WO2016031167A1 - 反射防止膜および反射防止膜を備えた光学部材 - Google Patents

反射防止膜および反射防止膜を備えた光学部材 Download PDF

Info

Publication number
WO2016031167A1
WO2016031167A1 PCT/JP2015/004053 JP2015004053W WO2016031167A1 WO 2016031167 A1 WO2016031167 A1 WO 2016031167A1 JP 2015004053 W JP2015004053 W JP 2015004053W WO 2016031167 A1 WO2016031167 A1 WO 2016031167A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
refractive index
layer
oxynitride
oxide
Prior art date
Application number
PCT/JP2015/004053
Other languages
English (en)
French (fr)
Inventor
慎一郎 園田
達矢 吉弘
高橋 裕樹
元隆 金谷
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to CN201580045227.0A priority Critical patent/CN106574985B/zh
Priority to JP2016544931A priority patent/JP6411517B2/ja
Publication of WO2016031167A1 publication Critical patent/WO2016031167A1/ja
Priority to US15/440,195 priority patent/US10228492B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/118Anti-reflection coatings having sub-optical wavelength surface structures designed to provide an enhanced transmittance, e.g. moth-eye structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/30Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by a layer formed with recesses or projections, e.g. hollows, grooves, protuberances, ribs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/3411Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials
    • C03C17/3429Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials at least one of the coatings being a non-oxide coating
    • C03C17/3435Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials at least one of the coatings being a non-oxide coating comprising a nitride, oxynitride, boronitride or carbonitride
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0676Oxynitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/083Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3464Sputtering using more than one target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/113Anti-reflection coatings using inorganic layer materials only
    • G02B1/115Multilayers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0018Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 with means for preventing ghost images
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/70Properties of coatings
    • C03C2217/73Anti-reflective coatings with specific characteristics
    • C03C2217/734Anti-reflective coatings with specific characteristics comprising an alternation of high and low refractive indexes

