WO2016027822A1 - 架橋性ニトリルゴム組成物およびゴム架橋物 - Google Patents

架橋性ニトリルゴム組成物およびゴム架橋物 Download PDF

Info

Publication number
WO2016027822A1
WO2016027822A1 PCT/JP2015/073201 JP2015073201W WO2016027822A1 WO 2016027822 A1 WO2016027822 A1 WO 2016027822A1 JP 2015073201 W JP2015073201 W JP 2015073201W WO 2016027822 A1 WO2016027822 A1 WO 2016027822A1
Authority
WO
WIPO (PCT)
Prior art keywords
nitrile rubber
short fibers
rubber composition
vinyl acetate
weight
Prior art date
Application number
PCT/JP2015/073201
Other languages
English (en)
French (fr)
Inventor
友則 中島
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to US15/504,739 priority Critical patent/US10428208B2/en
Priority to JP2016544225A priority patent/JP6702191B2/ja
Priority to EP15834347.5A priority patent/EP3184585B1/en
Priority to CN201580044333.7A priority patent/CN106574080B/zh
Publication of WO2016027822A1 publication Critical patent/WO2016027822A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L15/00Compositions of rubber derivatives
    • C08L15/005Hydrogenated nitrile rubber
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/22Compounding polymers with additives, e.g. colouring using masterbatch techniques
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • C08K5/098Metal salts of carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/14Peroxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/06Polymer mixtures characterised by other features having improved processability or containing aids for moulding methods
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/14Polymer mixtures characterised by other features containing polymeric additives characterised by shape
    • C08L2205/16Fibres; Fibrils
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2312/00Crosslinking

Definitions

  • the present invention relates to a crosslinkable nitrile rubber composition capable of giving a rubber cross-linked product excellent in tensile stress and tear strength, and to a rubber cross-linked product obtained using the cross-linkable nitrile rubber composition.
  • Nitrile rubber (acrylonitrile-butadiene copolymer rubber) has been used as a material for automotive rubber parts such as hoses, belts, tubes, etc., taking advantage of oil resistance, mechanical properties, chemical resistance, etc.
  • Highly saturated nitrile rubber obtained by saturating the carbon-carbon double bond in the polymer main chain of nitrile rubber by hydrogenation is superior in heat resistance, so it is used for rubber parts such as seals, belts, hoses and diaphragms.
  • Patent Document 1 a masterbatch is obtained by blending a short fiber and a plasticizer into a copolymer rubber containing an ⁇ , ⁇ -ethylenically unsaturated nitrile monomer unit, and the short fiber is a masterbatch.
  • a method of blending with highly saturated nitrile rubber has been proposed.
  • a plasticizer is used when obtaining a masterbatch. Since plasticizer in the product becomes relatively large, the plasticizer may bleed out (bleed out). Depending on the intended use of the resulting rubber cross-linked product, oozing out of the plasticizer is a problem. There was a case.
  • the rubber cross-linked product obtained in Patent Document 1 does not have sufficient tear strength, and further improvement in tear strength has been demanded.
  • An object of the present invention is to provide a crosslinkable nitrile rubber composition capable of giving a rubber cross-linked product excellent in tensile stress and tear strength, and a rubber cross-linked product obtained using the cross-linkable nitrile rubber composition. .
  • an ⁇ , ⁇ -ethylenically unsaturated nitrile monomer unit is contained in a proportion of 10 to 60% by weight and has an iodine value of 120 or less.
  • the ratio of the ethylene-vinyl acetate copolymer (b1) to the organic short fiber (b2) is a weight ratio of “ethylene-vinyl acetate copolymer (b1): organic short fiber (b2)”.
  • 30: 70-80: 2 Cross-linkable nitrile rubber composition is is provided.
  • the content ratio of the master batch (B) to 100 parts by weight of the highly saturated nitrile rubber (A) is preferably 0.1 to 30 parts by weight.
  • the crosslinking agent (C) is preferably an organic peroxide crosslinking agent.
  • the organic short fibers (b1) are preferably pulp-like short fibers having fibrils.
  • the organic short fiber (b1) is preferably an aramid short fiber, such as a polyparaphenylene terephthalamide short fiber or a copolyparaphenylene • 3,4′oxydiphenylene •.
  • a terephthalamide short fiber is more preferable.
  • the crosslinkable nitrile rubber composition of the present invention preferably further contains an ⁇ , ⁇ -ethylenically unsaturated carboxylic acid metal salt (D).
  • the ⁇ , ⁇ -ethylenically unsaturated carboxylic acid metal salt (D) is at least one selected from acrylic acid or methacrylic acid, zinc, magnesium, calcium, and aluminum. A salt with a seed metal is preferred.
  • a crosslinked rubber product obtained by crosslinking one of the above crosslinkable nitrile rubber compositions.
