WO2016035686A1 - フィルム状接着剤、フィルム状接着剤を用いた半導体パッケージ及びその製造方法 - Google Patents

フィルム状接着剤、フィルム状接着剤を用いた半導体パッケージ及びその製造方法 Download PDF

Info

Publication number
WO2016035686A1
WO2016035686A1 PCT/JP2015/074337 JP2015074337W WO2016035686A1 WO 2016035686 A1 WO2016035686 A1 WO 2016035686A1 JP 2015074337 W JP2015074337 W JP 2015074337W WO 2016035686 A1 WO2016035686 A1 WO 2016035686A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
epoxy resin
adhesive
film adhesive
adhesive layer
Prior art date
Application number
PCT/JP2015/074337
Other languages
English (en)
French (fr)
Inventor
稔 森田
邦彦 石黒
真沙美 青山
Original Assignee
古河電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古河電気工業株式会社 filed Critical 古河電気工業株式会社
Priority to CN201580042178.5A priority Critical patent/CN106575625B/zh
Priority to SG11201701032XA priority patent/SG11201701032XA/en
Priority to MYPI2017000228A priority patent/MY182167A/en
Priority to KR1020177000150A priority patent/KR101856914B1/ko
Publication of WO2016035686A1 publication Critical patent/WO2016035686A1/ja
Priority to PH12017500308A priority patent/PH12017500308A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J163/00Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/04Non-macromolecular additives inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J171/00Adhesives based on polyethers obtained by reactions forming an ether link in the main chain; Adhesives based on derivatives of such polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/52Mounting semiconductor bodies in containers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2203/00Applications of adhesives in processes or use of adhesives in the form of films or foils
    • C09J2203/326Applications of adhesives in processes or use of adhesives in the form of films or foils for bonding electronic components such as wafers, chips or semiconductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32135Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/32145Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Definitions