Definitions

  • the present invention relates to an antireflective film and an optical member provided with the antireflective film.
  • an antireflection film is provided on the light incident surface in order to reduce the loss of transmitted light due to surface reflection.
  • a reflection preventing film for visible light a dielectric multilayer film, a fine uneven layer having fine unevenness with a pitch shorter than the wavelength of visible light, and the like are known.
  • Patent Document 1 aims to provide an optical film that can be applied to optical members having various surface shapes and has excellent performance in wavelength band characteristics and incident angle characteristics, and is intended to be applied to a transparent substrate.
  • the first layer includes a region in which the refractive index changes continuously or stepwise according to the change in the composition ratio of the refractive index material in the film thickness direction, and specifically, Examples thereof include a film formed by using a two-source vapor deposition method of titania and silica, a film formed by using a two-source vapor deposition method of zirconia and silica, and the like.
  • Patent Document 2 discloses a configuration in which a fine uneven layer is provided on a transparent substrate via a transparent thin film layer as in Patent Document 1, and the productivity can be improved by using less material types.
  • An antireflective film having the illustrated configuration has been proposed.
  • the transparent thin film layer is provided with a plurality of nitride layers and / or oxynitride layers of the same type, and examples of the nitride layer include SiN, AlN, and SiAlN, and as the oxynitride layer And SiON, AlON and SiAlON are mentioned.
  • the present invention has been made in view of the above-mentioned circumstances, and is an antireflective film and an optical member having a configuration capable of manufacturing an optical member having an antireflective film and an antireflective film having a predetermined antireflective performance with high yield. Intended to provide.
  • the inventors of the present invention have found that an anti-reflection film having a fine uneven layer through a thin film layer on a transparent base material causes a large difference in the performance of the anti-reflection film between production lots as an oxynitride film as the thin film layer. It has been found that when forming a film having a high refractive index using the above, the refractive index of the film obtained by actually forming a film with respect to the design value of the refractive index is largely different in each production lot. At the same time, it has been newly found that the extinction coefficient of the oxynitride film rapidly increases on the high refractive index side. The present invention has been made based on the above-mentioned findings newly found by the present inventors.
  • the antireflective film of the present invention is an antireflective film provided on the surface of a light transmitting substrate, and is used as a thin film multilayer film composed of a plurality of layers laminated in order from the side of the substrate,
  • the surface has a concavo-convex structure with an average pitch shorter than the wavelength of light, and the refractive index to the used light changes continuously according to the continuous change of the space occupancy in the film thickness direction of the thin film multilayer film in the concavo-convex structure Containing a fine uneven layer
  • a plurality of layers are formed of an oxide film of at least two metal element species or a layer having a relatively high refractive index composed of silicon and an oxide film of at least one metal element species, and an oxynitride film And a layer having a relatively low refractive index.
  • the relatively high refractive index and the relatively low refractive index mean a low refractive index and a high refractive index when comparing the two refractive indexes.
  • the oxide film of at least two metal element species is a film containing only the oxygen element other than the metal element species, and the silicon and the oxide film of the at least one metal element species are silicon and the metal element species The other is a film containing only an oxygen element, and an oxynitride film is a film containing both an oxygen element and a nitrogen element.
  • a layer having a refractive index n or more is formed of an oxide film of at least two metal element species or an oxide film of silicon and at least one metal element species, and a layer having a refractive index less than n is an oxynitride film Preferably, it is formed.
  • the refractive index n is preferably 1.58 ⁇ n ⁇ 1.66, and particularly preferably 1.61.
  • the layer having a relatively low refractive index is preferably a silicon oxynitride film.
  • the layer having a relatively high refractive index is preferably a niobium silicon oxide film.
  • the optical member of the present invention comprises the above-described antireflective film on the surface of a light transmitting substrate.
  • the antireflective film of the present invention comprises an oxynitride film which is difficult to obtain a layer having high refractive index stably as a layer having a relatively low refractive index, and obtains a layer having high refractive index stably. Because it is possible to provide an oxide film of at least two metal element species or an oxide film of silicon and at least one metal element species as a layer having a relatively high refractive index, there is no variation due to production lot , And can have stable antireflection performance.
  • FIG. 1 It is a cross-sectional schematic diagram which shows the structure of the anti-reflective film which concerns on embodiment of this invention, and an optical member provided with the same. It is the figure which showed typically the refractive index in the lamination direction of the anti-reflective film of FIG. It is the figure which showed typically the refractive index in the lamination direction of design modification 1 of an antireflection film. It is the figure which showed typically the refractive index in the lamination direction of design modification 2 of an antireflection film. It is a figure which shows the oxygen flow rate dependence of the refractive index of the sputtered-deposited silicon oxynitride film.
  • FIG. 1 is a schematic cross-sectional view showing the configuration of an optical member 1 provided with an antireflective film 10 according to an embodiment of the present invention.
  • the antireflective film 10 has a thin film multilayer film 20 composed of a plurality of layers on the surface of the transparent substrate 5 and a concavo-convex structure with an average pitch shorter than the wavelength of light used.
  • the fine concavo-convex layer 30 in which the refractive index to the use light changes continuously is laminated in order.
  • the thin film multilayer film 20 comprises a layer 21 having a relatively high refractive index, which is an oxide film of at least two metal element species or an oxide film of silicon and at least one metal element species, and a relative film made of an oxynitride film. And a layer 22 having a low refractive index.
  • the refractive index may be higher than the refractive index of the film 22.
  • 1.58 ⁇ n ⁇ 1.66, preferably 1.60 ⁇ n ⁇ 1.63, and most preferably n 1.61.
  • oxynitride film 22 a film made of silicon oxynitride (SiON) is preferable.
  • the refractive index can be changed by changing the ratio of Si, O and N in SiON.
  • Each is composed of two kinds of metal elements and oxygen elements, or three elements of Si and one kind of metal elements and oxygen elements, and the refractive index can be changed by changing the ratio of these.
  • the oxide film may contain three or more types of metal elements, and may contain two or more types of metal elements when containing Si, but three types including oxygen from the viewpoint of material type reduction and ease of control of refractive index. It is preferable to consist of the oxide which consists of elements.
  • the element to be oxynitrided of the oxynitride forming the oxynitride film and the oxide forming the oxide film are oxidized It is desirable to share one of the elements.
  • the oxide is desirably SiNbO, SiTiO, ZrSiO, TaSiO, or the like.
  • the oxide film 21 can be formed by co-sputtering.
  • sputtering is performed by flowing Ar and O 2 at a predetermined flow rate in a chamber provided with a Si target and an Nb target.
  • Ar and O 2 is flowing Ar and O 2 at a predetermined flow rate in a chamber provided with a Si target and an Nb target.
  • the substrate 5 may be made of any material that is translucent to the light used, and may be made of a transparent lens, a transparent resin, or the like.
  • the used light is mainly visible light.
  • the shape of the substrate 5 is not particularly limited as long as it is used in an optical device such as a flat plate, a concave lens, or a convex lens.
  • the anti-reflective film of this invention is suitable also for curved surfaces, such as the concave surface of a plano-concave lens, for example. Used.
  • the fine uneven layer 30 is made of, for example, a layer mainly composed of alumina hydrate. Hydrates of alumina are boehmite (denoted as Al 2 O 3 ⁇ H 2 O or AlOOH) which is alumina monohydrate, and bayerite (Al) which is alumina trihydrate (aluminum hydroxide). 2 O 3 ⁇ 3 H 2 O or Al (OH) 3 ).
  • the layer containing the hydrate of alumina as a main component can be obtained, for example, by forming an aluminum film by a sputtering method, a vapor deposition method or the like and then performing a hydrothermal treatment.
  • the fine concavo-convex layer 30 mainly composed of alumina hydrate is transparent and has a generally sawtooth-shaped cross section although the size (apex angle) and direction are various (see FIG. 1). ).
  • the pitch of the fine concavo-convex layer 30 is the distance between the apexes of the nearest adjacent convex parts separated by the concave parts, and the pitch is on the order of several tens nm to several hundreds nm.
  • the average pitch is preferably 500 nm or less, and more preferably 200 nm or less.
  • the average pitch of the asperities can be determined by photographing a surface image of the fine asperity structure with a scanning electron microscope (SEM), performing image processing and binarizing, and performing statistical processing.
  • SEM scanning electron microscope
  • the fine uneven layer 30 becomes sparser as it gets farther from the base material 5 (the width of the gap corresponding to the concave portion becomes larger and the width of the convex portion becomes smaller), that is, the space occupancy becomes smaller as it gets farther from the base material 5
  • the refractive index decreases as the space occupancy decreases.
  • FIG. 2 is a view schematically showing the refractive index in the stacking direction of the anti-reflection film 10 of the optical member 1 shown in FIG.
  • the refractive index of the substrate 5 is n 0 and the refractive index of air is 1.
  • the fine uneven layer 30 is a layer whose refractive index changes so as to gradually approach the refractive index 1 of air from the base 5 side toward the surface.
  • the thin film multilayer film 20 is composed of an oxide film 21 having a refractive index higher than the refractive index n and an oxynitride film 22 having a refractive index lower than the refractive index n, and the oxide film 21 having a high refractive index on the substrate side An oxynitride film 22 having a low refractive index is provided on the fine uneven layer 30 side.
  • the oxide film 21 having a relatively high refractive index and the oxynitride film 22 having a relatively low refractive index are disposed in this order from the base 5 side.
  • the configuration of the thin film multilayer film 20 is not limited to this, and may have three or more layers, and is not limited to the configuration in which the layer having a high refractive index is disposed on the substrate side.
  • FIGS. 3 and 4 are diagrams schematically showing the refractive index in the stacking direction of the anti-reflection films of the first and second design modifications.
  • the thin film multilayer film 20 has an oxide film 21 having a refractive index higher than the refractive index n and a refractive index lower than the refractive index n, as in the embodiment shown in FIG. And an oxynitride film 22.
  • an oxynitride film 22 having a low refractive index is provided on the base 5 side
  • an oxide film 21 having a high refractive index is provided on the fine concavo-convex layer 30 side.
  • thin film multilayer film 20 includes oxide films 21 a, 21 b and 21 c having a refractive index higher than refractive index n, and oxynitride films 22 a and 22 b having a refractive index lower than refractive index n. 22c, and each of the oxide films 21a to 21c and the oxynitride films 22a to 22c are arranged such that the refractive index gradually decreases from the substrate 5 side toward the fine concavo-convex layer 30.
  • the thin film multilayer film 20 may be provided with a plurality of oxide films and a plurality of oxynitride films, respectively. Although three layers are provided here, the number of layers may be different between the oxide film and the oxynitride film.
  • the thin-film multilayer film 20 preferably has a refractive index between the refractive index of the base 5 and the refractive index of the fine uneven layer 30 closest to the base 5.
  • the plurality of layers constituting the thin film multilayer film 20 need not be arranged in the order of the refractive index.
  • the thin film multilayer film 20 may include a layer other than an oxide film having a relatively high refractive index and an oxynitride film having a relatively low refractive index.
  • SiO 2 may be provided as a layer having an even lower refractive index.
  • [Test 1] SiON films of various refractive indices were formed on a Si substrate by sputtering.
  • RF Radio Frequency: high frequency
  • Ar flow rate 26 sccm (ml / min)
  • N 2 flow rate 15 sccm
  • change O 2 flow rate A large number of SiON films having different ratios of Si: O: N, ie, different refractive indexes, were formed.
  • the refractive index increases as the ratio of nitrogen (N) increases.
  • the deposited SiON film had a thickness in the range of 80 nm to 120 nm.
  • the solid line is the designed refractive index value, and the broken line shows the variation range of the refractive index of the film actually formed.
  • the gradient of the refractive index with respect to the flow rate is different before and after the flow rate of 2.3 sccm, and it is apparent that the dispersion of the refractive index is large on the high refractive index side became.
  • the refractive index had a variation of about ⁇ 0.07 until the O 2 flow rate was 2.3 sccm and a variation of about ⁇ 0.02 after the flow rate of 2.3 sccm.
  • SiON the fact that the variation in refractive index is extremely large on the high refractive index side than near 1.58 to 1.66 is a phenomenon that was first found by the inventors of the present invention. .
  • niobium silicon oxide film (NbSiO) optimum for forming a high refractive index layer was examined.
  • NbSiO films of various refractive indexes were formed on a Si substrate by sputtering. Using Si target and Nb target, fix each at Ar flow rate: 26 sccm, O 2 flow rate: 5 sccm, and change the film from 120 W to 500 W on the Si target side and 120 W to 500 W on the Nb target side separately
  • the refractive index n is 1.6 by controlling the deposition rate of each target individually and relatively changing the RF power applied to each of the Nb target and the Si target (that is, the deposition rate for each target).
  • An NbSiO film in the range of ⁇ 2.2 was obtained. In the obtained refractive index range, the variation of the refractive index with respect to the O 2 flow rate was ⁇ 0.02.
  • the extinction coefficient k was below the measurement limit regardless of the refractive index of the obtained NbSiO film.
  • NbSiO can theoretically obtain a refractive index ranging from a refractive index of 1.46 for SiO 2 to a refractive index of 2.3 for Nb 2 O 5 by changing its composition ratio,
  • a lower limit to the film forming rate due to a plasma unstable region in sputtering
  • an upper limit to the film forming rate from the viewpoint of film thickness control. It was difficult to achieve a refractive index of less than 1.6 because of the lower limit of the deposition rate, and it was difficult to achieve an index of greater than 2.2 because of the upper limit of the deposition rate.
  • the relatively high refractive index layer be composed of an oxide film of Si and one metal element species, and the relatively low refractive index layer be composed of SiON I found that.
  • an optical member provided with an antireflective film in which a thin film multilayer film is formed of a silicon oxynitride film and an NbSiO film was manufactured.
  • a single lens was formed by polishing a lens glass material (S-LAH60; manufactured by OHARA INC.), And a dielectric multilayer film having an antireflection function was formed on one surface of the lens.
  • the antireflective film of the example of the present invention was formed on the other surface of the lens.
  • a SiNbO film was formed as a layer having a relatively high refractive index on the other surface of the lens by sputtering, and a SiON film was formed in this order as a layer having a relatively low refractive index to form a thin film multilayer film.
  • the thickness of the SiNbO film is 70 nm
  • the refractive index n is 1.735 (design value) for the 540 nm wavelength
  • the SiON film is 80 nm thick
  • the refractive index n is 1.584 (design value) for the 540 nm wavelength. .
  • the sputtering conditions such as the sputtering time and the oxygen flow rate of the above-mentioned thickness and design refractive index are obtained from the relation between the film thickness and the sputtering time and the relation between the oxygen flow rate of nitrided oxide and the refractive index
  • the film was set up.
  • the anti-reflection film of the example including the thin film multilayer film composed of the SiNbO film and the SiON film and the fine uneven layer on the base material was produced.
  • a plurality of anti-reflection films ie, a plurality of optical members consisting of a substrate and an anti-reflection film were produced under the same conditions and different production lots as above. As a result of inspecting the reflectance of each optical member, variation in reflectance was small even among optical members manufactured in different production lots.
  • an inner surface anti-reflection paint (Canon Chemical (GT 1000)) was applied to the edge of the lens to a thickness of 5 ⁇ m, and the single lens was incorporated into the lens barrel to complete the camera lens. And a low ghost was observed.
  • an optical member provided with an antireflective film in which a thin film multilayer film was formed of only silicon oxynitride (SiON) was manufactured.
  • a single lens was formed by polishing from a lens glass material (S-LAH60).
  • a dielectric multilayer film having an antireflection function was formed on one surface of the lens.
  • an antireflective film which is a comparative example of the present invention, was formed on the other surface of the lens.
  • a first SiON film as a layer having a relatively high refractive index on the other surface of the lens and a second SiON film as a layer having a relatively low refractive index were formed in this order by sputtering.
  • the first SiON film is 70 nm thick, the refractive index n is 1.735 (design value) for 540 nm wavelength, the second SiON film is 80 nm thick, and the refractive index n is 1.584 for 540 nm wavelength (Design value).
  • each layer is obtained from the relationship between the film thickness and the sputtering time and the relationship between the oxygen flow rate of the nitride oxide and the refractive index.
  • the film formation was performed by setting the sputtering conditions such as the flow rate.
  • an antireflective film of a comparative example was produced, which was provided with a thin film multilayer film composed of the first SiON film and the second SiON film and a fine uneven layer on the base material.
  • a plurality of anti-reflection films ie, a plurality of optical members consisting of a substrate and an anti-reflection film were produced under the same conditions and different production lots as above.
  • the reflectance was largely different among the plurality of optical members despite being produced under the same conditions.
  • an inner surface antireflective paint (Canon Chemical (GT 1000)) was applied to the edge of the lens to a thickness of 5 ⁇ m, and the single lens was incorporated into the lens barrel to complete the camera lens. Largely observed.
  • the refractive index n 0 is set to 1.839.
  • the refractive index of the boehmite layer obtained by warm water treatment after depositing a 50 nm aluminum film when the 50 nm aluminum film is deposited under the same conditions on the Si substrate, the warm water treatment is performed under the same conditions
  • the refractive index of the formed aluminum hydroxide layer was actually measured with a spectroscopic ellipsometer, and the refractive index in the film thickness direction was fitted to a 5 nm 100 layer as shown in FIG.
  • NbSiO formed as a layer having a high refractive index has a film formation variation of the refractive index of about ⁇ 0.02, as described above, regarding the configuration of the example.
  • the reflectance of the first SiON layer when the reflectance of the first SiON layer is 1.665, the reflectance exceeds 0.5% at a wavelength of 500 nm or less, and the reflectance exceeds 1% near 450 nm. In addition, when the reflectance of the first SiON layer is 1.805, the reflectance exceeds 0.5% when the wavelength exceeds 700 nm. As the reflectance increases, ghosting increases and desired lens characteristics can not be obtained. Thus, when the thin film multilayer film is formed only with SiON, it is clear that the yield in the case of producing a lens of stable quality is low.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Laminated Bodies (AREA)

Abstract

【課題】高い生産性で製造することができ、かつ十分な光学特性を有する反射防止膜およびその反射防止膜を備えた光学部材を提供する。 【解決手段】透光性を有する基材の表面に設けられる反射防止膜において、基材(5)の側から順に積層された、複数の層から構成される薄膜多層膜(20)と、使用光の波長より短い平均ピッチで形成された凹凸構造を有し、凹凸構造における膜厚方向での空間占有率の連続的な変化に応じて、使用光に対する屈折率が連続的に変化する微細凹凸層(30)とを含み、複数の層中に、相対的に高い屈折率を有する少なくとも2種の金属元素種の酸化膜もしくはケイ素と少なくとも1種の金属元素種の酸化膜(21)と、相対的に低い屈折率を有する酸窒化膜(22)とを含むものとする。

Description

反射防止膜および反射防止膜を備えた光学部材
 本発明は、反射防止膜および反射防止膜を備えた光学部材に関するものである。
 プラスチックなどの透光性部材を用いたレンズ(透明基材)においては、表面反射による透過光の損失を低減するために光入射面に反射防止膜が設けられている。
 例えば、可視光に対する反射防止膜として、誘電体多層膜や、可視光の波長よりも短いピッチの微細凹凸を表面に備えた微細凹凸層などが知られている。
 特許文献1には、種々の表面形状の光学部材に対して適用することができ、波長帯域特性および入射角度特性に優れた性能を有する光学膜を提供することを目的とし、透明基材上に第1層としての薄膜層を介して第2層として微細凹凸層が形成された光学膜が提案されている。特許文献1に記載の光学膜において、第1層は膜厚方向における屈折率物質の組成比の変化に応じて屈折率が連続的または段階的に変化する領域を含むものであり、具体的には、チタニアとシリカの2源蒸着法を用いて形成された膜、ジルコニアとシリカの2源蒸着法を用いて形成された膜などが挙げられている。
 特許文献2には、特許文献1と同様に透明基材上に透明薄膜層を介して微細な凹凸層を備えた構成が開示されており、より少ない材料種で作製可能な生産性の向上を図った構成の反射防止膜が提案されている。この特許文献2において、透明薄膜層は同一種の窒化物層および/または酸窒化物層を複数備えるものであり、窒化物層としては、SiN、AlN、SiAlNが挙げられ、酸窒化物層としては、SiON、AlON、SiAlONが挙げられている。
特開2014-21146号公報 特開2014-81522号公報
 しかしながら、特許文献1、2に記載のような透明基材上に薄膜層を介して微細凹凸層が形成されてなる反射防止膜を備えた光学部材を、カメラレンズとしてカメラに組み込んだ場合に、光学部材によっては大きなゴーストが生じる場合があった。
 本発明者の鋭意検討により、製造ロットによって、ゴーストの小さいもの、大きいものが存在し、そのようなゴースト特性のばらつきは、製造ロット毎の反射防止膜の反射率ばらつきに起因するものであることが明らかになってきた。製造ロットによって、所望の反射防止性能を有する膜を形成することができる場合と、できない場合とが生じると、所望の性能を有する膜が形成できなかった製造ロットで製造された光学部材は不良品となってしまうために歩留まりの低下に繋がる。
 そこで、製造ロット間における反射防止膜の反射率ばらつきを抑制し、一定の反射防止性能を有する反射防止膜を製造可能とすることが求められる。
 本願発明は、上記事情に鑑みてなされたものであって、一定の反射防止性能を有する反射防止膜および反射防止膜を備えた光学部材を歩留まりよく製造可能とする構成の反射防止膜および光学部材を提供することを目的とする。
 本願発明者らは、透明基材上に薄膜層を介して微細凹凸層を備えた反射防止膜において、製造ロット毎で反射防止膜の性能に大きな違いが生じる原因が、薄膜層として酸窒化膜を用いて高い屈折率の膜を形成する場合に、その屈折率設計値に対して実際に成膜して得られる膜の屈折率が製造ロット毎で大きく異なるためであることを見出した。また、同時に酸窒化膜の消衰係数が高屈折率側で急激に大きくなることを新たに見出した。
 本発明は、本発明者らが新たに見出した上記知見に基づいてなされたものである。
 本発明の反射防止膜は、透光性を有する基材の表面に設けられる反射防止膜であって、基材の側から順に積層された、複数の層から構成される薄膜多層膜と、使用光の波長より短い平均ピッチの凹凸構造を表面に有し、凹凸構造における薄膜多層膜の膜厚方向での空間占有率の連続的な変化に応じて、使用光に対する屈折率が連続的に変化する微細凹凸層とを含み、
 複数の層が、少なくとも2種の金属元素種の酸化膜もしくはケイ素と少なくとも1種の金属元素種の酸化膜により構成された相対的に高い屈折率を有する層と、酸窒化膜により構成された相対的に低い屈折率を有する層とを含む。
 ここで、相対的に高い屈折率、相対的に低い屈折率とは、その両者の屈折率を比較した場合における低い屈折率、高い屈折率を意味する。
 また、少なくとも2種の金属元素種の酸化膜とは、金属元素種の他は酸素元素のみを含む膜であり、ケイ素と少なくとも1種の金属元素種の酸化膜とは、ケイ素と金属元素種の他は酸素元素のみを含む膜であり、酸窒化膜とは、酸素元素と窒素元素の両元素を含む膜である。
 薄膜多層膜において、屈折率n以上の層が少なくとも2種の金属元素種の酸化膜もしくはケイ素と少なくとも1種の金属元素種の酸化膜により形成され、屈折率n未満の層が酸窒化膜により形成されていることが好ましい。ここで、屈折率nは1.58≦n≦1.66であり、特には1.61であることが好ましい。
 本発明において相対的に低い屈折率を有する層は、酸窒化ケイ素膜であることが好ましい。
 本発明において相対的に高い屈折率を有する層は、ニオブケイ素酸化膜であることが好ましい。
 本発明の光学部材は、透光性を有する基材の表面に上記反射防止膜を備えたものである。
 本発明の反射防止膜は、安定して高い屈折率を有する層を得ることが難しい酸窒化膜を、相対的に低い屈折率を有する層として備え、安定して高い屈折率を有する層を得ることができる、少なくとも2種の金属元素種の酸化膜もしくはケイ素と少なくとも1種の金属元素種の酸化膜を、相対的に高い屈折率を有する層として備えるものであるため、製造ロットによるばらつきなく、安定した反射防止性能を有するものとすることができる。
本願発明の実施形態に係る反射防止膜およびそれを備えた光学部材の構成を示す断面模式図である。 図1の反射防止膜の積層方向における屈折率を模式的に示した図である。 反射防止膜の設計変更例1の積層方向における屈折率を模式的に示した図である。 反射防止膜の設計変更例2の積層方向における屈折率を模式的に示した図である。 スパッタ成膜された酸窒化ケイ素膜の屈折率の酸素流量依存性を示す図である。 スパッタ成膜された酸窒化ケイ素膜の消衰係数の酸素流量依存性を示す図である。 アルミナ水和物からなる微細凹凸層の膜厚方向の屈折率変化を示す図である。 実施例の反射防止膜の反射率ばらつきについてのシミュレーション結果を示す図である。 比較例の反射防止膜の反射率ばらつきについてのミュレーション結果を示す図である。
 以下、図面を参照して本発明の実施の形態を説明する。
 図1は、本発明の実施形態に係る反射防止膜10を備えた光学部材1の構成を示す断面模式図である。図1に示すように、反射防止膜10は、透明基材5の表面に、複数の層から構成される薄膜多層膜20と、使用光の波長より短い平均ピッチの凹凸構造を表面に有し、その凹凸構造における膜厚方向での空間占有率の連続的な変化に応じて、使用光に対する屈折率が連続的に変化する微細凹凸層30とが順に積層されてなる。
 薄膜多層膜20は、少なくとも2種の金属元素種の酸化膜もしくはケイ素と少なくとも1種の金属元素種の酸化膜からなる相対的に高い屈折率を有する層21と、酸窒化膜からなる相対的に低い屈折率を有する層22とを含む。
 相対的に高い屈折率を有する層21(以下において、酸化膜21)と相対的に低い屈折率を有する層22(以下において、酸窒化膜22)とは、酸化膜21の屈折率が酸窒化膜22の屈折率よりも高ければよいが、特には、屈折率n以上の層が酸化膜21により形成され、屈折率n未満の層が酸窒化膜22により形成されていることが好ましい。ここで、1.58≦n≦1.66であり、好ましくは1.60≦n≦1.63であり、n=1.61が最も好ましい。
 酸窒化膜22としては、酸窒化ケイ素(SiON)からなる膜が好適である。SiONにおいてSi、O、Nの比を変化させることにより屈折率を変化させることができる。
 少なくとも2種の金属元素種の酸化膜もしくはケイ素(Si)と少なくとも1種の金属元素種の酸化膜21としては、ケイ素ニオブ酸化物(SiNbO)、ニオブアルミニウム酸化物(NbAlO)、チタンアルミニウム酸化物(TiAlO)、ケイ素チタン酸化物(SiTiO)、ジルコンケイ素酸化物(ZrSiO)、ジルコンアルミニウム酸化物(ZrAlO)、タンタルケイ素酸化物(TaSiO)などからなる酸化膜が挙げられる。いずれも2種の金属元素および酸素元素、もしくはSiと1種の金属元素および酸素元素の3つの元素から構成され、これらの比を変化させることにより、屈折率を変化させることができる。酸化膜は3種以上の金属元素、Siを含む場合は2種以上の金属元素を含んでいてもよいが、材料種の削減および屈折率の制御の容易性の観点から酸素を含めて3つの元素からなる酸化物からなることが好ましい。
 スパッタ装置のチャンバー内にセットする金属ターゲットを少なくし、成膜バッチを減らすために、酸窒化膜を構成する酸窒化物の酸窒化される元素と、酸化膜を構成する酸化物の酸化される元素のうちの1つを共通化することが望ましい。例えば、酸窒化物がSiONであるとき、酸化物がSiNbO、SiTiO、ZrSiO、TaSiOなどであることが望ましい。
 酸化膜21は、共スパッタ法により成膜することができる。例えば、SiNbO膜を成膜する場合、SiターゲットとNbターゲットを備えたチャンバー内に、Ar、Oを所定流量でフローさせてスパッタを行う。スパッタ時のスパッタ電力を変化させることにより成膜レートを変化させ、成膜レートを変化させることによりSi、Nb、Oの比率が異なる膜を得ることができる。
 基材5は、使用光に対して透光性を有するものであればよく、透明なレンズ、透明樹脂などから構成されたものを用いることができる。使用光は主として可視光である。基材5の形状は特に限定なく、平板、凹レンズ、凸レンズなど光学装置において用いられるものであればよい。図1には平板状の基材5を用い、反射防止膜を平面上に形成する例を示しているが、本発明の反射防止膜は、例えば、平凹レンズの凹面などの曲面にも好適に用いられる。
 微細凹凸層30は、例えば、アルミナの水和物を主成分とする層からなる。アルミナの水和物とは、アルミナ1水和物であるベーマイト(Al23・H2OあるいはAlOOHと表記される。)、アルミナ3水和物(水酸化アルミニウム)であるバイヤーライト(Al23・3H2OあるいはAl(OH)3と表記される。)などである。
 アルミナの水和物を主成分とする層は、例えば、スパッタ法あるいは蒸着法などでアルミニウム膜を成膜後、水熱処理を行うことにより得ることができる。
 アルミナの水和物を主成分とする微細凹凸層30は、透明であり、大きさ(頂角の大きさ)や向きはさまざまであるが概ね鋸歯状の断面を有している(図1参照)。この微細凹凸層30のピッチとは凹部を隔てた最隣接凸部の頂点同士の距離であり、そのピッチは数10nm~数100nmオーダーである。そして、平均ピッチは500nm以下であることが好ましく、さらには200nm以下であることが好ましい。
 凹凸の平均ピッチは、SEM(Scanning Electron Microscope:走査型電子顕微鏡)で微細凹凸構造の表面画像を撮影し、画像処理をして2値化し、統計的処理によって求めることができる。
 微細凹凸層30は、基材5から離れるほど疎になる(凹部に相当する空隙の幅が大きくなり、凸部の幅が小さくなる)、すなわち基材5から離れるほど空間占有率が小さくなる構造を有しており、空間占有率が小さくなるにつれて屈折率が小さくなるものである。
 図2は、図1に示す光学部材1の反射防止膜10の積層方向における屈折率を模式的に示した図である。基材5の屈折率がn、空気の屈折率が1である。また、微細凹凸層30は、基材5側から表面に向けて徐々に空気の屈折率1に近づくように屈折率が変化する層である。
 そして、薄膜多層膜20は、屈折率nより高い屈折率を有する酸化膜21と、屈折率nより低い屈折率を有する酸窒化膜22とからなり、基板側に屈折率の高い酸化膜21、微細凹凸層30側に屈折率の低い酸窒化膜22が備えられている。
 本例においては、薄膜多層膜20は、相対的に高い屈折率を有する酸化膜21と相対的に低い屈折率を有する酸窒化膜22とが、この順に基材5側から配置されているが、薄膜多層膜20の構成はこれに限るものではなく、3以上の層を備えていてもよいし、屈折率の高い層が基材側に配置される構成に限るものでもない。
 図3、4は、設計変更例1、2の反射防止膜の積層方向における屈折率を模式的に示す図である。
 図3に示す設計変更例1において、薄膜多層膜20は、図2に示した実施形態と同様に、屈折率nより高い屈折率を有する酸化膜21と、屈折率nより低い屈折率を有する酸窒化膜22とからなる。しかし、基材5側に低い屈折率を有する酸窒化膜22、微細凹凸層30側に高い屈折率を有する酸化膜21を備えている点が図2と相違する。
 図4に示す設計変更例2において、薄膜多層膜20は、屈折率nより高い屈折率を有する酸化膜21a、21b、21cと、屈折率nより低い屈折率を有する酸窒化膜22a、22b、22cとを備えており、各酸化膜21a~21cおよび酸窒化膜22a~22cが基板5側から微細凹凸層30に向けて屈折率が徐々に小さくなるように配置されている。
 この設計変更例2で示すように、薄膜多層膜20は、酸化膜、酸窒化膜をそれぞれ複数層備えていてもよい。ここでは、3層ずつとしたが、酸化膜と酸窒化膜で異なる層数であってもよい。
 本発明においては、薄膜多層膜20は、その平均屈折率が基材5の屈折率と微細凹凸層30の最も基材5側の屈折率との間の屈折率を有するものであることが好ましいが、薄膜多層膜20を構成する複数の層は、その屈折率の高低順に配置されている必要はない。
 また、薄膜多層膜20においては、相対的に高い屈折率を有する酸化膜、相対的に低い屈折率を有する酸窒化膜以外の層を含んでいてもよい。例えば、相対的に低い屈折率を有する酸窒化膜としてSiON膜を備えたとき、さらに低い屈折率を有する層としてSiO2を備えていてもよい。
 酸窒化膜として特に好ましいSiONについては、従来から、その構成元素であるSi、O、Nの比を変化させることにより、1.46~1.9の範囲の屈折率を得ることができることが知られている。
 しかしながら、既述の通り本発明者らは、SiON膜をスパッタ法により成膜する際に、設計屈折率に対し、実際に成膜された膜の屈折率にばらつきが生じ、そのばらつきが設計屈折率1.6近傍で急激に大きくなることを見出した。SiON膜の高屈折率側における大きな屈折率ばらつきを見出すに至った試験について以下に説明する。
[試験1]
 Si基板上にスパッタ法を用いて種々の屈折率のSiONを成膜した。
 スパッタ装置において、Siターゲットを用い、RF(Radio Frequency:高周波)パワー:500W、Ar流量:26sccm(ml/min)、N流量:15sccmにそれぞれを固定し、O流量を変化させることにより、Si:O:Nの比率が異なる、すなわち屈折率が異なるSiON膜を多数成膜した。一般に酸窒化物においては、窒素(N)の比率が大きくなるほど屈折率は大きくなる。成膜したSiON膜は、80nm~120nmの範囲の厚みとした。
 上記のようにして、屈折率の異なる多数のSiON膜について、その成膜時の酸素流量と得られた膜の屈折率との関係を図5に、成膜時の酸素流量と得られた膜の消衰係数との関係を図6に示す。成膜した各SiON膜について、屈折率n、消衰係数kの波長依存性を分光エリプソメトリー法により測定した。図5、6には、540nmの波長での屈折率、消衰係数の値を示している。
 図5において、実線が屈折率設計値であり、破線が実際に成膜された膜の屈折率のばらつき範囲を示す。図5に示すように、SiON膜においては、流量2.3sccmの前後で流量に対する屈折率の傾きが異なり、傾きが大きくなる高屈折率側において屈折率のばらつきが大きくなっていることが明らかになった。屈折率は、O流量が2.3sccmまでは±0.07程度のばらつき、流量2.3sccm以降は±0.02程度のばらつきであった。このようにSiONにおいては屈折率が1.58~1.66近傍より高屈折率側でばらつきが非常に大きくなっていることは本発明者らの鋭意研究により、初めて見出された事象である。
 この試験により、SiONは、屈折率1.66程度までの比較的低い屈折率層を得るためにのみ用いるのが好ましいことが明らかになった。すなわち、SiONは、1.66未満、1.61未満、あるいは1.58未満の屈折率の層を構成するために好適である。
 次に、高い屈折率層を構成するのに最適なニオブケイ素酸化膜(NbSiO)について検討した。
 [試験2]
 Si基板上にスパッタ法により種々の屈折率のNbSiO膜を成膜した。
 SiターゲットとNbターゲットを用い、Ar流量:26sccm、O流量:5sccmにそれぞれを固定してSiターゲット側を120W~500W、Nbターゲット側を120W~500Wまでそれぞれ個別に変化させて成膜を行った。各ターゲットの成膜レートを個別に制御し、NbターゲットおよびSiターゲットのそれぞれに加えるRFパワー(すなわちそれぞれのターゲット毎の成膜レート)を相対的に変化させることにより、屈折率nが1.6~2.2の範囲のNbSiO膜を得た。得られた屈折率範囲において、O流量に対する屈折率のばらつきは±0.02であった。また、得られたNbSiO膜は屈折率にかかわらず消衰係数kは測定限界以下であった。
 NbSiOは、その構成比率を変化させることにより、理論的にはSiOの屈折率1.46~Nbの屈折率2.3までの範囲の屈折率を得ることが可能であるが、現実的には、スパッタにおけるプラズマ不安定領域のために成膜レートには下限が存在し、また、膜厚制御の観点から成膜レートには上限が存在する。成膜レートの下限のために屈折率1.6未満を実現するのは困難であり、成膜レートの上限のために屈折率2.2超えを実現するのは困難であった。
 なお、共スパッタにより成膜する酸化膜であれば、NbSiOに限らず、NbAlO、TiAlO、SiTiO、ZrSiO、TaSiOなどでも同様の傾向がみられ、2種金属元素種を含む酸化膜やSiと金属元素種を含む酸化膜では、屈折率1.6未満を実現するのは難しい。
 上記の試験1および試験2の結果から、相対的に高い屈折率層をSiと1種の金属元素種の酸化膜により構成し、相対的に低い屈折率層をSiONにより構成することが特に好ましいことが分かった。
 以下、本発明の反射防止膜の実施例と比較例、および各構成についてシミュレーションを用いて反射防止性能を検討した結果を説明する。
[実施例]
 本発明の実施例として薄膜多層膜を酸窒化ケイ素膜およびNbSiO膜により形成した反射防止膜を備えた光学部材を作製した。
 まず、レンズ硝材(S-LAH60;オハラ社製)から研磨によって単品のレンズを形成し、そのレンズの一方の面には反射防止機能を有する誘電体多層膜を形成した。
 その後、レンズの他方の面に本発明の実施例の反射防止膜を形成した。まず、スパッタ法にてレンズの他方の面に相対的に高い屈折率を有する層としてSiNbO膜、相対的に低い屈折率を有する層としてSiON膜をこの順に成膜し薄膜多層膜を形成した。SiNbO膜は70nmの厚み、屈折率nは540nm波長に対して1.735(設計値)とし、SiON膜は80nmの厚み、屈折率nは540nm波長に対して1.584(設計値)とした。
 引き続き50nm厚みのアルミニウム膜を成膜し、レンズごと蒸留沸騰水に3分間浸漬させることによってアルミニウムをアルミナ水和物に変質させアルミナ水和物からなる微細凹凸層を形成した。
 なお、各層は、予め取得した、成膜厚みとスパッタ時間との関係および窒化酸化物の酸素流量と屈折率との関係から、上記厚みおよび設計屈折率のスパッタ時間および酸素流量などのスパッタ条件を設定して成膜した。
 以上のようにして、基材上にSiNbO膜およびSiON膜からなる薄膜多層膜と、微細凹凸層とを備えた実施例の反射防止膜を作製した。
 上記と同一条件かつ異なる製造ロットで複数の反射防止膜を、すなわち基材と反射防止膜からなる複数の光学部材を作製した。
 各光学部材の反射率を検査した結果、異なる製造ロットで作製された光学部材間においても反射率のばらつきは小さかった。
 その後、レンズのコバ(縁)面に内面反射防止塗料(キャノン化成製(GT1000))を5μm厚みで塗布し、鏡筒に単品レンズを組み込み、カメラレンズを完成させたところ、いずれのレンズでも安定して低いゴーストが観測された。
[比較例]
 次に、比較例として、薄膜多層膜を酸窒化ケイ素(SiON)のみで形成した反射防止膜を備えた光学部材を作製した。
 レンズ硝材(S-LAH60)から研磨することによってレンズ単品を形成した。そのレンズの一方の面には反射防止機能を有する誘電多層膜を形成した。
 その後、レンズの他方の面に本発明の比較例となる反射防止膜を形成した。まず、スパッタ法にてレンズの他方の面に相対的に高い屈折率を有する層として第1のSiON膜、相対的に低い屈折率を有する層として第2のSiON膜をこの順に成膜した。第1のSiON膜は70nmの厚み、屈折率nは540nm波長に対して1.735(設計値)とし、第2のSiON膜は80nmの厚み、屈折率nは540nm波長に対して1.584(設計値)とした。
 引き続き50nm厚みのアルミニウム膜を成膜し、レンズごと蒸留沸騰水に3分間浸漬させることによってアルミニウムをアルミナ水和物に変質させアルミナ水和物からなる微細凹凸層を形成した。
 実施例の場合と同様に、各層は、予め取得した、成膜厚みとスパッタ時間との関係および窒化酸化物の酸素流量と屈折率との関係から、上記厚みおよび設計屈折率のスパッタ時間および酸素流量などのスパッタ条件を設定して成膜した。
 以上のようにして、基材上に第1のSiON膜および第2のSiON膜からなる薄膜多層膜と、微細凹凸層とを備えた比較例の反射防止膜を作製した。
 上記と同一条件かつ異なる製造ロットで複数の反射防止膜を、すなわち基材と反射防止膜からなる複数の光学部材を作製した。
 各光学部材の反射率を検査した結果、同一条件で作製したにも関わらず複数の光学部材間で反射率が大きく異なっていた。
 その後、レンズのコバ面に内面反射防止塗料(キャノン化成製(GT1000))を5μm厚みで塗布し、鏡筒に単品レンズを組み込み、カメラレンズを完成させたが、反射率の高いレンズはゴーストが大きく観測された。
[シミュレーション]
 上記実施例および比較例の光学部材の各反射防止膜について、それぞれの屈折率ばらつき範囲での反射率の波長依存性をシミュレーションした。多層膜の計算は薄膜計算ソフト「Essential Macleod」(シグマ光機社製)で行った。
 シミュレーションにおいて、基材はオハラS-LAH60を想定して、屈折率n=1.839とした。
 また、50nmのアルミニウム膜を成膜後に温水処理して得られたベーマイト層の屈折率については、Si基板上に同一条件で50nmのアルミニウム膜を成膜後、同一条件で温水処理を行った際に形成された水酸化アルミニウム層について、実際に分光エリプソ装置で屈折率を測定し、膜厚方向の屈折率を図7に示すように5nm100層にフィッティングさせた。図7において、屈折率n=1は空気側であり、膜厚の増加方向が基材に近づく方向である。このフィッティング結果をシミュレーションに用いた。
 実施例の構成については、高い屈折率を有する層として形成されたNbSiOは既述の通り屈折率の成膜ばらつきが±0.02程度であるため、設計屈折率1.735の場合に加え、屈折率が1.755(=1.735+0.02)、1.715(=1.735-0.02)である場合の反射防止膜の反射率の波長依存性をシミュレーションした。
 図8に示す通り、NbSiOの屈折率ばらつきの範囲では、波長450nm~850nmに亘り0.5%以下の反射率を実現することができた。本発明の反射防止膜の構成によれば、安定した品質を実現することができ、歩留まり高く光学部材を製造することが可能となることが明らかである。
 他方、比較例の構成では、高い屈折率を有する層として形成された第1のSiON層について、図5に示した通り、1.66超えで屈折率ばらつきが±0.07あるため、第1のSiON層の屈折率が1.735である場合に加え、1.805(=1.735+0.07)、1.665(=1.735-0.07)である場合の反射防止膜の反射率の波長依存性をシミュレーションした。
 図9に示す通り、第1のSiON層の反射率が1.665のとき、波長500nm以下で反射率が0.5%を超え450nm近傍では反射率が1%を超える。また、第1のSiON層の反射率が1.805のとき、波長700nm超えで反射率が0.5%を超えてしまう。反射率が大きくなるとゴーストが増大し、所望のレンズ特性を得ることができない。このように、SiONのみで薄膜多層膜を形成した場合には、安定した品質のレンズを製造する場合の歩留まりが低いことが明らかである。