  • a crosslinkable nitrile rubber composition capable of giving a rubber cross-linked product excellent in tensile stress and tear strength, and a rubber cross-linked product obtained using the cross-linkable nitrile rubber composition.
  • Crosslinkable nitrile rubber composition comprises: a highly saturated nitrile rubber (A) containing an ⁇ , ⁇ -ethylenically unsaturated nitrile monomer unit in a proportion of 10 to 60% by weight and having an iodine value of 120 or less; An ethylene-vinyl acetate copolymer having a melt flow rate of 0.5 to 1000 g / 10 min measured at 190 ° C.
  • A highly saturated nitrile rubber
  • A containing an ⁇ , ⁇ -ethylenically unsaturated nitrile monomer unit in a proportion of 10 to 60% by weight and having an iodine value of 120 or less
  • An ethylene-vinyl acetate copolymer having a melt flow rate of 0.5 to 1000 g / 10 min measured at 190 ° C.
  • the ratio of the ethylene-vinyl acetate copolymer (b1) to the organic short fibers (b2) is “ethylene-vinyl acetate copolymer (b1): organic short fibers ( b2) ”in a weight ratio of 30:70 to 80:20.
  • the highly saturated nitrile rubber (A) used in the present invention is a rubber containing an ⁇ , ⁇ -ethylenically unsaturated nitrile monomer unit in a proportion of 10 to 60% by weight and having an iodine value of 120 or less.
  • the ⁇ , ⁇ -ethylenically unsaturated nitrile monomer forming the ⁇ , ⁇ -ethylenically unsaturated nitrile monomer unit contained in the highly saturated nitrile rubber (A) used in the present invention is not particularly limited. However, those having 3 to 18 carbon atoms are preferred, and those having 3 to 9 carbon atoms are particularly preferred. Specific examples thereof include acrylonitrile, methacrylonitrile, ⁇ -chloroacrylonitrile and the like, and among them, acrylonitrile is preferable. These ⁇ , ⁇ -ethylenically unsaturated nitrile monomers may be used alone or in combination of two or more.
  • the content of the ⁇ , ⁇ -ethylenically unsaturated nitrile monomer unit in the highly saturated nitrile rubber (A) is 10 to 60% by weight, preferably 15 to 55% by weight, more preferably 20 to 50%. % By weight. If the content of the ⁇ , ⁇ -ethylenically unsaturated nitrile monomer unit is too small, the resulting cross-linked product may be inferior in oil resistance, and conversely if too much, cold resistance may be reduced. is there.
  • the highly saturated nitrile rubber (A) used in the present invention may further contain a diene monomer unit and / or an ⁇ -olefin monomer unit from the viewpoint of improving mechanical properties due to rubber elasticity. preferable.
  • Examples of the diene monomer forming the diene monomer unit include conjugated dienes having 4 or more carbon atoms such as 1,3-butadiene, isoprene, 2,3-dimethyl-1,3-butadiene, 1,3-pentadiene, and the like.
  • Non-conjugated dienes having 5 to 12 carbon atoms such as 1,4-pentadiene and 1,4-hexadiene; Of these, conjugated dienes are preferred, and 1,3-butadiene is more preferred.
  • the ⁇ -olefin monomer forming the ⁇ -olefin monomer unit is preferably one having 2 to 12 carbon atoms, such as ethylene, propylene, 1-butene, 4-methyl-1-pentene, 1- Examples include hexene and 1-octene. These diene monomers and ⁇ -olefin monomers may be used alone or in combination of two or more.
  • the content of diene monomer units and / or ⁇ -olefin monomer units in the highly saturated nitrile rubber (A) is preferably 40 to 90% by weight, more preferably 45 to 85% by weight, and still more preferably. 50 to 80% by weight.
  • the diene monomer unit and / or the ⁇ -olefin monomer unit may contain other monomer units copolymerizable with these monomers.
  • Such other monomers include non-conjugated diene monomers, aromatic vinyl monomers, ⁇ , ⁇ -ethylenically unsaturated monocarboxylic acids and esters, ⁇ , ⁇ -ethylenically unsaturated polyvalent monomers. Examples thereof include carboxylic acids and monoesters, polyvalent esters and anhydrides thereof, crosslinkable monomers, and copolymerizable anti-aging agents.
  • the non-conjugated diene monomer preferably has 5 to 12 carbon atoms, and examples thereof include 1,4-pentadiene, 1,4-hexadiene, vinylnorbornene, and dicyclopentadiene.
  • examples of the aromatic vinyl monomer include styrene, ⁇ -methylstyrene, vinyl pyridine and the like.
  • Preferred examples of the ⁇ , ⁇ -ethylenically unsaturated monocarboxylic acid include acrylic acid, methacrylic acid, crotonic acid, and cinnamic acid.
