WO2016031789A1 - 難燃性樹脂組成物、およびこれを用いたケーブル、ならびに光ファイバケーブル - Google Patents

難燃性樹脂組成物、およびこれを用いたケーブル、ならびに光ファイバケーブル Download PDF

Info

Publication number
WO2016031789A1
WO2016031789A1 PCT/JP2015/073771 JP2015073771W WO2016031789A1 WO 2016031789 A1 WO2016031789 A1 WO 2016031789A1 JP 2015073771 W JP2015073771 W JP 2015073771W WO 2016031789 A1 WO2016031789 A1 WO 2016031789A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
resin composition
parts
retardant resin
density polyethylene
Prior art date
Application number
PCT/JP2015/073771
Other languages
English (en)
French (fr)
Inventor
直 西田
成一 平
中村 詳一郎
Original Assignee
株式会社フジクラ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フジクラ filed Critical 株式会社フジクラ
Priority to JP2015544256A priority Critical patent/JP5890077B1/ja
Priority to CN201580045449.2A priority patent/CN106795340B/zh
Priority to EP15836813.4A priority patent/EP3187534B1/en
Priority to US15/506,304 priority patent/US10483017B2/en
Publication of WO2016031789A1 publication Critical patent/WO2016031789A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/29Protection against damage caused by extremes of temperature or by flame
    • H01B7/295Protection against damage caused by extremes of temperature or by flame using material resistant to flame
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • C08K3/26Carbonates; Bicarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/26Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4429Means specially adapted for strengthening or protecting the cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/42Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes polyesters; polyethers; polyacetals
    • H01B3/427Polyethers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/44Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/46Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes silicones
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/02Disposition of insulation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • C08K3/26Carbonates; Bicarbonates
    • C08K2003/265Calcium, strontium or barium carbonate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2207/00Properties characterising the ingredient of the composition
    • C08L2207/06Properties of polyethylene
    • C08L2207/062HDPE
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2207/00Properties characterising the ingredient of the composition
    • C08L2207/06Properties of polyethylene
    • C08L2207/066LDPE (radical process)

