WO2016038801A1 - 高強度溶融亜鉛めっき鋼板の製造方法及び製造設備 - Google Patents
高強度溶融亜鉛めっき鋼板の製造方法及び製造設備 Download PDFInfo
- Publication number
- WO2016038801A1 WO2016038801A1 PCT/JP2015/004151 JP2015004151W WO2016038801A1 WO 2016038801 A1 WO2016038801 A1 WO 2016038801A1 JP 2015004151 W JP2015004151 W JP 2015004151W WO 2016038801 A1 WO2016038801 A1 WO 2016038801A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- hot
- heating
- temperature
- steel sheet
- band
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/02—Pretreatment of the material to be coated, e.g. for coating on selected surface areas
- C23C2/022—Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0226—Hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0236—Cold rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
- C21D8/0273—Final recrystallisation annealing
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0278—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular surface treatment
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/08—Ferrous alloys, e.g. steel alloys containing nickel
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/12—Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/14—Ferrous alloys, e.g. steel alloys containing titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/16—Ferrous alloys, e.g. steel alloys containing copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/32—Ferrous alloys, e.g. steel alloys containing chromium with boron
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/38—Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/003—Apparatus
- C23C2/0038—Apparatus characterised by the pre-treatment chambers located immediately upstream of the bath or occurring locally before the dipping process
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/02—Pretreatment of the material to be coated, e.g. for coating on selected surface areas
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/02—Pretreatment of the material to be coated, e.g. for coating on selected surface areas
- C23C2/022—Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
- C23C2/0222—Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating in a reactive atmosphere, e.g. oxidising or reducing atmosphere
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/02—Pretreatment of the material to be coated, e.g. for coating on selected surface areas
- C23C2/022—Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
- C23C2/0224—Two or more thermal pretreatments
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/02—Pretreatment of the material to be coated, e.g. for coating on selected surface areas
- C23C2/024—Pretreatment of the material to be coated, e.g. for coating on selected surface areas by cleaning or etching
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/04—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
- C23C2/06—Zinc or cadmium or alloys based thereon
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/26—After-treatment
- C23C2/28—Thermal after-treatment, e.g. treatment in oil bath
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/26—After-treatment
- C23C2/28—Thermal after-treatment, e.g. treatment in oil bath
- C23C2/29—Cooling or quenching
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/34—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
- C23C2/36—Elongated material
- C23C2/40—Plates; Strips
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23F—NON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
- C23F17/00—Multi-step processes for surface treatment of metallic material involving at least one process provided for in class C23 and at least one process covered by subclass C21D or C22F or class C25
Definitions
- the present invention relates to a method for producing a high-strength hot-dip galvanized steel sheet excellent in appearance and plating adhesion, using a high-strength steel sheet containing Si and Mn as a base material, and a production facility for carrying out the production method. is there.
- a hot dip galvanized steel sheet uses a thin steel sheet obtained by hot rolling or cold rolling a slab as a base material, and this base material is recrystallized and annealed in a CGL (hot dip galvanizing line) annealing furnace, Manufactured by hot dip galvanizing. Further, the alloyed hot-dip galvanized steel sheet is manufactured by further alloying after the hot-dip galvanizing treatment.
- CGL hot dip galvanizing line
- Si or Mn is effective.
- Si and Mn are oxidized even in a reducing N 2 + H 2 gas atmosphere in which Fe is not oxidized (that is, Fe oxide is reduced), and Si or Mn is oxidized on the outermost surface of the steel sheet.
- Fe oxide is reduced
- Si or Mn is oxidized on the outermost surface of the steel sheet.
- Patent Document 1 discloses a method of performing reduction annealing after forming a steel sheet surface oxide film.
- the method described in Patent Document 1 cannot stably obtain good plating adhesion.
- Patent Documents 2 to 8 the effect is stabilized by regulating the oxidation rate and reduction amount, measuring the oxide film thickness in the oxidation zone, and controlling the oxidation and reduction conditions from the measurement results.
- a technique to be realized is disclosed.
- Patent Document 9 the gas composition of O 2 , H 2 , H 2 O and the like in the atmosphere in the oxidation-reduction process is specified.
- Patent Document 10 discloses a manufacturing method for increasing the winding temperature of the hot-rolled steel sheet.
- Patent Document 9 Although the manufacturing method described in Patent Document 9 is effective in improving plating adhesion and suppressing the pickup phenomenon, the processability to withstand press forming cannot be obtained, or plating adhesion and alloying are uneven. Thus, it has been found that good plating adhesion and appearance are not necessarily obtained.
- the present invention has been made in view of such circumstances, and is a manufacturing method of a high-strength hot-dip galvanized steel sheet excellent in plating adhesion, workability, and appearance, and manufacturing equipment that can be used for carrying out the manufacturing method.
- the purpose is to provide.
- Si and Mn form an oxide on the outermost surface of the steel sheet in an annealing atmosphere, thereby degrading the wettability between the steel sheet and molten zinc and causing non-plating. Even when non-plating does not occur, plating adhesion deteriorates.
- a method of performing a reduction annealing after performing an oxidation treatment is effective as a pretreatment for plating. This is supplied from iron oxide while reducing the iron oxide on the surface of the steel sheet by performing recrystallization annealing in a reducing atmosphere after oxidizing the steel sheet surface in the heating zone of the continuous hot dipping line (CGL).
- Si or Mn is formed as an internal oxide from the steel sheet surface by oxygen. According to this method, the internal oxidation of Si or Mn can be formed relatively uniformly in the coil rather than the internal oxidation of Si or Mn formed by the hot rolling described above. is there.
- the reaction between Fe and Zn is suppressed in the alloying process after the hot dipping process. For this reason, in order to allow the alloying to proceed normally, an alloying treatment at a relatively high temperature is required. However, when the alloying process is performed at a high temperature, sufficient workability cannot be obtained. This is considered to be because the retained austenite phase in steel necessary for ensuring ductility is decomposed into a pearlite phase.
- the hot dip plating process and the alloying process are performed after cooling and reheating to the Ms point or less before the hot dip plating, the martensite phase is tempered to ensure the strength, and sufficient strength is obtained. I knew that I could't get it.
- the Si-added steel has a problem that a desired mechanical property value cannot be obtained because the alloying temperature becomes high.
- the upper limit temperature is determined according to the contents of Si and Mn in the steel.
- the temperature, atmosphere and heating rate of the heating zone are strictly controlled according to the contents of Si and Mn in the steel.
- a low oxygen potential atmosphere was effective at the final stage of the heating zone in order to prevent the pick-up phenomenon due to excessive iron oxidation reaction in the heating zone. This has the effect of preventing direct contact between the roll and the iron oxide in the soaking zone where pick-up phenomenon occurs by reducing the steel plate surface once oxidized in the heating zone and forming reduced iron on the outermost surface. From this, it has been found that the occurrence of the pickup phenomenon is suppressed, and that surface defects such as pushing folds can be prevented.
- the present invention is based on the above findings, and the features thereof are as follows.
- a hot-dip galvanizing with excellent appearance and plating adhesion characterized by having a hot-dip galvanizing treatment step in which a hot-dip galvanizing treatment is performed in a hot-dip galvanizing bath containing 12 to 0.22% by mass of Al
- a method of manufacturing a steel sheet is subjected to the following formula under the condition that the air ratio of the DFF type heating furnace (direct heating type heating furnace) is ⁇ and the average heating rate at 200 ° C. or higher is 10 to 50 ° C./sec. (2) is heated to the reached heating temperature T 1 of satisfying.
- (B-Band Heating) The cold-rolled sheet after the A-band heating is subjected to the following formula (DFF type heating furnace with an air ratio ⁇ 0.9 and an average heating rate exceeding T 1 of 5 to 30 ° C./sec. Heat to the temperature T 2 at which the heating is achieved, which satisfies 3).
- C-band heating The cold-rolled sheet after the B-band heating contains H 2 , H 2 O, and the log (P H2O / P H2 ) is ⁇ 3 in an atmosphere containing N 2 and unavoidable impurities.
- the total of the Si internal oxide and the Mn internal oxide generated in the steel sheet surface layer within 10 ⁇ m from the steel sheet surface of the hot rolled sheet obtained in the hot rolling step is the length of the wound coil after rolling.
- the burner of the A-band heating DFF type heating furnace is a nozzle mix type burner, and the burner of the B-band heating DFF type heating furnace is a premix type burner. 2] The manufacturing method of the high intensity
- the hot dip galvanizing bath contains 0.12 to 0.17% by mass of Al, and with respect to the steel sheet after the hot dip galvanizing treatment step, at an alloying temperature Ta satisfying the following formula (5).
- the high-strength molten zinc having excellent appearance and plating adhesion according to any one of [1] to [4], further comprising an alloying treatment step of performing an alloying treatment for 10 to 60 seconds Manufacturing method of plated steel sheet. ⁇ 45 log (P H2O / P H2 ) + 395 ⁇ Ta ⁇ ⁇ 30 log (P H2O / P H2 ) +490 (5)
- After the C-band heating after cooling from 750 ° C. to a predetermined cooling temperature T 4 of 150 to 350 ° C.