  • Examples of ⁇ , ⁇ -ethylenically unsaturated monocarboxylic acid esters include ethyl (meth) acrylate (meaning ethyl acrylate and ethyl methacrylate; the same shall apply hereinafter), butyl (meth) acrylate, and (meth) acrylic. Examples include 2-ethylhexyl acid and 2-methoxyethyl (meth) acrylate.
  • Examples of the ⁇ , ⁇ -ethylenically unsaturated polyvalent carboxylic acid include maleic acid, fumaric acid, itaconic acid and the like.
  • Examples of the ⁇ , ⁇ -ethylenically unsaturated polycarboxylic acid monoester include monoalkyl maleates such as monomethyl maleate, monoethyl maleate, monopropyl maleate, mono n-butyl maleate; monomethyl fumarate, Monoalkyl fumarate such as monoethyl fumarate, monopropyl fumarate, mono n-butyl fumarate; citraconic acid monoalkyl esters such as citraconic acid monomethyl, citraconic acid monoethyl, citraconic acid monopropyl, citraconic acid mono n-butyl; Itaconic acid monoalkyl esters such as monomethyl itaconate, monoethyl itaconate, monopropyl itaconate, mono-n-butyl itaconate
  • crosslinkable monomer examples include divinyl compounds such as divinylbenzene; di (meth) acrylates such as ethylene di (meth) acrylate, diethylene glycol di (meth) acrylate, and ethylene glycol di (meth) acrylate; trimethylol Self-crosslinking such as N-methylol (meth) acrylamide, N, N'-dimethylol (meth) acrylamide, in addition to polyfunctional ethylenically unsaturated monomers such as trimethacrylates such as propane tri (meth) acrylate; And other monomers.
  • divinyl compounds such as divinylbenzene
  • di (meth) acrylates such as ethylene di (meth) acrylate, diethylene glycol di (meth) acrylate, and ethylene glycol di (meth) acrylate
  • trimethylol Self-crosslinking such as N-methylol (meth) acrylamide, N, N'-dimethylol (meth)
  • copolymerizable anti-aging agents examples include N- (4-anilinophenyl) acrylamide, N- (4-anilinophenyl) methacrylamide, N- (4-anilinophenyl) cinnamamide, N- (4- Anilinophenyl) crotonamide, N-phenyl-4- (3-vinylbenzyloxy) aniline, N-phenyl-4- (4-vinylbenzyloxy) aniline and the like.
  • the content of other monomer units in the highly saturated nitrile rubber (A) is preferably 50% by weight or less, more preferably 30% by weight or less, and still more preferably 10% by weight or less.
  • the highly saturated nitrile rubber (A) used in the present invention has an iodine value of 120 or less, preferably 80 or less, more preferably 25 or less, and even more preferably 15 or less. If the iodine value of the highly saturated nitrile rubber (A) is too high, the heat resistance and ozone resistance of the rubber cross-linked product may be lowered.
  • the polymer Mooney viscosity (ML 1 + 4 , 100 ° C.) of the highly saturated nitrile rubber (A) is preferably 15 to 200, more preferably 20 to 150, still more preferably 30 to 120. If the polymer Mooney viscosity of the highly saturated nitrile rubber (A) is too low, the mechanical properties of the resulting rubber cross-linked product may be reduced. Conversely, if it is too high, the processability of the cross-linkable nitrile rubber composition may be reduced. There is sex.
  • the production method of the highly saturated nitrile rubber (A) used in the present invention is not particularly limited, and for example, ⁇ , ⁇ -ethylenically unsaturated nitrile monomer, diene monomer and / or ⁇ -olefin monomer, And the method of copolymerizing the other monomer copolymerizable with these added as needed is convenient and preferable.
  • the polymerization method any of the known emulsion polymerization method, suspension polymerization method, bulk polymerization method and solution polymerization method can be used, but the emulsion polymerization method is preferable because the polymerization reaction can be easily controlled.
  • the hydrogenation method is not particularly limited, and a known method may be employed.
  • the master batch (B) used in the present invention has a melt flow rate of 0.5 to 1000 g / 10 min measured at 190 ° C. under a load of 21.18 N, and contains 5 to 50% by weight of vinyl acetate monomer units. It contains an ethylene-vinyl acetate copolymer (b1) contained in a proportion and organic short fibers (b2) having an average fiber length of 0.1 to 12 mm.
  • the rubber as the main component constituting the composition contains an ⁇ , ⁇ -ethylenically unsaturated nitrile monomer unit in a proportion of 10 to 60% by weight and an iodine value of 120 or less.
  • a saturated nitrile rubber (A) is used, and a masterbatch obtained by blending the organic short fiber (b2) with the ethylene-vinyl acetate copolymer (b1) is blended therein.
  • the dispersibility of the organic short fibers (b2) in the composition can be made particularly good.
  • the obtained rubber cross-linked product can be made particularly excellent in tensile stress and tear strength. It is.