Definitions

  • the present invention relates to a flame retardant resin composition, a cable using the same, and an optical fiber cable.
  • a flame retardant resin composition for the designated countries that are allowed to be incorporated by reference, the contents described in Japanese Patent Application No. 2014-170406 filed in Japan on August 25, 2014 are incorporated herein by reference.
  • Polyvinyl chloride resin has been widely used as a resin used for covering wires and the like.
  • Polyvinyl chloride resin has excellent workability, chemical resistance, flame retardancy, and the like, but has a drawback of generating toxic gas during combustion.
  • a flame retardant resin composition obtained by adding a non-halogen flame retardant to a chemically stable and easily processable polyolefin resin as a resin material used for coating an electric wire or the like has been studied. Yes.
  • a flame retardant resin composition is disclosed that includes a fatty acid-containing compound that is blended in a proportion larger than part by mass, and that has an average particle size of calcium carbonate particles of 0.7 ⁇ m or more.
  • the flame retardant resin composition of Patent Document 1 it is possible to ensure excellent flame resistance while securing excellent mechanical properties.
  • the composition In order to use the composition as a cable jacket, sufficient hardness to withstand external damage and impact, easy tearability to allow the jacket to be easily torn for terminal processing, jacket at low temperatures Therefore, it could not be said that the low temperature resistance without cracks was sufficient.
  • the problem to be solved by the present invention is a non-halogen flame-retardant resin composition having high hardness, easy tearability, low temperature resistance and flame retardancy, a cable using the same, and an optical fiber cable
  • the purpose is to provide.
  • the flame-retardant resin composition according to the present invention comprises 100 parts by mass of a base resin containing 18 to 85% by mass of high density polyethylene, 9 to 69% by mass of low density polyethylene, and 3 to 25% by mass of an acid-modified polyolefin compound. Against 25 parts by mass or more and 110 parts by mass or less of calcium carbonate particles; More than 1 part by weight and 10 parts by weight or less of a silicone compound; It is characterized by comprising 2 parts by mass or more and 20 parts by mass or less of a fatty acid-containing compound.
  • the acid-modified polyolefin compound can be configured to be a maleic anhydride-modified ethylene- ⁇ -olefin copolymer.
  • the maleic anhydride-modified ethylene- ⁇ olefin copolymer can be configured to be a maleic anhydride-modified ethylene-1-butene copolymer.
  • the is a high-density density polyethylene is 945 kg / m 3 or more
  • the density of the low density polyethylene is 880 kg / m 3 or more
  • the silicone compound can be configured to be a silicone gum.
  • the fatty acid-containing compound can be configured to be magnesium stearate.
  • the optical fiber cable of the present invention includes an optical fiber and an insulating layer covering the optical fiber, and the insulating layer is composed of the flame-retardant resin composition of the present invention.
  • the cable of the present invention includes a conductor and an insulating layer covering the conductor, and the insulating layer is composed of the flame-retardant resin composition of the present invention.
  • a non-halogen flame retardant resin composition having high hardness, excellent tear resistance, low temperature resistance and flame retardancy, a cable using the same, and an optical fiber cable. Can do.
  • FIG. 1 is a cross-sectional view of an optical fiber cable sample according to the present embodiment.
  • the flame retardant resin composition according to this embodiment is based on 100 parts by mass of a base resin containing 18 to 85% by mass of high density polyethylene, 9 to 69% by mass of low density polyethylene, and 3 to 25% by mass of acid-modified polyolefin compound. And 25 parts by mass or more and 110 parts by mass or less of calcium carbonate particles; More than 1 part by weight and 10 parts by weight or less of a silicone compound; 2 mass parts or more and 20 mass parts or less fatty acid containing compound are mix
  • the base resin contains 18 to 85% by mass of high density polyethylene, 9 to 69% by mass of low density polyethylene, and 3 to 25% by mass of the acid-modified polyolefin compound.
  • HDPE high density polyethylene
  • the content of the high density polyethylene in the base resin is 18 to 85% by mass, preferably 20 to 80% by mass, more preferably 30 to 70% by mass, and further preferably 40 to 60% by mass.
  • the flame retardant resin composition can have high hardness excellent in impact resistance and the like. If the content of the high-density polyethylene is too small, the hardness will be too low, and the resistance to damage and impact will be reduced. On the other hand, when there is too much content of high density polyethylene, the acceptability with respect to the calcium carbonate particle of a base resin will fall, and low temperature resistance will deteriorate.
  • the low density polyethylene is not particularly limited, from the viewpoint of the blending effect as sufficient, density 880 kg / m 3 or more, preferably one having 925 kg / m 3 or less, a density of 900 kg / m More preferred is 3 or more and 920 kg / m 3 or less.
  • the content ratio of the low density polyethylene in the base resin is 9 to 69% by mass, preferably 10 to 65% by mass, more preferably 20 to 60% by mass, and further preferably 30 to 50% by mass.
  • the low density polyethylene in the flame retardant resin composition, the low density polyethylene, together with the acid-modified polyolefin compound described later, has the effect of reducing the crystallinity of the base resin, which can improve the low temperature resistance. Become.
  • the low density polyethylene also has an effect of enhancing the acceptability for calcium carbonate particles together with the acid-modified polyolefin compound described later.
  • the acceptability with respect to the calcium carbonate particle of a base resin will fall, and low temperature resistance will deteriorate.
  • the content of low-density polyethylene is too large, the hardness will be too low, and the resistance to damage and impact will be reduced.
  • the acid-modified polyolefin compound is not particularly limited, and examples thereof include unsaturated organic acids such as carboxylic acids or carboxylic anhydrides such as maleic anhydride, acrylic acid and methacrylic acid, or esters thereof, and esters thereof. Examples thereof include a partial copolymer with polyolefin.
  • Specific examples of the acid-modified polyolefin compound include maleic anhydride-modified polyethylene, maleic anhydride-modified polypropylene, maleic anhydride-modified ethylene- ⁇ olefin copolymer, maleic anhydride-modified styrene elastomer, maleic anhydride-modified ethylene-propylene copolymer. A polymer etc. are mentioned.
  • ethylene as a main monomer and comonomer as a main monomer from the point of being able to improve the breaking strength and elongation while being excellent in high hardness, easy tear, low temperature resistance and flame retardancy
  • a maleic anhydride-modified ethylene- ⁇ olefin copolymer obtained by modifying an ethylene- ⁇ olefin copolymer having a main chain structure composed of ⁇ -olefin with maleic anhydride.
  • maleic anhydride-modified ethylene- ⁇ olefin copolymers an ethylene-1-butene copolymer having a main chain structure composed of ethylene as a main monomer and 1-butene as a comonomer is maleic anhydride.
  • the maleic anhydride-modified ethylene- ⁇ olefin copolymer has a main chain structure substantially consisting only of ethylene and ⁇ olefin, and other monomers may not be copolymerized. From the viewpoint that the breaking strength and elongation can be appropriately improved.
  • the maleic anhydride-modified ethylene- ⁇ -olefin copolymer may be one having a main chain structure substantially composed of ethylene and ⁇ -olefin. For example, two or more ⁇ -olefins are copolymerized. It may be a thing.
  • the content ratio of the acid-modified polyolefin compound in the base resin is 3 to 25% by mass, preferably 5 to 20% by mass, more preferably 5 to 15% by mass, and further preferably 5 to 10% by mass.
  • the acid-modified polyolefin compound has an effect of improving the adhesion between the high-density polyethylene and the low-density polyethylene and the calcium carbonate particles.
  • the low temperature resistance can be improved.
  • the acceptability with respect to the calcium carbonate particle of a base resin will fall, and low temperature resistance will deteriorate.
  • the content of the acid-modified polyolefin compound is too large, the hardness becomes too low, and the resistance to external damage and impact is reduced.
  • the base resin may contain other resins.
  • other resins include ethylene-vinyl acetate copolymer.
  • examples thereof include a coalesced resin, an ethylene-ethyl acrylate copolymer, and polypropylene.
  • the content of these other resins in the base resin is preferably 6% by mass or less, more preferably 5% by mass or less, and further preferably 3% by mass or less.
  • the calcium carbonate particles may be either heavy calcium carbonate or light calcium carbonate, but heavy calcium carbonate is preferred because it is readily available and inexpensive.
  • Calcium carbonate particles mainly act as a flame retardant, and in the flame retardant resin composition, an interface is formed between the base resin and the terminal processing when used as a cable or optical fiber cable. For this reason, when the tearing treatment is performed, the interface becomes the starting point of tearing. Therefore, excellent easy tearability can be realized by blending calcium carbonate particles.
  • the average particle diameter of the calcium carbonate particles is preferably 0.7 ⁇ m or more, more preferably 1.0 ⁇ m or more, and further preferably 1.5 ⁇ m or more. If the average particle size of the calcium carbonate particles is too small, the flame retardancy may be reduced. Further, if the average particle size of the calcium carbonate particles is too large, the low temperature resistance may be lowered. Therefore, the upper limit of the average particle size of the calcium carbonate particles is preferably 3.6 ⁇ m or less, more preferably 2 .2 ⁇ m or less.