- a continuous hot dipping plating apparatus having a DFF type heating furnace and a soaking furnace, having a nozzle mix type burner in the front stage of the DFF type heating furnace and a premix type burner in the rear stage, and the soaking furnace is a radiant Manufacturing equipment for manufacturing high-strength hot-dip galvanized steel sheets with excellent appearance and plating adhesion, which are tube-shaped.
- a high-strength hot-dip galvanized steel sheet excellent in appearance and plating adhesion can be obtained.
- the workability of the high-strength hot-dip galvanized steel sheet can also be improved.
- high-strength hot-dip galvanized steel sheet includes both non-alloyed high-strength hot-dip galvanized steel sheets and alloyed high-strength hot-dip galvanized steel sheets.
- FIG. 1 is a diagram showing the distribution in the width direction of the internal oxidation amounts of Si and Mn when the coiling temperature after rolling is changed.
- FIG. 2 is a graph showing the relationship between the coiling temperature at which the internal oxidation amount becomes 0.10 g / m 2 or less and the Mn content.
- FIG. 3 is a diagram showing the relationship between the coiling temperature at which the internal oxidation amount becomes 0.10 g / m 2 or less and the Si content.
- FIG. 4 is a diagram showing the relationship between the heating furnace outlet temperature and the heating temperature obtained using Equation (2).
- FIG. 5 is a diagram showing the relationship between the Si content and the log (P H2O / P H2 ) at which the Fe concentration in the plating layer is 10% by mass.
- FIG. 6 is a graph showing the relationship between P H2O / PH2 and alloying temperature during C-band heating.
- the method for producing a high-strength hot-dip galvanized steel sheet of the present invention includes a hot rolling process, a cold rolling process, an annealing process, and a hot-dip galvanizing process. Moreover, you may have an alloying process process after the hot dip galvanization process process as needed. Moreover, you may have a cooling heating process between an annealing process and a hot-dip galvanization process. Hereinafter, each step will be described.
- % which is a unit of content of each element included in the slab, means “mass%”.
- the component composition of a slab becomes a component composition of the base material steel plate of a high-strength hot-dip galvanized steel plate.
- C 0.05 to 0.30% If the C content exceeds 0.30%, weldability deteriorates, so the C content is set to 0.30% or less. On the other hand, when the C content is 0.05% or more, workability is improved by forming a retained austenite phase, a martensite phase, or the like as a steel structure.
- Si 0.1-2.0% Si is an element effective for strengthening steel and obtaining a good material. If the Si content is less than 0.1%, another expensive alloy element is required to obtain high strength, which is not economically preferable. On the other hand, in Si-containing steel, it is known that the oxidation reaction during the oxidation treatment is suppressed. Therefore, when the Si content exceeds 2.0%, the formation of an oxide film by the oxidation treatment is suppressed. Further, when the Si content exceeds 2.0%, the alloying temperature is also increased, so that it is difficult to obtain desired mechanical properties. Therefore, the Si content is 0.1% or more and 2.0% or less.
- Mn 1.0 to 4.0% Mn is an element effective for increasing the strength of steel. In order to ensure mechanical properties and strength, the Mn content is set to 1.0% or more. On the other hand, if the Mn content exceeds 4.0%, it may be difficult to ensure weldability, plating adhesion, and balance between strength and ductility. Therefore, the Mn content is 1.0% or more and 4.0% or less.
- Al 0.01 to 0.1%
- Mo 0.05 to 1.0%
- Nb 0.005 to 0.05%
- Ti 0.005 ⁇ 0.05%
- Cu 0.05 ⁇ 1.0%
- Ni 0.05 ⁇ 1.0%
- Cr 0.01 ⁇ 0.8%
- B 0.0005 ⁇ 0.005%
- One or more elements selected from among them may be contained as necessary.
- Al 0.01 to 0.1% Since Al is most easily oxidized thermodynamically, it is oxidized prior to Si and Mn, thereby suppressing the oxidation of Si and Mn on the surface of the steel sheet and promoting the oxidation of Si and Mn inside the steel sheet. This effect can be obtained by making the Al content 0.01% or more. On the other hand, if the Al content exceeds 0.1%, the cost increases. Therefore, when Al is contained, the Al content is preferably 0.01% or more and 0.1% or less.
- Mo 0.05 to 1.0%
- Mo content is less than 0.05%, it is difficult to obtain the effect of adjusting the strength and the effect of improving the plating adhesion at the time of composite addition with Nb, Ni and Cu.
- Mo content exceeds 1.0%, cost increases. Therefore, when Mo is contained, the Mo content is preferably 0.05% or more and 1.0% or less.
- Nb 0.005 to 0.05%
- the Nb content is preferably 0.005% or more and 0.05% or less.
- Ti 0.005 to 0.05% If the Ti content is less than 0.005%, the effect of adjusting the strength is difficult to obtain, and if the Ti content exceeds 0.05%, the plating adhesion deteriorates. Therefore, when Ti is contained, the Ti content is preferably 0.005% or more and 0.05% or less.
- the Cu content is 0.05 to 1.0% If the Cu content is less than 0.05%, it is difficult to obtain the effect of promoting the formation of the residual ⁇ phase and the effect of improving the plating adhesion when combined with Ni or Mo. On the other hand, if the Cu content exceeds 1.0%, the cost increases. Therefore, when Cu is contained, the Cu content is preferably 0.05% or more and 1.0% or less.
- Ni 0.05 to 1.0% If the Ni content is less than 0.05%, it is difficult to obtain the effect of promoting the formation of the residual ⁇ phase and the effect of improving the plating adhesion when combined with Cu or Mo. On the other hand, if the Ni content exceeds 1.0%, the cost increases. Therefore, when Ni is contained, the Ni content is preferably 0.05% or more and 1.0% or less.
- the Cr content is preferably 0.01% or more and 0.8% or less.
- B 0.0005 to 0.005%
- B is an element effective for improving the hardenability of steel.
- the B content is less than 0.0005%, it is difficult to obtain a quenching effect.
- the B content is preferably 0.0005% or more and 0.005% or less.
- the balance other than the above essential components and optional components is Fe and inevitable impurities.
- Inevitable impurities include 0.005% or less S, 0.06% or less P, 0.006% or less N, and the like.
- FIG. 1 a steel containing 1.5% Si and 2.2% Mn is used, and the coiling temperature after rolling is changed, and the coil longitudinal direction central portion (hot rolled plate longitudinal central portion)
- the results of examining the distribution in the width direction of the internal oxidation amounts of Si and Mn in are shown.
- the amount of internal oxidation was measured by the method described in the examples.
- the distribution of the internal oxidation amount in the width direction is large under conditions where the winding temperature is high, and the internal oxidation amount decreases and becomes uniform as the winding temperature decreases.
- the amount of internal oxidation at the coil longitudinal center and width center (Si inner oxide and Mn inside the steel sheet surface layer within 10 ⁇ m from the surface of the steel sheet immediately below the scale of the hot rolled sheet)
- the total amount of oxides as the amount of internal oxidation (expressed as the amount of oxygen at the center position in the longitudinal direction and width direction of the wound coil after rolling) to 0.10 g / m 2 or less
- Si the internal oxidation of Mn and Mn was made more uniform, and even when the hot dipping treatment was performed thereafter, the unevenness of plating adhesion and the appearance unevenness after the alloying treatment could be further suppressed.
- the winding temperature in the hot rolling is expressed by the formula (1). Must be set to be satisfied.
- the heating temperature before hot rolling and the finishing temperature of hot rolling are not particularly limited, but from the viewpoint of structure control, the slab is heated to 1100-1300 ° C, soaked, and finished at 800-1000 ° C. It is desirable to complete the rolling.
- pickling is performed to remove scale.
- the pickling method is not particularly limited, and a conventional method may be adopted.
- the cold rolling step is a step of performing cold rolling on the hot-rolled sheet obtained in the hot rolling step.
- the conditions for cold rolling are not particularly limited, and for example, a cooled hot-rolled sheet may be cold-rolled at a predetermined reduction rate of 30 to 80%.
- Si and Mn are contained inside the steel plate. Can be oxidized to improve the plating property, and the reactivity between the plating and the steel sheet can be increased, and the plating adhesion can be improved. And in an annealing process, in order to oxidize Si and Mn inside a steel plate and to prevent the oxidation on the steel plate surface, an oxidation process is performed. In particular, it is necessary to obtain a certain amount or more of iron oxide by oxidation treatment. Thereafter, it is effective to perform reduction annealing, hot dipping, and alloying treatment as necessary.
- the annealing step of the present invention is a step of performing annealing having (A-band heating) to (C-band heating) on the cold-rolled sheet obtained in the cold rolling step.
- A-band heating and B-band heating corresponding to oxidation treatment will be described.