  • the resulting rubber cross-linked product can be made particularly excellent in tensile stress and tear strength without causing such problems. Is.
  • the ethylene-vinyl acetate copolymer (b1) is a copolymer of ethylene and vinyl acetate, and is particularly limited as long as the melt flow rate and the content of vinyl acetate monomer units are within the above ranges. However, it may be in the form of rubber or resin.
  • the ethylene-vinyl acetate copolymer (b1) used in the present invention has a melt flow rate (MFR) of 0.5 to 1000 g / 10 min, preferably 1 to 900 g / 10 min, more preferably 10 to 500 g / 10 min. is there.
  • MFR melt flow rate
  • the melt flow rate of the ethylene-vinyl acetate copolymer (b1) is measured under conditions of 190 ° C./21.18 N (190 ° C./2.16 kg) based on ASTM D1238.
  • the ethylene-vinyl acetate copolymer (b1) used in the present invention has a vinyl acetate monomer unit content of 5 to 50% by weight, preferably 10 to 45% by weight, more preferably 20 to 40% by weight.
  • a vinyl acetate monomer unit content of 5 to 50% by weight, preferably 10 to 45% by weight, more preferably 20 to 40% by weight.
  • the organic short fiber (b2) used in the present invention is not particularly limited as long as it is a fibrous organic material having an average fiber length in the range of 0.1 to 12 mm.
  • the average fiber length of the organic short fiber (b2) is, for example, photographed with an optical microscope, measured the length of 100 randomly selected short fibers in the obtained photograph, and calculated this as an arithmetic average. Can be obtained. If the average fiber length is too short, the tensile stress of the resulting rubber cross-linked product may be reduced. On the other hand, if the average fiber length is too long, when the master batch is formed with the ethylene-vinyl acetate copolymer (b1). Then, it may be difficult to make a master batch.
  • the average fiber length of the organic short fibers (b2) is preferably 0.5 to 10 mm, more preferably 0.5 to 6 mm.
  • the organic short fibers (b2) used in the present invention include natural fibers such as cotton and wood cellulose fibers; polyamide, polyester, polyvinyl alcohol, rayon, polyparaphenylene benzobisoxazole, polyethylene, polypropylene, polyarylate, polyimide, polyphenylene sulfide. And fibers made of synthetic resins such as polyetheretherketone, polylactic acid, polycaprolactone, polybutylene succinate, and fluoropolymer. Among these, since the effect of the present invention becomes more remarkable, it is preferable to use short fibers made of synthetic resin, and it is more preferable to use short fibers made of polyamide.
  • Polyamides include polycapramide, poly- ⁇ -aminoheptanoic acid, poly- ⁇ -aminononanoic acid, polyundecanamide, polyethylenediamine adipamide, polytetramethylene adipamide, polyhexamethylene adipamide, polyhexamethylene sebaca Aliphatic polyamides such as amide, polyhexamethylene dodecamide, polyoctamethylene adipamide, polydecamethylene adipamide; polyparaphenylene terephthalamide (trade name "Kevlar”, manufactured by Toray DuPont), polymetaphenylene Isophthalamide (trade name "Conex”, manufactured by Teijin Techno Products), copolyparaphenylene 3,4'oxydiphenylene terephthalamide (trade name "Technora”, manufactured by Teijin Techno Products), polymetaxylylene adipa Mido, polymetaxy Renpimeramido, poly-m-xylylene azelamide, polyparaxy
  • aromatic polyamides that is, aramids are preferred from the viewpoint that the tensile stress and tear strength of the resulting rubber cross-linked product can be further improved, and polyparaphenylene terephthalamide, polymetaphenylene isophthalate.
  • Ramide and copolyparaphenylene 3,4′oxydiphenylene terephthalamide are more preferred, and copolyparaphenylene 3,4′oxydiphenylene terephthalamide is particularly preferred.
  • the short fiber made of polyamide is preferably an aramid short fiber, such as a polyparaphenylene terephthalamide short fiber, a polymetaphenylene isophthalamide short fiber, and a copolyparaphenylene 3,4′oxydiphenylene terephthalamide short fiber. More preferred are polyparaphenylene terephthalamide short fibers and copolyparaphenylene 3,4'oxydiphenylene terephthalamide short fibers.
  • the organic short fiber (b2) used in the present invention may be chopped fiber (cut fiber) or fibril-containing pulp, but fibril-containing pulp-like short fiber (fibrillated pulp-like fiber) (Short fibers) are preferred, and in particular, pulp-like aramid short fibers (fibrillated pulp-like aramid short fibers) having fibrils are more preferred.
  • pulp-like short fibers having fibrils in particular, pulp-like aramid short fibers having fibrils, the tensile stress and tear strength of the resulting rubber cross-linked product can be further increased.
  • the pulp-like aramid short fibers having fibrils are not particularly limited.