  • the content of calcium carbonate particles in the flame retardant resin composition is 25 parts by mass or more and 110 parts by mass or less, preferably 30 parts by mass or more and 100 parts by mass or less, with respect to 100 parts by mass of the base resin. More preferably, they are 40 mass parts or more and 100 mass parts or less, More preferably, they are 50 mass parts or more and 80 mass parts or less. If the content of the calcium carbonate particles is too small, the easy tearability and flame retardancy are lowered. On the other hand, if the content is too large, the low temperature resistance is deteriorated.
  • the silicone-based compound functions as a flame retardant aid, and as the silicone-based compound, for example, polyorganosiloxane can be suitably used.
  • the polyorganosiloxane has a siloxane bond as a main chain and an organic group in a side chain. Examples of the organic group include a methyl group, a vinyl group, an ethyl group, a propyl group, and a phenyl group. .
  • polyorganosiloxane examples include dimethylpolysiloxane, methylethylpolysiloxane, methyloctylpolysiloxane, methylvinylpolysiloxane, methylphenylpolysiloxane, methyl (3,3,3-trifluoropropyl) polysiloxane, and the like. It is done.
  • the silicone compound can be used in the form of silicone powder, silicone gum, silicone oil, or silicone resin, but it is preferably used in the form of silicone gum from the viewpoint that bloom is less likely to occur.
  • the content of the silicone compound in the flame retardant resin composition is more than 1 part by mass and 10 parts by mass or less, preferably 2 parts by mass or more and 7 parts by mass or less, with respect to 100 parts by mass of the base resin. More preferably, it is 3 parts by mass or more and 5 parts by mass or less. If the content of the silicone compound is too small, sufficient flame retardancy cannot be ensured. On the other hand, if the content of the silicone compound is too large, bloom is likely to occur.
  • the silicone compound may be preliminarily adhered to the surface of the calcium carbonate particles, whereby the dispersibility of the calcium carbonate particles in the base resin can be further increased.
  • the fatty acid-containing compound functions as a flame retardant aid together with the above-described silicone compound.
  • the fatty acid-containing compound include fatty acids or fatty acid metal salts, and among these, fatty acid metal salts are preferred.
  • the fatty acid include fatty acids having 12 to 28 carbon atoms. Examples of such fatty acids include lauric acid, myristic acid, palmitic acid, stearic acid, tuberculostearic acid, oleic acid, linoleic acid, arachidonic acid, behenic acid and montanic acid. Among these, stearic acid or tuberculostearic acid is preferable, and stearic acid is particularly preferable because the effect of improving flame retardancy can be made more remarkable.
  • Examples of the metal constituting the fatty acid metal salt include magnesium, calcium, zinc and lead.
  • magnesium stearate is preferable from the viewpoint that the effect of improving flame retardancy can be made more remarkable.
  • the content of the fatty acid-containing compound in the flame retardant resin composition is 2 parts by mass or more and 20 parts by mass or less, preferably 3 parts by mass or more and 15 parts by mass or less, with respect to 100 parts by mass of the base resin. More preferably, it is 5 parts by mass or more and 10 parts by mass or less. If the content of the fatty acid-containing compound is too small, sufficient flame retardancy cannot be ensured. On the other hand, if the content of the fatty acid-containing compound is too large, bloom tends to occur.
  • the flame retardant resin composition of the present embodiment includes various compounding agents such as an antioxidant, an ultraviolet deterioration preventing agent, a processing aid, a coloring pigment, a lubricant, and a filler such as carbon black as necessary. Further, it may be contained.
  • the flame-retardant resin composition of the present embodiment includes a high-density polyethylene, a low-density polyethylene, and an acid-modified polyolefin compound constituting the base resin, as well as calcium carbonate particles, a silicone-based compound, a fatty acid-containing compound, and as necessary. It can be obtained by kneading the various compounding agents used. The kneading can be performed by a kneading machine such as a Banbury mixer, a tumbler, a pressure kneader, a kneading extruder, a twin screw extruder, a mixing roll, and the like.
  • a kneading machine such as a Banbury mixer, a tumbler, a pressure kneader, a kneading extruder, a twin screw extruder, a mixing roll, and the like.
  • a master batch (MB) is obtained by previously kneading a part of the resin constituting the base resin and the silicone compound, and the obtained master batch You may knead
  • the flame retardant resin composition of the present embodiment has the above-described configuration, it has high hardness and is excellent in easy tearing, low temperature resistance and flame retardancy. Suitable for use as an insulating layer.
  • terminal processing such as optical fiber cable insulation layer application including optical fiber and insulation layer covering optical fiber and cable insulation layer application including conductor and insulation layer covering conductor. It can be suitably used for applications in which a process of tearing the jacket is performed.
  • an optical fiber cable that includes an optical fiber and an insulating layer that covers the optical fiber, and the insulating layer is composed of the flame-retardant resin composition of the present embodiment.
  • an optical fiber cable include an optical drop cable and an optical indoor cable.
  • covers a conductor and this insulating layer was comprised with the flame-retardant resin composition of this embodiment can also be provided.
  • Examples of such cables include insulated wires, electronic device wiring wires, automobile wires, device wires, power cords, outdoor distribution insulated wires, power cables, control cables, communication cables, and instrumentation cables. And various cables such as a signal cable, a movement cable, and a ship cable.
  • Examples 1 to 11 and Comparative Examples 1 to 5 High-density polyethylene, low-density polyethylene, acid-modified polyolefin, calcium carbonate particles, silicone compound, fatty acid-containing compound, and antioxidant are blended in the blending amounts shown in Tables 1 and 2, and 15 at 160 ° C. with a Banbury mixer. Kneading for a minute gave a flame retardant resin composition. In Tables 1 and 2, the unit of the blending amount of each blending component is part by mass.
  • High density polyethylene HDPE manufactured by Nippon Polyethylene, “Novatec HD HD322W”, density 951 kg / m 3 Low density polyethylene LDPE1: “Umerit 0520F” manufactured by Ube Maruzen Polyethylene Co., Ltd., density 904 kg / m 3 Low density polyethylene LDPE2: “Evolu PSP9018” manufactured by Prime Polymer Co., Ltd., density 890 kg / m 3 Acid-modified polyolefin Acid-modified PE: “Tuffmer MA8510” manufactured by Mitsui Chemicals, maleic anhydride-modified ethylene- ⁇ -olefin copolymer (copolymerized with ethylene as the main monomer and 1-butene as the comonomer) (Maleic anhydride-modified ethylene-1-butene copolymer obtained by modifying an ethylene-1-butene copolymer having a main chain structure with maleic
  • silicone MB PE / silicone gum
  • silicone MB silicone / silicone gum
  • the blending amount of silicone MB EVA / antioxidant
  • the antioxidant MB EVA / antioxidant
  • the low density polyethylene and ethylene-vinyl acetate copolymer resin blended as the master batch constitute a part of the base resin.
  • a coated electric wire sample was obtained by coating a flame retardant resin composition on a single wire / cross-sectional area of 2 mm 2 ) with a thickness of 0.7 mm.
  • FIG. 1 is a figure which shows the cross-sectional shape of the optical fiber cable sample produced in the present Example.
  • a 20 mm long x 50 mm wide sample is prepared from the sheet-like molded body having a thickness of 2 mm obtained above, and the Shore D hardness is measured with a durometer (type D) in accordance with JIS K7215. did. In the measurement, the number of measurements was 5, and an average of five measurement results was adopted as a measurement value. In this example, the shore D hardness was 50 or more, which was regarded as acceptable.
  • ⁇ Low temperature characteristics> A sample having a size of 6 mm in length and 38 mm in width was produced from the sheet-like molded body having a thickness of 2 mm obtained above, and an impact resistance test at a low temperature was performed in accordance with JIS C3005. Specifically, the impact resistance test was performed in increments of 0 ° C. to 5 ° C., and the lowest temperature at which no cracks occurred on the sheet surface after the impact was applied was defined as the embrittlement temperature. In this example, the embrittlement temperature was ⁇ 30 ° C. or lower, and the test was accepted.
  • the coated wire sample obtained above was subjected to a 60 ° inclined combustion test in accordance with JIS K3005.
  • the 60 ° inclined combustion test is performed on 10 coated electric wire samples, and the sample whose fire extinguishing time (unit: second) is within 60 seconds is regarded as acceptable, and the acceptance rate of 10 coated electric wire samples is calculated.
  • the average value of the fire extinguishing time was determined, and this was defined as the 60 ° inclined combustion time.
  • the fire extinguishing time is the time from immediately after the end of flame contact (immediately after separating the burner flame from the electric wire) to self-extinguishing, and the shorter the fire extinguishing time, the higher the flame retardancy. At this time, the flame contact was performed until ignition occurred in the coated wire sample within 30 seconds. In this example, an acceptance rate of 100% was considered acceptable.
  • Comparative Example 2 in which the proportion of the high density polyethylene is too small, the hardness was lowered. Comparative Example 3 in which the proportion of the calcium carbonate particles is too small resulted in poor tearability. Moreover, the comparative example 4 in which the ratio of calcium carbonate particles is too large resulted in inferior low temperature resistance (embrittlement temperature). Furthermore, Comparative Example 5 in which the proportion of the silicone compound was too small resulted in poor flame retardancy.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Insulated Conductors (AREA)
  • Organic Insulating Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

