WO2016034166A2 - Crimpkontakt - Google Patents

Crimpkontakt Download PDF

Info

Publication number
WO2016034166A2
WO2016034166A2 PCT/DE2015/100330 DE2015100330W WO2016034166A2 WO 2016034166 A2 WO2016034166 A2 WO 2016034166A2 DE 2015100330 W DE2015100330 W DE 2015100330W WO 2016034166 A2 WO2016034166 A2 WO 2016034166A2
Authority
WO
WIPO (PCT)
Prior art keywords
contact
cavity
crimping
aluminum
internal thread
Prior art date
Application number
PCT/DE2015/100330
Other languages
English (en)
French (fr)
Other versions
WO2016034166A3 (de
Inventor
Xiafu Wang
Martin Schmidt
Original Assignee
Harting Electric Gmbh & Co. Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harting Electric Gmbh & Co. Kg filed Critical Harting Electric Gmbh & Co. Kg
Priority to EP15766384.0A priority Critical patent/EP3189561B1/de
Priority to KR1020177008517A priority patent/KR20170044738A/ko
Priority to US15/504,270 priority patent/US20170229793A1/en
Priority to CA2958509A priority patent/CA2958509A1/en
Priority to JP2017512710A priority patent/JP2017526147A/ja
Priority to RU2017110793A priority patent/RU2670955C9/ru
Priority to CN201580047356.3A priority patent/CN106797076A/zh
Publication of WO2016034166A2 publication Critical patent/WO2016034166A2/de
Publication of WO2016034166A3 publication Critical patent/WO2016034166A3/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R4/00Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation
    • H01R4/10Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation effected solely by twisting, wrapping, bending, crimping, or other permanent deformation
    • H01R4/18Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation effected solely by twisting, wrapping, bending, crimping, or other permanent deformation by crimping
    • H01R4/20Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation effected solely by twisting, wrapping, bending, crimping, or other permanent deformation by crimping using a crimping sleeve
    • H01R4/203Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation effected solely by twisting, wrapping, bending, crimping, or other permanent deformation by crimping using a crimping sleeve having an uneven wire-receiving surface to improve the contact
    • H01R4/206Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation effected solely by twisting, wrapping, bending, crimping, or other permanent deformation by crimping using a crimping sleeve having an uneven wire-receiving surface to improve the contact with transversal grooves or threads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R4/00Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation
    • H01R4/10Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation effected solely by twisting, wrapping, bending, crimping, or other permanent deformation
    • H01R4/18Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation effected solely by twisting, wrapping, bending, crimping, or other permanent deformation by crimping
    • H01R4/20Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation effected solely by twisting, wrapping, bending, crimping, or other permanent deformation by crimping using a crimping sleeve
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R4/00Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation
    • H01R4/28Clamped connections, spring connections
    • H01R4/50Clamped connections, spring connections utilising a cam, wedge, cone or ball also combined with a screw
    • H01R4/5033Clamped connections, spring connections utilising a cam, wedge, cone or ball also combined with a screw using wedge or pin penetrating into the end of a wire in axial direction of the wire
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R4/00Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation
    • H01R4/58Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation characterised by the form or material of the contacting members
    • H01R4/62Connections between conductors of different materials; Connections between or with aluminium or steel-core aluminium conductors
    • H01R4/625Soldered or welded connections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R43/00Apparatus or processes specially adapted for manufacturing, assembling, maintaining, or repairing of line connectors or current collectors or for joining electric conductors
    • H01R43/04Apparatus or processes specially adapted for manufacturing, assembling, maintaining, or repairing of line connectors or current collectors or for joining electric conductors for forming connections by deformation, e.g. crimping tool
    • H01R43/048Crimping apparatus or processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R43/00Apparatus or processes specially adapted for manufacturing, assembling, maintaining, or repairing of line connectors or current collectors or for joining electric conductors
    • H01R43/16Apparatus or processes specially adapted for manufacturing, assembling, maintaining, or repairing of line connectors or current collectors or for joining electric conductors for manufacturing contact members, e.g. by punching and by bending

Definitions

  • the invention relates in a first aspect to a heavy duty connector according to the preamble of independent main claim 1.
  • the invention relates in a second aspect to a method for producing a crimp contact according to the preamble of the independent subclaim 9.
  • the invention relates in a third aspect to a method for using a crimp contact according to the preamble of independent subsidiary claim 14.
  • Such connectors and contacts are used to transfer between electrical conductors an electric current with currents of, for example, 500 to 650 A.
  • the more flexible, ie less rigid, stranded conductors are preferably used.
  • the power transmission can take place both in the above-ground area, for example in wind turbines and in the railway, but also in the subterranean energy distribution, eg in the form of ground lines as part of a larger power distribution network.
  • the slightly lower specific conductivity of aluminum and the resulting correspondingly larger necessary cable cross sections are accepted in favor of the aforementioned advantages.
  • connection between the aluminum cable and the connector can take place by friction welding, rotary friction welding, ultrasonic welding or resistance welding.
  • the connector may be formed of copper.
  • the connector is also formed of aluminum to provide contact resistances or contact corrosion at the junctions between the aluminum cable and the connector To avoid contact piece. Further, tinning or tinning and nickel plating of the surface of the connectors is proposed.
  • the document EP 1 032 077 A2 proposes in this connection to connect a stranded conductor made of aluminum by friction welding to a contact part made of copper.
  • Document EP 2 621 022 A1 describes a cable lug for connecting a current-carrying element to an aluminum cable, wherein a first section of an associated tube has an aluminum layer on one inner side and a copper layer on an outer side.
  • EP 2 662 934 A2 proposes the use of a connecting cap made of aluminum or of an aluminum alloy. This connection cap is pressed together with the aluminum conductor and welded to the existing of copper or a copper alloy contact part.
  • DE 1 1 201 1 103 392 T5 discloses a crimp connection made of two different metal materials, eg copper and aluminum. stands. The connection region of these two materials is covered with a plastic molding for corrosion prevention.
  • Document EP 2 579 390 A1 also describes an aluminum-copper terminal having an aluminum contact part and a copper connector part which are welded together, the connecting portion being formed by attaching a primary seal, e.g. protected against electrocorrosion by overmolding with a special thermoplastic, whereby the strand is welded to the contact part.
  • the object of the invention is therefore to provide an electrical connector, on the one hand allows a comparatively inexpensive connection of an aluminum stranded conductor, on the other hand also allows the most flexible maneuvering and continues to have a sustainable good electrical conductivity even when acting over a long period of high currents.
  • the object is achieved by a manufacturing method of the type mentioned by the features of the characterizing part of the independent subclaim 9.
  • the object is achieved with an application method of the type mentioned by the features of the characterizing part of the independent subsidiary claim 14.
  • the invention in the first aspect is a heavy duty connector having at least one crimp contact, the crimp contact having a crimping region formed of aluminum or an aluminum alloy and a contact region formed of copper or copper alloy adjacent thereto, the contact region being pin or pin Can be designed socket-shaped.
  • an aluminum stranded conductor can be crimped with the crimp without causing so-called "electrocorrosion”.
  • the transition from copper to aluminum material according to the invention is moved into the crimp contact. This is made possible by the crimping area is welded to the contact area. Insbesonde- In the manufacture of the crimp contact, this connection is produced by a friction welding process.
  • the crimp contact can therefore be a high-current-capable contact pin or a high-current-capable contact socket. At least one such contact pin and / or such a contact socket are inserted into an insulating body and together with this form part of the heavy duty connector.
  • the crimp contact is at least partially rotationally symmetrical or has at least one or more areas with a cylindrical or at least rotationally symmetric outer contour, because it can thereby be arranged positively in through holes or corresponding likewise rotationally symmetrical through holes of the insulating.
  • the crimping region For receiving the aluminum stranded conductor, the crimping region has a cavity with a cable insertion opening.
  • an additional through-hole can be drilled in the crimp contact following the cavity, and an internal thread can be cut into this through-opening.
  • a mandrel which has a matching external thread and then a tip, with its tip first in the cavity, preferably in the direction of Jardineinstoryö réelle, ie against the insertion of the stranded conductor, are screwed.
  • the crimp contact has an additional internal thread within its crimping range, then the stranded conductor is pressed from the inside against this additional internal thread, the additional internal thread holding the strands by the increased frictional force. Furthermore, the oxide layer of the aluminum strands is broken. This and the pressure against each other increases the transverse conductivity of the stranded conductor. Thus, the contact resistance between the stranded conductor and the crimp contact decreases.
  • the conductivity is sustainably improved by the use of the mandrel, in particular if the mandrel is preferably made of aluminum or else another electrically conductive material, for example a copper alloy, thereby increasing the contact surface of the crimp contact with respect to the stranded conductor.
  • the inner radius of the cylindrical cavity is greater than the theoretical inner radius of the cut additional internal thread, so that the protruding into the cavity additional internal thread is flattened. This is particularly advantageous because, on the one hand, two desired effects of the additional internal thread are retained, namely
  • the stranded conductor is held contrary to its insertion with particularly good friction in the cavity, but that on the other 3.) the strands are not damaged.
  • the real depth of the flattened thread is smaller than the diameter of the strands, so that the thread can not cut through the strands.
  • the contact region is additionally at least partially coated, for example silver-plated or gold-plated, and thus permanently protected against corrosion. Furthermore, this advantageously also a permanently low-impedance connector with other copper contacts and above with corresponding copper lines is possible, since the problematic transition between copper and aluminum according to the invention is moved into the interior of the crimp contact.
  • the crimping area existing as aluminum is connected to the contact area made of copper by a friction welding process, because in this way the formation of an electrocorrosion is prevented.
  • the contact surface is so inside the contact and does not come in this way in contact with oxygen. As a result, good conductivity is also sustainable, i. even over a long period of time, guaranteed.
  • the welding in particular the friction welding, ensures a particularly stable connection, so that the crimp contact is also mechanically stable.
  • the crimping area may be connected to the contact area but also by vibration welding.
  • spin welding and vibration welding has proved to be particularly advantageous, since in pure spin welding there is the disadvantage that the inner regions of the contact surface experience less friction than the outer regions, so that the elements have a central so-called "so-called"
  • all areas experience the same friction energy, so that the inner areas of the contact area can also be welded together.
  • the contact area can be formed for pin or socket contact, and in the crimp area, the cavity can be drilled with the cable entry opening.
  • the additional internal thread can be cut into the cavity, which serves to increase the frictional force acting on the stranded conductor.
  • FIG. 1 a, b shows a cross section and a perspective view of a pin contact formed as a crimp contact.
  • Fig. 2a, b shows a cross section and a perspective view of a trained as a female contact crimp contact
  • 3a, b shows a cross section and a perspective view of the pin contact with an internal thread
  • Fig. 3c is an enlarged view of the internal thread
  • Fig. 4a, b is a cross-section and a perspective view
  • Fig. 4c is an enlarged view of the internal thread
  • Fig. 5a, b is a 3D cross section of the pin and socket contact with the additional internal thread
  • Fig. 6a, b is a 3D cross section of the pin and socket contact with the additional internal thread and a mandrel;
  • Fig. 7 shows a heavy duty connector in an exploded view.
  • FIG. 1 a shows a cross section and FIG. 1 b shows a perspective view of a first crimp contact designed as a pin contact 1.
  • the pin contact 1 has a first crimping area 1 1 and a first contact area 12, which are in contact with each other at a first transition area 10, for example by being welded together, in particular by a friction welding process.
  • a friction welding process for example, two cylindrical blanks, one of which is made of copper and the other of aluminum, joined together in the axial direction and, for example by spin welding and / or vibration welding, are welded together.
  • first cavity 1 1 1 are drilled.
  • the first crimping area 1 1 thereby has at its freestanding end adjacent to the cavity a first cable insertion opening 1 10th
  • FIG. 2 a shows a cross section and FIG. 2 b shows a perspective view of a second designed as a socket contact 2
  • the socket contact 2 has a second crimping region 21 and a second contact region 22, which are in contact with each other at a second transition region 20, for example by being welded together, in particular by a friction welding process.
  • a second transition region 20 for example, two cylindrical blanks, one made of copper and the other made of aluminum, may be joined together in the axial direction and, e.g. are welded together by spin welding and / or vibration welding.
  • the second contact region 22 consisting of copper can receive a contact socket 221 in subsequent working steps, so that this female contact 2 is in this crimp contact.
  • the bushing 221 has a bushing cavity 221 1, which is also preferably formed by drilling.
  • a cavity 21 1 can continue to be drilled.
  • the second crimping region 21 has thereby at its free-standing end adjacent to the second cavity 21 1, a second cable entry opening 210th
  • Figures 3a and 3b illustrate in a comparable manner the pin contact 1 in a modified embodiment, in which the pin contact 1 additionally has a first through-opening 101 which has a cylindrical shape to therein a mandrel 1 13 (shown in FIG. 6a) to be able to record. Furthermore, the modified pin contact 1 has a pin cavity 121 1, which is connected via the first cylindrical passage opening 101 with the first cavity 1 1 1.
  • the first through-opening 101 is preferably produced by drilling, so that the first through-opening 101 is a through-hole.
  • an internal thread 103 can be cut into the first through-opening 101, so that the mandrel 1 13, which has a matching external thread 2132, can be screwed into the first through-opening 101 and above into the first cavity 1 1 1.
  • the first crimping area 1 1 in this modified embodiment has in its first cavity 1 1 1, a first additional internal thread 1 12, which is cut from the inside into the first crimping area 1 1 in the manufacture of the pin contact 1.
  • This first additional internal thread 1 12 serves to hold a introduced into the first cavity 1 1 1 stranded conductor in this by an increased frictional force, even if the mandrel 1 13 in the first cavity 1 1 1 in the direction of the first Jardineincastö réelle 1 10, ie against the insertion direction of the stranded conductor is screwed into it.
  • first additional internal thread 1 12 An advantageous embodiment of the first additional internal thread 1 12 is shown enlarged in Fig. 3c. It is obvious that the theoretical inner diameter D T of the first additional internal thread 12 is smaller than the real inner diameter D R of the first cavity 1 1 1.
  • the real course of this internal thread 1 12 is represented by the hatched area. On the other hand, the non-hatched area indicates the theoretical course beyond that which a theoretical internal thread would have with the theoretical thread depth T T and the theoretical thread internal diameter D T.
  • the real internal cavity diameter D R is greater than the theoretical internal thread diameter D T , which is used as a proviso for the internal thread to be cut into it.
  • this internal thread 1 12 has a real thread depth T R , which is smaller than the theoretical thread depth T T and the real course of the thread 1 12 is flattened more than usual.
  • FIGS. 4a and 4b represent, in a comparable manner, the socket contact 2, which has been modified in order to be able to receive a pin 213 (shown in FIG. 6b) not shown here.
  • the socket cavity 221 1 is connected via a second cylindrical passage opening 201 to the second cavity 21 1.
  • this second through-opening 201 is preferably produced by drilling, so that the second through-opening 201 is a through-hole.
  • a second additional internal thread 203 may be cut, so that the mandrel 213, which has a mating external thread 2132, can be screwed into the second through hole 201 and above in the second cavity 21 1.
  • the second crimping region 21 in the second cavity 21 1 has a second additional internal thread 212, which is cut into the crimping region 21 of the socket contact 2 during manufacture from the inside.
  • This second additional internal thread 212 serves to retain a stranded conductor introduced into the second cavity 21 1 in this by an increased frictional force, even if the mandrel 213 in the second cavity 21 1 in the direction of the second Jardineinrawö Anlagen 210, ie opposite to the insertion of the stranded conductor , is screwed into it.
  • FIG. 4c An advantageous embodiment of the second additional internal thread 212 is shown enlarged in FIG. 4c.
  • the real history of this internal thread 212 is represented by the hatched area.
  • the non-hatched area indicates the further theoretical course that a theoretical internal thread would have with the theoretical thread depth T T and the theoretical thread internal diameter D T.
  • the cavity internal diameter D R is therefore greater than the theoretical internal thread diameter D T , which is however used as a proviso for the inner thread to be cut into it.
  • this internal thread 212 has a real thread depth T R , which is smaller than the theoretical thread depth T T and the real course of the thread 212 is flattened more than usual.
  • the pin contact 1 and the socket contact 2 with the respective cylindrical through-opening 101, 201 are compared with one another in a sectional 3D representation.
  • FIG. 6a and 6b show the pin contact 1 and the socket contact 2 with the respective through hole 101, 201 and a corresponding first and second mandrel 1 13, 213.
  • Each of the through holes 101, 201 has an associated internal thread 103, 203rd Der respective Mandrel 1 13, 213 each has a matching external thread 1 132, 2132, with which it is screwed into the respective passage opening 101, 201.
  • the mandrel 1 13, 213 have a screw head 1 131, 2131, which allows screwing out of the pin or socket cavity 121 1, 221 1 out.
  • FIG. 7 shows a complete heavy duty connector in an exploded view.
  • a pin contact 1 is shown. But it could just as well be a socket contact 2.
  • an insulating body 3 is shown, which is intended to receive the pin contact 1.
  • This Isoliergroper 3 can in turn be fastened via fasteners 31 in the connector housing 4.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Connections Effected By Soldering, Adhesion, Or Permanent Deformation (AREA)

Abstract

Der Erfindung liegt das Problem zugrunde, dass sich Aluminium und insbesondere Aluminium-Litzenleiter, mit anderen Metallen wie z.B. Kupfer oder Messing, grundsätzlich schlecht verbindet. Der Übergangswiderstand ändert sich langfristig, insbesondere unter Sauerstoffeinfluss und bei einer langfristigen Bestromung mit hohen Stromstärken. Weiterhin existiert ein Bedarf an flexibel rangierbaren, feldkonfektionierbaren Hochstromverbindern. Erfindungsgemäß wird ein Schwerlaststeckverbinder mit mindestens einem Crimpkontakt (1) vorgeschlagen, wobei der Übergang (10) zwischen einem aus Aluminium gebildeten Crimpbereich (11) und einem aus Kupfer gebildeten Kontaktbereich (12) in den zylindrischen oder zumindest rotationssymmetrischen Crimpkontakt (1) verlegt wird. Somit kann der Litzenleiter mit dem Crimpkontakt (1) ohne die vorgenannten Probleme vercrimpt werden. Weiterhin ist im Crimpbereich (11) ein zusätzliches Innengewinde (112) und ein einschraubbarer Dorn (113) vorgesehen.

Description

Crimpkontakt
Beschreibung
Die Erfindung betrifft in einem ersten Aspekt einen Schwerlaststeckverbinder nach dem Oberbegriff des unabhängigen Hauptanspruchs 1 .
Die Erfindung betrifft in einem zweiten Aspekt ein Verfahren zur Herstellung eines Crimpkontaktes nach dem Oberbegriff des unabhängigen Nebenanspruchs 9.
Die Erfindung betrifft in einem dritten Aspekt ein Verfahren zur Verwendung eines Crimpkontaktes nach dem Oberbegriff des unabhängigen Nebenanspruchs 14.
Derartige Steckverbinder und Kontakte werden eingesetzt, um zwischen elektrischen Leitern einen elektrischen Strom mit Stromstärken von beispielsweise 500 bis 650 A zu übertragen.
Stand der Technik
Im Stand der Technik ist es bekannt, sowohl Kupferleitungen als auch Aluminiumleitungen zur elektrischen Energieübertragung insbesondere im Hochstrom bereich zu verwenden. Beispielsweise wurde seinerzeit in der DDR zu diesem Zweck vorwiegend Aluminium als verfügbarer Rohstoff eingesetzt. Meist geschah dies in Form relativ starrer Einzelleiter, so dass auch heutzutage in den neuen Bundesländern derartige Energieversorgungsleitungen anzutreffen sind. Dagegen wurden im den alten Bundesländern in der Vergangenheit vorwiegend Litzenleiter aus Kupfer verwendet. Aufgrund der aktuellen Preise und der nur in begrenztem Maße zur Verfügung stehenden Kupferressourcen und weiterhin auch aufgrund des deutlich geringeren spezifischen Gewichtes (AL: 2,73 Kg/dm3 ; CU: 8,9 Kg/dm3) wird heutzutage in vielen Bereichen zunehmend Aluminium als Material für elektrische Hochstromübertragungsleitungen verwendet. Dabei werden bevorzugt die flexibleren, d.h. weniger starren, Litzenleiter eingesetzt. Die Stromübertragung kann dabei sowohl im überirdischen Bereich, z.B. in Windkraftanlagen sowie im Bereich der Eisenbahn, aber auch bei der unterirdischen Energieverteilung, z.B. in Form von Erdleitungen als Bestandteil eines größeren Stromverteilungsnetzes, stattfinden. Der etwas geringere spezifische Leitwert von Aluminium und die daraus resultierenden entsprechend größeren notwendigen Kabelquerschnitte werden zugunsten der vorgenannten Vorteile in Kauf genommen.
Der zunehmende Einsatz von Aluminiumkabeln in Windkraftanlagen ist in der Druckschrift WO 2013 174 581 A1 erwähnt. Weiterhin ist der Einsatz von elektrischen Verbindern zum elektrischen Verbinden von verschiedenen Kabeln beschrieben. Es wird der Einsatz von Crimp- und Schraubverbindungen erwähnt. Um die Nachteile durch die Oxydierung am Übergang der Aluminiumlitzen zum Verbindungsstück zu vermeiden, wird vorgeschlagen, die Kabel an den Anschlussflächen des Verbindungsstücks anzuschweißen, z.B. durch Reibschweißen.
Weiterhin wird erwähnt, dass die Verbindung zwischen dem Aluminiumkabel und dem Verbindungsstück durch Reibschweißen, Rotationsreibschweißen, Ultraschallschweißen oder Widerstandsschweißen stattfinden kann. Das Verbindungsstück kann aus Kupfer gebildet sein. Alternativ dazu wird offenbart, dass das Verbindungsstück ebenfalls aus Aluminium gebildet ist, um Übergangswiderstände oder Kontaktkorrosionen an den Übergängen zwischen dem Aluminiumkabel und dem Kontaktstück zu vermeiden. Ferner wird ein Verzinnen oder ein Verzinnen und Vernickeln der Oberfläche der Verbindungsstücke vorgeschlagen.
Aus der Druckschrift DE 10 2013 105 669 A1 ist es ebenfalls bekannt, elektrische Verbinder mit einem Litzenleiter durch Widerstandsschweißen zu verbinden.
Die Druckschrift EP 1 032 077 A2 schlägt in diesem Zusammenhang vor, einen Litzenleiter aus Aluminium durch Reibschweißen mit einem Kontaktteil aus Kupfer zu verbinden.
Die Druckschrift EP 2 621 022 A1 beschreibt einen Kabelschuh zum Verbinden eines stromführenden Elements mit einem Aluminiumkabel, wobei ein erster Abschnitt eines dazugehörigen Rohrs an einer Innenseite eine Aluminiumschicht und an einer Außenseite eine Kupferschicht aufweist.
EP 2 662 934 A2 schlägt die Verwendung einer aus Aluminium oder aus einer Aluminiumlegierung bestehenden Verbindungskappe vor. Diese Verbindungskappe wird mit dem Aluminiumleiter verpresst und an das aus Kupfer oder einer Kupferlegierung bestehende Kontaktteil geschweißt.
Grundsätzlich ist die Konfektionierung bei diesen Bauformen, bei denen also der Litzenleiter an den Kontakt direkt oder indirekt angeschweißt wird, leider sehr aufwändig und kann nicht ohne entsprechende Geräte vor Ort vorgenommen werden, so dass bei diesem Bauformen keine Feldkonfektionierbarkeit gegeben ist.
Die DE 1 1 201 1 103 392 T5 offenbart einen Crimp-Anschluss, der aus zwei verschiedenen Metallwerkstoffen, z.B. Kupfer und Aluminium, be- steht. Der Verbindungsbereich dieser beiden Materialien ist zur Korrosionsvermeidung mit einem Kunststoffformteil bedeckt.
Die Druckschrift EP 2 579 390 A1 beschreibt ebenfalls ein Aluminium- Kupfer-Terminal, das ein Kontaktteil aus Aluminium und eine Anschlussteil aus Kupfer besitzt, welche miteinander verschweißt sind, wobei der Verbindungsbereich durch Anbringen einer Primärdichtung, z.B. durch ein Umspritzen mit einem speziellen Thermoplast, gegen Elektrokorrosion geschützt ist, wobei die Litze an das Kontaktteil angeschweißt wird.
Somit wird in diesen beiden letztgenannten beiden Druckschriften vorgeschlagen, den betreffenden Übergangsbereich mit einer Dichtung, beispielsweise durch ein Umspritzen mit einem speziellen Thermoplast, abzudichten. Doch zum einen ist dieser Vorgang aufwändig, und zum anderen besitzt eine solche Dichtung üblicherweise eine nur begrenzte Lebensdauer. Ein so gebildeter Verbinder ist nicht als Kontaktelement für einen Steckverbinder geeignet.
Die vorgenannten Druckschriften beziehen sich weiterhin auf Verbinder, mit denen ein Versorgungskabel an eine Stromschiene oder an ein anderes Kabel dauerhaft zur Festinstallation angeschlossen wird. Diese Installation wird also einmal montiert und ist grundsätzlich nicht dafür vorgesehen, des Öfteren geändert zu werden.
Im Gegensatz dazu sind im Stand der Technik, beispielsweise aus der Druckschrift EP 892 462 B1 , auch elektrische Schwerlaststeckverbinder bekannt, die Krimpkontakte aufweisen, und deren Kabelanschlusstechnik dadurch deutlich einfacher ist.
Auch dabei bleibt jedoch das Problem bestehen, dass die Litzen des Aluminiumleiters untereinander aufgrund ihrer Oxydierung eine schlech- te sogenannte„Querleitfähigkeit" (d.h. die Leitfähigkeit zwischen den einzelnen Litzen senkrecht zum Verlauf des Kabels) aufweisen, was ebenfalls bei sämtlichen beschriebenen Anordnungen den Übergangswiderstand zum Anschlusskontakt vergrößert.
Weiterhin besteht weiterhin das Problem, dass Aluminium leicht oxydiert und sich weiterhin mit anderen Metallen wie z.B. Kupfer oder Messing schlecht verbindet. Insbesondere gilt dies aufgrund ihrer großen Oberfläche für Aluminium-Litzenleiter. Im Übergangsbereich zwischen Aluminium und beispielsweise Kupfer entsteht insbesondere unter einer langfristigen Bestromung mit hohen Stromstärken und unter gleichzeitigem Sauerstof- feinfluss eine sogenannte„Elektrokorrosion", und damit eine Schicht, die einen wesentlich höheren spezifischen Widerstand besitzt als jedes der beteiligten Metalle. Durch diesen hohen Widerstand kann im Betrieb aufgrund der hohen Stromstärken eine starke Erwärmung stattfinden, durch die sich dieser Übergangswiderstand in Form einer Wechselwirkung zusätzlich erhöht. Diese Wärmeentwicklung kann außerdem weitere Folgeschäden, beispielsweise an einer Kunststoffisolierung, nach sich ziehen.
Beispielsweise im Bereich der Eisenbahn, aber auch in vielen anderen Bereichen, gibt es Anwendungen, die eine häufige Änderung der elektrischen Hochstromverkabelung erfordern. Somit existiert im Stand der Technik ein Bedarf an flexibel rangierbaren Hochstromverbindern, die bevorzugt feldkonfektionierbar oder zumindest mit möglichst geringem Aufwand konfektionierbar sind.
Aufgabenstellung
Die Aufgabe der Erfindung besteht somit darin, einen elektrischen Verbinder anzugeben, der einerseits ein vergleichsweise unaufwändiges Anschließen eines Aluminium-Litzenleiters gestattet, der andererseits auch ein möglichst flexibles Rangieren ermöglicht und der weiterhin auch bei über einen langen Zeitraum wirkenden hohen Stromstärken eine nachhaltig gute elektrische Leitfähigkeit aufweist.
Die Aufgabe wird in einem ersten Aspekt mit einem Schwerlaststeckverbinder der eingangs erwähnten Art durch die Merkmale des kennzeichnenden Teils des unabhängigen Hauptanspruchs 1 gelöst.
In einem zweiten Aspekt wird die Aufgabe mit einem Herstellungsverfahren der eingangs erwähnten Art durch die Merkmale des kennzeichnenden Teils des unabhängigen Nebenanspruchs 9 gelöst.
In einem dritten Aspekt wird die Aufgabe mit einem Anwendungsverfahren der eingangs erwähnten Art durch die Merkmale des kennzeichnenden Teils des unabhängigen Nebenanspruchs 14 gelöst.
Vorteilhafte Ausgestaltungen der Erfindung sind in den Unteransprüchen angegeben.
Bei der Erfindung handelt es sich gemäß dem ersten Aspekt um einen Schwerlaststeckverbinder mit mindestens einem Crimpkontakt, wobei der Crimpkontakt einen aus Aluminium oder einer Aluminiumlegierung gebildeten Crimpbereich und einen dran angrenzenden, aus Kupfer oder aus einer Kupferlegierung gebildeten Kontaktbereich aufweist, wobei der Kontaktbereich Stift- oder Buchsenförmig ausgeführt sein kann. Somit kann ein Aluminium-Litzenleiter mit dem Crimpbereich vercrimpt werden, ohne dass dadurch eine sogenannte„Elektrokorrosion" entsteht.
Der Übergang vom Kupfer- zum Aluminiummaterial ist dazu erfindungsgemäß in den Crimpkontakt hinein verlegt. Dies wird ermöglicht, indem der Crimpbereich mit dem Kontaktbereich verschweißt ist. Insbesonde- re wird diese Verbindung bei der Herstellung des Crimpkontaktes durch einen Reibschweißvorgang hergestellt.
Bei dem Crimpkontakt kann es sich also um einen hochstromfähigen Kontaktstift oder eine hochstromfähige Kontaktbuchse handeln. Mindestens ein solcher Kontaktstift und/oder eine solche Kontaktbuchse sind in einen Isolierkörper eingeführt und bilden mit diesem zusammen einen Bestandteil des Schwerlaststeckverbinders.
Es ist von besonderem Vorteil, dass der Crimpkontakt zumindest bereichsweise rotationssymmetrisch ausgebildet ist oder zumindest einen oder mehrere Bereiche mit einer zylinderförmigen oder zumindest rotationssymmetrischen Außenkontur besitzt, weil er dadurch formschlüssig in Durchgangsbohrungen oder entsprechenden ebenfalls rotationssymmetrischen Durchgangsöffnungen des Isolierkörpers angeordnet sein kann.
Es ist weiterhin vorteilhaft, bei der Herstellung, gemäß dem zweiten Aspekt der Erfindung, Aluminium aufgrund seiner leichten Verformbarkeit als Material für den Crimpbereich des Crimpkontaktes zu verwenden. Dies ist zur Vercrimpung eines Aluminiumleiters, insbesondere eines Aluminium-Litzenleiters, besonders vorteilhaft, weil dabei an dem betreffenden Bereich trotz dem unvermeidlichen Kontakt mit Sauerstoff keine Elektrokorrosion und insbesondere auch keine intermetallische Phase entsteht.
Zur Aufnahme des Aluminium-Litzenleiters besitzt der Crimpbereich einen Hohlraum mit einer Kabeleinführöffnung.
Weiterhin kann in den Crimpkontakt anschließend an den Hohlraum eine zusätzliche Durchgangsbohrung gebohrt und in diese Durchgangsöffnung kann ein Innengewinde geschnitten werden. Über dieses Innengewinde kann gemäß dem dritten Aspekt der Erfindung ein Dorn, welcher ein dazu passendes Außengewinde sowie daran anschließend eine Spitze aufweist, mit seiner Spitze voran in den Hohlraum, bevorzugt in Richtung der Kabeleinführöffnung, also entgegen der Einführrichtung des Litzenleiters, eingeschraubt werden.
Dadurch werden die Litzen des zuvor eingeführten Aluminium- Litzenleiters von Innen gegen den Crimpbereich gepresst. Vorteilhafterweise besitzt der Crimpkontakt innerhalb seines Crimpbereichs ein zusätzliches Innengewinde, dann wird der Litzenleiter von innen gegen dieses zusätzlliche Innengewinde gepresst, wobei das zusätzliche Innengewinde durch die erhöhte Reibkraft die Litzen hält. Weiterhin wird die Oxydschicht der Aluminiumlitzen aufgebrochen. Dadurch und durch den Druck gegeneinander nimmt die Querleitfähigkeit des Litzenleiters zu. Somit verringert sich der Übergangswiderstand zwischen dem Litzenleiter und dem Crimpkontakt. Auch nach dem Vercrimpen ist durch den Einsatz des Dorns die Leitfähigkeit nachhaltig verbessert, insbesondere, wenn der Dorn bevorzugt aus Aluminium oder auch einem anderen elektrisch leitfähigen Material, beispielsweise einer Kupferlegierung besteht und sich dadurch die Kontaktfläche des Crimpkontakts gegenüber dem Litzenleiter erhöht.
Bei der Herstellung ist es vorteilhaft, wenn der Innenradius des zylindrischen Hohlraums größer ist als der theoretische Innenradius des hineingeschnittenen zusätzlichen Innengewindes, so dass das in den Hohlraum hineinragende zusätzliche Innengewinde abgeflacht ist. Dies ist besonders vorteilhaft, weil dadurch einerseits zwei gewünschte Effekte des zusätzlichen Innengewindes erhalten bleiben, nämlich
1 . ) dass die Oxydschicht der Aluminiumlitzen aufgebrochen wird, und
2. ) dass der Litzenleiter entgegen seiner Einführrichtung mit besonders guter Reibwirkung im Hohlraum gehalten ist, aber dass andererseits 3.) die Litzen nicht beschädigt werden. Zum dritten Punkt ist es weiterhin besonders vorteilhaft, wenn die reale Tiefe des abgeflachten Gewindes kleiner ist als der Durchmesser der Litzen, so dass das Gewinde die Litzen nicht durchtrennen kann.
Aufgrund seiner Stabilität und seiner guten elektrischen Leitfähigkeit ist es ist vorteilhaft, Kupfer als Material für den Kontaktbereich einzusetzen. In einer vorteilhaften Ausgestaltung ist der Kontaktbereich zusätzlich zumindest teilweise beschichtet, beispielsweise versilbert oder vergoldet, und so dauerhaft gegen Korrosion geschützt. Weiterhin ist dadurch vorteilhafterweise auch eine dauerhaft niederohmige Steckverbindung mit anderen Kupferkontakten und darüber mit entsprechenden Kupferleitungen möglich, da der problematische Übergang zwischen Kupfer und Aluminium erfindungsgemäß in das Innere des Crimpkontaktes verlegt wird.
Von besonderem Vorteil ist es, dass der als Aluminium bestehende Crimpbereich mit dem aus Kupfer bestehenden Kontaktbereich durch einen Reibschweißvorgang verbunden ist, weil auf diese Weise das Entstehen einer Elektrokorrosion verhindert ist. Schließlich befindet sich die Kontaktfläche so im Inneren des Kontakts und kommt auf diese Weise nicht mit Sauerstoff in Berührung. Dadurch ist eine gute Leitfähigkeit auch nachhaltig, d.h. auch über einen langen Zeitraum, gewährleistet.
Weiterhin sorgt das Verschweißen, insbesondere das Reibschweißen, für eine besonders stabile Verbindung, so dass der Crimpkontakt auch mechanisch stabil ist.
Bei der Herstellung bietet sich gemäß dem zweiten Aspekt der Erfindung die Verwendung zylinderförmiger Kupfer- und Aluminiumrohlinge an, welche in axialer Richtung aneinander, insbesondere durch Reib- schweißen, verschweißt werden. Für den Reibschweißvorgang erscheint dementsprechend zunächst das Rotationsschweißen sinnvoll. Vorteilhafterweise kann der Crimpbereich mit dem Kontaktbereich aber auch durch Vibrationsschweißen verbunden sein. In der Praxis hat sich eine Kombination aus Rotationsschweißen und Vibrationsschweißen als besonders vorteilhaft erwiesen, da beim reinen Rotationsschweißen der Nachteil besteht, dass die inneren Bereiche der Kontaktfläche eine geringere Reibung erfahren als die äußeren Bereiche, so dass die Elemente zumindest im Kontaktbereich ein zentrales sogenannte„Sackloch" aufweisen müssten. Beim etwas aufwändigeren Vibrationsschweißen erfahren dagegen sämtliche Bereiche die gleiche Reibenergie, so dass auch die inneren Bereiche der Kontaktfläche verschweißt werden können. In der Kombination können sich die Vorteile beider Verfahren sinnvoll ergänzen.
Durch Drehen und Bohren kann der Kontaktbereich zum Stift- oder Buchsenkontakt ausgebildet werden und in den Crimpbereich kann der Hohlraum mit der Kabeleinführöffnung gebohrt werden. Bevorzugt kann in den Hohlraum das zusätzliche Innengewinde geschnitten werden, das der Erhöhung der auf den Litzenleiter wirkenden Reibkraft dient.
Ausführungsbeispiel
Ein Ausführungsbeispiel der Erfindung ist in den Zeichnungen dargestellt und wird im Folgenden näher erläutert. Es zeigen:
Fig. 1 a,b einen Querschnitt und eine perspektivische Darstellung eines als Stiftkontakt ausgebildeten Crimpkontaktes;
Fig. 2a,b einen Querschnitt und eine perspektivische Darstellung eines als Buchsenkontakt ausgebildeten Crimpkontaktes; Fig. 3a,b einen Querschnitt und eine perspektivische Darstellung des Stiftkontakts mit einem Innengewinde;
Fig. 3c eine vergrößerte Darstellung des Innengewindes;
Fig. 4a, b einen Querschnitt und eine perspektivische Darstellung
des Buchsenkontakts mit einem Innengewinde;
Fig. 4c eine vergrößerte Darstellung des Innengewindes;
Fig. 5a, b ein 3D-Querschnitt des Stift- und Buchsenkontaktes mit dem zusätzlichen Innengewinde;
Fig. 6a, b ein 3D-Querschnitt des Stift- und Buchsenkontaktes mit dem zusätzlichen Innengewinde und einem Dorn;
Fig. 7 einen Schwerlaststeckverbinder in einer Explosionsdarstellung.
Die Figuren enthalten teilweise vereinfachte, schematische Darstellungen. Zum Teil werden für gleiche, aber gegebenenfalls nicht identische Elemente identische Bezugszeichen verwendet. Verschiedene Ansichten gleicher Elemente könnten unterschiedlich skaliert sein.
Die Fig. 1 a zeigt einen Querschnitt und die Fig. 1 b zeigt eine perspektivische Darstellung eines als Stiftkontakt 1 ausgeführten ersten Crimpkon- taktes. Der Stiftkontakt 1 besitzt einen ersten Crimpbereich 1 1 und einen ersten Kontaktbereich 12, welche mit einander an einem ersten Übergangsbereich 10 in Kontakt stehen, beispielsweise indem sie, insbesondere durch einen Reibschweißvorgang, aneinander verschweißt sind. Dazu können bei der Herstellung beispielsweise zwei zylinderförmige Rohlinge, von denen einer aus Kupfer und der andere aus Aluminium besteht, in axialer Richtung aneinander angefügt und , z.B. durch Rotationsschweißen und/oder Vibrationsschweißen, aneinander verschweißt werden. Durch Drehen und Bohren kann in darauffolgenden Arbeitsschritten der aus Kupfer bestehende erste Kontaktbereich 12 einen Kontaktstift 121 erhalten, so dass es sich bei diesem Crimpkontakt um einen Stiftkontakt 1 handelt.
In den aus Aluminium bestehenden ersten Crimpbereich 1 1 kann ein erster Hohlraum 1 1 1 hineingebohrt werden. Der erste Crimpbereich 1 1 besitzt dadurch an seinem freistehenden Ende angrenzend an den Hohlraum eine erste Kabeleinführöffnung 1 10.
Die Fig.2a zeigt einen Querschnitt und die Fig. 2b zeigt eine perspektivische Darstellung eines als Buchsenkontakt 2 ausgeführten zweiten
Crimpkontaktes. Der Buchsenkontakt 2 besitzt einen zweiten Crimpbereich 21 und einen zweiten Kontaktbereich 22, welche mit einander an einem zweiten Übergangsbereich 20 in Kontakt stehen, beispielsweise indem sie, insbesondere durch einen Reibschweißvorgang, aneinander verschweißt sind. Dazu können bei der Herstellung beispielsweise zwei zylinderförmige Rohlinge, von denen einer aus Kupfer und der andere aus Aluminium besteht, in axialer Richtung aneinander angefügt und , z.B. durch Rotationsschweißen und/oder Vibrationsschweißen, aneinander verschweißt werden. Durch Drehen und Bohren kann in darauffolgenden Arbeitsschritten der aus Kupfer bestehende zweite Kontaktbereich 22 eine Kontaktbuchse 221 erhalten, so dass es sich bei diesem Crimpkontakt um einen Buchsenkontakt 2 handelt. Naturgemäß weist die Buchse 221 einen Buchsenhohlraum 221 1 auf, der ebenfalls bevorzugt durch Bohren entsteht.
In den aus Aluminium bestehenden zweiten Crimpbereich 21 kann weiterhin ein Hohlraum 21 1 hineingebohrt werden. Der zweite Crimpbereich 21 besitzt dadurch an seinem freistehenden Ende angrenzend an den zweiten Hohlraum 21 1 eine zweite Kabeleinführöffnung 210.
Die Fig. 3a und 3b stellen in vergleichbarer Weise den Stiftkontakt 1 in einer modifizierten Ausführung dar, in welcher der Stiftkontakt 1 zusätzlich eine erste Durchgangsöffnung 101 besitzt, die eine zylindrische Form besitzt um darin einen hier nicht dargestellten Dorn 1 13 (dargestellt in Fig. 6a) aufnehmen zu können. Weiterhin besitzt der modifizierte Stiftkontakt 1 einen Stifthohlraum 121 1 , der über die erste zylindrische Durchgangsöffnung 101 mit dem ersten Hohlraum 1 1 1 verbunden ist. Bei der Herstellung wird die erste Durchgangsöffnung 101 bevorzugt durch Bohren erzeugt, so dass es sich bei der ersten Durchgangsöffnung 101 um eine Durchgangsbohrung handelt. Weiterhin kann in die erste Durchgangsöffnung 101 ein Innengewinde 103 geschnitten sein, so dass der Dorn 1 13, welcher ein dazu passendes Außengewinde 2132 besitzt, in die erste Durchgangsöffnung 101 und darüber in den ersten Hohlraum 1 1 1 hineingeschraubt werden kann.
Weiterhin besitzt der erste Crimpbereich 1 1 in dieser modifizierten Ausführung in seinem ersten Hohlraum 1 1 1 ein erstes zusätzliches Innengewinde 1 12, das bei der Herstellung des Stiftkontakts 1 von innen in den ersten Crimpbereich 1 1 hineingeschnitten wird. Dieses erste zusätzliche Innengewinde 1 12 dient dazu, einen in den ersten Hohlraum 1 1 1 eingeführten Litzenleiter in diesem durch eine erhöhte Reibkraft zu halten, auch wenn der Dorn 1 13 in den ersten Hohlraum 1 1 1 in Richtung der ersten Kabeleinführöffnung 1 10, also entgegen der Einführrichtung des Litzenleiters, hineingeschraubt wird.
Eine vorteilhafte Ausführung des ersten zusätzlichen Innengewindes 1 12 ist in der Fig. 3c vergrößert dargestellt. Es ist offensichtlich, dass der theoretische Innendurchmesser DT des ersten zusätzlichen Innengewindesl 12 kleiner ist als der reale Innendurchmesser DR des ersten Hohlraums 1 1 1 . Der reale Verlauf dieses Innengewindes 1 12 ist durch den schraffierten Bereich dargestellt. Dagegen gibt der nicht schraffierte Bereich den darüber hinausgehenden theoretischen Verlauf an, den ein theoretisches Innengewinde mit der theoretischen Gewindetiefe TT und dem theoretischen Gewindeinnendurchmesser DT hätte. Der reale Hohlrauminnendurchmesser DR ist jedoch größer als der theoretische Gewindeinnendurchmesser DT, der als Maßgabe für das hineinzuschneidende Innengewinde verwendet wird. Dadurch besitzt dieses Innengewinde 1 12 eine reale Gewindetiefe TR, die kleiner ist als die theoretische Gewindetiefe TT und der reale Verlauf des Gewindes 1 12 ist stärker als üblich abgeflacht.
Mit anderen Worten wird bei der Herstellung nur der äußere Teil des theoretischen Innengewindes in den ersten Crimpbereich 1 1 geschnitten und das dadurch gebildete, real existierende, zusätzliche Innengewinde 1 12 besitzt somit eine besonders abgeflachte Form.
Die Fig. 4a und 4b stellen in vergleichbarer Weise den Buchsenkontakt 2 dar, der modifiziert wurde, um einen hier noch nicht dargestellten Dorn 213 (dargestellt in Fig. 6b) aufnehmen zu können. Dazu ist der Buchsenhohlraum 221 1 über eine zweite zylindrische Durchgangsöffnung 201 mit dem zweiten Hohlraum 21 1 verbunden. Bei der Herstellung wird diese zweite Durchgangsöffnung 201 bevorzugt durch Bohren erzeugt, so dass es sich bei der zweiten Durchgangsöffnung 201 um eine Durchgangsbohrung handelt. Auch kann in die zweite Durchgangsöffnung 201 ein zweites zusätzliches Innengewinde 203 geschnitten sein, so dass der Dorn 213, der ein dazu passendes Außengewinde 2132 besitzt, in die zweite Durchgangsöffnung 201 und darüber in den zweiten Hohlraum 21 1 hineingeschraubt werden kann.
Weiterhin besitzt der zweite Crimpbereich 21 im zweiten Hohlraum 21 1 ein zweites zusätzliches Innengewinde 212, das bei der Herstellung von innen in den Crimpbereich 21 des Buchsenkontaktes 2 hineingeschnitten wird. Dieses zweite zusätzliche Innengewinde 212 dient dazu, einen in den zweiten Hohlraum 21 1 eingeführten Litzenleiter in diesem durch eine erhöhte Reibkraft zu halten, auch wenn der Dorn 213 in den zweiten Hohlraum 21 1 in Richtung der zweiten Kabeleinführöffnung 210, also entgegen der Einführrichtung des Litzenleiters, hineingeschraubt wird.
Eine vorteilhafte Ausführung des zweiten zusätzlichen Innengewindes 212 ist in der Fig. 4c vergrößert dargestellt. Der reale Verlauf dieses Innengewindes 212 ist durch den schraffierten Bereich dargestellt. Dagegen gibt der nicht schraffierte Bereich den weiteren theoretischen Verlauf an, den ein theoretisches Innengewinde mit der theoretischen Gewindetiefe TT und dem theoretischen Gewindeinnendurchmesser DT hätte. Der Hohlrauminnendurchmesser DR ist demnach größer als der theoretische Gewindeinnendurchmesser DT, der jedoch als Maßgabe für das hineinzuschneidende Innengewinde verwendet wird. Dadurch besitzt dieses Innengewinde 212 eine reale Gewindetiefe TR, die kleiner ist als die theoretische Gewindetiefe TT und der reale Verlauf des Gewindes 212 ist stärker als üblich abgeflacht.
Mit anderen Worten wird bei der Herstellung nur der äußere Teil des theoretischen Innengewindes in den zweiten Crimpbereich 21 geschnitten und das dadurch gebildete, real existierende, zusätzliche Innengewinde 212 besitzt somit eine besonders abgeflachte Form.
In den Fig. 5a und 5b sind der Stiftkontakt 1 und der Buchsenkontakt 2 mit der jeweiligen zylindrischen Durchgangsöffnung 101 , 201 in einer geschnittenen 3D-Darstellung einander gegenüber gestellt.
Die Fig. 6a und 6b zeigen den Stiftkontakt 1 und den Buchsenkontakt 2 mit der jeweiligen Durchgangsöffnung 101 , 201 und einem dazugehörigen ersten bzw. zweiten Dorn 1 13, 213. Jede der Durchgangsöffnungen 101 , 201 besitzt ein dazu gehöriges Innengewinde 103, 203. Der jeweilige Dorn 1 13, 213 besitzt jeweils ein dazu passendes Außengewinde 1 132, 2132, mit dem er in die jeweilige Durchgangsöffnung 101 , 201 eingeschraubt ist. Weiterhin kann der Dorn 1 13, 213 einen Schraubkopf 1 131 , 2131 besitzen, der das Einschrauben aus dem Stift- oder Buchsenhohlraum 121 1 , 221 1 heraus ermöglicht.
Die Fig.7 zeigt einen kompletten Schwerlaststeckverbinder in einer Explosionsdarstellung. Exemplarisch wird ein Stiftkontakt 1 dargestellt. Ebenso gut könnte es sich aber auch um einen Buchsenkontakt 2 handeln.
Weiterhin ist ein Isolierkörper 3 dargestellt, der dazu vorgesehen ist, den Stiftkontakt 1 aufzunehmen. Dieser Isolierköper 3 kann seinerseits über Befestigungselemente 31 in dem Steckverbindergehäuse 4 befestigt werden.
Crimpkontakt
Bezugszeichenliste
1 Stiftkontakt
10 erster Übergangsbereich
101 erste Durchgangsöffnung
103 Innengewinde
1 1 erster Crimpbereich
1 10 erste Kabeleinführöffnung
1 1 1 erster Hohlraum
1 12 erstes zusätzliches Innengewinde
12 erster Kontaktbereich
121 Kontaktstift
121 1 Stifthohlraum
1 13 erster Dorn
1 131 Schraubkopf des ersten Dorns
1 132 Außengewinde des Dorns
2 Buchsenkontakt
20 zweiter Übergangsbereich
201 zweite Durchgangsöffnung
203 Innengewinde
21 zweiter Crimpbereich
210 zweite Kabeleinführöffnung
21 1 zweiter Hohlraum
212 zweites zusätzliches Innengewinde
22 zweiter Kontaktbereich
221 Kontaktbuchse 221 1 Buchsenhohlraum
213 zweiter Dorn
2131 Schraubkopf des zweiten Dorns
2132 Außengewinde des zweiten Dorns
3 Isolierkörper
31 Befestigungselemente
4 Steckverbindergehäuse
DR Realer Innendurchmesser des ersten / zweiten Hohlraums
DT Theoretischer Innendurchmesser des zusätzlichen Innenge'
TR Theoretische Tiefe des weiteren Innenggewindes
TT Reale Tiefe des zusätzlichen Innengewindes

Claims

Crimpkontakt
Ansprüche
Schwerlaststeckverbinder, aufweisend ein Steckverbindergehäuse (4), einen Isolierköper (3) und mindestens einen im Isolierkörper angeordneten Crimpkontakt (1 ,2), dadurch gekennzeichnet, dass der Crimpkontakt (1 ,2) zumindest Bereichsweise rotationssymmetrisch ausgebildet ist, wobei die entsprechende Symmetrieachse in Steckrichtung verläuft,
dass der Crimpkontakt (1 ,2) einen Crimpbereich (1 1 ,21 ) aufweist, der aus Aluminium oder einer Aluminiumlegierung gebildet ist, dass der Crimpkontakt (1 ,2) angrenzend an den Crimpbereich (1 1 ,21 ) einen Kontaktbereich (12,22) aufweist, der aus Kupfer oder einer Kupferlegierung gebildet ist, und dass der Crimpbereich (1 1 ,21 ) mit dem Kontaktbereich (12,22) verschweißt ist.
Schwerlaststeckverbinder nach Anspruch 1 , dadurch gekennzeichnet, dass der Crimpkontakt (1 ,2) in seinem Crimpbereich (1 1 ,21 ) einen zylindrischen Hohlraum (1 1 1 , 21 1 ) mit einer Kabeleinführöffnung (1 10, 210) zur Aufnahme eines Aluminium-Litzenleiters aufweist.
Schwerlaststeckverbinder nach Anspruch 2, dadurch gekennzeichnet, dass der Crimpkontakt (1 ,2) in seinem zylindrischen Hohlraum (1 1 1 ,21 1 ) ein zusätzliches Innengewinde (1 12,212) aufweist.
Schwerlaststeckverbinder nach Anspruch 3, dadurch gekennzeichnet, dass der reale Innendurchmesser (DR) des zylindrischen Hohlraums (1 1 1 ,21 1 ) größer ist, als der theoretische Innendurchmesser (DT) des zusätzlichen Innengewindes (1 12,212), so dass das zusätzliche Innengewinde (1 12,212) abgeflacht ist. Schwerlaststeckverbinder nach einem der Ansprüche 2 bis 4, dadurch gekennzeichnet, dass der Crimpkontakt (1 ,2) innerhalb seines Hohlraums (1 1 1 ,21 1 ) einen Dorn (1 13,213) aufweist, der in Richtung der Kabeleinführöffnung (1 10,210) weist.
Schwerlaststeckverbinder nach Anspruch 5, dadurch gekennzeichnet, dass der Dorn (1 13,213) ein Außengewinde (1 132,2132) aufweist, und dass der Crimpkontakt (1 ,2) eine Durchgangsöffnung (101 ,201 ) mit einem dazu passenden Innengewinde (103,203) aufweist, so dass der Dorn (1 13,213) über die Durchgangsöffnung (101 ,201 ) in der Hohlraum (1 1 1 ,21 1 ) einschraubbar ist.
Schwerlaststeckverbinder nach Anspruch 6 dadurch gekennzeichnet, dass der Dorn (1 13,213) einen Schraubkopf (1 131 ,2131 ), beispielsweise einen Schlitz oder einen Kreuzschlitz, aufweist, so dass er mit Hilfe eines Schraubendrehers in der Hohlraum (1 1 1 ,21 1 ) einschraubbar ist.
Schwerlaststeckverbinder nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die Oberfläche des Kontaktbereichs (12,22) zumindest teilweise mit Silber beschichtet ist.
Verfahren zur Herstellung eines Crimpkontaktes, dadurch gekennzeichnet, dass das Verfahren folgende Schritte umfasst:
1 .) Eine zylinderförmige Kupferstange und eine zylinderförmige Aluminiumstange werden durch Reibschweißen zu einer gemeinsamen zylindrischen Stange mit einem Aluminiumteil und einem Kupferteil zusammengeschweißt;
2.) durch Drehen und / oder Bohren wird aus dem Aluminiumteil ein zusammenpressbarer Crimpbereich (1 1 ,21 ) mit einer Hohlraum (1 1 1 ,21 1 ) zur Aufnahme eines Aluminium-Litzenleiters hergestellt und aus dem Kupferteil wird ein Kontaktbereich (12,22) hergestellt.
3.) die Oberfläche des Kontaktbereichs (12,22) wird zumindest teilweise mit Silber beschichtet.
Verfahren gemäß Anspruch 9, dadurch gekennzeichnet, dass das Reibschweißen im ersten Verfahrensschritt Rotationsschweißen und/oder Vibrationsschweißen umfasst.
Verfahren gemäß einem der Ansprüche 9 bis 10, dadurch gekennzeichnet, dass im zweiten Verfahrensschritt der Hohlraum
(1 1 1 ,21 1 ) mit einem realen Innendurchmesser (DR) in den Crimpbe reich (1 1 ,21 ) gebohrt wird.
Verfahren gemäß Anspruch 1 1 , dadurch gekennzeichnet, dass in den Crimpbereich (1 1 1 ,21 1 ) hohlraumseitig ein zusätzliches Innengewinde (1 12,212) mit einem theoretischen Innendurchmesser (DT) geschnitten wird.
13. Verfahren gemäß Anspruch 12, dadurch gekennzeichnet, dass der theoretische Innendurchmesser (DT) des zusätzlichen Innengewindes (1 12,212) kleiner ist als der reale Durchmesser (DR) des Hohl- raums (1 1 1 ,21 1 ).
14. Verfahren zur Verwendung eines Crimpkontaktes (1 ,2) , wobei zunächst ein Litzenleiter durch eine Kabeleinführöffnung (1 10,210) in eine zylindrische Hohlraum (1 1 1 ,21 1 ) eines Crimpbereichs (1 1 ,21 ) des Crimpkontaktes (1 ,2) eingeführt wird und wobei in einem späteren Verfahrensschritt der Crimpbereich (1 1 ,21 ) mit einem Crimpwerkzeug zusammengepresst wird, dadurch gekennzeichnet, dass
nach dem Einführen des Litzenleiters und vor dem Zusammenpressen des Crimpbereichs (1 1 ,21 ) ein Dorn (1 13,213) in der Hohlraum (1 1 1 ,21 1 ) des Crimpbereichs (1 1 ,21 ) entgegen der Einführrichtung des Litzenleiters eingeschraubt wird.
15. Verfahren gemäß Anspruch 14, dadurch gekennzeichnet, dass der Litzenleiter beim Einschrauben des Dorns (1 13,213) durch ein zusätzliches Innengewinde (1 12,212) des Hohlraums (1 1 1 ,21 1 ) mit besonders großer Reibkraft in der Hohlraum (1 1 1 ,21 1 ) gehalten ist.
16. Verfahren gemäß einem der Ansprüche 14 bis 15, dadurch gekennzeichnet, dass
die Litzen des Litzenleiters durch das Einschrauben des Dorns (1 13,213) zusammengepresst und von innen gegen den Crimpbe- reich (1 1 ,21 ) gepresst werden, und dass dadurch weiterhin Oxydschichten der Litzen aufgebrochen werden, wodurch sich die Querleitfähigkeit vergrößert.
PCT/DE2015/100330 2014-09-03 2015-08-05 Crimpkontakt WO2016034166A2 (de)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP15766384.0A EP3189561B1 (de) 2014-09-03 2015-08-05 Crimpkontakt
KR1020177008517A KR20170044738A (ko) 2014-09-03 2015-08-05 크림프 접촉부
US15/504,270 US20170229793A1 (en) 2014-09-03 2015-08-05 Crimp contact
CA2958509A CA2958509A1 (en) 2014-09-03 2015-08-05 Crimp contact
JP2017512710A JP2017526147A (ja) 2014-09-03 2015-08-05 圧着端子
RU2017110793A RU2670955C9 (ru) 2014-09-03 2015-08-05 Обжимной контакт
CN201580047356.3A CN106797076A (zh) 2014-09-03 2015-08-05 压接触头

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102014112701.3 2014-09-03
DE102014112701.3A DE102014112701A1 (de) 2014-09-03 2014-09-03 Crimpkontakt

Publications (2)

Publication Number Publication Date
WO2016034166A2 true WO2016034166A2 (de) 2016-03-10
WO2016034166A3 WO2016034166A3 (de) 2016-07-21

Family

ID=54148301

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2015/100330 WO2016034166A2 (de) 2014-09-03 2015-08-05 Crimpkontakt

Country Status (9)

Country Link
US (1) US20170229793A1 (de)
EP (1) EP3189561B1 (de)
JP (1) JP2017526147A (de)
KR (1) KR20170044738A (de)
CN (1) CN106797076A (de)
CA (1) CA2958509A1 (de)
DE (1) DE102014112701A1 (de)
RU (1) RU2670955C9 (de)
WO (1) WO2016034166A2 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016106704A1 (de) 2016-04-12 2017-10-12 HARTING Electronics GmbH Steckverbinder mit Leitgummi

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10027097B1 (en) * 2014-04-28 2018-07-17 Itool Equipment Holding Llc Crimp-on single-use lanyard assembly for wire-pulling purposes
DE202017101060U1 (de) 2017-02-24 2018-05-25 Fct Electronic Gmbh Steckverbinder, insbesondere für eine Hochstromanwendung
CN107230561A (zh) * 2017-06-19 2017-10-03 镇江天旭电气有限公司 一种静触头
EP3685471B1 (de) 2017-09-22 2021-07-07 Harting Electric GmbH & Co. KG Hochstromsteckverbinder mit isolierhülse
DE102018100440A1 (de) * 2018-01-10 2019-07-11 Phoenix Contact Gmbh & Co. Kg Verfahren zum Herstellen eines kaltverformbaren Crimpkontakts, Verfahren zum Herstellen einer elektromechanischen Crimpverbindung und Crimpkontakt
JP7171261B2 (ja) * 2018-06-21 2022-11-15 住友電気工業株式会社 接続部材、ケーブルの分岐接続構造、分岐付きケーブル、及びケーブルの分岐接続構造の製造方法
DE202018104958U1 (de) 2018-08-30 2018-09-12 Harting Electric Gmbh & Co. Kg Steckverbinder mit Komponenten aus verbessertem Material
JP7365018B2 (ja) 2019-04-12 2023-10-19 矢崎総業株式会社 端子、及び、端子の製造方法
CN110707456A (zh) * 2019-11-08 2020-01-17 北京森照科技有限公司 大电流插拔连接器部件及大电流插拔连接器
DE102020103866A1 (de) 2020-02-14 2021-08-19 Phoenix Contact E-Mobility Gmbh Kontaktelementbaugruppe für ein Steckverbinderteil
DE202021004014U1 (de) 2021-02-24 2022-05-12 Harting Electric Stiftung & Co. Kg Elektrisches Verbinderelement
DE102021104347A1 (de) 2021-02-24 2022-08-25 Harting Electric Stiftung & Co. Kg Elektrisches Verbinderelement
KR20230091588A (ko) 2021-12-16 2023-06-23 현대자동차주식회사 관형 부스바 제조 방법 및 관형 부스바

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1032077A2 (de) 1999-02-24 2000-08-30 Auto Kabel Managementgesellschaft mbH Verbindung eines elektrischen Aluminiumkabels mit einem aus Kupfer oder dergleichen Metall bestehenden Anschlussteil
EP0892462B1 (de) 1997-07-16 2004-05-19 HARTING Electric GmbH & Co. KG Kontaktelement mit einem Anschluss für Litzenleiter
EP2579390A1 (de) 2011-10-05 2013-04-10 WEITKOWITZ Kabelschuhe und Werkzeuge GmbH Aluminium-Kupfer-Terminal und Verfahren zur Herstellung desselben
DE112011103392T5 (de) 2010-10-07 2013-07-11 Yazaki Corporation Crimp-Anschluss
EP2621022A1 (de) 2012-01-25 2013-07-31 Intercable GmbH Kabelschuh zum Verbinden eines stromführenden Elements mit einem Aluminiumkabel
EP2662934A2 (de) 2012-05-11 2013-11-13 Gebauer & Griller Kabelwerke Gesellschaft m.b.H. Verbindung eines elektrischen Kabels mit einem Kontaktteil
WO2013174581A1 (de) 2012-05-25 2013-11-28 Auto-Kabel Management Gmbh Elektrisches verbindungssystem
DE102013105669A1 (de) 2012-06-06 2013-12-12 Gebauer & Griller Kabelwerke Gesellschaft M.B.H. Verbindung eines elektrischen Kabels mit einem Kontaktteil

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH234217A (de) * 1943-10-02 1944-09-15 Bbc Brown Boveri & Cie Lösbarer, lötfreier Kabelanschluss.
DE1079714B (de) * 1956-05-17 1960-04-14 Plessey Co Ltd Endanschluss fuer isolierte elektrische Leiter
US3109691A (en) * 1960-04-21 1963-11-05 Hirschmann Radiotechnik Connection element for ignition cables having a tubular internal conductor
GB982667A (en) * 1962-11-10 1965-02-10 Hawke Cable Glands Ltd Improvements in or relating to electric terminals
US3350500A (en) * 1964-12-29 1967-10-31 Amp Inc Connections for coaxial cable means
US3844923A (en) * 1973-08-02 1974-10-29 P Sandrock Dangler assembly for electro-chemical installations
US3916518A (en) * 1973-10-02 1975-11-04 Coatings Inc Method for making one-piece bimetallic connector
SE392183B (sv) * 1975-01-29 1977-03-14 Winemar Ab Curt Forbindningsdon
US4039244A (en) * 1976-04-09 1977-08-02 Coatings Inc. Bimetallic electrical connector and method for making the same
DE2938133A1 (de) * 1979-09-20 1981-04-09 Siemens AG, 1000 Berlin und 8000 München Kabelgarnitur mit einem steckelement
DE3065518D1 (en) * 1979-08-01 1983-12-15 Siemens Ag Crimping sleeve for a pre-fabricated cable fitting
US4288311A (en) * 1980-01-18 1981-09-08 Albert Singleton Contactor and dangler assembly for plating barrel
US4442182A (en) * 1982-05-26 1984-04-10 Teledyne Penn-Union One-piece, composite electrical connector
SU1686540A1 (ru) * 1989-03-06 1991-10-23 Предприятие П/Я А-7160 Электрический соединитель
DE19854691A1 (de) * 1998-11-26 2000-06-29 Innocept Medizintechnik Ag Kontaktvorrichtung für elektrische Leiter aus Silikon-Elastomer
US6677529B1 (en) * 1999-02-05 2004-01-13 John E. Endacott Wire connector
DE19950084C1 (de) * 1999-10-18 2001-08-16 Rema Lipprandt Gmbh Co Kg Platinen-Hochstrom-Steckvorrichtung
JP2002216864A (ja) * 2001-01-19 2002-08-02 Yazaki Corp 電線の接続構造及び接続方法
US7538274B2 (en) * 2006-01-23 2009-05-26 Novinium, Inc. Swagable high-pressure cable connectors having improved sealing means
JP2009536426A (ja) * 2006-05-08 2009-10-08 マルチ−ホールディング アクチェンゲゼルシャフト プラグコネクタ
JP4513104B2 (ja) * 2007-02-08 2010-07-28 貞幸 網矢 ケーブルの末端処理
US7413489B1 (en) * 2007-06-21 2008-08-19 Tyco Electronics Brasil Ltda. Copper to aluminum bimetallic termination
RU75253U1 (ru) * 2008-02-27 2008-07-27 Общество с ограниченной ответственностью "Томское научно-производственное объединение "Ильма" Соединитель электрический
DE102008061186B4 (de) * 2008-12-09 2010-07-29 Leoni Bordnetz-Systeme Gmbh Elektronische Kontaktverbindung und Verfahren zur Herstellung einer elektrischen Kontaktverbindung
JP2010146739A (ja) * 2008-12-16 2010-07-01 Sumitomo Wiring Syst Ltd 電線接続スリーブ、電線接続スリーブの製造方法、電線接続スリーブが予め圧着されたリペア電線、および電線の接続方法
US8519267B2 (en) * 2009-02-16 2013-08-27 Carlisle Interconnect Technologies, Inc. Terminal having integral oxide breaker
RU90268U1 (ru) * 2009-10-02 2009-12-27 Андрей Вячеславович Носов Штекерное гнездо
RU99252U1 (ru) * 2010-03-22 2010-11-10 Общество с ограниченной ответственностью "Научно-производственная фирма "Автоматика" Кабельный штекер
CN101969152B (zh) * 2010-09-15 2012-08-22 加铝(天津)铝合金产品有限公司 电连接端子
DE102010045921A1 (de) * 2010-09-21 2012-03-22 Auto-Kabel Managementgesellschaft Mbh Elektrisches Verbindungssystem einer Energiegewinnungseinrichtung
US8585447B2 (en) * 2011-08-17 2013-11-19 Delphi Technologies, Inc. Electrically-conducting contact element with an aperture with an internal surface having a groove with sharp edges
DE202011104677U1 (de) * 2011-08-22 2012-01-24 Leoni Bordnetz-Systeme Gmbh Kontaktierungsvorrichtung sowie Kontaktverbindung
US8205786B1 (en) * 2011-10-03 2012-06-26 Honeywell International Inc. Electromagnetic coil assemblies including aluminum wire splice connectors, aluminum wire splice connectors, and associated methods
JP5679212B2 (ja) * 2011-12-12 2015-03-04 株式会社オートネットワーク技術研究所 中継端子

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0892462B1 (de) 1997-07-16 2004-05-19 HARTING Electric GmbH & Co. KG Kontaktelement mit einem Anschluss für Litzenleiter
EP1032077A2 (de) 1999-02-24 2000-08-30 Auto Kabel Managementgesellschaft mbH Verbindung eines elektrischen Aluminiumkabels mit einem aus Kupfer oder dergleichen Metall bestehenden Anschlussteil
DE112011103392T5 (de) 2010-10-07 2013-07-11 Yazaki Corporation Crimp-Anschluss
EP2579390A1 (de) 2011-10-05 2013-04-10 WEITKOWITZ Kabelschuhe und Werkzeuge GmbH Aluminium-Kupfer-Terminal und Verfahren zur Herstellung desselben
EP2621022A1 (de) 2012-01-25 2013-07-31 Intercable GmbH Kabelschuh zum Verbinden eines stromführenden Elements mit einem Aluminiumkabel
EP2662934A2 (de) 2012-05-11 2013-11-13 Gebauer & Griller Kabelwerke Gesellschaft m.b.H. Verbindung eines elektrischen Kabels mit einem Kontaktteil
WO2013174581A1 (de) 2012-05-25 2013-11-28 Auto-Kabel Management Gmbh Elektrisches verbindungssystem
DE102013105669A1 (de) 2012-06-06 2013-12-12 Gebauer & Griller Kabelwerke Gesellschaft M.B.H. Verbindung eines elektrischen Kabels mit einem Kontaktteil

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016106704A1 (de) 2016-04-12 2017-10-12 HARTING Electronics GmbH Steckverbinder mit Leitgummi
WO2017178007A1 (de) 2016-04-12 2017-10-19 HARTING Electronics GmbH Steckverbinder mit leitgummi
US11189950B2 (en) 2016-04-12 2021-11-30 HARTING Electronics GmbH Plug connector with a conductive rubber element

Also Published As

Publication number Publication date
JP2017526147A (ja) 2017-09-07
WO2016034166A3 (de) 2016-07-21
US20170229793A1 (en) 2017-08-10
RU2017110793A (ru) 2018-10-03
RU2017110793A3 (de) 2018-10-03
RU2670955C9 (ru) 2018-11-21
CA2958509A1 (en) 2016-03-10
KR20170044738A (ko) 2017-04-25
EP3189561B1 (de) 2020-10-07
EP3189561A2 (de) 2017-07-12
CN106797076A (zh) 2017-05-31
RU2670955C2 (ru) 2018-10-26
DE102014112701A1 (de) 2016-03-03

Similar Documents

Publication Publication Date Title
EP3189561B1 (de) Crimpkontakt
DE10358686B4 (de) Crimpkontaktelement
WO2011120854A1 (de) Verfahren zur kabelkonfektionierung sowie konfektioniertes kabel
DE112011103488B4 (de) Anschlussteil für einen elektrischen Leiter
WO2015058887A1 (de) Elektrische anschlusskonsole für kfz bordnetzleitung
EP2362491A1 (de) Verfahren zum Verbinden einer elektrischen Leitung mit einem elektrischen Anschlusselement
EP2850696B1 (de) Verfahren und vorrichtung zum erzeugen einer wirkverbindung zwischen einem verbinder und einem kabel
DE102012002350A1 (de) Kontaktelement für eine elektrische Steckverbindervorrichtung
DE102007055040A1 (de) Kontaktelement und Verfahren zur Herstellung eines Kontaktelementes
EP2725659B1 (de) Koaxialkabelbuchse
DE102013013368B4 (de) Verfahren zur Herstellung einer elektrischen Verbindung sowie elektrische Verbindung
EP3206258B1 (de) System zur herstellung einer elektrischen verbindung, elektrische verbindung und verfahren zu deren herstellung
DE102019107355A1 (de) Werkzeuglose Kontaktierung eines elektrischen Leiters
WO2009153288A1 (de) Leitungseinheit
EP1624473A2 (de) Lötfreie Kontaktierung dielektrisch behinderter Entladungslampen
AT516232B1 (de) Verfahren zur Verbindung eines Kabelendes mit einem Verbindungselement
EP2965385B1 (de) Klippkontaktelement für eine leiterplatte und verfahren zu dessen herstellung
EP2940803B1 (de) Verbinder für elektrische Energiekabel
CH706105A1 (de) Korrosionsbeständige Verbindung.
DE102008062597B3 (de) Verbindungselement mit mindestens einem elektrischen Steckkontakt und Verfahen zur Herstellung desselben
LU500419B1 (de) Verbindungsanordnung mit Crimpverbindung und Verfahren zur Herstellung einer Verbindungsanordnung mit Crimpverbindung
DE202016102388U1 (de) Konfektionierbarer Kontakt mit axialer Verschraubung
WO2022144054A1 (de) Elektrisches verbindungselement und verfahren zu dessen herstellung
EP4002592A1 (de) Anschlussteil für eine elektrische leitung und leitungsverbindung
WO2021185863A1 (de) Stecker und buchse für aluminium-energiekabel sowie aluminium-energiekabel mit einem stecker bzw. einer buchse

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15766384

Country of ref document: EP

Kind code of ref document: A2

REEP Request for entry into the european phase

Ref document number: 2015766384

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015766384

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2958509

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2017512710

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20177008517

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017110793

Country of ref document: RU

Kind code of ref document: A