WO2016031537A1 - 樹脂成型品、及び、車両用表示装置 - Google Patents

樹脂成型品、及び、車両用表示装置 Download PDF

Info

Publication number
WO2016031537A1
WO2016031537A1 PCT/JP2015/072572 JP2015072572W WO2016031537A1 WO 2016031537 A1 WO2016031537 A1 WO 2016031537A1 JP 2015072572 W JP2015072572 W JP 2015072572W WO 2016031537 A1 WO2016031537 A1 WO 2016031537A1
Authority
WO
WIPO (PCT)
Prior art keywords
candidate point
fine irregularities
surface roughness
arrangement pitch
vehicle
Prior art date
Application number
PCT/JP2015/072572
Other languages
English (en)
French (fr)
Inventor
輝臣 佐野
Original Assignee
矢崎総業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 矢崎総業株式会社 filed Critical 矢崎総業株式会社
Priority to JP2016545421A priority Critical patent/JP6282748B2/ja
Priority to DE112015003894.9T priority patent/DE112015003894T5/de
Publication of WO2016031537A1 publication Critical patent/WO2016031537A1/ja
Priority to US15/412,599 priority patent/US11241959B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K35/00Instruments specially adapted for vehicles; Arrangement of instruments in or on vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/42Moulds or cores; Details thereof or accessories therefor characterised by the shape of the moulding surface, e.g. ribs or grooves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C37/00Component parts, details, accessories or auxiliary operations, not covered by group B29C33/00 or B29C35/00
    • B29C37/0053Moulding articles characterised by the shape of the surface, e.g. ribs, high polish
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K35/00Instruments specially adapted for vehicles; Arrangement of instruments in or on vehicles
    • B60K35/40Instruments specially adapted for improving the visibility thereof to the user, e.g. fogging prevention or anti-reflection arrangements
    • B60K35/425Anti-reflection arrangements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/021Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures
    • G02B5/0221Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures the surface having an irregular structure
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0273Diffusing elements; Afocal elements characterized by the use
    • G02B5/0278Diffusing elements; Afocal elements characterized by the use used in transmission
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/42Moulds or cores; Details thereof or accessories therefor characterised by the shape of the moulding surface, e.g. ribs or grooves
    • B29C33/424Moulding surfaces provided with means for marking or patterning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0072Roughness, e.g. anti-slip
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/30Vehicles, e.g. ships or aircraft, or body parts thereof
    • B29L2031/3005Body finishings
    • B29L2031/3008Instrument panels