Claims (6)

  1.  透光性を有する基材の表面に設けられる反射防止膜であって、前記基材の側から順に積層された、複数の層から構成される薄膜多層膜と、使用光の波長より短い平均ピッチの凹凸構造を表面に有し、該凹凸構造における前記薄膜多層膜の膜厚方向での空間占有率の連続的な変化に応じて、前記使用光に対する屈折率が連続的に変化する微細凹凸層とを含み、
     前記複数の層が、少なくとも2種の金属元素種の酸化膜もしくはケイ素と少なくとも1種の金属元素種の酸化膜により構成された相対的に高い屈折率を有する層と、酸窒化膜により構成された相対的に低い屈折率を有する層とを含む反射防止膜。
  2.  前記薄膜多層膜において、屈折率n以上の層が前記少なくとも2種の金属元素種の酸化膜もしくはケイ素と少なくとも1種の金属元素種の酸化膜により形成されており、前記屈折率n未満の層が酸窒化膜により形成されここで、1.58≦n≦1.66である請求項1記載の反射防止膜。
  3.  前記屈折率nが1.61である請求項2記載の反射防止膜。
  4.  前記相対的に低い屈折率を有する層が、酸窒化ケイ素からなる膜である請求項1から3いずれか1項記載の反射防止膜。
  5.  前記相対的に高い屈折率を有する層が、ニオブケイ素酸化膜である請求項1から4いずれか1項記載の反射防止膜。
  6.  透光性を有する基材の表面に請求項1から5のいずれか1項記載の反射防止膜を備えた光学部材。
PCT/JP2015/004053 2014-08-25 2015-08-14 反射防止膜および反射防止膜を備えた光学部材 WO2016031167A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201580045227.0A CN106574985B (zh) 2014-08-25 2015-08-14 防反射膜及具备防反射膜的光学部件
JP2016544931A JP6411517B2 (ja) 2014-08-25 2015-08-14 反射防止膜および反射防止膜を備えた光学部材
US15/440,195 US10228492B2 (en) 2014-08-25 2017-02-23 Antireflection film and optical member including antireflection film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-170617 2014-08-25
JP2014170617 2014-08-25

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/440,195 Continuation US10228492B2 (en) 2014-08-25 2017-02-23 Antireflection film and optical member including antireflection film

Publications (1)

Publication Number Publication Date
WO2016031167A1 true WO2016031167A1 (ja) 2016-03-03

Family

ID=55399085

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/004053 WO2016031167A1 (ja) 2014-08-25 2015-08-14 反射防止膜および反射防止膜を備えた光学部材

Country Status (4)

Country Link
US (1) US10228492B2 (ja)
JP (1) JP6411517B2 (ja)
CN (1) CN106574985B (ja)
WO (1) WO2016031167A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019187416A1 (ja) * 2018-03-29 2019-10-03 富士フイルム株式会社 反射防止膜および光学部材

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111247458B (zh) 2017-08-31 2022-06-07 康宁股份有限公司 混合梯度干涉硬涂层
WO2019046657A1 (en) * 2017-08-31 2019-03-07 Corning Incorporated HYBRID GRADIENT HARD INTERFERENCE COATINGS
CN114076997A (zh) * 2020-08-20 2022-02-22 光驰科技(上海)有限公司 一种薄膜及其制备方法
EP4016141A1 (en) * 2020-12-15 2022-06-22 Fundació Institut de Ciències Fotòniques Antireflective multilayer article with nanostructures
CN114578462A (zh) * 2021-03-22 2022-06-03 浙江舜宇光学有限公司 光学成像镜头
CN113985504B (zh) * 2021-12-27 2022-04-26 诚瑞光学(苏州)有限公司 光学镜片

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6480904A (en) * 1987-09-22 1989-03-27 Nippon Sheet Glass Co Ltd Transparent plate stuck with conductive antireflection film
JP2000160331A (ja) * 1998-02-16 2000-06-13 Asahi Glass Co Ltd 酸化物膜、その形成方法、スパッタリングタ―ゲットおよび積層体
JP2014021146A (ja) * 2012-07-12 2014-02-03 Canon Inc 光学膜、光学素子、光学系および光学機器
JP2014081522A (ja) * 2012-10-17 2014-05-08 Fujifilm Corp 反射防止膜を備えた光学部材およびその製造方法
JP2014098885A (ja) * 2012-10-17 2014-05-29 Fujifilm Corp 反射防止膜を備えた光学部材およびその製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6586101B2 (en) * 2001-04-18 2003-07-01 Applied Vacuum Coating Technologies Co., Ltd. Anti-reflection coating with transparent surface conductive layer
JP2006053200A (ja) * 2004-08-10 2006-02-23 Hitachi Maxell Ltd エッジフィルタ
JP4520418B2 (ja) * 2005-02-18 2010-08-04 キヤノン株式会社 光学用透明部材及びそれを用いた光学系
JP5647924B2 (ja) 2011-03-18 2015-01-07 富士フイルム株式会社 光学部材の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6480904A (en) * 1987-09-22 1989-03-27 Nippon Sheet Glass Co Ltd Transparent plate stuck with conductive antireflection film
JP2000160331A (ja) * 1998-02-16 2000-06-13 Asahi Glass Co Ltd 酸化物膜、その形成方法、スパッタリングタ―ゲットおよび積層体
JP2014021146A (ja) * 2012-07-12 2014-02-03 Canon Inc 光学膜、光学素子、光学系および光学機器
JP2014081522A (ja) * 2012-10-17 2014-05-08 Fujifilm Corp 反射防止膜を備えた光学部材およびその製造方法
JP2014098885A (ja) * 2012-10-17 2014-05-29 Fujifilm Corp 反射防止膜を備えた光学部材およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
M. SERENYI ET AL.: "Refractive index of sputtered silicon oxynitride layers for antireflection coating", VACUUM, vol. 61, 2001, pages 245 - 249 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019187416A1 (ja) * 2018-03-29 2019-10-03 富士フイルム株式会社 反射防止膜および光学部材
JPWO2019187416A1 (ja) * 2018-03-29 2021-03-11 富士フイルム株式会社 反射防止膜および光学部材

Also Published As

Publication number Publication date
CN106574985B (zh) 2019-02-26
CN106574985A (zh) 2017-04-19
JPWO2016031167A1 (ja) 2017-07-13
JP6411517B2 (ja) 2018-10-24
US20170160438A1 (en) 2017-06-08
US10228492B2 (en) 2019-03-12

Similar Documents

Publication Publication Date Title
WO2016031167A1 (ja) 反射防止膜および反射防止膜を備えた光学部材
WO2016031133A1 (ja) 反射防止膜を備えた光学部材およびその製造方法
US11320568B2 (en) Curved surface films and methods of manufacturing the same
EP3006969B1 (en) Optical member provided with anti-reflection film
JP6292830B2 (ja) 光学素子、光学系および光学機器
JP2007171735A (ja) 広帯域反射防止膜
JP5804683B2 (ja) 光学素子および、それを有する光学装置
WO2016136261A1 (ja) 反射防止膜および光学部材
WO2021024834A1 (ja) 反射防止膜付き光学部材及びその製造方法
US10564323B2 (en) Antireflection film and method of producing the same, and optical member
JP2008233403A (ja) 反射防止膜及びこれを有する光学部品
JP5084603B2 (ja) 偏光子及び液晶プロジェクタ
JP7216471B2 (ja) 車載レンズ用のプラスチックレンズ及びその製造方法
WO2020066428A1 (ja) 反射防止膜、光学素子、反射防止膜の製造方法および微細凹凸構造の形成方法
JP2019070687A5 (ja)
CN110709364A (zh) 带有亲水性防反射膜的透镜及其制造方法
JP6664299B2 (ja) 反射防止膜およびその製造方法、並びに光学部材
JP2018185394A (ja) 反射防止膜およびそれを有する光学素子,光学系,光学装置
WO2023095574A1 (ja) バンドパスフィルタの製造方法及びバンドパスフィルタ
JP2017219653A (ja) 反射防止膜およびそれを有する光学素子、光学系、光学機器
CN117970538A (zh) 一种红光增透减反膜系
JP2020190710A (ja) 反射防止膜及びこれを有する光学素子
JP2014174209A (ja) 反射防止膜およびそれを有する光学素子並びに光学系
JP2010079013A (ja) 光学部材の製造法および光学部材

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15835076

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016544931

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15835076

Country of ref document: EP

Kind code of ref document: A1