WO2022107439A1 - パワー半導体モジュール - Google Patents

パワー半導体モジュール Download PDF

Info

Publication number
WO2022107439A1
WO2022107439A1 PCT/JP2021/034629 JP2021034629W WO2022107439A1 WO 2022107439 A1 WO2022107439 A1 WO 2022107439A1 JP 2021034629 W JP2021034629 W JP 2021034629W WO 2022107439 A1 WO2022107439 A1 WO 2022107439A1
Authority
WO
WIPO (PCT)
Prior art keywords
igbt
arm
diode
power semiconductor
semiconductor module
Prior art date
Application number
PCT/JP2021/034629
Other languages
English (en)
French (fr)
Inventor
拓真 白頭
直樹 櫻井
隆文 大島
Original Assignee
日立Astemo株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立Astemo株式会社 filed Critical 日立Astemo株式会社
Publication of WO2022107439A1 publication Critical patent/WO2022107439A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode

Definitions

  • the present invention relates to a power semiconductor module.
  • the semiconductor device (power module) to be mounted is considered for the arrangement method due to the usage area of other mounted parts due to the demand for miniaturization of the power conversion device. Is becoming more important.
  • Patent Document 1 is known as a background technique of the present invention.
  • a high side plate 31H, a low side plate 31L, and a middle side plate 31M are provided and each protrudes in a direction orthogonal to the thickness direction.
  • a technique for reducing inductance by having a protruding terminal portion 32 is disclosed.
  • the IGBT and the diode chip are arranged in the same plane in a 2in1 power module having a semiconductor element (IGBT, diode) of the upper arm and a semiconductor element of the lower arm in one package. Furthermore, the mounting area was separated by the upper arm and the lower arm. For this reason, it is necessary to secure the floor area of the upper and lower arms, and the area of the connection point that relays the upper and lower arms is also required. Therefore, the diode chip size is about half of the IGBT size, and the thermal resistance cannot be reduced. There was a problem that the size of the power module could not be reduced.
  • an object of the present invention is to provide a semiconductor device that realizes both miniaturization and low thermal resistance.
  • the power semiconductor module includes an IGBT and a diode electrically connected in parallel to form an upper arm, and an IGBT and a diode electrically connected in parallel to form an upper arm, and the upper arm and the lower arm include an IGBT and a diode.
  • the IGBT of one arm and the diode of the other arm are arranged so as to overlap each other so that at least a part of the active region of each element overlaps with each other in the stacking direction, and the above-mentioned of the other arm.
  • the chip size of the diode is equal to or larger than the size of the active region of the IGBT of the one arm.
  • FIG. 1 is a power module circuit configuration according to an embodiment of the present invention.
  • the power module 1 has a 2in1 configuration in which the semiconductor elements IGBT (upper arm circuit section) 2 and IGBT (lower arm circuit section) 3 are mounted in one package.
  • the IGBT 2 is mounted in parallel electrically with the diode 4 (upper arm circuit section) and the IGBT 3 is mounted with the diode 5 (lower arm circuit section).
  • the power module 1 is driven by changing the voltage between the gate terminal 6 and the emitter (E) terminal 7 according to the change in the gate voltage input from the gate (G) terminal 6. ..
  • the positive electrode (P) terminal 9 electrically connected to the collector of the IGBT 2 of the upper arm and the negative electrode (N) terminal 10 electrically connected to the emitter of the IGBT 3 of the lower arm are formed by a Li ion battery or the like. Each is connected to DC power.
  • the positive electrode terminal 9 and the negative electrode terminal 10 may be collectively referred to as a “DC terminal”.
  • the alternating current (AC) terminal 8 is electrically connected to the emitter of the IGBT 2 of the upper arm and the collector of the IGBT 3 of the lower arm, and is connected to alternating current power such as a motor.
  • the IGBTs 2 and 3 are controlled to be ON / OFF by the gate voltage input from the gate terminal 6.
  • the inverter on which the power module 1 is mounted converts DC power into AC power or reversely converts DC power by PWM control.
  • FIG. 2 is a side view of a power module according to an embodiment of the present invention.
  • FIG. 3 is a developed view of FIG. 2.
  • the solder or the sinter material used for connecting the upper surface and the lower surface of the power semiconductor (IGBT and diode) with other parts is omitted.
  • the heat sink 14 joined to the power module 1 has cooling water flowing inside, and the heat generated from the power module 1 in contact with the upper surface of FIG. 2 is radiated to the cooling water to cool the entire power module 1. is doing.
  • the insulating substrate 11 has a circuit pattern formed on the ceramic plate which is the substrate, and insulates the voltage of the power semiconductor and the GND potential outside the package.
  • the insulating substrate 11 and the heat sink 14 are joined by a brazing material 15 or thermal grease, so that the joining surface is a heat dissipation surface for radiating the heat of the power semiconductor generated in the power module 1 to the outside.
  • the power module 1 and the heat sink 14 are joined by the brazing material 15, and the heat of the power semiconductor transferred to the heat radiating surface via the insulating substrate 11 is transferred to the cooling water in the heat sink 14 through the brazing material 15.
  • a configuration example that dissipates heat to is described.
  • the power semiconductor in the power module 1 will be described.
  • the power semiconductors are overlapped in two layers, and the upper arm and the lower arm will be described from the side closer to the heat sink 14.
  • the lower surfaces of the IGBT 2 and the diode 4 constituting the upper arm circuit are connected to the insulating substrate 11 by solder or a sinter material. Further, the upper surfaces of the IGBT 2 and the diode 4 are connected to the copper lead frame 18 (18a), which is an intermediate conductor plate connected to the AC terminal 8, by solder or a sinker material.
  • the copper lead frame 18 has a pedestal portion 18a, which provides an insulation distance between the power semiconductors of the upper arm and the lower arm. Further, the pedestal portion 18a has an area equal to or larger than the size of the active region (heat generation region) of the IGBT 2 or 3.