Definitions

  • the present invention relates to a resin molded product and a vehicle display device.
  • Patent Document 1 discloses a resin molded product in which a texture is formed on the surface and applied to a bumper or the like of an automobile exterior part.
  • This resin molded product has a grain depth of 3 ⁇ m or more and 5 ⁇ m or less, a grain pitch of 550 ⁇ m or more and 750 ⁇ m or less, and a 60 ° gloss on the grain surface of the grain of 28 or more and 35 or less. Even in the case of painting, the scratch resistance of the resin molded product does not deteriorate, and even when it is painted, the appearance quality of the resin molded product does not deteriorate.
  • such a resin molded product may be applied to, for example, a vehicle display device mounted on a vehicle.
  • the gloss of the surface in a region that can enter the field of view of an occupant or the like By suppressing (gloss), for example, it may be possible to create a high-class appearance.
  • the resin molded product can suppress the gloss of the surface without coating without using coating or the like, for example, in order to suppress the man-hours at the time of manufacture.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a resin molded product and a vehicle display device capable of suppressing surface gloss.
  • the resin molded product according to the present invention has a surface with a plurality of fine irregularities having a surface roughness of 1.0 ⁇ m to 10.0 ⁇ m and an arrangement pitch of 3.0 ⁇ m to 18.0 ⁇ m. It is characterized by being molded.
  • the plurality of fine irregularities may have a surface roughness of 1.3 ⁇ m or more and 10.0 ⁇ m or less and an arrangement pitch of 3.0 ⁇ m or more and 13.5 ⁇ m or less.
  • a display device for a vehicle is mounted on a vehicle, displays a display unit for displaying information related to the vehicle, is provided around the display unit, and has a surface roughness of 1.0 ⁇ m. And a resin molded product in which a plurality of fine irregularities having an arrangement pitch of 3.0 ⁇ m or more and 18.0 ⁇ m or less are molded on the surface.
  • a vehicle display device is mounted on a vehicle, and is positioned between a display unit that displays information related to the vehicle, a light source unit included in the display unit, and a viewing position. And a resin molded product that is provided on a standing surface that protrudes along the direction in which the light source unit and the viewing position are aligned, and that has a plurality of fine irregularities that have a gloss value of 2 or less at an incident angle of 85 ° on the surface. It is characterized by providing.
  • the plurality of fine irregularities have a surface roughness of 1.0 ⁇ m to 10.0 ⁇ m and an arrangement pitch of 3.0 ⁇ m to 18.0 ⁇ m, or a surface roughness of It may be 1.15 ⁇ m or more and 10.00 ⁇ m or less, or the arrangement pitch may be 3.0 ⁇ m or more and 14.0 ⁇ m or less.
  • the plurality of fine irregularities may have a surface roughness of 1.4 ⁇ m or more and 3.0 ⁇ m or less and an arrangement pitch of 4.0 ⁇ m or more and 13.0 ⁇ m or less.
  • the resin molded product and the vehicle display device according to the present invention can scatter incident light on the surface by a plurality of fine irregularities molded on the surface, so that the gloss of the surface can be suppressed. Play.
  • FIG. 1 is a perspective view illustrating a schematic configuration of a vehicle display device to which a resin molded product according to an embodiment is applied.
  • FIG. 2 is a schematic perspective view illustrating the surface roughness of fine unevenness and the arrangement pitch in the resin molded product according to the embodiment.
  • FIG. 3 is a schematic diagram for explaining the measurement of the arrangement pitch in the resin molded product according to the embodiment.
  • FIG. 4 is a schematic diagram for explaining the 85 ° gloss value in the resin molded product according to the embodiment.
  • FIG. 5 is a diagram showing an actual measurement result of the influence of the surface roughness and arrangement pitch of a plurality of fine irregularities on the 85 ° gloss value.
  • FIG. 1 is a perspective view illustrating a schematic configuration of a vehicle display device to which a resin molded product according to an embodiment is applied.
  • FIG. 2 is a schematic perspective view illustrating the surface roughness of fine unevenness and the arrangement pitch in the resin molded product according to the embodiment.
  • FIG. 3 is a schematic diagram
  • FIG. 6 is a diagram showing a first simulation result of the influence of the surface roughness and arrangement pitch of a plurality of fine irregularities on the 85 ° gloss value.
  • FIG. 7 is a schematic diagram for explaining the first simulation condition.
  • FIG. 8 is a diagram showing a second simulation result of the influence of the surface roughness and arrangement pitch of a plurality of fine irregularities on the 85 ° gloss value.
  • FIG. 9 is a schematic diagram for explaining the second simulation condition.
  • FIG. 10 is a diagram showing an actual measurement result of the influence of the surface roughness and arrangement pitch of a plurality of fine irregularities on the 85 ° gloss value in a resin-less resin-free product.
  • FIG. 11 is a perspective view illustrating a schematic configuration of a vehicle display device to which a resin molded product according to a modification is applied.
  • FIG. 1 is a perspective view illustrating a schematic configuration of a vehicle display device to which a resin molded product according to an embodiment is applied.
  • FIG. 2 is a schematic perspective view illustrating the surface roughness of fine unevenness and the arrangement pitch in the resin molded product according to the embodiment.
  • FIG. 3 is a schematic diagram for explaining the measurement of the arrangement pitch in the resin molded product according to the embodiment.
  • FIG. 4 is a schematic diagram for explaining the 85 ° gloss value in the resin molded product according to the embodiment.
  • FIG. 5 is a diagram showing an actual measurement result of the influence of the surface roughness and arrangement pitch of a plurality of fine irregularities on the 85 ° gloss value.
  • FIG. 1 is a perspective view illustrating a schematic configuration of a vehicle display device to which a resin molded product according to an embodiment is applied.
  • FIG. 2 is a schematic perspective view illustrating the surface roughness of fine unevenness and the arrangement pitch in the resin molded product according to the embodiment.
  • FIG. 3 is a schematic diagram
  • FIG. 6 is a diagram showing a first simulation result of the influence of the surface roughness and arrangement pitch of a plurality of fine irregularities on the 85 ° gloss value.
  • FIG. 7 is a schematic diagram for explaining the first simulation condition.
  • FIG. 8 is a diagram showing a second simulation result of the influence of the surface roughness and arrangement pitch of a plurality of fine irregularities on the 85 ° gloss value.
  • FIG. 9 is a schematic diagram for explaining the second simulation condition.
  • FIG. 10 is a diagram showing an actual measurement result of the influence of the surface roughness and arrangement pitch of a plurality of fine irregularities on the 85 ° gloss value in a resin-less resin-free product.
  • FIG. 11 is a perspective view illustrating a schematic configuration of a vehicle display device to which a resin molded product according to a modification is applied.
  • the resin molded product 1 according to the present embodiment is applied to a vehicle display device 100 mounted on a vehicle as shown in FIG.
  • the vehicle display device 100 of the present embodiment constitutes a so-called on-vehicle meter, and is mounted on an instrument panel provided on a dashboard of the vehicle, for example, as information used for driving the vehicle. Various information is displayed.
  • the vehicle display device 100 includes a display unit 101 that is mounted on a vehicle and displays information related to the vehicle, and a resin molded product 1 provided around the display unit 101. And the display apparatus 100 for vehicles is suppressing the glossiness of the surface by shape
  • the width direction of the vehicle display device 100 shown in FIG. 1 typically corresponds to the vehicle width direction of the vehicle to which the vehicle display device 100 is applied.
  • the left side left side in FIG. 1
  • the right side right side in FIG. 1
  • the depth direction of the vehicle display device 100 shown in FIG. 1 typically corresponds to the front-rear direction of the vehicle to which the vehicle display device 100 is applied.
  • the front side of the vehicle display device 100 is the side facing the driver's seat of the vehicle, and is typically the side visually recognized by the driver sitting in the driver's seat.
  • a visual position 108 described later is located on the front side in the depth direction of the vehicle display device 100.
  • the back side of the vehicle display device 100 is the side opposite to the front side in the depth direction, and is typically the side accommodated inside the instrument panel.
  • the display unit 101 includes a light source unit 102, and displays various information about the vehicle using light emitted from the light source unit 102.
  • the display unit 101 displays various information used for driving the vehicle, such as vehicle speed, the output rotational speed of the driving power source, the accumulated traveling distance, a warning display (so-called tell tale), a shift position indicator, and the like. indicate.
  • two display units 101 are provided at intervals along the width direction.
  • Each of the display units 101 includes a light source unit 102, a dial plate 103, a pointer 104, and the like. This is an analog instrument that displays a measured value in an analog manner by the pointer 104.
  • the light source unit 102 is disposed on the back side of the dial 103 in the depth direction.
  • the dial plate 103 is, for example, a polycarbonate sheet made of a transparent fabric, and is printed with a shape corresponding to the indicator portion, the warning display pattern, or the like with dark ink.
  • the light source unit 102 includes a light source body such as an LED element, and a diffusion plate that diffuses light emitted from the light source body toward the dial 103 side.
  • each display unit 101 the light emitted from the light source unit 102 passes through a portion of the dial plate 103 where the index unit and the warning display symbol are cut out, so that the index unit and the warning display symbol are displayed.
  • the indicator portion indicated by the pointer 104 includes an arc along the rotation trajectory of the tip of the pointer 104, and a plurality of scales, numbers, and the like attached at equal intervals along the arc.
  • the pointer 104 is located on the front side in the depth direction of the dial plate 103 and is rotated by driving a motor provided in the casing 101a constituting the vehicle display device 100, so that various measurement values (speed, output) relating to the vehicle are obtained.
  • Each display unit 101 indicates the current speed and output rotation speed by a pointer 104.
  • the display unit 101 only has to have the light source unit 102 and display various information about the vehicle by the light source unit 102, and may be configured by a liquid crystal display device or the like, for example.
  • the resin molded product 1 is provided around the display unit 101.
  • the resin molded product 1 of this embodiment is applied to the facing plate 105 of the vehicle display device 100.
  • the facing plate 105 is a frame-like member that is assembled on the front side in the depth direction of the housing 101a and surrounds the dial plate 103 or the like to press the dial plate 103 or the like.
  • the facing plate 105 is exposed on the front side in the depth direction and serves as a decorative material that can enter the field of view of an occupant including the driver.
  • the facing plate 105 includes an enclosure surface 106 as a viewing position facing surface that surrounds each display unit 101, and a standing surface 107 that is erected along the depth direction from the edge of the enclosure surface 106.
  • the surrounding surface 106 is a surface that has a notch in a portion corresponding to each display unit 101 and that exposes each display unit 101 from the notch.
  • the standing surface 107 is a surface that protrudes from the edge of the surrounding surface 106 along the depth direction. That is, the surrounding surface 106 is positioned between the light source unit 102 included in the display unit 101 and the viewing position 108 such as an occupant in the depth direction, and the arrangement direction of the light source unit 102 and the viewing position 108, that is, the depth. It is formed as a surface that intersects the direction, more specifically, a surface that faces the viewing position 108 along the depth direction.
  • the standing surface 107 is positioned between the light source unit 102 included in the display unit 101 and the viewing position 108 such as an occupant with respect to the depth direction, and the arrangement direction of the light source unit 102 and the viewing position 108, that is, the depth. It protrudes toward the driver along the direction.
  • a total of four standing surfaces 107 are provided, one each along the width direction on the upper and lower sides of the surrounding surface 106 in the vertical direction, and one each along the vertical direction on the left and right sides of the surrounding surface 106 in the width direction.
  • the resin molded product 1 according to the present embodiment is applied to at least each standing surface 107, so that the standing surface 107 is configured by the surface on which the plurality of fine irregularities 2 are molded.
  • the reflection of light incident on the surface 107 is suppressed, and the gloss of the standing surface 107 is suppressed. That is, in this case, the resin molded product 1 applied to the standing surface 107 is disposed at a position where light is inclined and incident from the side opposite to the viewing position 108 with respect to the surface on which the plurality of fine irregularities 2 are molded.
  • the Rukoto is, so that the standing surface 107 is configured by the surface on which the plurality of fine irregularities 2 are molded.
  • the resin molded product 1 is also applied to the enclosure surface 106, so that the enclosure surface 106 is constituted by the surface on which the plurality of fine irregularities 2 are molded, and thus the enclosure is performed as reflected light such as external light.
  • the reflection of light incident on the surface 106 is suppressed, and the gloss of the surrounding surface 106 is suppressed. That is, in this case, the resin molded product 1 applied to the surrounding surface 106 is disposed at a position where light enters from the viewing position 108 side with respect to the surface on which the plurality of fine irregularities 2 are molded.
  • the plurality of fine irregularities 2 molded on the surface of the resin molded product 1 shown in FIG. 2 and the like have at least the following surface roughness Sa due to the plurality of fine irregularities 2 and the arrangement pitch Pi of the plurality of fine irregularities 2. It is molded so as to satisfy any one of the conditions 1 to 3. (Condition 1)
  • the surface roughness Sa is 1.0 ⁇ m or more and 10.0 ⁇ m or less and the arrangement pitch Pi is 3.0 ⁇ m or more and 18.0 ⁇ m or less (1.0 ⁇ m ⁇ Sa ⁇ 10.0 ⁇ m and 3.0 ⁇ m ⁇ Pi ⁇ 18.0 ⁇ m).
  • the surface roughness Sa is 1.15 ⁇ m or more and 10.00 ⁇ m or less (1.15 ⁇ m ⁇ Sa ⁇ 10.00 ⁇ m).
  • the arrangement pitch Pi is 3.0 ⁇ m or more and 14.0 ⁇ m or less (3.0 ⁇ m ⁇ Pi ⁇ 14.0 ⁇ m).
  • the surface roughness Sa of the plurality of fine irregularities 2 is an index (parameter) representing the depth (height) of the fine irregularities 2 and corresponds to the smoothness of the surface on which the fine irregularities 2 are molded. It can be expressed by an index.
  • the surface roughness Sa is the arithmetic average roughness Sa.
  • the arithmetic average roughness Sa here is an index obtained by extending the two-dimensional arithmetic average roughness Ra to three dimensions, and represents the average of the absolute values of Z (x, y) in the measurement target region A (FIG. 2). reference).
  • the arithmetic average roughness Sa corresponds to the arithmetic average of the measurement target region A in a state where the valley portion is changed to the peak portion by the absolute value on the three-dimensional display diagram.
  • the arithmetic average roughness Sa that is, the surface roughness Sa can be expressed by, for example, the following mathematical formula (1).
  • the surface roughness (arithmetic average roughness) Sa of the plurality of fine irregularities 2 can be measured by a predetermined surface roughness measurement method set in advance.
  • the plurality of fine irregularities 2 molded on the surface of the resin molded product 1 has a surface roughness Sa measured by a predetermined surface roughness measuring method set in advance satisfying any one of the above conditions 1 to 3. Is molded as follows.
  • a measuring instrument used for measuring the surface roughness Sa of the fine irregularities 2 is “ A method using a 3D measurement laser microscope LEXT OLS4000 manufactured by Olympus Corporation is used.
  • the “surface roughness analysis” function is selected as the measurement function
  • the “roughness parameter” is selected as the analysis parameter
  • the undulation component is further used as the noise removal function.
  • the “Galcian filter (noise filter)” function is selected with a cut-off frequency for removing the noise of 80 ⁇ m.
  • the arrangement pitch Pi of the plurality of fine irregularities 2 the average value of the distances between the apexes of adjacent fine irregularities 2 in the measurement target region A is used (see FIG. 2).
  • the arrangement pitch Pi of the plurality of fine irregularities 2 can be measured by a predetermined pitch measuring method set in advance.
  • the plurality of fine irregularities 2 to be molded on the surface of the resin molded product 1 are molded so that the arrangement pitch Pi measured by a predetermined pitch measurement method set in advance satisfies any one of the above conditions 1 to 3. Is done.
  • a predetermined pitch measuring method set in advance for measuring the arrangement pitch Pi of the plurality of fine irregularities 2 is used for measuring the arrangement pitch Pi of the fine irregularities 2 as with the surface roughness Sa.
  • a method using “3D measurement laser microscope LEXT OLS4000 manufactured by Olympus Corporation” is used as a measuring instrument.
  • the “profile measurement” function is selected as the measurement function
  • the “saw surface” function of the “one-shot filter” is further selected as the noise removal function. .
  • FIG. 3 shows an example of the profile data of the surface of the resin molded product 1 imaged as described above.
  • the horizontal axis represents the position in the arbitrary direction of the surface of the photographed resin molded product 1
  • the vertical axis represents the height of the surface at the surface position.
  • a peak is extracted from the profile data of the surface of the resin molded product 1 photographed as described above, the distance between adjacent peaks is measured, and this is measured value of the arrangement pitch Pi of the plurality of fine irregularities 2.
  • the peaks in the profile data are extracted as follows, for example.
  • an arbitrary point on the contour line L of the surface of the resin molded product 1 represented by the profile data is set as a reference point P1.
  • a peak candidate point or a bottom candidate point existing on one side in the horizontal axis direction from the reference point P1 on the contour line L, here on the right side is extracted in order.
  • the peak candidate point corresponds to a point at which the height changes from increase to decrease and the slope becomes 0, and corresponds to a point at which a so-called maximum value is obtained.
  • the bottom candidate point corresponds to a point at which the height changes from decrease to increase and the slope becomes 0, and corresponds to a point at which a so-called minimum value is obtained.
  • a point P2 at which the height changes from decreasing to increasing and the slope becomes 0 on the right side of the reference point P1 is extracted as the bottom candidate point P2.
  • a peak candidate point existing on the right side from the bottom candidate point P2 on the contour line L is extracted.
  • a point P3 at which the height changes from increasing to decreasing and the slope becomes 0 on the right side of the bottom candidate point P2 is extracted as the peak candidate point P3.
  • the bottom candidate point P2 is recognized as being a potential bottom candidate point.
  • a preset reference angle for example, 10 ° or larger
  • the bottom candidate point P2 is recognized as being a potential bottom candidate point.
  • FIG. 3 illustrates the case where the angle ⁇ 1 formed by the straight line connecting the bottom candidate point P2 and the peak candidate point P3 and the horizontal axis is less than 10 °. For this reason, the bottom candidate point P2 It is determined that it is not a strong candidate point.
  • a bottom candidate point existing on the right side from the peak candidate point P3 on the contour line L is extracted.
  • a point P4 at which the height changes from decreasing to increasing and the slope becomes 0 on the right side of the peak candidate point P3 is extracted as the bottom candidate point P4.
  • the peak candidate point P3 is recognized as a peak potential candidate point based on an angle ⁇ 2 formed by a straight line connecting the peak candidate point P3 and the bottom candidate point P4 (bottom candidate point P4 adjacent to the peak candidate point P3) and the horizontal axis. Determine if you can.
  • the peak candidate point P3 is recognized as a peak potential candidate point.
  • a preset reference angle for example, 10 ° or larger
  • the peak candidate point P3 It is recognized as a potential candidate point P3.
  • a peak candidate point existing on the right side from the bottom candidate point P4 on the contour line L is extracted.
  • a point P5 where the height changes from increasing to decreasing and the slope becomes 0 on the right side of the bottom candidate point P4 is extracted as the peak candidate point P5.
  • the example of FIG. 3 exemplifies a case where the angle ⁇ 3 formed by the straight line connecting the bottom candidate point P4 and the peak candidate point P5 and the horizontal axis is 10 ° or more. For this reason, the bottom candidate point P4 It is recognized as a potential candidate point P4.
  • a bottom candidate point existing on the right side from the peak candidate point P5 on the contour line L is extracted.
  • a point P6 at which the height changes from decreasing to increasing and the slope becomes 0 on the right side of the peak candidate point P5 is extracted as the bottom candidate point P6.
  • the peak candidate point P5 Based on the angle ⁇ 4 formed by the straight line connecting the peak candidate point P5 and the bottom candidate point P6 and the horizontal axis, it is determined whether or not the peak candidate point P5 can be recognized as a peak potential candidate point in the same manner as described above.
  • the example in FIG. 3 illustrates a case where the angle ⁇ 4 formed by the straight line connecting the peak candidate point P5 and the bottom candidate point P6 and the horizontal axis is less than 10 °. Therefore, the peak candidate point P5 It is determined that it is not a strong candidate point.
  • a peak candidate point existing on the right side from the bottom candidate point P6 on the contour line L is extracted.
  • a point P7 whose height changes from increasing to decreasing and whose slope is 0 on the right side of the bottom candidate point P6 is extracted as the peak candidate point P7.
  • a bottom candidate point existing on the right side from the peak candidate point P7 on the contour line L is extracted.
  • a point P8 at which the height changes from decreasing to increasing and the slope becomes 0 on the right side of the peak candidate point P7 is extracted as the bottom candidate point P8.
  • a peak candidate point existing on the right side from the bottom candidate point P8 on the contour line L is extracted.
  • a point P9 where the height changes from increasing to decreasing and the slope becomes 0 on the right side of the bottom candidate point P8 is extracted as the peak candidate point P9.
  • the example of FIG. 3 exemplifies a case where the angle ⁇ 7 formed by the straight line connecting the bottom candidate point P8 and the peak candidate point P9 and the horizontal axis is 10 ° or more. For this reason, the bottom candidate point P8 It is recognized that it is a potential candidate point P8.
  • a bottom candidate point existing on the right side from the peak candidate point P9 on the contour line L is extracted.
  • a point P10 at which the height changes from decreasing to increasing and the slope becomes 0 on the right side of the peak candidate point P9 is extracted as the bottom candidate point P10.
  • a peak candidate point existing on the right side from the bottom candidate point P10 on the contour line L is extracted.
  • a point P11 where the height changes from increasing to decreasing and the slope becomes 0 on the right side of the bottom candidate point P10 is extracted as the peak candidate point P11.
  • the example of FIG. 3 illustrates a case where the angle ⁇ 9 formed by the straight line connecting the bottom candidate point P10 and the peak candidate point P11 and the horizontal axis is less than 10 °. Therefore, the bottom candidate point P10 It is determined that it is not a strong candidate point.
  • a bottom candidate point existing on the right side from the peak candidate point P11 on the contour line L is extracted.
  • a point P12 where the height changes from decreasing to increasing and the slope becomes 0 on the right side of the peak candidate point P11 is extracted as the bottom candidate point P12.
  • the example of FIG. 3 exemplifies a case where the angle ⁇ 10 formed by the straight line connecting the peak candidate point P11 and the bottom candidate point P12 and the horizontal axis is 10 ° or more. For this reason, the peak candidate point P11 It is recognized as a potential candidate point P11.
  • a peak candidate point existing on the right side from the bottom candidate point P12 on the contour line L is extracted.
  • a point P13 at which the height changes from increasing to decreasing and the slope becomes 0 on the right side of the bottom candidate point P12 is extracted as the peak candidate point P13.
  • the example of FIG. 3 illustrates a case where the angle ⁇ 11 formed by the straight line connecting the bottom candidate point P12 and the peak candidate point P13 and the horizontal axis is 10 ° or more. For this reason, the bottom candidate point P12 It is recognized as a potential candidate point P12.
  • the peak probable candidate point P3 is not extracted as a true peak because it is not sandwiched between a pair of bottom promising candidate points.
  • the peak candidate point P5 is located between the pair of bottom potential candidate points P4 and P6, it is not a peak potential candidate point in the first place, so it is not extracted as a true peak.
  • the peak potential candidate point P7 is located between the pair of bottom potential candidate points P6 and P8, and since no other peak potential candidate points exist in this section, it is extracted as a true peak.
  • the peak potential candidate point P9, P11 is located between the pair of bottom potential candidate points P8, P12, and the peak potential candidate point P9 is the highest peak potential candidate point in this section, so that the peak potential candidate point P9 is true.
  • the peak probable candidate point P11 is not extracted as a true peak.
  • the distance between adjacent true peaks extracted between the true peaks as described above, here, the distance between the point P7 and the point P9 is measured, and this is arranged in the arrangement of the plurality of fine irregularities 2
  • the measured value of the pitch Pi is measured.
  • the arrangement pitch Pi between true peaks is measured at arbitrary 10 locations in the measurement target area A set in advance, and the average value (10-point average) of the 10 arrangement pitches Pi is determined as a plurality of fine irregularities 2.
  • the fine unevenness 2 satisfying any one of the above conditions 1 to 3 is integrally molded without coating by transferring the unevenness formed on the resin molding die to the surface of the resin molded product 1 at the time of molding.
  • a material used as the resin molded product 1 for example, various synthetic resins can be used.
  • the resin molded product 1 of the present embodiment is formed by molding a plurality of fine irregularities 2 that satisfy any one of the above conditions 1 to 3 on the surface.
  • the surface can have a gloss value at an incident angle of 85 ° (hereinafter sometimes referred to as “85 ° gloss value”) of 2 or less.
  • the surface on which the plurality of fine irregularities 2 are molded satisfies the above conditions 1 to 3, so that the 85 ° gloss value is greater than 0 and 2 or less.
  • the resin molded product 1 of the present embodiment has a surface roughness Sa in which the gloss value at an incident angle of 85 ° is greater than 0 and equal to or less than 2, and a plurality of fine irregularities 2 having an arrangement pitch Pi. It is molded into
  • the gloss value is an index indicating the degree of surface gloss (in other words, an index indicating how much of the incident light is reflected).
  • the gloss can typically refer to the definition of gloss according to the JIS standard.
  • the reflectance on the glass surface having a refractive index of 1.567 mirror reflectance of 10% at an incident angle of 60 °
  • the gloss value can be calculated using, for example, the following mathematical formula (2) from the measurement result of the luminance (candela) of the light reflected from the measurement surface.
  • Gross value (Measurement result of actual brightness of measurement surface / Measurement result of brightness when measurement surface is glass surface with refractive index of 1.567) ⁇ 100 (2)
  • the gloss value at an incident angle of 85 ° is from the normal direction of the measurement surface (the surface on which a plurality of fine irregularities 2 are molded in the resin molded product 1), as illustrated in FIG.
  • the amount of light received by the evaluation surface at a position inclined by 85 ° from the normal direction of the measurement surface opposite to the light source after the light emitted from the light source at a position inclined by 85 ° is reflected by the measurement surface.
  • the 85 ° gloss value can be measured by, for example, “BY-Gardner (Big Gardner) micro-TRI-gloss”.
  • a gloss value at an incident angle of 20 °, a gloss value at an incident angle of 60 °, or the like is generally used as the gloss value.
  • the gloss value at an incident angle of 85 ° is used as a reference.
  • the gloss value at an incident angle of 85 ° is likely to change depending on the surface roughness Sa, the arrangement pitch Pi, and the like of the fine unevenness 2 as compared with the gloss value at an incident angle of 20 °, the gloss value at an incident angle of 60 °, and the like. There is a tendency. Therefore, by evaluating the gloss of the surface with the gloss value at the incident angle of 85 ° as a reference, the gloss value at the incident angle of 20 ° and the gloss value at the incident angle of 60 ° can substantially satisfy the required values. It becomes.
  • the surface roughness Sa of the plurality of fine irregularities 2 has a tendency that the larger the relative roughness Sa, the lower the 85 ° gloss value and the lower the gloss and the lower the gloss.
  • the arrangement pitch Pi of the plurality of fine irregularities 2 becomes relatively narrow, the 85 ° gloss value tends to be relatively low, and the gloss is suppressed and the gloss tends to be low.
  • Condition 1 described above corresponds to a range in which [0 ⁇ 85 ° gloss value ⁇ 2] can be achieved after adjusting the relationship between the surface roughness Sa of the plurality of fine irregularities 2 and the arrangement pitch Pi in a well-balanced manner.
  • the above condition 2 is within the range where the arrangement pitch Pi is relatively wide (for example, the arrangement pitch Pi is larger than 18.0 ⁇ m and is practically possible (for example, about 30.0 ⁇ m)). Even in this case, since the surface roughness Sa is relatively large, it corresponds to a range in which [0 ⁇ 85 ° gloss value ⁇ 2] can be achieved regardless of the arrangement pitch Pi. Further, the above condition 3 is that even when the surface roughness Sa is relatively small (for example, when the surface roughness Sa is within a range of 0.3 ⁇ m or more and less than 1.0 ⁇ m), the arrangement pitch Pi Is relatively narrow, it corresponds to a range in which [0 ⁇ 85 ° gloss value ⁇ 2] can be achieved regardless of the surface roughness Sa.
  • the resin molded product 1 satisfies the following conditions 1 ′ to 3 ′ that further limit the above conditions 1 to 3.
  • the surface roughness Sa is 1.0 ⁇ m or more and 10.0 ⁇ m or less and the arrangement pitch Pi is 3.0 ⁇ m or more and 17.5 ⁇ m or less (1.0 ⁇ m ⁇ Sa ⁇ 10.0 ⁇ m and 3.0 ⁇ m). ⁇ Pi ⁇ 17.5 ⁇ m).
  • the surface roughness Sa is 1.3 ⁇ m or more and 10.0 ⁇ m or less (1.3 ⁇ m ⁇ Sa ⁇ 10.0 ⁇ m).
  • the arrangement pitch Pi is 3.0 ⁇ m or more and 13.5 ⁇ m or less (3.0 ⁇ m ⁇ Pi ⁇ 13.5 ⁇ m).
  • the above condition 1 ′ corresponds to a range in which [0 ⁇ 85 ° gloss value ⁇ 2] can be achieved after adjusting the relationship between the surface roughness Sa of the plurality of fine irregularities 2 and the arrangement pitch Pi in a more balanced manner.
  • the above-mentioned condition 2 ′ is within the range where the arrangement pitch Pi is relatively wide (for example, the arrangement pitch Pi is larger than 17.5 ⁇ m and is practically possible (for example, about 30.0 ⁇ m)). Even in a certain case, the surface roughness Sa is relatively large, which corresponds to a range in which [0 ⁇ 85 ° gloss value ⁇ 2] can be reliably achieved regardless of the arrangement pitch Pi.
  • the above condition 3 ′ is that the arrangement pitch is even when the surface roughness Sa is relatively small (for example, when the surface roughness Sa is within a range of 0.3 ⁇ m or more and less than 1.0 ⁇ m). Since Pi is relatively narrow, it corresponds to a range in which [0 ⁇ 85 ° gloss value ⁇ 2] can be reliably achieved regardless of the surface roughness Sa.
  • the resin molded product 1 satisfies the following condition 1 ′′ further limiting the condition 1 out of the above conditions 1 to 3.
  • the surface roughness Sa is 1.3 ⁇ m or more and 10.0 ⁇ m or less
  • the arrangement pitch Pi is 3.0 ⁇ m or more and 13.5 ⁇ m or less (1.3 ⁇ m ⁇ Sa ⁇ 10.0 ⁇ m, and 3. 0 ⁇ m ⁇ Pi ⁇ 13.5 ⁇ m).
  • the resin molded product 1 can make the surface by which the some fine unevenness
  • FIG. 5 is an actual measurement result of the influence of the surface roughness Sa and the arrangement pitch Pi of the plurality of fine irregularities on the 85 ° gloss value.
  • the horizontal axis represents the surface roughness Sa ( ⁇ m) and the array pitch Pi ( ⁇ m)
  • the vertical axis represents the 85 ° gloss value Gs [85].
  • the actual measurement result shows an actual measurement value of the 85 ° gloss value of the surface on which a plurality of fine irregularities are actually molded with a predetermined surface roughness Sa and a predetermined arrangement pitch Pi.
  • the 85 ° gloss value as shown in FIG.
  • the light source is an LED (Light Emitting Diode)
  • the measurement surface on which fine irregularities are provided is 1 mm ⁇ 1 mm rectangular black polypropylene (polypropylene).
  • the evaluation surface was a 3 mm ⁇ 6 mm rectangular surface, the distance between the light source and the measurement surface, and the distance between the measurement surface and the evaluation surface was 5 mm.
  • the surface roughness Sa, the array pitch Pi, and the 85 ° gloss value Gs were respectively measured using “Olympus 3D measurement laser microscope LEXT OLS4000” and “BYK Gardner (Bicgardner) micro-TRI-gloss”. The actual measurement was performed as described above.
  • bar lines A1 to A7 represent the 85 ° gloss value of the resin-less resin-coated product according to the comparative example in which a plurality of fine irregularities outside the range of the above conditions 1 to 3 are integrally molded on the surface. Yes.
  • bar lines B1 to B5 represent the 85 ° gloss value of the resin molded product according to the comparative example in which a plurality of fine irregularities are formed on the surface by coating.
  • the fine unevenness 2 in which the value, that is, the 85 ° gloss value is greater than 0 and 2 or less from the simulation results shown in FIGS. A range is set.
  • FIG. 6 shows the first simulation result of the influence of the surface roughness Sa and the arrangement pitch Pi of the plurality of fine irregularities 2 on the 85 ° gloss value.
  • the horizontal axis represents the surface roughness Sa ( ⁇ m) and the array pitch Pi ( ⁇ m)
  • the vertical axis represents the 85 ° gloss value Gs [85].
  • the fine unevenness 2 is hypothesized as a hemisphere, the height of the hemisphere is the surface roughness Sa, and the distance between vertices (peaks) of adjacent hemispheres is the array pitch Pi. I was virtual.
  • the light source is LED
  • the measurement surface on which the fine unevenness 2 is molded is equivalent to a surface formed of 1 mm ⁇ 1 mm rectangular black polypropylene
  • the evaluation surface is 3 mm.
  • the distance between the light source and the measurement surface and the distance between the measurement surface and the evaluation surface were each 5 mm.
  • the surface roughness Sa and the array pitch Pi were each changed by a predetermined width, and the 85 ° gloss value Gs [85] was calculated for each combination of the surface roughness Sa and the array pitch Pi.
  • the 85 ° gloss value Gs [85] is obtained by reflecting the light emitted from the light source at a position inclined by 85 ° from the normal direction of the measurement surface after being reflected by the measurement surface.
  • the brightness (candela) of light received by the evaluation surface at a position inclined by 85 ° from the normal direction of the measurement surface on the opposite side is calculated using various known relational expressions, and based on this, the formula (2) is calculated. Use to calculate.
  • the plurality of fine irregularities 2 are within a range where the surface roughness Sa and the arrangement pitch Pi of the plural fine irregularities 2 satisfy the following conditions 1-1 to 3-1.
  • the surface on which is molded can be a surface having an 85 ° gloss value of more than 0 and 2 or less. More specifically, the 85 ° gloss value becomes relatively lower as the surface roughness Sa of the plurality of fine irregularities 2 becomes relatively larger, and the 85 ° gloss becomes smaller as the arrangement pitch Pi of the plurality of fine irregularities 2 becomes relatively smaller. It is clear that the values tend to be relatively low.
  • the surface roughness Sa is 1.0 ⁇ m or more and 10.0 ⁇ m or less, and the arrangement pitch Pi is 3.0 ⁇ m or more and 18.0 ⁇ m or less (1.0 ⁇ m ⁇ Sa ⁇ 10.0 ⁇ m, and 3. 0 ⁇ m ⁇ Pi ⁇ 18.0 ⁇ m).
  • the surface roughness Sa is 1.3 ⁇ m or more and 10.0 ⁇ m or less (1.3 ⁇ m ⁇ Sa ⁇ 10.0 ⁇ m).
  • the arrangement pitch Pi is 3.0 ⁇ m or more and 13.5 ⁇ m or less (3.0 ⁇ m ⁇ Pi ⁇ 13.5 ⁇ m).
  • Condition 1-1 described above is that, when the fine irregularities 2 are hemispherical, the relation between the surface roughness Sa and the arrangement pitch Pi of the fine irregularities 2 is adjusted in a well-balanced manner, and [0 ⁇ 85 ° gloss This corresponds to a range in which value ⁇ 2] can be achieved.
  • the above-mentioned condition 2-1 is that when the fine irregularities 2 are hemispherical and the arrangement pitch Pi is relatively wide (for example, the arrangement pitch Pi is larger than 18.0 ⁇ m and has a practically possible value). (For example, about 30.0 ⁇ m), the surface roughness Sa is relatively large, so that [0 ⁇ 85 ° gloss value ⁇ 2] is achieved regardless of the arrangement pitch Pi. It corresponds to the possible range.
  • the above-mentioned condition 3-1 is that when the fine irregularities 2 are hemispherical and the surface roughness Sa is relatively small (for example, the range in which the surface roughness Sa is 0.3 ⁇ m or more and less than 1.0 ⁇ m). Even in this case, the arrangement pitch Pi is relatively narrow, which corresponds to a range in which [0 ⁇ 85 ° gloss value ⁇ 2] can be achieved regardless of the surface roughness Sa.
  • the fine unevenness 2 is a hemisphere
  • the relationship between the surface roughness Sa and the arrangement pitch Pi of the multiple fine unevennesses 2 is adjusted in a well-balanced manner, and [0 ⁇ 85 ° gloss value ⁇ 2] is achieved.
  • the possible range is more preferably the range of the following condition 1-1 ′′.
  • the surface roughness Sa is 1.3 ⁇ m or more and 10.0 ⁇ m or less
  • the arrangement pitch Pi is 3.0 ⁇ m or more and 13.5 ⁇ m or less (1.3 ⁇ m ⁇ Sa ⁇ 10.0 ⁇ m, and 3.0 ⁇ m ⁇ Pi ⁇ 13.5 ⁇ m).
  • FIG. 8 shows a second simulation result of the influence of the surface roughness Sa and the arrangement pitch Pi of the plurality of fine irregularities 2 on the 85 ° gloss value.
  • the horizontal axis represents the surface roughness Sa ( ⁇ m) and the array pitch Pi ( ⁇ m)
  • the vertical axis represents the 85 ° gloss value Gs [85].
  • the fine unevenness 2 is assumed to be a cone
  • the height of the cone is the surface roughness Sa
  • the distance between the apexes (peaks) of the adjacent cones is the array pitch Pi. I was virtual.
  • Other simulation conditions are the same as those in the first simulation described above.
  • the plurality of fine irregularities 2 are within a range where the surface roughness Sa and the arrangement pitch Pi of the plurality of fine irregularities 2 satisfy the following conditions 1-2 to 3-2.
  • the surface on which is molded can be a surface having an 85 ° gloss value of more than 0 and 2 or less. More specifically, the 85 ° gloss value becomes relatively lower as the surface roughness Sa of the plurality of fine irregularities 2 becomes relatively larger, and the 85 ° gloss becomes smaller as the arrangement pitch Pi of the plurality of fine irregularities 2 becomes relatively smaller. It is clear that the values tend to be relatively low.
  • the surface roughness Sa is 1.0 ⁇ m or more and 10.0 ⁇ m or less, and the arrangement pitch Pi is 3.0 ⁇ m or more and 17.5 ⁇ m or less (1.0 ⁇ m ⁇ Sa ⁇ 10.0 ⁇ m, and 3. 0 ⁇ m ⁇ Pi ⁇ 17.5 ⁇ m).
  • the surface roughness Sa is 1.15 ⁇ m or more and 10.00 ⁇ m or less (1.15 ⁇ m ⁇ Sa ⁇ 10.00 ⁇ m).
  • the arrangement pitch Pi is 3.0 ⁇ m or more and 14.0 ⁇ m or less (3.0 ⁇ m ⁇ Pi ⁇ 14.0 ⁇ m).
  • the above-mentioned condition 1-2 is that, when the fine irregularities 2 are cones, the relation between the surface roughness Sa and the arrangement pitch Pi of the plural fine irregularities 2 is adjusted in a well-balanced manner, and [0 ⁇ 85 ° gloss This corresponds to a range in which value ⁇ 2] can be achieved.
  • the above condition 2-2 is that when the fine unevenness 2 is a cone and the arrangement pitch Pi is relatively wide (for example, the arrangement pitch Pi is larger than 17.5 ⁇ m and has a practically possible value). (For example, about 30.0 ⁇ m), the surface roughness Sa is relatively large, so that [0 ⁇ 85 ° gloss value ⁇ 2] is achieved regardless of the arrangement pitch Pi. It corresponds to the possible range.
  • the above condition 3-2 is that when the fine unevenness 2 is a cone, the surface roughness Sa is relatively small (for example, the range where the surface roughness Sa is 0.60 ⁇ m or more and less than 1.15 ⁇ m). Even in this case, the arrangement pitch Pi corresponds to a range in which [0 ⁇ 85 ° gloss value ⁇ 2 or less] can be achieved regardless of the surface roughness Sa.
  • the fine unevenness 2 is a cone, the relationship between the surface roughness Sa and the arrangement pitch Pi of the multiple fine unevennesses 2 is adjusted in a well-balanced manner, and [0 ⁇ 85 ° gloss value ⁇ 2] is achieved.
  • the possible range is more preferably the range of the following condition 1-2 ′′.
  • the surface roughness Sa is 1.15 ⁇ m or more and 10.00 ⁇ m or less
  • the arrangement pitch Pi is 3.0 ⁇ m or more and 14.0 ⁇ m or less (1.15 ⁇ m ⁇ Sa ⁇ 10.00 ⁇ m, and 3.0 ⁇ m ⁇ Pi ⁇ 14.0 ⁇ m).
  • condition 1 described above is set to a range satisfying either the condition 1-1 when the fine unevenness 2 is a hemisphere or the condition 1-2 when the fine unevenness 2 is a cone.
  • condition 2 described above is set in a range that satisfies either the condition 2-1 when the fine unevenness 2 is a hemisphere or the condition 2-2 when the fine unevenness 2 is a cone.
  • Condition 3 described above is set in a range that satisfies either condition 3-1 when the fine unevenness 2 is a hemisphere or condition 3-2 when the fine unevenness 2 is a cone.
  • condition 1 'described above is set to a range that satisfies both the condition 1-1 when the fine unevenness 2 is a hemisphere and the condition 1-2 when the fine unevenness 2 is a cone.
  • condition 2 'described above is set to a range that satisfies both the condition 2-1 when the fine unevenness 2 is a hemisphere and the condition 2-2 when the fine unevenness 2 is a cone.
  • the condition 3 'described above is set in a range that satisfies both the condition 3-1 when the fine unevenness 2 is a hemisphere and the condition 3-2 when the fine unevenness 2 is a cone.
  • the above-mentioned condition 1 '' is set in a range satisfying both the condition 1-1 '' when the fine unevenness 2 is a hemisphere and the condition 1-2 '' when the fine unevenness 2 is a cone. Is done.
  • FIG. 10 is an actual measurement result of the influence of the surface roughness Sa and the arrangement pitch Pi of the plurality of fine irregularities 2 on the 85 ° gloss value.
  • the horizontal axis represents the arrangement pitch Pi ( ⁇ m)
  • the vertical axis represents the surface roughness Sa ( ⁇ m).
  • the actual measurement result shows an actual measurement value of the 85 ° gloss value of the surface on which a plurality of fine irregularities 2 are formed with a predetermined surface roughness Sa and a predetermined arrangement pitch Pi without painting.
  • the light source is an LED
  • the measurement surface on which the fine unevenness 2 is molded is a surface actually molded with a 1 mm ⁇ 1 mm rectangular ABS resin
  • the evaluation surface is 3 mm ⁇ 6 mm.
  • the distance between the light source and the measurement surface and the distance between the measurement surface and the evaluation surface were each 5 mm.
  • the surface roughness Sa, the array pitch Pi, and the 85 ° gloss value Gs were respectively measured using “Olympus 3D measurement laser microscope LEXT OLS4000” and “BYK Gardner (Bicgardner) micro-TRI-gloss”. The actual measurement was performed as described above.
  • the surface roughness Sa and the array pitch Pi were measured using the above-described pitch measurement method and surface roughness measurement method.
  • the plurality of fine irregularities 2 were molded in a range where the surface roughness Sa and the arrangement pitch Pi of the plurality of fine irregularities 2 satisfy the above conditions 1 to 3. It is clear that the surface can be a surface with an 85 ° gloss value of 2 or less. That is, from the actual measurement result, it is clear that the actual measurement value of the 85 ° gloss value corresponding to the surface roughness Sa and the arrangement pitch Pi of the plurality of fine irregularities 2 has a tendency similar to that of the simulation result. The validity of the simulation results was confirmed.
  • the 85 ° gloss value of the product is about 1.0
  • the 85 ° gloss value of the product within the range T4 is about 1.1. That is, a product of the resin molded product 1 in which a plurality of fine irregularities 2 having at least a surface roughness Sa of 1.4 ⁇ m to 3.0 ⁇ m and an arrangement pitch Pi of 4.0 ⁇ m to 13.0 ⁇ m are molded on the surface. It is clear that the gloss value at an incident angle of 85 ° is 2 or less.
  • a plurality of fine irregularities 2 having a surface roughness of 1.0 ⁇ m to 10.0 ⁇ m and an arrangement pitch of 3.0 ⁇ m to 18.0 ⁇ m are molded on the surface. .
  • a plurality of fine unevennesses 2 having a gloss value of 2 or less at an incident angle of 85 ° are formed on the surface, and the surface on which the plurality of fine unevennesses 2 are formed is formed. Thus, it is arranged at a position where light enters from the side opposite to the viewing position 108.
  • the display unit 101 is mounted on the vehicle and displays information related to the vehicle, and is provided around the display unit 101.
  • the surface roughness is 1.0 ⁇ m or more and 10.0 ⁇ m.
  • a resin molded product 1 on which a plurality of fine irregularities 2 having an arrangement pitch of 3.0 ⁇ m or more and 18.0 ⁇ m or less are molded.
  • the gross value at an incident angle of 85 ° is provided around the display unit 101 that is mounted on the vehicle and displays information related to the vehicle.
  • a plurality of fine irregularities 2 that are 2 or less are provided with a resin molded product 1 molded on the surface.
  • the resin molded product 1 and the vehicle display device 100 can scatter incident light on the surface by the plurality of fine irregularities 2 molded on the surface, the gloss of the surface can be suppressed.
  • the resin molded product 1 and the vehicle display device 100 can suppress the gloss of the surface in the field of view of the occupant including the driver in the vehicle, for example, and reduce the plastic feeling that tends to give a cheap image. It is possible to create a high-class appearance.
  • the resin molded product 1 and the vehicle display device 100 can suppress the gloss of the surface by a plurality of fine irregularities 2 molded on the surface, and can suppress the gloss of the surface in the same manner as those painted without using paint or the like. The effect can be realized.
  • the resin molded product 1 and the vehicle display device 100 can reduce the number of man-hours for manufacturing as compared with the case where, for example, painting is performed, and the manufacturing cost can be suppressed.
  • the resin molded product 1 receives light from the side opposite to the viewing position 108 with respect to the surface on which the plurality of fine irregularities 2 are molded. Arranged at the incident position. Therefore, the resin molded product 1 and the vehicle display device 100 suppress reflection of light incident from the side opposite to the viewing position 108 and suppress gloss on the surface on which the plurality of fine irregularities 2 are molded. Can do.
  • the plurality of fine irregularities 2 have a surface roughness of 1.3 ⁇ m or more and 10.0 ⁇ m or less and an arrangement pitch of 3.0 ⁇ m or more and 13. It is preferably 5 ⁇ m or less.
  • the resin molded product 1 and the vehicle display device 100 can more reliably set the surface on which the plurality of fine irregularities 2 are molded to a surface having an 85 ° gloss value of 2 or less.
  • the surface of the resin molded product 1 on which a plurality of fine irregularities 2 are molded is mounted on the vehicle and displays information related to the vehicle.
  • a standing surface 107 that is positioned between the light source unit 102 and the viewing position 108 of the 101 and projects along the alignment direction of the light source unit 102 and the viewing position 108 is configured.
  • the vehicle display device 100 is mounted on a vehicle and displays information related to the vehicle.
  • the vehicle display device 100 is positioned between the light source unit 102 and the viewing position 108 of the display unit 101, and the light source unit 102.
  • a resin molded product 1 is provided on a standing surface 107 that protrudes along the direction of alignment with the viewing position 108 and on which a plurality of fine irregularities 2 having a gloss value of 2 or less at an incident angle of 85 ° are molded.
  • the plurality of fine irregularities 2 have a surface roughness of 1.0 ⁇ m to 10.0 ⁇ m and an arrangement pitch of 3.0 ⁇ m to 18.0 ⁇ m, or a surface roughness of 1.15 ⁇ m to 10. 00 ⁇ m or less, or the arrangement pitch is 3.0 ⁇ m or more and 14.0 ⁇ m or less.
  • the plurality of fine irregularities 2 preferably have a surface roughness of 1.4 ⁇ m to 3.0 ⁇ m and an arrangement pitch of 4.0 ⁇ m to 13.0 ⁇ m. Therefore, the resin molded product 1 and the vehicle display device 100 can be configured such that, for example, the standing surface 107 that constitutes the facing plate 105 of the vehicle display device 100 is a paintless low reflection facing. Thereby, the resin molded product 1 and the vehicle display device 100 can suppress, for example, the light that is incident on the standing surface 107 from the light source unit 102 and is reflected toward the viewing position 108 of the driver or the like. The gloss of the surface 107 can be suppressed.
  • the resin molded product 1 has been described as being applied to the enclosure surface 106 and the standing surface 107 that constitute the facing plate 105 of the display device 100 for a vehicle. You may apply to parts other than a vehicle.
  • the molded resin product 1 is, for example, a pointer 104, a pointer cap, an instrument panel, or the like molded with resin, and is exposed to the front side of the depth direction in the vehicle display device 100. It may be applied to a portion, or may be applied to a portion where the surface gloss due to reflection of external light or the like is to be suppressed, for example, the inner wall surface of the casing of the head-up display.
  • the resin molded product 1 is a part other than the vehicle, for example, a part (for example, a frame shape that surrounds an end part of a display surface of a display) in a casing of a game machine, a portable terminal device, a home appliance, or the like. And the like.
  • a vehicle display device 100A includes a display unit 101A instead of the display unit 101 (see FIG. 1).
  • the display unit 101A displays various images on the image display surface as information about the vehicle, and is configured by a thin display.
  • the display unit 101A includes a light source unit 102A that constitutes a so-called backlight, and displays various image information related to the vehicle using light emitted from the light source unit 102A.
  • a TFT liquid crystal display can be used, but not limited thereto, a plasma display, an organic EL display, or the like can also be used.
  • the display unit 101A includes, for example, an image corresponding to the above-described pointer 104, the indicator unit, a warning display symbol, etc., as information on the vehicle, information on eco-driving, etc., integrated travel distance, cooling water temperature, fuel remaining amount, You may display the driving
  • the surrounding surface 106 of the facing plate 105 is provided so as to surround the image display surface of the display unit 101A.
  • the resin molded product 1 may be applied to the enclosure surface 106 and the standing surface 107 of the facing plate 105 in the vehicle display device 100A in which the display unit 101A as described above is incorporated. Thereby, the resin molded product 1 can suppress reflection of light and suppress gloss on the enclosure surface 106 and the standing surface 107 of the facing plate 105 in the vehicle display device 100A.
  • the resin molded product 1 is a light source for a display that constitutes the display unit 101A that emits a relatively large amount of emitted light as compared with the light source unit 102 (see FIG. 1) of the analog instrument, particularly on the standing surface 107.
  • the reflection of the light emitted from the part 102A can be suitably suppressed, the effect of suppressing the gloss can be more remarkably exhibited.
  • the image displayed on the display part 101A is reflected on the standing surface 107. Etc. can also be suppressed.
  • the surface on which the plurality of fine irregularities 2 described above is molded has a surface roughness Sa due to the plurality of fine irregularities 2 and an arrangement pitch Pi of the plurality of fine irregularities 2 satisfy any one of the above conditions 1 to 3.
  • the surface is configured as a surface having an 85 ° gloss value of greater than 0 and 2 or less. That is, the surface on which the plurality of fine irregularities 2 are molded has an 85 ° gloss value of 0 by adjusting the surface roughness Sa by the plurality of fine irregularities 2 or the arrangement pitch Pi of the plurality of fine irregularities 2.
  • the surface is not limited to this, and other parameters related to the shape of the plurality of fine irregularities 2 are adjusted so that the 85 ° gloss value is greater than 0 and 2 or less. It may be configured as.
  • the surface on which the plurality of fine irregularities 2 are molded has an 85 ° gloss value of greater than 0 and less than or equal to 2 by adjusting the depth of the plurality of fine irregularities 2 and the arrangement pitch of the plurality of fine irregularities 2. It may be configured as a surface.
  • the surface on which the plurality of fine irregularities 2 are molded has an 85 ° gloss value of 0, for example, by adjusting the structure adjacent angle formed by the peripheral wall surfaces of the adjacent fine irregularities 2 in the plurality of fine irregularities 2. It may be configured as a surface of 2 or less.
  • the surface on which the plurality of fine irregularities 2 are molded is 85 ° by, for example, providing pinholes at the tops of the convex portions of the plurality of fine irregularities 2 and adjusting the average diameter and average depth of the pinholes. It may be configured as a surface having a gloss value greater than 0 and less than or equal to 2.
  • the surface on which the plurality of fine irregularities 2 are molded has, for example, a 85 ° gloss value by further providing fine projections on the convex portions of the plurality of fine irregularities 2 and adjusting the bottom surface diameter and arrangement pitch of the fine projections.
  • the surface on which the plurality of fine irregularities 2 are molded includes, for example, a plurality of fine irregularities 2 constituted by a truncated pyramid-shaped fine convex portion, and the diameter of a circle circumscribing the bottom polygon of the truncated pyramid-shaped convex portion
  • the 85 ° gloss value may be configured as a surface having a value greater than 0 and 2 or less.
  • the resin molded product 1 of the present embodiment has a depth of fine irregularities 2 with a gloss value greater than 0 and equal to or less than 2 at an incident angle of 85 °, an arrangement pitch, a structure adjacent angle, and a convex portion.
  • a plurality of fine irregularities 2 having the above and the like may be molded on the surface.
  • “Olympus 3D measurement laser microscope LEXT OLS4000” is used as a measuring instrument for measuring the surface roughness Sa and the array pitch Pi of the plurality of fine irregularities 2.
  • other measuring devices may be used.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Instrument Panels (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

 車両用表示装置(100)に適用される樹脂成型品(1)は、表面粗さが1.0μm以上10.0μm以下でかつ配列ピッチが3.0μm以上18.0μm以下である複数の微細凹凸(2)が表面に成型される。言い換えれば、樹脂成型品(1)は、入射角85°におけるグロス値が2以下となる複数の微細凹凸(2)が表面に成型される。これにより、樹脂成型品(1)、車両用表示装置(100)は、表面の光沢を抑制できる、という効果を奏する。

Description

樹脂成型品、及び、車両用表示装置
 本発明は、樹脂成型品、及び、車両用表示装置に関する。
 車両等に適用される樹脂成型品として、例えば、特許文献1には、表面にシボが成型され、自動車外装部品のバンパ等に適用される樹脂成型品が開示されている。この樹脂成型品は、シボの深さを3μm以上5μm以下とし、シボのピッチを550μm以上750μm以下とし、シボのシボ表面の60°グロスを28以上35以下としたものであり、これにより、無塗装の場合でも樹脂成型品の耐傷付き性が低下せず、塗装した場合でも樹脂成型品の外観品質が低下しないようにしている。
特開2011-189697号公報
 ところで、このような樹脂成型品は、例えば、車両に搭載される車両用表示装置等に適用される場合があるが、このような場合に乗員等の視界にはいりうる領域内の表面の光沢(グロス)を抑えることで、例えば、外観上の高級感の創出等を図る場合がある。この場合、樹脂成型品は、例えば、製造時の作業工数を抑制するべく、塗装等を用いずに塗装レスで表面の光沢を抑制できることが期待されている。
 本発明は、上記の事情に鑑みてなされたものであって、表面の光沢を抑制できる樹脂成型品、及び、車両用表示装置を提供することを目的とする。
 上記目的を達成するために、本発明に係る樹脂成型品は、表面粗さが1.0μm以上10.0μm以下でかつ配列ピッチが3.0μm以上18.0μm以下である複数の微細凹凸が表面に成型されることを特徴とする。
 また、上記樹脂成型品では、前記複数の微細凹凸は、表面粗さが1.3μm以上10.0μm以下でかつ配列ピッチが3.0μm以上13.5μm以下であるものとすることができる。
 上記目的を達成するために、本発明に係る車両用表示装置は、車両に搭載され、当該車両に関する情報を表示する表示部と、前記表示部の周りに設けられ、表面粗さが1.0μm以上10.0μm以下でかつ配列ピッチが3.0μm以上18.0μm以下である複数の微細凹凸が表面に成型される樹脂成型品とを備えることを特徴する。
 上記目的を達成するために、本発明に係る車両用表示装置は、車両に搭載され、当該車両に関する情報を表示する表示部と、前記表示部が有する光源部と目視位置との間に位置すると共に、前記光源部と前記目視位置との並び方向に沿って突出する立ち面に設けられ、入射角85°におけるグロス値が2以下となる複数の微細凹凸が表面に成型される樹脂成型品とを備えることを特徴する。
 また、上記車両用表示装置では、前記複数の微細凹凸は、表面粗さが1.0μm以上10.0μm以下でかつ配列ピッチが3.0μm以上18.0μm以下である、もしくは、表面粗さが1.15μm以上10.00μm以下である、もしくは、配列ピッチが3.0μm以上14.0μm以下であるものとすることができる。
 また、上記車両用表示装置では、前記複数の微細凹凸は、表面粗さが1.4μm以上3.0μm以下でかつ配列ピッチが4.0μm以上13.0μm以下であるものとすることができる。
 本発明に係る樹脂成型品、及び、車両用表示装置は、表面に成型された複数の微細凹凸によって当該表面への入射光を散乱させることができるので、表面の光沢を抑制できる、という効果を奏する。
図1は、実施形態に係る樹脂成型品が適用された車両用表示装置の概略構成を示す斜視図である。 図2は、実施形態に係る樹脂成型品における微細凹凸の表面粗さ、及び、配列ピッチを説明する模式的な斜視図である。 図3は、実施形態に係る樹脂成型品における配列ピッチの測定を説明する模式図である。 図4は、実施形態に係る樹脂成型品における85°グロス値を説明する模式図である。 図5は、複数の微細凹凸の表面粗さと配列ピッチとが85°グロス値に与える影響の実測結果を表す線図である。 図6は、複数の微細凹凸の表面粗さと配列ピッチとが85°グロス値に与える影響の第1のシミュレーション結果を表す線図である。 図7は、第1のシミュレーション条件を説明する模式図である。 図8は、複数の微細凹凸の表面粗さと配列ピッチとが85°グロス値に与える影響の第2のシミュレーション結果を表す線図である。 図9は、第2のシミュレーション条件を説明する模式図である。 図10は、塗装レスの樹脂成型品において複数の微細凹凸の表面粗さと配列ピッチとが85°グロス値に与える影響の実測結果を表す線図である。 図11は、変形例に係る樹脂成型品が適用された車両用表示装置の概略構成を示す斜視図である。
 以下に、本発明に係る実施形態を図面に基づいて詳細に説明する。なお、この実施形態によりこの発明が限定されるものではない。また、下記実施形態における構成要素には、当業者が置換可能かつ容易なもの、あるいは実質的に同一のものが含まれる。
[実施形態]
 図1は、実施形態に係る樹脂成型品が適用された車両用表示装置の概略構成を示す斜視図である。図2は、実施形態に係る樹脂成型品における微細凹凸の表面粗さ、及び、配列ピッチを説明する模式的な斜視図である。図3は、実施形態に係る樹脂成型品における配列ピッチの測定を説明する模式図である。図4は、実施形態に係る樹脂成型品における85°グロス値を説明する模式図である。図5は、複数の微細凹凸の表面粗さと配列ピッチとが85°グロス値に与える影響の実測結果を表す線図である。図6は、複数の微細凹凸の表面粗さと配列ピッチとが85°グロス値に与える影響の第1のシミュレーション結果を表す線図である。図7は、第1のシミュレーション条件を説明する模式図である。図8は、複数の微細凹凸の表面粗さと配列ピッチとが85°グロス値に与える影響の第2のシミュレーション結果を表す線図である。図9は、第2のシミュレーション条件を説明する模式図である。図10は、塗装レスの樹脂成型品において複数の微細凹凸の表面粗さと配列ピッチとが85°グロス値に与える影響の実測結果を表す線図である。図11は、変形例に係る樹脂成型品が適用された車両用表示装置の概略構成を示す斜視図である。
 本実施形態に係る樹脂成型品1は、図1に示すように、車両に搭載される車両用表示装置100に適用される。本実施形態の車両用表示装置100は、いわゆる車載メータを構成するものであり、例えば、車両のダッシュボードに設けられたインストルメントパネルに搭載され、車両の運転に供される情報として当該車両に関する種々の情報を表示する。車両用表示装置100は、車両に搭載され当該車両に関する情報を表示する表示部101と、表示部101の周りに設けられた樹脂成型品1とを備える。そして、車両用表示装置100は、樹脂成型品1の表面に複数の微細凹凸2(図2等参照)が成型されることで、表面の光沢を抑制している。
 なお、図1に示す車両用表示装置100の幅方向とは、典型的には、この車両用表示装置100が適用される車両の車幅方向に相当する。以下の説明では、車両用表示装置100の幅方向において、当該車両用表示装置100の前面に向かって左側(図1中左側)を幅方向左側、向かって右側(図1中右側)を幅方向右側という場合がある。また、図1に示す車両用表示装置100の奥行き方向とは、典型的には、この車両用表示装置100が適用される車両の前後方向に相当する。また、車両用表示装置100の前面側とは、車両の運転席と対面する側であり、典型的には、当該運転席に座った運転者によって視認される側である。後述する目視位置108は、車両用表示装置100の奥行き方向前面側に位置する。一方、車両用表示装置100の背面側とは、奥行き方向において前面側とは反対側であり、典型的には、インストルメントパネルの内部に収容される側である。
 表示部101は、光源部102を有しており、当該光源部102が出射する光を用いて車両に関する種々の情報を表示するものである。表示部101は、車両に関する情報として、例えば、車速、走行用動力源の出力回転数、積算走行距離、ウォーニング表示(いわゆるテルテール)、シフトポジションインジケータ等、車両の運転に供される種々の情報を表示する。ここでは、表示部101は、一例として、幅方向に沿って間隔をあけて2つ設けられており、それぞれ、光源部102、文字板103、指針104等を含んで構成され、車両に関する種々の計測値を当該指針104によってアナログ式で表示するアナログ計器である。光源部102は、文字板103の奥行き方向背面側に配置される。文字板103は、車両に関する情報として、例えば、速度、出力回転数等の計測値を表し指針104によって指し示される指標部やウォーニング表示用の図柄等が描かれている。文字板103は、例えば、透明生地のポリカーボネイト製シートであり、暗色系のインクによって、上記指標部やウォーニング表示用の図柄等に対応した形状が中抜きされた印刷が施される。光源部102は、LED素子等の光源本体、当該光源本体から照射された光を文字板103側に拡散させる拡散板等を含んで構成される。各表示部101は、光源部102から照射される光が、文字板103において指標部やウォーニング表示用の図柄等が切り抜きされた部分を透過することで当該指標部やウォーニング表示用の図柄等が表示状態となる。指針104によって指し示される指標部は、この指針104の先端の回動軌跡に沿った円弧、当該円弧に沿って等間隔で付された複数の目盛、数字等を含んで構成される。指針104は、文字板103の奥行き方向前面側に位置し、車両用表示装置100構成する筐体101a内に設けられるモータが駆動することで回動し、車両に関する種々の計測値(速度、出力回転数等)に応じて指標部の所定の位置を指し示す。各表示部101は、指針104によって現在の速度、出力回転数が指し示される。なお、表示部101は、光源部102を有し、当該光源部102によって車両に関する種々の情報を表示するものであればよく、例えば、液晶表示装置等によって構成されるものであってもよい。
 樹脂成型品1は、表示部101の周りに設けられる。本実施形態の樹脂成型品1は、車両用表示装置100の見返し板105に適用される。見返し板105は、筐体101aの奥行き方向前面側に組み付けられ、文字板103等の周囲を囲って当該文字板103等を押える枠状の部材である。見返し板105は、車両用表示装置100において、奥行き方向前面側に露出し運転者を含む乗員の視界にはいりうる部分の化粧材となるものである。見返し板105は、各表示部101を囲う目視位置対向面としての囲い面106と、当該囲い面106の縁部から奥行き方向に沿って立設される立ち面107とを含んで構成される。囲い面106は、各表示部101に対応する部分に切り欠きを有し当該切り欠きから各表示部101が露出する面である。立ち面107は、囲い面106の縁部から奥行き方向に沿って突出する面である。つまり、囲い面106は、奥行き方向に対して表示部101が有する光源部102と乗員等の目視位置108との間に位置すると共に、光源部102と目視位置108との並び方向、すなわち、奥行き方向と交差する面、さらに言えば、奥行き方向に沿って目視位置108と対向する面として形成される。一方、立ち面107は、奥行き方向に対して表示部101が有する光源部102と乗員等の目視位置108との間に位置すると共に、光源部102と目視位置108との並び方向、すなわち、奥行き方向に沿って運転者側に突出する。ここでは、立ち面107は、囲い面106の鉛直方向上下両側に幅方向に沿ってそれぞれ1つずつ、囲い面106の幅方向左右両側に鉛直方向に沿って1つずつ、合計4つ設けられるがこれに限らない。
 そして、本実施形態の樹脂成型品1は、少なくとも各立ち面107に適用されることで、複数の微細凹凸2が成型された表面によって立ち面107を構成し、これにより、光源部102から立ち面107に入射した光の反射を抑制し、当該立ち面107の光沢を抑制するようにしている。つまりこの場合、立ち面107に適用される樹脂成型品1は、複数の微細凹凸2が成型された表面に対して、目視位置108とは反対側から光が傾斜して入射する位置に配置されることとなる。さらにここでは、樹脂成型品1は、囲い面106にも適用されることで、複数の微細凹凸2が成型された表面によって囲い面106を構成し、これにより、外光等の反射光として囲い面106に入射した光の反射を抑制し、当該囲い面106の光沢を抑制するようにしている。つまりこの場合、囲い面106に適用される樹脂成型品1は、複数の微細凹凸2が成型された表面に対して、目視位置108側から光が入射する位置に配置されることとなる。
 以下、樹脂成型品1について、具体的に説明する。
 図2等に示す樹脂成型品1の表面に成型される複数の微細凹凸2は、当該複数の微細凹凸2による表面粗さSaと当該複数の微細凹凸2の配列ピッチPiとが、少なくとも下記の条件1~3のいずれか1つを満たすように成型される。
 
(条件1)表面粗さSaが1.0μm以上10.0μm以下でかつ配列ピッチPiが3.0μm以上18.0μm以下である(1.0μm≦Sa≦10.0μm、かつ、3.0μm≦Pi≦18.0μm)。
 
(条件2)表面粗さSaが1.15μm以上10.00μm以下である(1.15μm≦Sa≦10.00μm)。
 
(条件3)配列ピッチPiが3.0μm以上14.0μm以下である(3.0μm≦Pi≦14.0μm)。
 
 ここで、複数の微細凹凸2の表面粗さSaとは、微細凹凸2の深さ(高さ)を表す指標(パラメータ)であり、微細凹凸2が成型された表面の平滑度等に応じた指標で表すことができる。ここでは、表面粗さSaは、算術平均粗さSaである。ここでの算術平均粗さSaは、二次元における算術平均粗さRaを三次元に拡張した指標であり、測定対象領域Aにおいて、Z(x,y)の絶対値の平均を表す(図2参照)。当該算術平均粗さSaは、三次元表示の図の上では、谷部が絶対値化により山部に変化した状態で測定対象領域Aの算術平均を表したものに相当する。当該算術平均粗さSa、すなわち、表面粗さSaは、例えば、下記の数式(1)で表すことができる。
Figure JPOXMLDOC01-appb-M000001
 当該複数の微細凹凸2の表面粗さ(算術平均粗さ)Saは、予め設定された所定の表面粗さ測定方法によって測定することができる。樹脂成型品1の表面に成型される複数の微細凹凸2は、予め設定された所定の表面粗さ測定方法によって測定された表面粗さSaが上記の条件1~3のいずれか1つを満たすように成型される。
 なお、複数の微細凹凸2の表面粗さSaを測定するために予め設定される所定の表面粗さ測定方法としては、一例として、微細凹凸2の表面粗さSaの測定に用いる測定機器として『オリンパス株式会社製 3D測定レーザー顕微鏡 LEXT OLS4000』を用いた方法を用いる。この場合、『オリンパス株式会社製 3D測定レーザー顕微鏡 LEXT OLS4000』において、測定機能として「面粗さ解析」機能を選択すると共に解析パラメータとして「粗さパラメータ」を選択し、さらにノイズ除去機能としてうねり成分を除去するためのカットオフ周波数を80μmとした「ガルシアンフィルタ(ノイズフィルタ)」機能を選択する。その上で、『オリンパス株式会社製 3D測定レーザー顕微鏡 LEXT OLS4000』によって、樹脂成型品1の表面の画像を測定倍率20倍で撮影し、複数の微細凹凸2の表面粗さ(算術平均粗さ)Saを測定する。
 一方、複数の微細凹凸2の配列ピッチPiとは、隣接する微細凹凸2の頂点間距離の、予め設定される測定対象領域Aにおける平均値を用いる(図2参照)。当該複数の微細凹凸2の配列ピッチPiは、予め設定された所定のピッチ測定方法によって測定することができる。樹脂成型品1の表面に成型される複数の微細凹凸2は、予め設定された所定のピッチ測定方法によって測定された配列ピッチPiが上記の条件1~3のいずれか1つを満たすように成型される。
 なお、複数の微細凹凸2の配列ピッチPiを測定するために予め設定される所定のピッチ測定方法としては、一例として、表面粗さSaと同様に、微細凹凸2の配列ピッチPiの測定に用いる測定機器として『オリンパス株式会社製 3D測定レーザー顕微鏡 LEXT OLS4000』を用いた方法を用いる。この場合、『オリンパス株式会社製 3D測定レーザー顕微鏡 LEXT OLS4000』において、測定機能として「プロファイル測定」機能を選択すると共に、さらにノイズ除去機能として「ワンショットフィルタ」の「鋸状表面」機能を選択する。その上で、『オリンパス株式会社製 3D測定レーザー顕微鏡 LEXT OLS4000』によって、樹脂成型品1の表面の画像を測定倍率100倍で撮影する。そして、このようにして撮影された樹脂成型品1の表面のプロファイルデータ(輪郭データ)から複数の微細凹凸2の配列ピッチPiを測定する。図3は、上記のようにして撮像された樹脂成型品1の表面のプロファイルデータの一例を表している。図3中、横軸は、撮影された樹脂成型品1の表面の任意の方向における位置を表し、縦軸は当該表面位置における表面の高さを表す。ここでは、上記のようにして撮影された樹脂成型品1の表面のプロファイルデータからピークを抽出し、隣接するピーク間の距離を測定し、これを複数の微細凹凸2の配列ピッチPiの測定値とする。
 ここで、プロファイルデータにおけるピークは、例えば、下記のようにして抽出する。まず、プロファイルデータが表す樹脂成型品1の表面の輪郭線L上の任意の点を基準点P1とする。次に、輪郭線L上の基準点P1から横軸方向一方側、ここでは、向かって右側に存在するピーク候補点、又は、ボトム候補点を順に抽出する。ここで、ピーク候補点とは、高さが増加から減少に転換し傾きが0となる点に相当しいわゆる極大値となる点に相当する。一方、ボトム候補点とは、高さが減少から増加に転換し傾きが0となる点に相当しいわゆる極小値となる点に相当する。図3の例では、基準点P1の右側で高さが減少から増加に転換し傾きが0となる点P2がボトム候補点P2として抽出される。
 次に、輪郭線L上のボトム候補点P2から向かって右側に存在するピーク候補点を抽出する。図3の例では、ボトム候補点P2の右側で高さが増加から減少に転換し傾きが0となる点P3がピーク候補点P3として抽出される。そして、ボトム候補点P2とピーク候補点P3(ボトム候補点P2と隣接するピーク候補点P3)とを結ぶ直線と横軸(言い換えれば、ピーク検出のための仮想平面)とがなす角度θ1に基づいてボトム候補点P2がボトム有力候補点と認定できるか否かを判定する。ここでは、角度θ1が予め設定される基準角度以上、例えば、10°以上である場合にボトム候補点P2がボトム有力候補点であるものと認定する。図3の例は、ボトム候補点P2とピーク候補点P3とを結ぶ直線と横軸とがなす角度θ1が10°に満たない場合を例示しており、このため、ボトム候補点P2は、ボトム有力候補点ではないものと判定される。
 次に、輪郭線L上のピーク候補点P3から向かって右側に存在するボトム候補点を抽出する。図3の例では、ピーク候補点P3の右側で高さが減少から増加に転換し傾きが0となる点P4がボトム候補点P4として抽出される。そして、ピーク候補点P3とボトム候補点P4(ピーク候補点P3と隣接するボトム候補点P4)とを結ぶ直線と横軸とがなす角度θ2に基づいてピーク候補点P3がピーク有力候補点と認定できるか否かを判定する。ここでは、角度θ2が予め設定される基準角度以上、例えば、10°以上である場合にピーク候補点P3がピーク有力候補点であるものと認定する。図3の例は、ピーク候補点P3とボトム候補点P4とを結ぶ直線と横軸とがなす角度θ2が10°以上である場合を例示しており、このため、ピーク候補点P3は、ピーク有力候補点P3であるものと認定される。
 次に、輪郭線L上のボトム候補点P4から向かって右側に存在するピーク候補点を抽出する。図3の例では、ボトム候補点P4の右側で高さが増加から減少に転換し傾きが0となる点P5がピーク候補点P5として抽出される。そして、ボトム候補点P4とピーク候補点P5とを結ぶ直線と横軸とがなす角度θ3に基づいて上記と同様にボトム候補点P4がボトム有力候補点と認定できるか否かを判定する。図3の例は、ボトム候補点P4とピーク候補点P5とを結ぶ直線と横軸とがなす角度θ3が10°以上である場合を例示しており、このため、ボトム候補点P4は、ボトム有力候補点P4であるものと認定される。
 次に、輪郭線L上のピーク候補点P5から向かって右側に存在するボトム候補点を抽出する。図3の例では、ピーク候補点P5の右側で高さが減少から増加に転換し傾きが0となる点P6がボトム候補点P6として抽出される。そして、ピーク候補点P5とボトム候補点P6とを結ぶ直線と横軸とがなす角度θ4に基づいて上記と同様にピーク候補点P5がピーク有力候補点と認定できるか否かを判定する。図3の例は、ピーク候補点P5とボトム候補点P6とを結ぶ直線と横軸とがなす角度θ4が10°に満たない場合を例示しており、このため、ピーク候補点P5は、ピーク有力候補点ではないものと判定される。
 次に、輪郭線L上のボトム候補点P6から向かって右側に存在するピーク候補点を抽出する。図3の例では、ボトム候補点P6の右側で高さが増加から減少に転換し傾きが0となる点P7がピーク候補点P7として抽出される。そして、ボトム候補点P6とピーク候補点P7とを結ぶ直線と横軸とがなす角度θ5に基づいて上記と同様にボトム候補点P6がボトム有力候補点と認定できるか否かを判定する。図3の例は、ボトム候補点P6とピーク候補点P7とを結ぶ直線と横軸とがなす角度θ5が10°以上である場合を例示しており、このため、ボトム候補点P6は、ボトム有力候補点P6であるものと認定される。
 次に、輪郭線L上のピーク候補点P7から向かって右側に存在するボトム候補点を抽出する。図3の例では、ピーク候補点P7の右側で高さが減少から増加に転換し傾きが0となる点P8がボトム候補点P8として抽出される。そして、ピーク候補点P7とボトム候補点P8とを結ぶ直線と横軸とがなす角度θ6に基づいて上記と同様にピーク候補点P7がピーク有力候補点と認定できるか否かを判定する。図3の例は、ピーク候補点P7とボトム候補点P8とを結ぶ直線と横軸とがなす角度θ6が10°以上である場合を例示しており、このため、ピーク候補点P7は、ピーク有力候補点P7であるものと認定される。
 次に、輪郭線L上のボトム候補点P8から向かって右側に存在するピーク候補点を抽出する。図3の例では、ボトム候補点P8の右側で高さが増加から減少に転換し傾きが0となる点P9がピーク候補点P9として抽出される。そして、ボトム候補点P8とピーク候補点P9とを結ぶ直線と横軸とがなす角度θ7に基づいて上記と同様にボトム候補点P8がボトム有力候補点と認定できるか否かを判定する。図3の例は、ボトム候補点P8とピーク候補点P9とを結ぶ直線と横軸とがなす角度θ7が10°以上である場合を例示しており、このため、ボトム候補点P8は、ボトム有力候補点P8であるものと認定される。
 次に、輪郭線L上のピーク候補点P9から向かって右側に存在するボトム候補点を抽出する。図3の例では、ピーク候補点P9の右側で高さが減少から増加に転換し傾きが0となる点P10がボトム候補点P10として抽出される。そして、ピーク候補点P9とボトム候補点P10とを結ぶ直線と横軸とがなす角度θ8に基づいて上記と同様にピーク候補点P9がピーク有力候補点と認定できるか否かを判定する。図3の例は、ピーク候補点P9とボトム候補点P10とを結ぶ直線と横軸とがなす角度θ8が10°以上である場合を例示しており、このため、ピーク候補点P9は、ピーク有力候補点P9であるものと認定される。
 次に、輪郭線L上のボトム候補点P10から向かって右側に存在するピーク候補点を抽出する。図3の例では、ボトム候補点P10の右側で高さが増加から減少に転換し傾きが0となる点P11がピーク候補点P11として抽出される。そして、ボトム候補点P10とピーク候補点P11とを結ぶ直線と横軸とがなす角度θ9に基づいて上記と同様にボトム候補点P10がボトム有力候補点と認定できるか否かを判定する。図3の例は、ボトム候補点P10とピーク候補点P11とを結ぶ直線と横軸とがなす角度θ9が10°に満たない場合を例示しており、このため、ボトム候補点P10は、ボトム有力候補点ではないものと判定される。
 次に、輪郭線L上のピーク候補点P11から向かって右側に存在するボトム候補点を抽出する。図3の例では、ピーク候補点P11の右側で高さが減少から増加に転換し傾きが0となる点P12がボトム候補点P12として抽出される。そして、ピーク候補点P11とボトム候補点P12とを結ぶ直線と横軸とがなす角度θ10に基づいて上記と同様にピーク候補点P11がピーク有力候補点と認定できるか否かを判定する。図3の例は、ピーク候補点P11とボトム候補点P12とを結ぶ直線と横軸とがなす角度θ10が10°以上である場合を例示しており、このため、ピーク候補点P11は、ピーク有力候補点P11であるものと認定される。
 次に、輪郭線L上のボトム候補点P12から向かって右側に存在するピーク候補点を抽出する。図3の例では、ボトム候補点P12の右側で高さが増加から減少に転換し傾きが0となる点P13がピーク候補点P13として抽出される。そして、ボトム候補点P12とピーク候補点P13とを結ぶ直線と横軸とがなす角度θ11に基づいて上記と同様にボトム候補点P12がボトム有力候補点と認定できるか否かを判定する。図3の例は、ボトム候補点P12とピーク候補点P13とを結ぶ直線と横軸とがなす角度θ11が10°以上である場合を例示しており、このため、ボトム候補点P12は、ボトム有力候補点P12であるものと認定される。
 上記のようにして、ボトム有力候補点、及び、ピーク有力候補点を抽出していき、一対のボトム有力候補点の間に位置するピーク有力候補点のうち最も高いピーク有力候補点を真のピークとして抽出する。図3の例では、ピーク有力候補点P3は、一対のボトム有力候補点に挟まれていないので真のピークとしては抽出されない。ピーク候補点P5は、一対のボトム有力候補点P4、P6の間に位置するがそもそもピーク有力候補点ではないので真のピークとしては抽出されない。ピーク有力候補点P7は、一対のボトム有力候補点P6、P8の間に位置し、かつ、この区間には他のピーク有力候補点が存在しないので、真のピークとして抽出される。ピーク有力候補点P9、P11は、一対のボトム有力候補点P8、P12の間に位置し、ピーク有力候補点P9がこの区間で最も高いピーク有力候補点であるので、ピーク有力候補点P9が真のピークとして抽出され、ピーク有力候補点P11は真のピークとしては抽出されない。
 そして、上記のようにして抽出された真のピーク間であって隣接する真のピーク間の距離、ここでは、点P7と点P9との距離を測定し、これを複数の微細凹凸2の配列ピッチPiの測定値とする。ここでは、予め設定される測定対象領域Aにおいて任意の10カ所で真のピーク間の配列ピッチPiを測定し、当該10カ所の配列ピッチPiの平均値(10点平均)を複数の微細凹凸2の配列ピッチPiの測定値とする。
 上記の条件1~3のいずれか1つを満たす微細凹凸2は、樹脂成型用金型に形成された凹凸を、成型時に樹脂成型品1の表面に転写することによって塗装レスで一体成型される。樹脂成型品1として使用される材料としては、例えば、種々の合成樹脂を用いることができる。
 本実施形態の樹脂成型品1は、上記の条件1~3のいずれか1つを満たす複数の微細凹凸2が表面に成型されることで、当該複数の微細凹凸2が成型された表面を、入射角85°におけるグロス値(以下、「85°グロス値」という場合がある。)が2以下となる表面とすることができる。典型的には、複数の微細凹凸2が成型された表面は、上記の条件1~3のいずれか1つを満たすことで、85°グロス値が0より大きく2以下の表面となる。つまり見方を変えれば、本実施形態の樹脂成型品1は、入射角85°におけるグロス値が0より大きく2以下となる表面粗さSa、及び、配列ピッチPiを有する複数の微細凹凸2が表面に成型されたものである。
 ここで、グロス値とは、表面の光沢(グロス)の度合いを表す指標(さらに言えば、入射した光のうちのどの程度が反射したのかを表す指標)である。グロス(光沢)は、典型的には、JIS規格によるグロスの定義を参照することができる。この場合、可視波長全域にわたって屈折率が1.567(入射角60°において鏡面反射率10%)のガラス表面における反射率を、光沢度100%と規定している。そして、グロス値は、例えば、測定表面で反射した光の輝度(カンデラ)の測定結果から下記の数式(2)を用いて算出することができる。
 
 グロス値=(測定表面の実際の輝度の測定結果/測定表面を屈折率1.567のガラス表面とした場合の輝度の測定結果)×100 ・・・ (2)
 
 グロス値は、相対的に高いほど当該表面における反射率が相対的に高くなり相対的に光沢があるように見えることを表す一方、相対的に低いほど当該表面における反射率が相対的に低くなり相対的に光沢がなくマットに見えることを表す。
 そして、入射角85°におけるグロス値(85°グロス値)とは、図4に例示するように、測定表面(樹脂成型品1において複数の微細凹凸2が成型された表面)の法線方向から85°傾けた位置の光源から照射された光が、測定表面で反射した後、光源の反対側である測定表面の法線方向から85°傾けた位置の評価面で受光する光量の程度をいう。85°グロス値は、例えば、『BYK Gardner社(ビックガードナー社)製 micro-TRI-gloss』によって測定することができる。
 なお、グロス値は、一般に、85°グロス値以外にも入射角20°におけるグロス値、入射角60°におけるグロス値等が用いられるが、ここでは、入射角85°におけるグロス値を基準とすることで以下の利点がある。すなわち、車両に搭載される車両用表示装置100においては、光源部102と、見返し板105の立ち面107と、目視位置108との幾何学的配置の関係から、立ち面107で反射し目視位置108に到達する光の当該立ち面107に対する入射角は、85°近傍となる傾向にある。このため、当該入射角85°におけるグロス値を基準として表面の光沢を評価しておくことで、車両における車両用表示装置100の使用状況に即して運転者等の実際の視野角度等を踏まえた光沢評価とすることが可能となる。また、入射角85°におけるグロス値は、入射角20°におけるグロス値、入射角60°におけるグロス値等と比較すると微細凹凸2の表面粗さSa、配列ピッチPi等に応じて変化が生じやすい傾向にある。このため、当該入射角85°におけるグロス値を基準として表面の光沢を評価しておくことで、入射角20°におけるグロス値、入射角60°におけるグロス値も概ね要求の値を満たすことが可能となる。
 複数の微細凹凸2の表面粗さSaは、相対的に大きくなるほど85°グロス値が相対的に低くなり光沢が抑えられ低グロスとなる傾向にある。また、複数の微細凹凸2の配列ピッチPiは、相対的に狭くなるほど85°グロス値が相対的に低くなり光沢が抑えられ低グロスとなる傾向にある。上述の条件1は、複数の微細凹凸2の表面粗さSaと配列ピッチPiとの関係をバランスよく調整した上で、[0<85°グロス値≦2]を達成できる範囲に相当する。また、上述の条件2は、配列ピッチPiが相対的に広い場合(例えば、配列ピッチPiが18.0μmより広くかつ実用上可能性のある値(例えば30.0μm程度)以下の範囲内である場合)であっても、表面粗さSaが相対的に大きいことで、配列ピッチPiにかかわらず[0<85°グロス値≦2]を達成できる範囲に相当する。また、上述の条件3は、表面粗さSaが相対的に小さい場合(例えば、表面粗さSaが0.3μm以上で1.0μmより小さい範囲内である場合)であっても、配列ピッチPiが相対的に狭いことで、表面粗さSaにかかわらず[0<85°グロス値≦2]を達成できる範囲に相当する。
 なお、上述した条件1、及び、条件2における[表面粗さSaの上限値=10.0μm]は、微細凹凸2を、要求される形状、寸法で成型した上で適正に金型を引き抜くことができる金型成型上の限界値に応じて定まる値である。また、上述した条件1、及び、条件3における[配列ピッチPiの下限値=3.0μm]は、微細凹凸2を、要求される形状、寸法で成型するための金型自体の製造上の限界値に応じて定まる値である。
 ここで、樹脂成型品1は、上記の条件1~3をさらに限定した下記の条件1’~3’を満たすことがより好ましい。
 
(条件1’)表面粗さSaが1.0μm以上10.0μm以下でかつ配列ピッチPiが3.0μm以上17.5μm以下である(1.0μm≦Sa≦10.0μm、かつ、3.0μm≦Pi≦17.5μm)。
 
(条件2’)表面粗さSaが1.3μm以上10.0μm以下である(1.3μm≦Sa≦10.0μm)。
 
(条件3’)配列ピッチPiが3.0μm以上13.5μm以下である(3.0μm≦Pi≦13.5μm)。
 
 上述の条件1’は、複数の微細凹凸2の表面粗さSaと配列ピッチPiとの関係をよりバランスよく調整した上で、[0<85°グロス値≦2]を達成できる範囲に相当する。また、上述の条件2’は、配列ピッチPiが相対的に広い場合(例えば、配列ピッチPiが17.5μmより広くかつ実用上可能性のある値(例えば30.0μm程度)以下の範囲内である場合)であっても、表面粗さSaが相対的に大きいことで、配列ピッチPiにかかわらず確実に[0<85°グロス値≦2]を達成できる範囲に相当する。また、上述の条件3’は、表面粗さSaが相対的に小さい場合(例えば、表面粗さSaが0.3μm以上で1.0μmより小さい範囲内である場合)であっても、配列ピッチPiが相対的に狭いことで、表面粗さSaにかかわらず確実に[0<85°グロス値≦2]を達成できる範囲に相当する。
 そしてさらに言えば、樹脂成型品1は、上記の条件1~3のうちの条件1をさらに限定した下記の条件1’’を満たすことが最も好ましい。
 
(条件1’’)表面粗さSaが1.3μm以上10.0μm以下でかつ配列ピッチPiが3.0μm以上13.5μm以下である(1.3μm≦Sa≦10.0μm、かつ、3.0μm≦Pi≦13.5μm)。
 
 これにより、樹脂成型品1は、複数の微細凹凸2が成型された表面を、最も好適に85°グロス値が0より大きく2以下となる表面とすることができる。
 ここで、図5は、複数の微細凹凸の表面粗さSaと配列ピッチPiとが85°グロス値に与える影響の実測結果である。図5は、横軸を表面粗さSa(μm)、及び、配列ピッチPi(μm)とし、縦軸を85°グロス値Gs[85]としている。当該実測結果は、実際に所定の表面粗さSa、及び、所定の配列ピッチPiで複数の微細凹凸が成型された表面の85°グロス値の実測値を示している。当該85°グロス値の実測では、上述の図4に図示したように、光源をLED(Light Emitting Diode)とし、微細凹凸が設けられる測定表面を1mm×1mmの矩形状の黒色ポリプロピレン(polypropylene)で形成された面相当とし、評価面を3mm×6mmの矩形状の面とすると共に、光源と測定表面との間隔、及び、測定表面と評価面との間隔をそれぞれ5mmとした。そして、表面粗さSa、配列ピッチPi、85°グロス値Gsを、それぞれ『オリンパス株式会社製 3D測定レーザー顕微鏡 LEXT OLS4000』、『BYK Gardner社(ビックガードナー社)製 micro-TRI-gloss』を用いて上述の要領で実測した。表面粗さSa、配列ピッチPiは、上述したピッチ測定方法、表面粗さ測定方法を用いて実測した。図5中、棒線A1~A7は、上述の条件1~3の範囲外の複数の微細凹凸が表面に一体成型された比較例に係る塗装レスの樹脂成型品の85°グロス値を表している。図5中、棒線B1~B5は、塗装を施すことによって複数の微細凹凸が表面に形成された比較例に係る樹脂成型品の85°グロス値を表している。
 図5の棒線A1~A7に示す実測結果からも明らかなように、表面粗さSaと配列ピッチPiとが上述の条件1~3の範囲外である複数の微細凹凸が一体成型された塗装レスの樹脂成型品では、当該複数の微細凹凸が成型された表面の85°グロス値が2より大きくなることが明らかである。一方、図5の棒線B1~B5に示す実測結果からも明らかなように、表面に塗装が施された樹脂成型品では、当該塗装が施された表面の85°グロス値が0より大きく2以下となることが明らかである。
 そして、本実施形態の樹脂成型品1では、上記のような実測結果を踏まえて、図5中に棒線B1~B5で示した表面に塗装が施された樹脂成型品と同等の85°グロス値、すなわち、85°グロス値が0より大きく2以下となる微細凹凸2を得るために、以下で説明する図6、図8に示すシミュレーション結果から、当該微細凹凸2に関する上記条件1~3の範囲を設定している。
 図6は、複数の微細凹凸2の表面粗さSaと配列ピッチPiとが85°グロス値に与える影響の第1のシミュレーション結果である。図6は、横軸を表面粗さSa(μm)、及び、配列ピッチPi(μm)とし、縦軸を85°グロス値Gs[85]としている。当該第1のシミュレーションでは、図7に示すように微細凹凸2を半球体として仮想し、当該半球体の高さを表面粗さSa、隣接する半球体の頂点(ピーク)間距離を配列ピッチPiと仮想した。また、当該シミュレーションでは、上述の実測結果と同様に、光源をLEDとし、微細凹凸2が成型される測定表面を1mm×1mmの矩形状の黒色ポリプロピレンで形成された面相当とし、評価面を3mm×6mmの矩形状の面とすると共に、光源と測定表面との間隔、及び、測定表面と評価面との間隔をそれぞれ5mmとした。そして、当該シミュレーションでは、表面粗さSa、及び、配列ピッチPiをそれぞれ所定幅で変化させ、表面粗さSaと配列ピッチPiとの各組み合わせごとに85°グロス値Gs[85]を算出した。85°グロス値Gs[85]は、上述の図4で説明したように、測定表面の法線方向から85°傾けた位置の光源から照射された光が、測定表面で反射した後、光源の反対側である測定表面の法線方向から85°傾けた位置の評価面で受光する光の輝度(カンデラ)を種々の公知の関係式を用いて算出し、これに基づいて数式(2)を用いて算出する。
 図6に示すシミュレーション結果からも明らかなように、複数の微細凹凸2の表面粗さSaと配列ピッチPiとが下記の条件1-1~3-1を満たす範囲では、当該複数の微細凹凸2が成型された表面を、85°グロス値が0より大きく2以下となる表面とすることができることが明らかである。より詳細には、複数の微細凹凸2の表面粗さSaが相対的に大きくなるほど85°グロス値が相対的に低くなり、複数の微細凹凸2の配列ピッチPiが相対的に狭くなるほど85°グロス値が相対的に低くなる傾向にあることが明らかである。
 
(条件1-1)表面粗さSaが1.0μm以上10.0μm以下でかつ配列ピッチPiが3.0μm以上18.0μm以下である(1.0μm≦Sa≦10.0μm、かつ、3.0μm≦Pi≦18.0μm)。
 
(条件2-1)表面粗さSaが1.3μm以上10.0μm以下である(1.3μm≦Sa≦10.0μm)。
 
(条件3-1)配列ピッチPiが3.0μm以上13.5μm以下である(3.0μm≦Pi≦13.5μm)。
 
 上述の条件1-1は、微細凹凸2が半球体である場合において、複数の微細凹凸2の表面粗さSaと配列ピッチPiとの関係をバランスよく調整した上で、[0<85°グロス値≦2]を達成できる範囲に相当する。また、上述の条件2-1は、微細凹凸2が半球体である場合において、配列ピッチPiが相対的に広い場合(例えば、配列ピッチPiが18.0μmより広くかつ実用上可能性のある値(例えば30.0μm程度)以下の範囲内である場合)であっても、表面粗さSaが相対的に大きいことで、配列ピッチPiにかかわらず[0<85°グロス値≦2]を達成できる範囲に相当する。また、上述の条件3-1は、微細凹凸2が半球体である場合において、表面粗さSaが相対的に小さい場合(例えば、表面粗さSaが0.3μm以上で1.0μmより小さい範囲内である場合)であっても、配列ピッチPiが相対的に狭いことで、表面粗さSaにかかわらず[0<85°グロス値≦2]を達成できる範囲に相当する。なお、微細凹凸2が半球体である場合において、複数の微細凹凸2の表面粗さSaと配列ピッチPiとの関係をバランスよく調整した上で、[0<85°グロス値≦2]を達成できる範囲は、より好ましくは、下記の条件1-1’’の範囲である。
 
(条件1-1’’)表面粗さSaが1.3μm以上10.0μm以下でかつ配列ピッチPiが3.0μm以上13.5μm以下である(1.3μm≦Sa≦10.0μm、かつ、3.0μm≦Pi≦13.5μm)。
 
 図8は、複数の微細凹凸2の表面粗さSaと配列ピッチPiとが85°グロス値に与える影響の第2のシミュレーション結果である。図8は、横軸を表面粗さSa(μm)、及び、配列ピッチPi(μm)とし、縦軸を85°グロス値Gs[85]としている。当該第2のシミュレーションでは、図9に示すように微細凹凸2を円錐体として仮想し、当該円錐体の高さを表面粗さSa、隣接する円錐体の頂点(ピーク)間距離を配列ピッチPiと仮想した。それ以外のシミュレーション条件は、上述の第1のシミュレーションと同様である。
 図8に示すシミュレーション結果からも明らかなように、複数の微細凹凸2の表面粗さSaと配列ピッチPiとが下記の条件1-2~3-2を満たす範囲では、当該複数の微細凹凸2が成型された表面を、85°グロス値が0より大きく2以下となる表面とすることができることが明らかである。より詳細には、複数の微細凹凸2の表面粗さSaが相対的に大きくなるほど85°グロス値が相対的に低くなり、複数の微細凹凸2の配列ピッチPiが相対的に狭くなるほど85°グロス値が相対的に低くなる傾向にあることが明らかである。
 
(条件1-2)表面粗さSaが1.0μm以上10.0μm以下でかつ配列ピッチPiが3.0μm以上17.5μm以下である(1.0μm≦Sa≦10.0μm、かつ、3.0μm≦Pi≦17.5μm)。
 
(条件2-2)表面粗さSaが1.15μm以上10.00μm以下である(1.15μm≦Sa≦10.00μm)。
 
(条件3-2)配列ピッチPiが3.0μm以上14.0μm以下である(3.0μm≦Pi≦14.0μm)。
 
 上述の条件1-2は、微細凹凸2が円錐体である場合において、複数の微細凹凸2の表面粗さSaと配列ピッチPiとの関係をバランスよく調整した上で、[0<85°グロス値≦2]を達成できる範囲に相当する。また、上述の条件2-2は、微細凹凸2が円錐体である場合において、配列ピッチPiが相対的に広い場合(例えば、配列ピッチPiが17.5μmより広くかつ実用上可能性のある値(例えば30.0μm程度)以下の範囲内である場合)であっても、表面粗さSaが相対的に大きいことで、配列ピッチPiにかかわらず[0<85°グロス値≦2]を達成できる範囲に相当する。また、上述の条件3-2は、微細凹凸2が円錐体である場合において、表面粗さSaが相対的に小さい場合(例えば、表面粗さSaが0.60μm以上で1.15μmより小さい範囲内である場合)であっても、配列ピッチPiが相対的に狭いことで、表面粗さSaにかかわらず[0<85°グロス値≦2以下]を達成できる範囲に相当する。なお、微細凹凸2が円錐体である場合において、複数の微細凹凸2の表面粗さSaと配列ピッチPiとの関係をバランスよく調整した上で、[0<85°グロス値≦2]を達成できる範囲は、より好ましくは、下記の条件1-2’’の範囲である。
 
(条件1-2’’)表面粗さSaが1.15μm以上10.00μm以下でかつ配列ピッチPiが3.0μm以上14.0μm以下である(1.15μm≦Sa≦10.00μm、かつ、3.0μm≦Pi≦14.0μm)。
 
 そして、上述した条件1は、微細凹凸2が半球体である場合の条件1-1と微細凹凸2が円錐体である場合の条件1-2とのいずれか一方を満たす範囲に設定される。同様に、上述した条件2は、微細凹凸2が半球体である場合の条件2-1と微細凹凸2が円錐体である場合の条件2-2とのいずれか一方を満たす範囲に設定される。上述した条件3は、微細凹凸2が半球体である場合の条件3-1と微細凹凸2が円錐体である場合の条件3-2とのいずれか一方を満たす範囲に設定される。さらに、上述した条件1’は、微細凹凸2が半球体である場合の条件1-1と微細凹凸2が円錐体である場合の条件1-2とを共に満たす範囲に設定される。同様に、上述した条件2’は、微細凹凸2が半球体である場合の条件2-1と微細凹凸2が円錐体である場合の条件2-2とを共に満たす範囲に設定される。上述した条件3’は、微細凹凸2が半球体である場合の条件3-1と微細凹凸2が円錐体である場合の条件3-2とを共に満たす範囲に設定される。また、上述した条件1’’は、微細凹凸2が半球体である場合の条件1-1’’と微細凹凸2が円錐体である場合の条件1-2’’とを共に満たす範囲に設定される。
 図10は、複数の微細凹凸2の表面粗さSaと配列ピッチPiとが85°グロス値に与える影響の実測結果である。図10は、横軸を配列ピッチPi(μm)、縦軸を表面粗さSa(μm)としている。当該実測結果は、塗装レスで実際に所定の表面粗さSa、及び、所定の配列ピッチPiで複数の微細凹凸2が成型された表面の85°グロス値の実測値を示している。ここでは、上述のシミュレーションと同様に、光源をLEDとし、微細凹凸2が成型される測定表面を1mm×1mmの矩形状のABS樹脂で実際に成型された面とし、評価面を3mm×6mmの矩形状の面とすると共に、光源と測定表面との間隔、及び、測定表面と評価面との間隔をそれぞれ5mmとした。そして、表面粗さSa、配列ピッチPi、85°グロス値Gsを、それぞれ『オリンパス株式会社製 3D測定レーザー顕微鏡 LEXT OLS4000』、『BYK Gardner社(ビックガードナー社)製 micro-TRI-gloss』を用いて上述の要領で実測した。表面粗さSa、配列ピッチPiは、上述したピッチ測定方法、表面粗さ測定方法を用いて実測した。
 図10に示す実測結果からも明らかなように、複数の微細凹凸2の表面粗さSaと配列ピッチPiとが上述の条件1~3を満たす範囲では、当該複数の微細凹凸2が成型された表面を、85°グロス値が2以下となる表面とすることができることが明らかである。すなわち、当該実測結果から、複数の微細凹凸2の表面粗さSaと配列ピッチPiとに応じた85°グロス値の実測値がシミュレーション結果とほぼ同様の傾向であることが明らかであり、これにより、シミュレーション結果の妥当性を確認することができた。ここでは、図10に示す範囲T1内の実施品の85°グロス値が0.5程度、範囲T2内の実施品の85°グロス値が0.7~0.8程度、範囲T3内の実施品の85°グロス値が1.0程度、範囲T4内の実施品の85°グロス値が1.1程度となっている。すなわち、少なくとも表面粗さSaが1.4μm以上3.0μm以下でかつ配列ピッチPiが4.0μm以上13.0μm以下である複数の微細凹凸2が表面に成型された樹脂成型品1の実施品が入射角85°におけるグロス値が2以下となることが明らかである。
 以上で説明した樹脂成型品1によれば、表面粗さが1.0μm以上10.0μm以下でかつ配列ピッチが3.0μm以上18.0μm以下である複数の微細凹凸2が表面に成型される。
 ここでは、以上で説明した樹脂成型品1によれば、入射角85°におけるグロス値が2以下となる複数の微細凹凸2が表面に成型され、複数の微細凹凸2が成型された表面に対して、目視位置108とは反対側から光が入射する位置に配置される。
 以上で説明した車両用表示装置100によれば、車両に搭載され、当該車両に関する情報を表示する表示部101と、表示部101の周りに設けられ、表面粗さが1.0μm以上10.0μm以下でかつ配列ピッチが3.0μm以上18.0μm以下である複数の微細凹凸2が表面に成型される樹脂成型品1とを備える。
 言い換えれば、以上で説明した車両用表示装置100によれば、車両に搭載され、当該車両に関する情報を表示する表示部101と、表示部101の周りに設けられ、入射角85°におけるグロス値が2以下となる複数の微細凹凸2が表面に成型される樹脂成型品1とを備える。
 したがって、樹脂成型品1、車両用表示装置100は、表面に成型された複数の微細凹凸2によって当該表面への入射光を散乱させることができるので、表面の光沢を抑制できる。この結果、樹脂成型品1、車両用表示装置100は、例えば、車両において運転者を含む乗員の視界領域内の表面の光沢を抑えることができ、安っぽいイメージを与えやすい傾向にあるプラスチック感を低減し、外観上の高級感を創出することができる。また、樹脂成型品1、車両用表示装置100は、表面に成型された複数の微細凹凸2によって、塗装等を用いずに塗装レスで塗装されたものと同等に表面の光沢を抑制でき艶消し効果を実現することができる。この結果、樹脂成型品1、車両用表示装置100は、例えば、塗装等を行う場合と比較して製造時の作業工数を抑制することができ、製造コストを抑制できる。
 さらに、以上で説明した樹脂成型品1、車両用表示装置100によれば、樹脂成型品1は、複数の微細凹凸2が成型された表面に対して、目視位置108とは反対側から光が入射する位置に配置される。したがって、樹脂成型品1、車両用表示装置100は、複数の微細凹凸2が成型された表面に対して、目視位置108とは逆側から入射する光の反射を抑制し、光沢を抑制することができる。
 さらに、以上で説明した樹脂成型品1、車両用表示装置100によれば、複数の微細凹凸2は、表面粗さが1.3μm以上10.0μm以下でかつ配列ピッチが3.0μm以上13.5μm以下であることが好ましい。この場合、樹脂成型品1、車両用表示装置100は、複数の微細凹凸2が成型された表面を、より確実に85°グロス値が2以下となる表面とすることができる。
 さらに、以上で説明した樹脂成型品1、車両用表示装置100によれば、樹脂成型品1は、複数の微細凹凸2が成型された表面は、車両に搭載され車両に関する情報を表示する表示部101が有する光源部102と目視位置108との間に位置すると共に、光源部102と目視位置108との並び方向に沿って突出する立ち面107を構成する。つまり、車両用表示装置100は、車両に搭載され、当該車両に関する情報を表示する表示部101と、表示部101が有する光源部102と目視位置108との間に位置すると共に、光源部102と目視位置108との並び方向に沿って突出する立ち面107に設けられ、入射角85°におけるグロス値が2以下となる複数の微細凹凸2が表面に成型される樹脂成型品1とを備える。ここでは、複数の微細凹凸2は、表面粗さが1.0μm以上10.0μm以下でかつ配列ピッチが3.0μm以上18.0μm以下である、もしくは、表面粗さが1.15μm以上10.00μm以下である、もしくは、配列ピッチが3.0μm以上14.0μm以下である。より詳細には、複数の微細凹凸2は、表面粗さが1.4μm以上3.0μm以下でかつ配列ピッチが4.0μm以上13.0μm以下であることが好ましい。したがって、樹脂成型品1、車両用表示装置100は、例えば、車両用表示装置100の見返し板105を構成する立ち面107を、塗装レス低反射見返しとして構成することができる。これにより、樹脂成型品1、車両用表示装置100は、例えば、光源部102から立ち面107に入射し運転者等の乗員の目視位置108側に反射する光を抑制することができ、当該立ち面107の光沢を抑制することができる。
 なお、上述した本発明の実施形態に係る樹脂成型品、及び、車両用表示装置は、上述した実施形態に限定されず、請求の範囲に記載された範囲で種々の変更が可能である。
 以上の説明では、樹脂成型品1は、車両用表示装置100の見返し板105を構成する囲い面106、立ち面107に適用されるものとして説明したがこれに限らず、車両の他の部分や車両以外の部分に適用されてもよい。樹脂成型品1は、例えば、樹脂によって成型される指針104や指針キャップ、インストルメントパネル等、車両用表示装置100において、奥行き方向前面側に露出し運転者を含む乗員の視界にはいりうる他の部分に適用されてもよいし、外光等の反射による表面の光沢を抑制したい部分、例えば、ヘッドアップディスプレイの筐体内部壁面等に適用されてもよい。また、樹脂成型品1は、車両以外の部分として、例えば、ゲーム機、携帯端末機器、家電等の筐体において表面の光沢を抑制したい部分(例えば、ディスプレイの表示面の端部を囲う枠状の部分等)に適用されてもよい。
 以上の説明では、表示部101は、車両に関する種々の計測値を立体物である指針104によってアナログ式で表示するアナログ計器であるものとして説明したがこれに限らない。図11に示す変形例に係る車両用表示装置100Aは、表示部101(図1参照)にかえて表示部101Aを備える。表示部101Aは、車両に関する情報として、画像表示面に種々の画像を表示するものであり、薄型のディスプレイによって構成される。表示部101Aは、いわゆるバックライトを構成する光源部102Aを有しており、当該光源部102Aが出射する光を用いて車両に関する種々の画像情報を表示するものである。表示部101Aは、例えば、TFT液晶ディスプレイを用いることができるが、これに限らず、プラズマディスプレイ、有機ELディスプレイ等を用いることもできる。表示部101Aは、車両に関する情報として、例えば、上述した指針104、指標部、ウォーニング表示用の図柄等に相当する画像の他、エコ走行等に関する情報、積算走行距離、冷却水温、燃料残量、バッテリ蓄電量等、車両の運転に際して時々刻々と変化する様々な運転に関する運転情報を表示してもよい。見返し板105の囲い面106は、当該表示部101Aの画像表示面の周りを囲うようにして設けられる。
 そして、樹脂成型品1は、上記のような表示部101Aが組み込まれた車両用表示装置100Aにおける見返し板105の囲い面106や立ち面107に適用されてもよい。これにより、樹脂成型品1は、車両用表示装置100Aにおける見返し板105の囲い面106や立ち面107において、光の反射を抑制し、光沢を抑制することができる。この場合、樹脂成型品1は、特に、立ち面107等において、アナログ計器の光源部102(図1参照)と比較して出射光の光量が相対的に多い表示部101Aを構成するディスプレイの光源部102Aから照射された光の反射を好適に抑制することができるので、光沢抑制の効果をより顕著に奏することができ、例えば、表示部101Aに表示される画像の立ち面107への映り込み等も抑制することができる。
 以上で説明した複数の微細凹凸2が成型された表面は、複数の微細凹凸2による表面粗さSa、複数の微細凹凸2の配列ピッチPiが上記の条件1~3のいずれか1つを満たすように成型されることで、85°グロス値が0より大きく2以下の表面として構成されるものとして説明した。つまり、複数の微細凹凸2が成型された表面は、複数の微細凹凸2による表面粗さSa、又は、複数の微細凹凸2の配列ピッチPiが調整されることで、85°グロス値が0より大きく2以下の表面として構成されるものとして説明したが、これに限らず、複数の微細凹凸2の形状に関する他のパラメータが調整されることで、85°グロス値が0より大きく2以下の表面として構成されるものであってもよい。複数の微細凹凸2が成型された表面は、例えば、複数の微細凹凸2の深さ、及び、複数の微細凹凸2の配列ピッチが調整されることで85°グロス値が0より大きく2以下の表面として構成されてもよい。また、複数の微細凹凸2が成型された表面は、例えば、複数の微細凹凸2において隣接する微細凹凸2の周壁面同士がなす構造体隣接角が調整されることで85°グロス値が0より大きく2以下の表面として構成されてもよい。また、複数の微細凹凸2が成型された表面は、例えば、複数の微細凹凸2の凸状部分の頂部にピンホールを設け当該ピンホールの平均直径や平均深さが調整されることで85°グロス値が0より大きく2以下の表面として構成されてもよい。また、複数の微細凹凸2が成型された表面は、例えば、複数の微細凹凸2の凸状部分にさらに微細突起を設け当該微細突起の底面径や配列ピッチが調整されることで85°グロス値が0より大きく2以下の表面として構成されてもよい。また、複数の微細凹凸2が成型された表面は、例えば、複数の微細凹凸2を角錐台状微細凸部等によって構成し、角錐台状微細凸部の底面多角形に外接する円の径や配列ピッチが調整されることで85°グロス値が0より大きく2以下の表面として構成されてもよい。つまり、見方を変えれば、本実施形態の樹脂成型品1は、入射角85°におけるグロス値が0より大きく2以下となる微細凹凸2の深さ、配列ピッチ、構造体隣接角、凸状部分の頂部に形成されたピンホールの平均直径や平均深さ、凸状部分に形成された微細突起の底面径やピッチ、角錐台状微細凸部の底面多角形に外接する円の径や配列ピッチ等を有する複数の微細凹凸2が表面に成型されたものであってもよい。
 以上の説明では、複数の微細凹凸2の表面粗さSa、配列ピッチPiを測定するための測定機器として、『オリンパス株式会社製 3D測定レーザー顕微鏡 LEXT OLS4000』を用いるものとして説明したがこれに限らず、他の測定機器を用いてもよく、この場合には、複数の微細凹凸2の表面粗さSa、配列ピッチPiを測定するために予め設定される所定の表面粗さ測定方法、ピッチ測定方法が上記と同等であればよい。
1  樹脂成型品
2  微細凹凸
100、100A  車両用表示装置
101、101A  表示部
102、102A  光源部
103  文字板
104  指針
105  見返し板
106  囲い面
107  立ち面
108  目視位置

Claims (6)

  1.  表面粗さが1.0μm以上10.0μm以下でかつ配列ピッチが3.0μm以上18.0μm以下である複数の微細凹凸が表面に成型されることを特徴とする、
     樹脂成型品。
  2.  前記複数の微細凹凸は、表面粗さが1.3μm以上10.0μm以下でかつ配列ピッチが3.0μm以上13.5μm以下である、
     請求項1に記載の樹脂成型品。
  3.  車両に搭載され、当該車両に関する情報を表示する表示部と、
     前記表示部の周りに設けられ、表面粗さが1.0μm以上10.0μm以下でかつ配列ピッチが3.0μm以上18.0μm以下である複数の微細凹凸が表面に成型される樹脂成型品とを備えることを特徴する、
     車両用表示装置。
  4.  車両に搭載され、当該車両に関する情報を表示する表示部と、
     前記表示部が有する光源部と目視位置との間に位置すると共に、前記光源部と前記目視位置との並び方向に沿って突出する立ち面に設けられ、入射角85°におけるグロス値が2以下となる複数の微細凹凸が表面に成型される樹脂成型品とを備えることを特徴する、
     車両用表示装置。
  5.  前記複数の微細凹凸は、表面粗さが1.0μm以上10.0μm以下でかつ配列ピッチが3.0μm以上18.0μm以下である、もしくは、表面粗さが1.15μm以上10.00μm以下である、もしくは、配列ピッチが3.0μm以上14.0μm以下である、
     請求項4に記載の車両用表示装置。
  6.  前記複数の微細凹凸は、表面粗さが1.4μm以上3.0μm以下でかつ配列ピッチが4.0μm以上13.0μm以下である、
     請求項4又は請求項5に記載の車両用表示装置。
PCT/JP2015/072572 2014-08-25 2015-08-07 樹脂成型品、及び、車両用表示装置 WO2016031537A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016545421A JP6282748B2 (ja) 2014-08-25 2015-08-07 樹脂成型品、及び、車両用表示装置
DE112015003894.9T DE112015003894T5 (de) 2014-08-25 2015-08-07 Harzformkörper und Fahrzeuganzeigevorrichtung
US15/412,599 US11241959B2 (en) 2014-08-25 2017-01-23 Resin molded product and vehicle display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014170309 2014-08-25
JP2014-170309 2014-08-25

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/412,599 Continuation US11241959B2 (en) 2014-08-25 2017-01-23 Resin molded product and vehicle display device

Publications (1)

Publication Number Publication Date
WO2016031537A1 true WO2016031537A1 (ja) 2016-03-03

Family

ID=55399434

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/072572 WO2016031537A1 (ja) 2014-08-25 2015-08-07 樹脂成型品、及び、車両用表示装置

Country Status (4)

Country Link
US (1) US11241959B2 (ja)
JP (1) JP6282748B2 (ja)
DE (1) DE112015003894T5 (ja)
WO (1) WO2016031537A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017206006A (ja) * 2016-05-17 2017-11-24 キヤノン株式会社 樹脂成形品、カメラ用交換レンズおよび樹脂成形品の製造方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD794538S1 (en) * 2014-05-27 2017-08-15 Waymo Llc Console with autonomous vehicle control buttons
JP6581838B2 (ja) * 2015-08-07 2019-09-25 矢崎総業株式会社 車両用表示装置
JP5913714B1 (ja) * 2015-10-19 2016-04-27 矢崎総業株式会社 車両表示装置用金属調装飾部品、及び、車両表示装置
USD820753S1 (en) * 2016-03-01 2018-06-19 Bentley Motors Ltd. Automobile dashboard assembly
USD799389S1 (en) * 2016-03-01 2017-10-10 Bentley Motors Limited Automobile dashboard display
USD836049S1 (en) * 2016-09-02 2018-12-18 Lg Electronics Inc. Display panel for vehicle instrument cluster
JP2019192001A (ja) * 2018-04-26 2019-10-31 株式会社デンソー 表示調停制御の評価装置、その評価方法、ルール定義ファイルの生成装置、その生成方法
US11990045B2 (en) * 2021-07-09 2024-05-21 Kawasaki Motors, Ltd. Periphery recognition support system and method for personal watercraft

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05138736A (ja) * 1991-04-15 1993-06-08 Dainippon Printing Co Ltd 表面に凹凸を有する成形体
JPH07144363A (ja) * 1993-11-22 1995-06-06 Dainippon Printing Co Ltd 化粧シート
JP2000015687A (ja) * 1998-06-30 2000-01-18 Kyoraku Co Ltd 自動車用外装板およびその製造方法
JP2000052411A (ja) * 1998-08-07 2000-02-22 Kyoraku Co Ltd 自動車用外装板およびその製造方法
JP2006068972A (ja) * 2004-08-31 2006-03-16 World Etching:Kk 樹脂成形用金型及びその低グロス化方法並びに樹脂成形品
JP2010208318A (ja) * 2009-02-10 2010-09-24 Sumitomo Chemical Co Ltd 射出成形用金型及び熱可塑性樹脂成形体の製造方法
JP2014000770A (ja) * 2012-06-20 2014-01-09 Tokai Kogyo Co Ltd 射出成形品

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5997161A (en) * 1997-12-09 1999-12-07 General Motors Corporation Black light instrument cluster assembly
US6458312B1 (en) 1998-06-30 2002-10-01 Kyoraku Co., Ltd. Automotive exterior panel and method for producing the same
DE102006038784A1 (de) * 2006-08-18 2008-02-28 Borg Instruments Ag Dreidimensionales Zifferblatt
JP2011189697A (ja) 2010-03-16 2011-09-29 Suzuki Motor Corp 樹脂成形品、樹脂成形品の成形方法および成形用金型
JP2012155037A (ja) * 2011-01-25 2012-08-16 Japan Display East Co Ltd 液晶表示装置
WO2012117881A1 (ja) 2011-02-28 2012-09-07 株式会社棚澤八光社 成形用金型及びその製造方法並びに光沢度を合致させる方法
US10298890B2 (en) * 2013-06-14 2019-05-21 Denso Corporation Vehicle display device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05138736A (ja) * 1991-04-15 1993-06-08 Dainippon Printing Co Ltd 表面に凹凸を有する成形体
JPH07144363A (ja) * 1993-11-22 1995-06-06 Dainippon Printing Co Ltd 化粧シート
JP2000015687A (ja) * 1998-06-30 2000-01-18 Kyoraku Co Ltd 自動車用外装板およびその製造方法
JP2000052411A (ja) * 1998-08-07 2000-02-22 Kyoraku Co Ltd 自動車用外装板およびその製造方法
JP2006068972A (ja) * 2004-08-31 2006-03-16 World Etching:Kk 樹脂成形用金型及びその低グロス化方法並びに樹脂成形品
JP2010208318A (ja) * 2009-02-10 2010-09-24 Sumitomo Chemical Co Ltd 射出成形用金型及び熱可塑性樹脂成形体の製造方法
JP2014000770A (ja) * 2012-06-20 2014-01-09 Tokai Kogyo Co Ltd 射出成形品

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017206006A (ja) * 2016-05-17 2017-11-24 キヤノン株式会社 樹脂成形品、カメラ用交換レンズおよび樹脂成形品の製造方法

Also Published As

Publication number Publication date
DE112015003894T5 (de) 2017-05-11
JPWO2016031537A1 (ja) 2017-05-25
US20170129337A1 (en) 2017-05-11
US11241959B2 (en) 2022-02-08
JP6282748B2 (ja) 2018-02-21

Similar Documents

Publication Publication Date Title
JP6282748B2 (ja) 樹脂成型品、及び、車両用表示装置
WO2015198861A1 (ja) 計器装置
JP6185815B2 (ja) 文字板構造および自動車用メータ
US9983347B2 (en) Display device
KR20140001114U (ko) 외부 차량 거울에 사용하기 위한 로우 프로파일 광학 라이팅 어셈블리 및 그것의 형성 방법
US9738157B1 (en) Decorative part for vehicle display device and vehicle display device
JP5239925B2 (ja) 表示板と、この表示板を用いた計器装置
JP5146003B2 (ja) 指示計器
JP5101986B2 (ja) 車載用表示装置
US20090267752A1 (en) Vehicle instrument panel
JP4675746B2 (ja) 計器用文字盤
US9937874B2 (en) Vehicular display apparatus
JP6581838B2 (ja) 車両用表示装置
US10875449B2 (en) Subsurface engraved vehicle light guide
JP6622076B2 (ja) 車両用表示装置
US20230194767A1 (en) Function display for selectively displaying symbols representing switching functions and/or switching states with a reduced veiling glare
JP5004222B2 (ja) 表示装置
JP2017026597A (ja) 樹脂成型品、及び、車両用表示装置
JP2018132429A (ja) 計器
JP2006027546A (ja) 車両用表示装置
JP2007078583A (ja) 計器用文字盤およびその製造方法
JP2003237413A (ja) 車両用指針計器
JP2019188897A (ja) 車両表示器用カバーおよび車両表示装置
JP6064299B2 (ja) 車両用表示装置
WO2017018268A1 (ja) 樹脂成型品、及び、車両用表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15836070

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016545421

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112015003894

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15836070

Country of ref document: EP

Kind code of ref document: A1