 高密度ポリエチレン18~85質量%、低密度ポリエチレン9~69質量%、および酸変性ポリオレフィン化合物3~25質量%を含むベース樹脂100質量部に対して、25質量部以上、110質量部以下の炭酸カルシウム粒子と、1質量部超、10質量部以下のシリコーン系化合物と、2質量部以上、20質量部以下の脂肪酸含有化合物とを配合してなることを特徴とする難燃性樹脂組成物を提供する。

Description

難燃性樹脂組成物、およびこれを用いたケーブル、ならびに光ファイバケーブル
 本発明は、難燃性樹脂組成物、およびこれを用いたケーブル、ならびに光ファイバケーブルに関するものである。
 文献の参照による組み込みが認められる指定国については、2014年8月25日に日本国に出願された特願2014-170406に記載された内容を参照により本明細書に組み込み、本明細書の記載の一部とする。
 電線等の被覆に用いられる樹脂としては、ポリ塩化ビニル樹脂(PVC)が従来より広く用いられている。ポリ塩化ビニル樹脂は加工性に優れ、耐薬品性、難燃性といった優れた特性を持つ一方で、燃焼時に有毒ガスを発生するという欠点があった。
 これに対し、電線等の被覆に用いる樹脂材料として、化学的に安定で、加工しやすいポリオレフィン樹脂を用い、これに非ハロゲン系難燃剤を添加してなる難燃性樹脂組成物が検討されている。たとえば、特許文献1では、ポリオレフィン樹脂と、ポリオレフィン樹脂100質量部に対して10質量部以上の割合で配合される炭酸カルシウム粒子と、1質量部より大きい割合で配合されるシリコーン系化合物と、3質量部より大きい割合で配合される脂肪酸含有化合物とを含み、炭酸カルシウム粒子の平均粒径が0.7μm以上である難燃性樹脂組成物が開示されている。
特開2014-94969号公報
 上記特許文献1の難燃性樹脂組成物によれば、優れた機械的特性を確保しながら、優れた難燃性をも確保することが可能となるが、上記特許文献1の難燃性樹脂組成物をケーブルの外被として使用するためには、外傷や衝撃に耐えるための十分な硬度、端末加工のために外被を容易に引き裂くことのできるための易引裂き性、低温下で外被に亀裂が生じることの無い耐低温性が十分とは言えなかった。
 本発明が解決しようとする課題は、硬度が高く、易引裂き性、耐低温性および難燃性に優れた非ハロゲン系の難燃性樹脂組成物、およびこれを用いたケーブル、ならびに光ファイバケーブルを提供することを目的とする。
 [1]本発明に係る難燃性樹脂組成物は、高密度ポリエチレン18~85質量%、低密度ポリエチレン9~69質量%、および酸変性ポリオレフィン化合物3~25質量%を含むベース樹脂100質量部に対して、
 25質量部以上、110質量部以下の炭酸カルシウム粒子と、
 1質量部超、10質量部以下のシリコーン系化合物と、
 2質量部以上、20質量部以下の脂肪酸含有化合物とを配合してなることを特徴とする。 
 [2]上記発明において、前記酸変性ポリオレフィン化合物が、無水マレイン酸変性エチレン-αオレフィン共重合体であるように構成することができる。
 [3]上記発明において、前記無水マレイン酸変性エチレン-αオレフィン共重合体が、無水マレイン酸変性エチレン-1-ブテン共重合体であるように構成することができる。
 [4]上記発明において、前記高密度ポリエチレンの密度が945kg/m以上であり、前記低密度ポリエチレンの密度が880kg/m以上、925kg/m以下であるように構成することできる。
 [5]上記発明において、前記シリコーン系化合物が、シリコーンガムであるように構成することできる。
 [6]上記発明において、前記脂肪酸含有化合物が、ステアリン酸マグネシウムであるように構成することができる。
 [7]本発明の光ファイバケーブルは、光ファイバと、前記光ファイバを被覆する絶縁層とを備え、前記絶縁層が上記発明の難燃性樹脂組成物で構成されることを特徴とする。
 [8]本発明のケーブルは、導体と、前記導体を被覆する絶縁層とを備え、前記絶縁層が上記発明の難燃性樹脂組成物で構成されることを特徴とする。
 本発明によれば、硬度が高く、易引裂き性、耐低温性および難燃性に優れた非ハロゲン系の難燃性樹脂組成物、およびこれを用いたケーブル、ならびに光ファイバケーブルを提供することができる。
図1は、本実施例に係る光ファイバケーブルサンプルの断面図である。
 以下、本発明の実施形態について説明する。
 本実施形態に係る難燃性樹脂組成物は、高密度ポリエチレン18~85質量%、低密度ポリエチレン9~69質量%、および酸変性ポリオレフィン化合物3~25質量%を含むベース樹脂100質量部に対して、
 25質量部以上、110質量部以下の炭酸カルシウム粒子と、
 1質量部超、10質量部以下のシリコーン系化合物と、
 2質量部以上、20質量部以下の脂肪酸含有化合物とを配合してなる。
<ベース樹脂>
 ベース樹脂は、高密度ポリエチレン18~85質量%、低密度ポリエチレン9~69質量%、および酸変性ポリオレフィン化合物3~25質量%を含有する。
 高密度ポリエチレン(HDPE)としては、特に限定されないが、その配合効果を十分なものとするという観点より、密度が945kg/m以上のものが好ましく、密度が950kg/m以上のものがより好ましい。ベース樹脂中における、高密度ポリエチレンの含有割合は、18~85質量%であり、好ましくは20~80質量%、より好ましくは30~70質量%、さらに好ましくは40~60質量%である。
 高密度ポリエチレンを上記割合で含有させることにより、難燃性樹脂組成物を、耐衝撃性等に優れる高い硬度を有するものとすることができる。高密度ポリエチレンの含有量が少なすぎると、硬度が低くなり過ぎてしまい、外傷や衝撃に対する耐性が低下してしまう。一方、高密度ポリエチレンの含有量が多すぎると、ベース樹脂の炭酸カルシウム粒子に対する受容性が低下してしまい、耐低温性が悪化してしまう。
 低密度ポリエチレン(LDPE)としては、特に限定されないが、その配合効果を十分なものとするという観点より、密度が880kg/m以上、925kg/m以下のものが好ましく、密度が900kg/m以上、920kg/m以下のものがより好ましい。ベース樹脂中における、低密度ポリエチレンの含有割合は、9~69質量%であり、好ましくは10~65質量%、より好ましくは20~60質量%、さらに好ましくは30~50質量%である。
 難燃性樹脂組成物中において、低密度ポリエチレンは、後述する酸変性ポリオレフィン化合物とともに、ベース樹脂の結晶化度を低減させる効果を奏するものであり、これにより耐低温性を向上させることが可能となる。また、低密度ポリエチレンは、後述する酸変性ポリオレフィン化合物とともに、炭酸カルシウム粒子に対する受容性を高める効果をも奏する。低密度ポリエチレンの含有量が少なすぎると、ベース樹脂の炭酸カルシウム粒子に対する受容性が低下してしまい、耐低温性が悪化してしまう。一方、低密度ポリエチレンの含有量が多すぎると、硬度が低くなり過ぎてしまい、外傷や衝撃に対する耐性が低下してしまう。
 酸変性ポリオレフィン化合物としては、特に限定されないが、たとえば、無水マレイン酸、アクリル酸、メタクリル酸などのカルボン酸またはカルボン酸無水物、またはこれらのエステル類などの不飽和有機酸およびそのエステル類と、ポリオレフィンとの部分共重合体などが挙げられる。酸変性ポリオレフィン化合物の具体例としては、無水マレイン酸変性ポリエチレン、無水マレイン酸変性ポリプロピレン、無水マレイン酸変性エチレン-αオレフィン共重合体、無水マレイン酸変性スチレン系エラストマー、無水マレイン酸変性エチレン-プロピレン共重合体などが挙げられる。これらのなかでも、高硬度、易引裂き性、耐低温性および難燃性に優れたものとしながら、破断強度および伸びをも向上させることができるという点より、主モノマーとしてのエチレンと、コモノマーとしてのαオレフィンとからなる主鎖構造を有するエチレン-αオレフィン共重合体を無水マレイン酸で変性してなる無水マレイン酸変性エチレン-αオレフィン共重合体がより好ましい。また、無水マレイン酸変性エチレン-αオレフィン共重合体のなかでも、主モノマーとしてのエチレンと、コモノマーとしての1-ブテンとからなる主鎖構造を有するエチレン-1-ブテン共重合体を無水マレイン酸で変性してなる、無水マレイン酸変性エチレン-1-ブテン共重合体が特に好ましい。また、無水マレイン酸変性エチレン-αオレフィン共重合体としては、主鎖構造が、実質的にエチレンとαオレフィンのみからなるものであり、他のモノマーについては共重合されていないものであることが、破断強度および伸びを適切に向上させることができるという観点より、望ましい。なお、無水マレイン酸変性エチレン-αオレフィン共重合体としては、主鎖構造が、実質的にエチレンとαオレフィンとからなるものであればよく、たとえば、2種以上のαオレフィンが共重合されたものであってもよい。
 ベース樹脂中における、酸変性ポリオレフィン化合物の含有割合は、3~25質量%であり、好ましくは5~20質量%、より好ましくは5~15質量%、さらに好ましくは5~10質量%である。
 難燃性樹脂組成物中において、酸変性ポリオレフィン化合物は、高密度ポリエチレンおよび低密度ポリエチレンと、炭酸カルシウム粒子との接着性を向上させる効果を奏するものであり、これにより、ベース樹脂の炭酸カルシウム粒子に対する受容性を向上させることができ、結果として、耐低温性を向上させることができる。酸変性ポリオレフィン化合物の含有量が少なすぎると、ベース樹脂の炭酸カルシウム粒子に対する受容性が低下してしまい、耐低温性が悪化してしまう。一方、酸変性ポリオレフィン化合物の含有量が多すぎると、硬度が低くなり過ぎてしまい、外傷や衝撃に対する耐性が低下してしまう。
 また、ベース樹脂としては、高密度ポリエチレン、低密度ポリエチレン、および酸変性ポリオレフィン化合物に加えて、他の樹脂を含有していてもよく、このような他の樹脂としては、エチレン-酢酸ビニル共重合体樹脂や、エチレン-アクリル酸エチル共重合体、ポリプロピレンなどが挙げられる。これら他の樹脂の含有割合は、ベース樹脂中、好ましくは6質量%以下、より好ましくは5質量%以下、さらに好ましくは3質量%以下である。
<炭酸カルシウム粒子>
 炭酸カルシウム粒子としては、重質炭酸カルシウムまたは軽質炭酸カルシウムのいずれでもよいが、入手が容易で、かつ、低価格であることから、重質炭酸カルシウムが好ましい。炭酸カルシウム粒子は、主として難燃剤として作用する他、難燃性樹脂組成物中において、ベース樹脂との間に界面が形成されることにより、ケーブルや光ファイバケーブル用途として用いた場合において、端末加工のために引裂き処理を行った際に、該界面が引裂きの起点となるため、炭酸カルシウム粒子を配合することで優れた易引裂き性を実現することができる。
 炭酸カルシウム粒子の平均粒径は、好ましくは0.7μm以上であり、より好ましくは1.0μm以上、さらに好ましくは1.5μm以上である。炭酸カルシウム粒子の平均粒径が小さすぎると、難燃性が低下するおそれがある。また、炭酸カルシウム粒子の平均粒径が大きすぎると、耐低温性が低下する場合があることから、炭酸カルシウム粒子の平均粒径の上限は、好ましくは3.6μm以下であり、より好ましくは2.2μm以下である。
 難燃性樹脂組成物中における、炭酸カルシウム粒子の含有量は、ベース樹脂100質量部に対して、25質量部以上、110質量部以下であり、好ましくは30質量部以上、100質量部以下、より好ましくは40質量部以上、100質量部以下、さらに好ましくは50質量部以上、80質量部以下である。炭酸カルシウム粒子の含有量が少なすぎると、易引裂き性および難燃性が低下してしまい、一方、多すぎると、耐低温性が悪化してしまう。
<シリコーン系化合物>
 シリコーン系化合物は、難燃助剤として機能するものであり、シリコーン系化合物としては、たとえば、ポリオルガノシロキサンなどを好適に用いることができる。ここで、ポリオルガノシロキサンは、シロキサン結合を主鎖とし側鎖に有機基を有するものであり、有機基としては、たとえば、メチル基、ビニル基、エチル基、プロピル基、フェニル基などが挙げられる。
 ポリオルガノシロキサンの具体例としては、ジメチルポリシロキサン、メチルエチルポリシロキサン、メチルオクチルポリシロキサン、メチルビニルポリシロキサン、メチルフェニルポリシロキサン、メチル(3,3,3-トリフルオロプロピル)ポリシロキサンなどが挙げられる。
 シリコーン系化合物は、シリコーンパウダー、シリコーンガム、シリコーンオイル、またはシリコーンレジンの形態で用いることができるが、ブルームが起こりにくくなるという観点より、シリコーンガムの形態で用いることが好ましい。
 難燃性樹脂組成物中における、シリコーン系化合物の含有量は、ベース樹脂100質量部に対して、1質量部超、10質量部以下であり、好ましくは2質量部以上、7質量部以下、より好ましくは3質量部以上、5質量部以下である。シリコーン系化合物の含有量が少なすぎると、十分な難燃性を確保できなくなり、一方、シリコーン系化合物の含有量が多すぎると、ブルームが起こりやすくなる。
 シリコーン系化合物は、炭酸カルシウム粒子の表面に予め付着させておいてもよく、これにより、ベース樹脂中における、炭酸カルシウム粒子の分散性をより高めることができる。
<脂肪酸含有化合物>
 脂肪酸含有化合物は、上述したシリコーン系化合物とともに、難燃助剤として機能するものである。脂肪酸含有化合物としては、脂肪酸または脂肪酸の金属塩が挙げられ、これらのなかでも、脂肪酸の金属塩が好ましい。脂肪酸としては、たとえば、炭素原子数が12~28である脂肪酸が挙げられる。このような脂肪酸としては、たとえば、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、ツベルクロステアリン酸、オレイン酸、リノール酸、アラキドン酸、ベヘン酸およびモンタン酸などが挙げられる。これらのなかでも、難燃性の向上効果をより顕著なものとすることができるという点より、ステアリン酸またはツベルクロステアリン酸が好ましく、ステアリン酸が特に好ましい。
 脂肪酸の金属塩を構成する金属としては、マグネシウム、カルシウム、亜鉛および鉛などが挙げられる。脂肪酸の金属塩としては、難燃性の向上効果をより顕著なものとすることができるという点より、ステアリン酸マグネシウムが好ましい。
 難燃性樹脂組成物中における、脂肪酸含有化合物の含有量は、ベース樹脂100質量部に対して、2質量部以上、20質量部以下であり、好ましくは3質量部以上、15質量部以下、より好ましくは5質量部以上、10質量部以下である。脂肪酸含有化合物の含有量が少なすぎると、十分な難燃性を確保できなくなり、一方、脂肪酸含有化合物の含有量が多すぎると、ブルームが起こりやすくなる。
 また、本実施形態の難燃性樹脂組成物には、必要に応じて、酸化防止剤、紫外線劣化防止剤、加工助剤、着色顔料、滑剤、カーボンブラックなどの充填剤などの各種配合剤をさらに含有させてよい。
 本実施形態の難燃性樹脂組成物は、ベース樹脂を構成する高密度ポリエチレン、低密度ポリエチレン、および酸変性ポリオレフィン化合物、ならびに、炭酸カルシウム粒子、シリコーン系化合物、脂肪酸含有化合物、および必要に応じて用いられる各種配合剤を混練することにより得ることができる。混練は、たとえば、バンバリーミキサ、タンブラ、加圧ニーダ、混練押出機、二軸押出機、ミキシングロール等の混練機で行うことができる。このとき、シリコーン系化合物の分散性を向上させる観点より、ベース樹脂を構成する樹脂のうち一部とシリコーン系化合物とを予め混練することでマスターバッチ(MB)を得て、得られたマスターバッチ(MB)の状態で混練してもよい。
 本実施形態の難燃性樹脂組成物は、上記構成を有するため、硬度が高く、易引裂き性、耐低温性および難燃性に優れたものであるため、このような特性を活かして、各種絶縁層用途として好適である。なかでも、光ファイバと、光ファイバを被覆する絶縁層とを備える光ファイバケーブルの絶縁層用途や、導体と、導体を被覆する絶縁層とを備えるケーブルの絶縁層用途など、端末加工のために外被を引き裂く処理が行われる用途に好適に用いることができる。
 そのため、本実施形態によれば、光ファイバと、光ファイバを被覆する絶縁層とを備え、該絶縁層が本実施形態の難燃性樹脂組成物で構成された光ファイバケーブルが提供される。このような光ファイバケーブルとしては、たとえば、光ドロップケーブルや光インドアケーブルなどが挙げられる。また、本実施形態によれば、導体と、導体を被覆する絶縁層とを備え、該絶縁層が本実施形態の難燃性樹脂組成物で構成されたケーブルを提供することもできる。このようなケーブルとしては、たとえば、絶縁電線、電子機器配線用電線、自動車用電線、機器用電線、電源コード、屋外配電用絶縁電線、電力用ケーブル、制御用ケーブル、通信用ケーブル、計装用ケーブル、信号用ケーブル、移動用ケーブル、および船用ケーブルなどの各種ケーブルが挙げられる。
 以下に、実施例を挙げて、本発明についてより具体的に説明するが、本発明は、これら実施例に限定されない。
<実施例1~11、比較例1~5>
 高密度ポリエチレン、低密度ポリエチレン、酸変性ポリオレフィン、炭酸カルシウム粒子、シリコーン系化合物、脂肪酸含有化合物、および酸化防止剤を、表1,2に示す配合量で配合し、バンバリーミキサによって160℃にて15分間混練し、難燃性樹脂組成物を得た。なお、表1,2において、各配合成分の配合量の単位は質量部である。
 なお、各配合成分としては、以下のものを使用した。
 ・高密度ポリエチレン HDPE:日本ポリエチレン社製、「ノバテックHD HD322W」、密度951kg/m
 ・低密度ポリエチレン LDPE1:宇部丸善ポリエチレン社製、「ユメリット0520F」、密度904kg/m
 ・低密度ポリエチレン LDPE2:プライムポリマー社製、「エボリューPSP9018」、密度890kg/m
 ・酸変性ポリオレフィン 酸変性PE:三井化学社製、「タフマー MA8510」、無水マレイン酸変性エチレン-αオレフィン共重合体(主モノマーとしてのエチレンと、コモノマーとしての1-ブテンとが共重合されてなる主鎖構造を有するエチレン-1-ブテン共重合体を無水マレイン酸で変性してなる、無水マレイン酸変性エチレン-1-ブテン共重合体)
 ・酸変性ポリオレフィン 酸変性SEBS:クレイトンポリマージャパン社製、「クレイトン_FG1901X」、無水マレイン酸変性スチレン-エチレン/ブチレン-スチレン共重合体
 ・炭酸カルシウム粒子 炭酸Ca(平均粒径1.7μm):日東粉化工業社製、「NCC P」
 ・炭酸カルシウム粒子 炭酸Ca(平均粒径1.0μm):日東粉化工業社製、「NCC P#2300」
 ・シリコーン系化合物 シリコーンMB(PE/シリコーンガム):信越化学工業社製、「X-22-2125H」、低密度ポリエチレンと、ジメチルポリシロキサンからなるシリコーンガムとを1:1(質量比)の割合でマスターバッチとしたもの
 ・脂肪酸含有化合物 ステアリン酸マグネシウム:ADEKA社製、「エフコ・ケムMGS」、ステアリン酸マグネシウム
 ・酸化防止剤 酸化防止剤MB(EVA/酸化防止剤):大日精化工業社製、「C-174・2A」、エチレン-酢酸ビニル共重合体樹脂と、酸化防止剤とを1:0.15(質量比)の割合でマスターバッチとしたもの
 また、表1,2中、シリコーンMB(PE/シリコーンガム)の配合量を、「3/3」等と示しているが、これは、低密度ポリエチレンが3質量部、ジメチルポリシロキサンからなるシリコーンガムが3質量部配合されていることを意味する。同様に、酸化防止剤MB(EVA/酸化防止剤) の配合量を、「2/0.3」と示しているが、エチレン-酢酸ビニル共重合体樹脂が2質量部、酸化防止剤が0.3質量部配合されていることを意味する。そして、本実施例、比較例においては、これらマスターバッチとして配合した低密度ポリエチレンおよびエチレン-酢酸ビニル共重合体樹脂は、ベース樹脂の一部を構成することとなる。
 次いで、得られた難燃性樹脂組成物を用いて、後述する方法にしたがって、シート状の成形体、被覆電線サンプル、光ファイバケーブルサンプルを作製し、後述する方法に従って、機械的特性(破断強度、伸び率、硬度、引裂き性)、低温特性(脆化温度)、難燃性(60°傾斜合格率、60°傾斜燃焼時間)の各評価を行った。結果を表1,2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
<シート状の成形体の作製>
 得られた難燃性樹脂組成物をバンバリーミキサによって160℃にて15分間混練した。その後、難燃性樹脂組成物を、成形型を用いて成形することで、厚さ1mmのシート状の成形体、および厚さ2mmのシート状の成形体を得た。
<被覆電線サンプルの作製>
 得られた難燃性樹脂組成物をバンバリーミキサによって160℃にて15分間混練した。その後、難燃性樹脂組成物を、単軸押出機(L/D=20、スクリュー形状:フルフライトスクリュー、マース精機社製)に投入し、押出機からチューブ状の押出物を押し出し、導体(素線数1本/断面積2mm)上に、厚さ0.7mmとなるように難燃性樹脂組成物で被覆することで、被覆電線サンプルを得た。
<光ファイバケーブルサンプルの作製>
 得られた難燃性樹脂組成物をバンバリーミキサによって160℃にて15分間混練した。その後、難燃性樹脂組成物を、単軸押出機(L/D=20、スクリュー形状:フルフライトスクリュー、マース精機社製)に投入し、押出機から、図1に示す断面形状を有する筒状の押出物を押し出すことで、光ファイバ心線1心を、短径1.6mm、長径2.0mm、引裂き用ノッチと光ファイタとの距離0.4mmとなる形状にて難燃性樹脂組成物で被覆することで、光ファイバケーブルサンプルを得た。なお、図1は、本実施例で作製した光ファイバケーブルサンプルの断面形状を示す図である。
<破断強度、伸び率の測定>
 上記にて得られた厚さ1mmのシート状の成形体から、3号ダンベル形状のサンプルを作製し、JIS C3005に準拠して、引張試験を行うことで、破断強度および破断時の伸び率の測定を行った。なお、測定に際しては、引張速度は200mm/min、標線間隔は20mm、測定数を5とし、5回の測定結果を平均したものを測定値として採用した。
<硬度の測定>
 上記にて得られた厚さ2mmのシート状の成形体から、縦20mm×横50mmのサイズのサンプルを作製し、JIS K7215に準拠して、デュロメータ(タイプD)にて、ショアD硬度を測定した。なお、測定に際しては、測定数を5とし、5回の測定結果を平均したものを測定値として採用した。本実施例においては、ショアD硬度50以上で合格とした。
<引裂き性>
 上記にて得られた光ファイバケーブルサンプル(図1参照)を用い、予め、光ファイバケーブルサンプルの外被のノッチ間を数cm引裂いた状態とし、引裂いた双方の端をチャックで固定し、引張速度500mm/min.で200mm引裂き、この際の引裂き力を測定した。なお、測定に際しては、測定数を5とし、5回の測定結果を平均したものを測定値として採用した。本実施例においては、引裂き力12N以下で合格とした。
<低温特性>
 上記にて得られた厚さ2mmのシート状の成形体から、縦6mm×横38mmのサイズのサンプルを作製し、JIS C3005に準拠して、低温での耐衝撃試験を行った。具体的には、耐衝撃試験を0℃から5℃刻みで行い、衝撃を与えた後のシート表面に亀裂の発生しない最低温度を脆化温度とした。本実施例においては、脆化温度-30℃以下で合格とした。
<難燃性(60°傾斜合格率、60°傾斜燃焼時間)>
 上記にて得られた被覆電線サンプルについて、JIS K3005に準拠して、60°傾斜燃焼試験を行った。なお、60°傾斜燃焼試験は、10本の被覆電線サンプルについて行い、消火時間(単位:秒)が60秒以内であったサンプルを合格とし、10本の被覆電線サンプルの合格率を算出するとともに、消火時間の平均値を求め、これを60°傾斜燃焼時間とした。なお、消火時間とは、接炎終了直後(バーナーの炎を電線から離した直後)から自己消火するまでの時間であり、消火時間が短ければ短いほど難燃性が高いことを表す。このとき、接炎は、30秒以内で被覆電線サンプルに着火が起こるまで行った。本実施例においては、合格率100%を合格とした。
<評価>
 表1より、本発明所定の要件を満たす実施例1~11の難燃性樹脂組成物は、硬度が高く、易引裂き性、耐低温性および難燃性に優れたものであることが確認できる。また、実施例2と、実施例11とを比較することにより、酸変性ポリオレフィン化合物として、無水マレイン酸変性エチレン-αオレフィン共重合体を用いた場合には、高硬度、易引裂き性、耐低温性および難燃性に優れたものとしながら、破断強度および伸びをより向上させることができることが確認できる。
 一方、表2に示すように、低密度ポリエチレンの割合が少なすぎる比較例1は、耐低温性(脆化温度)に劣る結果となった。
 高密度ポリエチレンの割合が少なすぎる比較例2は、硬度が低くなる結果となった。
 炭酸カルシウム粒子の割合が少なすぎる比較例3は、易引裂き性に劣る結果となった。
 また、炭酸カルシウム粒子の割合が多すぎる比較例4は、耐低温性(脆化温度)に劣る結果となった。
 さらに、シリコーン系化合物の割合が少なすぎる比較例5は、難燃性に劣る結果となった。

Claims (8)

  1.  高密度ポリエチレン18~85質量%、低密度ポリエチレン9~69質量%、および酸変性ポリオレフィン化合物3~25質量%を含むベース樹脂100質量部に対して、
     25質量部以上、110質量部以下の炭酸カルシウム粒子と、
     1質量部超、10質量部以下のシリコーン系化合物と、
     2質量部以上、20質量部以下の脂肪酸含有化合物とを配合してなることを特徴とする難燃性樹脂組成物。
  2.  前記酸変性ポリオレフィン化合物が、無水マレイン酸変性エチレン-αオレフィン共重合体である請求項1に記載の難燃性樹脂組成物。
  3.  前記無水マレイン酸変性エチレン-αオレフィン共重合体が、無水マレイン酸変性エチレン-1-ブテン共重合体である請求項2に記載の難燃性樹脂組成物。
  4.  前記高密度ポリエチレンの密度が945kg/m以上であり、前記低密度ポリエチレンの密度が880kg/m以上、925kg/m以下であることを特徴とする請求項1~3のいずれかに記載の難燃性樹脂組成物。
  5.  前記シリコーン系化合物が、シリコーンガムであることを特徴とする請求項1~4のいずれかに記載の難燃性樹脂組成物。
  6.  前記脂肪酸含有化合物が、ステアリン酸マグネシウムであることを特徴とする請求項1~5のいずれかに記載の難燃性樹脂組成物。
  7.  光ファイバと、前記光ファイバを被覆する絶縁層とを備え、前記絶縁層が請求項1~6のいずれかに記載の難燃性樹脂組成物で構成されることを特徴とする光ファイバケーブル。
  8.  導体と、前記導体を被覆する絶縁層とを備え、前記絶縁層が請求項1~6のいずれかに記載の難燃性樹脂組成物で構成されることを特徴とするケーブル。
PCT/JP2015/073771 2014-08-25 2015-08-25 難燃性樹脂組成物、およびこれを用いたケーブル、ならびに光ファイバケーブル WO2016031789A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2015544256A JP5890077B1 (ja) 2014-08-25 2015-08-25 難燃性樹脂組成物、およびこれを用いたケーブル、ならびに光ファイバケーブル
CN201580045449.2A CN106795340B (zh) 2014-08-25 2015-08-25 阻燃性树脂组合物和使用该阻燃性树脂组合物的缆线以及光纤缆线
EP15836813.4A EP3187534B1 (en) 2014-08-25 2015-08-25 Flame-retardant resin composition, cable using same, and optical fiber cable
US15/506,304 US10483017B2 (en) 2014-08-25 2015-08-25 Flame retardant resin composition, cable using same and optical fiber cable

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014170406 2014-08-25
JP2014-170406 2014-08-25

Publications (1)

Publication Number Publication Date
WO2016031789A1 true WO2016031789A1 (ja) 2016-03-03

Family

ID=55399677

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/073771 WO2016031789A1 (ja) 2014-08-25 2015-08-25 難燃性樹脂組成物、およびこれを用いたケーブル、ならびに光ファイバケーブル

Country Status (6)

Country Link
US (1) US10483017B2 (ja)
EP (1) EP3187534B1 (ja)
JP (1) JP5890077B1 (ja)
CN (1) CN106795340B (ja)
TW (1) TWI576413B (ja)
WO (1) WO2016031789A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6239081B1 (ja) * 2016-11-22 2017-11-29 株式会社フジクラ 難燃性樹脂組成物、これを用いた絶縁電線、メタルケーブル、光ファイバケーブル及び成形品
WO2018034174A1 (ja) * 2016-08-16 2018-02-22 株式会社フジクラ 難燃性樹脂組成物、これを用いた絶縁電線、メタルケーブル、光ファイバケーブル及び成形品
WO2018034173A1 (ja) * 2016-08-16 2018-02-22 株式会社フジクラ 難燃性樹脂組成物、これを用いた絶縁電線、メタルケーブル、光ファイバケーブル及び成形品
WO2021014858A1 (ja) * 2019-07-20 2021-01-28 株式会社フジクラ 難燃性樹脂組成物及びこれを用いたケーブル
JP2021147414A (ja) * 2020-03-16 2021-09-27 三井化学株式会社 樹脂組成物および積層体の製造方法
CN114957877A (zh) * 2021-02-26 2022-08-30 中广核三角洲(江苏)塑化有限公司 汽车摇窗器用环保特软阻燃pvc软管材料
CN114957876A (zh) * 2021-02-26 2022-08-30 中广核三角洲(江苏)塑化有限公司 环保特软阻燃pvc软管材料的制备工艺

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107922688B (zh) * 2015-12-14 2021-03-12 株式会社藤仓 阻燃性树脂组合物、使用该阻燃性树脂组合物的金属缆线、光纤缆线和成型品
CN108026339B (zh) * 2015-12-14 2020-03-10 株式会社藤仓 阻燃性树脂组合物、使用该阻燃性树脂组合物的金属缆线、光纤缆线和成型品
US12073963B2 (en) * 2019-06-03 2024-08-27 Sumitomo Electric Industries, Ltd. Core electric wire for multicore cable, and multicore cable
CN116478702A (zh) * 2023-04-24 2023-07-25 江苏天合储能有限公司 防热失控胶囊及其制造工艺、防热失控电池及其制造方法
CN116560024B (zh) * 2023-05-25 2024-01-30 宏安集团有限公司 一种防潮防裂的蝶形光缆

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0328271A (ja) * 1989-06-26 1991-02-06 Calp Corp 熱可塑性樹脂組成物
JPH09169918A (ja) * 1995-11-11 1997-06-30 Alcatel Alsthom Co General Electricite 高い耐延焼性を有する組成物
JPH09183870A (ja) * 1995-12-28 1997-07-15 Mitsubishi Cable Ind Ltd 耐摩耗性難燃樹脂組成物
JPH107913A (ja) * 1996-03-19 1998-01-13 Alcatel Alsthom Co General Electricite 難燃性ハロゲン不含組成物
JP2012149187A (ja) * 2011-01-20 2012-08-09 Sumitomo Electric Ind Ltd 難燃樹脂組成物、並びにそれを使用した光ファイバケーブル及び電線
WO2013062077A1 (ja) * 2011-10-28 2013-05-02 株式会社フジクラ 難燃性樹脂組成物、及び、これを用いたケーブル
JP2014084437A (ja) * 2012-10-26 2014-05-12 Fujikura Ltd 難燃性樹脂組成物、及び、これを用いたケーブル
WO2014103904A1 (ja) * 2012-12-27 2014-07-03 株式会社フジクラ 難燃性樹脂組成物、及び、これを用いたケーブル
JP2014132530A (ja) * 2013-01-07 2014-07-17 Yazaki Corp 耐熱架橋電線

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK141542B (da) * 1978-07-12 1980-04-14 Medi Lab Medicinsk Lab As Fremgangsmåde og apparat til måling af intensiteten fortrinsvis af gamma-stråling af i en væskeprøve indeholdt strålingsaktivt bundfald.
JPS62129321A (ja) * 1985-11-29 1987-06-11 Tokuyama Soda Co Ltd 多孔性シ−トの製造方法
US5091453A (en) * 1989-04-21 1992-02-25 Bp Chemicals Limited Flame retardant polymer composition
US6221928B1 (en) * 1996-11-15 2001-04-24 Sentinel Products Corp. Polymer articles including maleic anhydride
JP3193017B2 (ja) 1998-03-09 2001-07-30 株式会社フジクラ ノンハロゲン難燃性樹脂組成物
WO2000040651A1 (fr) 1998-12-28 2000-07-13 Fujikura Ltd. Composition de resine ignifuge sans halogenes
WO2005022230A1 (en) * 2003-08-28 2005-03-10 Prysmian Cavi E Sistemi Energia S.R.L. Optical cable and optical unit comprised therein
JP2005096320A (ja) 2003-09-26 2005-04-14 Nippon Zeon Co Ltd 鋼材単層被覆用樹脂組成物及び被覆鋼材
JP5167401B1 (ja) 2011-10-28 2013-03-21 株式会社フジクラ 難燃性樹脂組成物、及び、これを用いたケーブル
MX348660B (es) * 2011-11-04 2017-05-29 Servicios Condumex Sa Composicion para aislamientos termoplasticos libres de halogenos, retardantes a la flama, con baja emision de humos obscuros y buenas propiedades electricas en agua.
JP5652452B2 (ja) 2012-09-27 2015-01-14 日立金属株式会社 ノンハロゲン難燃性絶縁電線

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0328271A (ja) * 1989-06-26 1991-02-06 Calp Corp 熱可塑性樹脂組成物
JPH09169918A (ja) * 1995-11-11 1997-06-30 Alcatel Alsthom Co General Electricite 高い耐延焼性を有する組成物
JPH09183870A (ja) * 1995-12-28 1997-07-15 Mitsubishi Cable Ind Ltd 耐摩耗性難燃樹脂組成物
JPH107913A (ja) * 1996-03-19 1998-01-13 Alcatel Alsthom Co General Electricite 難燃性ハロゲン不含組成物
JP2012149187A (ja) * 2011-01-20 2012-08-09 Sumitomo Electric Ind Ltd 難燃樹脂組成物、並びにそれを使用した光ファイバケーブル及び電線
WO2013062077A1 (ja) * 2011-10-28 2013-05-02 株式会社フジクラ 難燃性樹脂組成物、及び、これを用いたケーブル
JP2014084437A (ja) * 2012-10-26 2014-05-12 Fujikura Ltd 難燃性樹脂組成物、及び、これを用いたケーブル
WO2014103904A1 (ja) * 2012-12-27 2014-07-03 株式会社フジクラ 難燃性樹脂組成物、及び、これを用いたケーブル
JP2014132530A (ja) * 2013-01-07 2014-07-17 Yazaki Corp 耐熱架橋電線

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018034173A1 (ja) * 2016-08-16 2019-02-21 株式会社フジクラ 難燃性樹脂組成物、これを用いた絶縁電線、メタルケーブル、光ファイバケーブル及び成形品
WO2018034174A1 (ja) * 2016-08-16 2018-02-22 株式会社フジクラ 難燃性樹脂組成物、これを用いた絶縁電線、メタルケーブル、光ファイバケーブル及び成形品
WO2018034173A1 (ja) * 2016-08-16 2018-02-22 株式会社フジクラ 難燃性樹脂組成物、これを用いた絶縁電線、メタルケーブル、光ファイバケーブル及び成形品
JPWO2018034174A1 (ja) * 2016-08-16 2019-03-28 株式会社フジクラ 難燃性樹脂組成物、これを用いた絶縁電線、メタルケーブル、光ファイバケーブル及び成形品
JP2018083891A (ja) * 2016-11-22 2018-05-31 株式会社フジクラ 難燃性樹脂組成物、これを用いた絶縁電線、メタルケーブル、光ファイバケーブル及び成形品
WO2018096794A1 (ja) * 2016-11-22 2018-05-31 株式会社フジクラ 難燃性樹脂組成物、これを用いた絶縁電線、メタルケーブル、光ファイバケーブル及び成形品
JP6239081B1 (ja) * 2016-11-22 2017-11-29 株式会社フジクラ 難燃性樹脂組成物、これを用いた絶縁電線、メタルケーブル、光ファイバケーブル及び成形品
US11028257B2 (en) 2016-11-22 2021-06-08 Fujikura Ltd. Flame-retardant resin composition, and insulating wire, metal cable, optical fiber cable and molded article using the same
WO2021014858A1 (ja) * 2019-07-20 2021-01-28 株式会社フジクラ 難燃性樹脂組成物及びこれを用いたケーブル
JPWO2021014858A1 (ja) * 2019-07-20 2021-12-09 株式会社フジクラ 難燃性樹脂組成物及びこれを用いたケーブル
JP2021147414A (ja) * 2020-03-16 2021-09-27 三井化学株式会社 樹脂組成物および積層体の製造方法
JP7398989B2 (ja) 2020-03-16 2023-12-15 三井化学株式会社 樹脂組成物および積層体の製造方法
CN114957877A (zh) * 2021-02-26 2022-08-30 中广核三角洲(江苏)塑化有限公司 汽车摇窗器用环保特软阻燃pvc软管材料
CN114957876A (zh) * 2021-02-26 2022-08-30 中广核三角洲(江苏)塑化有限公司 环保特软阻燃pvc软管材料的制备工艺
CN114957876B (zh) * 2021-02-26 2023-12-26 中广核三角洲(江苏)塑化有限公司 环保特软阻燃pvc软管材料的制备工艺

Also Published As

Publication number Publication date
US20170271048A1 (en) 2017-09-21
EP3187534A1 (en) 2017-07-05
CN106795340A (zh) 2017-05-31
EP3187534B1 (en) 2019-07-03
JPWO2016031789A1 (ja) 2017-04-27
CN106795340B (zh) 2020-04-07
TWI576413B (zh) 2017-04-01
JP5890077B1 (ja) 2016-03-22
US10483017B2 (en) 2019-11-19
TW201623591A (zh) 2016-07-01
EP3187534A4 (en) 2018-04-18

Similar Documents

Publication Publication Date Title
JP5890077B1 (ja) 難燃性樹脂組成物、およびこれを用いたケーブル、ならびに光ファイバケーブル
CN106397947B (zh) 无卤阻燃性树脂组合物、绝缘电线和电缆
WO2013062077A1 (ja) 難燃性樹脂組成物、及び、これを用いたケーブル
JP5282163B1 (ja) 難燃性樹脂組成物、及び、これを用いたケーブル
JPWO2008078406A1 (ja) 難燃性熱可塑性樹脂組成物
JP6069574B1 (ja) 難燃性樹脂組成物、これを用いたメタルケーブル、光ファイバケーブル及び成形品
JP6456722B2 (ja) 難燃性樹脂組成物、及び、これを用いたケーブル並びに光ファイバケーブル
JP6069573B1 (ja) 難燃性樹脂組成物、これを用いたメタルケーブル、光ファイバケーブル及び成形品
JP2016089005A (ja) 難燃性樹脂組成物及び難燃性絶縁電線・ケーブル
TW201811896A (zh) 難燃性樹脂組成物、使用該組成物之絕緣電線、金屬電纜、光纖電纜及成形品
JP2001184946A (ja) 絶縁樹脂組成物および絶縁電線
JP2008097918A (ja) 端末加工性に優れたノンハロゲン難燃電線
JP6542058B2 (ja) 難燃性樹脂組成物、及び、これを用いたケーブル並びに光ファイバケーブル
JP2000294036A (ja) 絶縁電線
JP2012124061A (ja) 難燃性電線・ケーブル
TWI663200B (zh) 阻燃性樹脂組成物、使用此組成物之金屬電纜及光纖電纜以及成形品
JP6239081B1 (ja) 難燃性樹脂組成物、これを用いた絶縁電線、メタルケーブル、光ファイバケーブル及び成形品
JP2002097319A (ja) 難燃性ポリオレフィン樹脂組成物およびそれで被覆された電線・ケーブル
WO2018034173A1 (ja) 難燃性樹脂組成物、これを用いた絶縁電線、メタルケーブル、光ファイバケーブル及び成形品
JP2020122059A (ja) 難燃性樹脂組成物、これを用いたケーブル及び成形体
JP2005350578A (ja) 難燃性樹脂組成物および絶縁電線
JP2014199822A (ja) 無リン系ノンハロゲン難燃絶縁電線および無リン系ノンハロゲン難燃絶縁ケーブル
JP5185326B2 (ja) 電線用被覆材料及び該被覆材料を用いた電線
JP2020122058A (ja) 難燃性樹脂組成物、これを用いたケーブル及び成形体
JP2010262934A (ja) 電線用被覆材料及び該被覆材料を用いた電線

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015544256

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15836813

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015836813

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015836813

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15506304

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE