WO2016031192A1 - フェライト系ステンレス箔およびその製造方法 - Google Patents

フェライト系ステンレス箔およびその製造方法 Download PDF

Info

Publication number
WO2016031192A1
WO2016031192A1 PCT/JP2015/004150 JP2015004150W WO2016031192A1 WO 2016031192 A1 WO2016031192 A1 WO 2016031192A1 JP 2015004150 W JP2015004150 W JP 2015004150W WO 2016031192 A1 WO2016031192 A1 WO 2016031192A1
Authority
WO
WIPO (PCT)
Prior art keywords
stainless steel
less
foil
ferritic stainless
steel foil
Prior art date
Application number
PCT/JP2015/004150
Other languages
English (en)
French (fr)
Inventor
映斗 水谷
光幸 藤澤
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to ES15835384T priority Critical patent/ES2901964T3/es
Priority to EP15835384.7A priority patent/EP3187609B1/en
Priority to US15/507,001 priority patent/US20170275725A1/en
Priority to KR1020177005297A priority patent/KR101994559B1/ko
Priority to CN201580045495.2A priority patent/CN106795599B/zh
Priority to JP2015552675A priority patent/JP5874873B1/ja
Publication of WO2016031192A1 publication Critical patent/WO2016031192A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/52Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite

Definitions

  • the present invention particularly relates to a ferritic stainless steel foil used for a catalyst carrier for an exhaust gas purifying apparatus.
  • the metal honeycomb has a higher hole area ratio and is excellent in thermal shock resistance and vibration resistance.
  • the shape of the carrier is also large, so that a metal honeycomb having a high degree of freedom in shape is often used.
  • flat stainless steel foil flat foil
  • corrugated stainless steel foil corrugated foil
  • a honeycomb structure having a surface coated with a catalyst substance is used in an exhaust gas purification apparatus.
  • the stainless steel foil for the metal honeycomb a high Al content ferritic stainless steel foil represented by 20% by mass Cr-5% by mass Al type or 18% by mass Cr-3% by mass Al type is mainly used.
  • stainless steel contains 2 to 3% by mass or more of Al, an oxide film of Al 2 O 3 is formed on the surface, and the oxidation resistance is remarkably improved.
  • the temperature inside the exhaust gas purification device rises by a catalytic reaction in addition to the exhaust gas temperature, and may reach a high temperature of 1000 ° C. or higher. Therefore, a high Al-containing ferritic stainless steel foil containing 3% by mass or more of Al, which is extremely excellent in oxidation resistance at high temperatures, is applied to the catalyst carrier. Further, the foil used for the catalyst carrier is also required to have excellent shape change resistance at a high temperature in order to prevent peeling of the supported catalyst.
  • the exhaust gas temperature of diesel vehicles is not as high as that of gasoline vehicles, and the maximum temperature is almost 800 ° C.
  • the maximum exhaust gas temperature further decreases. Therefore, the 20 wt% Cr-5 wt% Al-based or 18 wt% Cr-3 wt% Al-based stainless steel foil described above has superior performance in terms of oxidation resistance at high temperatures and shape change resistance at high temperatures. Is not required.
  • these high Al content ferritic stainless steel foils are excellent in oxidation resistance, they have the problem that the hot-rolled sheet during production is poor in toughness, poor in productivity and high in production cost. Furthermore, these foils are also inferior in workability.
  • the foil material is easily broken during corrugation, and may not be processed into a desired shape due to the influence of springback.
  • a method of annealing before working is also conceivable.
  • it is difficult to remove the surface scale generated during annealing by grinding or pickling so it is common to perform bright annealing in a reducing atmosphere. Control of the atmosphere is required, and the addition of the bright annealing process causes a significant increase in manufacturing cost. In order to avoid such an increase in manufacturing cost, it is ideal to use it for corrugating in an unannealed state.
  • Patent Document 1 discloses that the Al content is limited to an impurity level of up to 0.8% by mass, and Mo is contained in the range of 0.3 to 3% by mass, so that oxidation resistance, diffusion bonding properties and A stainless steel foil metal honeycomb having improved resistance to sulfuric acid corrosion is disclosed.
  • the inventors previously limited the Al content to 0.01 to 1.0% by mass to improve manufacturability and added elements such as Cu, Nb, Mo, and W at high temperatures.
  • Invented a ferritic stainless steel foil having improved shape change resistance see Patent Document 3).
  • an object of the present invention is to solve these problems and to provide a ferritic stainless steel foil excellent in corrugation workability, shape change resistance at high temperatures and manufacturability, and a method for producing the same.
  • the present inventors diligently studied to solve the above-mentioned problems. As a result, a method for improving shape change resistance by adding specific amounts of Cr, Ti and V without adding an expensive reinforcing element. The inventors have found that a stainless steel foil having excellent corrugation workability can be obtained.
  • the summary is as follows.
  • the catalyst carrier for an exhaust gas purification device having a maximum exhaust gas arrival temperature of 800 ° C. or less the catalyst is peeled off due to a shape change.
  • the characteristics necessary to prevent this were investigated. As a result, it was found that when the shape change rate after holding at 500 to 800 ° C. for 100 hours in the air atmosphere is 10% or less, the catalyst peeling can be suppressed. Preferably it is 5% or less.
  • the method for measuring the shape change rate will be described in detail in the item of the example.
  • the final reduction ratio in the cold rolling process is set to 50 to 95% for steel containing a specific amount of Cr, Ti, V, etc., and the Vickers hardness It became clear that (HV) should be over 200. This is considered to be because the rolling reduction in the cold rolling process is increased and a large amount of processing strain is accumulated, recrystallization is promoted in the heat treatment at the time of manufacturing the metal honeycomb, and the crystal grains of the foil are coarsened.
  • the deformation at the time of high temperature use is reduced by decreasing the high temperature creep deformation and decreasing the oxidation rate as the crystal grains are larger.
  • the Vickers hardness (HV) is 200 or less, the effect of promoting the grain coarsening is not sufficient. Therefore, the Vickers hardness (HV) of the ferritic stainless steel foil of the present invention is over 200. Furthermore, the Vickers hardness (HV) is preferably more than 220.
  • the time for coarsening the crystal grains of the ferritic stainless steel foil is preferably after assembly into a metal honeycomb shape. This is because adding an annealing process in the foil manufacturing process to increase the size of the crystal grains leads to an increase in cost.
  • the heat treatment for brazing or diffusion bonding is usually performed at a temperature of 800 to 1200 ° C. in a vacuum or a reducing atmosphere at a pressure of 1.0 ⁇ 10 Pa or less. Since heat treatment for at least 2 seconds is performed, the heat treatment may be coarsened. That is, the corrugation process may be performed in an unrecrystallized state and recrystallized by bonding heat treatment to make the crystal grains coarse.
  • the reducing atmosphere indicates N 2 , H 2, Ar, or a mixed gas atmosphere thereof.
  • the Vickers hardness (HV) of the ferritic stainless steel foil of the present invention is less than 350.
  • the Vickers hardness (HV) is preferably less than 320, and more preferably less than 300.
  • the measuring method of the Vickers hardness (HV) of the ferritic stainless steel foil of this invention is demonstrated.
  • the foil is cut into an appropriate size, embedded in a resin or the like so as to expose a cross section parallel to the rolling direction and perpendicular to the foil surface, and mirror polished.
  • the hardness of the central portion of the thickness of this cross section is measured at five points, and the average value is taken as the Vickers hardness (HV) of the foil.
  • Detailed measurement conditions and the like comply with JIS Z 2244.
  • ferritic stainless steel foil [Ferrite stainless steel foil]
  • ferritic stainless steel foil of the present invention will be described in detail.
  • ⁇ C 0.020% or less>
  • the C content increases, a large amount of carbide precipitates during hot rolling, leading to a decrease in toughness, and the C content is set to 0.020% or less in order to reduce the corrugation workability of the foil.
  • the C content is 0.010% or less, but it is more preferable to reduce it as much as possible.
  • Si is an element that improves oxidation resistance. However, if the content exceeds 2.0%, toughness is reduced and manufacturing becomes difficult due to a decrease in workability. Therefore, the Si content is 2.0% or less, preferably 1.0% or less. More preferably, the Si content is 0.2% or less. However, in order to further improve the oxidation resistance, it is preferable to contain 0.05% or more of Si, and more preferably 0.1% or more.
  • Mn content 1.0% or less, preferably 0.5% or less. More preferably, the Mn content is 0.3% or less.
  • 0.05% or more is preferably contained, and more preferably 0.1% or more.
  • the S content is 0.010% or less, preferably 0.005% or less. More preferably, it is 0.003% or less, but it is more preferable to reduce it as much as possible.
  • ⁇ P 0.050% or less> If the P content exceeds 0.050%, the oxidation resistance at high temperatures decreases. Therefore, the P content is 0.050% or less, preferably 0.030% or less, but more preferably reduced.
  • the Cr content is 10.0% or more.
  • the Cr content is in the range of 10.0 to 25.0%.
  • the Cr content is in the range of 10.0-20.0%.
  • the Cr content is more preferably 16.0% or more. In consideration of the balance between the manufacturing cost and the oxidation resistance, the Cr content is more preferably 17.0% or less.
  • Ni has an effect of improving the brazing property when forming the catalyst carrier.
  • the effect can be obtained with a Ni content of 0.05% or more.
  • the Ni content is in the range of 0.05 to 0.50%.
  • the Ni content is 0.08 to 0.30%. More preferably, the Ni content is 0.10 to 0.20%.
  • Ti is an element that fixes C and N in the steel and improves workability and oxidation resistance, and the effect can be obtained with a Ti content of 0.14% or more.
  • Ti when Ti is contained exceeding 0.25%, coarse TiN precipitates.
  • the foil has a thickness of 200 ⁇ m or less.
  • this TiN has a diameter of several ⁇ m to several tens of ⁇ m, it may cause holes to penetrate through the foil. It may cause a decrease in oxidation resistance by penetrating through. Therefore, the Ti content is in the range of 0.14 to 0.25%.
  • the Ti content is 0.15 to 0.19%.
  • Al has a deoxidizing effect. The effect is obtained when Al is contained in an amount of 0.001% or more. However, when Al is contained exceeding 0.10%, the toughness of the hot-rolled sheet and the pickling property are lowered. Therefore, the Al content is 0.001 to 0.10%. Preferably, the Al content is 0.020 to 0.060%.
  • V combines with C and N in the steel and has the effect of improving the toughness of the hot-rolled sheet and the oxidation resistance of the foil. Furthermore, there is an effect of suppressing coarse TiN precipitation and preventing perforation during foil rolling. In order to obtain such an effect, the V content is 0.02% or more. On the other hand, if the V content exceeds 0.10%, the toughness and oxidation resistance are lowered. Therefore, the V content is 0.02 to 0.10%. The V content is preferably 0.02 to 0.04%.
  • the N content is 0.020% or less.
  • the N content is preferably 0.010% or less.
  • the basic component composition of the ferritic stainless steel foil of the present invention is as described above, and the balance other than the above components is Fe and inevitable impurities.
  • ferritic stainless steel foil of the present invention can contain Mo, Cu, Co, Nb, REM, Zr, Hf, Ca and Mg as selective elements.
  • Mo has the effect of increasing the high temperature strength of the ferritic stainless steel foil. Moreover, Mo stabilizes the oxide film produced
  • Cu is an element having an effect of improving the high temperature strength of the ferritic stainless steel foil.
  • Cu is added, fine precipitates are generated to increase the strength of the foil itself, and high-temperature creep deformation due to the difference in thermal expansion coefficient between the oxide film formed on the foil surface and the ground iron is suppressed.
  • transformation the shape stability at high temperature of a ferritic stainless steel foil improves, and oxide film adhesiveness and catalyst adhesiveness also improve in connection with this.
  • the Cu content is preferably 0.01% or more. However, if the Cu content exceeds 0.30%, the oxidation resistance of the ferritic stainless steel foil is lowered, and the processing becomes difficult and the cost may be increased. Therefore, the Cu content is preferably in the range of 0.01 to 0.30%. In view of cost reduction, the Cu content is more preferably in the range of 0.05 to 0.25%.
  • Co has the effect of improving toughness and improving the productivity of stainless steel foil. This effect is obtained by containing 0.01% or more of Co. On the other hand, if the Co content exceeds 0.20%, workability may be reduced. Therefore, when it contains, it is preferable to make Co amount into the range of 0.01% or more and 0.20% or less.
  • Nb has the effect of increasing the strength of the foil at high temperatures. The effect is acquired by 0.01% or more of containing. However, if the content exceeds 0.20%, the recrystallization temperature increases, and the coarsening of the crystal grains during the heat treatment of diffusion bonding is hindered, and the diffusion bonding property may be lowered.
  • Nb is mixed in the oxide film or generates a compound with Fe, so that the shape change resistance at high temperatures may be reduced. Therefore, the Nb content is preferably 0.01 to 0.20%. More preferably, the Nb content is 0.02 to 0.05%.
  • REM is an element having atomic numbers 57 to 71 such as Y and La, Nd, and Sm, and the content is the total amount of these elements.
  • REM improves the adhesion of an oxide film and has a very significant effect on improving the peel resistance of the film. Such an effect is obtained with a REM content of 0.01% or more.
  • the amount is preferably in the range of 0.01 to 0.20%. More preferably, the REM content is 0.03 to 0.10%.
  • Zr combines with C and N in the steel to improve the toughness of the hot-rolled sheet and improve the workability to facilitate the production of the foil. Furthermore, it concentrates in the grain boundary in the oxide film to improve the oxidation resistance at high temperature, the strength at high temperature, particularly the shape change resistance. Such an effect is obtained with a Zr content of 0.01% or more. However, if the Zr content exceeds 0.20%, an intermetallic compound such as Fe may be formed, and the oxidation resistance may be lowered. Therefore, when Zr is contained, the amount is preferably in the range of 0.01 to 0.20%. More preferably, the Zr content is in the range of 0.01 to 0.05%.
  • Hf has an effect of improving the adhesion between the oxide film formed on the foil surface and the ground iron and improving the oxidation resistance at high temperatures.
  • the Hf content is preferably 0.01% or more.
  • the Hf content is preferably 0.01 to 0.20%. More preferably, the Hf content is 0.02 to 0.10%.
  • Ca is an effective component for preventing nozzle clogging due to crystallization of Ti-based inclusions that are likely to occur during continuous casting. The effect is acquired by containing 0.0003% or more of Ca. However, if Ca is contained in excess of 0.0020%, the corrosion resistance may decrease due to the formation of CaS. Therefore, if contained, the Ca content is in the range of 0.0003 to 0.0020%. More preferably, the Ca content is 0.0005 to 0.0015%. More preferably, the Ca content is 0.0005% or more and 0.0010% or less.
  • Mg has a function of improving the adhesion between the oxide film formed on the surface of the ferritic stainless steel foil and the ground iron.
  • the Mg content is preferably 0.0005% or more.
  • the Mg content is preferably in the range of 0.0005 to 0.0030%.
  • the Vickers hardness of the ferritic stainless steel foil of the present invention is more than 200 and less than 350.
  • the Vickers hardness of the ferritic stainless steel foil is 200 or less, the effect of promoting the grain coarsening of the ferritic stainless steel foil cannot be sufficiently obtained.
  • the Vickers hardness of the ferritic stainless steel foil is 350 or more, there may be a case where the corrugation cannot be formed into a desired shape due to an increase in the deformation resistance of the foil. Therefore, the Vickers hardness of the ferritic stainless steel foil of the present invention is set to be more than 200 and less than 350.
  • the Vickers hardness is preferably greater than 220.
  • this Vickers hardness is preferably less than 320, more preferably less than 300.
  • the ferritic stainless steel of the present invention has the above-mentioned specific amount of composition, and as described later,
  • the final rolling reduction in the cold rolling process may be 50 to 95%.
  • this Vickers hardness it is preferable to be what was measured in the plate
  • the ferritic stainless steel foil of the present invention described above can be suitably used as a catalyst carrier for an exhaust gas purification device having a maximum exhaust gas arrival temperature of 800 ° C. or lower.
  • a normal stainless steel manufacturing facility can be used for manufacturing the ferritic stainless steel foil described above.
  • Steel containing the above-mentioned component composition is melted in a converter or electric furnace, and after secondary refining with VOD or AOD as necessary, steel slabs are obtained by ingot-bundling rolling or continuous casting. To do.
  • the slab after casting is charged into a heating furnace, preferably heated to 1150 to 1250 ° C. and then subjected to a hot rolling process.
  • the surface scale is removed by shot blasting, pickling and / or mechanical polishing, etc., multiple cold rolling, and annealing (intermediate annealing) performed between the cold rolling
  • a stainless steel foil having a foil thickness of 200 ⁇ m or less can be obtained.
  • the final rolling reduction in this cold rolling process is 50 to 95%. More preferably, it is 60 to 90%.
  • the Vickers hardness may be lower than the range of the present invention (Hv200 is more than 350 and less than 350), and may be inferior in shape change resistance. Therefore, the final rolling reduction is 50% or more.
  • the final rolling reduction exceeds 95%, not only the effect of accumulating processing strain and promoting recrystallization is saturated, but also the number of rolling steps is increased. Therefore, the final rolling reduction is 95% or less.
  • the final reduction ratio refers to a value obtained by dividing the sheet thickness reduced by the last cold rolling by the sheet thickness before the last cold rolling.
  • cold rolling is performed a plurality of times, it may be performed at least twice after hot rolling and after intermediate annealing. Further, as the intermediate annealing condition, for example, it is preferable to hold at a temperature of 800 to 1100 ° C. for 5 seconds to 10 minutes.
  • the thickness of the foil is preferably 200 ⁇ m or less.
  • the thickness of the foil is more preferably 100 to 200 ⁇ m, particularly when vibration resistance and durability are required when a catalyst carrier for an exhaust gas purifying apparatus is used.
  • the thickness of the foil is more preferably 25 to 100 ⁇ m.
  • the thickness of the foil is more preferably 40 to 150 ⁇ m.
  • the ferritic stainless steel foil of the present invention is excellent in oxidation resistance and excellent in corrugating workability, shape change resistance at high temperatures, and manufacturability.
  • the steel having the chemical composition shown in Table 1 melted by vacuum melting was heated to 1200 ° C. and hot-rolled in a temperature range of 900 to 1200 ° C. to obtain a hot-rolled steel plate having a thickness of 3 mm.
  • these hot-rolled steel sheets were annealed in the atmosphere at 950 to 1050 ° C. for 1 minute, pickled, and then cold-rolled to obtain cold-rolled steel sheets having a thickness of 1.0 mm.
  • pickling was performed to remove the surface scale.
  • intermediate annealing was performed in an N 2 atmosphere at 950 to 1050 ° C. for 1 minute.
  • the intermediate-annealed cold-rolled sheet was further cold-rolled to obtain a foil having a width of 100 mm and a foil thickness of 50 ⁇ m.
  • the final rolling reduction is 75% because the plate thickness during intermediate annealing is 0.2 mm and the final foil thickness is 50 ⁇ m.
  • the foil obtained in this way was evaluated for corrugation workability by the following method.
  • the cross-sectional hardness after the end of rolling was measured by the method described above. Steel No. 22 to which V was not added was not subjected to subsequent evaluation because holes were formed in the foil when rolled to a foil thickness of 50 ⁇ m.
  • Sectional hardness Vickers hardness after rolling was evaluated as the sectional hardness of the foil.
  • the foil was cut into a size of 10 mm (rolling direction) ⁇ 15 mm, embedded in resin so as to expose a cross section parallel to the rolling direction (cross section perpendicular to the thickness direction of the foil), and mirror polished.
  • a Vickers hardness meter based on JISZ2244, the hardness of the central portion of the thickness of this cross section was measured at 5 points at a load of 500 g, and the average value was measured.
  • a foil having a width of 100 mm ⁇ a length of 300 mm ⁇ a thickness of 50 ⁇ m is corrugated to calculate a value of [(length after processing / length before processing) ⁇ 100] (%). More than 80% and less than 80% are marked with ⁇ , and more than 80% are marked with ⁇ .
  • Shape resistance at high temperatures An evaluation method for shape resistance at high temperatures is described. Since a metal honeycomb is usually used after being subjected to a bonding heat treatment such as brazing or diffusion bonding, the shape change resistance was examined using a test piece subjected to a heat treatment simulating the heat treatment.
  • a bonding heat treatment such as brazing or diffusion bonding
  • test pieces each having a width of 100 mm, a length of 50 mm, and a thickness of 50 ⁇ m rolled into a cylindrical shape and having ends fixed by spot welding were prepared for each steel.
  • the test piece thus prepared was heated in an atmospheric furnace at 700 ° C. for 100 hours, and the average dimensional change rate of three [(cylinder length after heating / cylinder length before heating) ⁇ 100] (%) was measured.
  • the average dimensional change rate over 10% ⁇ 5% over 10% or less was evaluated as ⁇ , 5% or less as ⁇ , and ⁇ or ⁇ satisfied the object of the present invention.
  • the foil of the example of the present invention had a small spring back after corrugation and excellent corrugation. Furthermore, the Vickers hardness after the end of rolling was 200 or more, and the shape change resistance was also excellent.
  • the test piece T as a comparative example had a Cr amount exceeding the range of the present invention, and thus the hardness after rolling exceeded the range of the present invention and was inferior in corrugation workability.
  • Ti is below the range of the present invention, and since the oxidation resistance is lowered, Fe oxide is generated and the shape change resistance is inferior.
  • V was not added to the test piece V which is a comparative example, a hole was formed during foil rolling due to coarse precipitation of TiN, and the subsequent test was stopped.
  • the foil of the example of the present invention was excellent in corrugation workability and shape change resistance at high temperatures.
  • Specimens AA to AL were excellent in shape change resistance because the components and hardness after rolling were within the scope of the present invention.
  • test pieces AM and AN of the comparative examples were inferior in shape change resistance because the components were within the scope of the present invention but the Vickers hardness after the rolling was below the scope of the present invention.
  • Example 1 and Example 2 From the results of Example 1 and Example 2, it was found that the foil within the scope of the present invention was excellent in corrugation workability and shape change resistance. From Example 1 and Example 2, the foil within the scope of the present invention can suppress the content of solid solution strengthening elements such as Cu, Nb, Mo and W, and can suppress the component cost. At the same time, it was also found that the content of Al was suppressed and the productivity was excellent.
  • solid solution strengthening elements such as Cu, Nb, Mo and W
  • a stainless steel foil suitable for a catalyst carrier for an exhaust gas purifying apparatus that is used at a relatively low temperature with a maximum exhaust gas temperature of about 800 ° C. or less using a normal stainless steel production facility. It becomes possible and is very effective in the industry.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

 波付け加工性、高温での耐形状変化性および製造性に優れたフェライト系ステンレス箔およびその製造方法を提供する。 質量%で、C:0.020%以下、Si:2.0%以下、Mn:1.0%以下、S:0.010%以下、P:0.050%以下、Cr:10.0~25.0%、Ni:0.05~0.50%、Ti:0.14~0.25%、Al:0.001~0.10%、V:0.02~0.10%、N:0.020%以下を含有し、残部がFeおよび不可避的不純物から成り、ビッカース硬さが200超350未満であるフェライト系ステンレス箔。

Description

フェライト系ステンレス箔およびその製造方法
 本発明は、特に排ガス浄化装置用触媒担体に用いられるフェライト系ステンレス箔に関する。
 近年、自動車の排ガス規制が強化されており、排ガス浄化装置用触媒担体としてステンレス箔を用いたメタルハニカムが搭載されるケースが増加している。メタルハニカムは、主流であるセラミックス製のハニカム担体と比べ、開孔率を大きく取れるうえ、耐熱衝撃特性や耐振動特性に優れている。特に、トラックなど大型車に搭載される場合は、担体形状も大型となるため、形状の自由度が高いメタルハニカムが多く使用されている。
 このメタルハニカムは、例えば、平坦なステンレス箔(平箔)と波状に加工されたステンレス箔(波箔)とを交互に積み重ね、平箔と波箔の接点をロウ付けや拡散接合によって固定してハニカム構造としたもので、表面に触媒物質を塗布したものが排ガス浄化装置に用いられる。
 メタルハニカム用のステンレス箔には、主に20質量%Cr-5質量%Al系もしくは18質量%Cr-3質量%Al系などに代表される高Al含有フェライト系ステンレス箔が用いられている。ステンレス鋼に2~3質量%以上のAlを含有させると、表面にAlの酸化皮膜が生成し、耐酸化性が著しく向上する。ガソリン車では、排ガス浄化装置内は排ガス温度に加え触媒反応によって温度が上昇し、1000℃以上の高温に到達する場合もある。従って、触媒担体には高温での耐酸化性に極めて優れる3質量%以上のAlを含有する高Al含有フェライト系ステンレス箔が適用されている。また、触媒担体に用いられる箔には、坦持させた触媒の剥離を防止するため、高温での耐形状変化性に優れることも求められる。
 一方、ディーゼル車の排ガス温度は、ガソリン車ほど高温にはならず最高到達温度が800℃程度であることがほとんどである。農業機械や建築機械など自動車以外の車両の場合、排ガスの最高到達温度はさらに低下する。したがって、先に述べた20質量%Cr-5質量%Al系もしくは18質量%Cr-3質量%Al系のステンレス箔ほど、高温での耐酸化性および高温での耐形状変化性について優れた性能は要求されない。一方、これらの高Al含有フェライト系ステンレス箔は、耐酸化性には優れるものの、製造途中の熱延板の靭性が乏しく、製造性が悪く製造コストが高いという問題を有している。さらに、これらの箔は加工性にも劣る。そのため、波付け加工時に箔材が破断しやすく、スプリングバックの影響で所望の形状に加工できない場合がある。波付け加工性を向上させるため、加工前に焼鈍を施す方法も考えられる。しかし、板厚が薄い箔の場合、焼鈍時に生成した表面スケールを研削や酸洗によって取り除くことが困難なため、還元雰囲気中で光輝焼鈍させるのが一般的であるが、光輝焼鈍には高度な雰囲気制御が要求され、光輝焼鈍工程の追加は製造コストの大幅な増加を招いてしまう。このような製造コスト増加を避けるため、未焼鈍状態で波付け加工に用いることが理想である。
 以上の問題を解決するために、Al含有量を極力低減させ製造性を改善したステンレス箔が提案されている。
特許文献1には、Al含有量を不純物レベル~0.8質量%に制限し、高温で酸化Al皮膜を作らずに酸化Cr皮膜を生成させることで、担体成型時の拡散接合性を改善したステンレス箔製メタルハニカムが開示されている。また、特許文献2には、Al含有量を不純物レベル~0.8質量%に制限し、かつMoを0.3~3質量%の範囲で含有することで、耐酸化性、拡散接合性および耐硫酸腐食性を改善したステンレス箔製メタルハニカムが開示されている。
 しかし、特許文献1および特許文献2に記載のステンレス箔では、箔表面に生成する酸化Cr皮膜と地鉄との熱膨張率差が、酸化Al皮膜の場合に比べて大きいため、高温でクリープ変形を生じ、箔の形状変化や表面の酸化皮膜剥離を生じるという問題がある。これらの変形や剥離が生じると、表面に坦持させた触媒が脱落してしまうため、触媒担体としての必要特性を満たすことができない。
 このように、Alを低減させたステンレス鋼を板厚200μm以下の箔に圧延してメタルハニカム用途に適用した場合、高温での形状変化が大きな問題となる。これらのフェライト系ステンレス鋼は、高温で使用した際の耐形状変化性に劣っているのである。
 そこで、本発明者らは以前、Al含有量を0.01~1.0質量%に制限して製造性を改善すると共に、Cu、Nb、Mo、Wなどの元素を添加して高温での耐形状変化性を向上させたフェライト系ステンレス箔を発明した(特許文献3参照)。
特開平7-213918号公報 特開平7-275715号公報 特許5522330号公報(国際公開WO2013/114833号公報)
 しかし、特許文献3に記載のフェライト系ステンレス箔は、高温での耐形状変化性を向上させるために、高価なCu、Nb、MoおよびWなどに代表される固溶強化元素を添加している。そのため、成分コストを抑えて製造性を向上させると共に、加工性の低下を抑制して未焼鈍状態での波付け加工性をより優れたものとすることが求められていた。
 そこで、本発明では、これらの課題を解決し、波付け加工性、高温での耐形状変化性および製造性に優れたフェライト系ステンレス箔およびその製造方法を提供することを目的とする。
 本発明者らは、上記問題を解決すべく鋭意検討したところ、高価な強化元素を添加せずに、特定量のCr、TiおよびVを含有させることで、耐形状変化性を向上させる方法を見出し、優れた波付け加工性を有するステンレス箔を得られることを見出した。その要旨は次の通りである。
[1]質量%で、C:0.020%以下、Si:2.0%以下、Mn:1.0%以下、S:0.010%以下、P:0.050%以下、Cr:10.0~25.0%、Ni:0.05~0.50%、Ti:0.14~0.25%、Al:0.001~0.10%、V:0.02~0.10%、N:0.020%以下を含有し、残部がFeおよび不可避的不純物から成り、ビッカース硬さが200超350未満であるフェライト系ステンレス箔。
[2]さらに、質量%で、Mo:0.01~0.50%、Cu:0.01~0.30%、Co:0.01~0.20%のうちの1種または2種以上を含有する前記[1]に記載のフェライト系ステンレス箔。
[3]さらに、質量%で、Nb:0.01~0.20%、REM:0.01~0.20%、Zr:0.01~0.20%、Hf:0.01~0.20%、Ca:0.0003~0.0020%、Mg:0.0005~0.0030%のうちの1種または2種以上を含有する前記[1]または[2]に記載のフェライト系ステンレス箔。
[4]排ガス温度の最高到達温度が800℃以下の排ガス浄化装置用触媒担体に用いられる前記[1]~[3]のいずれか1つに記載のフェライト系ステンレス箔。
[5]前記[1]~[3]のいずれか1つに記載のフェライト系ステンレス箔の製造方法であり、
鋼スラブを加熱した後に、熱間圧延を行う工程と、
該熱間圧延を行った後に、冷間圧延を行う工程と、
該冷間圧延を行った後に、焼鈍を行う工程と、
該焼鈍を行った後に、最終圧下率を50~95%とする冷間圧延を更に行う工程と、
を含むフェライト系ステンレス箔の製造方法。
 本発明によれば、波付け加工性、高温での耐形状変化性および製造性に優れたフェライト系ステンレス箔およびその製造方法を提供することができる。
 まず、ディーゼル車の排ガス浄化装置用触媒担体に用いるための本発明のフェライト系ステンレス箔を完成させるにあたり、最高排ガス到達温度が800℃以下の排ガス浄化装置用触媒担体において、形状変化による触媒の剥離を防止するために必要な特性を調査した。その結果、大気雰囲気中500~800℃で100時間保持した後の形状変化率が10%以下であれば、触媒の剥離を抑制できることがわかった。好ましくは5%以下である。なお、形状変化率の測定方法については、実施例の項目で詳細に説明する。
 上記特性を満たし、充分な波付け加工性および製造性を有する安価なステンレス箔を得るために、加工性および製造性を低下させるAlや高価なCu、Nb、Moなどの元素の含有量を極力少なくしたフェライト系ステンレス箔を用いて、高温での耐形状変化性および波付け加工性について詳細な検討を行った。その結果、以下の知見を得て本発明に至った。
 フェライト系ステンレス箔の耐形状変化性を向上させるためには、特定量のCr、Ti、Vなどを含有した鋼に対し、冷間圧延工程における最終圧下率を50~95%とし、ビッカース硬さ(HV)を200超とすれば良い事が明らかとなった。これは、冷間圧延工程での圧下率を高め加工歪を多く蓄積し、メタルハニカム製造時の熱処理での再結晶が促進されて、箔の結晶粒が粗大化するためであると考えられる。
 すなわち、結晶粒が大きいほど高温クリープ変形が減少することと、酸化速度が低減することにより、高温使用時の変形が小さくなると考えられる。一方、ビッカース硬さ(HV)が200以下では、結晶粒粗大化を促進させる効果が充分ではない。従って、本発明のフェライト系ステンレス箔のビッカース硬さ(HV)は200超とする。さらに、ビッカース硬さ(HV)は220超であることが好ましい。
 フェライト系ステンレス箔の結晶粒を粗大化させる時期は、メタルハニカム形状に組み立てた後であることが好ましい。結晶粒を粗大化させるために、箔の製造工程で焼鈍工程を付加すると、コスト増加に繋がるからである。メタルハニカム用触媒担体を成型する際には、通常ロウ付けや拡散接合のための熱処理(接合熱処理)として圧力を1.0×10Pa以下とした真空中もしくは還元雰囲気中において800~1200℃で30秒以上の熱処理が施されるので、この熱処理で粗大化させればよい。つまり、未再結晶の状態で波付け加工し、接合熱処理で再結晶させ結晶粒を粗大化させればよい。なお、還元雰囲気とは、N、HまたはArやこれらの混合ガス雰囲気を指す。
 一方、加工歪が過剰に蓄積すると、波付け加工が困難となり加工時に破断が生じる場合がある。破断に至らなくとも、箔の変形抵抗の増加によって所望の形状に波付け加工できなくなる場合がある。検討した結果、ビッカース硬さ(HV)が350以上とならなければ、波付け加工の最大曲げ半径が1mm以下のような過酷な条件でも問題なく加工が可能であることが明らかとなった。従って、本発明のフェライト系ステンレス箔のビッカース硬さ(HV)は350未満とする。このビッカース硬さ(HV)は320未満であることが好ましく、300未満であることがより好ましい。
 ここで、本発明のフェライト系ステンレス箔のビッカース硬さ(HV)の測定方法について説明する。
 まず、箔を適当な大きさに切断し、圧延方向と平行かつ箔表面と垂直な断面が露出するように樹脂などに埋め込んで鏡面研摩する。次に、ビッカース硬さ計を用いて、この断面の板厚中央部の硬さを5点測定し平均値をその箔のビッカース硬さ(HV)とする。詳細な測定条件等はJIS Z 2244に従う。
 [フェライト系ステンレス箔]
 以下、本発明のフェライト系ステンレス箔を詳細に説明する。
 まず、本発明のフェライト系ステンレス箔の成分組成について説明する。なお、以下の記述における本発明のフェライト系ステンレス箔中の各成分の%は全て質量%とする。
 <C:0.020%以下>
 C含有量が増加すると、熱間圧延時に炭化物が多量に析出し靭性の低下を招き、また、C含有量は、箔の波付け加工性を低下させるため0.020%以下とする。好ましくは、C含有量は0.010%以下とするが、極力低減することがより好ましい。
 <Si:2.0%以下>
 Siは耐酸化性を改善する元素であるが、含有量が2.0%を超えると、靭性が低下するとともに、加工性の低下により製造が困難になる。よって、Si含有量は2.0%以下とし、好ましくは1.0%以下とする。より好ましくは、Si含有量は0.2%以下である。但し、耐酸化性をより向上させる場合には、Siを0.05%以上含有させることが好ましく、より好ましくは0.1%以上含有させる。
 <Mn:1.0%以下>
 Mn含有量が1.0%を超えると、高温での耐酸化性が低下する。よって、Mn含有量は1.0%以下とし、好ましくは0.5%以下とする。より好ましくは、Mn含有量は0.3%以下とする。但し、Mnは鋼中のSを固定する効果があるため、0.05%以上含有させることが好ましく、より好ましくは0.1%以上含有させる。
 <S:0.010%以下>
 S含有量が0.010%を超えると、高温での耐酸化性が低下する。よって、S含有量は0.010%以下とし、好ましくは0.005%以下とする。より好ましくは0.003%以下であるが、極力低減することがさらに好ましい。
 <P:0.050%以下>
 P含有量が0.050%を超えると、高温での耐酸化性が低下する。よって、P含有量は0.050%以下とし、好ましくは0.030%以下とするが、極力低減することがより好ましい。
 <Cr:10.0~25.0%>
 Crは高温での耐酸化性および強度を確保する上で必要不可欠な元素であるので、Cr含有量は10.0%以上とする。しかし、Cr含有量が25.0%を超えると、加工性が低下し、本発明の目的である優れた波付け加工性を達成できなくなる。よって、Cr含有量は10.0~25.0%の範囲とする。好ましくは、Cr含有量は10.0~20.0%の範囲である。製造コストと耐酸化性のバランスを考慮すると、Cr含有量は16.0%以上であることがより好ましい。また、この製造コストと耐酸化性のバランスを考慮すると、Cr含有量は17.0%以下であることがより好ましい。
 <Ni:0.05~0.50%>
 Niは触媒担体成形時のロウ付け性を向上する効果がある。その効果は0.05%以上のNiの含有で得られる。しかし、オーステナイト安定化元素であるNiの含有量が0.50%を超える場合は、Crが酸化され始めた際、オーステナイトが生成して箔の熱膨張係数を増加させ、箔の括れや破断などの不具合が発生する。よって、Ni含有量は0.05~0.50%の範囲とする。好ましくは、Ni含有量は0.08~0.30%である。より好ましくは、Ni含有量は0.10~0.20%である。
 <Ti:0.14~0.25%>
 Tiは鋼中のCおよびNを固定し加工性および耐酸化性を向上させる元素であり、その効果は0.14%以上のTiの含有で得られる。一方、Tiを0.25%を超えて含有すると、粗大なTiNが析出する。本発明では板厚を200μm以下の箔とすることを想定しているが、このTiNは径が数μm~数十μmにも達するため、箔を貫通して穴あきの要因となったり、酸化皮膜を貫通して耐酸化性低下の要因となったりする。よって、Ti含有量は0.14~0.25%の範囲とする。好ましくは、Ti含有量は0.15~0.19%である。
 <Al:0.001~0.10%>
 Alは脱酸効果がある。その効果は0.001%以上のAlの含有で得られる。しかし、0.10%を超えてAlを含有すると熱延板の靭性低下や酸洗性の低下を招く。従って、Al含有量は0.001~0.10%とする。好ましくは、Al含有量は0.020~0.060%である。
 <V:0.02~0.10%>
 Vは鋼中のCやNと結合し、熱延板の靭性や箔の耐酸化性を向上させる効果がある。さらに、粗大なTiNの析出を抑制し、箔圧延時の穴あきを防止する効果もある。このような効果を得るためには、V含有量は、0.02%以上とする。一方、V含有量が0.10%を超えると、かえって靭性や耐酸化性の低下を招く。よって、V含有量は、0.02~0.10%とする。V含有量は、好ましくは0.02~0.04%である。
 <N:0.020%以下>
 N含有量が0.020%を超えると、靱性が低下するとともに、加工性の低下により製造が困難となる。よって、N含有量は0.020%以下とする。N含有量は、好ましくは0.010%以下である。
 本発明のフェライト系ステンレス箔の基本成分組成は、以上であり、上記成分以外の残部は、Feおよび不可避的不純物である。
 さらに、本発明のフェライト系ステンレス箔は、Mo、Cu、Co、Nb、REM、Zr、Hf、CaおよびMgを選択元素として含有することができる。
 <Mo:0.01~0.50%>
 Moは、フェライト系ステンレス箔の高温強度を増大させる効果を有する。また、Moは、フェライト系ステンレス箔の表面に生成する酸化皮膜を安定化させ、耐塩害腐食性を向上させる。このような効果は、Moの含有量を0.01%以上にすることで得られる。但し、Moの含有量が0.50%を超えると、フェライト系ステンレス鋼の靭性が低下し、箔の製造を困難にする場合がある。したがって、Moを含有する場合は、含有量を0.01~0.50%の範囲とすることが好ましい。より好ましくは、Mo含有量は0.10~0.30%である。
 <Cu:0.01~0.30%>
 Cuは、フェライト系ステンレス箔の高温強度を向上させる効果を有する元素である。Cuを添加すると、微細な析出物が生じて箔自身の強度が上昇し、箔表面に生成する酸化皮膜と地鉄との間の熱膨張率差に起因する高温クリープ変形が抑制される。そして、高温クリープ変形が抑制される結果、フェライト系ステンレス箔の高温での形状安定性が向上し、これに伴い酸化皮膜密着性および触媒密着性も向上する。
 以上のような効果を発現させるために、Cu含有量は0.01%以上とすることが好ましい。しかし、Cu含有量が0.30%を超えると、フェライト系ステンレス箔の耐酸化性が低下するうえ、加工が困難となりコスト増大を招く場合がある。したがって、Cu含有量は0.01~0.30%の範囲とすることが好ましい。低コスト化を考慮すると、Cu含有量は0.05~0.25%の範囲とすることがより好ましい。
 <Co:0.01~0.20%>
 Coは靭性を向上させてステンレス箔の製造性を向上させる効果がある。この効果は0.01%以上のCoの含有によって得られる。一方、Co含有量が0.20%を超えると加工性が低下する場合がある。そのため、含有する場合、Co量は0.01%以上0.20%以下の範囲とすることが好ましい。
 <Nb:0.01~0.20%>
 Nbは箔の高温での強度を上昇させる効果がある。その効果は0.01%以上の含有で得られる。しかし、0.20%を超えて含有すると再結晶温度が増大し、拡散接合の熱処理時の結晶粒の粗大化を阻害して、拡散接合性が低下する場合がある。また、Nbは、酸化皮膜に混入したり、Feとの化合物を生成したりするため、高温での耐形状変化性が低下する場合がある。従って、Nb含有量は0.01~0.20%とすることが好ましい。より好ましくは、Nb含有量は0.02~0.05%である。
 <REM:0.01~0.20%>
 REMとは、Yと、La、Nd、Smなど原子番号57~71までの元素であり、含有量はこれらの元素の総量である。一般に、REMは酸化皮膜の密着性を改善し、皮膜の耐剥離性向上に極めて顕著な効果を有する。このような効果は0.01%以上のREM含有量で得られるが、REM含有量が0.20%を超えると、これらの元素が結晶粒界に濃化して析出し、高温加熱時に溶融して熱延板の表面欠陥の要因となる場合がある。よって、REMを含有する場合は、その量は0.01~0.20%の範囲とすることが好ましい。より好ましくは、REM含有量は0.03~0.10%である。
 <Zr:0.01~0.20%>
 Zrは鋼中のC、Nと結合し、熱延板の靭性が向上するとともに、加工性が向上して箔の製造を容易にする。さらに、酸化皮膜中において粒界に濃化して高温での耐酸化性や、高温での強度、特に耐形状変化性を向上させる。このような効果は、0.01%以上のZr含有で得られるが、Zr含有量が0.20%を超えると、Feなどと金属間化合物をつくり、耐酸化性を低下させる場合がある。よって、Zrを含有する場合は、その量は0.01~0.20%の範囲とすることが好ましい。より好ましくは、Zr含有量は0.01~0.05%の範囲とする。
 <Hf:0.01~0.20%>
 Hfは箔表面に生成した酸化皮膜と地鉄の密着性を良好にし、高温での耐酸化性を向上させる効果がある。このような効果を得るには、Hf含有量は0.01%以上とすることが好ましい。一方、Hf含有量が0.20%を超えると、製造過程において熱延板の靭性が低下する場合がある。よって、Hf含有量は0.01~0.20%とすることが好ましい。より好ましくは、Hf含有量は0.02~0.10%である。
 <Ca:0.0003~0.0020%>
 Caは、連続鋳造の際に発生しやすいTi系介在物の晶出によるノズルの閉塞を防止するのに有効な成分である。その効果は0.0003%以上のCaを含有することで得られる。しかし、0.0020%を超えてCaを含有するとCaSの生成により耐食性が低下する場合がある。従って、含有する場合、Ca量は0.0003~0.0020%の範囲とする。より好ましくは、Ca含有量は0.0005~0.0015%である。さらに好ましくは、Ca含有量は0.0005%以上0.0010%以下である。
 <Mg:0.0005~0.0030%>
 Mgは、フェライト系ステンレス箔の表面に生成する酸化皮膜と地鉄との密着性を向上させる働きがある。このような効果を得るには、Mg含有量を0.0005%以上とすることが好ましい。一方、Mg含有量が0.0030%を超えると、フェライト系ステンレス鋼の靭性およびフェライト系ステンレス箔の耐酸化性が低下する場合がある。したがって、Mg含有量は0.0005~0.0030%以下の範囲とすることが好ましい。
 <ビッカース硬さ:200超350未満>
 前述したように、本発明のフェライト系ステンレス箔のビッカース硬さは、200超350未満とする。フェライト系ステンレス箔のビッカース硬さが200以下では、フェライト系ステンレス箔の結晶粒粗大化を促進させる効果が充分に得られない。また、フェライト系ステンレス箔のビッカース硬さが350以上では、箔の変形抵抗の増加によって所望の形状に波付け加工できなくなる場合がある。よって、本発明のフェライト系ステンレス箔のビッカース硬さは、200超350未満とする。このビッカース硬さは220超であることが好ましい。また、このビッカース硬さは320未満であることが好ましく、300未満であることがより好ましい。このように、本発明のフェライト系ステンレス箔のビッカース硬さを200超350未満とするには、本発明のフェライト系ステンレスが前述した特定量の組成を有するようにすると共に、後述するように、冷間圧延工程における最終圧下率を50~95%とすればよい。
 なお、このビッカース硬さについては、箔断面の板厚中央部で測定したものとすることが好ましい。より具体的には、まず、圧延方向と平行な断面(箔表面と垂直な断面)が露出するように樹脂などに埋め込んで鏡面研摩し、次いで、ビッカース硬さ計を用いて、この断面の板厚中央部の硬さを5点測定し平均値をその箔のビッカース硬さとすることが好ましい。このとき、詳細な測定条件等はJIS Z 2244に従ったものとすることができる。
 以上説明した本発明のフェライト系ステンレス箔は、最高排ガス到達温度が800℃以下の排ガス浄化装置用触媒担体として好適に用いられる。
 [フェライト系ステンレス箔の製造方法]
 前述したフェライト系ステンレス箔の製造には、通常のステンレス鋼製造設備を用いることができる。前述の成分組成を含有する鋼を、転炉や電気炉などで溶製し、必要に応じてVODやAODで二次精錬した後、造塊-分塊圧延法や連続鋳造法で鋼スラブとする。鋳造後のスラブを加熱炉に装入し、好ましくは、1150~1250℃に加熱した後に熱間圧延工程に供する。こうして得られた熱延鋼帯について、ショットブラスト、酸洗および/または機械研磨などで表面スケールを除去し、複数回の冷間圧延と、その冷間圧延間で行われる焼鈍(中間焼鈍)とを実施することで箔厚200μm以下のステンレス箔を得ることができる。この冷間圧延工程における最終圧下率は50~95%とする。より好ましくは60~90%である。最終圧下率が、50%未満の場合、ビッカース硬さが本発明の範囲(Hv200超350未満)を下回ることがあるため、耐形状変化性に劣る場合がある。従って、最終圧下率は50%以上とする。一方、最終圧下率が95%超えの場合、加工歪を蓄積して再結晶を促進する効果が飽和するばかりか、圧延工数の増加を招く。従って、最終圧下率は95%以下とする。ここで、最終圧下率とは、最後の冷間圧延により減少した板厚を最後の冷間圧延前の板厚で割ったものを指す。また、冷間圧延は、複数回行うが、少なくとも熱間圧延後と中間焼鈍後の計2回行えばよい。また、中間焼鈍条件としては、例えば、800~1100℃の温度で5秒~10分間保持することが好ましい。
 箔の厚みは、200μm以下とすることが好ましい。また、この箔の厚みは、排ガス浄化装置用触媒担体とした際に、特に耐振動特性や耐久性が必要である場合は100~200μmとすることがより好ましい。特に高いセル密度や低背圧が必要とされる場合は、箔の厚みは、25~100μmとすることがより好ましい。製造コストと特性のバランスを考慮した場合、箔の厚みは、40~150μmとすることがより好ましい。
 以上より、本発明のフェライト系ステンレス箔は、耐酸化性に優れると共に、波付け加工性、高温での耐形状変化性および製造性を優れたものとすることができる。
 以下、実施例に基づいて本発明を説明する。真空溶解によって溶製した表1に示す化学組成の鋼を、1200℃に加熱後、900~1200℃の温度域で熱間圧延して板厚3mmの熱延鋼板とした。次いで、これらの熱延鋼板について大気中950~1050℃で1分間保持する焼鈍を行い、酸洗後、冷間圧延を行って、板厚1.0mmの冷延鋼板とした。次に、大気中950~1050℃で1分間保持する焼鈍を行った後、酸洗し表面スケールを除去した。その後、冷間圧延を実施し板厚0.2mmまで圧延した後、N雰囲気中950~1050℃で1分間保持する中間焼鈍を行った。中間焼鈍した冷延板を更に冷間圧延し、幅100mm、箔厚50μmの箔を得た。この場合の最終圧下率は、中間焼鈍時の板厚が0.2mm、最終箔厚が50μmであるので、75%となる。こうして得られた箔について、下記の方法で波付け加工性を評価した。圧延終了後の断面硬さは、前述の方法によって測定した。V未添加の鋼No.22は、箔厚50μmまで圧延した際に、箔に穴あきが発生したため、以降の評価には供さなかった。
Figure JPOXMLDOC01-appb-T000001
 
 (1)断面硬さ
 箔の断面硬さとして、圧延後のビッカース硬さを評価した。箔を10mm(圧延方向)×15mmの大きさに切断し、圧延方向と平行な断面(箔の厚み方向と垂直な断面)が露出するように樹脂に埋め込んで鏡面研摩した。次に、ビッカース硬さ計を用いて、JISZ2244に基づいて、この断面の板厚中央部の硬さを測定荷重は500gで5点測定し平均値を測定した。
 (2)箔の波付け加工性
 箔の波付け加工性は、箔を波付け加工した際のスプリングバック量で評価した。最大曲げ半径0.5mm、波ピッチ2.0mmの歯車状ロール2本の間を通過させることで波付け加工した。スプリングバックが全く無い理想的な曲げ加工を仮定した場合、ロール形状と同一の波付け加工がなされるはずであるが、実際はスプリングバックの影響で曲げ加工した部分が開く。従って、加工後の長さの加工前の長さに対する割合である[(加工後長さ/加工前長さ)×100](%)の値が小さいほど、スプリングバックの影響が小さく波付け加工性に優れるものと判断した。幅100mm×長さ300mm×厚さ50μmの箔を波付け加工して、[(加工後長さ/加工前長さ)×100](%)の値を算出し、70%以下を◎、70%超80%以下を○、80%超のものを×とし、◎もしくは○であれば本発明の目的を満足するとした。
 (3)高温での耐形状変化性
 高温での耐形状変化性の評価方法について述べる。通常メタルハニカムはロウ付けや拡散接合などの接合熱処理を施した後に用いられるため、当該熱処理を模擬した熱処理を施した試験片を用いて、耐形状変化性を調べた。
 まず、幅100mm×長さ50mm×厚さ50μmの箔を円筒状に丸め、端部をスポット溶接で固定した試験片を各鋼につき3本準備した。次に、拡散接合あるいはロウ付け接合時の熱処理に相当する1100℃で30分の熱処理を、圧力が1.0×10-1Pa以下である真空中で行った。こうして作製した試験片を大気雰囲気炉中で700℃で100時間加熱して、3個の平均の寸法変化率[(加熱後の円筒長さ/加熱前の円筒長さ)×100](%)を測定した。平均の寸法変化率の測定結果は、10%超えを×、5%超え10%以下を○、5%以下を◎とし、○あるいは◎を本発明の目的を満足するとした。
 結果を表2に示す。
 
 本発明例の箔は、波付け加工後のスプリングバックも小さく波付け加工性に優れていた。さらに圧延終了後のビッカース硬さが200以上であり、耐形状変化性にも優れていた。
 一方、比較例である試験片Tは、Cr量が本発明範囲を超えるため、圧延終了後の硬さが本発明範囲を上回っており、波付け加工性に劣っていた。比較例である試験片Uは、Tiが本発明範囲を下回っており、耐酸化性が低下するためFe酸化物が生成して耐形状変化性に劣っていた。比較例である試験片Vは、Vが添加されていないために、粗大なTiNの析出のために、箔圧延時の穴あきを発生し、その後の試験を中止した。
 以上の結果より、本発明例の箔は、波付け加工性および高温での耐形状変化性に優れていることがわかった。
 圧延終了後の硬さと、波付け加工性および耐形状変化性への影響を調査するため、表1に示したうちの一部の鋼(鋼No.1、5、10)を用いて、最終圧下率を変化させて箔を作製した。中間焼鈍時の板厚と仕上げ箔厚を除く作製条件および、波付け加工性と耐形状変化性の評価方法は実施例1と同一とした。冷間圧延条件、波付け加工性および耐形状変化性の評価結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 
 試験片AA~ALまでは、成分および圧延終了後の硬さが本発明範囲内であるため、耐形状変化性に優れていた。
 一方、比較例の試験片AMおよびANは、成分は本発明範囲内であるものの圧延終了後のビッカース硬さが本発明範囲を下回るため、耐形状変化性に劣っていた。
 実施例1および実施例2の結果より、本発明範囲内の箔は、波付け加工性および耐形状変化性に優れていることがわかった。また、実施例1および実施例2より、本発明範囲内の箔は、Cu、Nb、MoおよびWなどの固溶強化元素の含有量を抑制することができ、成分コストを抑制することができると共に、Alの含有量を抑制し、製造性に優れていることも分かった。
 本発明によれば、排ガス温度の最高到達温度が約800℃以下の比較的低温で用いられる排ガス浄化装置用触媒担体に好適なステンレス箔を、通常のステンレス鋼生産設備を用いて製造することが可能となり産業上非常に有効である。

Claims (5)

  1. 質量%で、C:0.020%以下、Si:2.0%以下、Mn:1.0%以下、S:0.010%以下、P:0.050%以下、Cr:10.0~25.0%、Ni:0.05~0.50%、Ti:0.14~0.25%、Al:0.001~0.10%、V:0.02~0.10%、N:0.020%以下を含有し、残部がFeおよび不可避的不純物から成り、ビッカース硬さが200超350未満であるフェライト系ステンレス箔。
  2. さらに、質量%で、Mo:0.01~0.50%、Cu:0.01~0.30%、Co:0.01~0.20%のうちの1種または2種以上を含有する請求項1に記載のフェライト系ステンレス箔。
  3. さらに、質量%で、Nb:0.01~0.20%、REM:0.01~0.20%、Zr:0.01~0.20%、Hf:0.01~0.20%、Ca:0.0003~0.0020%、Mg:0.0005~0.0030%のうちの1種または2種以上を含有する請求項1または2に記載のフェライト系ステンレス箔。
  4. 排ガス温度の最高到達温度が800℃以下の排ガス浄化装置用触媒担体に用いられる請求項1~3のいずれか1項に記載のフェライト系ステンレス箔。
  5. 請求項1~3のいずれか1項に記載のフェライト系ステンレス箔の製造方法であり、
    鋼スラブを加熱した後に、熱間圧延を行う工程と、
    該熱間圧延を行った後に、冷間圧延を行う工程と、
    該冷間圧延を行った後に、焼鈍を行う工程と、
    該焼鈍を行った後に、最終圧下率を50~95%とする冷間圧延を更に行う工程と、
    を含むフェライト系ステンレス箔の製造方法。
     
PCT/JP2015/004150 2014-08-29 2015-08-20 フェライト系ステンレス箔およびその製造方法 WO2016031192A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
ES15835384T ES2901964T3 (es) 2014-08-29 2015-08-20 Lámina de acero inoxidable ferrítico y método de producción de la misma
EP15835384.7A EP3187609B1 (en) 2014-08-29 2015-08-20 Ferritic stainless steel foil and production method for same
US15/507,001 US20170275725A1 (en) 2014-08-29 2015-08-20 Ferritic stainless steel foil and method for manufacturing the same (as amended)
KR1020177005297A KR101994559B1 (ko) 2014-08-29 2015-08-20 페라이트계 스테인리스박 및 그 제조 방법
CN201580045495.2A CN106795599B (zh) 2014-08-29 2015-08-20 铁素体系不锈钢箔及其制造方法
JP2015552675A JP5874873B1 (ja) 2014-08-29 2015-08-20 フェライト系ステンレス箔およびその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014175033 2014-08-29
JP2014-175033 2014-08-29

Publications (1)

Publication Number Publication Date
WO2016031192A1 true WO2016031192A1 (ja) 2016-03-03

Family

ID=55399108

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/004150 WO2016031192A1 (ja) 2014-08-29 2015-08-20 フェライト系ステンレス箔およびその製造方法

Country Status (8)

Country Link
US (1) US20170275725A1 (ja)
EP (1) EP3187609B1 (ja)
JP (1) JP5874873B1 (ja)
KR (1) KR101994559B1 (ja)
CN (1) CN106795599B (ja)
ES (1) ES2901964T3 (ja)
TW (1) TWI648413B (ja)
WO (1) WO2016031192A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015155920A1 (ja) * 2014-04-08 2015-10-15 Jfeスチール株式会社 フェライト系ステンレス箔およびその製造方法
KR101940427B1 (ko) * 2014-08-14 2019-01-18 제이에프이 스틸 가부시키가이샤 페라이트계 스테인리스 강판
US10626486B2 (en) * 2014-12-11 2020-04-21 Jfe Steel Corporation Stainless steel and production method therefor
CN111118404A (zh) * 2018-10-31 2020-05-08 北京铂阳顶荣光伏科技有限公司 一种不锈钢箔及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10251750A (ja) * 1997-02-28 1998-09-22 Union Sider Nord Est Fr <Usinor> 自動車排気管の触媒担体として使用可能なアルミニウム含有率の高いフェライトステンレス鋼フォイルの製造方法
JP2003328088A (ja) * 2002-05-13 2003-11-19 Nisshin Steel Co Ltd 熱交換器用フェライト系ステンレス鋼材
JP2004243354A (ja) * 2003-02-13 2004-09-02 Jfe Steel Kk スピニング加工性に優れたフェライト系ステンレス鋼溶接管
JP2007217716A (ja) * 2006-02-14 2007-08-30 Nisshin Steel Co Ltd スピニング加工用フェライト系ステンレス鋼溶接管およびその製造法
JP2013079428A (ja) * 2011-10-04 2013-05-02 Jfe Steel Corp Al含有フェライト系ステンレス熱延鋼帯の製造方法およびAl含有フェライト系ステンレス熱延鋼帯、ステンレス箔、並びに、自動車排ガス浄化装置用触媒担体

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5522330A (en) 1978-08-07 1980-02-18 Ube Ind Ltd Caprolactam byproduct ammonium sulfate waste liquid treatment
JP3238561B2 (ja) 1994-02-04 2001-12-17 新日本製鐵株式会社 触媒用メタルハニカム
JP3238565B2 (ja) 1994-04-05 2001-12-17 新日本製鐵株式会社 触媒用メタルハニカム
JPH08144021A (ja) * 1994-11-18 1996-06-04 Sumitomo Metal Ind Ltd フェライトステンレス鋼およびその冷延鋼板の製造方法
JP4089076B2 (ja) * 1999-03-30 2008-05-21 Jfeスチール株式会社 加工性の優れたフェライト系ステンレス鋼板及びその製造方法
JP3508685B2 (ja) * 2000-03-13 2004-03-22 Jfeスチール株式会社 打ち抜き性と成形性に優れるフェライト系ステンレス冷延鋼板
KR100762151B1 (ko) * 2001-10-31 2007-10-01 제이에프이 스틸 가부시키가이샤 딥드로잉성 및 내이차가공취성이 우수한 페라이트계스테인리스강판 및 그 제조방법
US20070239060A1 (en) * 2004-12-17 2007-10-11 Medtronic, Inc. System and method for regulating cardiac triggered therapy to the brain
JP4987326B2 (ja) * 2006-03-10 2012-07-25 日新製鋼株式会社 表面硬化フェライト系ステンレス鋼板
JP5208450B2 (ja) * 2006-07-04 2013-06-12 新日鐵住金ステンレス株式会社 熱疲労特性に優れたCr含有鋼
JP5970796B2 (ja) * 2010-12-10 2016-08-17 Jfeスチール株式会社 太陽電池基板用鋼箔およびその製造方法、並びに太陽電池基板、太陽電池およびその製造方法
CN103348023B (zh) * 2011-02-08 2015-11-25 新日铁住金不锈钢株式会社 铁素体系不锈钢热轧钢板及其制造方法、以及铁素体系不锈钢板的制造方法
WO2013080526A1 (ja) * 2011-11-30 2013-06-06 Jfeスチール株式会社 フェライト系ステンレス鋼
IN2015DN01710A (ja) 2012-09-03 2015-05-22 Aperam Stainless France
FI124995B (fi) 2012-11-20 2015-04-15 Outokumpu Oy Ferriittinen ruostumaton teräs
JP5652567B1 (ja) * 2014-07-23 2015-01-14 Jfeスチール株式会社 太陽電池基板用フェライト系ステンレス箔の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10251750A (ja) * 1997-02-28 1998-09-22 Union Sider Nord Est Fr <Usinor> 自動車排気管の触媒担体として使用可能なアルミニウム含有率の高いフェライトステンレス鋼フォイルの製造方法
JP2003328088A (ja) * 2002-05-13 2003-11-19 Nisshin Steel Co Ltd 熱交換器用フェライト系ステンレス鋼材
JP2004243354A (ja) * 2003-02-13 2004-09-02 Jfe Steel Kk スピニング加工性に優れたフェライト系ステンレス鋼溶接管
JP2007217716A (ja) * 2006-02-14 2007-08-30 Nisshin Steel Co Ltd スピニング加工用フェライト系ステンレス鋼溶接管およびその製造法
JP2013079428A (ja) * 2011-10-04 2013-05-02 Jfe Steel Corp Al含有フェライト系ステンレス熱延鋼帯の製造方法およびAl含有フェライト系ステンレス熱延鋼帯、ステンレス箔、並びに、自動車排ガス浄化装置用触媒担体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3187609A4 *

Also Published As

Publication number Publication date
EP3187609B1 (en) 2021-10-06
US20170275725A1 (en) 2017-09-28
EP3187609A4 (en) 2017-12-06
CN106795599B (zh) 2019-12-24
KR20170038866A (ko) 2017-04-07
TW201615865A (zh) 2016-05-01
CN106795599A (zh) 2017-05-31
KR101994559B1 (ko) 2019-06-28
EP3187609A1 (en) 2017-07-05
TWI648413B (zh) 2019-01-21
ES2901964T3 (es) 2022-03-24
JP5874873B1 (ja) 2016-03-02
JPWO2016031192A1 (ja) 2017-04-27

Similar Documents

Publication Publication Date Title
JP5522330B2 (ja) フェライト系ステンレス箔
JP5700181B1 (ja) フェライト系ステンレス箔
JP5561447B1 (ja) ステンレス鋼板およびステンレス箔
MX2014011517A (es) Chapa de acero inoxidable ferritico laminada en frio, resistente al calor, chapa de acero inoxidable ferritico, laminada en caliente, para materia prima y metodos para producir las mismas.
KR101898564B1 (ko) 페라이트계 스테인리스박 및 그의 제조 방법
EP2554700B1 (en) Stainless steel foil and catalyst carrier for exhaust gas purification device using the foil
JP5874873B1 (ja) フェライト系ステンレス箔およびその製造方法
US9624563B2 (en) Stainless steel foil and catalyst carrier for exhaust gas purifying device using the foil
JP6319537B1 (ja) ステンレス鋼板およびステンレス箔
JP2885497B2 (ja) 製造性に優れた高温高強度、高耐熱性Fe―Cr―Al係合金

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015552675

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15835384

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015835384

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015835384

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20177005297

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15507001

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE