016-04-21 住友ゴム工業株式会社 空気入りタイヤ
JP2016056351A (ja) * 2014-09-08 2016-04-21 住友ゴム工業株式会社 空気入りタイヤ
JP2016056350A (ja) * 2014-09-08 2016-04-21 住友ゴム工業株式会社 空気入りタイヤ
JP2016069628A (ja) * 2014-09-30 2016-05-09 住友ゴム工業株式会社 空気入りタイヤ
JP2019167531A (ja) * 2018-03-20 2019-10-03 横浜ゴム株式会社 タイヤ用ゴム組成物及び空気入りタイヤ
JP2021042272A (ja) * 2019-09-06 2021-03-18 横浜ゴム株式会社 スタッドレスタイヤ用ゴム組成物およびそれを用いたスタッドレスタイヤ
JP2021062822A (ja) * 2019-10-16 2021-04-22 横浜ゴム株式会社 空気入りタイヤ

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6801183B2 (ja) 2014-09-08 2020-12-16 住友ゴム工業株式会社 空気入りタイヤ
CN106574079A (zh) * 2014-09-08 2017-04-19 住友橡胶工业株式会社 充气轮胎
JP6716942B2 (ja) 2016-02-18 2020-07-01 住友ゴム工業株式会社 空気入りタイヤ及び空気入りタイヤの製造方法
JP6972534B2 (ja) 2016-10-31 2021-11-24 住友ゴム工業株式会社 混練機投入用ポリマー
JP6862787B2 (ja) 2016-11-22 2021-04-21 住友ゴム工業株式会社 空気入りタイヤ
JP7224149B2 (ja) 2018-11-12 2023-02-17 住友ゴム工業株式会社 ゴム組成物及び空気入りタイヤ
EP3741802A1 (de) * 2019-05-24 2020-11-25 Continental Reifen Deutschland GmbH Kautschukmischung und reifen
TW202110916A (zh) * 2019-08-30 2021-03-16 日商Jsr股份有限公司 聚合物組成物、交聯體以及輪胎
DE102021206271A1 (de) 2021-06-18 2022-12-22 Continental Reifen Deutschland Gmbh Kautschukmischung und Reifen
DE102021206273A1 (de) 2021-06-18 2022-12-22 Continental Reifen Deutschland Gmbh Kautschukmischung und Reifen
DE102021206278A1 (de) 2021-06-18 2022-12-22 Continental Reifen Deutschland Gmbh Kautschukmischung und Reifen
DE102021206276A1 (de) 2021-06-18 2022-12-22 Continental Reifen Deutschland Gmbh Kautschukmischung und Reifen
DE102021206274A1 (de) 2021-06-18 2022-12-22 Continental Reifen Deutschland Gmbh Kautschukmischung und Reifen
DE102021206277A1 (de) 2021-06-18 2022-12-22 Continental Reifen Deutschland Gmbh Kautschukmischung und Reifen
US20230323075A1 (en) 2022-04-12 2023-10-12 The Goodyear Tire & Rubber Company Rubber composition and a tire

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003277560A (ja) * 2002-03-25 2003-10-02 Asahi Kasei Corp 水添共重合体組成物
JP2008184517A (ja) * 2007-01-29 2008-08-14 Bridgestone Corp ゴム組成物及びそれを用いた空気入りタイヤ
JP2011144239A (ja) * 2010-01-13 2011-07-28 Sumitomo Rubber Ind Ltd タイヤ用ゴム組成物及び空気入りタイヤ
JP2011153293A (ja) * 2010-01-04 2011-08-11 Sumitomo Rubber Ind Ltd タイヤ用ゴム組成物及びスタッドレスタイヤ
JP2011236368A (ja) * 2010-05-12 2011-11-24 Sumitomo Rubber Ind Ltd サイドウォール用ゴム組成物及び空気入りタイヤ
JP2013035902A (ja) * 2011-08-04 2013-02-21 Sumitomo Rubber Ind Ltd タイヤ用ゴム組成物及びスタッドレスタイヤ
WO2013125614A1 (ja) * 2012-02-22 2013-08-29 住友ゴム工業株式会社 タイヤ用ゴム組成物及び空気入りタイヤ
JP2013224391A (ja) * 2012-04-23 2013-10-31 Sumitomo Rubber Ind Ltd サイドウォール又はベーストレッド用ゴム組成物、並びに空気入りタイヤ
WO2014126184A1 (ja) * 2013-02-14 2014-08-21 Jsr株式会社 水添共役ジエン重合体の製造方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5191003A (en) * 1990-08-08 1993-03-02 Sumitomo Chemical Company, Limited Rubber composition
EP0775725B1 (en) * 1994-08-08 2001-05-02 Asahi Kasei Kabushiki Kaisha Hydrogenated rubber composition
US20010016629A1 (en) * 2000-01-27 2001-08-23 Makio Mori Rubber composition for tire and method of manufacturing same
RU2270167C2 (ru) * 2001-08-13 2006-02-20 Родиа Шими Способ получения диоксидов кремния, диоксиды кремния с особым гранулометрическим распределением и/или распределением пор и их применение, в частности, для упрочнения полимеров
CN100334147C (zh) * 2001-08-13 2007-08-29 米其林技术公司 包括特定硅作为增强填料的轮胎用二烯烃橡胶组合物
CN1274719C (zh) * 2001-09-27 2006-09-13 Jsr株式会社 共轭二烯(共)聚合橡胶、(共)聚合橡胶的制造方法、橡胶组合物、复合体以及轮胎
WO2009084667A1 (ja) * 2007-12-28 2009-07-09 Bridgestone Corporation タイヤ
JP4883172B2 (ja) * 2009-12-10 2012-02-22 横浜ゴム株式会社 タイヤ用ゴム組成物
CN104220508B (zh) * 2012-03-19 2016-05-04 横滨橡胶株式会社 橡胶组合物和使用该橡胶组合物而得的充气轮胎
JP5687658B2 (ja) * 2012-06-01 2015-03-18 住友ゴム工業株式会社 空気入りタイヤ
KR101625027B1 (ko) * 2013-02-25 2016-05-27 요코하마 고무 가부시키가이샤 타이어 트레드용 고무 조성물 및 이것을 이용하는 공기입 타이어
KR102225993B1 (ko) * 2013-02-28 2021-03-09 제이에스알 가부시끼가이샤 타이어용 부재 및 중합체 조성물
EP3064545B1 (en) * 2013-10-31 2018-06-20 JSR Corporation Member for tires, vibration-proofing member and member for belts
US10669409B2 (en) * 2014-06-27 2020-06-02 The Yokohama Rubber Co., Ltd. Rubber composition and pneumatic tire including the same
JP6496218B2 (ja) * 2015-09-09 2019-04-03 Toyo Tire株式会社 タイヤ用ゴム組成物及び空気入りタイヤ

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003277560A (ja) * 2002-03-25 2003-10-02 Asahi Kasei Corp 水添共重合体組成物
JP2008184517A (ja) * 2007-01-29 2008-08-14 Bridgestone Corp ゴム組成物及びそれを用いた空気入りタイヤ
JP2011153293A (ja) * 2010-01-04 2011-08-11 Sumitomo Rubber Ind Ltd タイヤ用ゴム組成物及びスタッドレスタイヤ
JP2011144239A (ja) * 2010-01-13 2011-07-28 Sumitomo Rubber Ind Ltd タイヤ用ゴム組成物及び空気入りタイヤ
JP2011236368A (ja) * 2010-05-12 2011-11-24 Sumitomo Rubber Ind Ltd サイドウォール用ゴム組成物及び空気入りタイヤ
JP2013035902A (ja) * 2011-08-04 2013-02-21 Sumitomo Rubber Ind Ltd タイヤ用ゴム組成物及びスタッドレスタイヤ
WO2013125614A1 (ja) * 2012-02-22 2013-08-29 住友ゴム工業株式会社 タイヤ用ゴム組成物及び空気入りタイヤ
JP2013224391A (ja) * 2012-04-23 2013-10-31 Sumitomo Rubber Ind Ltd サイドウォール又はベーストレッド用ゴム組成物、並びに空気入りタイヤ
WO2014126184A1 (ja) * 2013-02-14 2014-08-21 Jsr株式会社 水添共役ジエン重合体の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3181631A4 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016056349A (ja) * 2014-09-08 2016-04-21 住友ゴム工業株式会社 空気入りタイヤ
JP2016056351A (ja) * 2014-09-08 2016-04-21 住友ゴム工業株式会社 空気入りタイヤ
JP2016056350A (ja) * 2014-09-08 2016-04-21 住友ゴム工業株式会社 空気入りタイヤ
JP2016069628A (ja) * 2014-09-30 2016-05-09 住友ゴム工業株式会社 空気入りタイヤ
JP2019167531A (ja) * 2018-03-20 2019-10-03 横浜ゴム株式会社 タイヤ用ゴム組成物及び空気入りタイヤ
JP7279437B2 (ja) 2018-03-20 2023-05-23 横浜ゴム株式会社 タイヤ用ゴム組成物及び空気入りタイヤ
JP2021042272A (ja) * 2019-09-06 2021-03-18 横浜ゴム株式会社 スタッドレスタイヤ用ゴム組成物およびそれを用いたスタッドレスタイヤ
JP7356004B2 (ja) 2019-09-06 2023-10-04 横浜ゴム株式会社 スタッドレスタイヤ用ゴム組成物およびそれを用いたスタッドレスタイヤ
JP2021062822A (ja) * 2019-10-16 2021-04-22 横浜ゴム株式会社 空気入りタイヤ
JP7417043B2 (ja) 2019-10-16 2024-01-18 横浜ゴム株式会社 空気入りタイヤ

Also Published As

Publication number Publication date
CN106795335A (zh) 2017-05-31
EP3181631B1 (en) 2022-06-29
EP3181631A4 (en) 2018-04-18
JP6627513B2 (ja) 2020-01-08
US20170233562A1 (en) 2017-08-17
CN106795335B (zh) 2019-12-27
EP3181631A1 (en) 2017-06-21
JPWO2016039006A1 (ja) 2017-06-15

Similar Documents

Publication Publication Date Title
CN108084532B (zh) 充气轮胎
JP6627513B2 (ja) 空気入りタイヤ
CN109206691B (zh) 充气轮胎
JP6631254B2 (ja) 空気入りタイヤ
JP6627512B2 (ja) 空気入りタイヤ
JP6805502B2 (ja) 空気入りタイヤ
JP6627294B2 (ja) 空気入りタイヤ
CN107090110B (zh) 充气轮胎及制造充气轮胎的方法
JP6627293B2 (ja) 空気入りタイヤ
JP6801183B2 (ja) 空気入りタイヤ
JP6627511B2 (ja) 空気入りタイヤ
JP6631059B2 (ja) 空気入りタイヤ

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015562973

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15840502

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015840502

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015840502

Country of ref document: EP