  • the pedestal portion 18a may be formed integrally with the copper lead frame 18 or may be formed separately from the copper lead frame 18.
  • the lower surface of the IGBT 3 and the diode 5 constituting the lower arm circuit are connected to the copper lead frame 18 connected to the AC terminal 8 by solder or a sinter material. Further, the upper surfaces of the IGBT 3 and the diode 5 are connected to the copper lead frame 18 connected to the N terminal 10 by solder or a sinker material.
  • the P terminal 9 and the aluminum wire bonding 12 will be described later in FIG.
  • Each connection portion of the power module 1 is sealed and fixed by a resin (resin) 13.
  • the heat sink is located at a position facing the lower arm IGBT 3 with the diode 4 of the upper arm in between, and at a position facing the diode 5 of the lower arm with the IGBT 2 of the upper arm sandwiched between them.
  • a heat radiating surface to be joined to 14 is formed.
  • the IGBT 3 and the diode 5 have a heat dissipation path to the heat dissipation surface via the diode 4 and the diode 2, respectively.
  • the heat dissipation path will be described later in FIG.
  • the upper arm IGBT 2 and the lower arm diode 5 are arranged in the vertical direction (vertical direction in FIG. 2) when viewed from the side surface of the power module 1, and the upper arm diode 4 and the lower arm IGBT 3 are similarly viewed from the side surface of the power module 1. They are lined up in the vertical direction. That is, the IGBTs 2 or 3 of each arm and the diodes 5 or 4 are in a positional relationship with each other when viewed from the side surface of the power module 1. By doing so, it contributes to halving the size of the power module 1 as compared with the conventional structure in which the IGBTs 2 and 3 and the diodes 4 and 5 are arranged side by side on the same plane.
  • FIG. 4 is an explanatory diagram of a power module according to an embodiment of the present invention.
  • FIG. 4A is a top view of the power module
  • FIG. 4B is a diagram illustrating the overlap between the IGBT and the diode.
  • the positive electrode terminal 9 and the negative electrode terminal 10 of the power module 1 are drawn out from the same side in the same direction in the rectangular power module 1.
  • the AC terminal 8 is pulled out in the opposite direction (downward in FIG. 4A) from the side facing the positive electrode terminal 9 and the negative electrode terminal 10 with a power semiconductor (IGBT2, 3 and diodes 4, 5) in between. It has been.
  • the IGBTs 2 and 3 are arranged on the straight line 26 connecting the negative electrode terminal 10 and the AC terminal 8. Further, the gate wiring of the IGBT 2 is provided on the opposite side of the gate wiring of the IGBT 3 with the straight line 26 in between, and is located at an opposite position.
  • a plurality of power modules 1 can be arranged side by side in the left-right direction (described later in FIG. 5), so that the entire inverter can be miniaturized and contributes to the improvement of component placement efficiency.
  • the IGBT 2 of the upper arm and the IGBT 3 of the lower arm are mounted by being inverted by 180 ° from each other when viewed from the upper surface (front in FIG. 4). Further, the aluminum wire bonding 12 connected to the gate terminals 6 of the IGBTs 2 and 3 are located at positions facing each other with a power semiconductor in between and a straight line 26 in between, and are in opposite directions (FIG. 4). It is pulled out in the vertical direction). With this arrangement, the IGBTs 2 and 3 are located close to the gate terminal 6 connected by the aluminum wire bonding 12, respectively, and the same arm like the IGBT 2 and the diode 4 or the IGBT 3 and the diode 5 described above can be used. It can be mounted by shifting the IGBT and diode. Therefore, it is possible to reduce the heat generated when the IGBT 2 and the diode 4 or the IGBT 3 and the diode 5 generate heat from each other.
  • the IGBT 2 and the diode 5 are arranged so that at least a part of the active region (heat generation region) 16 of each element overlaps when viewed from the upper surface (front surface of FIG. 4). Further, the size of the outer shape of the chip of the diode 5 is the same as or larger than the size of the active area 16 of the IGBT 2. Similarly, the IGBT 3 and the diode 4 are arranged so that at least a part of the active region (heat generation region) 16 of each element overlaps when viewed from the upper surface (front surface of FIG. 4). Further, the size of the outer shape of the chip of the diode 4 is the same as or larger than the size of the active area 16 of the IGBT 3.
  • the upper arm IGBT 2 and the diode 4 are mounted on the lower stage, and the lower arm IGBT 3 and the diode 5 are mounted on the upper stage.
  • the heat conduction path of the IGBT 3 and the diode 5 of the lower arm of the upper stage is sufficiently secured, and low thermal resistance is realized.
  • the diodes 4 and 5 have the same size or larger than the IGBTs 2 and 3, the heat flux from the IGBTs 2 and 3 to the heat sink 14 can be widened, and low thermal resistance can be realized.
  • FIG. 5 is a mounting diagram of the power module in the inverter water channel.
  • the inverter 23 that drives the three-phase AC motor is equipped with three 2in1 circuit power modules 1 (U, V, W phases).
  • U, V, W phases When viewed from the upper surface (front of FIG. 5), the two sides of the rectangular power module 1 in the lateral direction are wide enough to accommodate one chip in FIG. 5, and the terminals of the power module 1 are in the lateral direction. It is pulled out from two sides.
  • the two sides of the rectangular power module 1 in the longitudinal direction are wide enough to accommodate two chips.
  • the three power modules 1 are adjacent to each other and mounted on the heat sink 14 of the inverter 23.
  • the floor area of the power module 1 mounted on the water channel of the heat sink 14 can be minimized. Further, by pulling out the P, N, and AC terminals from the vertical direction of FIG. 5, the floor area when mounting the three packages (U, V, W phase) on the inverter 23 is similarly minimized.
  • FIG. 6 is a diagram illustrating a heat dissipation path between the IGBT and the diode.
  • FIG. 6A is an operation mode at the time of maximum heat generation of the IGBT
  • FIG. 6B is a heat dissipation path at the time of the operation mode at the time of maximum heat generation of the diode.
  • the power semiconductors IGBT 2 or 3 and the diode 4 or 5 When the power module 1 operates, the power semiconductors IGBT 2 or 3 and the diode 4 or 5 generate heat by repeatedly turning on / off the current as a switching element.
  • the maximum heat generation mode of the IGBT 2 or 3 in normal operation is the power running mode (FIG. 6A), and the heat transfer path from the IGBT 2 or 3 to the heat sink 14 is shown as a heat conduction (cooling) path 19a.
  • the maximum heat generation mode of the diode 4 or 5 is the regenerative mode (FIG. 6 (b)), and the heat transfer path from the diode 4 or 5 to the heat sink 14 is shown as a heat transfer (cooling) path 19b.
  • the chip size of the diode 4 or 5 having a low unit price is increased while considering this heat transfer.
  • the IGBT 2 or 3 having a relatively high unit price can be reduced, so that the thermal resistance of the IGBT 2 or 3 can be lowered.
  • the cost reduction effect resulting from the difference between the IGBT 2 or 3 and the diode 4 or 5 depending on the chip size can be verified by the following calculation.
  • FIG. 7 is an inductance path.
  • the inductance is as small as possible.
  • the current change rate di / dt and the inductance are generated in the path passing through the IGBT of one of the switching arms and the diode of the reverse arm.
  • the inductance generation path when switching the lower arm IGBT 3 is the path 20a in FIG. 7A
  • the inductance generation path when switching the upper arm IGBT 2 is the path 20b in FIG. 7B.
  • the diodes 4 or 5 are arranged directly above or directly below the IGBTs 2 or 3 of the switching arm. By stacking both chips in this way to minimize the path, low inductance can be realized.
  • FIG. 8 is an electric circuit diagram showing the entire inverter system.
  • the inverter 23 is a circuit that converts / reverses DC power such as a Li ion battery 25 and AC power such as a three-phase AC motor 22.
  • a 2-in-1 power module 1 is used for the inverter 23 for three phases (U, V, W phases).
  • the dotted arrow 24 is a di / dt (inductance) generation path 24 when the upper arm IGBT 2 is switched.
  • the di / dt generation path 24 is a path that passes through the upper arm IGBT 2, the lower arm diode 5, and the smoothing capacitor 21.
  • the di / dt generation path 24 becomes a path passing through the lower arm IGBT 3 and the diode 4.
  • FIG. 9 is a side view of the power module according to the first modification of the present invention.
  • a copper lead frame 18 is used for connecting the upper arm IGBT 2 and the lower surface of the diode 4 instead of the insulating substrate 11.
  • a resin insulating sheet 17 is used when the copper lead frame 18 and the heat sink 14 are attached.
  • the resin insulating sheet 17 has functions of insulation, adhesion, and heat transfer.
  • FIG. 10 is a side view of the power module according to the second modification of the present invention.
  • the second modification has a configuration in which the chips of the IGBTs 2 and 3 and the diodes 4 and 5 are connected in parallel. Similar to FIG. 2, the positional relationship between the IGBTs 2 and 3 and the diodes 4 and 5 does not change. In this configuration, the same effect as that of the present invention can be obtained even if the number of chips is increased to three or four.
  • FIG. 11 is a side view of the power module according to the third modification of the present invention.
  • the heat sink 14 is attached in two directions above and below the power module 1, and the power module 1 is sandwiched between the insulating substrate 11 and the brazing material 15. As a result, the power module 1 is cooled from both sides in the vertical direction of FIG. Along with this, the insulating substrate 11 is attached to the upper and lower parts of the power module 1, so that the cooling effect of the power module 1 can be improved.
  • the power semiconductor module 1 includes an IGBT 2 and a diode 4 electrically connected in parallel to form an upper arm, and an IGBT 3 and a diode 5 electrically connected in parallel to form an upper arm.
  • the IGBT of one arm and the diode of the other arm in the lower arm and the diode of the other arm are arranged so as to overlap each other so that at least a part of the active region 16 of each element overlaps in the stacking direction, and the other arm is arranged.
  • the chip size of the diode is equal to or greater than the size of the active region 16 of the IGBT of one arm. Since this is done, it is possible to provide a semiconductor device that realizes a low thermal resistance while halving the size of the power module 1.
  • the power semiconductor module 1 is located at a position facing the IGBT 3 of one arm with the diode 4 of the other arm in between, and the diode 5 of one arm with the IGBT 2 of the other arm in between.
  • a heat dissipation surface is formed at a position facing the diode. Since this is done, the cooling effect of the power module 1 is improved.
  • the power semiconductor module 1 is provided with an intermediate conductor plate 18 between the IGBT of one arm and the diode of the other arm, and the intermediate conductor plate 18 is a pedestal portion joined to the diode of the other arm.
  • the 18a is provided integrally or separately, and the area of the pedestal portion 18a is equal to or larger than the size of the active region 16 of the IGBT of one arm. Since this is done, the inductance can be reduced.
  • DC terminals 9 and 10 electrically connected to the collector of the IGBT 2 of the upper arm or the emitter of the IGBT 3 of the lower arm, and electrically connected to the emitter of the IGBT 2 of the upper arm and the collector of the IGBT 3 of the lower arm.
  • the AC terminals 8 are provided, and the IGBTs 2 and 3 of the upper arm and the lower arm are arranged on a straight line connecting the DC terminals 9 and 10 and the AC terminal 8, and the IGBT 2 of the upper arm is arranged.
  • the gate wiring of is provided on the opposite side of the gate wiring of the IGBT 3 of the lower arm with a straight line in between. Since this is done, it is possible to contribute to the miniaturization of the power module 1.
  • Inductance generation path 21 ... Smoothing capacitor 22 ... ⁇ Three-phase AC motor (AC) 23 ... Inverter (DC / AC conversion) 24 ... di / dt generation path (dotted arrow) 25 ... Li-ion battery (DC) 26 ... Straight line

Abstract

パワー半導体モジュールは、電気的に並列接続されて上アームを構成するIGBTおよびダイオードと、電気的に並列接続されて下アームを構成するIGBTおよびダイオードと、を備え、前記上アームおよび前記下アームにおける一方のアームの前記IGBTと、他方のアームの前記ダイオードとは、その積層方向において、それぞれの素子のアクティブ領域の少なくとも一部が重なるように、互いに積層して配置され、前記他方のアームの前記ダイオードのチップサイズは、前記一方のアームの前記IGBTの前記アクティブ領域のサイズと同じか、またはそれ以上である。

Description

パワー半導体モジュール
 本発明は、パワー半導体モジュールに関する。
 HEV/EVモータ駆動のための電力変換装置において、電力変換装置の小型化の需要に伴い、搭載される半導体装置(パワーモジュール)は、他の搭載部品の使用面積の関係から、配置方法の考慮についての重要性が高まっている。
 本願発明の背景技術として、下記の特許文献1が知られている。特許文献1では、複数の半導体素子2を内蔵する半導体モジュール3を有する電力変換装置において、ハイサイド板31H、ローサイド板31L、及びミドルサイド板31Mを備えて、それぞれ厚み方向に直交する方向に突出した突出端子部32を有していることで、インダクタンスの低減を図る技術が開示されている。
特開2009-89491号公報
 特許文献1に記載された従来の構造では、上アームの半導体素子(IGBT、ダイオード)と下アームの半導体素子を1つのパッケージ内に有する2in1のパワーモジュールにおいて、IGBTとダイオードチップが同一平面に配置され、さらに実装領域を上アームと下アームで分離していた。このため、上下アームの床面積を確保する必要があり、さらに上下アームを中継する接続点の領域も必要であったため、ダイオードチップサイズはIGBTサイズの約半分であり、熱抵抗を小さくできない上にパワーモジュールのサイズも小さくすることができないという課題があった。
 したがって、本発明の課題は、小型化と低熱抵抗との両立を実現した半導体装置を提供することにある。
 パワー半導体モジュールは、電気的に並列接続されて上アームを構成するIGBTおよびダイオードと、電気的に並列接続されて下アームを構成するIGBTおよびダイオードと、を備え、前記上アームおよび前記下アームにおける一方のアームの前記IGBTと、他方のアームの前記ダイオードとは、その積層方向において、それぞれの素子のアクティブ領域の少なくとも一部が重なるように、互いに積層して配置され、前記他方のアームの前記ダイオードのチップサイズは、前記一方のアームの前記IGBTの前記アクティブ領域のサイズと同じか、またはそれ以上である。
 パワーモジュールのサイズを半減すると共に低熱抵抗を実現した半導体装置を提供できる。
本発明の一実施形態に係る、パワーモジュール回路構成である。 本発明の一実施形態に係る、パワーモジュールの側面図である。 図2の展開図である。 本発明の一実施形態に係る、パワーモジュールの説明図である。 パワーモジュールのインバータ水路への実装図である。 IGBTとダイオードの放熱経路である。 インダクタンス経路である。 インバータシステム全体を示した電気回路図である。 第1の変形例である。 第2の変形例である。 第3の変形例である。
 以下、図面を参照して本発明の実施形態を説明する。以下の記載および図面は、本発明を説明するための例示であって、説明の明確化のため、適宜、省略および簡略化がなされている。本発明は、他の種々の形態でも実施する事が可能である。特に限定しない限り、各構成要素は単数でも複数でも構わない。
 図面において示す各構成要素の位置、大きさ、形状、範囲などは、発明の理解を容易にするため、実際の位置、大きさ、形状、範囲などを表していない場合がある。このため、本発明は、必ずしも、図面に開示された位置、大きさ、形状、範囲などに限定されない。
(一実施形態とその構成)
 図1は、本発明の一実施形態に係る、パワーモジュール回路構成である。
 パワーモジュール1は、半導体素子であるIGBT(上アーム回路部)2とIGBT(下アーム回路部)3が、1つのパッケージに実装された2in1の構成である。IGBT2はダイオード4(上アーム回路部)と、IGBT3はダイオード5(下アーム回路部)と、それぞれ電気的に並列に実装されている。IGBT2および3は、ゲート(G)端子6から入力されるゲート電圧の変化に応じて、ゲート端子6とエミッタ(E)端子7との間の電圧が変化することにより、パワーモジュール1が駆動する。
 上アームのIGBT2のコレクタと電気的に接続されている正極(P)端子9と、下アームのIGBT3のエミッタと電気的に接続されている負極(N)端子10とは、Liイオンバッテリなどの直流電力にそれぞれ接続される。なお、以下では正極端子9と負極端子10を合わせて、「直流端子」と称することがある。交流(AC)端子8は、上アームのIGBT2のエミッタおよび下アームのIGBT3のコレクタと電気的に接続されており、モータなどの交流電力に接続される。IGBT2および3は、ゲート端子6から入力されるゲート電圧でON/OFFを制御される。パワーモジュール1を実装したインバータは、PWM制御で直流電力を交流電力に変換、または逆変換する。
 図2は、本発明の一実施形態に係る、パワーモジュールの側面図である。また、図3は、図2の展開図である。なお、図3では、パワー半導体(IGBTとダイオード)の上面と下面を他の部品と接続するために用いられる、半田またはシンター材は省略している。
 パワーモジュール1と接合しているヒートシンク14は、内部に冷却水を流しており、図2の上面で接しているパワーモジュール1から出る熱を冷却水へ放熱することで、パワーモジュール1全体を冷却している。
 絶縁基板11は、その基板であるセラミック板上に回路パターンが形成されており、パワー半導体の電圧とパッケージ外部のGND電位とを絶縁している。絶縁基板11とヒートシンク14は、ろう材15またはサーマルグリースで接合されることで、その接合面がパワーモジュール1内で生じたパワー半導体の熱を外部に放熱するための放熱面になっている。図2では、ろう材15によってパワーモジュール1とヒートシンク14とを接合し、絶縁基板11を介して放熱面に伝熱されたパワー半導体の熱を、ろう材15を介してヒートシンク14内の冷却水へ放熱する構成例を記載している。
 パワーモジュール1においてのパワー半導体について説明する。図2ではパワー半導体が2層に重なっており、ヒートシンク14に近い方から上アーム、下アームとして説明する。
 図2において、上アーム回路を構成するIGBT2とダイオード4の下面は、半田またはシンター材によって絶縁基板11と接続されている。また、IGBT2とダイオード4の上面は、半田またはシンター材によって、AC端子8につながる中間導体板である銅リードフレーム18(18a)と接続されている。
 銅リードフレーム18は台座部18aを有しており、これにより上アームと下アームのパワー半導体の絶縁距離を取っている。また、台座部18aはIGBT2または3のアクティブ領域(発熱領域)のサイズと、同じまたはそれ以上の面積を有している。なお、台座部18aは、銅リードフレーム18と一体に形成されていてもよいし、銅リードフレーム18とは別体に形成されていてもよい。
 下アーム回路を構成するIGBT3とダイオード5の下面は、半田またはシンター材によって、AC端子8につながる銅リードフレーム18と接続されている。また、IGBT3とダイオード5の上面は、半田またはシンター材によって、N端子10につながる銅リードフレーム18と接続されている。なお、P端子9、アルミワイヤボンディング12については図4で後述する。パワーモジュール1の各接続部はレジン(樹脂)13により封止固定される。
 以上説明した構成では、上アームのダイオード4を間に挟んで下アームのIGBT3と対向する位置であり、かつ、上アームのIGBT2を間に挟んで下アームのダイオード5と対向する位置に、ヒートシンク14と接合する放熱面が形成されている。これにより、IGBT3とダイオード5は、ダイオード4、IGBT2をそれぞれ経由して放熱面への放熱の経路ができている。放熱経路については図6でも後述する。
 図2の上アームと下アームとの位置関係を整理する。上アームIGBT2と下アームダイオード5は、パワーモジュール1の側面から見て上下方向(図2の上下方向)に並び、上アームダイオード4と下アームIGBT3も同様に、パワーモジュール1の側面から見て上下方向に並んでいる。つまり、各アームのIGBT2または3とダイオード5または4は、パワーモジュール1の側面から見て、たすき掛けの位置関係になっている。このようにすることで、IGBT2,3およびダイオード4,5をそれぞれ同一平面上に並べて配置する従来の構造に比べて、パワーモジュール1のサイズの半減に貢献している。
 図4は、本発明の一実施形態に係る、パワーモジュールの説明図である。図4(a)はパワーモジュールの上面図、図4(b)は、IGBTとダイオードの重なりを説明する図である。
 パワーモジュール1の正極端子9と負極端子10は、長方形状のパワーモジュール1において、同一の辺から同じ方向に引き出されている。交流端子8は、正極端子9と負極端子10とは、パワー半導体(IGBT2,3およびダイオード4,5)を間に挟んで対向する辺から逆方向(図4(a)の下方向)に引き出されている。
 パワー半導体の積層方向から見た(図4の正面から見た)場合に、負極端子10と交流端子8とを結んだ直線26上には、IGBT2および3が配列されている。また、IGBT2のゲート配線は、この直線26を間に挟んでIGBT3のゲート配線の反対側に設けられて対向した位置にある。これにより、複数のパワーモジュール1を左右方向に並べて配列することができる(図5でも後述)ので、インバータ全体の小型化を実現でき、部品の配置効率の向上に貢献している。
 上アームのIGBT2と下アームのIGBT3は、上面から見て(図4では正面)互いに180°反転して実装されている。また、IGBT2および3のゲート端子6に接続されているアルミワイヤボンディング12は、互いにパワー半導体を間に、かつ直線26を間に挟んで対向した位置になっており、互いに逆方向(図4の上下方向)に引き出されている。この配置にすることで、IGBT2および3がそれぞれアルミワイヤボンディング12によって接続されるゲート端子6に近い位置になり、また、前述したIGBT2とダイオード4、またはIGBT3とダイオード5のように、同じアームのIGBTとダイオードをずらして実装できる。そのため、IGBT2とダイオード4、またはIGBT3とダイオード5がお互いに発熱する時のあおり熱を低減することができる。
 図4(b)で説明するように、IGBT2とダイオード5は、上面(図4の正面)から見て、それぞれの素子のアクティブ領域(発熱領域)16の少なくとも一部が重なるように配置する。さらに、ダイオード5のチップの外形の大きさは、IGBT2のアクティブエリア16と同サイズかそれよりも大きいサイズになっている。また、IGBT3とダイオード4についても同様に、上面(図4の正面)から見て、それぞれの素子のアクティブ領域(発熱領域)16の少なくとも一部が重なるように配置する。さらに、ダイオード4のチップの外形の大きさは、IGBT3のアクティブエリア16と同サイズかそれよりも大きいサイズになっている。
