WO2016033942A1 - 一种胶囊饲料、其制备方法及应用 - Google Patents

一种胶囊饲料、其制备方法及应用 Download PDF

Info

Publication number
WO2016033942A1
WO2016033942A1 PCT/CN2015/072385 CN2015072385W WO2016033942A1 WO 2016033942 A1 WO2016033942 A1 WO 2016033942A1 CN 2015072385 W CN2015072385 W CN 2015072385W WO 2016033942 A1 WO2016033942 A1 WO 2016033942A1
Authority
WO
WIPO (PCT)
Prior art keywords
capsule
parts
feed
fish
group
Prior art date
Application number
PCT/CN2015/072385
Other languages
English (en)
French (fr)
Inventor
舒锐
Original Assignee
广东英锐生物科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201410442829.7A external-priority patent/CN104206656B/zh
Priority claimed from CN201420648953.4U external-priority patent/CN204273129U/zh
Priority claimed from CN201410599754.3A external-priority patent/CN104381639B/zh
Priority claimed from CN201410599872.4A external-priority patent/CN104351533A/zh
Priority claimed from CN201410615146.7A external-priority patent/CN104431417A/zh
Priority claimed from CN201410817750.8A external-priority patent/CN104543517A/zh
Application filed by 广东英锐生物科技有限公司 filed Critical 广东英锐生物科技有限公司
Publication of WO2016033942A1 publication Critical patent/WO2016033942A1/zh

Links

Images

Definitions

  • the invention belongs to the technical field of aquaculture, and particularly relates to a capsule feed, a preparation method thereof and application thereof.
  • carnivorous, herbivorous and omnivorous The feeding habits of aquatic animals are carnivorous, herbivorous and omnivorous.
  • carnivorous aquatic animals are a large group in the ocean or rivers and lakes.
  • the so-called "high-end valuable fish" in aquaculture is often carnivorous fish, such as alfalfa, flower buds, black mullet, scorpion, grouper, stingray, arowana, white pheasant and so on.
  • a capsule feed comprising a water soluble or hydrolyzable capsule and a feed encased in the capsule.
  • the outer surface of the capsule is a glossy surface, preferably a smooth glossy surface.
  • the bottom of the capsule is provided with an outwardly projecting and water-soluble or hydrolyzable weight handle, the average density of the capsule and the feed being less than the density of the culture water, the capsule, the feed and the overall weight of the weight handle The density is greater than the density of the cultured water.
  • the capsule and the feed have an average density of less than 1.000 ⁇ 10 3 kg / m 3 or less than 1.025 ⁇ 10 3 kg / m 3 ; the weight of the weight handle is greater than 1.000 ⁇ 10 3 kg / m 3 or greater 1.025 x 10 3 kg/m 3 ; the overall density of the capsule, feed and weight handle is greater than 1.000 x 10 3 kg/m 3 or greater than 1.025 x 10 3 kg/m 3 .
  • the capsule and the weight handle are integrally formed gelatin, sodium alginate, zein, ethyl cellulose, gum arabic, shellac, shellac or turpentine.
  • the feed in the capsule comprises the following components: fish meal, antibacterial peptide, raw bran, soybean meal, calcium dihydrogen phosphate, squid cream, fish oil, phospholipid oil, premix, lotus root powder, fly maggot powder, Yeast powder, shrimp powder, Bacillus.
  • the feed in the capsule comprises the following components of mass ratio: 20-25 parts of fish meal, 2-8 parts of antibacterial peptide, 15-25 parts of raw bran, 25-30 parts of soybean meal, calcium dihydrogen phosphate 1 ⁇ 5 parts, 1 to 5 parts of squid cream, 1.0 to 1.5 parts of fish oil, 1 to 3 parts of phospholipid oil, 1 to 3 parts of premix, 1 to 3 parts of lotus root starch, 4 to 8 parts of fly maggot powder, yeast powder 1 ⁇ 3 parts, 1 to 3 parts of shrimp powder, and 1 to 3 parts of Bacillus.
  • mass ratio 20-25 parts of fish meal, 2-8 parts of antibacterial peptide, 15-25 parts of raw bran, 25-30 parts of soybean meal, calcium dihydrogen phosphate 1 ⁇ 5 parts, 1 to 5 parts of squid cream, 1.0 to 1.5 parts of fish oil, 1 to 3 parts of phospholipid oil, 1 to 3 parts of premix, 1 to 3 parts of lotus root starch, 4 to 8 parts of fly maggot powder, yeast powder 1 ⁇ 3 parts
  • the feed in the capsule comprises the following components: fish meal, yellow powder, raw bran, soybean meal, squid cream, fish oil, phospholipid oil, premix, lotus root meal, fly maggot powder, yeast powder.
  • the feed in the capsule comprises the following mass ratio components: 15-20 parts of fish meal, 15-25 parts of yellow powder, 15-25 parts of raw bran, 25-30 parts of soybean meal, 1-3 parts of squid paste, fish oil 1.0 to 1.5 parts, 0.5 to 1.5 parts of phospholipid oil, 1 to 3 parts of premix, 1 to 3 parts of lotus root powder, 1 to 5 parts of fly maggot powder, and 1 to 3 parts of yeast powder.
  • the feed in the capsule comprises the following components: fish meal, yellow powder, raw bran, soybean meal, calcium dihydrogen phosphate, squid cream, fish oil, phospholipid oil, premix, antimicrobial peptide, Bacillus.
  • the feed in the capsule comprises the following components of mass ratio: 20-25 parts of fish meal, 15-20 parts of yellow powder, 18-23 parts of raw bran, 25-30 parts of soybean meal, and 1.5-2.0 calcium dihydrogen phosphate. 1 part, 3 parts of sepia cream, 1.0 to 1.5 parts of fish oil, 0.5 to 1.5 parts of phospholipid oil, 1 to 3 parts of premix, 1 to 3 parts of antimicrobial peptide, and 0.5 to 1.5 parts of Bacillus.
  • the components of the premix described in the above feed formulation include: vitamin A, vitamin B1, vitamin B2, vitamin B6, vitamin B12, nicotinic acid amine, vitamin C, calcium pantothenate, biotin, inositol, folic acid, vitamin E, Vitamin K3, vitamin D3, magnesium sulfate, ferrous sulfate, zinc sulfate, manganese sulfate, potassium iodide, sodium selenite, cobalt chloride (10%), copper sulfate, sodium chloride, zeolite powder, antioxidant.
  • the components in the premix are added in the feed amount of V A 10 to 50, V B1 5 to 50, V B2 10 to 50, V B6 10 to 50, V B12 1 to 15, and smoke.
  • the feed in the capsule comprises the following components: a multivitamin tablet, white fish meal, yeast powder, antimicrobial peptide, Bacillus, polysaccharide, cod liver oil.
  • the feed in the capsule is composed of the following mass percentage components: 1%-50% of the multivitamin tablets, 10%-50% of the white fish meal, 5%-50% of the yeast powder, and 1%-50% of the antimicrobial peptide.
  • the feed in the capsule is composed of the following mass percentage components: 33.3% of multivitamin tablets, 18.3% of white fish meal, 5% of yeast powder, 1.8% of antimicrobial peptide, 3.3% of Bacillus, 5% of polysaccharide, Cod liver oil is 33.3%.
  • the white fish meal is replaced with a cotton aphid.
  • the antimicrobial peptide is replaced with an antibiotic.
  • Bacillus is replaced by a probiotic.
  • the multivitamin tablet component includes vitamin A, vitamin D3, vitamin K3, vitamin B1, vitamin B2, vitamin B6 and vitamin C.
  • the feed in the capsule comprises the following components: fish meal, fish oil, alpha-starch, sea wall yeast, calcium dihydrogen phosphate, choline chloride, turtle premix.
  • the feed in the capsule comprises the following mass ratio components: 50-70 parts of fish meal, 1-10 parts of fish oil, 20-30 parts of ⁇ -starch, 1-3 parts of broken yeast, and calcium dihydrogen phosphate 1 - 3 parts, 1-3 parts of choline chloride, and 0.5-3 parts of premix for turtle.
  • the ratio of white fish meal to red fish meal in the fish meal is 3-5:1.
  • the turtle premix comprises the following components: V A , V C , V D3 , V E , V K , V B1 , V B2 , niacin, calcium pantothenate, V B6 , V B12 , biotin , folic acid, inositol, FeSO 4 , CuSO 4 , MnSO 4 , ZnSO 4 , KI, NaSeO 3 .
  • each 1 kg of the turtle premix contains: V A 30000 IU, V C 200 mg, V D3 25000 IU, V E 600 mg, V K 100 mg, V B1 50 mg, V B2 60 mg, niacin 100 mg, calcium pantothenate 120 mg, V B6 40 mg, V B12 0.2 mg, biotin 7 mg, folic acid 20 mg, inositol 250 mg, FeSO 4 .7H 2 O 122.0 mg, CuSO 4 .5H 2 O 7.2 g, MnSO 4 .H 2 O 5.16 g, ZnSO 4 . 7H 2 O 15.56 g, KI 6.58 g, NaSeO 3 2.10 g.
  • the preparation method of the capsule feed described above comprises the following steps:
  • the capsule feed described above is applied to feeding carnivorous aquaculture animals, including: freshwater carnivorous fish, marine carnivorous fish, carnivorous ornamental fish, and turtles.
  • carnivorous aquaculture animals including: freshwater carnivorous fish, marine carnivorous fish, carnivorous ornamental fish, and turtles.
  • Fish have phototaxis.
  • the second is to feed the light source for the feeding of the bait.
  • the larval animals such as the copepods, small shrimps, and small crabs of the zooplankton in the water have a very strong phototaxis under the illumination of the external light source, and are concentrated in the light source region.
  • the bait fish swims to the migratory area of the zooplankton to feed on the best bait; the third is that the fish's instinct tends to be suitable for illumination.
  • the capsule feed is wrapped in a capsule shell on the outer side of the traditional feed.
  • the outer surface of the capsule is a smooth and bright surface.
  • the reflective characteristics of the capsule itself are bright. It can attract the surrounding fish population, so that it can be swallowed by the fish before it falls into the bottom of the water, thus avoiding the deposition of feed on the bottom of the water, improving the feed intake rate, avoiding waste, and reducing the dredging work of the pond; since the capsule is hydrolyzable or
  • the water-soluble property ensures the feeding safety of fish swallowing, on the other hand, it also hydrolyzes or dissolves the unswapped capsules in the water body, and then releases the internal feed for fish to feed.
  • the present invention also provides an outwardly projecting and water-soluble or hydrolyzable weight handle at the bottom of the capsule.
  • the average density of the capsule and the feed is less than the density of the culture water, and the overall density of the capsule, feed and weight handle is greater than that of the culture water. Density, when the capsule feed is sprinkled into the water body, the weight of the weight is slowly passed through the water body and sinks into the bottom of the pool. During this period, most of the capsule feed is swallowed by the fish, and some of the capsule feed falls into the capsule feed at the bottom of the pool. As the weight handle and capsule are hydrolyzed or water-soluble, the overall density gradually decreases. When the overall density is less than the density of water, the capsule feed gradually rises and is swallowed by the fish during the floating process.
  • the feed formulations for freshwater carnivorous fish, marine carnivorous fish, ornamental fish, arowana, and turtle are respectively reasonable, can improve the survival rate of carnivorous fish culture, and accelerate the growth of carnivorous fish.
  • the speed and reduction of the incidence of enteritis during the breeding process of carnivorous fish contribute to the large-scale promotion of carnivorous fish farming.
  • Figure 1 is a schematic view showing the structure of a capsule feed of the present invention
  • Figure 2 is a bar graph of the effect of feeding fresh bait and using the present invention on the survival of arowana;
  • Figure 3 is a bar graph of the effect of feeding fresh bait and using the present invention on weight gain of arowana
  • Figure 4 is a bar graph of the feeding of fresh bait and the incidence of enteritis in arowana using the present invention.
  • the present invention provides a fish capsule feed comprising a water-soluble or hydrolyzable capsule 1 and a feed 2 encased in the capsule 1, the capsule 1 being entirely spherical or ellipsoidal, outside the capsule 1.
  • the surface is a glossy surface, preferably a smooth glossy surface.
  • the bottom of the capsule 1 is provided with an outwardly extending and water-soluble or hydrolyzable weight handle 3, and the capsule 1 and the weight handle 3 are integrally formed gelatin, sodium alginate, zein, and ethyl fiber. Acetone, gum arabic, shellac, shellac or turpentine.
  • the average density of the capsule 1 and the feed 2 is less than the density of the culture water, and the overall density of the capsule 1, the feed 2 and the weight handle 3 is greater than the density of the culture water.
  • Formulation 1 An artificial capsule feed of freshwater carnivorous fish, including the following components: 8 imported fishmeal, 15 domestic fishmeal, 17 yellow flour, 21 raw bran, 28 soybean meal, calcium dihydrogen phosphate 1.8 parts, 2 parts of squid cream, 1.2 parts of fish oil, 1.0 part of phospholipid oil, 2 parts of premix, 2 parts of antibacterial peptide, and 1.0 part of Bacillus.
  • Formula 2 An artificial capsule feed of freshwater carnivorous fish, including the following components: 8 imported fishmeal, 16 domestic fishmeal, 15 yellow flour, 23 raw bran, 25 portions of soybean meal, calcium dihydrogen phosphate 2.0 parts, 3 parts of squid cream, 1.0 part of fish oil, 1.5 parts of phospholipid oil, 3 parts of premix, 3 parts of antibacterial peptide, 0.5 parts of Bacillus.
  • Formula 3 An artificial capsule feed of freshwater carnivorous fish, including the following parts by mass: 10 imported fish meal, 10 domestic fish meal, 20 yellow powder, 18 raw bran, 30 parts of soybean meal, calcium dihydrogen phosphate 1.5 parts, 1 part of squid cream, 1.5 parts of fish oil, 0.5 part of phospholipid oil, 1 part of premix, 1 part of antibacterial peptide, 1.5 parts of Bacillus.
  • the composition of the premix used and the amount of each component added to the feed are as follows (in mg/kg): V A 20, V B1 10, V B2 15, V B6 15, V B1 28, Nicotinamide 100, VC (35%) 1000, Calcium Pantothenate 40, Biotin 2, Inositol 200, Folic Acid 10, V E 400, V K3 20, V D3 10, Magnesium Sulfate 2000, Ferrous Sulfate 300 Zinc sulfate 200, manganese sulfate 100, potassium iodide (10%) 80, sodium selenite 67, cobalt chloride (10%) 5, copper sulfate 10, sodium chloride 100, zeolite powder 4938, antioxidant 200.
  • Formulation 4 An artificial capsule feed of freshwater carnivorous fish, including the following parts by mass: 8 imported fishmeal, domestic fishmeal 15 Parts, 17 parts of yellow powder, 21 parts of raw bran, 28 parts of soybean meal, 1.8 parts of calcium dihydrogen phosphate, 2 parts of squid cream, 1.2 parts of fish oil, 1.0 part of phospholipid oil, 2 parts of premix, 2 parts of antibacterial peptide, Bacillus 1.0 Share.
  • composition of the premix used in this formulation and the amount of each component added to the feed are as follows (in mg/kg): V A 10, V B1 5, V B2 10, V B6 10, V B12 1, Nicotinamide 50, V C (35%) 500, calcium pantothenate 20, biotin 1, inositol 100, folic acid 5, V E 200, V K3 10, V D3 5, magnesium sulfate 1000, ferrous sulfate 200, sulfuric acid Zinc 100, manganese sulfate 50, potassium iodide (10%) 100, sodium selenite 50, cobalt chloride (10%) 1, copper sulfate 5, sodium chloride 50, zeolite powder 4000, antioxidant 100.
  • Formula 5 An artificial capsule feed of freshwater carnivorous fish, including the following components: 8 imported fishmeal, 15 domestic fishmeal, 17 yellow flour, 21 raw bran, 28 soybean meal, calcium dihydrogen phosphate 1.8 parts, 2 parts of squid cream, 1.2 parts of fish oil, 1.0 part of phospholipid oil, 2 parts of premix, 2 parts of antibacterial peptide, and 1.0 part of Bacillus.
  • composition of the premix used in this formulation and the amount of each component added to the feed are as follows (in mg/kg): V A 50, V B1 50, V B2 50, V B6 50, V B12 15, Nicotinamide 150, V C (35%) 1500, calcium pantothenate 60, biotin 5, inositol 300, folic acid 15, V E 600, V K3 30, V D3 15, magnesium sulfate 3000, ferrous sulfate 400, sulfuric acid Zinc 300, manganese sulfate 150, potassium iodide (10%) 1000, sodium selenite 100, cobalt chloride (10%) 10, copper sulfate 15, sodium chloride 150, zeolite powder 6000, antioxidant 300.
  • the feed formula 1-5 is prepared into a capsule feed, and the steps are as follows:
  • the gelatin in the prior art is the preparation process of the capsule shell.
  • Gelatin is one of the main components of the capsule shell.
  • the quality of gelatin is directly related to the quality of the capsule shell.
  • the gelatinity and viscosity of gelatin are the main indicators.
  • the viscosity of the glue is 2700-3000mpas, and the gelatinity of gelatin is greater than 180. Gram, moisture 40% to 50%.
  • the viscosity of the 6.67% aqueous solution at 60 ° C should be 4 to 34.7 mPa, and the viscosity of the 12.5% aqueous solution at 60 ° C should be 18.5 to 20.5 mPa. If the viscosity is low, the capsule shell is easily "saponified".
  • the quality of the capsule shell into pellets is also related to the weight ratio of dry gelatin to water. Too little or too much moisture can cause the tape to be difficult to spread and the pelleting speed is slow and not normal. Too much moisture will also make the tape lack viscoelasticity and freezing ability. The shape of the product is poor and the leak does not stick and there are many weird pills.
  • the components are weighed according to the ratio, and the solid matter is ground into a powder and uniformly mixed to obtain a mixture; the acidic mixture causes leakage of the capsule shell, and the alkali
  • the mixture will reduce the solubility of the rubber, so the pH of the mixture is preferably between 3.8 and 7.0.
  • the temperature of the spray body is 5 ° C to 50 ° C, and the temperature of the plastic box is 55 ° C. 60 ° C.
  • Deformed pills often appear in the process of pelleting, which is generally caused by the thickness of the two sheets of rubber. Therefore, it is necessary to ensure that the thickness of the two sheets of rubber is approximately equal, and the thickness is 0.7 to 0.8 mm.
  • the unstable loading of the capsule shell is also a problem that often occurs during the pelleting process. There are two kinds of cases in which the capsule shell is unstable.
  • Dry the artificial feed is an important part of ensuring the quality of artificial feed.
  • the advantage of the tray type is that the floor space is small, and the disadvantage is that the drying time is long, and it is necessary to manually turn over the tray.
  • the rolling cage has a large footprint, but the drying time is short and no manual turning is required.
  • the decisive factor is the indoor dry humidity, such as indoor humidity, humidity of more than 60%, the rubber pellet is extremely difficult to dry.
  • the time is also The big factor, the time is too short, the shape of the capsule shell is not good, it is easy to be deformed by extrusion, etc.; too long time will make the rubber sheet too hard.
  • a suitable drying time is about 16 to 24 hours. In short, for the production of artificial feed, it is necessary to carefully analyze the nature of various contents, strengthen the process monitoring in the production process, and at the same time grasp the product quality.
  • the capsule shell can also be prepared from materials such as sodium alginate, zein, ethyl cellulose, gum arabic, shellac, shellac, rosin and the like.
  • the experiment was carried out in a freshwater aquaculture tank in the breeding base.
  • the dissolved oxygen was sufficient, the water temperature was maintained at 22-25 degrees Celsius, the pH value was between 6.5 and 7.5, and the average weight of the black mullet was 60 g.
  • the test was divided into 3 control groups and 5 experimental groups, with 3 in each group being parallel.
  • the control group was fed with small fish, the control group was fed with two small shrimps, and the control group was fed with the formula 1 to prepare pellets with a diameter of 2 mm.
  • the experimental group 1 to 5 were fed with the capsule feed prepared from Formulations 1-5, respectively.
  • the control group purchased fresh small fish every day, and then smashed and fed. Feed once a day in the morning and evening, and feed 15 small fish every time. In the control group, the feeding of small shrimps was completed within half an hour. The control group received 30 pellets in three doses. The experimental group was fed with 30 capsules each time from one to five. Daily activities such as feeding, eating, death and morbidity were recorded daily. Water temperature and dissolved oxygen were measured regularly for 8 weeks.
  • the survival rate of the black mullet in the test group fed the technical invention is significantly higher than that in the control group feeding the fresh live bait small fish and small shrimp.
  • the survival rate indicates that the technical invention can effectively increase the survival rate of black mulberry.
  • the average relative weight gain rate of the experimental group feeding the technical invention was higher than that of the fresh live bait small fish and small shrimp. It is indicated that the technical invention can accelerate the growth rate of black mullet.
  • the experiment was carried out in a freshwater aquaculture tank in the breeding base.
  • the dissolved oxygen was sufficient, the water temperature was maintained at 28-30 degrees Celsius, the pH value was between 6.8 and 7.2, and the average weight of the test baby fish was 60 g.
  • the test was divided into 3 control groups and 5 experimental groups, with 3 in each group being parallel.
  • the control group was fed with small fish, the control group was fed with two small shrimps, and the control group was fed with the formula 1 to prepare pellets with a diameter of 2 mm.
  • the experimental group 1 to 5 were fed with the capsule feed prepared from Formulations 1-5, respectively.
  • the control group purchased fresh small fish every day, and then smashed and fed. Feed once a day in the morning and evening, and feed 15 small fish every time. In the control group, the feeding of small shrimps was completed within half an hour. The control group received 30 pellets in three doses. The experimental group was fed with 30 capsules each time from one to five. Record the activities of the baby fish, feeding, death and morbidity every day. The water temperature and dissolved oxygen are measured regularly every day for 8 weeks.
  • the survival rate of the test group of the present invention (capsule feed 1, 2, 3, 4, 5) was significantly higher than that of the control group of the live bait small fish and small shrimp.
  • the survival rate indicates that the technical invention can effectively improve the survival rate of the baby fish.
  • the average relative weight gain rate of the test group fed the technical invention was higher than that of the fresh live bait and small shrimp. It is indicated that the technical invention can speed up the growth of the baby fish.
  • the test is carried out in the indoor freshwater culture tank of the breeding base.
  • the dissolved oxygen is sufficient, the water temperature is maintained at 28-30 degrees Celsius, the pH value is between 6.8 and 7.2, and the average weight of the freshwater grouper is 60g.
  • the test was divided into 3 control groups and 5 experimental groups, with 3 in each group being parallel.
  • the control group was fed with small fish, the control group was fed with two small shrimps, and the control group was fed with the formula 1 to prepare pellets with a diameter of 2 mm.
  • the experimental group 1 to 5 were fed with the capsule feed prepared from Formulations 1-5, respectively.
  • An average of 30 healthy freshwater groupers were selected for each group. See Table 3 for feeding in each group.
  • the control group purchased fresh small fish every day, and then smashed and fed. Feed once a day in the morning and evening, and feed 15 small fish every time. In the control group, the feeding of small shrimps was completed within half an hour. The control group received 30 pellets in three doses.
  • the experimental group was fed with 30 capsules each time from one to five. Daily record of freshwater grouper activities, feeding, death and morbidity, etc., water temperature and dissolved oxygen are measured regularly every day for 8 weeks.
  • the survival rate of the freshwater grouper in the test group fed the technical invention was significantly higher than that of the fresh live bait and small shrimp.
  • the survival rate of freshwater grouper in the control group indicates that the present invention can effectively increase the survival rate of freshwater grouper.
  • the average relative weight gain rate of the freshwater grouper fed to the test group was higher than that of the fresh live bait and small shrimp.
  • the control group indicates that the present invention can accelerate the growth rate of freshwater grouper.
  • the test is carried out in the indoor freshwater culture tank of the breeding base.
  • the dissolved oxygen is sufficient, the water temperature is maintained at 25-28 degrees Celsius, the pH value is between 6.8 and 7.2, and the average weight of the test stingray is 60 g.
  • the test was divided into 3 control groups and 5 experimental groups, with 3 in each group being parallel.
  • the control group was fed with small fish, the control group was fed with two small shrimps, and the control group was fed with the formula 1 to prepare pellets with a diameter of 2 mm.
  • the experimental group 1 to 5 were fed with the capsule feed prepared from Formulations 1-5, respectively.
  • the control group purchased fresh small fish every day, and then smashed and fed. Feed once a day in the morning and evening, and feed 15 small fish every time. In the control group, the feeding of small shrimps was completed within half an hour. The control group received 30 pellets in three doses. The experimental group was fed with 30 capsules each time from one to five. Daily record of stingray activity, feeding, death and morbidity, etc., water temperature and dissolved oxygen were measured regularly for 8 weeks.
  • the average relative weight gain rate of the test group fed the technical invention was high.
  • the control group of feeding fresh live bait small fish and small fresh shrimp showed that the invention can accelerate the growth rate of yellow mullet.
  • the test is carried out in the indoor freshwater culture tank of the breeding base.
  • the dissolved oxygen is sufficient, the water temperature is maintained at 25-30 degrees Celsius, the pH value is between 6.8 and 7.2, and the average weight of the test shrimp tiger is 60g.
  • the test was divided into 3 control groups and 5 experimental groups, with 3 in each group being parallel.
  • the control group was fed with small fish, the control group was fed with two small shrimps, and the control group was fed with the formula 1 to prepare pellets with a diameter of 2 mm.
  • the experimental group 1 to 5 were fed with the capsule feed prepared from Formulations 1-5, respectively.
  • the control group purchased fresh small fish every day, and then smashed and fed. Feed once a day in the morning and evening, and feed 15 small fish every time. In the control group, the feeding of small shrimps was completed within half an hour. The control group received 30 pellets in three doses. The experimental group was fed with 30 capsules each time from one to five. Daily record of shrimp and tiger activities, feeding, death and morbidity, etc., water temperature and dissolved oxygen were measured regularly every day for 8 weeks.
  • the average relative weight gain rate of the shrimps in the test group fed the technical invention was higher than that of the fresh live bait and small shrimps. Group, indicating that the present invention can accelerate the growth rate of shrimp and tiger.
  • the test was carried out in the indoor freshwater culture tank of the breeding base. The dissolved oxygen was sufficient, the water temperature was maintained at 28-30 degrees Celsius, the pH value was between 6.8 and 7.2, and the average weight of the tested carp was 60 g.
  • the test was divided into 3 control groups and 5 experimental groups, with 3 in each group being parallel.
  • the control group was fed with small fish, the control group was fed with two small shrimps, and the control group was fed with the formula 1 to prepare pellets with a diameter of 2 mm.
  • the experimental group 1 to 5 were fed with the capsule feed prepared from Formulations 1-5, respectively.
  • the control group purchased fresh small fish every day, and then smashed and fed. Feed once a day in the morning and evening, and feed 15 small fish every time. In the control group, the feeding of small shrimps was completed within half an hour. The control group received 30 pellets in three doses. The experimental group was fed with 30 capsules each time from one to five. Record the activity, feeding, death and morbidity of squid every day, The water temperature and dissolved oxygen were measured regularly every day for 8 weeks.
  • the average relative weight gain rate of the squid fed the technical invention (capsule feed 1, 2, 3, 4, 5) was higher than that of the fresh live bait and small shrimp.
  • the group indicates that the present invention can accelerate the growth rate of the carp.
  • Formulation 1 An artificial capsule feed for seawater carnivorous fish, including the following components: 6 imported fish meal, 12 domestic fish meal, 20 yellow powder, 21 raw bran, 28 soybean meal, 2 squid cream 1.2 parts of fish oil, 1.0 part of phospholipid oil, 2 parts of premix, 2 parts of glutinous rice, 3 parts of fly maggot powder and 1.8 parts of yeast powder.
  • Formula 2 An artificial capsule feed of seawater carnivorous fish, including the following parts by mass: 5 parts of imported fishmeal, 15 parts of domestic fishmeal, 15 parts of yellow powder, 15 parts of raw bran, 30 parts of soybean meal, 1 part of squid 1.5 parts of fish oil, 0.5 part of phospholipid oil, 1 part of premix, 3 parts of glutinous rice, 1 part of fly maggot powder, 3 parts of yeast powder.
  • Formula 3 An artificial capsule feed of seawater carnivorous fish, including the following parts by mass: 7.5 parts of imported fishmeal, 7.5 parts of domestic fishmeal, 25 parts of yellow powder, 25 parts of raw bran, 25 parts of soybean meal, 3 parts of squid cream 1 part of fish oil, 1.5 parts of phospholipid oil, 3 parts of premix, 1 part of lotus root powder, 5 parts of fly maggot powder and 1 part of yeast powder.
  • composition of the premix used in the artificial feed of Formulations 1-3 and the addition amount of each component in the feed are as follows (unit: mg/kg): V A 20, V B1 10, V B2 15, V B6 15, V B12 8, nicotinic acid amine 100, VC (35%) 1000, calcium pantothenate 40, biotin 2, inositol 200, folic acid 10, V E 400, V K3 20, V D3 10, magnesium sulfate 2000, ferrous sulfate 300, zinc sulfate 200, manganese sulfate 100, potassium iodide (10%) 80, sodium selenite 67, cobalt chloride (10%) 5, copper sulfate 10, sodium chloride 100, zeolite powder 4938, antioxidant 200.
  • Formulation 4 An artificial capsule feed for seawater carnivorous fish, including the following components: 6 imported fish meal, 12 domestic fish meal, 20 yellow powder, 21 raw bran, 28 soybean meal, 2 squid cream 1.2 parts of fish oil, 1.0 part of phospholipid oil, 2 parts of premix, 2 parts of glutinous rice, 3 parts of fly maggot powder and 1.8 parts of yeast powder.
  • composition of the premix used in this formulation and the amount of each component added to the feed are as follows (in mg/kg): V A 10, V B1 5, V B2 10, V B6 10, V B12 1, Nicotinamide 50, V C (35%) 500, calcium pantothenate 20, biotin 1, inositol 100, folic acid 5, V E 200, V K3 10, V D3 5, magnesium sulfate 1000, ferrous sulfate 200, sulfuric acid Zinc 100, manganese sulfate 50, potassium iodide (10%) 100, sodium selenite 50, cobalt chloride (10%) 1, copper sulfate 5, sodium chloride 50, zeolite powder 4000, antioxidant 100.
  • Formula 5 An artificial capsule feed of seawater carnivorous fish, including the following components: 6 imported fish meal, 12 domestic fish meal, 20 yellow powder, 21 raw bran, 28 soybean meal, 2 squid cream 1.2 parts of fish oil, 1.0 part of phospholipid oil, 2 parts of premix, 2 parts of glutinous rice, 3 parts of fly maggot powder and 1.8 parts of yeast powder.
  • composition of the premix used in this formulation and the amount of each component added to the feed are as follows (in mg/kg): V A 50, V B1 50, V B2 50, V B6 50, V B12 15, Nicotinamide 150, V C (35%) 1500, calcium pantothenate 60, biotin 5, inositol 300, folic acid 15, V E 600, V K3 30, V D3 15, magnesium sulfate 3000, ferrous sulfate 400, sulfuric acid Zinc 300, manganese sulfate 150, potassium iodide (10%) 1000, sodium selenite 100, cobalt chloride (10%) 10, copper sulfate 15, sodium chloride 150, zeolite powder 6000, antioxidant 300.
  • Feed Formulation 1-5 was prepared as a capsule feed in the same manner as in Example 1.
  • the test was carried out in an indoor culture tank of a marine aquaculture base. The dissolved oxygen was sufficient, the water temperature was maintained at 28-30 degrees Celsius, the pH value was between 6.5 and 7.5, and the average weight of the grouper in the test saddle was 60 g.
  • the test was divided into 3 control groups and 5 experimental groups, with 3 in each group being parallel.
  • the control group was fed with small fish, the control group was fed with two small shrimps, and the control group was fed with the formula 1 to prepare pellets with a diameter of 2 mm.
  • the experimental group 1 to 5 were fed with the capsule feed prepared from Formulations 1-5, respectively.
  • control group 1 and the control group 2 purchased fresh small fish and small fresh shrimp every day, and then they were fed after being crushed.
  • a small common fish was fed 15 times each time.
  • the feeding of small shrimps was completed within half an hour.
  • the control group received 30 pellets in three doses.
  • the experimental group was fed with 30 capsules each time from one to five. Daily record of saddle-striped grouper activities, feeding, death and morbidity, etc., water temperature and dissolved oxygen were measured regularly for 8 weeks.
  • the average relative weight gain rate of the grouper grouper fed the technical invention was higher than that of the fresh live bait and small fresh fish.
  • the shrimp control group indicates that the present invention can accelerate the growth rate of the saddleback grouper.
  • the test is carried out in an indoor culture tank of a marine aquaculture base.
  • the dissolved oxygen is sufficient, the water temperature is maintained at 20-25 degrees Celsius, the pH value is between 6.5 and 7.5, and the average weight of the test is 60 g.
  • the test was divided into 3 control groups and 5 experimental groups, with 3 in each group being parallel.
  • the control group was fed with small fish, the control group was fed with two small shrimps, and the control group was fed with the formula 1 to prepare pellets with a diameter of 2 mm.
  • the experimental group 1 to 5 were fed with the capsule feed prepared from Formulations 1-5, respectively.
  • the average health of each group was 30, and the feeding status of each group is shown in Table 8.
  • the control group 1 and the control group 2 purchased fresh small fish and small fresh shrimp every day, and then they were fed after being crushed. They were fed once a day in the morning and evening, and the control group received 15 eggs each time. In the control group, the feeding of small shrimps was completed within half an hour. The control group received 30 pellets in three doses.
  • the experimental group was fed with 30 capsules each time from one to five. Daily records of real activities, feeding, death and morbidity, etc., water temperature and dissolved oxygen are measured regularly every day for 8 weeks.
  • the average relative weight gain rate of the test group fed the technical invention was higher than that of the fresh live bait small fish and small shrimp. It is indicated that the technical invention can accelerate the growth rate of true sputum.
  • the test is carried out in an indoor culture tank of a marine aquaculture base.
  • the dissolved oxygen is sufficient, the water temperature is maintained at 18-22 degrees Celsius, the pH value is between 6.5 and 7.5, and the average weight of the test calyx is 60 g.
  • the test was divided into 3 control groups and 5 experimental groups, with 3 in each group being parallel.
  • the control group was fed with small fish, the control group was fed with two small shrimps, and the control group was fed with the formula 1 to prepare pellets with a diameter of 2 mm.
  • the experimental group 1 to 5 were fed with the capsule feed prepared from Formulations 1-5, respectively.
  • the control group 1 and the control group 2 purchased fresh small fish and small fresh shrimp every day, and then they were fed after being crushed. They were fed once a day in the morning and evening, and the control group received 15 eggs each time. In the control group, the feeding of small shrimps was completed within half an hour. The control group received 30 pellets in three doses.
  • the experimental group was fed with 30 capsules each time from one to five. The activity of flower buds, feeding, death and morbidity were recorded every day. The water temperature and dissolved oxygen were measured regularly every day for 8 weeks.
  • the average relative weight gain rate of the flower buds of the test group fed the technical invention was higher than that of the fresh live bait small fish and small shrimp. Group, indicating that the present invention can accelerate the growth rate of flower buds.
  • the test is carried out in an indoor culture tank of a marine aquaculture base.
  • the dissolved oxygen is sufficient, the water temperature is maintained at 17-20 degrees Celsius, the pH value is between 6.5 and 7.5, and the average weight of the test gum is 60 g.
  • the test was divided into 3 control groups and 5 experimental groups, with 3 in each group being parallel.
  • the control group was fed with small fish, the control group was fed with two small shrimps, and the control group was fed with the formula 1 to prepare pellets with a diameter of 2 mm.
  • the experimental group 1 to 5 were fed with the capsule feed prepared from Formulations 1-5, respectively.
  • the control group 1 and the control group 2 purchased fresh small fish and small fresh shrimp every day, and then they were fed after being crushed. They were fed once a day in the morning and evening, and the control group received 15 eggs each time. In the control group, the feeding of small shrimps was completed within half an hour. The control group received 30 pellets in three doses.
  • the experimental group was fed with 30 capsules each time from one to five. The activities of the gums, feeding, death and morbidity were recorded every day. The water temperature and dissolved oxygen were measured regularly every day for 8 weeks.
  • the survival rate of the gingiva in the test group fed the technical invention was significantly higher than that in the control group fed the live bait small fish and small shrimp.
  • the survival rate of the gums indicates that the present invention can effectively improve the survival rate of the gums.
  • the average relative weight gain rate of the gingiva of the test group fed the technical invention was higher than that of the fresh live bait and small shrimp. Group, indicating that the present invention can accelerate the growth rate of gums.
  • Example 3 An artificial capsule feed for ornamental fish
  • Formula 1 An artificial fish artificial diet, including the following parts by mass: 8 imported fishmeal, 15 domestic fishmeal, 5 antibacterial peptides, 21 raw bran, 28 soybean meal, 2 parts calcium dihydrogen phosphate, squid cream 2 parts, 1.2 parts of fish oil, 2 parts of phospholipid oil, 2 parts of premix, 2 parts of glutinous rice, 6 parts of fly maggot powder, 1.8 parts of yeast powder, 2 parts of shrimp powder, 2 parts of Bacillus.
  • Formula 2 An artificial fish artificial diet, including the following parts by mass: 5 imported fishmeal, 15 domestic fishmeal, 2 antibacterial peptides, 25 raw bran, 30 parts of soybean meal, 1 part of calcium dihydrogen phosphate, sepia cream 5 parts, 1.5 parts of fish oil, 3 parts of phospholipid oil, 1 part of premix, 1 part of glutinous rice, 8 parts of fly maggot powder, 1 part of yeast powder, 1 part of shrimp powder, 3 parts of Bacillus.
  • Formula 3 An artificial fish artificial diet, including the following components: 12.5 parts of imported fishmeal, 12.5 parts of domestic fishmeal, 8 parts of antibacterial peptide, 15 parts of raw bran, 25 parts of soybean meal, 5 parts of dicalcium phosphate, sepia cream 1 part, 1.0 part of fish oil, 1 part of phospholipid oil, 3 parts of premix, 3 parts of glutinous rice, 4 parts of fly maggot powder, 3 parts of yeast powder, 3 parts of shrimp powder, 1 part of Bacillus.
  • composition of the premix used in Formulations 1-3 and the amount of each component added to the feed are as follows (in mg/kg): V A 20, V B1 10, V B2 15, V B6 15, V B12 8, nicotinic acid amine 100, VC (35%) 1000, calcium pantothenate 40, biotin 2, inositol 200, folic acid 10, V E 400, V K3 20, V D3 10, magnesium sulfate 2000, ferrous sulfate 300, Zinc sulfate 200, manganese sulfate 100, potassium iodide (10%) 80, sodium selenite 67, cobalt chloride (10%) 5, copper sulfate 10, sodium chloride 100, zeolite powder 4938, antioxidant 200.
  • Formula 4 An artificial fish artificial diet, including the following parts by mass: 8 imported fishmeal, 15 domestic fishmeal, 5 antibacterial peptides, 21 raw bran, 28 soybean meal, 2 parts calcium dihydrogen phosphate, squid cream 2 parts, 1.2 parts of fish oil, 2 parts of phospholipid oil, 2 parts of premix, 2 parts of glutinous rice, 6 parts of fly maggot powder, 1.8 parts of yeast powder, 2 parts of shrimp powder, 2 parts of Bacillus.
  • composition of the premix used in this formulation and the amount of each component added to the feed are as follows (in mg/kg): V A 10, V B1 5, V B2 10, V B6 10, V B12 1, Nicotinamide 50, V C (35%) 500, calcium pantothenate 20, biotin 1, inositol 100, folic acid 5, V E 200, V K3 10, V D3 5, magnesium sulfate 1000, ferrous sulfate 200, sulfuric acid Zinc 100, manganese sulfate 50, potassium iodide (10%) 100, sodium selenite 50, cobalt chloride (10%) 1, copper sulfate 5, sodium chloride 50, zeolite powder 4000, antioxidant 100.
  • Formula 5 An artificial fish artificial diet, including the following parts by mass: 8 imported fishmeal, 15 domestic fishmeal, 5 antibacterial peptides, 21 raw bran, 28 soybean meal, 2 parts calcium dihydrogen phosphate, squid cream 2 parts, 1.2 parts of fish oil, 2 parts of phospholipid oil, 2 parts of premix, 2 parts of glutinous rice, 6 parts of fly maggot powder, 1.8 parts of yeast powder, 2 parts of shrimp powder, 2 parts of Bacillus.
  • composition of the premix used in this formulation and the amount of each component added to the feed are as follows (in mg/kg): V A 50, V B1 50, V B2 50, V B6 50, V B12 15, Nicotinamide 150, V C (35%) 1500, calcium pantothenate 60, biotin 5, inositol 300, folic acid 15, V E 600, V K3 30, V D3 15, magnesium sulfate 3000, ferrous sulfate 400, sulfuric acid Zinc 300, manganese sulfate 150, potassium iodide (10%) 1000, sodium selenite 100, cobalt chloride (10%) 10, copper sulfate 15, sodium chloride 150, zeolite powder 6000, antioxidant 300.
  • Feed Formulation 1-5 was prepared as a capsule feed in the same manner as in Example 1.
  • the test is carried out in aquarium glass tanks, circulating water culture, sufficient dissolved oxygen, water temperature maintained at 28-30 degrees Celsius, pH value between 6.5-7.5, the average weight of the test arowana 60g.
  • the test was divided into 3 control groups and 5 experimental groups, with 3 in each group being parallel.
  • the control group was fed with small squid, the control group was fed with two barley worms, and the control group was fed three times with formula 1 to prepare pelleted feed with a diameter of 2 mm.
  • the experimental group 1 to 5 were fed with the capsule feed prepared from Formulations 1-5, respectively.
  • the average relative weight gain rate of the arowanas fed the technical invention was higher than that of the fresh live bait and small shrimps. Group, indicating that the present invention can accelerate the growth rate of arowana.
  • the test is carried out in aquarium glass tanks, circulating aquaculture, sufficient dissolved oxygen, water temperature maintained at 22-25 degrees Celsius, pH between 6.8-7.2, and the average weight of the test squid is 60g.
  • the test was divided into 3 control groups and 5 experimental groups, with 3 in each group being parallel.
  • the control group was fed with small fish, the control group was fed with two small shrimps, and the control group was fed with the formula 1 to prepare pellets with a diameter of 2 mm.
  • the experimental group 1 to 5 were fed with the capsule feed prepared from Formulations 1-5, respectively.
  • the survival rate of the test group feeding the technical invention was significantly higher than that of the fresh live bait small fish and small shrimp.
  • the survival rate of the group of squid which indicates that the technical invention can effectively increase the survival rate of the squid.
  • the average relative weight gain rate of the test group feeding the technical invention was higher than that of the fresh live bait and small fresh fish.
  • the shrimp control group indicates that the present invention can accelerate the growth rate of the squid.
  • the test is carried out in aquarium glass tanks, circulating aquaculture, sufficient dissolved oxygen, water temperature maintained at 25-28 degrees Celsius, pH between 6.8-7.2, and the average weight of freshwater white peony is 60g.
  • the test was divided into 3 control groups and 5 experimental groups, with 3 in each group being parallel.
  • the control group was fed with small fish, the control group was fed with two small shrimps, and the control group was fed with the formula 1 to prepare pellets with a diameter of 2 mm.
  • the experimental group 1 to 5 were fed with the capsule feed prepared from Formulations 1-5, respectively.
  • the average relative weight gain rate of the freshwater white carp of the experimental group fed the technical invention was higher than that of the fresh live bait and small shrimp.
  • the test is carried out in aquarium glass tanks, circulating aquaculture, sufficient dissolved oxygen, water temperature maintained at 28-30 degrees Celsius, pH between 6.8-7.2, and the average weight of the test pond carp is 60g.
  • the test was divided into 3 control groups and 5 experimental groups, with 3 in each group being parallel.
  • the control group was fed with small fish, the control group was fed with two small shrimps, and the control group was fed with the formula 1 to prepare pellets with a diameter of 2 mm.
  • the experimental group 1 to 5 were fed with the capsule feed prepared from Formulations 1-5, respectively.
  • An average of 30 healthy pond carp were selected for each group, and the feeding conditions of each group are shown in Table 14.
  • fresh live fish was purchased every day, and the fish body surface was washed with water, and then fed. Feed each morning and evening, and the common small squid feeds 15 each time.
  • the feeding of small shrimps was completed within half an hour.
  • the control group received 30 pellets in three doses.
  • the experimental group was fed with 30 capsules each time from one to five. Daily record of pond carp activity, feeding, death and morbidity, etc., water temperature and dissolved oxygen were measured regularly for 8 weeks.
  • the survival rate of the pond carp in the test group fed with the technical invention was significantly higher than that of the fresh live bait and small shrimp.
  • the survival rate of the group of pond carp which indicates that the technical invention can effectively improve the survival rate of the pond carp.
  • the average relative weight gain rate of the test group fed the technical invention was higher than that of the fresh live bait and small shrimp.
  • the control group indicated that the present invention can accelerate the growth rate of the pond carp.
  • Example 4 Artificial capsule feed of arowana breeding period
  • Formulation 1 An artificial bait for the arowana breeding period, comprising the following components: multivitamin 250g, white fish meal 137.5g, yeast powder 37.5g, antimicrobial peptide 12.5g, Bacillus 25g, polysaccharide 37.5g, cod liver oil 250g.
  • the multivitamin consists of 50g vitamin A, 25g vitamin D3, 18g vitamin K3, 12g vitamin B1, 16g vitamin B2, 28g vitamin B6, 101g vitamin C composition, wherein g represents the weight unit: gram.
  • the multivitamin tablets of the present embodiment can also be used as a general-purpose multivitamin tablet in the art.
  • the corresponding mass ratios of the components in the present embodiment are: 33.33% of the multivitamin tablets, 18.34% of the white fish powder, 5% of the yeast powder, 1.67% of the antibacterial peptide, 3.33% of the bacillus, 5% of the polysaccharide, and 33.33% of the cod liver oil.
  • the multivitamin tablets, white fish meal, yeast powder, antibacterial peptide, Bacillus, polysaccharide, cod liver oil are weighed, and the solid matter therein is ground into a powder and uniformly mixed to obtain a mixture.
  • the test is carried out in aquarium glass tanks, circulating water culture, sufficient dissolved oxygen, water temperature maintained at 28-30 degrees Celsius, pH value between 6.5-7.5, the average weight of the test arowana 60g.
  • the test was divided into the control group and the experimental group. Each group was 3 parallel. Each group received an average of 30 healthy arowanas.
  • the feeding conditions of each group are shown in Table 15. Buy fresh squid every day. Before feeding, treat the squid in advance, remove the viscera, wash the fish with water, and then feed. Feeding once a day in the morning and evening, the common small squid is fed 15 times each time, and the feeding of barley worms is finished within half an hour.
  • the artificial bait of the present invention feeds 30 pieces at a time. The activity of the arowana, feeding, death and morbidity were recorded every day. The water temperature and dissolved oxygen were measured regularly every day for 8 weeks.
  • Control group 1 Ordinary small squid Control group 2 Barley worm test group Artificial bait
  • the survival rate of the arowana in the experimental group fed with the artificial bait of the present invention was 100%, which was significantly higher than that of the control group of the common small carp and barley worms fed with fresh live bait, 93.33%.
  • the average weight of the arowana fed to the artificial diet of the present invention was 158 g, which was 23 g and 17 g higher than that of the control group of the fresh bait and the barley worm.
  • the weight gain rate increased by 38.3% and 28.3% respectively. It is indicated that the artificial bait in the invention can accelerate the growth speed of the arowana.
  • Formula 2 An artificial bait for the arowana breeding period, comprising the following components: multivitamin 250g, white fish meal 117.5g, yeast powder 37.5g, antibacterial peptide 22.5g, Bacillus 35g, polysaccharide 87.5g, cod liver oil 200g.
  • the multivitamin is composed of 50 g of vitamin A, 25 g of vitamin D3, 18 g of vitamin K3, 12 g of vitamin B1, 16 g of vitamin B2, 28 g of vitamin B6, and 101 g of vitamin C, wherein g represents a unit of weight: gram.
  • the corresponding mass ratios of the components in the present embodiment are: 33.33% of the multivitamin tablets, 15.67% of the white fish powder, 5% of the yeast powder, 3% of the antibacterial peptide, 4.67% of the bacillus, 11.67% of the polysaccharide, and 26.66% of the cod liver oil.
  • the multivitamin tablets, white fish meal, yeast powder, antibacterial peptide, Bacillus, polysaccharide, cod liver oil are weighed, and the solid matter therein is ground into a powder and uniformly mixed to obtain a mixture.
  • the artificial bait prepared in Formulation 2 was tested in the same experimental environment as Formulation 1.
  • the experimental result is that the survival rate of the arowana in the experimental group fed with the artificial bait of the present invention is 100%, which is significantly higher than the survival rate of the arowana in the control group of the common small carp and the barley worm, which is 90% and 83.33%.
  • the artificial bait in the invention can effectively improve the survival rate of the arowana.
  • the average weight of the arowana fed to the test group of the present invention was 160 g, which was 25 g and 18 g higher than that of the control group of the fresh squid and the barley worm, respectively, and the average weight gain rate was increased by 41.6% and 30%, respectively. It is indicated that the artificial bait of the invention can accelerate the growth rate of arowana.
  • the arowana is in a good state, and no fish with intestinal inflammation is present; and the control group feeding the fresh live bait and the small barley and the barley worm are recorded in different periods of the culture.
  • the incidence rate, the incidence of enteritis in the whole period was 13.33% and 10%, respectively, indicating that the capsule feed of the present invention can reduce the incidence of arowana enteritis.
  • Example 5 An artificial capsule feed of a turtle
  • Formulation 1 A turtle artificial diet comprising the following components in a mass ratio: 62.5 parts of fish meal, 5 parts of fish oil, 25 parts of ⁇ -starch, 2 parts of broken yeast, 2 parts of calcium dihydrogen phosphate, choline chloride 1.5 parts and 2 parts of turtle premix.
  • the ratio of white fish meal to red fish meal in the fish meal is 4:1.
  • Formulation 2 A turtle artificial diet comprising the following components in a mass ratio: 50 parts of fish meal, 10 parts of fish oil, 30 parts of ⁇ -starch, 3 parts of broken yeast, 3 parts of calcium dihydrogen phosphate, choline chloride 3 parts, 1 part of turtle premix.
  • the ratio of white fish meal to red fish meal in the fish meal is 3:1.
  • Formulation 3 A turtle artificial diet comprising the following components in a mass ratio: 70 parts of fish meal, 2 parts of fish oil, 20 parts of ⁇ -starch, 1 part of broken yeast, 2 parts of calcium dihydrogen phosphate, choline chloride 2 parts, 3 parts of turtle premix.
  • the ratio of white fish meal to red fish meal in the fish meal is 5:1.
  • the turtle premix described in Examples 1-3 contains: V A 300001U, V C 200mg, V D3 250001U, V E 600mg, V K 100mg, V B1 50mg, V B2 60mg, niacin 100mg, pantothenic acid per kilogram.
  • Other turtle mineral premixes can also be used instead.
  • Feed Formulation 1-3 was prepared as a capsule feed in the same manner as in Example 1.
  • the test is carried out in the indoor freshwater culture tank of the breeding base.
  • the dissolved oxygen is sufficient, the water temperature is maintained at 22-25 degrees Celsius, the pH value is between 6.5 and 7.5, and the average weight of the test tortoise is 60 g.
  • the test was divided into 3 control groups and 3 experimental groups, with 3 in each group being parallel.
  • the control group was fed with small fish, the control group was fed with two small shrimps, and the control group was fed three times with the formulation of Example 1 to prepare pellets with a diameter of 2 mm.
  • the experimental group one to three were fed with the capsule feed prepared in the formulations of Examples 1-3, respectively.
  • An average of 30 healthy tortoises were selected from each group, and the feeding conditions of each group are shown in Table 1.
  • the control group purchased fresh small fish every day, and then smashed and fed. Feed once a day in the morning and evening, and feed 15 small fish every time. In the control group, the feeding of small shrimps was completed within half an hour. The control group received 30 pellets in three doses. In the experimental group, one to three capsules were fed each time. The tortoise's activities, feeding, death and morbidity were recorded every day. Water temperature and dissolved oxygen were measured regularly every day for 8 weeks.
  • the average relative weight gain rate of the test tortoise fed the technical invention was higher than that of the control group feeding fresh live bait small fish and small shrimp.
  • Technical inventions can accelerate the growth rate of tortoises.
  • the test was carried out in the indoor freshwater culture tank of the breeding base. The dissolved oxygen was sufficient, the water temperature was maintained at 28-30 degrees Celsius, the pH value was between 6.8 and 7.2, and the average weight of the test water turtle was 60 g.
  • the test was divided into 3 control groups and 3 experimental groups, with 3 in each group being parallel.
  • the control group was fed with small fish, the control group was fed with two small shrimps, and the control group was fed three times with the formulation of Example 1 to prepare pellets with a diameter of 2 mm.
  • the experimental group one to three were fed with the capsule feed prepared in the formulations of Examples 1-3, respectively.
  • the control group purchased fresh small fish every day, and then smashed and fed. Feed once a day in the morning and evening, and feed 15 small fish every time. In the control group, the feeding of small shrimps was completed within half an hour. The control group received 30 pellets in three doses. In the experimental group, one to three capsules were fed each time. Daily record of water turtle activity, feeding, death and morbidity, etc., water temperature and dissolved oxygen are measured regularly every day for 8 weeks.
  • the average relative weight gain rate of the water turtles fed the technical invention was higher than that of the control group feeding the fresh live bait small fish and small shrimp.
  • Technical inventions can speed up the growth of water turtles.

Landscapes

  • Fodder In General (AREA)

Abstract

一种胶囊饲料,包括可水溶或水解的胶囊和包裹在所述胶囊内的饲料,其中胶囊内的饲料包括以下组分:鱼粉、黄蜂、生麸、豆粕、磷酸二氢钙、乌贼膏、鱼油、磷脂油、预混料、抗菌肽、芽孢杆菌。制备方法包括制作胶囊外壳,按照质量配比称取各饲料组分,进行研磨并均匀混合,将混合物填充到胶囊外壳中得到人工胶囊饲料。

Description

一种胶囊饲料、其制备方法及应用 技术领域
本发明属于水产养殖技术领域,具体涉及一种胶囊饲料、其制备方法及应用。
背景技术
水产动物的食性分肉食性、植食性和杂食性。其中肉食性水产动物无论是在海洋或江河湖泊中都是一个庞大的群体。水产养殖中所谓的“高档名贵鱼类”往往是肉食性鱼类,如鳜、花鲈、乌鳢、真鲷、石斑、黄颡鱼、龙鱼、白鲳等。
由于现有的水产人工饲料质次价高,营养不全面,针对性不强,水产动物尤其是肉食性水产动物不喜摄食,从而导致目前肉食性水产动物的养殖主要依赖于天然的鲜活饵料,这不仅消耗大量的人力物力,还容易携带病原菌,给养殖生产带来病害困扰。一方面,鲜活饵所携带的病原,如病毒、细菌、真菌、以及寄生虫等容易感染鱼体,是鱼病危害明显上升的重要因素,有些鲜活饵坚硬部位还会对养殖鱼肠胃造成机械损伤;另一方面,鲜活饵营养单调,不平衡,若长期投喂单一鲜活饵,会影响养殖动物的正常生长。由于上述两方面问题,严重影响了我国肉食性水产动物养殖业的可持续发展及养殖经济效益,肉食性水产动物人工饵料的研究与开发是肉食性水产动物养殖业急需解决的重大难题。
发明内容
针对现有技术中所存在的不足,本发明的目的在于提供一种胶囊饲料、其之制备方法及应用。
本发明所采取的技术方案是:
一种胶囊饲料,包括可水溶或水解的胶囊和包裹在所述胶囊内的饲料。所述胶囊的外表面为亮面,优选为光滑的亮面。
作为优选的,所述胶囊的底部设有向外伸出且可水溶或水解的配重柄,所述胶囊和饲料的平均密度小于养殖水的密度,所述胶囊、饲料和配重柄的整体密度大于养殖水的密度。
作为优选的,所述胶囊和饲料的平均密度小于1.000×103kg/m3或小于1.025×103kg/m3;所述配重柄的密度大于1.000×103kg/m3或大于1.025×103kg/m3;所述胶囊、饲料和配重柄的整体密度大于1.000×103kg/m3或大于1.025×103kg/m3
所述胶囊和配重柄为一体成型的明胶、海藻酸钠、玉米醇溶蛋白、乙基纤维素、阿拉伯胶、虫胶、紫胶或松脂制件。
作为其中一个方案,所述胶囊内的饲料包括以下组分:鱼粉、抗菌肽、生麸、豆粕、磷酸二氢钙、乌贼膏、鱼油、磷脂油、预混料、蚯蚓粉、蝇蛆粉、酵母粉、虾粉、芽孢杆菌。
优选的,所述胶囊内的饲料包括如下质量配比的组分:鱼粉20~25份,抗菌肽2~8份,生麸15~25份,豆粕25~30份,磷酸二氢钙1~5份,乌贼膏1~5份,鱼油1.0~1.5份,磷脂油1~3份,预混料1~3份,蚯蚓粉1~3份,蝇蛆粉4~8份,酵母粉1~3份,虾粉1~3份,芽孢杆菌1~3份。
作为其中另一个方案,所述胶囊内的饲料包括以下组分:鱼粉、黄粉、生麸、豆粕、乌贼膏、鱼油、磷脂油、预混料、蚯蚓粉、蝇蛆粉、酵母粉。
优选的,所述胶囊内的饲料包括如下质量配比组分:鱼粉15~20份,黄粉15~25份,生麸15~25份,豆粕25~30份,乌贼膏1~3份,鱼油1.0~1.5份,磷脂油0.5~1.5份,预混料1~3份,蚯蚓粉1~3份,蝇蛆粉1~5份,酵母粉1~3份。
作为其中另一个方案,所述胶囊内的饲料包括以下组分:鱼粉、黄粉、生麸、豆粕、磷酸二氢钙、乌贼膏、鱼油、磷脂油、预混料、抗菌肽、芽孢杆菌。
优选的,所述胶囊内的饲料包括如下质量配比的组分:鱼粉20~25份、黄粉15~20份、生麸18~23份、豆粕25~30份、磷酸二氢钙1.5~2.0份、乌贼膏1~3份、鱼油1.0~1.5份、磷脂油0.5~1.5份、预混料1~3份、抗菌肽1~3份、芽孢杆菌0.5~1.5份。
以上饲料配方中所述预混料的组分包括:维生素A,维生素B1,维生素B2,维生素B6,维生素B12,烟酸胺,维生素C,泛酸钙,生物素,肌醇,叶酸,维生素E,维生素K3,维生素D3,硫酸镁,硫酸亚铁,硫酸锌,硫酸锰,碘化钾,亚硒酸钠,氯化钴(10%),硫酸铜,氯化钠,沸石粉,抗氧化剂。
优选的,所述预混料中各组分在饲料中的添加量为VA10~50,VB15~50,VB210~50,VB610~50,VB121~15,烟酸胺50~150,VC 500~1500,泛酸钙20~60,生物素1~5,肌醇100~300,叶酸5~15,VE200~600,VK310~30,VD35~15,硫酸镁1000~3000,硫酸亚铁200~400,硫酸锌100~300,硫酸锰50~150,碘化钾10~100,亚硒酸钠50~100,氯化钴0.1~1,硫酸铜5~15,氯化钠50~150,沸石粉4000~6000,抗氧化剂100~300,单位为mg/kg。
作为其中另一个方案,所述胶囊内的饲料包括以下组分:复合维生素片,白鱼粉,酵母粉,抗菌肽,芽孢杆菌,多聚糖,鱼肝油。
优选的,所述胶囊内的饲料由下列质量百分比的组分构成:复合维生素片1%-50%,白鱼粉10%-50%,酵母粉5%-50%,抗菌肽1%-50%,芽孢杆菌1%-50%,多聚糖1%-50%,鱼肝油5%-50%,各组分之和为100%。
优选的,所述胶囊内的饲料由下列质量百分比的组分构成:复合维生素片33.3%,白鱼粉18.3%,酵母粉5%,抗菌肽1.8%,芽孢杆菌3.3%,多聚糖5%,鱼肝油33.3%。
作为另一个方案,所述白鱼粉替换为棉粕。
作为另一个方案,所述抗菌肽替换为抗生素。
作为另一个方案,所述芽孢杆菌替换为益生菌。
所述复合维生素片组分包括维生素A,维生素D3,维生素K3,维生素B1,维生素B2,维生素B6和维生素C。
作为其中另一个方案,所述胶囊内的饲料包括以下组分:鱼粉、鱼油、α-淀粉、破壁酵母、磷酸二氢钙、氯化胆碱、龟用预混料。
优选的,所述胶囊内的饲料包括如下质量配比组分:鱼粉50-70份、鱼油1-10份、α-淀粉20-30份、破壁酵母1-3份、磷酸二氢钙1-3份、氯化胆碱1-3份、龟用预混料0.5-3份。
优选的,所述鱼粉中白鱼粉与红鱼粉的比例为3-5∶1。
优选的,所述龟用预混料包括如下组分:VA、VC、VD3、VE、VK、VB1、VB2、尼克酸、泛酸钙、VB6、VB12、生物素、叶酸、肌醇、FeSO4、CuSO4、MnSO4、ZnSO4、KI、NaSeO3
进一步优选的,每1kg龟用预混料中含有:VA30000IU,VC200mg,VD325000IU,VE600mg,VK100mg,VB150mg,VB260mg,尼克酸100mg,泛酸钙120mg,VB640mg,VB120.2mg,生物素7mg,叶酸20mg,肌醇250mg,FeSO4.7H2O 122.0mg,CuSO4.5H2O 7.2g,MnSO4.H2O 5.16g,ZnSO4.7H2O 15.56g,KI 6.58g,NaSeO32.10g。
以上所述的胶囊饲料的制备方法,包括如下步骤:
1)制作胶囊外壳;
2)按照质量配比,称取各饲料组分,进行研磨并均匀混合,得到混合物;
3)将所述步骤2)中制作好的混合物填充到所述步骤1)中的胶囊外壳中,得到人工饲料;
4)将人工饲料进行干燥处理。
以上所述胶囊饲料应用于喂养肉食性水产养殖动物,包括:淡水肉食性鱼类、海水肉食性鱼类、肉食性观赏鱼、龟类。例如:乌鳢、斑鳢、塘鳢、黄颡鱼、虾虎、鱤鱼、鳜鱼、马口鱼、淡水石斑鱼、虹鳟、高原鳅、虾虎鱼、娃娃鱼、黑鲷、黄鳍鲷、花鲈、尖吻鲈、中华乌塘鳢、大黄鱼、美国红鱼、海水石斑鱼、牙鲆、大菱鲆、真鲷、鲶科鱼类,油鲶科鱼类,雀鳝,淡水白鲳,慈鲷科鱼类,龙鱼,魟鱼、龟类等等。
本发明的有益效果是:
鱼类均具有趋光性,一是鱼类在水体中看到光,会感到“好奇”,而产生探索性的条件反射而趋向光 源;二是为索饵摄食而趋向光源,如水体中浮游动物的桡足类、小型虾类、小型蟹类等幼体动物在外光源的照射下具有非常强的趋光性,并聚集在光源区,从而使索饵鱼类游向浮游动物的洄游区域去觅食最佳饵料;三是鱼的本能趋向其适宜的光照。
根据鱼类的上述特性,本胶囊饲料在传统饲料的外侧包裹一层胶囊外壳,胶囊的外表面为光滑的亮面,当将本胶囊饲料撒入水体中后,由于胶囊自身亮面的反光特性,其能够吸引周围的鱼群,从而在饲料未落入水底之前被鱼类吞食,从而避免饲料在水底沉积,提高饲料吞食率,避免浪费,减轻池塘的清淤工作;由于胶囊具有可水解或水溶的特性,其一方面保证了鱼类吞食的摄食安全性,另一方面也使水体中未被吞食的胶囊水解或水溶后,释放内部的饲料供鱼类摄食。
此外,本发明还在胶囊的底部设置向外伸出且可水溶或水解的配重柄,胶囊和饲料的平均密度小于养殖水的密度,胶囊、饲料和配重柄的整体密度大于养殖水的密度,如此,当将本胶囊饲料撒入水体中后,由于配重柄的作用缓慢穿过水体并沉入池底,期间大部分胶囊饲料被鱼类吞食,部分落入池底的胶囊饲料,随着配重柄和胶囊的水解或水溶,整体密度逐渐减小,当整体密度小于水的密度后,胶囊饲料逐渐上浮,上浮过程中被鱼类吞食。
此外,本发明中,分别针对淡水肉食性鱼类、海水肉食性鱼类、观赏鱼类、龙鱼、龟类的饲料配方组成合理、可以提高肉食性鱼类养殖成活率、加快肉食性鱼类生长速度、减少肉食性鱼类在养殖过程中肠炎发病率,有助于肉食性鱼类养殖实现大规模推广。
附图说明
下面结合附图对本发明作进一步说明:
图1是本发明胶囊饲料结构示意图;
图2是投喂鲜活饵与使用本发明对龙鱼存活的影响柱状对照图;
图3是投喂鲜活饵与使用本发明对龙鱼增重的影响柱状对照图;
图4是投喂鲜活饵与使用本发明对龙鱼肠炎发病率的柱状对照图。
具体实施方式
参照图1,本发明提供了一种鱼胶囊饲料,包括可水溶或水解的胶囊1和包裹在所述胶囊1内的饲料2,所述胶囊1整体呈球形或椭球形,所述胶囊1的外表面为亮面,优选为光滑亮面。所述胶囊1的底部设有向外伸出且可水溶或水解的配重柄3,所述胶囊1和配重柄3为一体成型的明胶、海藻酸钠、玉米醇溶蛋白、乙基纤维素、阿拉伯胶、虫胶、紫胶或松脂制件。所述胶囊1和饲料2的平均密度小于养殖水的密度,所述胶囊1、饲料2和配重柄3的整体密度大于养殖水的密度。
实施例1一种淡水肉食性鱼类的人工胶囊饲料
一、饲料配方:
配方1:一种淡水肉食性鱼类的人工胶囊饲料,包括以下质量份的组分:进口鱼粉8份、国产鱼粉15份、黄粉17份、生麸21份、豆粕28份、磷酸二氢钙1.8份、乌贼膏2份、鱼油1.2份、磷脂油1.0份、预混料2份、抗菌肽2份、芽孢杆菌1.0份。
配方2:一种淡水肉食性鱼类的人工胶囊饲料,包括以下质量份的组分:进口鱼粉8份、国产鱼粉16份、黄粉15份、生麸23份、豆粕25份、磷酸二氢钙2.0份、乌贼膏3份、鱼油1.0份、磷脂油1.5份、预混料3份、抗菌肽3份、芽孢杆菌0.5份。
配方3:一种淡水肉食性鱼类的人工胶囊饲料,包括以下质量份的组分:进口鱼粉10份、国产鱼粉10份、黄粉20份、生麸18份、豆粕30份、磷酸二氢钙1.5份、乌贼膏1份、鱼油1.5份、磷脂油0.5份、预混料1份、抗菌肽1份、芽孢杆菌1.5份。
配方1-3中,所用预混料的组成及各组分在饲料中的添加量如下所示(单位为mg/kg):VA20,VB110,VB215,VB615,VB128,烟酸胺100,VC(35%)1000,泛酸钙40,生物素2,肌醇200,叶酸10,VE400,VK320,VD310,硫酸镁2000,硫酸亚铁300,硫酸锌200,硫酸锰100,碘化钾(10%)80,亚硒酸钠67,氯化钴(10%)5,硫酸铜10,氯化钠100,沸石粉4938,抗氧化剂200。
配方4:一种淡水肉食性鱼类的人工胶囊饲料,包括以下质量份的组分:进口鱼粉8份、国产鱼粉15 份、黄粉17份、生麸21份、豆粕28份、磷酸二氢钙1.8份、乌贼膏2份、鱼油1.2份、磷脂油1.0份、预混料2份、抗菌肽2份、芽孢杆菌1.0份。
本配方中所用预混料的组成及各组分在饲料中的添加量如下所示(单位为mg/kg):VA10,VB15,VB210,VB610,VB121,烟酸胺50,VC(35%)500,泛酸钙20,生物素1,肌醇100,叶酸5,VE200,VK310,VD35,硫酸镁1000,硫酸亚铁200,硫酸锌100,硫酸锰50,碘化钾(10%)100,亚硒酸钠50,氯化钴(10%)1,硫酸铜5,氯化钠50,沸石粉4000,抗氧化剂100。
配方5:一种淡水肉食性鱼类的人工胶囊饲料,包括以下质量份的组分:进口鱼粉8份、国产鱼粉15份、黄粉17份、生麸21份、豆粕28份、磷酸二氢钙1.8份、乌贼膏2份、鱼油1.2份、磷脂油1.0份、预混料2份、抗菌肽2份、芽孢杆菌1.0份。
本配方中所用预混料的组成及各组分在饲料中的添加量如下所示(单位为mg/kg):VA50,VB150,VB250,VB650,VB1215,烟酸胺150,VC(35%)1500,泛酸钙60,生物素5,肌醇300,叶酸15,VE600,VK330,VD315,硫酸镁3000,硫酸亚铁400,硫酸锌300,硫酸锰150,碘化钾(10%)1000,亚硒酸钠100,氯化钴(10%)10,硫酸铜15,氯化钠150,沸石粉6000,抗氧化剂300。
二、胶囊饲料的制备:
将饲料配方1-5制备成胶囊饲料,步骤如下:
1)制作胶囊外壳;现有技术中的化胶即是胶囊外壳的配制过程。明胶是胶囊外壳的主要成分之一,明胶质量的好坏直接关系到胶囊外壳的质量,一般要求明胶的冻力、黏度为主要指标,胶液黏度在2700-3000mpas,明胶的冻力值大于180克,水分40%~50%。其6.67%水溶液在60℃的粘度应为4~34.7mPa,12.5%的水溶液在60℃的粘度应为18.5~20.5mPa。若粘度低则胶囊外壳易于“皂化”。胶囊外壳软硬度与干明胶、增塑剂之间的重量比例直接有关。若甘油比例小,干燥后产品会比硬胶囊外壳还坚硬得多;若甘油比例大时,干燥后的产品非常软,但有形,而且棉软而富有弹性。通常,以甘油∶明胶=30~40∶100来制备。胶囊外壳成丸质量也跟干明胶与水的重量比例相关。水分太少或太多都会产生胶带难以摊铺成型和制丸速度慢而不正常现象。水分太多还会使胶带缺乏粘弹性和凝冻能力,产品外形差且漏口不粘合及怪异丸多,通常,以水∶明胶=100∶100,但是不同工艺、不同溶胶设备、不同产品,也必须相应作出配方与工艺的对应同步调整。在化胶过程中,为防止明胶的粘度下降过大,在配制胶液过程中,先将甘油及水进行加热,然后加入明胶。化胶时胶液中容易产生气泡,影响胶囊外壳的质量,所以当胶液溶化后应抽真空,除去胶液中的气泡,抽真空的时间约为2~2.5小时。要在保温灌中保持胶液50%~60%之间防止温度过低形成凝胶。以上制造胶囊外壳的工艺为现有技术中的制作方法,也可以采用现有技术中其它相关方法制作胶囊外壳。
2)分别按照实施例1~3的饲料配方,按配比称取各组分,将其中的固态物磨研成粉,均匀混合,得到混合物;酸性混合物会对胶囊外壳水解造成渗漏,而碱性混合物会降低胶皮的溶解度,所以混合物的pH值在3.8~7.0之间为宜。
3)将所述步骤2)中制作好的混合物填充到所述步骤1)中的胶囊外壳中,得到人工饲料;此过程在现有技术中称作压丸,压丸过程比较复杂,容易出现各种问题而影响胶囊外壳的质量,所以应特别注意一些重要环节。压丸前要对机器有关部件进行认真的清理、检查,保证注料畅通及密封胶垫完好无损;准确调整注料时间,以防注料过程中发生渗漏使胶囊外壳装量减小。压丸过程中应注意胶皮温度的控制,温度过高易发生渗漏现象,过低会导致胶皮黏合不好,一般控制喷体的温度为5℃~50℃,胶盒的温度为55℃~60℃。压丸过程中经常出现畸形丸,一般是由于两片胶皮的厚度不同造成的,因此要保证两片胶皮厚度大致相等,厚度多为0.7~0.8毫米。胶囊外壳装量不稳定也是压丸过程中经常出现的问题。胶囊外壳装量不稳分两种情况:一种是胶囊外壳中有气泡,往往是由于喷体堵塞、注料时间不准确、胶皮合缝不严或料泵中胶垫密封不好造成的;另一种是产生过大或过小的胶粒,此种情况多为喷体堵塞造成的。
4)将人工饲料进行干燥处理。干燥是保证人工饲料质量的重要环节,现国内干燥分两种形式,一种是托盘式,一种是滚笼式。托盘式优点是占地面积小,缺点是干燥时间长,需人工不断翻盘。滚笼式占地面积大,但干燥时间短,不需人工翻动。采用滚笼式进行干燥时,要注意室内干湿度及时间的控制。干燥过程中,起决定因素是室内的干湿度,如室内过湿,湿度达到60%以上,胶丸极难干燥。同时时间也为较 大的因素,时间过短胶囊外壳的定型状态不好,容易因挤压等发生变形;时间过长会使胶皮过硬。比较适宜的干燥时间约为16~24小时。总之,对于人工饲料的生产,要认真分析各种内容物的性质,在生产过程中加强工艺监控,同时也是对产品质量的把握。
所述胶囊外壳还可用海藻酸钠,玉米醇溶蛋白,乙基纤维素,阿拉伯胶,虫胶,紫胶,松脂等材料制备而成。
三、养殖试验:
1、乌鳢养殖
为了验证效果,下面提供利用本发明胶囊饲料养殖乌鳢的试验效果:
本试验在养殖基地室内淡水养殖桶中进行养殖,溶氧充足,水温维持在22-25摄氏度,pH值在6.5-7.5之间,试验乌鳢平均体重60g。试验分3个对照组和5个实验组,每组3个平行。对照组一投喂小杂鱼,对照组二投喂小鲜虾,对照组三投喂由配方1制备成直径为2mm的颗粒饲料。实验组一至五分别投喂由配方1-5制备成的胶囊饲料。
每组平均选取健康乌鳢30条,各组投喂情况见表1。对照组一每天购买鲜活的小杂鱼,搅碎后进行投喂。每天早晚各投喂一次,小杂鱼每次投喂15条。对照组二喂食小鲜虾以半小时内吃完为准。对照组三投喂颗粒饲料30颗。实验组一至五每次投喂胶囊饲料30颗。每天记录乌鳢的活动,摄食,死亡和发病情况等,每天定时测定水温和溶氧,养殖8周。
表1投喂不同饲料试验结果比较
组别 投喂饲料种类 成活率 平均增重率 肠炎发病率
对照组一 小杂鱼 76.67% 116.52% 13.33%
对照组二 小鲜虾 80% 124.46% 10%
对照组三 颗粒饲料 93.33% 128.21% 0
实验组一 胶囊饲料1 100% 156.21% 0
实验组二 胶囊饲料2 96.67% 147.32% 0
实验组三 胶囊饲料3 96.67% 143.56% 0
实验组四 胶囊饲料4 98% 150.35% 0
实验组五 胶囊饲料5 99.5% 151.51% 0
从表1可看出,投喂本技术发明(胶囊饲料1,2,3,4,5)的试验组乌鳢成活率显著高于投喂鲜活饵小杂鱼和小鲜虾的对照组乌鳢成活率,这说明本技术发明可以有效提高乌鳢成活率。
实验结束时,投喂本技术发明(胶囊饲料1,2,3,4,5)的试验组乌鳢的平均相对增重率分别高出投喂鲜活饵小杂鱼和小鲜虾的对照组,说明本技术发明可加快乌鳢生长速度。
通过观察发现,在整个试验过程中,投喂本技术发明(胶囊饲料1,2,3,4,5)的试验组,乌鳢状态较好,未出现有肠炎症状的鱼;而投喂鲜活饵小杂鱼和小鲜虾的对照组,分别在养殖的不同时段出现肠炎病鱼,说明投喂本技术发明可以降低乌鳢肠炎发病率。
2、娃娃鱼养殖
本试验在养殖基地室内淡水养殖桶中进行养殖,溶氧充足,水温维持在28-30摄氏度,pH值在6.8-7.2之间,试验娃娃鱼平均体重60g。试验分3个对照组和5个实验组,每组3个平行。对照组一投喂小杂鱼,对照组二投喂小鲜虾,对照组三投喂由配方1制备成直径为2mm的颗粒饲料。实验组一至五分别投喂由配方1-5制备成的胶囊饲料。
每组平均选取健康娃娃鱼30条,各组投喂情况见表2。对照组一每天购买鲜活的小杂鱼,搅碎后进行投喂。每天早晚各投喂一次,小杂鱼每次投喂15条。对照组二喂食小鲜虾以半小时内吃完为准。对照组三投喂颗粒饲料30颗。实验组一至五每次投喂胶囊饲料30颗。每天记录娃娃鱼的活动,摄食,死亡和发病情况等,每天定时测定水温和溶氧,养殖8周。
表2投喂不同饲料试验结果比较
组别 投喂饲料种类 成活率 平均增重率 肠炎发病率
对照组一 小杂鱼 80% 114.32% 16.67%
对照组二 小鲜虾 73.33% 120.16% 13.33%
对照组三 颗粒饲料 90% 122.31% 3.33%
实验组一 胶囊饲料1 100% 145.21% 0
实验组二 胶囊饲料2 93.33% 140.32% 0
实验组三 胶囊饲料3 96.67% 139.46% 0
实验组四 胶囊饲料4 98.20% 140.18% 0
实验组五 胶囊饲料5 99.26% 141.06% 0
从表2可看出,投喂本技术发明(胶囊饲料1,2,3,4,5)的试验组娃娃鱼成活率显著高于投喂鲜活饵小杂鱼和小鲜虾的对照组娃娃鱼成活率,这说明本技术发明可以有效提高娃娃鱼成活率。
实验结束时,投喂本技术发明(胶囊饲料1,2,3,4,5)的试验组娃娃鱼的平均相对增重率分别高出投喂鲜活饵小杂鱼和小鲜虾的对照组,说明本技术发明可加快娃娃鱼生长速度。
通过观察发现,在整个试验过程中,投喂本技术发明(胶囊饲料1,2,3,4,5)的试验组,娃娃鱼状态较好,未出现有肠炎症状的鱼;而投喂鲜活饵小杂鱼和小鲜虾的对照组,分别在养殖的不同时段出现肠炎病鱼,说明投喂本技术发明可以降低娃娃鱼炎发病率。
3、淡水石斑鱼养殖
本试验在养殖基地室内淡水养殖桶中进行养殖,溶氧充足,水温维持在28-30摄氏度,pH值在6.8-7.2之间,试验淡水石斑鱼平均体重60g。试验分3个对照组和5个实验组,每组3个平行。对照组一投喂小杂鱼,对照组二投喂小鲜虾,对照组三投喂由配方1制备成直径为2mm的颗粒饲料。实验组一至五分别投喂由配方1-5制备成的胶囊饲料。
每组平均选取健康淡水石斑鱼30条,各组投喂情况见表3。对照组一每天购买鲜活的小杂鱼,搅碎后进行投喂。每天早晚各投喂一次,小杂鱼每次投喂15条。对照组二喂食小鲜虾以半小时内吃完为准。对照组三投喂颗粒饲料30颗。实验组一至五每次投喂胶囊饲料30颗。每天记录淡水石斑鱼的活动,摄食,死亡和发病情况等,每天定时测定水温和溶氧,养殖8周。
表3投喂不同饲料试验结果比较
组别 投喂饲料种类 成活率 平均增重率 肠炎发病率
对照组一 小杂鱼 83.33% 125.12% 8.89%
对照组二 小鲜虾 80% 117.65% 8.89%
对照组三 颗粒饲料 93.33% 129.43% 3.33%
实验组一 胶囊饲料1 100% 147.26% 0
实验组二 胶囊饲料2 96.67% 141.73% 0
实验组三 胶囊饲料3 100% 142.74% 0
实验组四 胶囊饲料4 100% 142.26% 0
实验组五 胶囊饲料5 100% 142.78% 0
从表3可看出,投喂本技术发明(胶囊饲料1,2,3,4,5)的试验组淡水石斑鱼成活率显著高于投喂鲜活饵小杂鱼和小鲜虾的对照组淡水石斑鱼成活率,这说明本技术发明可以有效提高淡水石斑鱼成活率。
实验结束时,投喂本技术发明(胶囊饲料1,2,3,4,5)的试验组淡水石斑鱼的平均相对增重率分别高出投喂鲜活饵小杂鱼和小鲜虾的对照组,说明本技术发明可加快淡水石斑鱼生长速度。
通过观察发现,在整个试验过程中,投喂本技术发明(胶囊饲料1,2,3,4,5)的试验组,淡水石斑鱼状态较好,未出现有肠炎症状的鱼;而投喂鲜活饵小杂鱼和小鲜虾的对照组,分别在养殖的不同时段出现肠炎病鱼,说明投喂本技术发明可以降低淡水石斑鱼肠炎发病率。
4、黄颡鱼养殖
本试验在养殖基地室内淡水养殖桶中进行养殖,溶氧充足,水温维持在25-28摄氏度,pH值在6.8-7.2之间,试验黄颡鱼平均体重60g。试验分3个对照组和5个实验组,每组3个平行。对照组一投喂小杂鱼,对照组二投喂小鲜虾,对照组三投喂由配方1制备成直径为2mm的颗粒饲料。实验组一至五分别投喂由配方1-5制备成的胶囊饲料。
每组平均选取健康黄颡鱼30条,各组投喂情况见表4。对照组一每天购买鲜活的小杂鱼,搅碎后进行投喂。每天早晚各投喂一次,小杂鱼每次投喂15条。对照组二喂食小鲜虾以半小时内吃完为准。对照组三投喂颗粒饲料30颗。实验组一至五每次投喂胶囊饲料30颗。每天记录黄颡鱼的活动,摄食,死亡和发病情况等,每天定时测定水温和溶氧,养殖8周。
表4投喂不同饲料试验结果比较
组别 投喂饲料种类 成活率 平均增重率 肠炎发病率
对照组一 小杂鱼 90% 129.25% 3.33%
对照组二 小鲜虾 76.67% 115.64% 6.67%
对照组三 颗粒饲料 93.33% 142.25% 3.33%
实验组一 胶囊饲料1 100% 167.11% 0
实验组二 胶囊饲料2 96.67% 154.67% 0
实验组三 胶囊饲料3 100% 157.38% 0
实验组四 胶囊饲料4 100% 161.24% 0
实验组五 胶囊饲料5 100% 162.42% 0
从表4可看出,投喂本技术发明(胶囊饲料1,2,3,4,5)的试验组黄颡鱼成活率显著高于投喂鲜活饵小杂鱼和小鲜虾的对照组黄颡鱼成活率,这说明本技术发明可以有效提高黄颡鱼成活率。
实验结束时,投喂本技术发明(胶囊饲料1,2,3,4,5)的试验组黄颡鱼的平均相对增重率分别高 出投喂鲜活饵小杂鱼和小鲜虾的对照组,说明本技术发明可加快黄颡鱼生长速度。
通过观察发现,在整个试验过程中,投喂本技术发明(胶囊饲料1,2,3,4,5)的试验组,黄颡鱼状态较好,未出现有肠炎症状的鱼;而投喂鲜活饵小杂鱼和小鲜虾的对照组,分别在养殖的不同时段出现肠炎病鱼,说明投喂本技术发明可以降低黄颡鱼肠炎发病率。
5、虾虎养殖
本试验在养殖基地室内淡水养殖桶中进行养殖,溶氧充足,水温维持在25-30摄氏度,pH值在6.8-7.2之间,试验虾虎平均体重60g。试验分3个对照组和5个实验组,每组3个平行。对照组一投喂小杂鱼,对照组二投喂小鲜虾,对照组三投喂由配方1制备成直径为2mm的颗粒饲料。实验组一至五分别投喂由配方1-5制备成的胶囊饲料。
每组平均选取健康虾虎30条,各组投喂情况见表5。对照组一每天购买鲜活的小杂鱼,搅碎后进行投喂。每天早晚各投喂一次,小杂鱼每次投喂15条。对照组二喂食小鲜虾以半小时内吃完为准。对照组三投喂颗粒饲料30颗。实验组一至五每次投喂胶囊饲料30颗。每天记录虾虎的活动,摄食,死亡和发病情况等,每天定时测定水温和溶氧,养殖8周。
表5投喂不同饲料试验结果比较
组别 投喂饲料种类 成活率 平均增重率 肠炎发病率
对照组一 小杂鱼 90% 134.52% 6.67%
对照组二 小鲜虾 83.33% 119.46% 6.67%
对照组三 颗粒饲料 93.33% 140.21% 6.67%
实验组一 胶囊饲料1 100% 170.32% 0
实验组二 胶囊饲料2 100% 161.48% 0
实验组三 胶囊饲料3 96.67% 167.56% 0
实验组四 胶囊饲料4 100% 165.56% 0
实验组五 胶囊饲料5 100% 166.78% 0
从表5可看出,投喂本技术发明(胶囊饲料1,2,3,4,5)的试验组虾虎成活率显著高于投喂鲜活饵小杂鱼和小鲜虾的对照组虾虎成活率,这说明本技术发明可以有效提高虾虎成活率。
实验结束时,投喂本技术发明(胶囊饲料1,2,3,4,5)的试验组虾虎的平均相对增重率分别高出投喂鲜活饵小杂鱼和小鲜虾的对照组,说明本技术发明可加快虾虎生长速度。
通过观察发现,在整个试验过程中,投喂本技术发明(胶囊饲料1,2,3,4,5)的试验组,虾虎状态较好,未出现有肠炎症状的鱼;而投喂鲜活饵小杂鱼和小鲜虾的对照组,分别在养殖的不同时段出现肠炎病鱼,说明投喂本技术发明可以降低虾虎肠炎发病率。
6、鳜鱼养殖
本试验在养殖基地室内淡水养殖桶中进行养殖,溶氧充足,水温维持在28-30摄氏度,pH值在6.8-7.2之间,试验鳜鱼平均体重60g。试验分3个对照组和5个实验组,每组3个平行。对照组一投喂小杂鱼,对照组二投喂小鲜虾,对照组三投喂由配方1制备成直径为2mm的颗粒饲料。实验组一至五分别投喂由配方1-5制备成的胶囊饲料。
每组平均选取健康鳜鱼30条,各组投喂情况见表6。对照组一每天购买鲜活的小杂鱼,搅碎后进行投喂。每天早晚各投喂一次,小杂鱼每次投喂15条。对照组二喂食小鲜虾以半小时内吃完为准。对照组三投喂颗粒饲料30颗。实验组一至五每次投喂胶囊饲料30颗。每天记录鳜鱼的活动,摄食,死亡和发病情况等, 每天定时测定水温和溶氧,养殖8周。
表6投喂不同饲料试验结果比较
组别 投喂饲料种类 成活率 平均增重率 肠炎发病率
对照组一 小杂鱼 86.67% 136.52% 6.67%
对照组二 小鲜虾 83.33% 120.46% 10%
对照组三 颗粒饲料 96.67% 142.21% 3.33%
实验组一 胶囊饲料1 100% 175.32% 0
实验组二 胶囊饲料2 96.67% 158.48% 0
实验组三 胶囊饲料3 100% 160.56% 0
实验组四 胶囊饲料4 100% 162.25% 0
实验组五 胶囊饲料5 100% 162.84 0
从表6可看出,投喂本技术发明(胶囊饲料1,2,3,4,5)的试验组鳜鱼成活率显著高于投喂鲜活饵小杂鱼和小鲜虾的对照组鳜鱼成活率,这说明本技术发明可以有效提高鳜鱼成活率。
实验结束时,投喂本技术发明(胶囊饲料1,2,3,4,5)的试验组鳜鱼的平均相对增重率分别高出投喂鲜活饵小杂鱼和小鲜虾的对照组,说明本技术发明可加快鳜鱼生长速度。
通过观察发现,在整个试验过程中,投喂本技术发明(胶囊饲料1,2,3,4,5)的试验组,鳜鱼状态较好,未出现有肠炎症状的鱼;而投喂鲜活饵小杂鱼和小鲜虾的对照组,分别在养殖的不同时段出现肠炎病鱼,说明投喂本技术发明可以降低鳜鱼肠炎发病率。
实施例2一种海水肉食性鱼类的人工胶囊饲料
一、饲料配方:
配方1:一种海水肉食性鱼类的人工胶囊饲料,包括以下质量份的组分:进口鱼粉6份,国产鱼粉12份,黄粉20份,生麸21份,豆粕28份,乌贼膏2份,鱼油1.2份,磷脂油1.0份,预混料2份,蚯蚓粉2份,蝇蛆粉3份,酵母粉1.8份。
配方2:一种海水肉食性鱼类的人工胶囊饲料,包括以下质量份的组分:进口鱼粉5份,国产鱼粉15份,黄粉15份,生麸15份,豆粕30份,乌贼膏1份,鱼油1.5份,磷脂油0.5份,预混料1份,蚯蚓粉3份,蝇蛆粉1份,酵母粉3份。
配方3:一种海水肉食性鱼类的人工胶囊饲料,包括以下质量份的组分:进口鱼粉7.5份,国产鱼粉7.5份,黄粉25份,生麸25份,豆粕25份,乌贼膏3份,鱼油1份,磷脂油1.5份,预混料3份,蚯蚓粉1份,蝇蛆粉5份,酵母粉1份。
配方1-3的人工饲料所用预混料的组成及各组分在饲料中的添加量如下所示(单位为mg/kg):VA20,VB110,VB215,VB615,VB128,烟酸胺100,VC(35%)1000,泛酸钙40,生物素2,肌醇200,叶酸10,VE400,VK320,VD310,硫酸镁2000,硫酸亚铁300,硫酸锌200,硫酸锰100,碘化钾(10%)80,亚硒酸钠67,氯化钴(10%)5,硫酸铜10,氯化钠100,沸石粉4938,抗氧化剂200。
配方4:一种海水肉食性鱼类的人工胶囊饲料,包括以下质量份的组分:进口鱼粉6份,国产鱼粉12份,黄粉20份,生麸21份,豆粕28份,乌贼膏2份,鱼油1.2份,磷脂油1.0份,预混料2份,蚯蚓粉2份,蝇蛆粉3份,酵母粉1.8份。
本配方中所用预混料的组成及各组分在饲料中的添加量如下所示(单位为mg/kg):VA10,VB15,VB210,VB610,VB121,烟酸胺50,VC(35%)500,泛酸钙20,生物素1,肌醇100,叶酸5,VE200,VK310, VD35,硫酸镁1000,硫酸亚铁200,硫酸锌100,硫酸锰50,碘化钾(10%)100,亚硒酸钠50,氯化钴(10%)1,硫酸铜5,氯化钠50,沸石粉4000,抗氧化剂100。
配方5:一种海水肉食性鱼类的人工胶囊饲料,包括以下质量份的组分:进口鱼粉6份,国产鱼粉12份,黄粉20份,生麸21份,豆粕28份,乌贼膏2份,鱼油1.2份,磷脂油1.0份,预混料2份,蚯蚓粉2份,蝇蛆粉3份,酵母粉1.8份。
本配方中所用预混料的组成及各组分在饲料中的添加量如下所示(单位为mg/kg):VA50,VB150,VB250,VB650,VB1215,烟酸胺150,VC(35%)1500,泛酸钙60,生物素5,肌醇300,叶酸15,VE600,VK330,VD315,硫酸镁3000,硫酸亚铁400,硫酸锌300,硫酸锰150,碘化钾(10%)1000,亚硒酸钠100,氯化钴(10%)10,硫酸铜15,氯化钠150,沸石粉6000,抗氧化剂300。
二、胶囊饲料的制备:
将饲料配方1-5制备成胶囊饲料,方法同实施例1。
三、养殖试验
1、鞍带石斑鱼养殖
为了验证效果,下面提供利用本发明胶囊饲料养殖鞍带石斑鱼的试验:
本试验在某海水养殖基地室内养殖桶中进行养殖,溶氧充足,水温维持在28-30摄氏度,pH值在6.5-7.5之间,试验鞍带石斑鱼平均体重60g。试验分3个对照组和5个实验组,每组3个平行。对照组一投喂小杂鱼,对照组二投喂小鲜虾,对照组三投喂由配方1制备成直径为2mm的颗粒饲料。实验组一至五分别投喂由配方1-5制备成的胶囊饲料。
每组平均选取健康鞍带石斑30条,各组投喂情况见表7。对照组一和对照组二每天购买鲜活的小杂鱼和小鲜虾,搅碎后即可进行投喂。对照组一普通小杂鱼每次投喂15条。对照组二喂食小鲜虾以半小时内吃完为准。对照组三投喂颗粒饲料30颗。实验组一至五每次投喂胶囊饲料30颗。每天记录鞍带石斑鱼的活动,摄食,死亡和发病情况等,每天定时测定水温和溶氧,养殖8周。
表7投喂不同饲料试验结果比较
组别 投喂饲料种类 成活率 平均相对增重率 肠炎发病率
对照组一 小杂鱼 86.67% 124.25% 6.7%
对照组二 小鲜虾 73.33% 110.64% 10%
对照组三 颗粒饲料 90% 138.25% 3.3%
实验组一 胶囊饲料1 100% 162.11% 0
实验组二 胶囊饲料2 96.67% 149.67% 0
实验组三 胶囊饲料3 96.67% 152.38% 0
实验组四 胶囊饲料4 98.12% 155.62% 0
实验组五 胶囊饲料5 98.56% 156.46% 0
从表7可看出,投喂本技术发明(胶囊饲料1,2,3,4,5)的试验组鞍带石斑鱼成活率显著高于投喂鲜活饵小杂鱼和小鲜虾的对照组鞍带石斑鱼成活率,这说明本技术发明可以有效提高鞍带石斑鱼成活率。
实验结束时,投喂本技术发明(胶囊饲料1,2,3,4,5)的试验组鞍带石斑鱼的平均相对增重率分别高出投喂鲜活饵小杂鱼和小鲜虾的对照组,说明本技术发明可加快鞍带石斑鱼生长速度。
通过观察发现,在整个试验过程中,投喂本技术发明(胶囊饲料1,2,3,4,5)的试验组,鞍带石斑鱼状态较好,未出现有肠炎症状的鱼;而投喂鲜活饵小杂鱼和小鲜虾的对照组,分别在养殖的不同时段 出现肠炎病鱼,说明投喂本技术发明可以降低鞍带石斑鱼肠炎发病率。
2、真鯛养殖
为了验证效果,下面提供利用本发明胶囊饲料养殖真鯛的试验:
本试验在某海水养殖基地室内养殖桶中进行养殖,溶氧充足,水温维持在20-25摄氏度,pH值在6.5-7.5之间,试验真鯛平均体重60g。试验分3个对照组和5个实验组,每组3个平行。对照组一投喂小杂鱼,对照组二投喂小鲜虾,对照组三投喂由配方1制备成直径为2mm的颗粒饲料。实验组一至五分别投喂由配方1-5制备成的胶囊饲料。
每组平均选取健康真鯛30条,各组投喂情况见表8。对照组一和对照组二每天购买鲜活的小杂鱼和小鲜虾,搅碎后即可进行投喂。每天早晚各投喂一次,对照组一普通小杂鱼每次投喂15条。对照组二喂食小鲜虾以半小时内吃完为准。对照组三投喂颗粒饲料30颗。实验组一至五每次投喂胶囊饲料30颗。每天记录真鯛的活动,摄食,死亡和发病情况等,每天定时测定水温和溶氧,养殖8周。
表8投喂不同饲料试验结果比较
组别 投喂饲料种类 成活率 平均相对增重率 肠炎发病率
对照组一 小杂鱼 86.67% 138.52% 6.67%
对照组二 小鲜虾 83.33% 121.46% 6.67%
对照组三 颗粒饲料 96.67% 145.21% 3.33%
实验组一 胶囊饲料1 100% 174.32% 0
实验组二 胶囊饲料2 100% 165.48% 0
实验组三 胶囊饲料3 100% 170.56% 0
实验组四 胶囊饲料4 100% 170.68% 0
实验组五 胶囊饲料5 100% 171.32% 0
从表8可看出,投喂本技术发明(胶囊饲料1,2,3,4,5)的试验组真鯛成活率显著高于投喂鲜活饵小杂鱼和小鲜虾的对照组真鯛成活率,这说明本技术发明可以有效提高真鯛成活率。
实验结束时,投喂本技术发明(胶囊饲料1,2,3,4,5)的试验组真鯛的平均相对增重率分别高出投喂鲜活饵小杂鱼和小鲜虾的对照组,说明本技术发明可加快真鯛生长速度。
通过观察发现,在整个试验过程中,投喂本技术发明(胶囊饲料1,2,3,4,5)的试验组,真鯛状态较好,未出现有肠炎症状的鱼;而投喂鲜活饵小杂鱼和小鲜虾的对照组,分别在养殖的不同时段出现肠炎病鱼,说明投喂本技术发明可以降低真鯛肠炎发病率。
3、花鲈养殖
为了验证效果,下面提供利用本发明胶囊饲料养殖花鲈的试验:
本试验在某海水养殖基地室内养殖桶中进行养殖,溶氧充足,水温维持在18-22摄氏度,pH值在6.5-7.5之间,试验花鲈平均体重60g。试验分3个对照组和5个实验组,每组3个平行。对照组一投喂小杂鱼,对照组二投喂小鲜虾,对照组三投喂由配方1制备成直径为2mm的颗粒饲料。实验组一至五分别投喂由配方1-5制备成的胶囊饲料。
每组平均选取健康花鲈30条,各组投喂情况见表9。对照组一和对照组二每天购买鲜活的小杂鱼和小鲜虾,搅碎后即可进行投喂。每天早晚各投喂一次,对照组一普通小杂鱼每次投喂15条。对照组二喂食小鲜虾以半小时内吃完为准。对照组三投喂颗粒饲料30颗。实验组一至五每次投喂胶囊饲料30颗。每天记录花鲈的活动,摄食,死亡和发病情况等,每天定时测定水温和溶氧,养殖8周。
表9投喂不同饲料试验结果比较
组别 投喂饲料种类 成活率 平均相对增重率 肠炎发病率
对照组一 小杂鱼 93.33% 135.21% 3.33%
对照组二 小鲜虾 90% 145.32% 6.67%
对照组三 颗粒饲料 96.67% 153.46% 3.33%
实验组一 胶囊饲料1 100% 173.38% 0
实验组二 胶囊饲料2 100% 169.86% 0
实验组三 胶囊饲料3 100% 171.67% 0
实验组四 胶囊饲料4 100% 172.32% 0
实验组五 胶囊饲料5 100% 172.24% 0
从表9可看出,投喂本技术发明(胶囊饲料1,2,3,4,5)的试验组花鲈成活率显著高于投喂鲜活饵小杂鱼和小鲜虾的对照组花鲈成活率,这说明本技术发明可以有效提高花鲈成活率。
实验结束时,投喂本技术发明(胶囊饲料1,2,3,4,5)的试验组花鲈的平均相对增重率分别高出投喂鲜活饵小杂鱼和小鲜虾的对照组,说明本技术发明可加快花鲈生长速度。
通过观察发现,在整个试验过程中,投喂本技术发明(胶囊饲料1,2,3,4,5)的试验组,花鲈状态较好,未出现有肠炎症状的鱼;而投喂鲜活饵小杂鱼和小鲜虾的对照组,分别在养殖的不同时段出现肠炎病鱼,说明投喂本技术发明可以降低花鲈肠炎发病率。
4、牙鲆养殖
为了验证效果,下面提供利用本发明胶囊饲料养殖牙鲆的试验效果:
本试验在某海水养殖基地室内养殖桶中进行养殖,溶氧充足,水温维持在17-20摄氏度,pH值在6.5-7.5之间,试验牙鲆平均体重60g。试验分3个对照组和5个实验组,每组3个平行。对照组一投喂小杂鱼,对照组二投喂小鲜虾,对照组三投喂由配方1制备成直径为2mm的颗粒饲料。实验组一至五分别投喂由配方1-5制备成的胶囊饲料。
每组平均选取健康牙鲆30条,各组投喂情况见表10。对照组一和对照组二每天购买鲜活的小杂鱼和小鲜虾,搅碎后即可进行投喂。每天早晚各投喂一次,对照组一普通小杂鱼每次投喂15条。对照组二喂食小鲜虾以半小时内吃完为准。对照组三投喂颗粒饲料30颗。实验组一至五每次投喂胶囊饲料30颗。每天记录牙鲆的活动,摄食,死亡和发病情况等,每天定时测定水温和溶氧,养殖8周。
表10投喂不同饲料试验结果比较
组别 投喂饲料种类 成活率 平均相对增重率 肠炎发病率
对照组一 小杂鱼 93.33% 129.21% 6.67%
对照组二 小鲜虾 86.67% 139.32% 6.67%
对照组三 颗粒饲料 96.67% 145.46% 0
实验组一 胶囊饲料1 100% 170.67% 0
实验组二 胶囊饲料2 100% 161.86% 0
实验组三 胶囊饲料3 100% 167.38% 0
实验组四 胶囊饲料4 100% 168.32% 0
实验组五 胶囊饲料5 100% 168.46% 0
从表10可看出,投喂本技术发明(胶囊饲料1,2,3,4,5)的试验组牙鲆成活率显著高于投喂鲜活饵小杂鱼和小鲜虾的对照组牙鲆成活率,这说明本技术发明可以有效提高牙鲆成活率。
实验结束时,投喂本技术发明(胶囊饲料1,2,3,4,5)的试验组牙鲆的平均相对增重率分别高出投喂鲜活饵小杂鱼和小鲜虾的对照组,说明本技术发明可加快牙鲆生长速度。
通过观察发现,在整个试验过程中,投喂本技术发明(胶囊饲料1,2,3,4,5)的试验组,牙鲆状态较好,未出现有肠炎症状的鱼;而投喂鲜活饵小杂鱼和小鲜虾的对照组,分别在养殖的不同时段出现肠炎病鱼,说明投喂本技术发明可以降低牙鲆肠炎发病率。
实施例3一种观赏鱼的人工胶囊饲料
一、饲料配方:
配方1:一种观赏鱼人工饲料,包括以下质量份的组分:进口鱼粉8份,国产鱼粉15份,抗菌肽5份,生麸21份,豆粕28份,磷酸二氢钙2份,乌贼膏2份,鱼油1.2份,磷脂油2份,预混料2份,蚯蚓粉2份,蝇蛆粉6份,酵母粉1.8份,虾粉2份,芽孢杆菌2份。
配方2:一种观赏鱼人工饲料,包括以下质量份的组分:进口鱼粉5份,国产鱼粉15份,抗菌肽2份,生麸25份,豆粕30份,磷酸二氢钙1份,乌贼膏5份,鱼油1.5份,磷脂油3份,预混料1份,蚯蚓粉1份,蝇蛆粉8份,酵母粉1份,虾粉1份,芽孢杆菌3份。
配方3:一种观赏鱼人工饲料,包括以下质量份的组分:进口鱼粉12.5份,国产鱼粉12.5份,抗菌肽8份,生麸15份,豆粕25份,磷酸二氢钙5份,乌贼膏1份,鱼油1.0份,磷脂油1份,预混料3份,蚯蚓粉3份,蝇蛆粉4份,酵母粉3份,虾粉3份,芽孢杆菌1份。
配方1-3中所用预混料的组成及各组分在饲料中的添加量如下所示(单位为mg/kg):VA20,VB110,VB215,VB615,VB128,烟酸胺100,VC(35%)1000,泛酸钙40,生物素2,肌醇200,叶酸10,VE400,VK320,VD310,硫酸镁2000,硫酸亚铁300,硫酸锌200,硫酸锰100,碘化钾(10%)80,亚硒酸钠67,氯化钴(10%)5,硫酸铜10,氯化钠100,沸石粉4938,抗氧化剂200。
配方4:一种观赏鱼人工饲料,包括以下质量份的组分:进口鱼粉8份,国产鱼粉15份,抗菌肽5份,生麸21份,豆粕28份,磷酸二氢钙2份,乌贼膏2份,鱼油1.2份,磷脂油2份,预混料2份,蚯蚓粉2份,蝇蛆粉6份,酵母粉1.8份,虾粉2份,芽孢杆菌2份。
本配方中所用预混料的组成及各组分在饲料中的添加量如下所示(单位为mg/kg):VA10,VB15,VB210,VB610,VB121,烟酸胺50,VC(35%)500,泛酸钙20,生物素1,肌醇100,叶酸5,VE200,VK310,VD35,硫酸镁1000,硫酸亚铁200,硫酸锌100,硫酸锰50,碘化钾(10%)100,亚硒酸钠50,氯化钴(10%)1,硫酸铜5,氯化钠50,沸石粉4000,抗氧化剂100。
配方5:一种观赏鱼人工饲料,包括以下质量份的组分:进口鱼粉8份,国产鱼粉15份,抗菌肽5份,生麸21份,豆粕28份,磷酸二氢钙2份,乌贼膏2份,鱼油1.2份,磷脂油2份,预混料2份,蚯蚓粉2份,蝇蛆粉6份,酵母粉1.8份,虾粉2份,芽孢杆菌2份。
本配方中所用预混料的组成及各组分在饲料中的添加量如下所示(单位为mg/kg):VA50,VB150,VB250,VB650,VB1215,烟酸胺150,VC(35%)1500,泛酸钙60,生物素5,肌醇300,叶酸15,VE600,VK330,VD315,硫酸镁3000,硫酸亚铁400,硫酸锌300,硫酸锰150,碘化钾(10%)1000,亚硒酸钠100,氯化钴(10%)10,硫酸铜15,氯化钠150,沸石粉6000,抗氧化剂300。
二、胶囊饲料的制备:
将饲料配方1-5制备成胶囊饲料,方法同实施例1。
三、养殖试验
1、龙鱼养殖
为了验证效果,下面提供利用本发明胶囊饲料养殖龙鱼的试验效果:
本试验在水族玻璃缸中进行养殖,循环水养殖,溶氧充足,水温维持在28-30摄氏度,pH值在6.5-7.5之间,试验龙鱼平均体重60g。试验分3个对照组和5个实验组,每组3个平行。对照组一投喂小鲤鱼,对照组二投喂大麦虫,对照组三投喂由配方1制备成直径为2mm的颗粒饲料。实验组一至五分别投喂由配方1-5制备成的胶囊饲料。
每组平均选取健康龙鱼30条,各组投喂情况见表11。对照组一每天购买鲜活的小鲤鱼,投喂之前,要提前对鲤鱼进行处理,去除掉内脏,并用清水清洗鱼肉,然后进行投喂。每天早晚各投喂一次,普通小鲤鱼每次投喂15条。对照组二喂食大麦虫以半小时内吃完为准。对照组三投喂颗粒饲料30颗。实验组一至五每次投喂胶囊饲料30颗。每天记录龙鱼的活动,摄食,死亡和发病情况等,每天定时测定水温和溶氧,养殖8周。
表11投喂不同饲料试验结果比较
组别 投喂饲料种类 成活率 平均增重率 肠炎发病率
对照组一 普通小鲤鱼 90% 125.21% 6.67%
对照组二 大麦虫 86.67% 135.32% 8.89%
对照组三 颗粒饲料 96.67% 143.46% 0
实验组一 胶囊饲料1 100% 171.67% 0
实验组二 胶囊饲料2 100% 159.86% 0
实验组三 胶囊饲料3 100% 163.38% 0
实验组四 胶囊饲料4 100% 165.52% 0
实验组五 胶囊饲料5 100% 162.48% 0
从表11可看出,投喂本技术发明(胶囊饲料1,2,3,4,5)的试验组龙鱼成活率显著高于投喂鲜活饵小杂鱼和小鲜虾的对照组龙鱼成活率,这说明本技术发明可以有效提高龙鱼成活率。
实验结束时,投喂本技术发明(胶囊饲料1,2,3,4,5)的试验组龙鱼的平均相对增重率分别高出投喂鲜活饵小杂鱼和小鲜虾的对照组,说明本技术发明可加快龙鱼生长速度。
通过观察发现,在整个试验过程中,投喂本技术发明(胶囊饲料1,2,3,4,5)的试验组,龙鱼状态较好,未出现有肠炎症状的鱼;而投喂鲜活饵小杂鱼和小鲜虾的对照组,分别在养殖的不同时段出现肠炎病鱼,说明投喂本技术发明可以降低龙鱼肠炎发病率。
2、雀鳝鱼养殖
本试验在水族玻璃缸中进行养殖,循环水养殖,溶氧充足,水温维持在22-25摄氏度,pH值在6.8-7.2之间,试验雀鳝鱼平均体重60g。试验分3个对照组和5个实验组,每组3个平行。对照组一投喂小杂鱼,对照组二投喂小鲜虾,对照组三投喂由配方1制备成直径为2mm的颗粒饲料。实验组一至五分别投喂由配方1-5制备成的胶囊饲料。
每组平均选取健康雀鳝鱼30条,各组投喂情况见表12。对照组一每天购买鲜活的小杂鱼,并用清水清洗鱼身体表后,然后进行投喂。每天早晚各投喂一次,普通小鲤鱼每次投喂15条。对照组二喂食小鲜虾以半小时内吃完为准。对照组三投喂颗粒饲料30颗。实验组一至五每次投喂胶囊饲料30颗。每天记录雀鳝鱼的活动,摄食,死亡和发病情况等,每天定时测定水温和溶氧,养殖8周。
表12投喂不同饲料试验结果比较
组别 投喂饲料种类 成活率 平均增重率 肠炎发病率
对照组一 小杂鱼 86.67% 120.12% 6.67%
对照组二 小鲜虾 83.33% 112.65% 8.89%
对照组三 颗粒饲料 96.67% 124.43% 0
实验组一 胶囊饲料1 100% 142.26% 0
实验组二 胶囊饲料2 100% 136.73% 0
实验组三 胶囊饲料3 100% 137.74% 0
实验组四 胶囊饲料4 100% 138.23% 0
实验组五 胶囊饲料5 100% 138.64% 0
从表12可看出,投喂本技术发明(胶囊饲料1,2,3,4,5)的试验组雀鳝鱼成活率显著高于投喂鲜活饵小杂鱼和小鲜虾的对照组雀鳝鱼成活率,这说明本技术发明可以有效提高雀鳝鱼成活率。
实验结束时,投喂本技术发明(胶囊饲料1,2,3,3,4,5)的试验组雀鳝鱼的平均相对增重率分别高出投喂鲜活饵小杂鱼和小鲜虾的对照组,说明本技术发明可加快雀鳝鱼生长速度。
通过观察发现,在整个试验过程中,投喂本技术发明(胶囊饲料1,2,3,3,4,5)的试验组,雀鳝鱼状态较好,未出现有肠炎症状的鱼;而投喂鲜活饵小杂鱼和小鲜虾的对照组,分别在养殖的不同时段出现肠炎病鱼,说明投喂本技术发明可以降低雀鳝鱼肠炎发病率。
3、淡水白鲳养殖
本试验在水族玻璃缸中进行养殖,循环水养殖,溶氧充足,水温维持在25-28摄氏度,pH值在6.8-7.2之间,试验淡水白鲳平均体重60g。试验分3个对照组和5个实验组,每组3个平行。对照组一投喂小杂鱼,对照组二投喂小鲜虾,对照组三投喂由配方1制备成直径为2mm的颗粒饲料。实验组一至五分别投喂由配方1-5制备成的胶囊饲料。
每组平均选取健康淡水白鲳30条,各组投喂情况见表13。对照组一每天购买鲜活的小杂鱼,并用清水清洗鱼身体表后,然后进行投喂。每天早晚各投喂一次,普通小鲤鱼每次投喂15条。对照组二喂食小鲜虾以半小时内吃完为准。对照组三投喂颗粒饲料30颗。实验组一至五每次投喂胶囊饲料30颗。每天记录淡水白鲳的活动,摄食,死亡和发病情况等,每天定时测定水温和溶氧,养殖8周。
表13投喂不同饲料试验结果比较
组别 投喂饲料种类 成活率 平均增重率 肠炎发病率
对照组一 小杂鱼 90% 127.25% 6.7%
对照组二 小鲜虾 83.33% 123.64% 10%
对照组三 颗粒饲料 93.33% 141.25% 3.3%
实验组一 胶囊饲料1 96.67% 162.11% 0
实验组二 胶囊饲料2 100% 156.67% 0
实验组三 胶囊饲料3 100% 154.38% 0
实验组四 胶囊饲料4 100% 158.12% 0
实验组五 胶囊饲料5 100% 157.36% 0
从表13可看出,投喂本技术发明(胶囊饲料1,2,3,4,5)的试验组淡水白鲳成活率显著高于投喂鲜活饵小杂鱼和小鲜虾的对照组淡水白鲳成活率,这说明本技术发明可以有效提高淡水白鲳成活率。
实验结束时,投喂本技术发明(胶囊饲料1,2,3,4,5)的试验组淡水白鲳的平均相对增重率分别高出投喂鲜活饵小杂鱼和小鲜虾的对照组,说明本技术发明可加快淡水白鲳生长速度。
通过观察发现,在整个试验过程中,投喂本技术发明(胶囊饲料1,2,3,4,5)的试验组,淡水白鲳状态较好,未出现有肠炎症状的鱼;而投喂鲜活饵小杂鱼和小鲜虾的对照组,分别在养殖的不同时段出现肠炎病鱼,说明投喂本技术发明可以降低淡水白鲳肠炎发病率。
4、塘虱鱼养殖
本试验在水族玻璃缸中进行养殖,循环水养殖,溶氧充足,水温维持在28-30摄氏度,pH值在6.8-7.2之间,试验塘虱鱼平均体重60g。试验分3个对照组和5个实验组,每组3个平行。对照组一投喂小杂鱼,对照组二投喂小鲜虾,对照组三投喂由配方1制备成直径为2mm的颗粒饲料。实验组一至五分别投喂由配方1-5制备成的胶囊饲料。
每组平均选取健康塘虱鱼30条,各组投喂情况见表14。对照组一每天购买鲜活的小杂鱼,并用清水清洗鱼身体表后,然后进行投喂。每天早晚各投喂一次,普通小鲤鱼每次投喂15条。对照组二喂食小鲜虾以半小时内吃完为准。对照组三投喂颗粒饲料30颗。实验组一至五每次投喂胶囊饲料30颗。每天记录塘虱鱼的活动,摄食,死亡和发病情况等,每天定时测定水温和溶氧,养殖8周。
表14投喂不同饲料试验结果比较
组别 投喂饲料种类 成活率 平均增重率 肠炎发病率
对照组一 小杂鱼 86.67% 128.23% 6.7%
对照组二 小鲜虾 83.33% 114.62% 10%
对照组三 颗粒饲料 93.33% 142.22% 3.3%
实验组一 胶囊饲料1 100% 166.13% 0
实验组二 胶囊饲料2 100% 156.35% 0
实验组三 胶囊饲料3 96.67% 153.64% 0
从表14可看出,投喂本技术发明(胶囊饲料1,2,3,4,5)的试验组塘虱鱼成活率显著高于投喂鲜活饵小杂鱼和小鲜虾的对照组塘虱鱼成活率,这说明本技术发明可以有效提高塘虱鱼成活率。
实验结束时,投喂本技术发明(胶囊饲料1,2,3,4,5)的试验组塘虱鱼的平均相对增重率分别高出投喂鲜活饵小杂鱼和小鲜虾的对照组,说明本技术发明可加快塘虱鱼生长速度。
通过观察发现,在整个试验过程中,投喂本技术发明(胶囊饲料1,2,3,4,5)的试验组,塘虱鱼状态较好,未出现有肠炎症状的鱼;而投喂鲜活饵小杂鱼和小鲜虾的对照组,分别在养殖的不同时段出现肠炎病鱼,说明投喂本技术发明可以降低塘虱鱼肠炎发病率。
实施例4一种龙鱼育成期的人工胶囊饲料
配方1:一种龙鱼育成期的人工饵料,包括以下组分:复合维生素250g,白鱼粉137.5g,酵母粉37.5g,抗菌肽12.5g,芽孢杆菌25g,多聚糖37.5g,鱼肝油250g。所述复合维生素由50g维生素A,25g维生素 D3,18g维生素K3,12g维生素B1,16g维生素B2,28g维生素B6,101g维生素C组成,其中g表示重量单位:克。本实施例中的复合维生素片也可以采用本技术领域的通用复合维生素片。本实施例中各组分对应质量比分别为:复合维生素片33.33%,白鱼粉18.34%,酵母粉5%,抗菌肽1.67%,芽孢杆菌3.33%,多聚糖5%,鱼肝油33.33%。
将上述配方制备成胶囊饲料,制作步骤如下:
1)制作胶囊外壳;方法同实施例1中步骤相同,也可采用现有技术中的胶囊外壳的配制过程。
2)按照上述质量百分比,称取复合维生素片,白鱼粉,酵母粉,抗菌肽,芽孢杆菌,多聚糖,鱼肝油,将其中的固态物磨研成粉,均匀混合,得到混合物。
3)将所述步骤2)中制作好的混合物填充到所述步骤1)中的胶囊外壳中,得到人工饵料。
4)将人工饵料进行干燥处理。
为了验证效果,下面给出本发明提供技术方案的表观消化率和生长性能养殖试验效果:
本试验在水族玻璃缸中进行养殖,循环水养殖,溶氧充足,水温维持在28-30摄氏度,PH值在6.5-7.5之间,试验龙鱼平均体重60g。试验分对照组和实验组,每组3个平行,每组平均选取健康龙鱼30条,各组投喂情况见表15。每天购买鲜活的小鲤鱼,投喂之前,要提前对鲤鱼进行处理,去除掉内脏,并用清水清洗鱼肉,然后进行投喂。每天早晚各投喂一次,普通小鲤鱼每次投喂15条,喂食大麦虫以半小时内吃完为准,本发明人工饵料每次投喂30颗。每天记录龙鱼的活动,摄食,死亡和发病情况等,每天定时测定水温和溶氧,养殖8周。
表15试验各组别饵料投喂情况
组别 投喂饵料种类
对照1组 普通小鲤鱼
对照2组 大麦虫
实验组 人工饵料
如图2所示,投喂本发明人工饵料的试验组龙鱼成活率100%,显著高于投喂鲜活饵普通小鲤鱼和大麦虫的对照组龙鱼成活率93.33%
和86.67%,这说明本发明中的人工饵料可以有效提高龙鱼成活率。
实验结束时,如图3所示,投喂本发明人工饵料的试验组龙鱼的平均体重为158g,比投喂鲜活饵普通小鲤鱼和大麦虫的对照组分别高出23g和17g,平均增重率分别提高了38.3%和28.3%。说明本发明中的人工饵料可加快龙鱼生长速度。
如图4所示,通过观察发现,在整个试验过程中,投喂本发明人工饵料的试验组,龙鱼状态较好,未出现有肠炎症状的鱼;而投喂鲜活饵普通小鲤鱼和大麦虫的对照组,分别记录在养殖的不同时段肠炎病鱼发病率,整个期间肠炎发病率平均分别为6.67%和8.89%,说明投喂本发明中的人工饵料可以降低龙鱼肠炎发病率。
配方2:一种龙鱼育成期的人工饵料,包括以下组分:复合维生素250g,白鱼粉117.5g,酵母粉37.5g,抗菌肽22.5g,芽孢杆菌35g,多聚糖87.5g,鱼肝油200g。所述复合维生素,由50g维生素A,25g维生素D3,18g维生素K3,12g维生素B1,16g维生素B2,28g维生素B6,101g维生素C组成,其中g表示重量单位:克。本实施例中各组分对应质量比分别为:复合维生素片33.33%,白鱼粉15.67%,酵母粉5%,抗菌肽3%,芽孢杆菌4.67%,多聚糖11.67%,鱼肝油26.66%。
将上述配方制备成胶囊饲料,制作步骤如下:
1)制作胶囊外壳;方法同实施例1中步骤相同,也可采用现有技术中的胶囊外壳的配制过程。
2)按照上述质量百分比,称取复合维生素片,白鱼粉,酵母粉,抗菌肽,芽孢杆菌,多聚糖,鱼肝油,将其中的固态物磨研成粉,均匀混合,得到混合物。
3)将所述步骤2)中制作好的混合物填充到所述步骤1)中的胶囊外壳中,得到人工饵料。
4)将人工饵料进行干燥处理。
将配方2制作的人工饵料在与配方1相同的实验环境中进行实验。得到实验结果是投喂本发明人工饵料的试验组龙鱼成活率100%,显著高于投喂鲜活饵普通小鲤鱼和大麦虫的对照组龙鱼成活率90%和83.33%,这说明本发明中的人工饵料可以有效提高龙鱼成活率。
投喂本发明的试验组龙鱼的平均体重为160g,比投喂鲜活饵普通小鲤鱼和大麦虫的对照组分别高出25g和18g,平均增重率分别提高了41.6%和30%。说明本发明的人工饵料可加快龙鱼生长速度。
投喂本发明的人工饵料试验组,龙鱼状态较好,未出现有肠炎症状的鱼;而投喂鲜活饵普通小鲤鱼和大麦虫的对照组,分别记录在养殖的不同时段肠炎病鱼发病率,整个期间肠炎发病率平均分别为13.33%和10%,说明本发明胶囊饲料可以降低龙鱼肠炎发病率。
实施例5一种龟类的人工胶囊饲料
一、饲料配方:
配方1:一种龟类人工饲料,包括如下质量配比的组分:鱼粉62.5份、鱼油5份、α-淀粉25份、破壁酵母2份、磷酸二氢钙2份、氯化胆碱1.5份、龟用预混料2份。
所述鱼粉中白鱼粉与红鱼粉的比例为4∶1。
配方2:一种龟类人工饲料,包括如下质量配比的组分:鱼粉50份、鱼油10份、α-淀粉30份、破壁酵母3份、磷酸二氢钙3份、氯化胆碱3份、龟用预混料1份。
所述鱼粉中白鱼粉与红鱼粉的比例为3∶1。
配方3:一种龟类人工饲料,包括如下质量配比的组分:鱼粉70份、鱼油2份、α-淀粉20份、破壁酵母1份、磷酸二氢钙2份、氯化胆碱2份、龟用预混料3份。
所述鱼粉中白鱼粉与红鱼粉的比例为5∶1。
实施例1-3中所述龟用预混料每千克含有:VA300001U,VC200mg,VD3250001U,VE600mg,VK100mg,VB150mg,VB260mg,尼克酸100mg,泛酸钙120mg,VB640mg,VB120.2mg,生物素7mg,叶酸20mg,肌醇250mg,FeSO4.7H2O 122.0mg,CuSO4.5H2O 72g,MnSO4.H2O 5.16g,ZnSO4.7H2O 15.56g,KI 6.58g,NaSeO32.10g。也可以用其他的龟用矿物质预混料替代。
二、胶囊饲料的制备:
将饲料配方1-3制备成胶囊饲料,方法同实施例1。
三、养殖试验
1、陆龟养殖:
为了验证效果,下面提供利用本发明胶囊饲料养殖陆龟的试验:
本试验在养殖基地室内淡水养殖桶中进行养殖,溶氧充足,水温维持在22-25摄氏度,pH值在6.5-7.5之间,试验陆龟平均体重60g。试验分3个对照组和3个实验组,每组3个平行。对照组一投喂小杂鱼,对照组二投喂小鲜虾,对照组三投喂由实施例1的配方制备成直径为2mm的颗粒饲料。实验组一至三分别投喂有实施例1-3的配方制备成的胶囊饲料。
每组平均选取健康陆龟30只,各组投喂情况见表1。对照组一每天购买鲜活的小杂鱼,搅碎后进行投喂。每天早晚各投喂一次,小杂鱼每次投喂15条。对照组二喂食小鲜虾以半小时内吃完为准。对照组三投喂颗粒饲料30颗。实验组一至三每次投喂胶囊饲料30颗。每天记录陆龟的活动,摄食,死亡和发病情况等,每天定时测定水温和溶氧,养殖8周。
表1投喂不同饲料试验结果比较
组别 投喂饲料种类 成活率 平均增重率 肠炎发病率
对照组一 小杂鱼 76.67% 116.52% 13.33%
对照组二 小鲜虾 80% 124.46% 10%
对照组三 颗粒饲料 95.33% 128.21% 0
实验组一 胶囊饲料1 100% 166.21% 0
实验组二 胶囊饲料2 96.67% 147.32% 0
实验组三 胶囊饲料3 96.67% 143.56% 0
从表1可看出,投喂本技术发明(胶囊饲料1,2,3)的试验组陆龟成活率显著高于投喂鲜活饵小杂鱼和小鲜虾的对照组陆龟成活率,这说明本技术发明可以有效提高陆龟成活率。
实验结束时,投喂本技术发明(胶囊饲料1,2,3)的试验组陆龟的平均相对增重率分别高出投喂鲜活饵小杂鱼和小鲜虾的对照组,说明本技术发明可加快陆龟生长速度。
通过观察发现,在整个试验过程中,投喂本技术发明(胶囊饲料1,2,3)的试验组,陆龟状态较好,未出现有肠炎症状的鱼;而投喂鲜活饵小杂鱼和小鲜虾的对照组,分别在养殖的不同时段出现肠炎病鱼,说明投喂本技术发明可以降低陆龟肠炎发病率。
2、水龟养殖
本试验在养殖基地室内淡水养殖桶中进行养殖,溶氧充足,水温维持在28-30摄氏度,pH值在6.8-7.2之间,试验水龟平均体重60g。试验分3个对照组和3个实验组,每组3个平行。对照组一投喂小杂鱼,对照组二投喂小鲜虾,对照组三投喂由实施例1的配方制备成直径为2mm的颗粒饲料。实验组一至三分别投喂有实施例1-3的配方制备成的胶囊饲料。
每组平均选取健康水龟30只,各组投喂情况见表2。对照组一每天购买鲜活的小杂鱼,搅碎后进行投喂。每天早晚各投喂一次,小杂鱼每次投喂15条。对照组二喂食小鲜虾以半小时内吃完为准。对照组三投喂颗粒饲料30颗。实验组一至三每次投喂胶囊饲料30颗。每天记录水龟的活动,摄食,死亡和发病情况等,每天定时测定水温和溶氧,养殖8周。
表2投喂不同饲料试验结果比较
组别 投喂饲料种类 成活率 平均增重率 肠炎发病率
对照组一 小杂鱼 80% 114.32% 16.67%
对照组二 小鲜虾 73.33% 120.16% 13.33%
对照组三 颗粒饲料 92% 122.31% 3.33%
实验组一 胶囊饲料1 100% 165.21% 0
实验组二 胶囊饲料2 93.33% 140.32% 0
实验组三 胶囊饲料3 96.67% 139.46% 0
从表2可看出,投喂本技术发明(胶囊饲料1,2,3)的试验组水龟成活率显著高于投喂鲜活饵小杂鱼和小鲜虾的对照组水龟成活率,这说明本技术发明可以有效提高水龟成活率。
实验结束时,投喂本技术发明(胶囊饲料1,2,3)的试验组水龟的平均相对增重率分别高出投喂鲜活饵小杂鱼和小鲜虾的对照组,说明本技术发明可加快水龟生长速度。
通过观察发现,在整个试验过程中,投喂本技术发明(胶囊饲料1,2,3)的试验组,水龟状态较好,未出现有肠炎症状的鱼;而投喂鲜活饵小杂鱼和小鲜虾的对照组,分别在养殖的不同时段出现肠炎病鱼,说明投喂本技术发明可以降低水龟肠炎发病率。
以上实施例仅为介绍本发明的优选案例,对于本领域技术人员来说,在不背离本发明精神的范围内所进行的任何显而易见的变化和改进,都应被视为本发明的一部分。

Claims (30)

  1. 一种胶囊饲料,其特征在于,包括可水溶或水解的胶囊和包裹在所述胶囊内的饲料。
  2. 根据权利要求1所述的胶囊饲料,其特征在于,所述胶囊的外表面为亮面。
  3. 根据权利要求2所述的胶囊饲料,其特征在于,所述胶囊的外表面为光滑的亮面。
  4. 根据权利要求1-3任一项所述的胶囊饲料,其特征在于,所述胶囊的底部设有向外伸出且可水溶或水解的配重柄,所述胶囊和饲料的平均密度小于养殖水的密度,所述胶囊、饲料和配重柄的整体密度大于养殖水的密度。
  5. 根据权利要求4所述的胶囊饲料,其特征在于,所述胶囊和饲料的平均密度小于1.000×103kg/m3或小于1.025×103kg/m3;所述配重柄的密度大于1.000×103kg/m3或大于1.025×103kg/m3;所述胶囊、饲料和配重柄的整体密度大于1.000×103kg/m3或大于1.025×103kg/m3
  6. 根据权利要求4或5所述的鱼胶囊饲料,其特征在于:所述胶囊和配重柄为一体成型的明胶、海藻酸钠、玉米醇溶蛋白、乙基纤维素、阿拉伯胶、虫胶、紫胶或松脂制件。
  7. 根据权利要求1-6任一项所述的胶囊饲料,其特征在于,所述胶囊内的饲料包括以下组分:鱼粉、黄粉、生麸、豆粕、磷酸二氢钙、乌贼膏、鱼油、磷脂油、预混料、抗菌肽、芽孢杆菌。
  8. 根据权利要求7所述的胶囊饲料,其特征在于,所述胶囊内的饲料包括如下质量配比的组分:鱼粉20~25份、黄粉15~20份、生麸18~23份、豆粕25~30份、磷酸二氢钙1.5~2.0份、乌贼膏1~3份、鱼油1.0~1.5份、磷脂油0.5~1.5份、预混料1~3份、抗菌肽1~3份、芽孢杆菌0.5~1.5份。
  9. 根据权利要求1-6任一项所述的胶囊饲料,其特征在于,所述胶囊内的饲料包括以下组分:鱼粉、黄粉、生麸、豆粕、乌贼膏、鱼油、磷脂油、预混料、蚯蚓粉、蝇蛆粉、酵母粉。
  10. 根据权利要求9所述的胶囊饲料,其特征在于,所述胶囊内的饲料包括如下质量配比组分:鱼粉15~20份,黄粉15~25份,生麸15~25份,豆粕25~30份,乌贼膏1~3份,鱼油1.0~1.5份,磷脂油0.5~1.5份,预混料1~3份,蚯蚓粉1~3份,蝇蛆粉1~5份,酵母粉1~3份。
  11. 根据权利要求1-6任一项所述的胶囊饲料,其特征在于,所述胶囊内的饲料包括以下组分:鱼粉、抗菌肽、生麸、豆粕、磷酸二氢钙、乌贼膏、鱼油、磷脂油、预混料、蚯蚓粉、蝇蛆粉、酵母粉、虾粉、芽孢杆菌。
  12. 根据权利要求11所述的胶囊饲料,其特征在于,所述胶囊内的饲料包括如下质量配比组分:鱼粉20~25份,抗菌肽2~8份,生麸15~25份,豆粕25~30份,磷酸二氢钙1~5份,乌贼膏1~5份,鱼油1.0~1.5份,磷脂油1~3份,预混料1~3份,蚯蚓粉1~3份,蝇蛆粉4~8份,酵母粉1~3份,虾粉1~3份,芽孢杆菌1~3份。
  13. 根据权利要求7-12任一项所述的胶囊饲料,其特征在于,所述预混料的组分包括:维生素A,维生素B1,维生素B2,维生素B6,维生素B12,烟酸胺,维生素C,泛酸钙,生物素,肌醇,叶酸,维生素E,维生素K3,维生素D3,硫酸镁,硫酸亚铁,硫酸锌,硫酸锰,碘化钾,亚硒酸钠,氯化钴(10%),硫酸铜,氯化钠,沸石粉,抗氧化剂。
  14. 根据权利要求13所述的的胶囊饲料,其特征在于,所述预混料中各组分在饲料中的添加量为VA 10~50,VB1 5~50,VB2 10~50,VB6 10~50,VB12 1~15,烟酸胺50~150,VC 500~1500,泛酸钙20~60,生物素1~5,肌醇100~300,叶酸5~15,VE200~600,VK3 10~30,VD3 5~15,硫酸镁1000~3000,硫酸亚铁200~400,硫酸锌100~300,硫酸锰50~150,碘化钾10~100,亚硒酸钠50~100,氯化钴0.1~1,硫酸铜5~15,氯化钠50~150,沸石粉4000~6000,抗氧化剂100~300,单位为mg/kg。
  15. 根据权利要求1-6任一项所述的胶囊饲料,其特征在于,所述胶囊内的饲料包括以下组分:复合维生素片,白鱼粉,酵母粉,抗菌肽,芽孢杆菌,多聚糖,鱼肝油。
  16. 根据权利要求15所述的胶囊饲料,其特征在于,所述胶囊内的饲料由下列质量百分比的组分构成:复合维生素片1%-50%,白鱼粉10%-50%,酵母粉5%-50%,抗菌肽1%-50%,芽孢杆菌1%-50%,多聚糖1%-50%,鱼肝油5%-50%,各组分之和为100%。
  17. 根据权利要求16所述的胶囊饲料,其特征在于,所述胶囊内的饲料由下列质量百分比的组分构成: 复合维生素片33.3%,白鱼粉18.3%,酵母粉5%,抗菌肽1.8%,芽孢杆菌3.3%,多聚糖5%,鱼肝油33.3%。
  18. 根据权利要求15-17任一项所述的胶囊饲料,其特征在于,所述白鱼粉替换为棉粕。
  19. 根据权利要求15-17任一项所述的胶囊饲料,其特征在于,所述抗菌肽替换为抗生素。
  20. 根据权利要求15-17任一项所述的胶囊饲料,其特征在于,所述芽孢杆菌替换为益生菌。
  21. 根据权利要求15-17任一项所述的胶囊饲料,其特征在于,所述复合维生素片组分包括维生素A,维生素D3,维生素K3,维生素B1,维生素B2,维生素B6和维生素C。
  22. 根据权利要求1-6任一项所述的胶囊饲料,其特征在于,所述胶囊内的饲料包括以下组分:鱼粉、鱼油、α-淀粉、破壁酵母、磷酸二氢钙、氯化胆碱、龟用预混料。
  23. 根据权利要求22所述的胶囊饲料,其特征在于,所述胶囊内的饲料包括如下质量配比组分:鱼粉50-70份、鱼油1-10份、α-淀粉20-30份、破壁酵母1-3份、磷酸二氢钙1-3份、氯化胆碱1-3份、龟用预混料0.5-3份。
  24. 根据权利要求23所述的胶囊饲料,其特征在于,所述鱼粉中白鱼粉与红鱼粉的比例为3-5∶1。
  25. 根据权利要求22-24任一项所述的胶囊饲料,其特征在于,所述龟用预混料包括如下组分:VA、VC、VD3、VE、VK、VB1、VB2、尼克酸、泛酸钙、VB6、VB12、生物素、叶酸、肌醇、FeSO4、CuSO4、MnSO4、ZnSO4、KI、NaSeO3
  26. 根据权利要求25所述的胶囊饲料,其特征在于,每1kg龟用预混料中含有:VA 30000IU,VC 200mg,VD3 25000IU,VE 600mg,VK 100mg,VB1 50mg,VB2 60mg,尼克酸100mg,泛酸钙120mg,VB6 40mg,VB12 0.2mg,生物素7mg,叶酸20mg,肌醇250mg,FeSO4.7H2O 122.0mg,CuSO4.5H2O 7.2g,MnSO4.H2O 5.16g,ZnSO4.7H2O 15.56g,KI 6.58g,NaSeO3 2.10g。
  27. 一种胶囊饲料的制备方法,包括如下步骤:
    1)制作胶囊外壳;
    2)按照质量配比,称取各饲料组分,进行研磨并均匀混合,得到混合物;
    3)将所述步骤2)中制作好的混合物填充到所述步骤1)中的胶囊外壳中,得到人工饲料;
    4)将人工饲料进行干燥处理。
  28. 权利要求1-26任一项所述胶囊饲料的应用,其特征在于,所述胶囊饲料应用于喂养肉食性水产动物。
  29. 根据权利要求28所述的应用,其特征在于,所述肉食性水产动物包括:淡水肉食性鱼类、海水肉食性鱼类、肉食性观赏鱼、龟类。
  30. 根据权利要求28所述的应用,其特征在于,所述肉食性水产养殖动物包括:乌鳢、斑鳢、塘鳢、黄颡鱼、虾虎、鱤鱼、鳜鱼、马口鱼、淡水石斑鱼、虹鳟、高原鳅、虾虎鱼、娃娃鱼、黑鲷、黄鳍鲷、花鲈、尖吻鲈、中华乌塘鳢、大黄鱼、美国红鱼、海水石斑鱼、牙鲆、大菱鲆、真鲷、鲶科鱼类,油鲶科鱼类,雀鳝,淡水白鲳,慈鲷科鱼类,龙鱼,魟鱼、龟类。
PCT/CN2015/072385 2014-09-02 2015-02-06 一种胶囊饲料、其制备方法及应用 WO2016033942A1 (zh)

Applications Claiming Priority (14)

Application Number Priority Date Filing Date Title
CN201410442829.7 2014-09-02
CN201410442829.7A CN104206656B (zh) 2014-09-02 2014-09-02 一种龙鱼育成期的人工饵料及其制备方法与应用
CN201410599754.3 2014-10-31
CN201430425795 2014-10-31
CN201420648953.4U CN204273129U (zh) 2014-10-31 2014-10-31 一种鱼胶囊饲料
CN201410599754.3A CN104381639B (zh) 2014-10-31 2014-10-31 一种海水肉食性鱼类的人工饲料及其制备方法
CN201430425795.1 2014-10-31
CN201410599872.4A CN104351533A (zh) 2014-10-31 2014-10-31 一种观赏鱼人工饲料及其制备方法
CN201420648953.4 2014-10-31
CN201410599872.4 2014-10-31
CN201410615146.7 2014-11-05
CN201410615146.7A CN104431417A (zh) 2014-10-31 2014-11-05 一种淡水肉食性鱼类的人工饲料及其制备方法
CN201410817750.8 2014-12-25
CN201410817750.8A CN104543517A (zh) 2014-12-25 2014-12-25 一种龟类人工饲料及其制备方法

Publications (1)

Publication Number Publication Date
WO2016033942A1 true WO2016033942A1 (zh) 2016-03-10

Family

ID=55439076

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/072385 WO2016033942A1 (zh) 2014-09-02 2015-02-06 一种胶囊饲料、其制备方法及应用

Country Status (1)

Country Link
WO (1) WO2016033942A1 (zh)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107156050A (zh) * 2017-06-20 2017-09-15 金寨县胜华娃娃鱼开发有限公司 一种娃娃鱼用早期开口饵料及其投喂方法
CN107446976A (zh) * 2017-07-21 2017-12-08 重庆贡龙大鲵生物科技有限公司 大鲵多肽粉的制备方法
CN107736498A (zh) * 2017-09-30 2018-02-27 中国水产科学研究院南海水产研究所 一种适用于豹纹鳃棘鲈的增红配合饲料及其制备方法
CN108041342A (zh) * 2017-12-07 2018-05-18 重庆凌丰科技有限公司 一种鳡鱼幼鱼配合饲料及其制备方法
CN108719610A (zh) * 2018-05-25 2018-11-02 正安县鲵食养殖有限公司 一种大鲵养殖饲料
CN108813205A (zh) * 2018-05-24 2018-11-16 正安县鲵食养殖有限公司 一种提高大鲵产量的饲料
CN109548960A (zh) * 2018-11-30 2019-04-02 天门粤海饲料有限公司 一种克氏原螯虾固壳添加剂预混料及其制备方法
CN110679784A (zh) * 2019-10-10 2020-01-14 华南师范大学 叶下珠在水产饲料中的应用
CN111171132A (zh) * 2020-02-07 2020-05-19 华南农业大学 乌鳢抗菌肽
CN111374240A (zh) * 2018-12-29 2020-07-07 句容市水产技术指导站 一种大鲵养殖用人工饵料及其制备方法
CN111513186A (zh) * 2020-05-17 2020-08-11 广东海洋大学 一种改善石斑鱼肌肉品质的饲料及其制备方法
CN112094925A (zh) * 2020-10-23 2020-12-18 中国水产科学研究院黑龙江水产研究所 对高体雅罗鱼和瓦氏雅罗鱼杂交种进行快速鉴定的方法
CN114468185A (zh) * 2022-03-02 2022-05-13 中国水产科学研究院长江水产研究所 一种水产用多西环素缓释药饵及其制备方法
CN114794329A (zh) * 2022-03-29 2022-07-29 唐人神集团股份有限公司 一种翘嘴鲌鱼苗种饲料及其制备方法
CN115316494A (zh) * 2022-08-08 2022-11-11 武汉新华扬生物股份有限公司 一种促摄食复合诱食剂及促摄食低氨排泄饲料
CN115886154A (zh) * 2022-11-23 2023-04-04 浙江省淡水水产研究所 一种抗草鱼维氏气单胞菌病的发酵饲料及其应用
CN117617417A (zh) * 2023-12-28 2024-03-01 广东通威饲料有限公司 一种适用于鲫鱼草鱼套养的饲料及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101579038A (zh) * 2009-06-30 2009-11-18 浙江恒兴饲料有限公司 含益生菌的水产微囊饵料的生产方法
CN102845653A (zh) * 2012-10-15 2013-01-02 浙江省海洋水产研究所 一种黄姑鱼仔稚鱼微胶囊饲料及其加工制备和投喂方法
CN103385353A (zh) * 2013-07-24 2013-11-13 中山大学 一种高盐度养殖专用的南美白对虾配合饲料及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101579038A (zh) * 2009-06-30 2009-11-18 浙江恒兴饲料有限公司 含益生菌的水产微囊饵料的生产方法
CN102845653A (zh) * 2012-10-15 2013-01-02 浙江省海洋水产研究所 一种黄姑鱼仔稚鱼微胶囊饲料及其加工制备和投喂方法
CN103385353A (zh) * 2013-07-24 2013-11-13 中山大学 一种高盐度养殖专用的南美白对虾配合饲料及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUANG, ZHIQIANG ET AL.: "APPLICATION OF MICROCAPSULATION TECHNOLOGY IN FEEDSTUFF INDUSTRY", CHINA FEED, 30 November 2007 (2007-11-30), pages 11 *

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107156050A (zh) * 2017-06-20 2017-09-15 金寨县胜华娃娃鱼开发有限公司 一种娃娃鱼用早期开口饵料及其投喂方法
CN107446976A (zh) * 2017-07-21 2017-12-08 重庆贡龙大鲵生物科技有限公司 大鲵多肽粉的制备方法
CN107736498A (zh) * 2017-09-30 2018-02-27 中国水产科学研究院南海水产研究所 一种适用于豹纹鳃棘鲈的增红配合饲料及其制备方法
CN108041342A (zh) * 2017-12-07 2018-05-18 重庆凌丰科技有限公司 一种鳡鱼幼鱼配合饲料及其制备方法
CN108813205A (zh) * 2018-05-24 2018-11-16 正安县鲵食养殖有限公司 一种提高大鲵产量的饲料
CN108719610A (zh) * 2018-05-25 2018-11-02 正安县鲵食养殖有限公司 一种大鲵养殖饲料
CN109548960A (zh) * 2018-11-30 2019-04-02 天门粤海饲料有限公司 一种克氏原螯虾固壳添加剂预混料及其制备方法
CN111374240A (zh) * 2018-12-29 2020-07-07 句容市水产技术指导站 一种大鲵养殖用人工饵料及其制备方法
CN110679784A (zh) * 2019-10-10 2020-01-14 华南师范大学 叶下珠在水产饲料中的应用
CN111171132A (zh) * 2020-02-07 2020-05-19 华南农业大学 乌鳢抗菌肽
CN111513186A (zh) * 2020-05-17 2020-08-11 广东海洋大学 一种改善石斑鱼肌肉品质的饲料及其制备方法
CN111513186B (zh) * 2020-05-17 2021-07-02 广东海洋大学 一种改善石斑鱼肌肉品质的饲料及其制备方法
CN112094925A (zh) * 2020-10-23 2020-12-18 中国水产科学研究院黑龙江水产研究所 对高体雅罗鱼和瓦氏雅罗鱼杂交种进行快速鉴定的方法
CN114468185A (zh) * 2022-03-02 2022-05-13 中国水产科学研究院长江水产研究所 一种水产用多西环素缓释药饵及其制备方法
CN114468185B (zh) * 2022-03-02 2023-11-21 中国水产科学研究院长江水产研究所 一种水产用多西环素缓释药饵及其制备方法
CN114794329A (zh) * 2022-03-29 2022-07-29 唐人神集团股份有限公司 一种翘嘴鲌鱼苗种饲料及其制备方法
CN115316494A (zh) * 2022-08-08 2022-11-11 武汉新华扬生物股份有限公司 一种促摄食复合诱食剂及促摄食低氨排泄饲料
CN115886154A (zh) * 2022-11-23 2023-04-04 浙江省淡水水产研究所 一种抗草鱼维氏气单胞菌病的发酵饲料及其应用
CN115886154B (zh) * 2022-11-23 2024-04-12 浙江省淡水水产研究所 一种抗草鱼维氏气单胞菌病的发酵饲料及其应用
CN117617417A (zh) * 2023-12-28 2024-03-01 广东通威饲料有限公司 一种适用于鲫鱼草鱼套养的饲料及其制备方法

Similar Documents

Publication Publication Date Title
WO2016033942A1 (zh) 一种胶囊饲料、其制备方法及应用
CN102648739B (zh) 一种冬棚养殖专用的南美白对虾配合饲料及其制备方法
CN101181012B (zh) 一种海水鱼环保配合饲料
Saoud et al. A review of nutritional biology and dietary requirements of redclaw crayfish C herax quadricarinatus (von M artens 1868)
CN102845653B (zh) 一种黄姑鱼仔稚鱼微胶囊饲料及其加工制备和投喂方法
CN104381639B (zh) 一种海水肉食性鱼类的人工饲料及其制备方法
CN101569377B (zh) 一种虾苗饲料及其制备方法
CN103202408B (zh) 环保营养型鮻鱼复合饲料
CN102687813A (zh) 一种增强锯缘青蟹免疫功能的营养环保饲料及制备方法
CN101156650A (zh) 黄鳝幼鱼膨化颗粒配合饲料
CN107744053A (zh) 一种罗氏沼虾亲虾抗应激促繁殖颗粒饲料及其制备方法
CN110731417A (zh) 一种小龙虾微生物发酵饲料及其制备方法
CN109170162A (zh) 一种小龙虾人工养殖配方饲料
CN104206822B (zh) 一种高效复合诱食促长添加剂及其制备和应用
CN103125764A (zh) 一种养殖对虾幼体的微胶囊开口饵料及其制备方法
CN104522420A (zh) 一种澳洲瑞鳕成鱼颗粒饲料及制备方法
CN104957430A (zh) 赤点石斑鱼配合饲料及其制备方法
CN101156651A (zh) 黄鳝稚鱼膨化颗粒配合饲料
CN105724830A (zh) 一种渔用复合型诱食剂及其制备方法与应用
CN101904454B (zh) 一种促进南美白对虾亲虾性腺成熟的饵料及其制备方法
CN106306585A (zh) 一种提高人工养殖龙虾体内虾青素含量的饲料
CN105995244A (zh) 一种凤鲚幼鱼饲料
Nelson et al. Nutrition of wild and cultured lobsters
CN106036213A (zh) 一种纳米缓释复合渔业营养饲料以及饲养方法
CN103549187B (zh) 一种沙蚕亲虫用营养强化饲料及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15837994

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15837994

Country of ref document: EP

Kind code of ref document: A1