  • the present invention relates to a film adhesive, a semiconductor package using the film adhesive, and a manufacturing method thereof.
  • Paste or film adhesive (die attach film) is used for bonding between the wiring board and the semiconductor chip and between the semiconductor chips in the manufacturing process of such a memory package.
  • a die attach film that hardly causes contamination to other members such as a semiconductor chip and a wire pad due to the above is usually used.
  • the wiring substrate and the surface of the semiconductor chip are not necessarily in a smooth state, so air may be caught at the interface with the adherend in the die attach process.
  • the entrained air not only lowers the adhesive strength after heat curing, but also causes package cracks.
  • thermosetting die attach film that lowers the viscosity of the die attach film at the time of mounting, causes it to follow the surface irregularities well, and then cures and uses it.
  • thermosetting die attach film In multi-layer stacking of semiconductor chips in a package using a thermosetting die attach film, it is necessary to shorten the curing time in order to shorten the manufacturing process.
  • the curing speed of the thermosetting resin contained in the thermosetting die attach film can be increased, and the curing time can be shortened. It becomes easy to generate the void which becomes the cause.
  • the void which becomes the problem there is no practical problem if the die attach film is cured in the same size as the minute void (see FIG. 8A) having a maximum width of less than about 300 ⁇ m which is entered at the time of die attachment.
  • thermosetting die attach film As a conventional thermosetting die attach film, an adhesive film having a minimum melt viscosity of 2000 Pa ⁇ s or less and a minimum melt viscosity within a temperature range of 50 to 170 ° C. is disclosed (see Patent Document 1). . Since this adhesive film has the above-mentioned viscosity characteristics, it is possible to increase the adhesiveness at low temperature and the followability of the adhesive film to fine irregularities on the surface of the substrate etc. There has been a problem that voids that cause package cracks and the like are likely to occur during curing because they have not been noticed and the slow-curing property has not been improved.
  • an adhesive film containing an epoxy resin, a curing agent, and fumed silica particles, and having a minimum melt viscosity within a temperature range of 70 to 120 ° C. within a range of 2500 to 10000 Pa ⁇ s Patent Document. 2
  • the melt viscosity in the temperature range exceeding 120 ° C. necessary for curing the die attach film, and since the fumed silica content is small, the melt viscosity in the temperature region exceeding 120 ° C.
  • voids that cause package cracks and the like are easily generated during curing.
  • the present invention provides a film adhesive that can reduce the generation of voids even when curing is performed in a high temperature and short time in multi-layered semiconductor chips, a semiconductor package using the film adhesive, and its manufacture It aims to provide a method.
  • a film adhesive according to the present invention contains an epoxy resin (A), an epoxy resin curing agent (B), a phenoxy resin (C), and a silica filler (D),
  • the content of the silica filler (D) is 30 to about the total amount of the epoxy resin (A), the epoxy resin curing agent (B), the phenoxy resin (C), and the silica filler (D).
  • the temperature is 70% by mass and the temperature is increased from room temperature at a rate of 5 ° C./min, a minimum melt viscosity in the range of 200 to 10000 Pa ⁇ s is exhibited in the range of more than 120 ° C. and less than 180 ° C.
  • the gelation time at 180 ° C. according to the prescribed hot plate method is 1 to 200 seconds.
  • hydrophobic fumed silica having a specific surface area of 10 to 300 m 2 / g according to the BET method defined in JIS Z8830 is preferably added as at least one silica filler (D).
  • a method of manufacturing a semiconductor package according to the present invention comprises thermocompression bonding the film adhesive and the dicing tape to the back surface of a wafer having at least one semiconductor circuit formed on the front surface.
  • a first step of providing an adhesive layer and a dicing tape on the back surface of the wafer, and dicing the wafer and the adhesive layer simultaneously to obtain a semiconductor chip with an adhesive layer comprising the wafer and the adhesive layer A second step, a third step of detaching the dicing tape from the adhesive layer, and thermocompression bonding the semiconductor chip with the adhesive layer and the wiring substrate through the adhesive layer; and the adhesive layer.
  • a fourth step of thermosetting is
  • a semiconductor package according to the present invention is obtained by the above-described method for manufacturing a semiconductor package.
  • the film-like adhesive according to the present invention, the semiconductor package using the film-like adhesive, and the manufacturing method thereof can reduce the generation of voids even when the semiconductor chip is cured at a high temperature and in a short time in multi-layer stacking. .
  • the semiconductor package using the film adhesive according to the present invention does not reduce the adhesive force of the semiconductor chip to the substrate and other semiconductor chips, and can reduce the occurrence of package cracks.
  • the manufacturing method of the semiconductor package using the film adhesive by this invention can manufacture a semiconductor package in a short time.
  • (A) is a top view which shows typically a mode after thermocompression-bonding the conventional glass chip with a die attach film to a wiring board
  • (B) is a conventional glass chip with a die attach film on a wiring board. It is a top view which shows typically the mode after carrying out thermosetting of the die attach film after thermocompression bonding.
  • the film adhesive according to the embodiment of the present invention contains an epoxy resin (A), an epoxy resin curing agent (B), a phenoxy resin (C), and a silica filler (D), and the silica filler (
  • the content of D) is 30 to 70% by mass with respect to the total amount of the epoxy resin (A), the epoxy resin curing agent (B), the phenoxy resin (C) and the silica filler (D).
  • Yes when heated from room temperature at a heating rate of 5 ° C./min, it exhibits a minimum melt viscosity in the range of 200 to 10000 Pa ⁇ s in the range of over 120 ° C. and below 180 ° C., and is specified in JIS K6911
  • the gelation time at 180 ° C. according to the method is 1 to 200 seconds.
  • the film adhesive according to the embodiment of the present invention has a minimum melt viscosity of 200 to 10,000 Pa ⁇ s in the range of more than 120 ° C. and 180 ° C. or less when the temperature is raised from room temperature at a rate of 5 ° C./min. Is in. Further, the minimum melt viscosity is preferably in the range of 200 to 3000 Pa ⁇ s, particularly preferably in the range of 200 to 2000 Pa ⁇ s. When the minimum melt viscosity is greater than 10,000 Pa ⁇ s, voids are likely to remain between the wiring substrate irregularities when the semiconductor chip provided with the film adhesive is thermocompression bonded onto the wiring substrate. On the other hand, if it is less than 200 Pa ⁇ s, voids are likely to occur when the semiconductor chip provided with the film adhesive is mounted on a wiring board and then thermally cured.
  • the melt viscosity is measured using a rheometer, the change in viscosity resistance is measured at a temperature range of 30 to 200 ° C., and the heating rate is 5 ° C./min. Viscosity resistance when the temperature is higher than 120 ° C and lower than 180 ° C. Also, in the melt viscosity obtained under these conditions, the temperature when the minimum melt viscosity is reached (minimum melt viscosity reach temperature) correlates with the curing speed of the film adhesive, and the curing speed is faster at lower temperatures. Indicates.
  • the film adhesive according to the embodiment of the present invention has a gelation time at 180 ° C. by a hot plate method specified in JIS K6911 in the range of 50 to 200 seconds. Furthermore, the 180 ° gelation time is preferably in the range of 100 to 200 seconds, and more preferably in the range of 150 to 200 seconds. When the 180 ° gelation time is longer than 200 seconds, the curing time becomes long, and voids are likely to be generated during thermosetting. If it is less than 50 seconds, the film-like adhesive is likely to proceed with thermosetting at a lower temperature, and the thermosetting may proceed during the solvent drying heat treatment during film production.
  • the gelation time is measured at a stage temperature of 180 ° C. according to JIS 6911 using a gelation tester.
  • Epoxy resin (A) The epoxy resin (A) contained in the adhesive film according to the present invention is not particularly limited as long as it has an epoxy group.
  • the skeleton of the epoxy resin (A) is phenol novolak type, orthocresol novolak type, dicyclopentadiene type, biphenyl type, fluorene bisphenol A type, triazine type, naphthol type, naphthalenediol type, triphenylmethane type, tetraphenyl type, Bisphenol a type, bisphenol F type, bisphenol AD type, bisphenol S type, trimethylolmethane type and the like can be used.
  • the epoxy resin (A) preferably has an epoxy equivalent of 500 g / eq or less, and 150 to 450 g / eq in order to increase the crosslink density of the cured product and consequently improve the mechanical strength and heat resistance. It is more preferable.
  • an epoxy equivalent means the gram number (g / eq) of resin containing an epoxy group of 1 gram equivalent.
  • the epoxy resin (A) one kind may be used alone, or two or more kinds may be used in combination. When two or more kinds are used in combination, for example, the viscosity of the composition is easily adjusted. Adhesion between the wafer and the film adhesive can be sufficiently exerted even when the process of thermally pressing the film adhesive and the wafer (wafer laminating process) is performed at a low temperature (preferably 40 to 80 ° C.). In view of the tendency, it is preferable to use a combination of an epoxy resin (a1) having a softening point of 50 to 100 ° C. and an epoxy resin (a2) having a softening point of less than 50 ° C.
  • the epoxy resin (a1) is solid or semi-solid at room temperature, and preferably has a softening point of 50 to 100 ° C., more preferably 50 to 80 ° C.
  • the softening point is less than 50 ° C.
  • the viscosity of the resulting adhesive decreases, and thus it tends to be difficult to maintain the film shape at room temperature.
  • it exceeds 100 ° C. the obtained film-like adhesion In the agent, it tends to be difficult to reach the minimum melt viscosity in the range of 200 to 10,000 Pa ⁇ s in the range of more than 120 ° C. and 180 ° C. or less.
  • the weight average molecular weight is preferably more than 500 and not more than 2000, and more preferably 600 to 1200.
  • the weight average molecular weight is 500 or less, the monomer and dimer increase and the crystallinity increases, so the film adhesive tends to be brittle.
  • the weight average molecular weight exceeds 2000, the film adhesive melts. Since the viscosity becomes high, the unevenness on the substrate cannot be embedded sufficiently when pressure-bonded to the wiring substrate, and the adhesion to the wiring substrate tends to decrease.
  • skeleton of such an epoxy resin (a1) triphenylmethane type, bisphenol A type, cresol novolak type, ortho type are used from the viewpoint of obtaining a film-like adhesive having low resin crystallinity and good appearance.
  • a cresol novolac type and a dicyclopentadiene type are preferable, and a triphenylmethane type epoxy resin, a bisphenol A type epoxy resin, and a cresol novolak type epoxy resin are more preferable.
  • the adhesion between the wafer and the film adhesive is achieved.
  • the softening point is preferably less than 50 ° C., and the softening point is more preferably 40 ° C. or less so that the properties are sufficiently exhibited.
  • Such an epoxy resin (a2) preferably has a weight average molecular weight of 300 to 500, more preferably 350 to 450. If the weight average molecular weight is less than 300, the amount of monomers increases and the crystallinity becomes strong, so that the film adhesive tends to be brittle. On the other hand, if it exceeds 500, the melt viscosity becomes high. In this case, the adhesion between the wafer and the film adhesive tends to be lowered.
  • bisphenol A type and bisphenol A which are oligomer type liquid epoxy resins, are used.
  • / F mixed type, bisphenol F type, and propylene oxide modified bisphenol A type are more preferred. preferable.
  • the mass ratio (a1: a2) is preferably 95: 5 to 30:70, and preferably 70:30 to 40:60. More preferred. If the content of the epoxy resin (a1) is less than the above lower limit, the film adhesive property of the film-like adhesive tends to be strong and difficult to peel off from the cover film or the dicing tape. The viscosity of the film tends to be high, and the properties of the obtained film adhesive tend to be brittle.
  • epoxy resin curing agent (B) As the epoxy resin curing agent (B) used in the present invention, known curing agents such as amines, acid anhydrides, polyhydric phenols and the like can be used.
  • the epoxy resin (A) is a latent curing agent that exhibits curability at a temperature equal to or higher than the temperature at which necessary tackiness is exhibited, and also exhibits rapid curability.
  • latent curing agent dicyandiamide, imidazoles, hydrazides, boron trifluoride-amine complexes, amine imides, polyamine salts and modified products thereof, and microcapsules can also be used. These can be used alone or in admixture of two or more.
  • the amount of the epoxy resin curing agent (B) used is usually in the range of 0.5 to 50% by mass relative to the epoxy resin (A).
  • a certain amount of a curing agent having a high curing rate such as imidazoles.
  • imidazole it is preferable to use imidazole as the catalyst.
  • Phenoxy resin (C) As a phenoxy resin (C) used for this invention, it uses in order to provide sufficient adhesiveness and film forming property (film-forming property) to a film adhesive.
  • Phenoxy resin has good compatibility with epoxy resin because of its similar structure, low resin melt viscosity, and good adhesion.
  • the phenoxy resin is usually a thermoplastic resin having a molecular weight of 10,000 or more obtained from bisphenol such as bisphenol A and epichlorohydrin. Mixing the phenoxy resin is effective in eliminating tackiness and brittleness at room temperature.
  • Preferred phenoxy resins are 1256 (bisphenol A type phenoxy resin, manufactured by Mitsubishi Chemical Corporation), YP-70 (bisphenol A / F type phenoxy resin, manufactured by Nisshinka Epoxy Manufacturing Co., Ltd.), FX-316 (bisphenol F type phenoxy).
  • Commercially available phenoxy resins such as resin, manufactured by Nippon Kayaku Epoxy Manufacturing Co., Ltd.), and FX-280S (cardo skeleton type phenoxy resin, manufactured by Nippon Chemical Epoxy Manufacturing Co., Ltd.) may be used as the phenoxy resin (C). .
  • silica filler (D) As a silica filler (D) used for this invention, it contributes to the low water absorption of a film adhesive, and the reduction of a linear expansion coefficient. If the value of the linear expansion coefficient is high, the difference between the linear expansion coefficient and the adherend such as the wiring board becomes large, which leads to stress on the interface with the adherend and the generation of package cracks. Absent.
  • the content of the silica filler (D) is 30 to 70% by mass with respect to the total amount of the epoxy resin (A), the epoxy resin curing agent (B), the phenoxy resin (C) and the silica filler (D). More preferably, it is 40 to 60% by mass. This is because the minimum melt viscosity value is controlled by the amount of silica filler. When the blending amount is more than 70% by mass, the minimum melt viscosity value becomes large, and when the semiconductor chip provided with the film adhesive is thermocompression-bonded on the wiring board, voids easily remain between the wiring board irregularities, Film vulnerability becomes stronger. If the blending amount is less than 30% by mass, the minimum melt viscosity value becomes small, and voids are likely to occur during curing.
  • the silica filler (D) is preferably spherical from the viewpoints of high filling and fluidity.
  • the average particle size is preferably 0.01 to 5 ⁇ m. If the particle size is smaller than 0.01 ⁇ m, the filler tends to aggregate, causing unevenness during film production, and the resulting film thickness of the adhesive film may be poor. When the particle size is larger than 5 ⁇ m, when a thin film is produced with a coating machine such as a roll knife coater, the filler becomes a trigger, and streaks are likely to occur on the film surface.
  • the average particle diameter means a particle diameter when 50% is accumulated when the total particle volume is 100% in the particle size distribution, and is measured by a laser diffraction / scattering method (measuring condition: dispersion medium- (Sodium hexametaphosphate, laser wavelength: 780 nm, measuring device: Microtrac MT3300EX), and can be determined from the cumulative curve of the volume fraction of the particle size distribution.
  • the term “spherical” refers to a true sphere or a substantially true sphere that is substantially round and has no corners.
  • a method of blending the silica filler (D) into the resin binder a method of directly blending the powdered spherical silica filler and a silane coupling agent as necessary (integrant method), or a silane coupling agent
  • a method of blending a slurry-like silica filler in which a surface-treated spherical silica filler is dispersed in an organic solvent can be used.
  • a slurry-like silica filler when a thin film is produced, it is more preferable to use a slurry-like silica filler.
  • the silane coupling agent to be used those containing an amino group or an epoxy group are preferable.
  • the silica filler (D) one kind may be used alone, or two or more kinds may be used in combination. When two or more types are used in combination, it is preferable to use at least one hydrophobic fumed silica having a specific surface area of 10 to 300 m 2 / g according to the BET method defined in JIS Z8830.
  • the minimum melt viscosity can be easily adjusted to be high.
  • the specific surface area is less than 10 m 2 / g, the hydrophobic fumed silica tends to aggregate, resulting in unevenness during film production, and the film thickness uniformity of the obtained adhesive film may deteriorate.
  • the specific surface area is larger than 300 m 2 / g, the effect of increasing the melt viscosity is hardly exhibited.
  • the filling amount in the case where hydrophobic fumed silica is used in combination is not particularly limited, but preferably 0.1 to 10% by mass, more preferably based on the total amount of (A) epoxy resin and (C) phenoxy resin. It is preferable to blend 1 to 5% by mass with respect to the total amount of (A) epoxy resin and (C) phenoxy resin. If the blending amount is more than 10% by mass, the hydrophobic fumed silica tends to aggregate, causing unevenness during film production, and the film thickness uniformity of the obtained adhesive film may be deteriorated. When the blending amount is less than 0.1% by mass, the effect of increasing the melt viscosity is hardly exhibited, and voids are easily generated during curing.
  • hydrophobic fumed silica examples include AEROSIL RY200 (specific surface area 100 m 2 / g, manufactured by Nippon Aerosil), AEROSIL RY200S (specific surface area 80 m 2 / g, manufactured by Nippon Aerosil), AEROSIL RY50 (specific surface area 30 m 2 / g, Nippon Aerosil), AEROSIL NY50 (specific surface area 30 m 2 / g, made by Nippon Aerosil), AEROSIL RY300 (specific surface area 125 m 2 / g, made by Nippon Aerosil), AEROSIL R202 (specific surface area 100 m 2 / g, made by Nippon Aerosil), etc. Is mentioned.
  • composition for film adhesive of the present invention in addition to the epoxy resin (A), the epoxy resin curing agent (B), the polymer component (C), and the silica filler (D), as long as the effect is not impaired, an additive such as a viscosity modifier, an antioxidant, a flame retardant, a colorant, a stress relaxation agent such as butadiene rubber or silicone rubber may be further contained.
  • an additive such as a viscosity modifier, an antioxidant, a flame retardant, a colorant, a stress relaxation agent such as butadiene rubber or silicone rubber may be further contained.
  • a method for coating a film-like adhesive composition on one surface of a release-treated base film and subjecting it to heat drying is not particularly limited.
  • any film may be used as long as it functions as a cover film for the obtained film-like adhesive, and a known film can be appropriately employed.
  • a known film can be appropriately employed.
  • PET Release-treated polyethylene
  • PET release-treated polyethylene terephthalate
  • the coating method a known method can be appropriately employed, and examples thereof include a method using a roll knife coater, a gravure coater, a die coater, a reverse coater and the like.
  • the film-like adhesive of the present invention preferably has a thickness of 5 to 200 ⁇ m, and from the viewpoint that the unevenness on the surface of the wiring board and semiconductor chip can be more fully embedded. More preferably, it is 40 ⁇ m. If the thickness is less than 5 ⁇ m, the unevenness on the surface of the wiring board and the semiconductor chip cannot be sufficiently embedded, and there is a tendency that sufficient adhesion cannot be ensured. On the other hand, if the thickness exceeds 200 ⁇ m, the organic solvent may be removed during production. Since it becomes difficult, the amount of residual solvent increases, and the film tackiness tends to increase.
  • the minimum melt viscosity of the present invention can be achieved by a combination of the composition and blending ratio as described above, and a part of the epoxy resin curing reaction is performed by intentionally pre-heat treatment after film production, This can be achieved by increasing the melt viscosity, and the generation of voids during high-temperature thermosetting in the semiconductor assembly process can be suppressed.
  • the pre-heat treatment temperature at this time is preferably 80 to 150 ° C., more preferably 100 to 130 ° C., and the pre-heat treatment time is preferably 5 to 300 minutes, more preferably 30 to 200 minutes. .
  • FIG. 1 to FIG. 7 are schematic longitudinal sectional views showing a preferred embodiment of each step of the manufacturing method of the semiconductor package of the present invention.
  • the film adhesive of the present invention is formed on the back surface of a wafer 1 on which at least one semiconductor circuit is formed.
  • the adhesive layer 2 is provided by thermocompression bonding, and then the wafer 1 and the dicing tape 3 are bonded via the adhesive layer 2.
  • a product obtained by previously integrating the adhesive layer 2 and the dicing tape 3 may be thermocompression bonded at a time. It does not restrict
  • a wafer having at least one semiconductor circuit formed on the surface can be used as appropriate, and examples thereof include a silicon wafer, a SiC wafer, and a GaS wafer.
  • the adhesive layer 2 the film adhesive of the present invention may be used alone as one layer, or two or more layers may be laminated and used.
  • a method of providing such an adhesive layer 2 on the back surface of the wafer 1 a method capable of laminating a film-like adhesive on the back surface of the wafer 1 can be appropriately employed.
  • the wafer 1 and the adhesive layer 2 are diced simultaneously to form the semiconductor chip 4 and the adhesive layer 2.
  • the semiconductor chip 5 with an adhesive layer provided is obtained.
  • the apparatus used for dicing is not particularly limited, and a known dicing apparatus can be used as appropriate.
  • the dicing tape 3 is detached from the adhesive layer 2, and the semiconductor chip 5 with the adhesive layer and the wiring substrate 6 are removed.
  • the semiconductor chip 4 is mounted on the wiring board 6 by thermocompression bonding through the adhesive layer 2.
  • a board having a semiconductor circuit formed on the surface can be used as appropriate.
  • a printed circuit board (PCB) various lead frames, and electronic components such as a resistance element and a capacitor are mounted on the board surface.
  • the substrate which was made is mentioned.
  • the method for mounting the semiconductor chip 4 is not particularly limited, and the electronic component in which the semiconductor chip 5 with the adhesive layer is mounted on the wiring substrate 6 or the surface of the wiring substrate 6 by using the adhesive layer 2.
  • a conventional method that can be adhered to the substrate can be appropriately employed.
  • a conventionally known heating method such as a method using a mounting technique using a flip chip bonder having a heating function from the upper part, a method using a die bonder having a heating function only from the lower part, a method using a laminator, etc. And a pressurizing method.
  • the adhesive layer 2 is thermally cured.
  • the thermosetting temperature is not particularly limited as long as it is equal to or higher than the thermosetting start temperature of the film-like adhesive (adhesive layer 2), and is different depending on the type of resin to be used. For example, it is preferably more than 120 ° C. and 180 ° C. or less, and more preferably 140 to 180 ° C. from the viewpoint that curing at a higher temperature can be cured in a short time. If the temperature is lower than the thermosetting start temperature, the thermosetting does not proceed sufficiently, and the strength of the adhesive layer 2 tends to decrease.
  • the film adhesive can be cured in a short time by thermosetting the film adhesive at a high temperature, and the wiring substrate 6 and the wafer 1 are firmly bonded without generating voids even when cured at a high temperature. A semiconductor package adhered to the substrate can be obtained.
  • a connection method is not particularly limited, and a conventionally known method such as a wire bonding method, a TAB (Tape Automated Bonding) method, or the like can be appropriately employed.
  • a plurality of semiconductor chips 5 with an adhesive layer may be thermocompression-bonded and thermoset on the surface of the mounted semiconductor chip 4 and then connected to the wiring substrate 7 again by a wire bonding method to be stacked.
  • a method of laminating the semiconductor chips 4 as shown in FIG. 5 or a method of laminating the bonding wires 7 while embedding the bonding wires 7 by increasing the thickness of the second and subsequent adhesive layers 2 as shown in FIG. is there.
  • the sealing resin 8 is not particularly limited, and a known sealing resin that can be used for manufacturing a semiconductor package can be used as appropriate. Moreover, it does not restrict
  • the wafer 1 is fixed to the wiring substrate 6 without generating voids in the adhesive layer 2 made of a film adhesive even when high temperature curing is performed. be able to.
  • the package assembly time can be shortened because the semiconductor chip 4 can be cured in a short time by high temperature curing.
  • Example 1 First, slurry-like surface-treated spherical silica filler (trade name: SC2050-KNP, silica average particle size 0.5 ⁇ m, surface-treating agent: 3-glycidoxypropyltrimethoxysilane, solvent: MIBK, solid content concentration: 70 wt% , Manufactured by Admatechs Co., Ltd.) 310 parts by mass, solid cresol novolac type epoxy resin (trade name: EOCN-1020-70, softening point: 70 ° C., solid, epoxy equivalent: 200, manufactured by Nippon Kayaku Co., Ltd.) , Liquid bisphenol A type epoxy resin (trade name: YD-128, softening point: 25 ° C.
  • liquid, epoxy equivalent 190, manufactured by Nippon Kayaku Epoxy Co., Ltd.
  • 49 parts by mass bisphenol A type phenoxy resin (trade name) : YP-50S, Tg: 84 ° C., manufactured by Nippon Kayaku Epoxy Manufacturing Co., Ltd.)
  • YP-50S bisphenol A type phenoxy resin
  • Tg 84 ° C., manufactured by Nippon Kayaku Epoxy Manufacturing Co., Ltd.
  • Example 2 (Example 2) Implemented except using dicyclopentadiene type epoxy resin (trade name: XD-1000, softening point: 70 ° C., solid, epoxy equivalent: 250, manufactured by Nippon Kayaku Co., Ltd.) instead of cresol novolac type epoxy resin
  • dicyclopentadiene type epoxy resin trade name: XD-1000, softening point: 70 ° C., solid, epoxy equivalent: 250, manufactured by Nippon Kayaku Co., Ltd.
  • Example 3 First, slurry-like surface-treated spherical silica filler (trade name: SC2050-KNP, silica average particle size 0.5 ⁇ m, surface-treating agent: 3-glycidoxypropyltrimethoxysilane, solvent: MIBK, solid content concentration: 70 wt% 286 parts by mass, manufactured by Admatechs Corporation, solid bisphenol A type epoxy resin (trade name: JER1002, softening point: 78 ° C., solid, epoxy equivalent: 200, manufactured by Mitsubishi Chemical Corporation), 40 parts by mass, liquid bisphenol A type Epoxy resin (trade name: YD-128, softening point: 25 ° C.
  • SC2050-KNP silica average particle size 0.5 ⁇ m
  • surface-treating agent 3-glycidoxypropyltrimethoxysilane
  • solvent MIBK
  • solid content concentration 70 wt% 286 parts by mass
  • solid bisphenol A type epoxy resin trade name: JER1002, softening point: 78 ° C
  • liquid, epoxy equivalent 190, manufactured by Nippon Kayaku Epoxy Co., Ltd.
  • 100 parts by mass bisphenol A type phenoxy resin (trade name: YP-50S, Tg: 84 ° C, manufactured by Nippon Kayaku Epoxy Manufacturing Co., Ltd.)
  • bisphenol A type phenoxy resin trade name: YP-50S, Tg: 84 ° C, manufactured by Nippon Kayaku Epoxy Manufacturing Co., Ltd.
  • the obtained film adhesive composition was applied onto a 38 ⁇ m thick release-treated PET film and dried by heating at a temperature of 100 ° C. for 10 minutes, with a thickness of 200 mm ⁇ 300 mm and a thickness of 20 ⁇ m.
  • a film adhesive was obtained.
  • Example 4 A film adhesive composition in the same manner as in Example 3 except that 7 parts by mass (trade name: RY-200S, specific surface area 80 m 2 / g, manufactured by Nippon Aerosil Co., Ltd.) was used as the hydrophobic fumed silica. And the film adhesive was obtained.
  • Example 5 A film adhesive composition in the same manner as in Example 4 except that 2 parts by mass (trade name: RY-200S, specific surface area 80 m 2 / g, manufactured by Nippon Aerosil Co., Ltd.) was used as the hydrophobic fumed silica. And the film adhesive was obtained.
  • Example 6 First, slurry-like surface-treated spherical silica filler (trade name: SC2050-KNP, silica average particle size 0.5 ⁇ m, surface-treating agent: 3-glycidoxypropyltrimethoxysilane, solvent: MIBK, solid content concentration: 70 wt% 286 parts by mass, manufactured by Admatechs Corporation, solid bisphenol A type epoxy resin (trade name: JER1002, softening point: 78 ° C., solid, epoxy equivalent: 200, manufactured by Mitsubishi Chemical Corporation), 40 parts by mass, liquid bisphenol A type Epoxy resin (trade name: YD-128, softening point: 25 ° C.
  • SC2050-KNP silica average particle size 0.5 ⁇ m
  • surface-treating agent 3-glycidoxypropyltrimethoxysilane
  • solvent MIBK
  • solid content concentration 70 wt% 286 parts by mass
  • solid bisphenol A type epoxy resin trade name: JER1002, softening point: 78 ° C
  • liquid, epoxy equivalent 190, manufactured by Nippon Kayaku Epoxy Co., Ltd.
  • 100 parts by mass bisphenol A type phenoxy resin (trade name: YP-50S, Tg: 84 ° C, manufactured by Nippon Kayaku Epoxy Manufacturing Co., Ltd.)
  • a resin mixture was transferred to an 800 ml planetary mixer, and 6 parts of a dicyandiamide type curing agent (trade name: DICY7, manufactured by Mitsubishi Chemical Corporation), an imidazole type curing catalyst (trade name: 2PHZ-PW, Shikoku Chemicals).
  • the obtained film adhesive composition was applied onto a 38 ⁇ m thick release-treated PET film and dried by heating at a temperature of 100 ° C. for 10 minutes, with a thickness of 200 mm ⁇ 300 mm and a thickness of 20 ⁇ m. A film adhesive was obtained. This film was further heated at a temperature of 120 ° C. for 3 hours to produce a film which was intentionally partially heat-cured to increase the melt viscosity.
  • slurry-like surface-treated spherical silica filler (trade name: SC2050-KNP, silica average particle size 0.5 ⁇ m, surface-treating agent: 3-glycidoxypropyltrimethoxysilane, solvent: MIBK, solid content concentration: 70 wt% 154 parts by mass, manufactured by Admatechs Co., Ltd., liquid bisphenol A type epoxy resin (trade name: YD-128, softening point: 25 ° C.
  • liquid, epoxy equivalent 190, manufactured by Nippon Kasei Epoxy Manufacturing Co., Ltd.
  • 49 mass 30 parts by weight of bisphenol A type phenoxy resin (trade name: YP-50S, Tg: 84 ° C., manufactured by Nippon Kayaku Epoxy Manufacturing Co., Ltd.) are weighed and blended in a 500 ml separable flask at a temperature of 110 ° C. The mixture was heated and stirred for 2 hours to obtain a resin mixture.
  • Example 5 A film adhesive composition and a film adhesive were obtained in the same manner as in Example 1 except that 617 parts by mass of the slurry-like surface-treated spherical silica filler was used.
  • a film-like adhesive according to each of the examples and comparative examples was prepared by using a manual laminator (trade name: FM-114, manufactured by Technovision) at a temperature of 70 ° C. and a pressure of 0.3 MPa. After adhering to one surface of wafer, 8 inch size, thickness 100 ⁇ m), dicing on the surface opposite to the dummy silicon wafer of film adhesive at room temperature and pressure 0.3MPa using the same manual laminator A tape (trade name: K-13, manufactured by Furukawa Electric Co., Ltd.) and a dicing frame (trade name: DTF2-8-1H001, manufactured by DISCO) were adhered.
  • a manual laminator trade name: FM-114, manufactured by Technovision
  • a dicing apparatus (trade name: DFD-6340) in which a biaxial dicing blade (Z1: NBC-ZH2050 (27HEDD), manufactured by DISCO / Z2: NBC-ZH127F-SE (BC), manufactured by DISCO)) was installed. Dicing was performed to obtain a size of 10 mm ⁇ 10 mm using a DISCO company, to obtain a semiconductor chip. Next, a semiconductor chip was placed on a glass substrate (10 cm ⁇ 10 cm) using a die bonder (trade name: DB-800, manufactured by Hitachi High-Technologies Corporation) at a temperature of 120 ° C., a pressure of 0.1 MPa (load: 1000 gf), and a time of 1.0 second.
  • a die bonder (trade name: DB-800, manufactured by Hitachi High-Technologies Corporation) at a temperature of 120 ° C., a pressure of 0.1 MPa (load: 1000 gf), and a time of 1.0 second.
  • Thermocompression bonding was performed on the size and thickness (700 ⁇ m).
  • the initial state in the film adhesive after thermocompression bonding was observed from the back side of the glass substrate. Thereafter, this was placed in a dryer and heated at 180 ° C. for 10 minutes to thermally cure the film adhesive, and the state in the film adhesive after thermosetting was observed from the back side of the glass substrate.
  • the void is not visually confirmed, or even if it is confirmed, the maximum width is less than 300 ⁇ m and the number is less than 10, and the void does not substantially expand, causing package cracks. Those that did not develop into voids were evaluated as “good” as “good”.
  • the void is not visually confirmed, or even if it is confirmed, the maximum width is less than 300 ⁇ m and the number is less than 10.
  • the void is enlarged and the maximum width is When the number is 500 ⁇ m or more and the number is 10 or more, those that have developed into voids causing package cracks were evaluated as “x” as defective products.
  • the content of silica filler (D) is epoxy resin (A), epoxy resin curing agent (B), phenoxy resin (C), and silica filler (D )
  • the temperature is increased from room temperature at a rate of 5 ° C./min.
  • it shows a minimum melt viscosity of 230-2100 Pa ⁇ s in the range of more than 120 ° C. and 180 ° C. and 200 to 10000 Pa ⁇ s as defined in claim 1, and 180 ° C. by the hot plate method specified in JIS K6911.
  • the gelation time in the range of 165 to 195 seconds which is in the range of 1 to 200 seconds as defined in claim 1, is excellent in film properties, and is a film-like adhesive in a short time at a high temperature of 10 minutes at 180 ° C. Also related to cured It not without voids enlarging could be satisfactorily cured.
  • Comparative Example 1 the gelation time was longer than 265 seconds and 200 seconds, so the voids expanded.
  • Comparative Example 2 since the minimum melt viscosity was lower than 107 Pa ⁇ s and 200 Pa ⁇ s, the voids were still enlarged.
  • Comparative Example 3 the silica filler was not included, and the minimum melt viscosity was lower than 30 Pa ⁇ s and 200 Pa ⁇ s.
  • the content of the silica filler was 75% by mass and higher than 70% by mass, and the minimum melt viscosity was higher than 10,000 Pa ⁇ s.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Adhesive Tapes (AREA)
  • Die Bonding (AREA)

Abstract

 半導体チップの多段積層化において高温短時間で硬化を行った場合でも、ボイドの発生を低減することができるフィルム状接着剤、フィルム状接着剤を用いた半導体パッケージ及びその製造方法を提供することを目的とする。エポキシ樹脂(A)、エポキシ樹脂硬化剤(B)、フェノキシ樹脂(C)、シリカ充填剤(D)を含有しており、前記シリカ充填剤(D)の含有量が、前記エポキシ樹脂(A)、前記エポキシ樹脂硬化剤(B)、前記フェノキシ樹脂(C)及び前記シリカ充填剤(D)の合計量に対して、30~70質量%であり、且つ、室温から5℃/分の昇温速度で昇温したとき、120℃超180℃以下の範囲において200~10000Pa・sの範囲の最低溶融粘度を示し、JIS K6911に規定する熱板法による180℃におけるゲル化時間が1~200秒であることを特徴とする。

Description

フィルム状接着剤、フィルム状接着剤を用いた半導体パッケージ及びその製造方法
 本発明は、フィルム状接着剤、フィルム状接着剤を用いた半導体パッケージ及びその製造方法に関する。
 近年、チップを多段に積層したスタックドMCP(Multi Chip Package)が普及しており、携帯電話、携帯オーディオ機器用のメモリパッケージとして搭載されている。また、携帯電話等の多機能化に伴い、パッケージの高密度化・高集積化も推し進められている。これに伴い、チップの多段積層化が進行している。
 このようなメモリパッケージの製造過程における配線基板と半導体チップ、半導体チップ間との接着には、ペースト状、もしくはフィルム状接着剤(ダイアタッチフィルム)が使用されているが、樹脂流れや樹脂はい上がり等によって半導体チップやワイヤーパッド等の他部材への汚染を引き起こしにくいダイアタッチフィルムが通常使用されている。
 ダイアタッチフィルムを用いた半導体チップの実装において、配線基板、半導体チップ表面は必ずしも平滑な面状態ではないため、ダイアタッチ工程において被着体との界面に空気を巻き込むことがある。巻き込まれた空気(ボイド)は加熱硬化後の接着力を低下させるだけでなく、パッケージクラックの原因ともなる。ボイドを巻き込まないために、実装時のダイアタッチフィルムの粘度を低下させ、表面凹凸の面によく追従させ、その後、硬化させて使用する熱硬化型ダイアタッチフィルムの要求が高まっている。
 熱硬化型ダイアタッチフィルムを用いたパッケージの半導体チップの多段積層化において、製造プロセスの短縮化のためには、硬化時間の短縮が必要である。硬化温度を上げることで、熱硬化型ダイアタッチフィルムに含有する熱硬化性樹脂の硬化速度も速くなり、硬化時間の短縮が可能となるが、硬化工程中にダイアタッチフィルム内部に、パッケージクラック等の原因となるボイドが発生し易くなる。この問題となるボイドは、ダイアタッチの際に入った最大幅300μm程度未満の微小なボイド(図8(A)参照)が、そのままの大きさでダイアタッチフィルムが硬化すれば実用上問題がないにもかかわらず、高温でダイアタッチフィルムを硬化させることで硬化時に最大幅500μm程度以上にまで拡大化する(図8(B)参照)ことにより発生すると予想される。この際のボイドの広がり易さは、(i)硬化時のダイアタッチフィルムの低溶融粘度性、(ii)ダイアタッチフィルムの遅硬化性に起因すると推察される。
 従来の熱硬化型ダイアタッチフィルムとしては、最低溶融粘度が2000Pa・s以下であり、かつ最低溶融粘度が50~170℃の温度範囲内にある接着フィルムが開示されている(特許文献1参照)。この接着フィルムは上記粘度特性を有するので、低温での接着性、及び基板等の表面の微細な凹凸に対する接着フィルムの追従性を高くすることができることはできるが、ダイアタッチフィルムの硬化速度には着目されておらず、遅硬化性の改善がなされていないため硬化中にパッケージクラック等の原因となるボイドが発生しやすいという問題があった。
 また、エポキシ樹脂、硬化剤、並びにヒュームドシリカ粒子を含み、70~120℃の温度範囲内における最低溶融粘度が、2500~10000Pa・sの範囲内にある接着フィルムも開示されている(特許文献2参照)。しかしながら、ダイアタッチフィルムの硬化に必要な120℃を超える温度領域での溶融粘度には着目されておらず、また、ヒュームドシリカの含有量が少ないため、120℃を超える温度領域での溶融粘度の低下を招き、硬化中にパッケージクラック等の原因となるボイドが発生しやすいという問題があった。
特開2007-103954号公報 特開2010-28087号公報
 そこで、本発明は、半導体チップの多段積層化において高温短時間で硬化を行った場合でも、ボイドの発生を低減することができるフィルム状接着剤、フィルム状接着剤を用いた半導体パッケージ及びその製造方法を提供することを目的とする。
 上記課題を解決するために、本願発明によるフィルム状接着剤は、エポキシ樹脂(A)、エポキシ樹脂硬化剤(B)、フェノキシ樹脂(C)、シリカ充填剤(D)を含有しており、 前記シリカ充填剤(D)の含有量が、前記エポキシ樹脂(A)、前記エポキシ樹脂硬化剤(B)、前記フェノキシ樹脂(C)及び前記シリカ充填剤(D)の合計量に対して、30~70質量%であり、且つ、室温から5℃/分の昇温速度で昇温したとき、120℃超180℃以下の範囲において200~10000Pa・sの範囲の最低溶融粘度を示し、JIS K6911に規定する熱板法による180℃におけるゲル化時間が1~200秒であることを特徴とする。
 上記フィルム状接着剤は、シリカ充填剤(D)の少なくとも1つとして、JIS Z8830に規定するBET法による比表面積が10~300m2/gである疎水性ヒュームドシリカを添加することが好ましい。
 また、上記課題を解決するために、本願発明による半導体パッケージの製造方法は、表面に少なくとも1つの半導体回路が形成されたウェハの裏面に、上記フィルム状接着剤及びダイシングテープを熱圧着して、前記ウェハの裏面に接着剤層及びダイシングテープを設ける第1の工程と、前記ウェハと前記接着剤層とを同時にダイシングすることにより前記ウェハ及び前記接着剤層を備える接着剤層付き半導体チップを得る第2の工程と、前記接着剤層から前記ダイシングテープを脱離し、前記接着剤層付き半導体チップと配線基板とを前記接着剤層を介して熱圧着せしめる第3の工程と、前記接着剤層を熱硬化せしめる第4の工程と、を含むことを特徴とする。
 また、上記課題を解決するために、本願発明による半導体パッケージは、上記半導体パッケージの製造方法により得られることを特徴とする。
 本発明によるフィルム状接着剤、フィルム状接着剤を用いた半導体パッケージ及びその製造方法は、半導体チップの多段積層化において高温短時間で硬化を行った場合でも、ボイドの発生を低減することができる。これにより、本発明によるフィルム状接着剤を用いた半導体パッケージは、半導体チップの基板や他の半導体チップに対する接着力を低下させることがなく、また、パッケージクラックの発生を低減することができる。また、本発明によるフィルム状接着剤を用いた半導体パッケージの製造方法は、短時間で半導体パッケージを製造することができる。
本発明の実施の形態に係る半導体パッケージの製造方法における第1の工程を説明する説明図である。 本発明の実施の形態に係る半導体パッケージの製造方法における第2の工程を説明する説明図である。 本発明の実施の形態に係る半導体パッケージの製造方法における第3の工程を説明する説明図である。 本発明の実施の形態に係る半導体パッケージの製造方法における第5の工程を説明する説明図である。 本発明の実施の形態に係るフィルム状接着剤を用いた半導体チップの実装構造を模式的に示す断面図である。 本発明の実施の形態に係るフィルム状接着剤を用いた他の半導体チップの実装構造を模式的に示す断面図である。 本発明の実施の形態に係る半導体パッケージの構造を模式的に示す断面図である。 (A)は、従来のダイアタッチフィルム付きガラスチップを配線基板に熱圧着した後の様子を模式的に示す平面図であり、(B)は、従来のダイアタッチフィルム付きガラスチップを配線基板に熱圧着した後、ダイアタッチフィルムを加熱硬化させた後の様子を模式的に示す平面図である。
 以下に、本発明の実施の形態について詳細に説明する。
 本発明の実施形態に係るフィルム状接着剤は、エポキシ樹脂(A)、エポキシ樹脂硬化剤(B)、フェノキシ樹脂(C)、シリカ充填剤(D)を含有しており、前記シリカ充填剤(D)の含有量が、前記エポキシ樹脂(A)、前記エポキシ樹脂硬化剤(B)、前記フェノキシ樹脂(C)及び前記シリカ充填剤(D)の合計量に対して、30~70質量%であり、且つ、室温から5℃/分の昇温速度で昇温したとき、120℃超180℃以下の範囲において200~10000Pa・sの範囲の最低溶融粘度を示し、JIS K6911に規定する熱板法による180℃におけるゲル化時間が1~200秒である。
 本発明の実施形態に係るフィルム状接着剤は、最低溶融粘度が、室温から5℃/分の昇温速度で昇温したとき、120℃超180℃以下の範囲において200~10000Pa・sの範囲内にある。最低溶融粘度は、さらに、200~3000Pa・sの範囲が好ましく、特に200~2000Pa・sの範囲が好ましい。最低溶融粘度が10000Pa・sよりも大きいと、本フィルム状接着剤を設けた半導体チップを配線基板上に熱圧着する際に配線基板凹凸間に空隙が残りやすくなる。また、200Pa・sよりも小さいと、本フィルム状接着剤を設けた半導体チップを配線基板上に搭載後、熱硬化する際にボイドが発生し易くなる。
 なお、本発明の実施形態において、溶融粘度は、レオメーターを用い、温度範囲30~200℃、昇温速度5℃/minでの粘性抵抗の変化を測定し、得られた温度-粘性抵抗曲線において温度が120℃超180℃以下のときの粘性抵抗である。また、本条件で得られた溶融粘度において、最低溶融粘度に到達したときの温度(最低溶融粘度到達温度)はフィルム状接着材の硬化速度と相関し、より低温側だと硬化速度が速いことを示す。
 また、本発明の実施形態に係るフィルム状接着剤は、JIS K6911に規定する熱板法による180℃におけるゲル化時間が50~200秒の範囲内にある。さらに、180度ゲル化時間は、100~200秒の範囲が好ましく、特に150~200秒の範囲がより好ましい。180度ゲル化時間が200秒より大きいと、硬化時間が長くなり、熱硬化する際にボイドが発生しやすくなる。50秒より小さいと、フィルム状接着剤がより低温にて熱硬化が進行し易くなり、フィルム作製時の溶剤乾燥の熱処理の際に熱硬化が進行してしまう可能性がある。
 なお、本発明の実施形態においてゲル化時間は、ゲル化試験機を用い、JIS 6911に準拠してステージ温度180℃で測定する。
(エポキシ樹脂(A))
 本発明に係る接着フィルムに含まれているエポキシ樹脂(A)は、エポキシ基を有するものであれば特に限定されない。
 エポキシ樹脂(A)の骨格は、フェノールノボラック型、オルソクレゾールノボラック型、ジシクロペンタジエン型、ビフェニル型、フルオレンビスフェノールA型、トリアジン型、ナフトール型、ナフタレンジオール型、トリフェニルメタン型、テトラフェニル型、ビスフェノールa型、ビスフェノールF型、ビスフェノールAD型、ビスフェノールS型、トリメチロールメタン型などが使用できる。
 エポキシ樹脂(A)は、硬化体の架橋密度を高くし、結果として、機械的強度と耐熱性を向上するため、エポキシ当量が500g/eq以下であることが好ましく、150~450g/eqであることがより好ましい。なお、本発明において、エポキシ当量とは、1グラム当量のエポキシ基を含む樹脂のグラム数(g/eq)をいう。
 エポキシ樹脂(A)としては、1種を単独で用いても2種以上を組み合わせて用いてもよく、2種以上を組み合わせて用いる場合には、例えば、組成物の粘度の調節がしやすく、フィルム状接着剤とウェハとを熱圧着せしめる工程(ウェハラミネート工程)を低温(好ましくは40~80℃)で実施した場合においても、ウェハとフィルム状接着剤との密着性が十分に発揮される傾向にあるという観点から、軟化点が50~100℃であるエポキシ樹脂(a1)と軟化点が50℃未満であるエポキシ樹脂(a2)とを組み合わせて用いることが好ましい。
 エポキシ樹脂(a1)としては、室温で固体又は半固体であり、軟化点が50~100℃であることが好ましく、50~80℃であることがより好ましい。軟化点が50℃未満であると、得られる接着剤の粘度が低下するため、常温においてフィルム形状を保持することが困難となる傾向にあり、他方、100℃を超えると、得られるフィルム状接着剤において、120℃超180℃以下の範囲において200~10000Pa・sの範囲の最低溶融粘度に到達することが困難となる傾向にある。
 エポキシ樹脂(a1)としては、重量平均分子量が500を超えて2000以下であることが好ましく、600~1200であることがより好ましい。重量平均分子量が500以下であると単量体や2量体が増えて結晶性が強くなるため、フィルム状接着剤が脆弱になる傾向にあり、他方、2000を超えるとフィルム状接着剤の溶融粘度が高くなるため、配線基板に圧着する際に基板上の凹凸を埋め込むことが十分にできず、配線基板との密着性が低下する傾向にある。
 このようなエポキシ樹脂(a1)の骨格としては、樹脂の結晶性が低く、良好な外観を有するフィルム状接着剤を得られるという観点から、トリフェニルメタン型、ビスフェノールA型、クレゾールノボラック型、オルソクレゾールノボラック型、ジシクロペンタジエン型であることが好ましく、トリフェニルメタン型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂がより好ましい。
 エポキシ樹脂(a2)としては、フィルム状接着剤とウェハとを熱圧着せしめる工程(ウェハラミネート工程)を低温(好ましくは40~80℃)で実施した場合においてもウェハとフィルム状接着剤との密着性が十分に発揮されるように、軟化点が50℃未満であることが好ましく、軟化点が40℃以下であることがより好ましい。このようなエポキシ樹脂(a2)としては、重量平均分子量が300~500であることが好ましく、350~450であることがより好ましい。重量平均分子量が300未満であると単量体が増えて結晶性が強くなるため、フィルム状接着剤が脆弱になる傾向にあり、他方、500を超えると溶融粘度が高くなるため、ウェハラミネート工程の際にウェハとフィルム状接着剤との密着性が低下する傾向にある。
 このようなエポキシ樹脂(a2)の骨格としては、樹脂の結晶性が低く、良好な外観を有するフィルム状接着剤を得られるという観点から、オリゴマータイプの液状エポキシ樹脂であるビスフェノールA型、ビスフェノールA/F混合型、ビスフェノールF型、プロピレンオキサイド変性ビスフェノールA型であることが好ましく、溶融粘度が低くより結晶性が低いという観点から、ビスフェノールA型エポキシ樹脂、ビスフェノールA/F混合型エポキシ樹脂がより好ましい。
 前記エポキシ樹脂(a1)及び前記エポキシ樹脂(a2)の割合としては、質量比(a1:a2)が95:5~30:70であることが好ましく、70:30~40:60であることがより好ましい。エポキシ樹脂(a1)の含有量が前記下限未満であると、フィルム状接着剤のフィルムタック性が強くなりカバーフィルムやダイシングテープから剥離しにくくなる傾向にあり、他方、前記上限を超えると組成物の粘度が高くなり、得られるフィルム状接着剤の性状が脆くなる傾向にある。
(エポキシ樹脂硬化剤(B))
 本発明に使用するエポキシ樹脂硬化剤(B)としては、アミン類、酸無水物類、多価フェノール類等の公知の硬化剤を用いることができるが、好ましくは常温以上の所定の温度、例えばエポキシ樹脂(A)が必要な粘着性を示す温度以上で硬化性を発揮し、しかも速硬化性を発揮する潜在性硬化剤である。潜在性硬化剤には、ジシアンジアミド、イミダゾール類、ヒドラジド類、三弗化ホウ素-アミン錯体、アミンイミド、ポリアミン塩及びこれらの変性物、更にマイクロカプセル型のものも使用可能である。これらは、単独あるいは2種以上混ぜて使用できる。潜在性硬化剤を使用することで室温での長期保存も可能な保存安定性の高いフィルム状接着剤用組成物を提供できる。エポキシ樹脂硬化剤(B)の使用量は、通常、エポキシ樹脂(A)に対して0.5~50質量%の範囲である。JIS K6911に規定する熱板法による180℃におけるゲル化時間を1~200秒とするためには、イミダゾール類等の硬化速度の速い硬化剤を一定部数量用いることが好ましい。また、硬化剤としてジシアンジアミド等を用いる場合は触媒としてイミダゾールを用いることが好ましい。
(フェノキシ樹脂(C))
 本発明に使用するフェノキシ樹脂(C)としては、フィルム状接着剤に十分な接着性および造膜性(フィルム形成性)を付与するために用いる。フェノキシ樹脂は、エポキシ樹脂と構造が類似していることから相溶性がよく、樹脂溶融粘度も低く、接着性もよい。フェノキシ樹脂は、ビスフェノールAのようなビスフェノールとエピクロロヒドリンとから得られる通常、分子量が10000以上の熱可塑性樹脂である。フェノキシ樹脂を配合することにより、常温でのタック性、脆さなどを解消するのに効果がある。好ましいフェノキシ樹脂は、1256(ビスフェノールA型フェノキシ樹脂、三菱化学株式会社製)、YP-70(ビスフェノールA/F型フェノキシ樹脂、新日化エポキシ製造株式会社製)、FX-316(ビスフェノールF型フェノキシ樹脂、新日化エポキシ製造株式会社製)、及び、FX-280S(カルド骨格型フェノキシ樹脂、新日化エポキシ製造株式会社製)等の市販のフェノキシ樹脂をフェノキシ樹脂(C)として用いてもよい。
(シリカ充填剤(D))
 本発明に使用するシリカ充填剤(D)としては、フィルム状接着剤の低吸水化、線膨張係数の低減に貢献する。線膨張率の値が高いと、配線基板等の被接着物との線膨張率の差が大きくなるため、被接着物との界面に応力がかかって、パッケージクラックを発生させることにつながり、好ましくない。
 シリカ充填剤(D)の含有量は、エポキシ樹脂(A)、エポキシ樹脂硬化剤(B)、フェノキシ樹脂(C)及びシリカ充填剤(D)の合計量に対して、30~70質量%であり、40~60質量%であることがより好ましい。これは、最低溶融粘度値はシリカ充填剤配合量で制御されるからである。配合量が70質量%より多いと、最低溶融粘度値は大きくなり、本フィルム状接着剤を設けた半導体チップを配線基板上に熱圧着する際に配線基板凹凸間に空隙が残りやすくなり、またフィルム脆弱性が強くなる。配合量が30質量%より少ないと、最低溶融粘度値は小さくなり、硬化時にボイドが発生し易くなる。
 シリカ充填剤(D)は、高充填化、流動性の観点から球状であることが望ましい。また、平均粒径は0.01~5μmであることが好ましい。粒径が0.01μmより小さいと充填剤が凝集しやすくなり、フィルム作製時にむらが生じ、得られた接着フィルムの膜厚の均一性が悪くなることがある。粒径が5μmより大きいとロールナイフコーター等の塗工機で薄型のフィルムを作製する際に、フィラーがきっかけとなりフィルム表面にスジを発生しやすくなる。
 なお、本発明において、平均粒径とは、粒度分布において粒子の全体積を100%としたときに50%累積となるときの粒径をいい、レーザー回折・散乱法(測定条件:分散媒-ヘキサメタりん酸ナトリウム、レーザー波長:780nm、測定装置:マイクロトラックMT3300EX)により測定した粒径分布の粒径の体積分率の累積カーブから求めることができる。また、本発明において、球状とは、真球又は実質的に角のない丸味のある略真球であるものをいう。
 シリカ充填剤(D)を樹脂バインダーに配合する方法としては、紛体状の球状シリカ充填剤と必要に応じてシランカップリング剤とを直接配合する方法(インテグラント法)、もしくはシランカップリング剤で表面処理された球状シリカ充填剤を有機溶剤に分散させたスラリー状シリカ充填剤を配合する方法を使用することができる。特に、薄型フィルムを作製する場合には、スラリー状シリカ充填剤を用いた方がより好ましい。これは、より小さな有機溶媒中に分散させた表面処理球状シリカ充填剤分散液に、エポキシ樹脂、エポキシ樹脂硬化剤及びポリマー等の樹脂成分を混合することで、粒径の小さい球状シリカ充填剤であっても樹脂成分中に凝集することなく均一に分散させることができ、得られるフィルム状接着剤の表面外観が良好になるためである。用いるシランカップリング剤としては、アミノ基、エポキシ基を含有したものが好ましい。
 シリカ充填剤(D)としては、1種を単独で用いても2種以上を組み合わせて用いてもよい。2種以上を組み合わせて用いる場合には、少なくとも1つとしてJIS Z8830に規定するBET法による比表面積10~300m2/gである疎水性ヒュームドシリカを用いることが好ましい。疎水性ヒュームドシリカを添加することで、最低溶融粘度を容易に高く調整することができる。比表面積が10m2/gより小さいと、疎水性ヒュームドシリカが凝集しやすくなり、フィルム作製時にむらが生じ、得られた接着フィルムの膜厚の均一性が悪くなることがある。比表面積が300m2/gより大きいと、溶融粘度上昇効果が発現しにくくなる。
 また、疎水性ヒュームドシリカを併用する場合の充填量は特に規定はないが、好ましくは(A)エポキシ樹脂と(C)フェノキシ樹脂の総量に対して0.1~10質量%、より好ましくは(A)エポキシ樹脂と(C)フェノキシ樹脂の総量に対して1~5質量%配合されることが好ましい。配合量が10質量%より多いと、疎水性ヒュームドシリカが凝集しやすくなり、フィルム作製時にむらが生じ、得られた接着フィルムの膜厚の均一性が悪くなることがある。配合量が0.1質量%より少ないと、溶融粘度上昇効果が発現しにくくなり、硬化時のボイドが発生し易くなる。
 疎水性ヒュームドシリカとしては、例えば、AEROSIL RY200(比表面積100m2/g、日本アエロジル製)、AEROSIL RY200S(比表面積80m2/g、日本アエロジル製)、AEROSIL RY50(比表面積30m2/g、日本アエロジル製)、AEROSIL NY50(比表面積30m2/g、日本アエロジル製)、AEROSIL RY300(比表面積125m2/g、日本アエロジル製)、AEROSIL R202(比表面積100m2/g、日本アエロジル製)等が挙げられる。
 本発明のフィルム状接着剤用組成物としては、前記エポキシ樹脂(A)、前記エポキシ樹脂硬化剤(B)、前記ポリマー成分(C)、及びシリカ充填剤(D)の他に、本発明の効果を阻害しない範囲において、粘度調整剤、酸化防止剤、難燃剤、着色剤、ブタジエン系ゴムやシリコーンゴム等の応力緩和剤等の添加剤をさらに含有していてもよい。
 本発明のフィルム状接着剤の製造方法の好適な一実施形態としては、フィルム状接着剤用組成物を離型処理された基材フィルムの一方の面上に塗工し、加熱乾燥を施す方法が挙げられるが、この方法に特に制限されるものではない。離型処理した基材フィルムとしては、得られるフィルム状接着剤のカバーフィルムとして機能するものであればよく、公知のものを適宜採用することができ、例えば、離型処理されたポリプロピレン(PP)、離型処理されたポリエチレン(PE)、離型処理されたポリエチレンテレフタレート(PET)が挙げられる。前記塗工方法としては、公知の方法を適宜採用することができ、例えば、ロールナイフコーター、グラビアコーター、ダイコーター、リバースコーター等を用いた方法が挙げられる。
 このように得られた本発明のフィルム状接着剤としては、厚さが5~200μmであることが好ましく、配線基板、半導体チップ表面の凹凸をより十分に埋め込むことができるという観点から、5~40μmであることがより好ましい。厚さが5μm未満であると配線基板、半導体チップ表面の凹凸を十分に埋め込めず、十分な密着性が担保できなくなる傾向にあり、他方、200μmを超えると製造時において有機溶媒を除去することが困難になるため、残存溶媒量が多くなり、フィルムタック性が強くなる傾向にある。
 また、本発明の最低溶融粘度は、上述のような組成や配合比の組み合わせにより達成できる他、フィルム作製後に、意図的に事前熱処理を行うことにより、エポキシ樹脂の硬化反応を部分的に行い、溶融粘度を上昇させることで達成することができ、半導体組立プロセスにおける高温熱硬化時のボイド発生を抑制することができる。この時の事前熱処理温度としては好ましくは80~150℃であり、より好ましくは100~130℃であり、事前熱処理時間としては好ましくは5~300分であり、より好ましくは30~200分である。
 次いで、図面を参照しながら本発明の半導体パッケージの製造方法の好適な実施形態について詳細に説明する。なお、以下の説明及び図面中、同一又は相当する要素には同一の符号を付し、重複する説明は省略する。図1~図7は、本発明の半導体パッケージの製造方法の各工程の好適な一実施形態を示す概略縦断面図である。
 本発明の半導体パッケージの製造方法においては、先ず、第1の工程として、図1に示すように、表面に少なくとも1つの半導体回路が形成されたウェハ1の裏面に、本発明のフィルム状接着剤を熱圧着して接着剤層2を設け、次いで、ウェハ1とダイシングテープ3とを接着剤層2を介して貼合する。この際、接着剤層2とダイシングテープ3を予め一体化した製品を一度に熱圧着してもよい。ダイシングテープ3としては特に制限されず、適宜公知のダイシングテープを用いることができる。ウェハ1としては、表面に少なくとも1つの半導体回路が形成されたウェハを適宜用いることができ、例えば、シリコンウェハ、SiCウェハ、GaSウェハが挙げられる。接着剤層2としては、本発明のフィルム状接着剤を1層で単独で用いても2層以上を積層して用いてもよい。このような接着剤層2をウェハ1の裏面に設ける方法としては、フィルム状接着剤をウェハ1の裏面に積層させることが可能な方法を適宜採用することができ、ウェハ1の裏面にフィルム状接着剤を貼り合せた後、2層以上を積層する場合には所望の厚さとなるまで順次フィルム状接着剤を積層させる方法や、フィルム状接着剤を予め目的の厚さに積層した後にウェハ1の裏面に貼り合せる方法等を挙げることができる。また、このような接着剤層2をウェハ1の裏面に設ける際に用いる装置としては特に制限されず、例えば、ロールラミネーター、マニュアルラミネーターのような公知の装置を適宜用いることができる。
 次いで、本発明の半導体パッケージの製造方法においては、第2の工程として、図2に示すように、ウェハ1と接着剤層2とを同時にダイシングすることにより半導体チップ4と接着剤層2とを備える接着剤層付き半導体チップ5を得る。ダイシングに用いる装置も特に制限されず、適宜公知のダイシング装置を用いることができる。
 次いで、本発明の半導体パッケージの製造方法においては、第3の工程として、図3に示すように、接着剤層2からダイシングテープ3を脱離し、接着剤層付き半導体チップ5と配線基板6とを接着剤層2を介して熱圧着せしめ、配線基板6に半導体チップ4を実装する。配線基板6としては、表面に半導体回路が形成された基板を適宜用いることができ、例えば、プリント回路基板(PCB)、各種リードフレーム、及び、基板表面に抵抗素子やコンデンサー等の電子部品が搭載された基板が挙げられる。
 このように半導体チップ4を実装する方法としては、特に制限されず、接着剤層2を利用して接着剤層付き半導体チップ5を配線基板6又は配線基板6の表面上に搭載された電子部品に接着させることが可能な従来の方法を適宜採用することができる。このような実装方法としては、上部からの加熱機能を有するフリップチップボンダーを用いた実装技術を用いる方法、下部からのみの加熱機能を有するダイボンダーを用いる方法、ラミネーターを用いる方法等の従来公知の加熱、加圧方法を挙げることができる。このように、本発明のフィルム状接着剤からなる接着剤層2を介して半導体チップ4を配線基板6上に実装することで、電子部品により生じる配線基板6上の凹凸に接着剤層2(フィルム状接着剤)を追従させることができるため、ウェハ1と配線基板6とを密着させて固定することが可能となる。
 次いで、本発明の半導体パッケージの製造方法においては、第4の工程として、接着剤層2を熱硬化せしめる。熱硬化の温度としては、フィルム状接着剤(接着剤層2)の熱硬化開始温度以上であれば特に制限がなく、使用する樹脂の種類により異なるものであり、一概に言えるものではないが、例えば、120℃超180℃以下であることが好ましく、より高温にて硬化した方が短時間で硬化可能であるという観点から、140~180℃であることがより好ましい。温度が熱硬化開始温度未満であると、熱硬化が十分に進まず、接着層2の強度が低下する傾向にあり、他方、180℃を超えると硬化過程中にフィルム状接着剤中のエポキシ樹脂、硬化剤や添加剤等が揮発して発泡しやすくなる傾向にある。また、硬化処理の時間としては、例えば、10~120分間であることが好ましい。本発明においては、高温でフィルム状接着剤を熱硬化せしめることにより短時間で硬化させることができる上、高温温度で硬化してもボイドが発生することなく、配線基板6とウェハ1とが強固に接着された半導体パッケージを得ることができる。
 次いで、本発明の半導体パッケージの製造方法においては、第5の工程として、図4に示すように、配線基板6と半導体チップ4とをボンディングワイヤー7を介して接続することが好ましい。このような接続方法としては特に制限されず、従来公知の方法、例えば、ワイヤーボンディング方式の方法、TAB(Tape Automated Bonding)方式の方法等を適宜採用することができる。
 また、搭載された半導体チップ4の表面に、別の接着剤層付き半導体チップ5を熱圧着、熱硬化し、再度ワイヤーボンディング方式により配線基板7と接続することにより、複数個積層することもできる。例えば、図5に示すように半導体チップ4をずらして積層する方法、もしくは図6に示すように2層目以降の接着層2を厚くすることで、ボンディングワイヤー7を埋め込みながら積層する方法等がある。
 本発明の半導体パッケージの製造方法においては、図7に示すように、封止樹脂8により配線基板6と半導体チップ4とを封止することが好ましく、このようにして本発明の半導体パッケージ9を得ることができる。封止樹脂8としては特に制限されず、半導体パッケージの製造に用いることができる適宜公知の封止樹脂を用いることができる。また、封止樹脂8による封止方法としても特に制限されず、適宜公知の方法を採用することが可能である。
 このような本発明の半導体パッケージの製造方法によれば、高温硬化を実施しても、フィルム状接着剤からなる接着剤層2にボイドが発生することなく、ウェハ1を配線基板6に固定することができる。特に、メモリパッケージのように半導体チップ4を多段積層する場合においては、高温硬化による短時間硬化が可能となるため、パッケージ組立時間の短縮が可能となる。
 以下、実施例及び比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。
(実施例1)
 先ず、スラリー状表面処理球状シリカ充填剤(商品名:SC2050-KNP、シリカ平均粒径0.5μm、表面処理剤:3-グリシドキシプロピルトリメトキシシラン、溶媒:MIBK、固形分濃度:70wt%、株式会社アドマテックス製)310質量部、固形クレゾールノボラック型エポキシ樹脂(商品名:EOCN-1020-70、軟化点:70℃、固体、エポキシ当量:200、日本化薬株式会社製)56質量部、液体ビスフェノールA型エポキシ樹脂(商品名:YD-128、軟化点:25℃以下、液体、エポキシ当量:190、新日化エポキシ製造株式会社製)49質量部、ビスフェノールA型フェノキシ樹脂(商品名:YP-50S、Tg:84℃、新日化エポキシ製造株式会社製)30質量部を秤量して配合し、500mlのセパラブルフラスコ中、温度110℃において2時間加熱攪拌して樹脂混合物を得た。次いで、この樹脂混合物445質量部を800mlのプラネタリーミキサーに移し、イミダゾール型硬化剤(商品名:2PHZ-PW、四国化成株式会社製)9質量部と疎水性ヒュームドシリカ(商品名:RY-200、比表面積100m2/g、日本アエロジル株式会社製)2質量部を加え、室温において1時間攪拌混合した後、真空脱泡してフィルム状接着剤用組成物を得た。次いで、得られたフィルム状接着剤用組成物を厚さ38μmの離型処理されたPETフィルム上に塗布して温度100℃において10分間加熱して乾燥させ、200mm×300mm、厚さが20μmであるフィルム状接着剤を得た。
(実施例2)
 クレゾールノボラック型エポキシ樹脂に代えて、ジシクロペンタジエン型エポキシ樹脂(商品名:XD-1000、軟化点:70℃、固体、エポキシ当量:250、日本化薬株式会社製)を用いたこと以外は実施例1と同様にして、フィルム状接着剤用組成物及びフィルム状接着剤を得た。
(実施例3)
 先ず、スラリー状表面処理球状シリカ充填剤(商品名:SC2050-KNP、シリカ平均粒径0.5μm、表面処理剤:3-グリシドキシプロピルトリメトキシシラン、溶媒:MIBK、固形分濃度:70wt%、株式会社アドマテックス製)286質量部、固形ビスフェノールA型エポキシ樹脂(商品名:JER1002、軟化点:78℃、固体、エポキシ当量:200、三菱化学株式会社製)40質量部、液体ビスフェノールA型エポキシ樹脂(商品名:YD-128、軟化点:25℃以下、液体、エポキシ当量:190、新日化エポキシ製造株式会社製)100質量部、ビスフェノールA型フェノキシ樹脂(商品名:YP-50S、Tg:84℃、新日化エポキシ製造株式会社製)100質量部を秤量して配合し、500mlのセパラブルフラスコ中、温度110℃において2時間加熱攪拌して樹脂混合物を得た。次いで、この樹脂混合物440質量部を800mlのプラネタリーミキサーに移し、ジシアンジアミド型硬化剤(商品名:DICY7、三菱化学株式会社製)6部、イミダゾール型硬化剤(商品名:2PHZ-PW、四国化成株式会社製)1質量部と疎水性ヒュームドシリカ(商品名:RY-200、比表面積100m2/g、日本アエロジル株式会社製)7質量部を加え、室温において1時間攪拌混合した後、真空脱泡してフィルム状接着剤用組成物を得た。次いで、得られたフィルム状接着剤用組成物を厚さ38μmの離型処理されたPETフィルム上に塗布して温度100℃において10分間加熱して乾燥させ、200mm×300mm、厚さが20μmであるフィルム状接着剤を得た。
(実施例4)
 疎水性ヒュームドシリカとして(商品名:RY-200S、比表面積80m2/g、日本アエロジル株式会社製)7質量部を用いたこと以外は実施例3と同様にしてフィルム状接着剤用組成物及びフィルム状接着剤を得た。
(実施例5)
 疎水性ヒュームドシリカとして(商品名:RY-200S、比表面積80m2/g、日本アエロジル株式会社製)2質量部を用いたこと以外は実施例4と同様にしてフィルム状接着剤用組成物及びフィルム状接着剤を得た。
(実施例6)
 先ず、スラリー状表面処理球状シリカ充填剤(商品名:SC2050-KNP、シリカ平均粒径0.5μm、表面処理剤:3-グリシドキシプロピルトリメトキシシラン、溶媒:MIBK、固形分濃度:70wt%、株式会社アドマテックス製)286質量部、固形ビスフェノールA型エポキシ樹脂(商品名:JER1002、軟化点:78℃、固体、エポキシ当量:200、三菱化学株式会社製)40質量部、液体ビスフェノールA型エポキシ樹脂(商品名:YD-128、軟化点:25℃以下、液体、エポキシ当量:190、新日化エポキシ製造株式会社製)100質量部、ビスフェノールA型フェノキシ樹脂(商品名:YP-50S、Tg:84℃、新日化エポキシ製造株式会社製)100質量部を秤量して配合し、500mlのセパラブルフラスコ中、温度110℃において2時間加熱攪拌して樹脂混合物を得た。次いで、この樹脂混合物440質量部を800mlのプラネタリーミキサーに移し、ジシアンジアミド型硬化剤(商品名:DICY7、三菱化学株式会社製)6部、イミダゾール型硬化触媒(商品名:2PHZ-PW、四国化成株式会社製)1質量部を加え、室温において1時間攪拌混合した後、真空脱泡してフィルム状接着剤用組成物を得た。次いで、得られたフィルム状接着剤用組成物を厚さ38μmの離型処理されたPETフィルム上に塗布して温度100℃において10分間加熱して乾燥させ、200mm×300mm、厚さが20μmであるフィルム状接着剤を得た。このフィルムをさらに温度120℃において3時間加熱することで、意図的に部分的に熱硬化させ溶融粘度を上昇させたフィルムを作製した。
(比較例1)
 先ず、スラリー状表面処理球状シリカ充填剤(商品名:SC2050-KNP、シリカ平均粒径0.5μm、表面処理剤:3-グリシドキシプロピルトリメトキシシラン、溶媒:MIBK、固形分濃度:70wt%、株式会社アドマテックス製)154質量部、液体ビスフェノールA型エポキシ樹脂(商品名:YD-128、軟化点:25℃以下、液体、エポキシ当量:190、新日化エポキシ製造株式会社製)49質量部、ビスフェノールA型フェノキシ樹脂(商品名:YP-50S、Tg:84℃、新日化エポキシ製造株式会社製)30質量部を秤量して配合し、500mlのセパラブルフラスコ中、温度110℃において2時間加熱攪拌して樹脂混合物を得た。次いで、この樹脂混合物233質量部を800mlのプラネタリーミキサーに移し、トリフェニルホスフィン型硬化触媒(商品名:TPP-K、北興化学株式会社製)0.8部質量部を加え、室温において1時間攪拌混合した後、真空脱泡してフィルム状接着剤用組成物を得た。次いで、得られたフィルム状接着剤用組成物を厚さ38μmの離型処理されたPETフィルム上に塗布して温度100℃において10分間加熱して乾燥させ、200mm×300mm、厚さが20μmであるフィルム状接着剤を得た。
(比較例2)
 120℃において3時間の意図的熱硬化を実施しなかった以外は実施例6と同様にしてフィルム状接着剤用組成物及びフィルム状接着剤を得た。
(比較例3)
  液体ビスフェノールA型エポキシ樹脂の代わりに鎖状・脂環式エポキシエポキシ樹脂(商品名:EP-4000L、軟化点:25℃以下、液体、エポキシ当量:255、株式会社ADEKA製)を用いたこと以外は比較例2と同様にしてフィルム状接着剤用組成物及びフィルム状接着剤を得た。
(比較例4)
 先ず、固形クレゾールノボラック型エポキシ樹脂(商品名:EOCN-1020-70、軟化点:70℃、固体、エポキシ当量:200、日本化薬株式会社製)56質量部、液体ビスフェノールA型エポキシ樹脂(商品名:YD-128、軟化点:25℃以下、液体、エポキシ当量:190、新日化エポキシ製造株式会社製)49質量部、ビスフェノールA型フェノキシ樹脂(商品名:YP-50S、Tg:84℃、新日化エポキシ製造株式会社製)30質量部、MIBK93質量部を秤量して配合し、500mlのセパラブルフラスコ中、温度110℃において2時間加熱攪拌して樹脂混合物を得た。次いで、この樹脂混合物445質量部を800mlのプラネタリーミキサーに移し、イミダゾール型硬化剤(商品名:2PHZ-PW、四国化成株式会社製)9質量部と疎水性ヒュームドシリカ(商品名:RY-200、比表面積100m2/g、日本アエロジル株式会社製)2質量部を加え、室温において1時間攪拌混合した後、真空脱泡してフィルム状接着剤用組成物を得た。次いで、得られたフィルム状接着剤用組成物を厚さ38μmの離型処理されたPETフィルム上に塗布して温度100℃において10分間加熱して乾燥させ、200mm×300mm、厚さが20μmであるフィルム状接着剤を得た。
(比較例5)
 スラリー状表面処理球状シリカ充填剤617質量部用いた以外は、実施例1と同様にしてフィルム状接着剤用組成物及びフィルム状接着剤を得た。
 実施例・比較例に係るフィルム状接着剤の最低溶融粘度、ゲル化時間、硬化後ボイド評価、フィルム性について、下記のように評価を行った。その結果を表1,2に示す。
(最低溶融粘度の測定)
 各実施例及び比較例に係るフィルム状接着剤を5.0cm×5.0cmのサイズに切り取って積層し、ステージ70℃の熱板上で、ハンドローラーにて貼り合わせて、厚さが約1.0mmである試験片を得た。この試験片について、レオメーター(RS6000、Haake社製)を用い、温度範囲20~250℃、昇温速度5℃/minでの粘性抵抗の変化を測定し、得られた温度-粘性抵抗曲線から最低溶融粘度(Pa・s)、並びに最低溶融粘度到達温度(℃)を算出した。
(ゲル化時間の測定)
 各実施例及び比較例に係るフィルム状接着剤を約2gのサイズを量り取り、ゲル化試験機(商品名:A0E1、株式会社井元製作所製)を用い、JIS K6911に準拠してステージ温度180℃でゲル化時間を測定した。
(熱硬化後ボイド評価)
 各実施例及び比較例に係るフィルム状接着剤を、先ず、マニュアルラミネーター(商品名:FM-114、テクノビジョン社製)を用いて温度70℃、圧力0.3MPaにおいてダミーシリコンウェハ(アルミ蒸着シリコンウェハ、8inchサイズ、厚さ100μm)の一方の面に接着させた後、同マニュアルラミネーターを用いて室温、圧力0.3MPaにおいてフィルム状接着剤の前記ダミーシリコンウェハとは反対側の面上にダイシングテープ(商品名:K-13、古河電気工業株式会社製)及びダイシングフレーム(商品名:DTF2-8-1H001、DISCO社製)を接着させた。次いで、2軸のダイシングブレード(Z1:NBC-ZH2050(27HEDD)、DISCO社製/Z2:NBC-ZH127F-SE(BC)、DISCO社製)が設置されたダイシング装置(商品名:DFD-6340、DISCO社製)を用いて10mm×10mmのサイズになるようにダイシングを実施して半導体チップを得た。
 次いで、ダイボンダー(商品名:DB-800、株式会社日立ハイテクノロジーズ製)にて温度120℃、圧力0.1MPa(荷重1000gf)、時間1.0秒の条件において半導体チップをガラス基板(10cm×10cmサイズ、厚さ700μm)上に熱圧着した。熱圧着後のフィルム状接着剤中の初期状態をガラス基板裏面から観察した。その後、これを乾燥機中に配置して温度180℃で10分加熱することによりフィルム状接着剤を熱硬化させ、熱硬化後のフィルム状接着剤中の状態をガラス基板裏面から観察した。熱圧着後及び熱硬化後において、ボイドが目視では確認されないか、確認されたとしても最大幅が300μm未満で個数が10個未満と、実質的にボイドが拡大化せず、パッケージクラックの原因となるようなボイドに進展していないものを良品として「○」で評価した。一方、熱圧着後においては、ボイドが目視では確認されないか、確認されたとしても最大幅が300μm未満で個数が10個未満であるが、熱硬化後においては、ボイドが拡大化し、最大幅が500μm以上で個数が10個以上と、パッケージクラックの原因となるボイドに進展しているものを不良品として「×」で評価した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1に示すように、実施例1~6は、シリカ充填剤(D)の含有量が、エポキシ樹脂(A)、エポキシ樹脂硬化剤(B)、フェノキシ樹脂(C)及びシリカ充填剤(D)の合計量に対して、44.1~59.8質量%と、請求項1に規定の30~70質量%の範囲であり、 且つ、室温から5℃/分の昇温速度で昇温したとき、120℃超180℃以下の範囲において230~2100Pa・sと、請求項1に規定の200~10000Pa・sの範囲の最低溶融粘度を示し、JIS K6911に規定する熱板法による180℃におけるゲル化時間が165~195秒と、請求項1に規定の1~200秒の範囲であるため、フィルム性に優れており、また、180℃で10分という高温短時間でフィルム状接着剤を硬化させたにもかかわらず、ボイドが拡大化することなく、良好に硬化させることができた。
 一方、表2に示すように、比較例1は、ゲル化時間が265秒と200秒よりも長いため、ボイドが拡大してしまった。比較例2は、最低溶融粘度が107Pa・sと200Pa・sよりも低いため、やはりボイドが拡大してしまった。比較例3は、シリカ充填剤が含まれておらず、最低溶融粘度が30Pa・sと200Pa・sよりも低いため、やはりボイドが拡大してしまった。比較例4は、シリカ充填剤の含有量が75質量%と70質量%より高く、最低溶融粘度が10000Pa・sより高いため、フィルム性が劣る結果となった。
1:ウェハ
2:接着剤層
3:ダイシングテープ
4:半導体チップ
5:接着剤層付き半導体チップ
6:配線基板
7:ボンディングワイヤー
8:封止樹脂
9:半導体パッケージ

Claims (4)

  1.  エポキシ樹脂(A)、エポキシ樹脂硬化剤(B)、フェノキシ樹脂(C)、シリカ充填剤(D)を含有しており、
     前記シリカ充填剤(D)の含有量が、前記エポキシ樹脂(A)、前記エポキシ樹脂硬化剤(B)、前記フェノキシ樹脂(C)及び前記シリカ充填剤(D)の合計量に対して、30~70質量%であり、
     且つ、室温から5℃/分の昇温速度で昇温したとき、120℃超180℃以下の範囲において200~10000Pa・sの範囲の最低溶融粘度を示し、JIS K6911に規定する熱板法による180℃におけるゲル化時間が1~200秒であることを特徴とするフィルム状接着剤。
  2.  シリカ充填剤(D)の少なくとも1つとして、JIS Z8830に規定するBET法による比表面積が10~300m2/gである疎水性ヒュームドシリカを添加することを特徴とする請求項1に記載のフィルム状接着剤。
  3.  表面に少なくとも1つの半導体回路が形成されたウェハの裏面に、請求項1又は請求項2に記載のフィルム状接着剤及びダイシングテープを熱圧着して、前記ウェハの裏面に接着剤層及びダイシングテープを設ける第1の工程と、
     前記ウェハと前記接着剤層とを同時にダイシングすることにより前記ウェハ及び前記接着剤層を備える接着剤層付き半導体チップを得る第2の工程と、
     前記接着剤層から前記ダイシングテープを脱離し、前記接着剤層付き半導体チップと配線基板とを前記接着剤層を介して熱圧着せしめる第3の工程と、
     前記接着剤層を熱硬化せしめる第4の工程と、
    を含むことを特徴とする半導体パッケージの製造方法。
  4.  請求項3に記載の半導体パッケージの製造方法により得られることを特徴とする半導体パッケージ。
PCT/JP2015/074337 2014-09-05 2015-08-28 フィルム状接着剤、フィルム状接着剤を用いた半導体パッケージ及びその製造方法 WO2016035686A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201580042178.5A CN106575625B (zh) 2014-09-05 2015-08-28 膜状粘接剂、使用膜状粘接剂的半导体封装及其制造方法
SG11201701032XA SG11201701032XA (en) 2014-09-05 2015-08-28 Film-like adhesive, semiconductor package using film-like adhesive, and method for producing the same
MYPI2017000228A MY182167A (en) 2014-09-05 2015-08-28 Film-like adhesive, semiconductor package using film-like adhesive and method for producing the same
KR1020177000150A KR101856914B1 (ko) 2014-09-05 2015-08-28 필름상 접착제, 필름상 접착제를 사용한 반도체 패키지 및 그 제조 방법
PH12017500308A PH12017500308A1 (en) 2014-09-05 2017-02-20 Film-like adhesive, semiconductor package using film-like adhesive, and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-181750 2014-09-05
JP2014181750A JP5901715B1 (ja) 2014-09-05 2014-09-05 フィルム状接着剤、フィルム状接着剤を用いた半導体パッケージ及びその製造方法

Publications (1)

Publication Number Publication Date
WO2016035686A1 true WO2016035686A1 (ja) 2016-03-10

Family

ID=55439750

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/074337 WO2016035686A1 (ja) 2014-09-05 2015-08-28 フィルム状接着剤、フィルム状接着剤を用いた半導体パッケージ及びその製造方法

Country Status (8)

Country Link
JP (1) JP5901715B1 (ja)
KR (1) KR101856914B1 (ja)
CN (1) CN106575625B (ja)
MY (1) MY182167A (ja)
PH (1) PH12017500308A1 (ja)
SG (1) SG11201701032XA (ja)
TW (1) TWI589662B (ja)
WO (1) WO2016035686A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113874456A (zh) * 2020-03-13 2021-12-31 古河电气工业株式会社 切晶粘晶膜、以及使用了该切晶粘晶膜的半导体封装及其制造方法
JP7356534B1 (ja) 2022-03-30 2023-10-04 株式会社レゾナック 半導体用接着フィルム、ダイシングダイボンディングフィルム、及び半導体装置を製造する方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109072018B (zh) * 2016-04-22 2021-10-08 昭和电工材料株式会社 多层印刷线路板用的粘接膜
KR101889808B1 (ko) * 2017-04-26 2018-08-21 주식회사 제일화성 경화성 및 내수성이 우수한 비스페놀 a형 에폭시 수지 조성물
JP6920723B2 (ja) * 2017-07-14 2021-08-18 ナミックス株式会社 加圧実装用ncf
GB2579582B (en) * 2018-12-04 2022-08-31 Hexcel Composites Ltd Adhesive composition
JP2020120828A (ja) * 2019-01-29 2020-08-13 ザイオソフト株式会社 医用画像処理装置、医用画像処理方法、及び医用画像処理プログラム
WO2022070503A1 (ja) * 2020-09-29 2022-04-07 古河電気工業株式会社 透明接着剤用組成物及びフィルム状透明接着剤、並びに、透明接着剤硬化層付部材の製造方法、電子部品及びその製造方法
JP7269446B1 (ja) * 2021-08-23 2023-05-08 古河電気工業株式会社 フィルム状接着剤、これを用いた電子部品及びその製造方法
WO2023188170A1 (ja) * 2022-03-30 2023-10-05 株式会社レゾナック 半導体用接着フィルム、ダイシングダイボンディングフィルム、及び半導体装置を製造する方法
CN115746761A (zh) * 2022-11-17 2023-03-07 苏州高泰电子技术股份有限公司 一种daf胶黏剂、daf胶带及其制备方法
CN118685130A (zh) * 2024-08-27 2024-09-24 武汉市三选科技有限公司 用于一体膜封装的背胶膜及其制备方法、芯片封装方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005032961A (ja) * 2003-07-11 2005-02-03 Sumitomo Bakelite Co Ltd 半導体用接着フィルム、ダイシングフィルムおよび半導体装置
JP2013038175A (ja) * 2011-08-05 2013-02-21 Hitachi Chem Co Ltd 半導体装置の製造方法、フィルム状接着剤及び接着剤シート
WO2013161864A1 (ja) * 2012-04-26 2013-10-31 新日鉄住金化学株式会社 フィルム状接着剤用組成物及びその製造方法、フィルム状接着剤、並びに、フィルム状接着剤を用いた半導体パッケージ及びその製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4537555B2 (ja) * 2000-09-11 2010-09-01 新日鐵化学株式会社 半導体パッケージの製造方法及び半導体パッケージ
JP4064228B2 (ja) * 2002-12-20 2008-03-19 ジャパンゴアテックス株式会社 ウェハボンディングシート、ウェハ積層体および半導体装置
JP2007063333A (ja) * 2005-08-29 2007-03-15 Nippon Steel Chem Co Ltd 半導体素子固定用フィルム状接着剤、それを用いた半導体装置、及び、その半導体装置の製造方法
JP4994743B2 (ja) * 2006-08-10 2012-08-08 新日鐵化学株式会社 フィルム状接着剤及びそれを使用する半導体パッケージの製造方法
JP4380684B2 (ja) 2006-10-20 2009-12-09 住友ベークライト株式会社 半導体用接着フィルム、ダイシングフィルムおよび半導体装置
JP5466368B2 (ja) * 2008-02-18 2014-04-09 積水化学工業株式会社 電子部品接合用接着剤
JP5303326B2 (ja) 2008-06-18 2013-10-02 積水化学工業株式会社 接着フィルム、ダイシング−ダイボンディングテープ及び半導体装置の製造方法
JP5160380B2 (ja) * 2008-11-12 2013-03-13 新日鉄住金化学株式会社 フィルム状接着剤、それを用いた半導体パッケージ及びその製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005032961A (ja) * 2003-07-11 2005-02-03 Sumitomo Bakelite Co Ltd 半導体用接着フィルム、ダイシングフィルムおよび半導体装置
JP2013038175A (ja) * 2011-08-05 2013-02-21 Hitachi Chem Co Ltd 半導体装置の製造方法、フィルム状接着剤及び接着剤シート
WO2013161864A1 (ja) * 2012-04-26 2013-10-31 新日鉄住金化学株式会社 フィルム状接着剤用組成物及びその製造方法、フィルム状接着剤、並びに、フィルム状接着剤を用いた半導体パッケージ及びその製造方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113874456A (zh) * 2020-03-13 2021-12-31 古河电气工业株式会社 切晶粘晶膜、以及使用了该切晶粘晶膜的半导体封装及其制造方法
CN113874456B (zh) * 2020-03-13 2023-09-19 古河电气工业株式会社 切晶粘晶膜、以及使用了该切晶粘晶膜的半导体封装及其制造方法
JP7356534B1 (ja) 2022-03-30 2023-10-04 株式会社レゾナック 半導体用接着フィルム、ダイシングダイボンディングフィルム、及び半導体装置を製造する方法
WO2023190240A1 (ja) * 2022-03-30 2023-10-05 株式会社レゾナック 半導体用接着フィルム、ダイシングダイボンディングフィルム、及び半導体装置を製造する方法
JP2023148409A (ja) * 2022-03-30 2023-10-13 株式会社レゾナック 半導体用接着フィルム、ダイシングダイボンディングフィルム、及び半導体装置を製造する方法

Also Published As

Publication number Publication date
TW201612271A (en) 2016-04-01
JP2016058457A (ja) 2016-04-21
CN106575625A (zh) 2017-04-19
SG11201701032XA (en) 2017-04-27
KR101856914B1 (ko) 2018-05-10
JP5901715B1 (ja) 2016-04-13
MY182167A (en) 2021-01-18
KR20170013386A (ko) 2017-02-06
CN106575625B (zh) 2019-02-26
PH12017500308A1 (en) 2017-07-10
TWI589662B (zh) 2017-07-01

Similar Documents

Publication Publication Date Title
JP5901715B1 (ja) フィルム状接着剤、フィルム状接着剤を用いた半導体パッケージ及びその製造方法
US11139261B2 (en) Film-like adhesive and method for producing semiconductor package using film-like adhesive
JP6005309B2 (ja) 高熱伝導性フィルム状接着剤を用いた半導体パッケージ及びその製造方法
CN107406742B (zh) 膜状接合剂用组合物、膜状接合剂及制造方法、使用膜状接合剂的半导体封装及制造方法
JP6239500B2 (ja) フィルム状接着剤用組成物及びその製造方法、フィルム状接着剤、並びに、フィルム状接着剤を用いた半導体パッケージ及びその製造方法
JP5802400B2 (ja) 封止用樹脂シートおよびそれを用いた半導体装置、並びにその半導体装置の製法
JP5834662B2 (ja) フィルム状接着剤、接着シート、半導体装置及びその製造方法
JP4994743B2 (ja) フィルム状接着剤及びそれを使用する半導体パッケージの製造方法
JP5532575B2 (ja) 接着シート
CN113874456B (zh) 切晶粘晶膜、以及使用了该切晶粘晶膜的半导体封装及其制造方法
TW202348761A (zh) 接著劑用組成物及膜狀接著劑、以及使用了膜狀接著劑之半導體封裝及其製造方法
JP5585542B2 (ja) 接着フィルムおよびその用途ならびに半導体装置の製造方法
TW202033708A (zh) 半導體用接著劑、半導體裝置的製造方法及半導體裝置
JP7223090B1 (ja) 接着剤用組成物及びフィルム状接着剤、並びに、フィルム状接着剤を用いた半導体パッケージ及びその製造方法
JP7288563B1 (ja) 接着剤用組成物及びフィルム状接着剤、並びに、フィルム状接着剤を用いた半導体パッケージ及びその製造方法
JP2020136398A (ja) 半導体用接着剤
JP2016190963A (ja) 半導体用接着フィルム、ダイシングテープ一体型半導体用接着フィルム及び半導体装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15837798

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1020177000150

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 12017500308

Country of ref document: PH

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15837798

Country of ref document: EP

Kind code of ref document: A1