 この構成により、図4の左右方向からの視点において、図2に示したように、下段に上アームのIGBT2とダイオード4が実装され、上段に下アームのIGBT3とダイオード5が実装されることで、上段の下アームのIGBT3およびダイオード5の熱伝導パスを十分に確保し、低熱抵抗を実現している。また、ダイオード4,5がIGBT2,3よりも同じサイズまたはそれよりも大きくなることで、IGBT2,3からヒートシンク14までの熱流束を広げることができ、低熱抵抗を実現できる。
 なお、以上説明した構成では、下段に上アームのIGBT2とダイオード4が実装され、上段に下アームのIGBT3とダイオード5が実装される例を説明したが、これらの配置を互いに入れ替えてもよい。すなわち、上段に上アームのIGBT2とダイオード4が実装され、下段に下アームのIGBT3とダイオード5が実装される場合でも、上記と同様の低熱抵抗を実現することが可能である。この場合、正極端子9と負極端子10の位置も入れ替わるため、パワー半導体の積層方向から見た場合に、正極端子9と交流端子8とを結んだ直線26上に、IGBT2および3が配列されることになる。また、この直線26を間に挟んで、IGBT2のゲート配線と、IGBT3のゲート配線とが、互いに対向した位置に配置されている。
 図5は、パワーモジュールのインバータ水路への実装図である。
 3相交流モータを動かすインバータ23は、2in1回路のパワーモジュール1を3個(U、V、W相)実装している。それぞれ上面(図5正面)から見て、長方形状のパワーモジュール1の短手方向の2辺は、図5のチップ1個分が入る幅であり、パワーモジュール1の端子はその短手方向の2辺から引き出されている。
 長方形状のパワーモジュール1の長手方向の2辺は、チップ2個分が入る幅である。この3つのパワーモジュール1がそれぞれ隣接して、インバータ23のヒートシンク14に実装されている。
 この配置にすることで、ヒートシンク14の水路に実装するパワーモジュール1の床面積を最小化できる。また、P,N,AC端子を図5の上下方向から出すことで、同様にインバータ23に3パッケージ(U、V、W相)実装する時の床面積を最小化する。
(放熱経路について)
 図6は、IGBTとダイオードの放熱経路について説明した図である。図6(a)は、IGBTの最大発熱時の動作モード、図6(b)はダイオードの最大発熱時の動作モード時の放熱経路である。
 パワーモジュール1が動作する時に、パワー半導体であるIGBT2または3とダイオード4または5は、スイッチング素子として電流のオン/オフを繰り返すことで発熱している。
 通常動作におけるIGBT2または3の最大発熱モードは力行モード(図6(a))であり、IGBT2または3からヒートシンク14までの伝熱経路が、熱伝導(冷却)パス19aとして示されている。ダイオード4または5の最大発熱モードは回生モード(図6(b))であり、ダイオード4または5からヒートシンク14までの伝熱経路が、熱伝導(冷却)パス19bとして示されている。
 本発明では、この熱の移動を考慮しつつ、単価が安いダイオード4または5のチップサイズを大きくする。これにより、相対的に単価が高いIGBT2または3を小さくすることができるため、IGBT2または3の熱抵抗を下げることができる。
 このIGBT2または3とダイオード4または5のチップサイズによる違いから出るコスト削減の効果については、以下の計算により検証できる。なお、価格比をIGBT:ダイオード=3:1、面積比をIGBT:ダイオード=2:1とし、これによる従来のコストを計算すると、IGBTが3の価格比かつダイオードの面積比が1なので、3+1=4となる。
 検証によると、本発明の構成を採用することで、IGBT2または3の熱抵抗は、本発明により従来の0.66倍に低減できる。そのためIGBT2または3のサイズを0.66倍にできる。よって、IGBT2または3のコストは、3×0.66=1.98にできる。また、ダイオード4はIGBT3の面積と、ダイオード5はIGBT2の面積と、同じかそれ以上の大きさの構成となるため、仮に同じ大きさとして、2×0.66=1.32となる。すなわち、コストは、本発明の構成を採用すると、1.98+1.32=3.3になるため、コストが4かかっていたものが低減できていることになる。
 図7は、インダクタンス経路である。
 インダクタンスに関連する問題点について説明する。パワーモジュール1の電流をオン/オフする時には、電流変化率di/dtが発生する経路上のインダクタンス(L)が問題となる。なお、L×di/dtが誘起電圧となり、電源電圧に誘起電圧(L×di/dt)を加算したものがスイッチング時のサージ電圧となる。
 サージ電圧は、IGBT2および3とダイオード4および5の素子耐圧を超えると、パワーモジュール1が破壊される危険性がある。このため、インダクタンスはなるべく小さい方が望ましい。
 電流変化率di/dtおよびインダクタンスは、スイッチングする一方のアームのIGBTと逆アームのダイオードとを通る経路で発生する。下アームIGBT3をスイッチングする時のインダクタンスの発生経路は、図7(a)の経路20aであり、上アームIGBT2をスイッチングする時のインダクタンスの発生経路は図7(b)の経路20bである。
 本発明の構成では、IGBT2および3とダイオード4および5がたすき掛けのように実装されているため、スイッチングするアームのIGBT2または3の直上または直下にダイオード4または5が配置されている。このように両チップを重ねて経路を最小にすることで、低インダクタンス化を実現できる。
 図8は、インバータシステム全体を示した電気回路図である。
 インバータ23は、Liイオンバッテリ25などの直流電力と3相交流モータ22などの交流電力を変換/逆変換する回路である。インバータ23には2in1のパワーモジュール1が3相分(U、V、W相)使われる。
 点線矢印24は、上アームIGBT2をスイッチングした時のdi/dt(インダクタンス)発生経路24である。このdi/dt発生経路24は、上アームIGBT2と下アームダイオード5と平滑コンデンサ21を通る経路である。下アームIGBT3をスイッチングする時は、di/dt発生経路24が下アームのIGBT3とダイオード4を通る経路になる。
(変形例1)
 図9は、本発明の第1の変形例に係る、パワーモジュールの側面図である。
 図2で説明した構成とは異なり、上アームIGBT2とダイオード4の下面の接続には、絶縁基板11ではなく銅リードフレーム18を使用している。銅リードフレーム18とヒートシンク14との取り付け時には樹脂絶縁シート17を使用する。樹脂絶縁シート17は、絶縁と接着と伝熱の機能を持つ。
(変形例2)
 図10は、本発明の第2の変形例に係る、パワーモジュールの側面図である。
 第2の変形例は、IGBT2および3とダイオード4および5のそれぞれのチップを2つにして、パラレル接続にした構成になっている。IGBT2および3とダイオード4および5は、図2と同様に、たすき掛けになる位置関係は変わらない。この構成において、チップを3つや4つに増やして構成しても、本発明と同じ効果を得ることができる。
(変形例3)
 図11は、本発明の第3の変形例に係る、パワーモジュールの側面図である。
 ヒートシンク14がパワーモジュール1の上下2方向に取り付けられており、絶縁基板11およびろう材15を用いて、パワーモジュール1が間に挟まれている構成になっている。これにより図面11の上下方向両側からパワーモジュール1が冷却される。これに伴って、絶縁基板11がパワーモジュール1の上下に取り付けられていることで、パワーモジュール1の冷却効果を向上させることができる。
 以上説明した本発明の第1の実施形態によれば、以下の作用効果を奏する。
(1)パワー半導体モジュール1は、電気的に並列接続されて上アームを構成するIGBT2およびダイオード4と、電気的に並列接続されて下アームを構成するIGBT3およびダイオード5と、を備え、上アームおよび下アームにおける一方のアームのIGBTと、他方のアームのダイオードとは、その積層方向において、それぞれの素子のアクティブ領域16の少なくとも一部が重なるように、互いに積層して配置され、他方のアームのダイオードのチップサイズは、一方のアームのIGBTのアクティブ領域16のサイズと同じか、またはそれ以上である。このようにしたので、パワーモジュール1のサイズを半減すると共に低熱抵抗を実現した半導体装置を提供できる。
(2)パワー半導体モジュール1は、他方のアームのダイオード4を間に挟んで一方のアームのIGBT3と対向する位置であり、かつ、他方のアームのIGBT2を間に挟んで一方のアームのダイオード5と対向する位置に、放熱面が形成される。このようにしたので、パワーモジュール1の冷却効果を向上させている。
(3)パワー半導体モジュール1は、一方のアームのIGBTと他方のアームのダイオードとの間には中間導体板18が備えられ、中間導体板18は、他方のアームのダイオードと接合される台座部18aを一体または別体に有しており、台座部18aの面積は、一方のアームのIGBTのアクティブ領域16のサイズと同じまたはそれ以上である。このようにしたので、インダクタンスを低減できる。
(4)上アームのIGBT2のコレクタまたは下アームのIGBT3のエミッタと電気的に接続される直流端子9および10と、上アームのIGBT2のエミッタおよび下アームのIGBT3のコレクタと電気的に接続される交流端子8と、を備え、積層方向から見た場合に、直流端子9および10と交流端子8とを結んだ直線上に、上アームおよび下アームのIGBT2および3が配列され、上アームのIGBT2のゲート配線は、直線を間に挟んで下アームのIGBT3のゲート配線の反対側に設けられる。このようにしたので、パワーモジュール1の小型化に貢献できる。
 上述した実施形態は、本発明の理解を助けるために説明したものであり、本発明は、記載した具体的な構成のみに限定されるものではない。例えば、実施形態の構成の一部を当業者の技術常識の構成に置き換えることが可能であり、また、実施形態の構成に当業者の技術常識の構成を加えることも可能である。すなわち、本発明は、本明細書の実施形態の構成の一部について、発明の技術的思想を逸脱しない範囲で、削除・他の構成に置換・他の構成の追加をすることが可能である。
1・・・パワーモジュール
2・・・IGBT(上アーム回路部)
3・・・IGBT(下アーム回路部)
4・・・ダイオード(上アーム回路部)
5・・・ダイオード(下アーム回路部)
6・・・ゲート(G)端子
7・・・エミッタ(E)端子
8・・・交流(AC)端子
9・・・正極(P)端子
10・・・負極(N)端子
11・・・絶縁基板
12・・・アルミワイヤボンディング
13・・・レジン(樹脂)
14・・・ヒートシンク
15・・・ろう材
16・・・アクティブエリア(発熱領域)
17・・・樹脂絶縁シート
18・・・銅リードフレーム
18a・・・台座部
19a,19b・・・熱伝導(冷却)パス
20a,20b・・・インダクタンス発生経路
21・・・平滑コンデンサ
22・・・3相交流モータ(AC)
23・・・インバータ(DC/AC変換)
24・・・di/dt発生経路(点線矢印)
25・・・Liイオンバッテリ(DC)
26・・・直線

Claims (4)

  1.  電気的に並列接続されて上アームを構成するIGBTおよびダイオードと、
     電気的に並列接続されて下アームを構成するIGBTおよびダイオードと、を備え、
     前記上アームおよび前記下アームにおける一方のアームの前記IGBTと、他方のアームの前記ダイオードとは、その積層方向において、それぞれの素子のアクティブ領域の少なくとも一部が重なるように、互いに積層して配置され、
     前記他方のアームの前記ダイオードのチップサイズは、前記一方のアームの前記IGBTの前記アクティブ領域のサイズと同じか、またはそれ以上である
     パワー半導体モジュール。
  2.  請求項1に記載のパワー半導体モジュールであって、
     前記他方のアームの前記ダイオードを間に挟んで前記一方のアームの前記IGBTと対向する位置であり、かつ、前記他方のアームの前記IGBTを間に挟んで前記一方のアームの前記ダイオードと対向する位置に、放熱面が形成される
     パワー半導体モジュール。
  3.  請求項1に記載のパワー半導体モジュールであって、
     前記一方のアームの前記IGBTと前記他方のアームの前記ダイオードとの間には中間導体板が備えられ、
     前記中間導体板は、前記他方のアームの前記ダイオードと接合される台座部を一体または別体に有しており、
     前記台座部の面積は、前記一方のアームの前記IGBTの前記アクティブ領域のサイズと同じまたはそれ以上である
     パワー半導体モジュール。
  4.  請求項1乃至3のいずれかに記載のパワー半導体モジュールであって、
     前記上アームの前記IGBTのコレクタまたは前記下アームの前記IGBTのエミッタと電気的に接続される直流端子と、
     前記上アームの前記IGBTのエミッタおよび前記下アームの前記IGBTのコレクタと電気的に接続される交流端子と、を備え、
     前記積層方向から見た場合に、前記直流端子と前記交流端子とを結んだ直線上に、前記上アームおよび前記下アームの前記IGBTが配列され、
     前記上アームの前記IGBTのゲート配線は、前記直線を間に挟んで前記下アームの前記IGBTのゲート配線の反対側に設けられる
     パワー半導体モジュール。
PCT/JP2021/034629 2020-11-17 2021-09-21 パワー半導体モジュール WO2022107439A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-190701 2020-11-17
JP2020190701 2020-11-17

Publications (1)

Publication Number Publication Date
WO2022107439A1 true WO2022107439A1 (ja) 2022-05-27

Family

ID=81708820

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/034629 WO2022107439A1 (ja) 2020-11-17 2021-09-21 パワー半導体モジュール

Country Status (1)

Country Link
WO (1) WO2022107439A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005340639A (ja) * 2004-05-28 2005-12-08 Toyota Industries Corp 半導体装置及び三相インバータ装置
JP2010062492A (ja) * 2008-09-08 2010-03-18 Denso Corp 半導体装置
JP2011258632A (ja) * 2010-06-07 2011-12-22 Nissan Motor Co Ltd 半導体装置
JP2015056925A (ja) * 2013-09-10 2015-03-23 株式会社デンソー 電力変換装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005340639A (ja) * 2004-05-28 2005-12-08 Toyota Industries Corp 半導体装置及び三相インバータ装置
JP2010062492A (ja) * 2008-09-08 2010-03-18 Denso Corp 半導体装置
JP2011258632A (ja) * 2010-06-07 2011-12-22 Nissan Motor Co Ltd 半導体装置
JP2015056925A (ja) * 2013-09-10 2015-03-23 株式会社デンソー 電力変換装置

Similar Documents

Publication Publication Date Title
US7881086B2 (en) Power conversion device and fabricating method for the same
EP3107120B1 (en) Power semiconductor module
JP6160780B2 (ja) 3レベル電力変換装置
JP3723869B2 (ja) 半導体装置
JP2012115128A (ja) スイッチングモジュール
US10720383B2 (en) Semiconductor device configuring upper and lower arms including auxiliary terminals
JP2019110228A (ja) 電力変換装置
US20210407875A1 (en) Semiconductor device
JP2021141222A (ja) 半導体モジュール
CN116325135A (zh) 半导体封装、半导体装置以及电力变换装置
JP4140238B2 (ja) 半導体モジュールの接合構造
JP4455914B2 (ja) 電力変換装置
JP3673776B2 (ja) 半導体モジュール及び電力変換装置
JP4356434B2 (ja) 3レベルインバータ回路
WO2022107439A1 (ja) パワー半導体モジュール
JP6891904B2 (ja) 半導体モジュール、電気自動車およびパワーコントロールユニット
JP2014096412A (ja) 半導体モジュール
JP7428019B2 (ja) 半導体モジュール
JP6123722B2 (ja) 半導体装置
JP2021082804A (ja) 半導体モジュール
JP7142784B2 (ja) 電気回路装置
JP2014192976A (ja) 半導体装置
WO2023058381A1 (ja) 電力変換装置
WO2021192424A1 (ja) 電力変換装置
WO2024013857A1 (ja) 半導体装置および電力変換装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21894314

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21894314

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP