WO2016035651A1 - パワーモジュール - Google Patents
パワーモジュール Download PDFInfo
- Publication number
- WO2016035651A1 WO2016035651A1 PCT/JP2015/074106 JP2015074106W WO2016035651A1 WO 2016035651 A1 WO2016035651 A1 WO 2016035651A1 JP 2015074106 W JP2015074106 W JP 2015074106W WO 2016035651 A1 WO2016035651 A1 WO 2016035651A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- bus bar
- power module
- electrode bus
- pair
- semiconductor element
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/003—Constructional details, e.g. physical layout, assembly, wiring or busbar connections
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L25/00—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
- H01L25/03—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
- H01L25/04—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
- H01L25/07—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L25/00—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
- H01L25/18—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different subgroups of the same main group of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/42—Conversion of dc power input into ac power output without possibility of reversal
- H02M7/44—Conversion of dc power input into ac power output without possibility of reversal by static converters
- H02M7/48—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/42—Conversion of dc power input into ac power output without possibility of reversal
- H02M7/44—Conversion of dc power input into ac power output without possibility of reversal by static converters
- H02M7/48—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/53—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M7/537—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
- H02M7/5387—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/42—Conversion of dc power input into ac power output without possibility of reversal
- H02M7/44—Conversion of dc power input into ac power output without possibility of reversal by static converters
- H02M7/48—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/53—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M7/537—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
- H02M7/539—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency
- H02M7/5395—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency by pulse-width modulation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/0002—Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P27/00—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
- H02P27/04—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
- H02P27/06—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
- H02P27/08—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
Definitions
- the present invention relates to a power module including an inverter circuit and a pair of conductors sandwiching the inverter circuit.
- a power module for supplying electric power to a drive motor mounted on a hybrid vehicle a power module including an inverter circuit having a plurality of semiconductor elements (for example, an element including a power semiconductor such as an IGBT) Proposed.
- the inverter circuit is an electronic circuit that converts input DC power into AC power and outputs the AC power.
- the inverter circuit includes, as an example, a semiconductor element (upper arm) connected to the input bus bar on the high voltage side, a semiconductor element (lower arm) connected to the input bus bar on the low voltage side, and these elements And an output bus bar (middle point terminal) extending from a conductive path connecting the two.
- the semiconductor element generally includes a switching element and a diode connected in reverse parallel to the switching element.
- the inverter circuit realizes the power conversion described above by switching each switching element at a specific timing (for example, according to PWM control).
- an inverter circuit included in one of the conventional power modules (hereinafter referred to as “conventional module”), a plurality of semiconductor elements (IGBTs) are arranged side by side on the same plane, and each terminal (on the upper arm) of the adjacent semiconductor element is arranged. The collector terminal and the emitter terminal of the lower arm) are directly connected without a bus bar.
- the conventional module can configure an inverter circuit without using a bus bar, the size of the module (for example, a so-called PCU projection area) can be reduced (for example, see Patent Document 1).
- the input bus bar on the high voltage side will be referred to as the “positive electrode bus bar”
- the input bus bar on the low voltage side will be referred to as the “negative electrode bus bar”
- the semiconductor element (upper arm) connected to the positive electrode bus bar and the negative electrode bus bar will be referred to.
- a combination with a connected semiconductor element (lower arm) is referred to as an “element pair”.
- An electronic circuit generally has a parasitic inductance (floating inductance) caused by various electronic components included in the circuit and the structure of the circuit itself.
- Parasitic inductance causes a circuit to generate a surge voltage (induced electromotive force generated in a direction that hinders the change in current) due to a change in current, and thus contributes to energy loss in the circuit.
- a surge voltage induced electromotive force generated in a direction that hinders the change in current
- a large surge voltage may be generated in the circuit due to an increase or decrease in recovery current caused by a recovery process (reverse recovery process) of a diode in the semiconductor element. Yes (details will be described later).
- the operating frequency of the inverter circuit is high from the viewpoint of improving the energy efficiency of the entire system to which the power module is applied (for example, the fuel efficiency of a hybrid vehicle).
- the higher the operating frequency of the inverter circuit the higher the time change rate of the recovery current during switching of the semiconductor element, and the surge voltage generated in the circuit increases. That is, the parasitic inductance in the inverter circuit can be a factor that hinders the speeding up of the power module. Therefore, it is desirable that the parasitic inductance in the inverter circuit (and thus the entire power module) is reduced as much as possible.
- the terminals extending from the respective semiconductor elements are directly connected without particularly considering the parasitic inductance of the inverter circuit. Therefore, even if the conventional module is reduced in size by eliminating the bus bar, the parasitic inductance of the conventional module is not necessarily reduced.
- an object of the present invention is to provide a power module having a configuration capable of reducing parasitic inductance.
- the power module according to the present invention for solving the above problems is An inverter circuit, and a “pair of conductors” sandwiching the inverter circuit.
- This inverter circuit "A positive electrode bus bar and a negative electrode bus bar and a plurality of output bus bars” extending from the outside to the inside of the region sandwiched between the pair of conductors, and A “plurality of element pairs” provided inside the region, each of the element pairs including a semiconductor element connected to the positive electrode bus bar and a semiconductor element connected to the negative electrode bus bar.
- a plurality of element pairs each including a switching element and a diode connected in antiparallel to the switching element;
- Each of the “conductive paths defined by the positive bus bar, the element pair, and the negative bus bar” has a loop shape that faces the pair of conductors inside the region.
- the power module is configured to operate an inverter circuit after connecting input terminals (positive bus bar and negative bus bar) to an external power source and connecting an output terminal (output bus bar) to an external load such as an electric motor.
- an output terminal output bus bar
- an external load such as an electric motor.
- the direction of the current passing through the output terminal (output bus bar) is determined based on the potential difference caused by this phase difference (current flows from the high potential side to the low potential side).
- the switching state of the element pair (which of the two semiconductor elements is on and which is off) and the direction of the current that actually passes through the output terminal (output bus bar) (the direction of flowing into the inverter circuit or the inverter) Does not necessarily correspond one-to-one.
- the diode has a property of interrupting current at the time of reverse bias, but current in the reverse bias direction passes through the diode only during a period until the depletion layer reduced at the time of forward bias sufficiently expands again (reverse recovery process).
- This current is generally called a recovery current, and flows so as to short-circuit the “conductive path defined by the positive bus bar, the element pair, and the negative bus bar”.
- the conductive path has a “loop shape facing the pair of conductors” “inside” the “region sandwiched between the pair of conductors”. Therefore, when a recovery current flows through the conductive path, an eddy current that flows in the “reverse direction” of the recovery current is generated in both conductors due to the electromagnetic induction effect. These eddy currents are generated along the conductive path, and have a shape corresponding to the shape of the conductive path (loop shape). Furthermore, the direction of the magnetic flux generated by these eddy currents is “reverse” to the direction of the magnetic flux generated by the recovery current. Therefore, the magnetic flux caused by the recovery current is canceled out by the magnetic flux caused by the eddy current. In addition, since these eddy currents are generated on both sides of the conductive path so as to sandwich the conductive path, the magnetic flux caused by the recovery current can be canceled more reliably than when the eddy current is generated only on one side of the conductive path.
- the magnetic flux caused by the current is canceled out by the eddy current, so that the change in the number of magnetic fluxes linked to the conductive path is suppressed.
- the surge voltage generated in the “conductive path” is reduced as compared with the case where this suppression phenomenon does not occur.
- the apparent parasitic inductance of the “conductive path” is reduced by the amount that the surge voltage is reduced.
- the “conductive path” through which the above-described short-circuit current can flow exists for each “element pair” so as to correspond to each of “a plurality of element pairs”.
- the apparent parasitic inductance is reduced as described above.
- the parasitic inductance of the system is reduced.
- the power module of the present invention has a configuration capable of reducing the parasitic inductance.
- the above-mentioned “diode connected in reverse parallel to the switching element” represents a so-called free-wheeling diode, and may be provided in the semiconductor element as an element different from the switching element (for example, IGBT).
- MOSEFT may be a parasitic diode built in the structure.
- the “positive bus bar” and the “negative bus bar” represent a bus bar connected to a high potential side terminal and a bus bar connected to a low potential side terminal of the external power supply, respectively.
- the former represents a collector bus bar and the latter represents an emitter bus bar.
- MOSEFT is used as a switching element
- the former represents a drain bus bar and the latter represents a source bus bar.
- the “facing” means that the positional relationship between the conductive path and the pair of conductors is a relationship that “induced current can occur in both of the pair of conductors due to the current passing through the conductive path”. Furthermore, the above “loop shape” means that the shape of the conductive path is such that “the induced current generated in the conductor can form a vortex shape (ie, an eddy current can be formed)”. Represents.
- the “loop-shaped shape” include “the shape of the conductive path when the conductive path is curved so as to be along the side surface of the region and substantially round the inside of the region”, and “ Conductivity when the positive electrode bus bar and the negative electrode bus bar are separated from each other with the element pair interposed therebetween, and the positive electrode bus bar and the negative electrode bus bar are close to the minimum distance that can be insulated at the inner and outer boundary surfaces of the above-mentioned region.
- the magnitude of the parasitic inductance of an electronic circuit generally depends on the length of the electronic circuit. For this reason, if the lengths of the plurality of “conductive paths” are different from each other, the magnitude of the parasitic inductance of each conductive path is considered to be different. That is, each of the “conductive paths” is considered to have a parasitic inductance having a different size. Such a difference in parasitic inductance (hereinafter referred to as “variation in parasitic inductance”) is desirably as small as possible.
- the power module of this aspect is
- the pair of conductors have a flat plate shape parallel to each other,
- the conductive path exists on the same virtual plane parallel to the pair of conductors; Can be configured as follows.
- each distance between each conductive path and the conductor is a constant value independent of the conductive path.
- the longer the conductive path the longer the eddy current generated in the conductor along the conductive path, and the parasitic inductance reduction effect corresponding to the length of the conductive path can be obtained. Therefore, the power module of this aspect can reduce variations in parasitic inductance.
- the conductive path has a three-dimensional shape corresponding to the three-dimensional arrangement of each element (element pair, positive electrode bus bar and negative electrode bus bar) constituting the path, and is not necessarily on a specific “virtual plane”. Does not exist. However, in general, in the inverter circuit of the power module, the three-dimensional arrangement (difference in arrangement in the thickness direction) of each element can be ignored from the viewpoint of defining the positional relationship between the conductive path and the conductor as in this embodiment. Small (thin). Therefore, the conductive path can be regarded as existing on the “virtual plane”.
- the power module of this aspect is
- the positive electrode bus bar and the negative electrode bus bar are separated by a minimum distance that can be insulated at an interface between the outer side and the inner side of the region.
- the power module of this aspect can generate an eddy current more reliably in the pair of conductors.
- the power module of the present invention only needs to have a configuration capable of exhibiting the effect of reducing the parasitic inductance, and specific elements (a pair of conductors, semiconductor elements, a positive bus bar, a negative bus bar, and an output bus bar) are specifically described. Arrangement and the like are not particularly limited. For example, the arrangement of each element in the power module of the present invention may be determined in consideration of the reduction of the parasitic inductance, the miniaturization of the power module, the improvement of heat dissipation, and the like.
- the power module of this aspect is The pair of conductors are a first metal plate and a second metal plate that release heat generated by the plurality of element pairs to the outside of the region,
- the output bus bar has a first end connected to the semiconductor element connected to the positive electrode bus bar and a second end connected to the semiconductor element connected to the negative electrode bus bar; Inside the region, The positive electrode bus bar and the first metal plate are adjacent to each other while being insulated, The negative electrode bus bar and the second metal plate are adjacent to each other while being insulated, The first end and the second metal plate are adjacent to each other while being insulated, The second end and the first metal plate are adjacent to each other while being insulated, The semiconductor element connected to the positive electrode bus bar is sandwiched between the positive electrode bus bar and the first end, A semiconductor element connected to the negative electrode bus bar is sandwiched between the negative electrode bus bar and the second end portion, Can be configured as follows.
- the positive electrode bus bar, the semiconductor element connected to the positive electrode bus bar, the semiconductor element connected to the negative electrode bus bar and the conductive path defined by the negative electrode bus bar are the first metal plate and the second metal plate. It is formed at a position adjacent to both. Furthermore, if the thickness of each bus bar, each semiconductor element, and the insulating layer for insulation is sufficiently small, the virtual plane (see aspect 1 above) where the conductive path exists and each metal plate are parallel to each other. It can be regarded as being. Therefore, the power module of this aspect can reduce the parasitic inductance of the module efficiently.
- the power module can be reduced in size compared to the case where a heat dissipation plate or the like is provided separately from these conductors.
- the heat generated by the semiconductor element connected to the positive electrode bus bar is released from the two metal plates via the positive electrode bus bar and the output bus bar, and the heat generated by the semiconductor element connected to the negative electrode bus bar is also generated by the negative electrode bus bar and the output bus bar. From the two metal plates (from both sides of the semiconductor element). Therefore, since the heat generated by each semiconductor element can be released without any bias using both of the two metal plates, the heat dissipation function of each metal plate can be utilized to the maximum, and the heat dissipation of the power module can be improved.
- the power module of this aspect can simultaneously reduce the size of the power module and improve the heat dissipation in addition to reducing the parasitic inductance.
- FIG. 2 is a schematic cross-sectional view of the power module shown in FIG. 1 when cut along a plane along the AA axis. It is a schematic diagram at the time of seeing the power module shown in FIG. 1 from the upper direction. It is a schematic diagram for demonstrating an example of the electroconductive path
- FIG. 1 shows a schematic configuration of a power module (hereinafter referred to as “execution module 10”) according to an embodiment of the present invention.
- the implementation module 10 is a 6-in-1 module in which six semiconductor elements are provided in one module, and has a substantially rectangular parallelepiped shape.
- the implementation module 10 includes an inverter circuit 20 and a pair of metal plates 31 and 32 sandwiching the inverter circuit 20.
- the inverter circuit 20 is disposed inside a region sandwiched between the metal plates 31 and 32.
- the inverter circuit 20 and the metal plates 31 and 32 are integrated (resin-sealed) with a resin or the like in a state of being in close contact with each other with the insulating layer interposed therebetween.
- the inverter circuit 20 and the metal plates 31 and 32 are displayed at positions separated from each other so that the configuration of the implementation module 10 can be easily understood.
- the inverter circuit 20 includes a collector bus bar (positive bus bar) 21, an emitter bus bar (negative electrode bus bar) 22, three output bus bars (23u, 23v, 23w), and six semiconductor elements (24a, 24b, 25a, 25b, 26a, 26b). And insulating layers 27 and 28.
- the semiconductor elements 24a and 24b are connected via an output bus bar 23u to form a first element pair (see also the description regarding FIG. 2 described later).
- the semiconductor elements 25a and 25b are connected via an output bus bar 23v to form a second element pair
- the semiconductor elements 26a and 26b are connected via an output bus bar 23w to form a third element pair. ing.
- the collector bus bar 21, the emitter bus bar 22, and the output bus bars 23u, 23v, and 23w extend from the outside to the inside of the region sandwiched between the metal plates 31 and 32. Further, the collector bus bar 21 and the emitter bus bar 22 are adjacent to each other at the boundary surface between the inner side and the outer side of the same region by a minimum distance Dmin that can be insulated. On the other hand, the output bus bars 23u, 23v, and 23w pass through the same boundary surface as the above-described boundary surface through which the collector bus bar 21 and the emitter bus bar 22 pass.
- the collector bus bar 21 and the emitter bus bar 22 are connected to the high-voltage side terminal and the low-voltage side terminal of the external power source (DC power source), respectively, and the output bus bars 23u, 23v, 23w is connected to each terminal of an external load (in this example, an electric motor or the like operating with a three-phase alternating current).
- an external load in this example, an electric motor or the like operating with a three-phase alternating current.
- the semiconductor element 24a connected to the collector bus bar 21 includes an IGBT 24a1 and a diode. 24a2 is included.
- the diode 24a2 is connected in reverse parallel to the IGBT 24a1 (see FIG. 4B).
- the semiconductor element 24b connected to the emitter bus bar 22 includes an IGBT 24b1 and a diode 24b2 connected in reverse parallel to the IGBT 24b1.
- the semiconductor element 24a and the semiconductor element 24b are connected via the output bus bar 23u.
- Other semiconductor elements 25a, 25b, 26a, and 26b that are not shown in this cross-sectional view also include IGBTs and diodes and are connected via output bus bars, as described above.
- the semiconductor element 24a is connected to the collector bus bar 21 via solder 29, and is connected to one end (first end) 23u1 of the output bus bar 23u via solder 29. That is, the semiconductor element 24a is sandwiched between the collector bus bar 21 and one end 23u1 of the output bus bar.
- the semiconductor element 24b is connected to the emitter bus bar 22 via the solder 29, and is connected to the other end (second end) 23u2 of the output bus bar 23u via the solder 29. That is, the semiconductor element 24b is sandwiched between the emitter bus bar 22 and the other end 23u2 of the output bus bar.
- the collector bus bar 21 and the metal plate 31 are adjacent to each other through the insulating layer 27.
- the emitter bus bar 22 and the metal plate 32 are adjacent to each other through the insulating layer 28.
- the one end 23 u 1 of the output bus bar and the metal plate 32 are adjacent to each other through the insulating layer 28.
- the other end 23u2 of the output bus bar 23u is adjacent via the insulating layer 27.
- the metal plates 31 and 32 have a thin plate shape that is rectangular in plan view.
- the metal plates 31 and 32 have the same shape and are arranged in parallel to each other.
- the metal plate 31 receives the heat generated by the element pairs 24a and 24b via the collector bus bar 21 and the other end 23u2 of the output bus bar, and releases the heat to the outside of the implementation module 10 (upward in the figure).
- the metal plate 32 receives the heat generated by the semiconductor elements 24a and 24b via the emitter bus bar 22 and the one end 23u1 of the output bus bar, and releases the heat to the outside of the implementation module 10 (downward in the figure).
- the metal plates 31 and 32 also release heat generated by the other semiconductor elements 25a, 25b, 26a, and 26b to the outside of the implementation module 10 in the same manner. That is, the metal plates 31 and 32 have a function of radiating heat generated from the inverter circuit 20 and cooling the inverter circuit 20.
- the thickness and size of each element are described so as to be different from the actual thickness and size of each element for convenience of explanation.
- the thickness of each element is actually sufficiently small with respect to the area of the metal plates 31 and 32. Therefore, the implementation module 10 actually has a thin plate shape in which the length in the thickness direction is smaller than the length in the vertical direction and the horizontal direction.
- a path R1 (a recovery current described later) defined by the collector bus bar 21, the semiconductor element 24a, the semiconductor element 24b, and the emitter bus bar 22 is shown.
- a path R1 (a recovery current described later) defined by the collector bus bar 21, the semiconductor element 24a, the semiconductor element 24b, and the emitter bus bar 22 is shown.
- the collector bus bar 21 and the emitter bus bar 22 are separated from each other with the element pairs 24a and 24b sandwiched inside the region, and the collector bus bar 21 and the emitter bus bar 22 are separated from each other on the inner and outer boundary surfaces of the region. It is close to the minimum distance Dmin that can be insulated.
- the path R2 defined by the collector bus bar 21, the semiconductor element 25a, the semiconductor element 25b, and the emitter bus bar 22 also has a loop shape inside the region.
- the path R3 defined by the collector bus bar 21, the semiconductor element 26a, the semiconductor element 26b, and the emitter bus bar 22 also has a loop shape inside the region.
- these loop-shaped paths R1, R2, and R3 have a three-dimensional shape inclined in the thickness direction of the inverter circuit 20 (see FIG. 2).
- the thickness of each element of the inverter circuit 20 is sufficiently smaller than the area of the metal plates 31 and 32. Therefore, the paths R1, R2, and R3 can be regarded as existing on the same virtual plane that is substantially parallel to both of the metal plates 31 and 32. In other words, the paths R1, R2, R3 have a shape facing the metal plates 31, 32.
- the parasitic inductance of the implementation module 10 will be described with reference to FIGS.
- the inverter circuit 20 of the implementation module 10 switches the six semiconductor elements 24a to 26b based on on / off timing determined by a control device (not shown) according to PWM control. Since each output bus bar is connected to an external load (electric motor), during this switching, the current passing through each output bus bar is based on the potential difference between each output bus bar and the external load (due to the phase difference between the two). The direction is determined.
- the output bus bar 23u Current flows into the.
- the current passes through the diode 24a2 toward the power source (collector bus bar 21).
- a forward bias is applied to the diode 24a2, and the depletion layer of the diode 24a2 is reduced.
- a reverse bias is applied to the diode 24a2.
- a current in the reverse bias direction passes through the diode 24a2 during a period until the depletion layer of the diode 24a2 reduced during forward bias sufficiently expands again (reverse recovery process).
- the recovery current R1 flows so as to short-circuit the collector bus bar 21, the diode 24a2, the IGBT 24b1, and the emitter bus bar 22 (that is, the loop path R1 shown in FIG. 3) as indicated by arrows in the drawing.
- the recovery current flows through the other loop-shaped paths R2 and R3 shown in FIG. 3, the apparent parasitic inductance of the paths R2 and R3 is reduced as described above.
- the recovery current short-circuits the collector bus bar 21, the diode 25a2, the IGBT 25b1, and the emitter bus bar 22.
- an eddy current E2 in the opposite direction to the recovery current is generated in the metal plates 31 and 32.
- the magnetic flux caused by the eddy current E2 cancels the magnetic flux caused by the recovery current, and the apparent parasitic inductance of the path R2 is reduced.
- the recovery current short-circuits the collector bus bar 21, the diode 26a2, the IGBT 26b1, and the emitter bus bar 22 (ie, When it flows through the loop path R3), an eddy current E3 in the direction opposite to the recovery current is generated in the metal plates 31 and 32.
- the magnetic flux caused by the recovery current is canceled by the magnetic flux caused by the eddy current E3, and the apparent parasitic inductance of the path R3 is reduced.
- the implementation module 10 can reduce the apparent parasitic inductance for each of the three loop-like paths R1, R2, and R3 existing for each element pair (that is, in the entire inverter circuit 20).
- the parasitic inductance of the system can be reduced. That is, the implementation module 10 has a configuration capable of reducing the parasitic inductance.
- the implementation module 10 can reduce the size of the power module as compared to the case where a heat radiation plate is provided separately from the metal plates 31 and 32.
- heat generated by the semiconductor elements 24 a, 25 a, and 26 a connected to the collector bus bar 21 is emitted from the metal plates 31 and 32 through the collector bus bar 21 and the output bus bars 23 u, 23 v, and 23 w and connected to the emitter bus bar 22.
- the heat generated by the semiconductor elements 24b, 25b, and 26b is also released from the metal plates 31 and 32 through the emitter bus bar 22 and the output bus bars 23u, 23v, and 23w. Therefore, the heat generated by each semiconductor element can be released without any bias using both the two metal plates 31 and 32, so that the heat radiation function of the metal plates 31 and 32 can be utilized to the maximum and the heat dissipation of the power module is improved. it can.
- the metal plates 31 and 32 employed in the implementation module 10 are a single plate body having no cutouts and openings.
- the metal plates 31 and 32 do not necessarily need to completely sandwich the entire inverter circuit 20, and may have a shape that sandwiches only portions corresponding to the paths R1, R2, and R3 of the inverter circuit 20. That is, notches and openings may be provided in portions of the metal plates 31 and 32 that do not correspond to the paths R1, R2, and R3.
- the metal plates 31 and 32 are not necessarily a single plate body, and may be a plate body in which a plurality of metal plates are connected so as to be conductive.
- the metal plates 31 and 32 may be a combination of a plurality of plates that are separated from each other for each of the paths R1, R2, and R3.
- the collector bus bar 21, the emitter bus bar 22, and the output bus bars 23u, 23v, and 23w extend from the implementation module 10 in the same direction.
- each bus bar does not necessarily extend in the same direction.
- the direction in which the collector bus bar 21 and the emitter bus bar 22 extend may be opposite to the direction in which the output bus bars 23u, 23v, 23w extend.
- the collector bus bar 21 and the emitter bus bar 22 may extend in different directions.
- each bus bar is such that each path (R1, R2, R3 in FIG. 3) through which the recovery current flows is curved along the side surface of the area sandwiched between the metal plates 31 and 32, while in the same area. What is necessary is just to be decided so that a round may be carried out inside.
- each path has four substantially parallel to each of the four sides of the rectangle (corresponding to the side surfaces of the region). What is necessary is just to be comprised by a path
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Inverter Devices (AREA)
Abstract
本発明のパワーモジュール(10)は、インバータ回路(20)と、インバータ回路を挟む一対の導体(31,32)とを備える。インバータ回路は、正極バスバー(21)、負極バスバー(22)、複数の出力バスバー(23u,23v,23w)及び複数の素子対(24,25,26)を有する。素子対は、正極バスバーに繋がれた半導体素子と負極バスバーに繋がれた半導体素子とを出力バスバーを介して繋ぐ構成を有する。各半導体素子は、スイッチング素子及びスイッチング素子に逆並列接続されたダイオードを含む。更に、正極バスバー、素子対及び負極バスバーによって画成される導電経路は、上記領域の内側において導体に対面するループ状の形状を有する。
Description
本発明は、インバータ回路と、インバータ回路を挟む一対の導体と、を備えたパワーモジュールに関する。
従来から、ハイブリッド車両に搭載される駆動用電動機などに電力を供給するためのパワーモジュールとして、複数の半導体素子(例えば、IGBT等のパワー半導体を含む素子)を有するインバータ回路を備えたパワーモジュールが提案されている。
インバータ回路は、入力された直流電力を交流電力に変換して出力する電子回路である。具体的には、インバータ回路は、一例として、高電圧側の入力バスバーに繋がれた半導体素子(上アーム)及び低電圧側の入力バスバーに繋がれた半導体素子(下アーム)、並びに、それら素子を繋ぐ導電経路から分岐して伸びる出力バスバー(中点端子)を備える。半導体素子は、一般に、スイッチング素子、及び、スイッチング素子に逆並列接続されたダイオードを有する。インバータ回路は、各スイッチング素子を特定のタイミングにて(例えば、PWM制御に従って)スイッチングすることにより、上述した電力変換を実現するようになっている。
従来のパワーモジュールの一つ(以下「従来モジュール」という。)が有するインバータ回路は、複数の半導体素子(IGBT)を同一平面上に並べて配置すると共に、隣接する半導体素子の各端子(上アームのコレクタ端子、下アームのエミッタ端子)を、バスバーを介することなく直接接続した構造を有する。本構造により、従来モジュールは、バスバーを用いることなくインバータ回路を構成できるため、モジュールの大きさ(例えば、いわゆるPCU投影面積)を小さくできる(例えば、特許文献1を参照。)。
以下、便宜上、高電圧側の入力バスバーを「正極バスバー」と称呼し、低電圧側の入力バスバーを「負極バスバー」と称呼し、正極バスバーに繋がれた半導体素子(上アーム)と負極バスバーに繋がれた半導体素子(下アーム)との組合せを「素子対」と称呼する。
電子回路は、一般に、回路に含まれる各種の電子部品および回路自体の構造などに起因する寄生インダクタンス(浮遊インダクタンス)を有する。寄生インダクタンスは、電流の変化に伴うサージ電圧(電流の変化を妨げる向きに生じる誘導起電力)を回路に生じさせるため、回路におけるエネルギ損失の一因となる。特に、パワーモジュールが備えるインバータ回路においては、半導体素子のスイッチング時、半導体素子中のダイオードのリカバリ過程(逆方向回復過程)に起因したリカバリ電流の増減に伴い、回路に大きなサージ電圧が生じる場合がある(詳細は後述される。)。
一方、パワーモジュールが適用されるシステム全体のエネルギ効率(例えば、ハイブリッド車両の燃費)を高める観点から、インバータ回路の動作周波数は高いことが望ましい。ところが、一般に、インバータ回路の動作周波数が高いほど、半導体素子のスイッチング時におけるリカバリ電流の時間変化率が高まり、回路に生じるサージ電圧が増大する。即ち、インバータ回路における寄生インダクタンスは、パワーモジュールの高速化を妨げる一因となり得る。よって、インバータ回路(ひいてはパワーモジュール全体)における寄生インダクタンスが出来る限り低減されることが望ましい。
従来モジュールにおいては、インバータ回路の寄生インダクタンスを特に考慮することなく、各半導体素子から伸びる端子が直接接続されている。そのため、バスバーの排除によって従来モジュールが小型化されたとしても、従来モジュールの寄生インダクタンスは、必ずしも低減されないと考えられる。
本発明の目的は、上記課題に鑑み、寄生インダクタンスを低減することが可能な構成を備えたパワーモジュールを提供することにある。
上記課題を解決するための本発明によるパワーモジュールは、
インバータ回路と、前記インバータ回路を挟む「一対の導体」と、を備える。
インバータ回路と、前記インバータ回路を挟む「一対の導体」と、を備える。
このインバータ回路は、
前記一対の導体に挟まれた領域の外側から内側へ伸びる「正極バスバー及び負極バスバー並びに複数の出力バスバー」と、
前記領域の内側に設けられた「複数の素子対」であって、該素子対の各々が前記正極バスバーに繋がれた半導体素子と前記負極バスバーに繋がれた半導体素子とを前記出力バスバーの各々を介して繋ぐ構成を有し、前記半導体素子の各々がスイッチング素子及び前記スイッチング素子に逆並列接続されたダイオードを含む、複数の素子対と、
を有する。
前記一対の導体に挟まれた領域の外側から内側へ伸びる「正極バスバー及び負極バスバー並びに複数の出力バスバー」と、
前記領域の内側に設けられた「複数の素子対」であって、該素子対の各々が前記正極バスバーに繋がれた半導体素子と前記負極バスバーに繋がれた半導体素子とを前記出力バスバーの各々を介して繋ぐ構成を有し、前記半導体素子の各々がスイッチング素子及び前記スイッチング素子に逆並列接続されたダイオードを含む、複数の素子対と、
を有する。
更に、このインバータ回路において、
「前記正極バスバー、前記素子対及び前記負極バスバーによって画成される導電経路」の各々は、前記領域の内側において前記一対の導体に対面するループ状の形状を有する。
「前記正極バスバー、前記素子対及び前記負極バスバーによって画成される導電経路」の各々は、前記領域の内側において前記一対の導体に対面するループ状の形状を有する。
上記構成によれば、「ループ状の形状」を有する「導電経路」を通過するように電流(リカバリ電流)が流れたとき、その導電経路に対面する「一対の導体」の双方に同電流と逆方向に流れる渦電流が生じる。そして、それら渦電流に起因して生じる磁束が、導電経路を通過する電流に起因して生じる磁束を相殺する。即ち、導電経路の周辺における磁束変化が抑制される。更に、「導電経路」は「複数の素子対」の各々に対応して(即ち、素子対と同じ数だけ)存在し、これら複数の「導電経路」の全てについて(即ち、インバータ回路の全体において)磁束変化を抑制する現象が生じる。その結果、インバータ回路における見かけ上の寄生インダクタンスが低減されると共に、パワーモジュール全体を一つの系と見た場合におけるその系の寄生インダクタンスが低減される。
以下、上述した寄生インダクタンスの低減効果について、より詳細に述べる。
パワーモジュールは、入力端子(正極バスバーおよび負極バスバー)を外部電源に接続すると共に出力端子(出力バスバー)を電動機等の外部負荷に接続した上で、インバータ回路を作動させるようになっている。この作動の際、外部負荷等が有するインダクタンス成分に起因し、出力端子(出力バスバー)における電圧と、外部負荷における電圧と、の間に位相差が生じる場合がある。この場合、出力端子(出力バスバー)を通過する電流の向きは、この位相差に起因する電位差に基づいて定まる(高電位側から低電位側に電流が流れる)ことになる。そのため、素子対のスイッチング状態(2つの半導体素子の何れがオンであり何れがオフであるか)と、出力端子(出力バスバー)を実際に通過する電流の向き(インバータ回路に流入する向きかインバータ回路から流出する向きか)と、は必ずしも一対一に対応しない。
例えば、「正極バスバーに繋がれた半導体素子」がオンであり(上アームが導通状態であり)且つ「負極バスバーに繋がれた半導体素子」がオフである(下アームが遮断状態である)場合において、電流が出力バスバーに“流入”したとき、その電流は、正極バスバーに繋がれた半導体素子(上アーム)中の「ダイオード」を通過し、電源に向かうことになる。このとき、ダイオードに順バイアスが加わっているため、ダイオードの空乏層は縮小している。その後、素子対のスイッチング状態が切り替わると(上アームがオフとなり、下アームがオンとなると)、上記ダイオードに逆バイアスが加わる。ダイオードは逆バイアス時に電流を遮断する性質を有するが、順バイアス時に縮小した空乏層が再び十分に拡大するまでの期間(逆方向回復過程)に限り、逆バイアス方向の電流がダイオードを通過する。この電流は、一般にリカバリ電流と呼ばれ、「前記正極バスバー、前記素子対及び前記負極バスバーによって画成される導電経路」を短絡するように流れる。
更に、その導電経路は、「一対の導体に挟まれた領域」の「内側」において「一対の導体に対面するループ状の形状」を有する。そのため、その導電経路をリカバリ電流が流れると、電磁誘導効果により、リカバリ電流とは“逆方向”に流れる渦電流が双方の導体内に発生する。これら渦電流は、導電経路に沿って発生し、導電経路の形状(ループ状の形状)に対応した形状を有する。更に、これら渦電流が作る磁束の向きは、リカバリ電流が作る磁束の向きと“逆方向”である。よって、これら渦電流に起因する磁束により、リカバリ電流に起因する磁束が打ち消される。加えて、これら渦電流は導電経路を挟むように導電経路の両側に発生するため、渦電流が導電経路の片側のみに発生する場合に比べ、より確実にリカバリ電流に起因する磁束が打ち消される。
よって、「導電経路」にリカバリ電流が流れた場合であっても、同電流に起因する磁束が渦電流によって打ち消されるため、導電経路と鎖交する磁束数の変化が抑制される。その結果、この抑制現象が生じない場合に比べ、「導電経路」に生じるサージ電圧が減少する。換言すると、サージ電圧が減少する分だけ、「導電経路」の見かけ上の寄生インダクタンスが小さくなる。
本発明のパワーモジュールにおいては、上述した短絡電流が流れ得る「導電経路」は、「複数の素子対」の各々に対応するように「素子対」ごとに存在する。そして、それら複数の導電経路の各々において(即ち、インバータ回路の全体において)、上述したように、見かけ上の寄生インダクタンスが小さくなる。別の言い方をすると、“インバータ回路および一対の導体を含むパワーモジュール全体”を一つの系と見た場合における、その系の寄生インダクタンスが小さくなる。
したがって、本発明のパワーモジュールは、寄生インダクタンスを低減することが可能な構成を備えている。
ところで、上記「スイッチング素子に逆並列接続されたダイオード」は、いわゆる還流ダイオードを表し、スイッチング素子(例えば、IGBT)とは別の素子として半導体素子中に設けられてもよく、スイッチング素子(例えば、MOSEFT)が構造上内蔵する寄生ダイオードであってもよい。
上記「正極バスバー」及び「負極バスバー」は、外部電源の高電位側の端子に接続されるバスバー及び低電位側の端子に接続されるバスバーをそれぞれ表す。例えば、スイッチング素子としてIGBTを用いる場合、前者はコレクタバスバーを表し、後者はエミッタバスバーを表す。更に、例えば、スイッチング素子としてMOSEFTを用いる場合、前者はドレインバスバーを表し、後者はソースバスバーを表す。
上記「対面する」とは、導電経路と一対の導体との位置関係が“導電経路を通過する電流に起因して一対の導体の双方に誘導電流が生じ得る”関係であること、を表す。更に、上記「ループ状の形状」とは、導電経路の形状が“そのように導体内に生じる誘導電流が渦状の形状を成し得る(即ち、渦電流を形成し得る)”形状であること、を表す。
「ループ状の形状」の具体例として、“導電経路が上記領域の側面に沿うように湾曲しながら上記領域の内側を略一周している”ときの導電経路の形状、及び、“上記領域の内側において正極バスバーと負極バスバーとが素子対を挟んで離れており、且つ、上記領域の内外の境界面において正極バスバーと負極バスバーとが絶縁可能な最小距離にまで近接している”ときの導電経路の形状、などが挙げられる。
「対面する」の具体例として、導電経路が仮想上の平面の上に存在すると仮定した場合において“導電経路が存在する仮想平面と、一対の導体の各々の表面と、が直交しないこと”が挙げられる。なお、この仮想平面と導体の表面とは必ずしも平行である必要はないが、パワーモジュールの寄生インダクタンスをより効率良く低減する観点からは、それらが平行に近いことが望ましい。
次いで、本発明の制御装置の複数の態様(態様1~3)について述べる。
・態様1
電子回路の寄生インダクタンスの大きさは、一般に、電子回路の長さに依存する。そのため、複数の「導電経路」の長さがそれぞれ異なれば、各導電経路の寄生インダクタンスの大きさも異なると考えられる。即ち、「導電経路」の各々は、異なる大きさの寄生インダクタンスを有すると考えられる。このような寄生インダクタンスの相違(以下「寄生インダクタンスのばらつき」という。)は、出来る限り小さいことが望ましい。
電子回路の寄生インダクタンスの大きさは、一般に、電子回路の長さに依存する。そのため、複数の「導電経路」の長さがそれぞれ異なれば、各導電経路の寄生インダクタンスの大きさも異なると考えられる。即ち、「導電経路」の各々は、異なる大きさの寄生インダクタンスを有すると考えられる。このような寄生インダクタンスの相違(以下「寄生インダクタンスのばらつき」という。)は、出来る限り小さいことが望ましい。
そこで、本態様のパワーモジュールは、
前記一対の導体が、互いに平行な平板状の形状を有し、
前記導電経路が、前記一対の導体と平行な同一の仮想平面上に存在する、
ように構成され得る。
前記一対の導体が、互いに平行な平板状の形状を有し、
前記導電経路が、前記一対の導体と平行な同一の仮想平面上に存在する、
ように構成され得る。
上記構成によれば、導電経路の各々と導体との各距離が、導電経路によらない一定の値となる。この場合、導電経路が長いほど導電経路に沿って導体内に生じる渦電流も長くなり、導電経路の長さに対応した寄生インダクタンスの低減効果が得られる。よって、本態様のパワーモジュールは、寄生インダクタンスのばらつきを小さくできる。
ところで、導電経路は、厳密には、その経路を構成する各要素(素子対、正極バスバー及び負極バスバー)の三次元配置に対応した立体的形状を有し、必ずしも特定の「仮想平面」上には存在しない。しかし、一般に、パワーモジュールのインバータ回路は、本態様のように導電経路と導体との位置関係を規定する観点において、各要素の三次元配置(厚さ方向の配置の相違)を無視できる程度に小さい(薄い)。そのため、導電経路は、「仮想平面」上に存在するとみなすことができる。
・態様2
一対の導体内に出来る限り確実に渦電流を生じさせるためには、導電経路の「ループ状の形状」が出来る限り閉経路に近いことが望ましい。
一対の導体内に出来る限り確実に渦電流を生じさせるためには、導電経路の「ループ状の形状」が出来る限り閉経路に近いことが望ましい。
そこで、本態様のパワーモジュールは、
前記正極バスバー及び前記負極バスバーが、前記領域の外側と内側との境界面において、絶縁可能な最小距離だけ離れる、
ように構成され得る。
前記正極バスバー及び前記負極バスバーが、前記領域の外側と内側との境界面において、絶縁可能な最小距離だけ離れる、
ように構成され得る。
上記構成によれば、導電経路の両端の距離(上記境界面における正極バスバーと負極バスバーとの距離)が絶縁可能な最小距離にまで近接しているため、上記領域の内側における導電経路の形状を閉経路に近付けることができる。よって、本態様のパワーモジュールは、一対の導体内に渦電流をより確実に発生させることができる。
・態様3
ところで、本発明のパワーモジュールは寄生インダクタンスの低減効果を発揮可能な構成を有していればよく、各要素(一対の導体、各半導体素子、正極バスバー、負極バスバー及び出力バスバー)の具体的な配置等は、特に制限されない。例えば、本発明のパワーモジュールにおける各要素の配置は、寄生インダクタンスの低減に加え、パワーモジュールの小型化および放熱性の向上等を考慮しながら決定されてもよい。
ところで、本発明のパワーモジュールは寄生インダクタンスの低減効果を発揮可能な構成を有していればよく、各要素(一対の導体、各半導体素子、正極バスバー、負極バスバー及び出力バスバー)の具体的な配置等は、特に制限されない。例えば、本発明のパワーモジュールにおける各要素の配置は、寄生インダクタンスの低減に加え、パワーモジュールの小型化および放熱性の向上等を考慮しながら決定されてもよい。
具体的には、本態様のパワーモジュールは、
前記一対の導体が、前記複数の素子対が発する熱を前記領域の外側へ放出する第1金属板及び第2金属板であり、
前記出力バスバーが、前記正極バスバーに繋がれた半導体素子に繋がる第1端部と、前記負極バスバーに繋がれた半導体素子に繋がる第2端部と、を有すると共に、
前記領域の内側において、
前記正極バスバーと前記第1金属板とが、絶縁されながら隣接し、
前記負極バスバーと前記第2金属板とが、絶縁されながら隣接し、
前記第1端部と前記第2金属板とが、絶縁されながら隣接し、
前記第2端部と前記第1金属板とが、絶縁されながら隣接し、
前記正極バスバーに繋がれた半導体素子が、前記正極バスバーと前記第1端部とに挟まれ、
前記負極バスバーに繋がれた半導体素子が、前記負極バスバーと前記第2端部とに挟まれる、
ように構成され得る。
前記一対の導体が、前記複数の素子対が発する熱を前記領域の外側へ放出する第1金属板及び第2金属板であり、
前記出力バスバーが、前記正極バスバーに繋がれた半導体素子に繋がる第1端部と、前記負極バスバーに繋がれた半導体素子に繋がる第2端部と、を有すると共に、
前記領域の内側において、
前記正極バスバーと前記第1金属板とが、絶縁されながら隣接し、
前記負極バスバーと前記第2金属板とが、絶縁されながら隣接し、
前記第1端部と前記第2金属板とが、絶縁されながら隣接し、
前記第2端部と前記第1金属板とが、絶縁されながら隣接し、
前記正極バスバーに繋がれた半導体素子が、前記正極バスバーと前記第1端部とに挟まれ、
前記負極バスバーに繋がれた半導体素子が、前記負極バスバーと前記第2端部とに挟まれる、
ように構成され得る。
上記構成によれば、“正極バスバー、正極バスバーに繋がれた半導体素子、負極バスバーに繋がれた半導体素子および負極バスバーによって画成される導電経路”が、第1金属板および第2金属板の双方に隣接した位置に形成される。更に、各バスバーおよび各半導体素子、並びに、絶縁のための絶縁層等の厚さが十分に小さければ、導電経路が存在する仮想平面(上記態様1を参照。)と各金属板とは平行である、とみなし得る。よって、本態様のパワーモジュールは、同モジュールの寄生インダクタンスを効率良く低減できる。
更に、一対の導体(金属板)が放熱機能を有しているため、これら導体とは別に放熱板等を設ける場合に比べ、パワーモジュールを小型化できる。加えて、正極バスバーに繋がれた半導体素子が発する熱が、正極バスバー及び出力バスバーを介して2つの金属板から放出され、負極バスバーに繋がれた半導体素子が発する熱も、負極バスバー及び出力バスバーを介して2つの金属板から(半導体素子の両面から)放出される。よって、各半導体素子が発する熱を2つの金属板の双方を利用して偏りなく放出できるので、各金属板の放熱機能を最大限に利用でき、パワーモジュールの放熱性を向上できる。
よって、本態様のパワーモジュールは、寄生インダクタンスの低減に加え、パワーモジュールの小型化および放熱性の向上をも同時に図ることができる。
<実施形態>
[装置の概要]
図1は、本発明の実施形態に係るパワーモジュール(以下「実施モジュール10」という。)の概略構成を示している。実施モジュール10は、6つの半導体素子を1つのモジュール内に設けた6in1モジュールであり、略直方体の形状を有している。
[装置の概要]
図1は、本発明の実施形態に係るパワーモジュール(以下「実施モジュール10」という。)の概略構成を示している。実施モジュール10は、6つの半導体素子を1つのモジュール内に設けた6in1モジュールであり、略直方体の形状を有している。
具体的には、実施モジュール10は、インバータ回路20、及び、インバータ回路20を挟む一対の金属板31,32を有している。図1に示すように、インバータ回路20は、金属板31,32に挟まれる領域の内側に配置されている。なお、実際には、インバータ回路20及び金属板31,32は、絶縁層を挟んで互いに密着した状態にて樹脂等で一体化(樹脂封止)されている。しかし、図1では、実施モジュール10の構成を容易に理解できるように、インバータ回路20及び金属板31,32が互いに離れた位置に表示されている。
インバータ回路20は、コレクタバスバー(正極バスバー)21、エミッタバスバー(負極バスバー)22、3つの出力バスバー(23u,23v,23w)、6つの半導体素子(24a,24b、25a,25b,26a,26b)、及び、絶縁層27,28を有している。インバータ回路20において、半導体素子24a,24bは、出力バスバー23uを介して繋がれ、第1の素子対を構成している(後述される図2に関する説明も参照。)。同様に、半導体素子25a,25bは出力バスバー23vを介して繋がれて第2の素子対を構成し、半導体素子26a,26bは出力バスバー23wを介して繋がれて第3の素子対を構成している。
コレクタバスバー21、エミッタバスバー22及び出力バスバー23u,23v,23wは、金属板31,32に挟まれる領域の外側から内側に向かって伸びている。更に、コレクタバスバー21及びエミッタバスバー22は、同領域の内側と外側との境界面において、絶縁可能な最小距離Dminだけ離れて隣接している。一方、出力バスバー23u,23v,23wは、コレクタバスバー21及びエミッタバスバー22が通過する上記境界面と同じ境界面を通過している。なお、実施モジュール10が実際に使用されるとき、コレクタバスバー21及びエミッタバスバー22は外部電源(直流電源)の高電圧側の端子および低電圧側の端子にそれぞれ接続され、出力バスバー23u,23v,23wは外部負荷(本例では三相交流で作動する電動機等)の各端子に接続されることになる。
より具体的には、図2(図1の出力バスバー23u及び素子対24a,24bを切断するA-A断面図)に示すように、コレクタバスバー21に繋がれた半導体素子24aは、IGBT24a1及びダイオード24a2を含んでいる。ダイオード24a2は、IGBT24a1に逆並列接続されている(図4(b)を参照。)。また、エミッタバスバー22に繋がれた半導体素子24bは、IGBT24b1と、IGBT24b1に逆並列接続されたダイオード24b2を含んでいる。更に、半導体素子24aと半導体素子24bとは、出力バスバー23uを介して繋がれている。本断面図には表示されていない他の半導体素子25a,25b,26a,26bも、上記同様、IGBT及びダイオードを含み、出力バスバーを介して接続されている。
半導体素子24aは、コレクタバスバー21に半田29を介して接続され、且つ、出力バスバー23uの一端(第1端部)23u1に半田29を介して接続されている。即ち、半導体素子24aは、コレクタバスバー21と出力バスバーの一端23u1とに挟まれている。一方、半導体素子24bは、エミッタバスバー22に半田29を介して接続され、且つ、出力バスバー23uの他端(第2端部)23u2に半田29を介して接続されている。即ち、半導体素子24bは、エミッタバスバー22と出力バスバーの他端23u2とに挟まれている。
コレクタバスバー21と金属板31とは、絶縁層27を介して隣接している。一方、エミッタバスバー22と金属板32とは、絶縁層28を介して隣接している。更に、出力バスバーの一端23u1と金属板32とは、絶縁層28を介して隣接している。一方、出力バスバー23uの他端23u2とは、絶縁層27を介して隣接している。
金属板31,32は、平面視が長方形である薄板状の形状を有している。金属板31,32は、同一の形状を有しており、互いに平行となるように配置されている。金属板31は、素子対24a,24bが発する熱をコレクタバスバー21及び出力バスバーの他端23u2を介して受け取り、その熱を実施モジュール10の外部(図中の上方向)に放出する。一方、金属板32は、半導体素子24a,24bが発する熱をエミッタバスバー22及び出力バスバーの一端23u1を介して受け取り、その熱を実施モジュール10の外部(図中の下方向)に放出する。なお、金属板31,32は、他の半導体素子25a,25b,26a,26bが発する熱も、同様に実施モジュール10の外部に放出する。即ち、金属板31,32は、インバータ回路20から発せられる熱を放熱し、インバータ回路20を冷却する機能を有する。
なお、図2において、各要素の厚さ及び大きさは、説明の便宜上、実際の各要素の厚さ及び大きさとは異なるように記載されている。例えば、各要素の厚さは、実際には金属板31,32の面積に対して十分に小さい。そのため、実施モジュール10は、実際には、縦方向および横方向の長さに対して厚さ方向の長さが小さい薄板状の形状を有している。
更に、図3(実施モジュール10を上方向から見た模式図)に示すように、コレクタバスバー21、半導体素子24a、半導体素子24b及びエミッタバスバー22によって画成される経路R1(後述されるリカバリ電流が通過する導電経路)は、金属板31,32に挟まれる領域の内側において、ループ状の形状を有している。具体的には、同領域の内側においてコレクタバスバー21とエミッタバスバー22とが素子対24a,24bを挟んで離れており、且つ、同領域の内外の境界面においてコレクタバスバー21とエミッタバスバー22とが絶縁可能な最小距離Dminにまで近接している。
上記同様、コレクタバスバー21、半導体素子25a、半導体素子25b及びエミッタバスバー22によって画成される経路R2も、同領域の内側において、ループ状の形状を有している。同様に、コレクタバスバー21、半導体素子26a、半導体素子26b及びエミッタバスバー22によって画成される経路R3も、同領域の内側において、ループ状の形状を有している。
これらループ状の経路R1,R2,R3は、厳密には、インバータ回路20の厚さ方向に傾いた立体的形状を有している(図2を参照。)。しかし、上述したように、インバータ回路20の各要素の厚さは、金属板31,32の面積に対して十分に小さい。そのため、経路R1,R2,R3は、金属板31,32の双方と実質的に平行な同一の仮想平面上に存在しているとみなすことができる。別の言い方をすると、これら経路R1,R2,R3は、金属板31,32に対面する形状を有している。
[寄生インダクタンスの低減]
図4~7を参照しながら、実施モジュール10の寄生インダクタンスについて説明する。実施モジュール10のインバータ回路20は、図示しない制御装置がPWM制御に従って決定したオン・オフタイミングに基づき、6つの半導体素子24a~26bをスイッチングする。各出力バスバーは外部負荷(電動機)に繋がれているため、このスイッチング時、各出力バスバーと外部負荷との電位差(両者の位相差に起因する。)に基づき、各出力バスバーを通過する電流の向きが定まる。
図4~7を参照しながら、実施モジュール10の寄生インダクタンスについて説明する。実施モジュール10のインバータ回路20は、図示しない制御装置がPWM制御に従って決定したオン・オフタイミングに基づき、6つの半導体素子24a~26bをスイッチングする。各出力バスバーは外部負荷(電動機)に繋がれているため、このスイッチング時、各出力バスバーと外部負荷との電位差(両者の位相差に起因する。)に基づき、各出力バスバーを通過する電流の向きが定まる。
例えば、半導体素子24aのIGBT24a1がオン(導通状態)であり、半導体素子24bのIGBT24b1がオフ(遮断状態)である場合において、出力バスバー23uの電位が外部負荷の電位よりも低いとき、出力バスバー23uに電流が流入する。このとき、図4(a)の概略図および図4(b)の回路図に示すように、電流は、ダイオード24a2を通過して電源(コレクタバスバー21)に向かう。このように電流が流れる際、ダイオード24a2には順バイアスが加わり、ダイオード24a2の空乏層が縮小している。
その後、図5(a)の概略図および図5(b)の回路図に示すように、IGBT24a1がオフとなり、IGBT24b1がオンとなると、ダイオード24a2に逆バイアスが加わる。このとき、順バイアス時に縮小したダイオード24a2の空乏層が再び十分に拡大するまでの期間(逆方向回復過程)において、逆バイアス方向の電流(リカバリ電流)がダイオード24a2を通過することになる。リカバリ電流R1は、図中の矢印に示すように、コレクタバスバー21、ダイオード24a2、IGBT24b1、及び、エミッタバスバー22を短絡するように(即ち、図3に示すループ状の経路R1を)流れる。
このようにリカバリ電流が流れたとき、電磁誘導効果により、金属板31,32の双方にリカバリ電流と逆方向の渦電流E1が生じる。渦電流E1が作る磁束の向きは、経路R1を流れるリカバリ電流が作る磁束の向きと逆方向である。そのため、渦電流E1に起因する磁束により、リカバリ電流に起因する磁束が打ち消される。更に、渦電流E1は経路R1を挟むように経路R1の両側に発生するため、渦電流E1が経路R1の片側のみに発生する場合に比べ、より確実にリカバリ電流に起因する磁束が打ち消される。その結果、経路R1に生じるサージ電圧が減少する分だけ、経路R1の見かけ上の寄生インダクタンスが小さくなる。
図3に示す他のループ状の経路R2,R3をリカバリ電流が流れるときも、上記同様、経路R2,R3の見かけ上の寄生インダクタンスが小さくなる。具体的には、図6(a)の概略図および図6(b)の回路図に示すように、リカバリ電流が、コレクタバスバー21、ダイオード25a2、IGBT25b1、及び、エミッタバスバー22を短絡するように(即ち、ループ状の経路R2を)流れると、金属板31,32にリカバリ電流と逆方向の渦電流E2が生じる。渦電流E2に起因する磁束により、リカバリ電流に起因する磁束が打ち消され、経路R2の見かけ上の寄生インダクタンスが小さくなる。
更に、図7(a)の模式図および図7(b)の回路図に示すように、リカバリ電流が、コレクタバスバー21、ダイオード26a2、IGBT26b1、及び、エミッタバスバー22を短絡するように(即ち、ループ状の経路R3を)流れると、金属板31,32にリカバリ電流と逆方向の渦電流E3が生じる。渦電流E3に起因する磁束により、リカバリ電流に起因する磁束が打ち消され、経路R3の見かけ上の寄生インダクタンスが小さくなる。
このように、実施モジュール10は、素子対ごとに存在する3つのループ状の経路R1,R2,R3の各々について(即ち、インバータ回路20の全体において)見かけ上の寄生インダクタンスを小さくできる。換言すると、インバータ回路20及び金属板31,32を含むパワーモジュール10の全体を一つの系と見た場合における、その系の寄生インダクタンスを小さくできる。即ち、実施モジュール10は、寄生インダクタンスを低減することが可能な構成を備えている。
更に、実施モジュール10は、金属板31,32が放熱機能を有しているため、金属板31,32とは別に放熱板を設ける場合に比べ、パワーモジュールを小型化できる。加えて、コレクタバスバー21に繋がれた半導体素子24a,25a,26aが発する熱が、コレクタバスバー21及び出力バスバー23u,23v,23wを介して金属板31,32から放出され、エミッタバスバー22に繋がれた半導体素子24b,25b,26bが発する熱も、エミッタバスバー22及び出力バスバー23u,23v,23wを介して金属板31,32から放出される。よって、各半導体素子が発する熱を2つの金属板31,32の双方を利用して偏りなく放出できるので、金属板31,32の放熱機能を最大限に利用でき、パワーモジュールの放熱性を向上できる。
<その他の実施形態>
本発明は上記実施形態に限定されることはなく、本発明の範囲内において種々の変形例を採用できる。例えば、実施モジュール10に採用される金属板31,32は、切欠き及び開口部等を有さない単一の板体である。しかし、金属板31,32は、必ずしもインバータ回路20の全体を完全に挟む必要はなく、インバータ回路20の経路R1,R2,R3に対応する部分のみを挟む形状を有してもよい。即ち、金属板31,32のうち経路R1,R2,R3に対応しない部分については、切欠き及び開口部等を設けてもよい。更に、金属板31,32は、必ずしも単一の板体である必要はなく、複数の金属板を導通可能に接続した板体であってもよい。また、金属板31,32は、経路R1,R2,R3ごとに導通不能に区切られた複数の板体の組合せであってもよい。
本発明は上記実施形態に限定されることはなく、本発明の範囲内において種々の変形例を採用できる。例えば、実施モジュール10に採用される金属板31,32は、切欠き及び開口部等を有さない単一の板体である。しかし、金属板31,32は、必ずしもインバータ回路20の全体を完全に挟む必要はなく、インバータ回路20の経路R1,R2,R3に対応する部分のみを挟む形状を有してもよい。即ち、金属板31,32のうち経路R1,R2,R3に対応しない部分については、切欠き及び開口部等を設けてもよい。更に、金属板31,32は、必ずしも単一の板体である必要はなく、複数の金属板を導通可能に接続した板体であってもよい。また、金属板31,32は、経路R1,R2,R3ごとに導通不能に区切られた複数の板体の組合せであってもよい。
更に、実施モジュール10は、コレクタバスバー21及びエミッタバスバー22並びに出力バスバー23u,23v,23wが、実施モジュール10から同じ方向に向けて伸びている。しかし、各バスバーは必ずしも同じ方向に伸びる必要はない。例えば、図8に示すように、コレクタバスバー21及びエミッタバスバー22が伸びる方向と、出力バスバー23u,23v,23wが伸びる方向と、が逆方向であってもよい。更に、図9に示すように、コレクタバスバー21とエミッタバスバー22とが異なる方向に伸びてもよい。
即ち、各バスバーの配置は、リカバリ電流が流れることになる各経路(図3のR1,R2,R3)が金属板31,32に挟まれた領域の側面に沿うように湾曲しながら同領域の内側を略一周するように、定められれば良い。例えば、実施モジュール10のように金属板31,32の平面視の形状が長方形である場合、各経路は、その長方形の4つの辺(上記領域の側面に相当)の各々に略平行な4つの経路によって構成されればよい。
Claims (4)
- インバータ回路と、前記インバータ回路を挟む一対の導体と、を備えたパワーモジュールであって、
前記インバータ回路は、
前記一対の導体に挟まれた領域の外側から内側へ伸びる正極バスバー及び負極バスバー並びに複数の出力バスバーと、
前記領域の内側に設けられた複数の素子対であって、該素子対の各々が前記正極バスバーに繋がれた半導体素子と前記負極バスバーに繋がれた半導体素子とを前記出力バスバーの各々を介して繋ぐ構成を有し、前記半導体素子の各々がスイッチング素子及び前記スイッチング素子に逆並列接続されたダイオードを含む、複数の素子対と、
を有すると共に、
前記正極バスバー、前記素子対及び前記負極バスバーによって画成される導電経路の各々は、前記領域の内側において前記一対の導体に対面するループ状の形状を有する、
パワーモジュール。 - 請求項1に記載のパワーモジュールにおいて、
前記一対の導体が、互いに平行な平板状の形状を有し、
前記導電経路が、前記一対の導体と平行な同一の仮想平面上に存在する、
パワーモジュール。 - 請求項1又は請求項2に記載のパワーモジュールにおいて、
前記正極バスバー及び前記負極バスバーが、前記領域の外側と内側との境界面において、絶縁可能な最小距離だけ離れる、
パワーモジュール。 - 請求項1~請求項3のいずれか一項に記載のパワーモジュールにおいて、
前記一対の導体が、前記複数の素子対が発する熱を前記領域の外側へ放出する第1金属板及び第2金属板であり、
前記出力バスバーが、前記正極バスバーに繋がれた半導体素子に繋がる第1端部と、前記負極バスバーに繋がれた半導体素子に繋がる第2端部と、を有すると共に、
前記領域の内側において、
前記正極バスバーと前記第1金属板とが、絶縁されながら隣接し、
前記負極バスバーと前記第2金属板とが、絶縁されながら隣接し、
前記第1端部と前記第2金属板とが、絶縁されながら隣接し、
前記第2端部と前記第1金属板とが、絶縁されながら隣接し、
前記正極バスバーに繋がれた半導体素子が、前記正極バスバーと前記第1端部とに挟まれ、
前記負極バスバーに繋がれた半導体素子が、前記負極バスバーと前記第2端部とに挟まれる、
パワーモジュール。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/508,524 US20170279366A1 (en) | 2014-09-05 | 2015-08-26 | Power module |
EP15839050.0A EP3190694A4 (en) | 2014-09-05 | 2015-08-26 | Power module |
CN201580039396.3A CN106537753B (zh) | 2014-09-05 | 2015-08-26 | 功率模块 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014180905A JP6179490B2 (ja) | 2014-09-05 | 2014-09-05 | パワーモジュール |
JP2014-180905 | 2014-09-05 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016035651A1 true WO2016035651A1 (ja) | 2016-03-10 |
Family
ID=55439716
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/074106 WO2016035651A1 (ja) | 2014-09-05 | 2015-08-26 | パワーモジュール |
Country Status (5)
Country | Link |
---|---|
US (1) | US20170279366A1 (ja) |
EP (1) | EP3190694A4 (ja) |
JP (1) | JP6179490B2 (ja) |
CN (1) | CN106537753B (ja) |
WO (1) | WO2016035651A1 (ja) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016131462A (ja) * | 2015-01-14 | 2016-07-21 | 株式会社デンソー | 電力変換回路 |
JP6328298B1 (ja) * | 2017-05-12 | 2018-05-23 | 三菱電機株式会社 | 電力変換装置用のパワーモジュール、電力変換装置、制御装置一体型回転電機装置 |
JP2020013987A (ja) * | 2018-07-18 | 2020-01-23 | 台達電子企業管理(上海)有限公司 | パワーモジュール構造 |
CN111919295A (zh) * | 2018-03-26 | 2020-11-10 | 松下知识产权经营株式会社 | 半导体组件 |
US11342241B2 (en) | 2018-07-18 | 2022-05-24 | Delta Electronics (Shanghai) Co., Ltd | Power module |
US11444036B2 (en) | 2018-07-18 | 2022-09-13 | Delta Electronics (Shanghai) Co., Ltd. | Power module assembly |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11033977B2 (en) | 2017-04-21 | 2021-06-15 | Illinois Tool Works Inc. | Welding type power supply with output rectifier and phase shift double forward converter |
KR102153159B1 (ko) * | 2017-06-12 | 2020-09-08 | 매그나칩 반도체 유한회사 | 전력 반도체의 멀티칩 패키지 |
JP6860453B2 (ja) * | 2017-09-11 | 2021-04-14 | 株式会社東芝 | パワー半導体モジュール |
JP6830162B2 (ja) * | 2017-09-27 | 2021-02-17 | アイシン・エィ・ダブリュ株式会社 | インバータモジュール |
JP6988345B2 (ja) * | 2017-10-02 | 2022-01-05 | 株式会社デンソー | 半導体装置 |
FR3079664B1 (fr) * | 2018-03-30 | 2020-04-24 | Institut Vedecom | Element modulaire de commutation de puissance et ensemble demontable de plusieurs elements modulaires |
US10622593B2 (en) * | 2018-06-05 | 2020-04-14 | Ford Global Technologies, Llc | Reduction of packaging parasitic inductance in power modules |
CN113725199B (zh) * | 2021-07-27 | 2023-11-28 | 南瑞联研半导体有限责任公司 | 一种低电感压接型半导体模块 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007082359A (ja) * | 2005-09-16 | 2007-03-29 | Hitachi Ltd | インバータ装置および制御装置 |
JP2010258315A (ja) * | 2009-04-28 | 2010-11-11 | Hitachi Automotive Systems Ltd | パワーモジュール及び電力変換装置 |
JP2013192403A (ja) * | 2012-03-14 | 2013-09-26 | Toyota Motor Corp | 電力供給装置 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5365424A (en) * | 1991-07-10 | 1994-11-15 | Kenetech Windpower, Inc. | High power laminated bus assembly for an electrical switching converter |
WO2000019591A1 (fr) * | 1998-09-30 | 2000-04-06 | Mitsubishi Denki Kabushiki Kaisha | Circuit onduleur |
WO2002082543A1 (en) * | 2001-03-30 | 2002-10-17 | Hitachi, Ltd. | Semiconductor device |
JP4988665B2 (ja) * | 2008-08-06 | 2012-08-01 | 日立オートモティブシステムズ株式会社 | 半導体装置および半導体装置を用いた電力変換装置 |
JP5336413B2 (ja) * | 2010-04-02 | 2013-11-06 | 株式会社豊田中央研究所 | パワーモジュール |
-
2014
- 2014-09-05 JP JP2014180905A patent/JP6179490B2/ja not_active Expired - Fee Related
-
2015
- 2015-08-26 WO PCT/JP2015/074106 patent/WO2016035651A1/ja active Application Filing
- 2015-08-26 EP EP15839050.0A patent/EP3190694A4/en not_active Withdrawn
- 2015-08-26 US US15/508,524 patent/US20170279366A1/en not_active Abandoned
- 2015-08-26 CN CN201580039396.3A patent/CN106537753B/zh active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007082359A (ja) * | 2005-09-16 | 2007-03-29 | Hitachi Ltd | インバータ装置および制御装置 |
JP2010258315A (ja) * | 2009-04-28 | 2010-11-11 | Hitachi Automotive Systems Ltd | パワーモジュール及び電力変換装置 |
JP2013192403A (ja) * | 2012-03-14 | 2013-09-26 | Toyota Motor Corp | 電力供給装置 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3190694A4 * |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016131462A (ja) * | 2015-01-14 | 2016-07-21 | 株式会社デンソー | 電力変換回路 |
JP6328298B1 (ja) * | 2017-05-12 | 2018-05-23 | 三菱電機株式会社 | 電力変換装置用のパワーモジュール、電力変換装置、制御装置一体型回転電機装置 |
CN111919295A (zh) * | 2018-03-26 | 2020-11-10 | 松下知识产权经营株式会社 | 半导体组件 |
JP2020013987A (ja) * | 2018-07-18 | 2020-01-23 | 台達電子企業管理(上海)有限公司 | パワーモジュール構造 |
US11342241B2 (en) | 2018-07-18 | 2022-05-24 | Delta Electronics (Shanghai) Co., Ltd | Power module |
US11444036B2 (en) | 2018-07-18 | 2022-09-13 | Delta Electronics (Shanghai) Co., Ltd. | Power module assembly |
US11490516B2 (en) | 2018-07-18 | 2022-11-01 | Delta Electronics (Shanghai) Co., Ltd | Power module structure |
US11923265B2 (en) | 2018-07-18 | 2024-03-05 | Delta Electronics (Shanghai) Co., Ltd | Power module |
Also Published As
Publication number | Publication date |
---|---|
JP6179490B2 (ja) | 2017-08-16 |
US20170279366A1 (en) | 2017-09-28 |
CN106537753A (zh) | 2017-03-22 |
EP3190694A4 (en) | 2017-11-01 |
CN106537753B (zh) | 2018-11-09 |
EP3190694A1 (en) | 2017-07-12 |
JP2016059094A (ja) | 2016-04-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6179490B2 (ja) | パワーモジュール | |
CN105957859B (zh) | 半导体功率组件及使用其的电力转换装置 | |
JP6160780B2 (ja) | 3レベル電力変換装置 | |
JP6394489B2 (ja) | 半導体装置 | |
JP6513303B2 (ja) | 電力用半導体モジュールおよび電力変換装置 | |
US7881086B2 (en) | Power conversion device and fabricating method for the same | |
US11271043B2 (en) | Semiconductor module and power conversion apparatus | |
JP2014033060A (ja) | 電力用半導体装置モジュール | |
WO2019123818A1 (ja) | 電力変換装置 | |
JP5851267B2 (ja) | インバータ及び車両制御装置 | |
CN113557603B (zh) | 半导体装置 | |
JP2014056920A (ja) | 半導体装置 | |
JP2015100223A (ja) | 電力変換装置 | |
JP2012105382A (ja) | 半導体装置 | |
JP4842018B2 (ja) | 電力変換装置 | |
JP6123722B2 (ja) | 半導体装置 | |
JP7052609B2 (ja) | 電力変換装置 | |
JP5836993B2 (ja) | インバータ装置 | |
JP2015225988A (ja) | 半導体装置 | |
JP6362959B2 (ja) | 電力変換回路、その製造方法、および、パワーコンディショナ | |
WO2019150870A1 (ja) | 半導体モジュール | |
JP2007228639A (ja) | 昇圧チョッパ装置 | |
WO2022107439A1 (ja) | パワー半導体モジュール | |
JP2013240151A (ja) | 電力変換装置 | |
JP2014192512A (ja) | 半導体素子基板の配置構造、半導体装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15839050 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15508524 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REEP | Request for entry into the european phase |
Ref document number: 2015839050 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2015839050 Country of ref document: EP |