- A-Band Heating In A-band heating the above-mentioned cold-rolled sheet is expressed by the following formula (2) under the condition that the air ratio of the DFF type heating furnace is ⁇ and the average heating rate at 200 ° C. or higher is 10 to 50 ° C./sec. Heating to the heating attainment temperature T 1 to be satisfied.
- T 1 is preferably 750 ° C. or lower.
- T 1 Heating attainable temperature C in the A band
- [Si] Si mass% in steel
- [Mn] Mn mass% in steel
- ⁇ Air ratio of DFF type heating furnace.
- the atmosphere is controlled by controlling the air ratio of the DFF type heating furnace.
- the DFF type heating furnace heats a steel sheet by directly applying a burner flame, which is a mixture of a fuel such as coke oven gas (COG), which is a by-product gas of an ironworks, and air, to the surface of the steel sheet.
- COG coke oven gas
- FIG. 4 shows a comparison of T 1 ).
- the correlation coefficient R 2 is about 1.0, which is a very high correlation.
- the coefficient related to the Si content is a very large value, and Si not only forms an oxide on the steel sheet surface but also has an effect of suppressing the oxidation reaction of iron. It can be seen that this is a particularly important factor. From the above, in the present invention, A-band heating that satisfies the above-described formula (2) is performed.
- the upper limit of the air ratio ⁇ during A-band heating is preferably 1.5 or less for the purpose of suppressing excessive iron oxidation reaction and preventing the subsequent pickup phenomenon. Also, if the air ratio is low, the oxidization of the atmosphere becomes weak, and even if the expression (2) is satisfied, a sufficient amount of oxidation may not be ensured. Therefore, the air ratio ⁇ is preferably 0.9 or more. .
- the average temperature rising rate it is necessary to set the average temperature rising rate at 200 ° C. or higher to 10 to 50 ° C./sec. At an average temperature increase rate exceeding 50 ° C./sec, the heating time in the A zone becomes short, so that a sufficient amount of iron oxide cannot be formed. On the other hand, if the average rate of temperature rise is less than 10 ° C./sec, heating will take a long time, and production efficiency will decrease. In addition, when iron oxide is excessively formed, Fe oxide is peeled off in a reducing atmosphere furnace in the next reduction annealing, which causes a pickup phenomenon.
- the average temperature increase rate at 200 ° C. or higher is set to 10 to 50 ° C./sec.
- DFF type heating furnace is optimal for A-band heating. If a DFF type heating furnace is used, as described above, it is possible to make the atmosphere oxidizing with respect to iron by changing the air ratio. Moreover, when a DFF type heating furnace is used, the above-mentioned average temperature increase rate can be achieved because the temperature increase rate of the steel sheet is faster than that of radiation-type heating.
- the continuous hot dipping equipment used for carrying out the present invention has a DFF type heating furnace, and the front stage of the DFF type heating furnace is a nozzle mix type burner.
- T 2 Heating arrival temperature (° C.) in the B band
- T 1 Heating arrival temperature (° C.) in the A band.
- the B-band heating is an important requirement in the present invention in order to prevent the pickup phenomenon from occurring and to obtain a beautiful surface appearance free from push-ups.
- it is important to reduce a part (surface layer) of the steel plate surface once oxidized.
- it is necessary to control the air ratio of the burner of the DFF heating furnace to 0.9 or less. Lowering the air ratio and lowering the O 2 concentration partially reduces the surface layer of the iron oxide, avoiding direct contact between the furnace roll and the iron oxide during the reduction annealing in the next process, thereby preventing the pickup phenomenon. Can be prevented.
- the air ratio exceeds 0.9, this reduction reaction hardly occurs, so the air ratio is set to 0.9 or less.
- the air ratio is preferably 0.7 or more in order to perform stable combustion in the DFF type heating furnace.
- the heating temperature T 2 in the B band must satisfy the following equation (3).
- T 2 Heating arrival temperature (° C.) in the B band
- T 1 Heating arrival temperature (° C.) in the A band.
- T 2 is preferably 750 ° C. or lower for unnecessary heating cost reduction.
- the average heating rate (average heating rate) above T 1 to 5 to 30 ° C./sec.
- the heating time in the B zone becomes short, so that a sufficient amount of iron oxide reduction reaction cannot be obtained.
- the average rate of temperature rise is less than 5 ° C./sec, heating will take a long time, and production efficiency will decrease.
- the "average heating rate by T 1 exceeds" means an average heating rate of up heating temperature reached by T 1 exceeds ⁇ B band.
- DFF type heating furnace is optimal for B-band heating. If a DFF type heating furnace is used, as described above, it is possible to emit a flame that is reducible to iron by changing the air ratio. Moreover, if the DFF type heating furnace is used, the above-mentioned average temperature rising rate can be achieved because the temperature rising rate of the steel sheet is faster than the radiation type heating.
- the premix type burner is suitable for B-band heating because it has a higher reducibility in a high temperature range than the nozzle mix type burner and is advantageous for obtaining a reduction reaction of iron for preventing the pickup phenomenon from occurring. Therefore, it is preferable that the continuous hot dipping equipment used for carrying out the present invention has a DFF type heating furnace, and the subsequent stage of the DFF type heating furnace is a premix type burner.
- C-band heating In C-band heating, the cold-rolled sheet after B-band heating contains H 2 , H 2 O, and the log (P H2O / P H2 ) is contained in an atmosphere containing N 2 and inevitable impurities. -3.4 to -1.1 and the average heating rate over T 2 is 0.1 to 10 ° C./sec. To a predetermined heating temperature T 3 of 700 to 900 ° C. 3 is held for 10 to 500 seconds.
- C-band heating is performed immediately after B-band heating, and reduces iron oxide formed on the steel sheet surface by A-band heating, and oxygen supplied from the iron oxide causes Si and Mn to enter the steel sheet. Form an internal oxide.
- a reduced iron layer reduced from iron oxide is formed on the steel sheet surface layer, and Si and Mn remain inside the steel sheet as internal oxides, so that oxidation of Si and Mn on the steel sheet surface layer is suppressed.
- the internal oxide formed by C-band heating unlike internal oxidation obtained by increasing the coiling temperature after rolling, is formed almost uniformly in the longitudinal and width directions of the coil. Uneven appearance can be prevented.
- log (P H2O / P H2 ) means log (partial pressure of H 2 O (P H2O ) / partial pressure of H 2 (P H2 )). If log (P H2O / P H2 ) exceeds ⁇ 1.1, the reduction reaction of iron oxide formed by A-band heating becomes insufficient, and there is a risk of occurrence of a pickup phenomenon in the C-band heating furnace.
- heating is performed from a temperature exceeding the B-band heating temperature T 2 to a predetermined heating temperature T 3 of 700 to 900 ° C. under an average temperature rising rate of 0.1 to 10 ° C./sec. Hold at temperature for 10-500 seconds.
- the heating rate exceeds 10 ° C./sec or the holding time is less than 10 seconds, the C-band heating time is short, so that the reduction reaction of iron oxide is not completed. Then, unreduced iron oxide remains, and the wettability between the steel sheet and the molten zinc is lowered, which may cause poor adhesion.
- the holding temperature in C-band heating is less than 700 ° C.
- the reduction reaction of iron oxide is suppressed, unreduced iron oxide remains, and the wettability between the steel sheet and molten zinc decreases. There is a risk of causing poor adhesion.
- the holding temperature exceeds 900 ° C., not only desired mechanical properties can be obtained, but also the steel strip in the furnace may be broken.
- the holding is performed in a soaking furnace of a continuous hot dipping plating equipment, and the soaking furnace is preferably a radiant tube type.
- the C-band heating from the reached heating temperature T 2 of the B band heating, averaged and heated to the reached heating temperature T 3 at a heating rate of 0.1 ⁇ 10 °C / sec, held at this temperature of 10 to 500 seconds.
- the above-described method alone can provide good plating adhesion, but the alloying temperature becomes high, so that the retained austenite phase is decomposed into a pearlite phase, or martensite. Temper softening of the site phase occurs, and desired mechanical properties may not be obtained. Therefore, the present inventors have studied to reduce the alloying temperature. As a result, the present inventors have devised a technique for promoting the alloying reaction by reducing the amount of solute Si in the surface layer of the steel sheet by more actively forming internal oxidation of Si. In order to more actively form an internal oxide of Si, it is effective to strictly control P H2O / P H2 in the atmosphere in the C-band heating furnace.
- the oxygen source for internal oxidation formed in the C-band heating is oxygen dissociated from the iron oxide formed in the A-band heating. Further, oxygen supplied from the atmosphere in the furnace is also a supply source. Therefore, when P H2O / P H2 increases, the oxygen potential in the furnace also increases, and internal oxidation of Si and Mn is promoted. Then, the amount of solute Si decreases in the region of the steel sheet surface layer where the internal oxidation of Si is formed. When the amount of solute Si decreases, the surface layer of the steel sheet behaves as if it is a low Si steel, the subsequent alloying reaction is promoted, and the alloying reaction proceeds at a low temperature.
- the steel sheet surface layer means a range from the steel sheet surface to 10 ⁇ m.
- the method for controlling the H 2 O concentration in the reduction annealing furnace is not particularly limited, N 2 and / or H 2 gas humidified by bubbling or the like is introduced into the furnace. There is a way to introduce. Further, a membrane exchange type humidification method using a hollow fiber membrane is preferable because the controllability of the dew point is further increased.
- the H 2 concentration in the C-band heating furnace is not particularly limited, but is preferably 5 vol% or more and 30 vol% or less. If it is less than 5 vol%, the reduction of the iron oxide may be suppressed and a pickup phenomenon may occur. If it exceeds 30 vol%, it will lead to cost increase.
- the balance other than H 2 and H 2 O is N 2 and inevitable impurities.
- the cooling and heating process is a process of cooling to 350 to 600 ° C. after cooling to a predetermined cooling temperature T 4 from 750 ° C. to 150 to 350 ° C. under the condition that the average cooling rate is 10 ° C./sec or more after C-band heating. This is a step of heating to a predetermined reheating temperature T 5 and holding at the temperature T 5 for 10 to 600 seconds. By performing this cooling and heating step, the mechanical properties can be further enhanced. In the present invention, the cooling and heating step is not an essential step and may be performed as necessary.
- the cooling rate from 750 ° C. is set to 10 ° C./sec or more.
- the ultimate cooling temperature T 4 temperature is higher than 350 ° C., martensite transformation during cooling end is much untransformed austenite amount is insufficient, the final martensite or retained austenite is excessively formed, hole expandability is descend. Further, when the ultimate cooling temperature T 4 is lower than 0.99 ° C., austenite almost untransformed austenite amount is transformed into martensite is reduced during the cooling. Therefore, the cooling attainment temperature T 4 is set in the range of 150 to 350 ° C.
- any cooling method such as gas jet cooling, mist cooling, water cooling, or metal quench may be used as long as the target cooling rate and cooling stop temperature (cooling arrival temperature) can be achieved.
- the martensite produced during cooling is tempered been tempered martensite.
- hole expansibility is improved, and untransformed austenite that has not been transformed into martensite upon cooling is stabilized, and finally a sufficient amount of retained austenite is obtained, thereby improving ductility.
- Reheating temperature T 5 is tempering and austenite stabilizing hole expandability and ductility becomes insufficient martensite is lowered below 350 ° C.. Further, when the reheating temperature T 5 exceeds 600 ° C., untransformed austenite during cooling is stopped is transformed into pearlite, retained austenite of 3% or more in the final area ratio can not be obtained. Therefore, the reheating temperature T 5 is set to 350 ⁇ 600 ° C..
- the holding time is less than 10 seconds, the stabilization of austenite becomes insufficient, and if it exceeds 600 seconds, untransformed austenite at the time of cooling stop is transformed into bainite, and finally a sufficient amount of retained austenite cannot be obtained.
- the reheating temperature T 5 in a range of 350 ⁇ 600 ° C., the holding time at the temperature range from 10 to 600 seconds.
- the hot dip galvanizing treatment step is a step of subjecting the annealed plate after the annealing step to a hot dip galvanizing treatment in a hot dip galvanizing bath containing 0.12 to 0.22 mass% Al.
- the Al concentration in the galvanizing bath is 0.12 to 0.22 mass%. If it is less than 0.12% by mass, an Fe—Zn alloy phase is formed at the time of plating, and the plating adhesion may be deteriorated or the appearance may be uneven. If it exceeds 0.22% by mass, the Fe—Al alloy phase generated at the plating / base metal interface during plating is formed thick, so that the weldability deteriorates. Further, since there is a large amount of Al in the bath, a large amount of an Al oxide film is formed on the surface of the plated steel sheet, and not only the weldability but also the appearance may be impaired.
- the Al concentration in the plating bath is preferably 0.12 to 0.17% by mass. If it is less than 0.12% by mass, an Fe—Zn alloy phase is formed at the time of plating, and the plating adhesion may be deteriorated or the appearance may be uneven. If it exceeds 0.17% by mass, the Fe—Al alloy phase formed at the plating / base metal interface during plating will be formed thick, and this will become a barrier to the Fe—Zn alloying reaction, so the alloying temperature will rise, and the mechanical properties will be high. May deteriorate.
- hot dip galvanizing bath temperature is in the normal range of 440 to 500 ° C, and the steel plate is infiltrated into the plating bath at a plate temperature of 440 to 550 ° C.
- the amount of adhesion can be adjusted by gas wiping.
- the alloying treatment step is a step of subjecting the steel sheet after the hot dip galvanizing treatment step to an alloying treatment for 10 to 60 seconds at a temperature Ta satisfying the following formula (5). ⁇ 45 log (P H2O / P H2 ) + 395 ⁇ Ta ⁇ ⁇ 30 log (P H2O / P H2 ) +490 (5) As described above, it has been found that the alloying reaction is promoted when the internal oxide of Si is positively formed by controlling P H2O / P H2 during C-band heating.
- FIG. 6 shows the results obtained.
- the black diamonds indicate the temperatures at which the ⁇ phase formed before alloying completely changed to Fe—Zn alloys and the alloying reaction was completed.
- the black squares indicate the upper limit of the temperature at which rank 3 is obtained when the plating adhesion is evaluated by the method described in the examples described later.
- the line in a figure has shown the upper limit of the alloying temperature shown by said Formula (5), and the minimum temperature.
- the treatment is performed at the temperature Ta satisfying the above formula (5).
- the alloying time is 10 to 60 seconds.
- the alloying degree after the alloying treatment (Fe concentration in the plating layer) is not particularly limited, but an alloying degree of 7 to 15% by mass is preferable. If it is less than 7% by mass, the ⁇ phase remains and the press formability is inferior, and if it exceeds 15% by mass, the plating adhesion is inferior.
- annealing with CGL and hot-dip plating were performed.
- a band heating was performed on the conditions shown in Table 3 with the DFF type heating furnace which has a nozzle mix type burner.
- B-band heating was performed under the conditions shown in Table 3 in a DFF type heating furnace having a premix type burner.
- C-band heating was performed in a radiant tube type heating furnace under the conditions shown in Table 3. After the C-band heating, under some conditions (Nos. 19 and 20), after cooling to the cooling reached temperature shown in Table 3 at a cooling rate of 20 ° C./sec, it was heated to 470 ° C. and held for 100 seconds.
- hot dip galvanizing treatment was performed using a 460 ° C. bath containing Al concentrations shown in Table 3, and the basis weight was adjusted to about 50 g / m 2 by gas wiping. Under some conditions, alloying treatment was further performed in the temperature and time ranges shown in Table 3.
- the amount of internal oxidation is measured by “impulse furnace melting-infrared absorption method”.
- the oxygen concentration in each steel was measured before and after polishing a 10 mm ⁇ 70 mm region of the surface layer portions (the center of the coil (the center in the width direction and the center in the longitudinal direction)) on both sides of the hot-rolled sheet. Further, from the difference between these measured values, the amount of oxygen per unit area of one side existing in the region of 10 ⁇ m from the steel sheet surface was determined and used as the internal oxidation amount (g / m 2 ) of Si and / or Mn.
- the internal oxide formed on the surface layer of the hot-rolled sheet is confirmed to be Si and / or Mn oxide by embedding the hot-rolled sheet in a resin and polishing the cross section, followed by observation with SEM and elemental analysis with EDS. did.
- the amount of internal oxidation is shown in Table 3.
- the appearance and plating adhesion were evaluated for the high-strength hot-dip galvanized steel sheet obtained as described above.
- the plating adhesion was evaluated at the center in the width direction and at a position 50 mm from the end of the steel strip. Furthermore, the tensile properties were investigated. The measurement method and the evaluation method are shown below.
- Plating adhesion> For a high-strength hot-dip galvanized steel sheet not subjected to alloying treatment, a ball impact test (1000 g weight dropped from a height of 1 m) was performed, the processed part was peeled off with tape, and the presence or absence of peeling of the plated layer was visually determined. Evaluation was made according to the following criteria. ⁇ : Plating layer is not peeled ⁇ : Plating layer is peeled For high-strength hot-dip galvanized steel sheets that have been alloyed, cellophane tape (registered trademark) is applied to the plated steel sheets, the tape surface is bent 90 degrees, bent back, and bent inside the processing section (on the compression processing side).
- cellophane tape registered trademark
- a cellophane tape having a width of 24 mm is pressed and pulled in parallel with the processed part, and the amount of zinc adhering to the 40 mm length of the cellophane tape is measured as a Zn count number by fluorescent X-rays, and the Zn count number is measured in unit length (1 m )
- the amount converted per unit in terms of the following criteria, those with ranks 1 and 2 were evaluated as good ( ⁇ ), those with 3 were good ( ⁇ ), and those with 4 or more were evaluated as bad ( ⁇ ).
- the example of the present invention is a high-strength hot-dip galvanized steel sheet containing Si and Mn, the plating adhesion is excellent, the plating appearance is good, and the ductility is also excellent.
- the comparative example manufactured outside the scope of the present invention is inferior in any one or more of plating adhesion and plating appearance.
- the high-strength hot-dip galvanized steel sheet obtained by the production method of the present invention is excellent in appearance and plating adhesion, and can be used as a surface-treated steel sheet for reducing the weight and strength of the automobile body itself.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Heat Treatment Of Sheet Steel (AREA)
- Coating With Molten Metal (AREA)
- Heat Treatment Of Strip Materials And Filament Materials (AREA)
Abstract
Description
(A帯加熱)前記冷延板を、DFF型加熱炉(直火型加熱炉)の空気比をα、200℃以上での平均昇温速度が10~50℃/secの条件で、下記式(2)を満たす加熱到達温度T1まで加熱する。
(B帯加熱)前記A帯加熱後の冷延板を、DFF型加熱炉で空気比≦0.9、T1超えでの平均加熱速度が5~30℃/secの条件で、下記式(3)を満たす加熱到達温度T2まで加熱する。
(C帯加熱)前記B帯加熱後の冷延板を、H2、H2Oを含有し、残部がN2及び不可避的不純物から成る雰囲気中でlog(PH2O/PH2)が-3.4以上-1.1以下、T2超えでの平均加熱速度が0.1~10℃/secの条件で、700~900℃の所定の加熱到達温度T3まで加熱し、該T3に10~500秒保持する。
TC≦-60([Si]+[Mn])+775 (1)
T1≧28.2[Si]+7.95[Mn]-86.2α+666 (2)
T2≧T1+30 (3)
但し、[Si]、[Mn]は前記スラブに含まれるSiおよびMn含有量を表す。また、αは1.5以下である。また、log(PH2O/PH2)はlog(H2Oの分圧(PH2O)/H2の分圧(PH2))を意味する。
0.6[Si]-3.4≦log(PH2O/PH2)≦0.8[Si]-2.7 (4)
但し、[Si]は鋼中のSi含有量を表す。
-45log(PH2O/PH2)+395≦Ta≦-30log(PH2O/PH2)+490 (5)
[6]前記C帯加熱の後に、平均冷却速度が10℃/sec以上の条件で、750℃から150~350℃の所定の冷却到達温度T4まで冷却した後、350~600℃の所定の再加熱温度T5まで加熱し、該温度T5で10~600秒保持する冷却加熱工程をさらに有することを特徴とする[1]~[5]のいずれか一項に記載の外観性とめっき密着性に優れる高強度溶融亜鉛めっき鋼板の製造方法。
熱間圧延工程とは、質量%で、C:0.05~0.30%、Si:0.1~2.0%、Mn:1.0~4.0%含むスラブを熱間圧延した後、下記式(1)を満足する温度TCでコイルに巻き取り、酸洗する工程である。
C含有量が、0.30%を超えると溶接性が劣化するため、C含有量は0.30%以下とする。一方、C含有量を0.05%以上とすると、鋼組織として、残留オーステナイト相やマルテンサイト相などを形成させることで加工性が向上する。
Siは鋼を強化して良好な材質を得るのに有効な元素である。Si含有量が0.1%未満では高強度を得るために高価な他の合金元素が必要になり、経済的に好ましくない。一方、Si含有鋼では、酸化処理時の酸化反応が抑制されることが知られている。そのため、Si含有量が2.0%を超えると酸化処理での酸化皮膜形成が抑制されてしまう。また、Si含有量が2.0%を超えると合金化温度も高温化するために、所望の機械特性を得ることが困難になる。したがって、Si含有量は0.1%以上2.0%以下とする。
Mnは鋼の高強度化に有効な元素である。機械特性や強度を確保するためにMn含有量を1.0%以上とする。一方、Mn含有量が4.0%を超えると溶接性やめっき密着性、強度と延性のバランスの確保が困難になる場合がある。したがって、Mn含有量は1.0%以上4.0%以下とする。
Alは熱力学的に最も酸化しやすいため、Si、Mnに先だって酸化し、Si、Mnの鋼板表面での酸化を抑制し、Si、Mnの鋼板内部での酸化を促進させる効果がある。この効果はAl含有量を0.01%以上にすることで得られる。一方、Al含有量が0.1%を超えるとコストアップになる。したがって、Alを含有する場合、Al含有量は0.01%以上0.1%以下が好ましい。
Mo含有量が0.05%未満では強度調整の効果やNb、Ni、Cuとの複合添加時におけるめっき密着性改善効果が得られにくい。一方、Mo含有量が1.0%超えではコストアップを招く。したがって、Moを含有する場合、Mo含有量は0.05%以上1.0%以下が好ましい。
Nb含有量が0.005%未満では強度調整の効果やMoとの複合添加時におけるめっき密着性改善効果が得られにくい。一方、Nb含有量が0.05%超えではコストアップを招く。したがって、Nbを含有する場合、Nb含有量は0.005%以上0.05%以下が好ましい。
Ti含有量が0.005%未満では強度調整の効果が得られにくく、Ti含有量が0.05%超えではめっき密着性の劣化を招く。したがって、Tiを含有する場合、Ti含有量は0.005%以上0.05%以下が好ましい。
Cu含有量が0.05%未満では残留γ相形成促進効果やNiやMoとの複合添加時におけるめっき密着性改善効果が得られにくい。一方、Cu含有量が1.0%超えではコストアップを招く。したがって、Cuを含有する場合、Cu含有量は0.05%以上1.0%以下が好ましい。
Ni含有量が0.05%未満では残留γ相形成促進効果やCuやMoとの複合添加時におけるめっき密着性改善効果が得られにくい。一方、Ni含有量が1.0%超えではコストアップを招く。したがって、Niを含有する場合、Ni含有量は0.05%以上1.0%以下が好ましい。
Cr含有量が0.01%未満では焼き入れ性が得られにくく強度と延性のバランスが劣化する場合がある。一方、Cr含有量が0.8%超えではコストアップを招く。したがって、Crを含有する場合、Cr含有量は0.01%以上0.8%以下が好ましい。
Bは鋼の焼入れ性を向上させるのに有効な元素である。B含有量が0.0005%未満では焼き入れ効果が得られにくい。また、B含有量が0.005%を超えるとSiの鋼板最表面の酸化を促進させる効果があるため、めっき密着性の劣化を招く。したがって、Bを含有する場合、B含有量は0.0005%以上0.005%以下が好ましい。
Tc≦-60([Si]+[Mn])+775 式(1)
ここで、Tcは圧延後の巻き取り温度、[Si]、[Mn]はそれぞれ鋼中のSi、Mn含有量である。なお、Tcは400℃以上が好ましい。
冷間圧延工程とは、上記熱間圧延工程で得られた熱延板に対して、冷間圧延を施す工程である。冷間圧延の条件は特に限定されず、例えば、冷却された熱延板を、30~80%の所定の圧下率で冷間圧延すればよい。
鋼の高強度・高加工性を実現するためにSiやMnを添加することが有効である。しかし、これらの元素を添加した鋼板を用いると、溶融亜鉛めっき処理を施す前に実施する焼鈍過程(酸化処理+還元焼鈍)において、鋼板表面にSi、Mnの酸化物が生成し、めっき性を確保することが困難になる。そのために、SiやMnを鋼板内部で酸化させ、鋼板表面でのこれらの元素の酸化を防ぐことが有効であるが、前述したように、本発明においてはめっき密着性や合金化のムラの観点から熱間圧延後に形成する内部酸化を抑制することが必須である。このように熱間圧延後に内部酸化の形成が少ない場合においても、溶融亜鉛めっき処理を施す前の焼鈍条件(酸化処理条件+還元焼鈍条件)を厳密に制御することで、SiおよびMnを鋼板内部で酸化させ、めっき性を向上させ、更にはめっきと鋼板の反応性を高めることができ、めっき密着性を改善することができる。そして、焼鈍工程において、SiおよびMnを鋼板内部で酸化させ、鋼板表面での酸化を防ぐために、酸化処理を行う。特に、酸化処理で一定量以上の鉄酸化物量を得ることが必要である。その後、還元焼鈍、溶融めっきおよび必要に応じて合金化処理を行うことが有効である。
A帯加熱では、上記冷延板を、DFF型加熱炉の空気比をα、200℃以上での平均昇温速度が10~50℃/secの条件で、下記式(2)を満たす加熱到達温度T1まで加熱する。なお、T1は750℃以下が好ましい。
T1≧28.2[Si]+7.95[Mn]-86.2α+666 (2)
ただし、T1:A帯での加熱到達温度℃、[Si]:鋼中のSi質量%、[Mn]:鋼中のMn質量%、α:DFF型加熱炉の空気比である。
T1≧28.2[Si]+7.95[Mn]-86.2α+666 (2)
ただし、T1:A帯での加熱到達温度℃、[Si]:鋼中のSi質量%、[Mn]:鋼中のMn質量%、α:DFF型加熱炉の空気比である。
B帯加熱では、A帯加熱後の冷延板を、DFF型加熱炉で空気比≦0.9、T1超えでの平均加熱速度が5~30℃/secの条件で、下記式(3)を満たす加熱到達温度T2まで加熱する。
T2≧T1+30 (3)
ただし、T2:B帯での加熱到達温度(℃)、T1:A帯での加熱到達温度(℃)である。
T2≧T1+30 (3)
ただし、T2:B帯での加熱到達温度(℃)、T1:A帯での加熱到達温度(℃)である。
C帯加熱では、B帯加熱後の冷延板を、H2、H2Oを含有し、残部がN2及び不可避的不純物から成る雰囲気中でlog(PH2O/PH2)が-3.4以上-1.1以下、T2超えでの平均加熱速度が0.1~10℃/secの条件で、700~900℃の所定の加熱到達温度T3まで加熱し、該T3に10~500秒保持する。
[合金化温度500℃の場合]
log(PH2O/PH2)=0.8[Si]-2.7 (6)
[合金化温度540℃の場合]
log(PH2O/PH2)=0.6[Si]-3.4 (7)
以上の理由から、高温合金化処理による残留オーステナイト相の分解や、マルテンサイト相の軟化による機械特性劣化が問題となる場合には、C帯加熱時のPH2O/PH2が下記式(4)を満足することが好ましい。
0.8[Si]-2.7≧log(PH2O/PH2)≧0.6[Si]-3.4 (4)
この範囲よりも高いPH2O/PH2となる場合は、合金化温度低下による機械特性の改善効果が飽和するだけでなく、A帯加熱で形成された鉄酸化物が還元し難くなり、還元焼鈍炉でのピックアップ現象発生の危険性があるだけでなく、鉄酸化物が溶融めっき時にまで残存するとかえって鋼板と溶融亜鉛との濡れ性が低下し、密着性不良を招く場合がある。また、加湿のためのコストアップにも繋がる。また、この範囲よりも低いPH2O/PH2となる場合は、合金化温度の低下効果が得られず、機械特性の改善効果も大きく得ることができなくなる。
冷却加熱工程とは、C帯加熱の後に、平均冷却速度が10℃/sec以上の条件で、750℃から150~350℃の所定の冷却到達温度T4まで冷却した後、350~600℃の所定の再加熱温度T5まで加熱し、該温度T5で10~600秒保持する工程である。この冷却加熱工程を行うことで、機械特性をさらに高めることができる。なお、本発明において、冷却加熱工程は必須の工程ではないため、必要に応じて行えばよい。
溶融亜鉛めっき処理工程とは、焼鈍工程後の焼鈍板に対して、0.12~0.22質量%のAlを含有した溶融亜鉛めっき浴で溶融亜鉛めっき処理を施す工程である。
合金化処理工程とは、溶融亜鉛めっき処理工程後の鋼板に対して、下記式(5)を満足する温度Taで10~60秒間の合金化処理を施す工程である。
-45log(PH2O/PH2)+395≦Ta≦-30log(PH2O/PH2)+490 (5)
前述したように、C帯加熱時のPH2O/PH2を制御することにより、積極的にSiの内部酸化物を形成させると、合金化反応が促進されることが分かった。そこで、Cを0.13%、Siを1.5%、Mnを2.6%含む合金化溶融亜鉛めっき鋼板を用い、C帯加熱時のPH2O/PH2変化と合金化温度との関係について調べた。図6に得られた結果を示す。図6において、黒塗り菱形印は合金化前に形成しているη相が完全にFe-Zn合金に変化して合金化反応が完了した温度を示している。また、黒塗り四角印は後述する実施例に記載の方法でめっき密着性を評価した際のランク3が得られる温度の上限を示している。また、図中の線は上記式(5)で示される合金化温度の上限と下限の温度を示している。
また、合金化温度と同様な理由から合金化時間は10~60秒間とする。
内部酸化量は、「インパルス炉溶融―赤外線吸収法」により測定する。熱延板両面の表層部(コイルの中央(幅方向中央かつ長手方向中央))を10mm×70mmの領域を10μm研磨する前と後で、それぞれの鋼中酸素濃度を測定した。更に、それらの測定値の差から、鋼板表面から10μmの領域に存在する片面単位面積当たりの酸素量を求め、Siおよび/またはMnの内部酸化量(g/m2)とした。熱延板の表層部に形成した内部酸化物が、Siおよび/またはMnの酸化物であることは、熱延板を樹脂に埋め込み断面を研磨した後に、SEMによる観察およびEDSによる元素分析によって確認した。内部酸化量を表3に示した。
鋼板の外観を目視観察し、不めっき、ピックアップ現象による押し疵、または合金化ムラなどの外観不良がないものを「○」、外観不良がわずかにあるがおおむね良好であるものを「△」、合金化ムラ、不めっき、または押し疵があるものは「×」とした。
合金化処理を行わない高強度溶融亜鉛めっき鋼板では、ボールインパクト試験(1000gの錘を1mの高さから落下)を行い、加工部をテープ剥離し、めっき層の剥離有無を目視判定した。以下の基準で評価した。
○:めっき層の剥離無し
×:めっき層が剥離
合金化処理を行った高強度溶融亜鉛めっき鋼板では、めっき鋼板にセロハンテープ(登録商標)を貼り、テープ面を90度曲げ、曲げ戻しをし、加工部の内側(圧縮加工側)に、曲げ加工部と平行に巾24mmのセロハンテープを押し当てて引き離し、セロハンテープの長さ40mmの部分に付着した亜鉛量を蛍光X線によるZnカウント数として測定し、Znカウント数を単位長さ(1m)当たりに換算した量を、下記の基準に照らしてランク1~2のものを良好 (○)、3のものを良好(△)、4以上のものを不良(×)と評価した。
蛍光X線カウント数 ランク
0-500未満 :1(良)
500-1000未満 :2
1000-2000未満:3
2000-3000未満:4
3000以上 :5(劣)
<引張特性>
圧延方向を引張方向としてJIS5号試験片を用いてJIS Z2241に準拠した方法で行った。TS(MPa)×EL(%)が15000(MPa・%)以上を良好と評価した。
Claims (7)
- 質量%で、C:0.05~0.30%、Si:0.1~2.0%、Mn:1.0~4.0%含むスラブを熱間圧延した後、下記式(1)を満足する温度TCでコイルに巻き取り、酸洗する熱間圧延工程と、
前記熱間圧延工程で得られた熱延板に対して冷間圧延を施す冷間圧延工程と、
前記冷間圧延工程で得られた冷延板に対して、下記(A帯加熱)~(C帯加熱)を有する焼鈍を施す焼鈍工程と、
前記焼鈍工程後の焼鈍板に対して、0.12~0.22質量%のAlを含有した溶融亜鉛めっき浴で溶融亜鉛めっき処理を施す溶融亜鉛めっき処理工程と、を有することを特徴とする高強度溶融亜鉛めっき鋼板の製造方法。
(A帯加熱)前記冷延板を、DFF型加熱炉の空気比をα、200℃以上での平均昇温速度が10~50℃/secの条件で、下記式(2)を満たす加熱到達温度T1(℃)まで加熱する。
(B帯加熱)前記A帯加熱後の冷延板を、DFF型加熱炉で空気比≦0.9、T1超えでの平均加熱速度が5~30℃/secの条件で、下記式(3)を満たす加熱到達温度T2(℃)まで加熱する。
(C帯加熱)前記B帯加熱後の冷延板を、H2、H2Oを含有し、残部がN2及び不可避的不純物から成る雰囲気中でlog(PH2O/PH2)が-3.4以上-1.1以下、T2超えでの平均加熱速度が0.1~10℃/secの条件で、700~900℃の所定の加熱到達温度T3(℃)まで加熱し、該T3に10~500秒保持する。
TC≦-60([Si]+[Mn])+775 (1)
T1≧28.2[Si]+7.95[Mn]-86.2α+666 (2)
T2≧T1+30 (3)
但し、[Si]、[Mn]は前記スラブに含まれるSiおよびMn含有量を表す。また、αは1.5以下である。また、log(PH2O/PH2)はlog(H2Oの分圧(PH2O)/H2の分圧(PH2))を意味する。 - 前記熱間圧延工程で得られた熱延板の、鋼板表面から10μm以内の鋼板表層部に生成したSi内部酸化物及びMn内部酸化物の合計が、熱間圧延後の巻き取りコイルの長手方向および幅方向の中央位置において酸素量として片面当たり0.10g/m2以下であることを特徴とする請求項1に記載の高強度溶融亜鉛めっき鋼板の製造方法。
- 前記A帯加熱のDFF型加熱炉のバーナーがノズルミックス型バーナーであり、
前記B帯加熱のDFF型加熱炉のバーナーがプレミックス型バーナーであることを特徴とする請求項1または2に記載の高強度溶融亜鉛めっき鋼板の製造方法。 - 前記C帯加熱で、前記log(PH2O/PH2)が下記式(4)を満足することを特徴とする請求項1~3のいずれか一項に記載の外観性とめっき密着性に優れる高強度溶融亜鉛めっき鋼板の製造方法。
0.6[Si]-3.4≦log(PH2O/PH2)≦0.8[Si]-2.7 (4)
但し、[Si]は鋼中のSi含有量を表す。 - 前記溶融亜鉛めっき浴は0.12~0.17質量%のAlを含有し、
前記溶融亜鉛めっき処理工程後の鋼板に対して、下記式(5)を満足する合金化温度Taで10~60秒間の合金化処理を施す合金化処理工程をさらに有することを特徴とする請求項1~4のいずれかに一項に記載の高強度溶融亜鉛めっき鋼板の製造方法。
-45log(PH2O/PH2)+395≦Ta≦-30log(PH2O/PH2)+490 (5) - 前記C帯加熱の後に、平均冷却速度が10℃/sec以上の条件で、750℃から150~350℃の所定の冷却到達温度T4(℃)まで冷却した後、350~600℃の所定の再加熱温度T5(℃)まで加熱し、該温度T5で10~600秒保持する冷却加熱工程をさらに有することを特徴とする請求項1~5のいずれか一項に記載の高強度溶融亜鉛めっき鋼板の製造方法。
- DFF型加熱炉と均熱炉とを有する連続溶融めっき設備であり、
前記DFF型加熱炉の前段にノズルミックス型バーナー、後段にプレミックス型バーナーを有し、
前記均熱炉がラジアントチューブ型であることを特徴とする高強度溶融亜鉛めっき鋼板を製造するための製造設備。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015559387A JP6172297B2 (ja) | 2014-09-08 | 2015-08-20 | 高強度溶融亜鉛めっき鋼板の製造方法及び製造設備 |
CN201580048205.XA CN106715726B (zh) | 2014-09-08 | 2015-08-20 | 高强度熔融镀锌钢板的制造方法和制造设备 |
KR1020177006318A KR101889795B1 (ko) | 2014-09-08 | 2015-08-20 | 고강도 용융 아연 도금 강판의 제조 방법 및 제조 설비 |
US15/509,353 US10648054B2 (en) | 2014-09-08 | 2015-08-20 | Method and facility for producing high-strength galavanized steel sheets |
MX2017002974A MX2017002974A (es) | 2014-09-08 | 2015-08-20 | Metodo e instalacion para la produccion de laminas de acero galvanizadas de alta resistencia. |
EP15839932.9A EP3159420B1 (en) | 2014-09-08 | 2015-08-20 | Method for producing high-strength hot-dipped galvanized steel sheet |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014-182153 | 2014-09-08 | ||
JP2014182153 | 2014-09-08 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016038801A1 true WO2016038801A1 (ja) | 2016-03-17 |
Family
ID=55458576
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/004151 WO2016038801A1 (ja) | 2014-09-08 | 2015-08-20 | 高強度溶融亜鉛めっき鋼板の製造方法及び製造設備 |
Country Status (7)
Country | Link |
---|---|
US (1) | US10648054B2 (ja) |
EP (1) | EP3159420B1 (ja) |
JP (1) | JP6172297B2 (ja) |
KR (1) | KR101889795B1 (ja) |
CN (1) | CN106715726B (ja) |
MX (1) | MX2017002974A (ja) |
WO (1) | WO2016038801A1 (ja) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018079124A1 (ja) * | 2016-10-25 | 2018-05-03 | Jfeスチール株式会社 | 高強度溶融亜鉛めっき鋼板の製造方法 |
WO2019082542A1 (ja) * | 2017-10-26 | 2019-05-02 | 株式会社神戸製鋼所 | 溶融亜鉛めっき鋼板の製造方法 |
JP2019167576A (ja) * | 2018-03-23 | 2019-10-03 | 株式会社神戸製鋼所 | 合金化溶融亜鉛めっき鋼板の製造方法 |
US20200347479A1 (en) * | 2018-01-17 | 2020-11-05 | Jfe Steel Corporation | High-strength electrogalvannealed steel sheet and method for manufacturing the same |
WO2022191006A1 (ja) | 2021-03-08 | 2022-09-15 | 株式会社神戸製鋼所 | 鋼板の製造方法 |
WO2022191009A1 (ja) | 2021-03-08 | 2022-09-15 | 株式会社神戸製鋼所 | 溶融亜鉛めっき用鋼板、溶融亜鉛めっき鋼板および合金化溶融亜鉛めっき鋼板 |
WO2022191008A1 (ja) | 2021-03-08 | 2022-09-15 | 株式会社神戸製鋼所 | 溶融亜鉛めっき鋼板の製造方法および合金化溶融亜鉛めっき鋼板の製造方法 |
WO2023182525A1 (ja) * | 2022-03-25 | 2023-09-28 | Jfeスチール株式会社 | 高強度溶融亜鉛めっき鋼板の製造方法 |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106065429B (zh) * | 2016-07-21 | 2018-10-02 | 洛阳Lyc轴承有限公司 | 一种保证轴承零件热后件表面颜色一致的方法 |
US11859259B2 (en) * | 2018-05-01 | 2024-01-02 | Nippon Steel Corporation | Zinc-plated steel sheet and manufacturing method thereof |
JP2021014605A (ja) * | 2019-07-10 | 2021-02-12 | 株式会社神戸製鋼所 | 溶融亜鉛めっき鋼板および合金化溶融亜鉛めっき鋼板の製造方法 |
CN110964981A (zh) * | 2019-11-13 | 2020-04-07 | 浙江金洲管道科技股份有限公司 | 一种镀锌管材及制造方法 |
TR202016190A2 (tr) * | 2020-10-12 | 2021-01-21 | Borcelik Celik San Tic A S | Galvani̇zli̇ yüzeylere kaplama i̇çi̇n i̇şlem |
CN113897545A (zh) * | 2021-09-02 | 2022-01-07 | 河钢股份有限公司承德分公司 | 一种超厚锌层高强无花热镀锌钢板、超厚锌层高强无花热镀锌钢卷及其制备方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11279659A (ja) * | 1998-03-30 | 1999-10-12 | Nkk Corp | 鋼帯の直火還元加熱方法及び直火還元加熱装置 |
JP2012012703A (ja) * | 2010-05-31 | 2012-01-19 | Jfe Steel Corp | 曲げ性および溶接性に優れる高強度溶融亜鉛めっき鋼板およびその製造方法 |
JP2014019935A (ja) * | 2012-07-23 | 2014-02-03 | Jfe Steel Corp | 表面安定性に優れた高強度溶融亜鉛めっき鋼板の製造方法 |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55122865A (en) | 1979-03-12 | 1980-09-20 | Nippon Steel Corp | Molten zinc plating method for difficult plating steel sheet |
JP2741617B2 (ja) | 1989-03-31 | 1998-04-22 | 日本鋼管株式会社 | 直火式加熱炉の空気比制御方法 |
JP2530939B2 (ja) | 1990-11-30 | 1996-09-04 | 新日本製鐵株式会社 | 高Si含有高張力溶融亜鉛めっき鋼板の製造方法 |
JP2587724B2 (ja) | 1990-11-30 | 1997-03-05 | 新日本製鐵株式会社 | めっき密着性の良好な高Si含有高張力溶融亜鉛めっき鋼板の製造方法 |
JP2587725B2 (ja) | 1990-11-30 | 1997-03-05 | 新日本製鐵株式会社 | P含有高張力合金化溶融亜鉛めっき鋼板の製造方法 |
JP2513532B2 (ja) | 1990-11-30 | 1996-07-03 | 新日本製鐵株式会社 | 高Si含有鋼の高張力溶融亜鉛めっき鋼板の製造方法 |
JPH04254531A (ja) | 1991-02-01 | 1992-09-09 | Nippon Steel Corp | 高Si含有高張力鋼の溶融亜鉛めっき前の焼鈍方法 |
JPH04254532A (ja) | 1991-02-01 | 1992-09-09 | Nippon Steel Corp | 加工性の優れた合金化溶融亜鉛めっき鋼板の製造方法 |
JP3255765B2 (ja) | 1993-07-14 | 2002-02-12 | 川崎製鉄株式会社 | 高張力溶融または合金化溶融亜鉛めっき鋼板の製造方法 |
JP3184445B2 (ja) | 1995-12-27 | 2001-07-09 | 川崎製鉄株式会社 | 合金化溶融亜鉛めっき鋼板の製造方法 |
JP4202632B2 (ja) | 2001-09-28 | 2008-12-24 | 株式会社東芝 | 一括封止型半導体パッケージの樹脂封止構造およびその製造装置 |
JP4254531B2 (ja) | 2003-12-25 | 2009-04-15 | 豊田合成株式会社 | 等速ジョイント用ブーツ |
JP4254532B2 (ja) | 2003-12-26 | 2009-04-15 | ダイキン工業株式会社 | ヒートポンプ式給湯装置 |
JP4972775B2 (ja) | 2006-02-28 | 2012-07-11 | Jfeスチール株式会社 | 外観性とめっき密着性に優れる高強度溶融亜鉛めっき鋼板の製造方法 |
MX360965B (es) * | 2009-11-30 | 2018-11-23 | Nippon Steel & Sumitomo Metal Corp | Placa de acero de alta resistencia con resistencia a la tracción final de 900 mpa o mas, excelente en resistencia a la fragilizacion por hidrógeno y método de producción de la misma. |
JP5966528B2 (ja) * | 2011-06-07 | 2016-08-10 | Jfeスチール株式会社 | めっき密着性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法 |
DE102011051731B4 (de) | 2011-07-11 | 2013-01-24 | Thyssenkrupp Steel Europe Ag | Verfahren zur Herstellung eines durch Schmelztauchbeschichten mit einer metallischen Schutzschicht versehenen Stahlflachprodukts |
JP5915569B2 (ja) | 2013-03-01 | 2016-05-11 | Jfeスチール株式会社 | 溶融亜鉛めっき鋼板の製造方法および連続溶融亜鉛めっき装置 |
JP5962582B2 (ja) * | 2013-05-21 | 2016-08-03 | Jfeスチール株式会社 | 高強度合金化溶融亜鉛めっき鋼板の製造方法 |
-
2015
- 2015-08-20 EP EP15839932.9A patent/EP3159420B1/en active Active
- 2015-08-20 US US15/509,353 patent/US10648054B2/en active Active
- 2015-08-20 JP JP2015559387A patent/JP6172297B2/ja active Active
- 2015-08-20 MX MX2017002974A patent/MX2017002974A/es unknown
- 2015-08-20 KR KR1020177006318A patent/KR101889795B1/ko active IP Right Grant
- 2015-08-20 WO PCT/JP2015/004151 patent/WO2016038801A1/ja active Application Filing
- 2015-08-20 CN CN201580048205.XA patent/CN106715726B/zh active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11279659A (ja) * | 1998-03-30 | 1999-10-12 | Nkk Corp | 鋼帯の直火還元加熱方法及び直火還元加熱装置 |
JP2012012703A (ja) * | 2010-05-31 | 2012-01-19 | Jfe Steel Corp | 曲げ性および溶接性に優れる高強度溶融亜鉛めっき鋼板およびその製造方法 |
JP2014019935A (ja) * | 2012-07-23 | 2014-02-03 | Jfe Steel Corp | 表面安定性に優れた高強度溶融亜鉛めっき鋼板の製造方法 |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6323628B1 (ja) * | 2016-10-25 | 2018-05-16 | Jfeスチール株式会社 | 高強度溶融亜鉛めっき鋼板の製造方法 |
CN109906285A (zh) * | 2016-10-25 | 2019-06-18 | 杰富意钢铁株式会社 | 高强度热镀锌钢板的制造方法 |
US11535922B2 (en) | 2016-10-25 | 2022-12-27 | Jfe Steel Corporation | Method for manufacturing high-strength galvanized steel sheet |
CN109906285B (zh) * | 2016-10-25 | 2021-07-30 | 杰富意钢铁株式会社 | 高强度热镀锌钢板的制造方法 |
WO2018079124A1 (ja) * | 2016-10-25 | 2018-05-03 | Jfeスチール株式会社 | 高強度溶融亜鉛めっき鋼板の製造方法 |
US11414736B2 (en) * | 2017-10-26 | 2022-08-16 | Kobe Steel, Ltd. | Production method of hot-dip galvanized steel sheet |
WO2019082542A1 (ja) * | 2017-10-26 | 2019-05-02 | 株式会社神戸製鋼所 | 溶融亜鉛めっき鋼板の製造方法 |
JP2019077933A (ja) * | 2017-10-26 | 2019-05-23 | 株式会社神戸製鋼所 | 溶融亜鉛めっき鋼板の製造方法 |
US20200347479A1 (en) * | 2018-01-17 | 2020-11-05 | Jfe Steel Corporation | High-strength electrogalvannealed steel sheet and method for manufacturing the same |
JP7086666B2 (ja) | 2018-03-23 | 2022-06-20 | 株式会社神戸製鋼所 | 合金化溶融亜鉛めっき鋼板の製造方法 |
JP2019167576A (ja) * | 2018-03-23 | 2019-10-03 | 株式会社神戸製鋼所 | 合金化溶融亜鉛めっき鋼板の製造方法 |
WO2022191006A1 (ja) | 2021-03-08 | 2022-09-15 | 株式会社神戸製鋼所 | 鋼板の製造方法 |
WO2022191009A1 (ja) | 2021-03-08 | 2022-09-15 | 株式会社神戸製鋼所 | 溶融亜鉛めっき用鋼板、溶融亜鉛めっき鋼板および合金化溶融亜鉛めっき鋼板 |
WO2022191008A1 (ja) | 2021-03-08 | 2022-09-15 | 株式会社神戸製鋼所 | 溶融亜鉛めっき鋼板の製造方法および合金化溶融亜鉛めっき鋼板の製造方法 |
KR20230145442A (ko) | 2021-03-08 | 2023-10-17 | 가부시키가이샤 고베 세이코쇼 | 용융 아연 도금용 강판, 용융 아연 도금 강판 및 합금화 용융 아연 도금 강판 |
KR20230145590A (ko) | 2021-03-08 | 2023-10-17 | 가부시키가이샤 고베 세이코쇼 | 강판의 제조 방법 |
KR20230145441A (ko) | 2021-03-08 | 2023-10-17 | 가부시키가이샤 고베 세이코쇼 | 용융 아연 도금 강판의 제조 방법 및 합금화 용융 아연 도금 강판의 제조 방법 |
WO2023182525A1 (ja) * | 2022-03-25 | 2023-09-28 | Jfeスチール株式会社 | 高強度溶融亜鉛めっき鋼板の製造方法 |
JP7468819B2 (ja) | 2022-03-25 | 2024-04-16 | Jfeスチール株式会社 | 高強度溶融亜鉛めっき鋼板の製造方法 |
Also Published As
Publication number | Publication date |
---|---|
KR20170039733A (ko) | 2017-04-11 |
MX2017002974A (es) | 2017-06-19 |
EP3159420A1 (en) | 2017-04-26 |
CN106715726A (zh) | 2017-05-24 |
US10648054B2 (en) | 2020-05-12 |
US20170253943A1 (en) | 2017-09-07 |
JP6172297B2 (ja) | 2017-08-02 |
JPWO2016038801A1 (ja) | 2017-04-27 |
CN106715726B (zh) | 2018-11-06 |
EP3159420B1 (en) | 2020-09-16 |
EP3159420A4 (en) | 2017-07-26 |
KR101889795B1 (ko) | 2018-08-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6172297B2 (ja) | 高強度溶融亜鉛めっき鋼板の製造方法及び製造設備 | |
JP5206705B2 (ja) | 高強度溶融亜鉛めっき鋼板およびその製造方法 | |
JP5982905B2 (ja) | 高強度溶融亜鉛めっき鋼板の製造方法 | |
WO2015087549A1 (ja) | 高強度合金化溶融亜鉛めっき鋼板の製造方法 | |
JP5888267B2 (ja) | 高強度溶融亜鉛めっき鋼板の製造方法および高強度溶融亜鉛めっき鋼板 | |
JP5552863B2 (ja) | 高強度溶融亜鉛めっき鋼板およびその製造方法 | |
WO2014188697A1 (ja) | 高強度合金化溶融亜鉛めっき鋼板の製造方法 | |
JP5552859B2 (ja) | 高強度溶融亜鉛めっき鋼板およびその製造方法 | |
JP5920249B2 (ja) | めっき密着性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法 | |
WO2015125433A1 (ja) | 高強度溶融亜鉛めっき鋼板およびその製造方法 | |
JP5593771B2 (ja) | 高強度溶融亜鉛めっき鋼板の製造方法 | |
JP5552864B2 (ja) | 高強度溶融亜鉛めっき鋼板およびその製造方法 | |
JP6323628B1 (ja) | 高強度溶融亜鉛めっき鋼板の製造方法 | |
JP5552862B2 (ja) | 高強度溶融亜鉛めっき鋼板およびその製造方法 | |
JP6237937B2 (ja) | 高強度溶融亜鉛めっき鋼板の製造方法 | |
JP6094508B2 (ja) | 高強度溶融亜鉛めっき鋼板およびその製造方法 | |
JP6164280B2 (ja) | 表面外観および曲げ性に優れるMn含有合金化溶融亜鉛めっき鋼板およびその製造方法 | |
JP5593770B2 (ja) | 高強度溶融亜鉛めっき鋼板の製造方法 | |
WO2017154494A1 (ja) | 高強度溶融亜鉛めっき鋼板の製造方法 | |
JP5552860B2 (ja) | 高強度溶融亜鉛めっき鋼板およびその製造方法 | |
JP5552861B2 (ja) | 高強度溶融亜鉛めっき鋼板およびその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2015559387 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15839932 Country of ref document: EP Kind code of ref document: A1 |
|
REEP | Request for entry into the european phase |
Ref document number: 2015839932 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2015839932 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 20177006318 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15509353 Country of ref document: US Ref document number: MX/A/2017/002974 Country of ref document: MX |
|
NENP | Non-entry into the national phase |
Ref country code: DE |