  • a structure in which aramid short fibers having a thermal decomposition temperature of 250 ° C. or higher and 700 ° C. or lower are further branched into fine fibers to make the surface fluffy. Can be used.
  • the ratio of the ethylene-vinyl acetate copolymer (b1) and the organic short fiber (b2) in the masterbatch (B) used in the present invention is “ethylene-vinyl acetate copolymer (b1): organic short fiber”.
  • the weight ratio of (b2) ” is 30:70 to 80:20, preferably 35:65 to 75:25, and more preferably 40:60 to 70:30.
  • the improvement effect of the tensile stress and tear strength of the obtained rubber cross-linked product can be appropriately obtained. If the amount of the ethylene-vinyl acetate copolymer (b1) is too small, the dispersion of the organic short fibers (b2) in the crosslinkable nitrile rubber composition becomes insufficient, and the blending effect of the organic short fibers (b2), That is, the effect of improving the tensile stress and tear strength of the obtained rubber cross-linked product cannot be obtained. Similarly, when there are too few organic short fibers (b2), the improvement effect of the tensile stress and tear strength of the rubber crosslinked material obtained will no longer be acquired.
  • a filler in the masterbatch (B), a filler, an antioxidant, an antioxidant, a light stabilizer, an ultraviolet absorber, a processing aid, a lubricant, a lubricant, etc., as long as the effects of the present invention are not impaired.
  • Other additives may be included.
  • the content of these other additives is usually 30% by weight or less, more preferably 15% by weight or less, and particularly preferably 5% by weight or less in the master batch (B).
  • the content of the master batch (B) in the crosslinkable nitrile rubber composition of the present invention is preferably 0.1 to 30 parts by weight with respect to 100 parts by weight of the highly saturated nitrile rubber (A).
  • the amount is more preferably 1 to 25 parts by weight, still more preferably 3 to 20 parts by weight.
  • the masterbatch (B) used in the present invention can be prepared by mixing the ethylene-vinyl acetate copolymer (b1) and the organic short fiber (b2).
  • the method of mixing the ethylene-vinyl acetate copolymer (b1) and the organic short fiber (b2) is not particularly limited as long as they can be mixed uniformly, but the ethylene-vinyl acetate copolymer is not particularly limited. Examples thereof include a method of adding the organic short fiber (b2) during the polymerization of (b1) or during melt kneading.
  • organic short fiber (b2) is added to an extruder such as a twin screw extruder.
  • organic short fibers (b2) are added and melt kneaded in an extruder.
  • Cross-linking agent (C) Although it does not specifically limit as a crosslinking agent (C) used by this invention, An organic peroxide crosslinking agent, a polyamine crosslinking agent, a sulfur type crosslinking agent, etc. are mentioned, An organic peroxide crosslinking agent is preferable.
  • an organic peroxide crosslinking agent as the crosslinking agent (C)
  • the processability of the crosslinkable nitrile rubber composition is improved, and the resulting rubber crosslinked product is particularly excellent in tensile strength. Can do.
  • organic peroxide crosslinking agent conventionally known ones can be used, such as dicumyl peroxide, cumene hydroperoxide, t-butylcumyl peroxide, paramentane hydroperoxide, di-t-butyl peroxide, 1,3- Bis (t-butylperoxyisopropyl) benzene, 1,4-bis (t-butylperoxyisopropyl) benzene, 1,1-di-t-butylperoxy-3,3-trimethylcyclohexane, 4,4-bis- (t -Butyl-peroxy) -n-butylvalerate, 2,5-dimethyl-2,5-di-t-butylperoxyhexane, 2,5-dimethyl-2,5-di-t-butylperoxyhexyne-3 1,1-di-t-butylperoxy-3,5,5-trimethylcyclohexane, p-chlorobenzo
  • the blending amount of the crosslinking agent (C) in the crosslinkable nitrile rubber composition of the present invention is preferably 0.5 to 20 parts by weight, more preferably 100 parts by weight of the highly saturated nitrile rubber (A). Is 1 to 15 parts by weight, more preferably 2 to 10 parts by weight.
  • the amount is too large, the fatigue resistance of the resulting rubber cross-linked product may deteriorate.
  • the crosslinkable nitrile rubber composition of the present invention includes an ⁇ , ⁇ -ethylenically unsaturated carboxylic acid metal in addition to the above highly saturated nitrile rubber (A), masterbatch (B), and crosslinker (C). You may mix
  • the ⁇ , ⁇ -ethylenically unsaturated carboxylic acid metal salt (D) is not particularly limited as long as it is a salt of ⁇ , ⁇ -ethylenically unsaturated carboxylic acid and metal.
  • the ⁇ , ⁇ -ethylenically unsaturated carboxylic acid constituting the ⁇ , ⁇ -ethylenically unsaturated carboxylic acid metal salt (D) has at least a monovalent free (not esterified) carboxyl group.
  • Examples thereof include ⁇ , ⁇ -ethylenically unsaturated monocarboxylic acid, ⁇ , ⁇ -ethylenically unsaturated dicarboxylic acid, ⁇ , ⁇ -ethylenically unsaturated dicarboxylic acid monoester and the like.
  • Examples of the ⁇ , ⁇ -ethylenically unsaturated monocarboxylic acid include acrylic acid, methacrylic acid, crotonic acid, and 3-butenoic acid.
  • Examples of the ⁇ , ⁇ -ethylenically unsaturated dicarboxylic acid include maleic acid, fumaric acid, itaconic acid and the like.
  • Examples of the ⁇ , ⁇ -ethylenically unsaturated dicarboxylic acid monoester include monomethyl maleate, monoethyl maleate, monomethyl itaconate, monoethyl itaconate and the like.
  • ⁇ , ⁇ -ethylenically unsaturated carboxylic acid having no ester group is preferable, and ⁇ , ⁇ -ethylenically unsaturated monocarboxylic acid is preferable because the mechanical strength of the resulting rubber cross-linked product can be further increased.
  • Carboxylic acid is more preferable, and acrylic acid and methacrylic acid are particularly preferable.
  • Examples of the metal constituting the ⁇ , ⁇ -ethylenically unsaturated carboxylic acid metal salt (D) include zinc, magnesium, calcium, barium, titanium, chromium, iron, cobalt, nickel, aluminum, tin, lead and the like. It is done. Among these, zinc, magnesium, calcium, and aluminum are preferable, and zinc is particularly preferable because the mechanical strength of the obtained rubber cross-linked product can be further increased.
  • the ⁇ , ⁇ -ethylenically unsaturated carboxylic acid metal salt (D) forms the ⁇ , ⁇ -ethylenically unsaturated carboxylic acid metal salt (D) on the highly saturated nitrile rubber (A).
  • the ⁇ , ⁇ -ethylenically unsaturated carboxylic acid to be formed and a metal or metal compound may be blended and reacted in the highly saturated nitrile rubber (A) to produce the unsaturated carboxylic acid.
  • the resulting ⁇ , ⁇ -ethylenically unsaturated carboxylic acid metal salt (D) is converted into a highly saturated nitrile rubber ( A) can be well dispersed in.
  • the metal compound used in this case include the above-described metal oxides, hydroxides, carbonates, etc. Among them, zinc oxide and zinc carbonate are preferably used.
  • ⁇ , ⁇ -ethylenically unsaturated carboxylic acid metal salt (D) is formed by blending ⁇ , ⁇ -ethylenically unsaturated carboxylic acid and metal or metal compound in highly saturated nitrile rubber (A) Is reacted with 0.5 to 4 moles, more preferably 0.7 to 3 moles of metal or metal compound per mole of ⁇ , ⁇ -ethylenically unsaturated carboxylic acid. If the amount of the metal or metal compound used is too small or too large, the reaction between the ⁇ , ⁇ -ethylenically unsaturated carboxylic acid and the metal or metal compound is difficult to occur.
  • the ⁇ , ⁇ -ethylenically unsaturated carboxylic acid metal salt (D) is preferably fine as long as there is no problem in handling, and the content ratio of particles having a volume average particle diameter of 20 ⁇ m or more is particularly 5%. The following are preferred.
  • the ⁇ , ⁇ -ethylenically unsaturated carboxylic acid metal salt (D) is separated from the air classifier or sieve. A classification method using a classification device or the like may be used.
  • ⁇ , ⁇ -ethylenically unsaturated carboxylic acid and metal or metal compound are blended, and ⁇ , ⁇ -ethylenically unsaturated carboxylic acid metal salt (D) is added in highly saturated nitrile rubber (A).
  • A highly saturated nitrile rubber
  • the content of the ⁇ , ⁇ -ethylenically unsaturated carboxylic acid metal salt (D) in the crosslinkable nitrile rubber composition of the present invention is preferably 5 to 100 parts by weight with respect to 100 parts by weight of the highly saturated nitrile rubber (A).
  • the amount is 100 parts by weight, more preferably 10 to 50 parts by weight, still more preferably 15 to 30 parts by weight.
  • the crosslinkable nitrile rubber composition of the present invention includes a compounding agent usually used in the rubber field, for example, reinforcing agents such as carbon black and silica, calcium carbonate, talc and clay, etc. Filling materials, metal oxides such as zinc oxide and magnesium oxide, co-crosslinking agents, crosslinking accelerators, crosslinking aids, crosslinking retarders, anti-aging agents, antioxidants, light stabilizers, scorch inhibitors such as primary amines, Include active agents such as diethylene glycol, silane coupling agents, plasticizers, processing aids, lubricants, adhesives, lubricants, flame retardants, antifungal agents, acid acceptors, antistatic agents, pigments, foaming agents, etc. Can do.
  • the compounding amount of these compounding agents is not particularly limited as long as it does not impair the object and effect of the present invention, and an amount corresponding to the compounding purpose can be blended.
  • carbon black examples include furnace black, acetylene black, thermal black, channel black, and graphite. These can be used alone or in combination.
  • silica examples include natural silica such as quartz powder and silica powder; synthetic silica such as silicic anhydride (silica gel, aerosil, etc.) and hydrous silicic acid; among these, synthetic silica is preferable. These silicas may be surface-treated with a silane coupling agent or the like.
  • the silane coupling agent is not particularly limited, and specific examples thereof include ⁇ -mercaptopropyltrimethoxysilane, ⁇ -mercaptomethyltrimethoxylane, ⁇ -mercaptomethyltriethoxylane, ⁇ -mercaptohexamethyldisilazane, bis Silane coupling agents containing sulfur such as (3-triethoxysilylpropyl) tetrasulfane and bis (3-triethoxysilylpropyldisulfane); ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycidoxypropyl Epoxy group-containing silane coupling agents such as methyldimethoxysilane, ⁇ - (3,4-epoxycyclohexyl) ethyltrimethoxysilane, ⁇ -mercaptopropyltrimethoxysilane, ⁇ -glycidoxypropylmethyldiethoxysilane; N- ( ⁇ -amino Til
  • Alkyl group-containing silane coupling agents such as acetoalkoxyaluminum diisopropylate; isopropyltriisostearoyl titanate, isopropyltris (dioctylpyrophosphate) titanate, isopropyltri (N-aminoethyl-aminoethyl) Titanate, tetraoctylbis (ditridecylphosphite) titanate, tetra (2,2-diallyloxymethyl-1-butyl) bis (ditride) Zil) phosphite titanate, bis (dioctyl pyrophosphate) oxyacetate titanate, bis (dioctyl pyrophosphate) ethylene titanate, tetraisopropyl bis (dioctyl phosphite) titanate, titanate coupling agents such as isopropyl triisostearoy
  • the co-crosslinking agent is not particularly limited, but is preferably a low molecular or high molecular compound having a plurality of radical-reactive unsaturated groups in the molecule.
  • a polyfunctional vinyl compound such as divinylbenzene or divinylnaphthalene; Isocyanurates such as allyl isocyanurate and trimethallyl isocyanurate; cyanurates such as triallyl cyanurate; maleimides such as N, N′-m-phenylene dimaleimide; diallyl phthalate, diallyl isophthalate, diallyl maleate, diallyl Allyl esters of polyvalent acids such as fumarate, diallyl sebacate, triallyl phosphate; diethylene glycol bisallyl carbonate; ethylene glycol diallyl ether, triallyl ether of trimethylolpropane, pentae Allyl ethers such as partial trityl ethers of trit; allyl modified resins such
  • a trimellitic acid type plasticizer an ether ester type plasticizer, etc. can be used.
  • Specific examples include trimellitic acid tri-2-ethylhexyl, trimellitic acid isononyl ester, bis [2- (2-butoxyethoxy) ethyl adipate], diheptanoate, di-2-ethylhexanoate, didecanoate, and the like. Can be mentioned. These can be used alone or in combination.
  • the compounding quantity of a plasticizer shall be 15 weight part or less with respect to 100 weight part of highly saturated nitrile rubber (A) from a viewpoint of preventing bleeding in the rubber crosslinked material obtained, 12 weight It is more preferable to set it as a part or less.
  • the crosslinkable nitrile rubber composition of the present invention includes other heavy materials other than the above-described highly saturated nitrile rubber (A) and ethylene-vinyl acetate copolymer (b1) within a range that does not impair the effects of the present invention.
  • a coalescence may be blended.
  • Other polymers include acrylic rubber, ethylene-acrylic acid copolymer rubber, fluorine rubber, styrene-butadiene copolymer rubber, polybutadiene rubber, ethylene-propylene copolymer rubber, ethylene-propylene-diene terpolymer.
  • the blending amount in the crosslinkable nitrile rubber composition is preferably 30 parts by weight or less, more preferably 20 parts by weight with respect to 100 parts by weight of the highly saturated nitrile rubber (A). Part or less, more preferably 10 parts by weight or less.
  • the crosslinkable nitrile rubber composition of the present invention is prepared by mixing the above-mentioned components, preferably in a non-aqueous system.
  • the mixing method is not limited, but the components other than the crosslinking agent (C) and the heat-labile crosslinking aid are first kneaded in a mixer such as a Banbury mixer, intermixer, kneader, etc.
  • the mixture can be prepared by adding the cross-linking agent (C) and the like, followed by secondary kneading.
  • the primary kneading is usually performed at a temperature of 10 to 200 ° C., preferably 30 to 180 ° C.
  • the reaction is performed at a temperature of 20 to 60 ° C. for 1 minute to 1 hour, preferably 1 minute to 30 minutes.
  • the ethylene-vinyl acetate copolymer (b1) and the organic short fibers (b2) are mixed in advance and mixed with other components in a state of a master batch (B).
  • Cross-linked rubber The cross-linked rubber of the present invention is obtained by cross-linking the cross-linkable nitrile rubber composition of the present invention described above.
  • the rubber cross-linked product of the present invention uses the cross-linkable nitrile rubber composition of the present invention and, for example, is molded by a molding machine corresponding to a desired shape, for example, an extruder, an injection molding machine, a compressor, a roll, etc. It can be produced by carrying out a crosslinking reaction by heating and fixing the shape as a rubber crosslinked product. In this case, crosslinking may be performed after molding in advance, or crosslinking may be performed simultaneously with molding.
  • the molding temperature is usually 10 to 200 ° C, preferably 25 to 120 ° C.
  • the crosslinking temperature is usually 100 to 200 ° C., preferably 130 to 190 ° C.
  • the crosslinking time is usually 1 minute to 24 hours, preferably 2 minutes to 12 hours, particularly preferably 3 minutes to 6 hours.
  • secondary cross-linking may be performed by heating.
  • a crosslinking method a general method used for rubber crosslinking such as press crosslinking, steam crosslinking, and oven crosslinking can be appropriately selected.
  • the rubber cross-linked product of the present invention thus obtained is obtained by using the cross-linkable nitrile rubber composition of the present invention, and therefore has excellent tensile stress and tear strength.
  • the cross-linked product of the present invention makes use of such characteristics, and O-rings, packings, diaphragms, oil seals, shaft seals, bearing seals, well head seals, pneumatic equipment seals, air conditioner cooling devices, Seal for sealing of fluorocarbons or fluorohydrocarbons or carbon dioxide used for compressors for refrigerators of air conditioners, sealing seal for supercritical carbon dioxide or subcritical carbon dioxide used for cleaning media for precision cleaning, rolling devices Seals for rolling bearings, automotive hub units, automotive water pumps, linear guide devices, ball screws, etc.), various sealing materials such as valves and valve seats, BOP (Blow Out Preventor), platters; intake manifolds and cylinder heads Attach to the connecting part with Intake manifold gasket, cylinder head gasket attached to the connection between the cylinder block and cylinder head, rocker
  • the rubber cross-linked product of the present invention is particularly excellent in tensile stress and tear strength, and is therefore suitable as a belt, hose, roll, seal, or gasket, and particularly suitable as a belt.
  • the crosslinkable nitrile rubber composition was placed in a mold having a length of 15 cm, a width of 15 cm, and a depth of 0.2 cm, and press-molded at 170 ° C. for 20 minutes while being pressed at a press pressure of 10 MPa to obtain a sheet-like rubber cross-linked product. .
  • the obtained sheet-like rubber cross-linked product was punched out with a No. 3 dumbbell in the row direction to prepare a test piece. And using the obtained test piece, according to JISK6251, tensile strength, elongation, 25% tensile stress, 50% tensile stress, and 100% tensile stress were measured.
  • Tear strength In the same manner as in the measurement of the above-mentioned normal physical properties, a sheet-like rubber cross-linked product was obtained, and a test piece was punched from the obtained sheet-like rubber cross-linked product with an angled punching blade without cutting according to JIS K6252. The tear strength was measured by performing a tear test in the line direction.
  • Example 1 Using a Banbury mixer, 100 parts of highly saturated nitrile rubber (trade name “Zetpol 2010L”, manufactured by Nippon Zeon Co., Ltd., iodine value 11, acrylonitrile unit 36.2% by weight, polymer Mooney viscosity 58 (ML 1 + 4 , 100 ° C.)) Zinc methacrylate 15 parts, SRF carbon black (trade name “SEAST S”, carbon black) 25 parts, zinc oxide 10 parts, trimellitic acid tri-2-ethylhexyl (trade name “Adekasizer C-8”, manufactured by ADEKA , Plasticizer) 10 parts, 4,4′-di- ( ⁇ , ⁇ -dimethylbenzyl) diphenylamine (trade name “NOCRACK CD”, manufactured by Ouchi Shinko Chemical Industries, Ltd., anti-aging agent), 1.5 parts, Mercaptobenzimidazole zinc salt (trade name “NOCRACK MBZ”, manufactured by Ouchi Shinsei Chemical Co., Ltd., anti-aging agent
  • the obtained crosslinkable nitrile rubber composition was used to evaluate normal physical properties and tear strength according to the methods described above. The results are shown in Table 1.
  • Example 2 instead of 10 parts of trimellitic acid tri-2-ethylhexyl, 10 parts of polyether ester (trade name “ADEKA SIZER RS-700”, manufactured by ADEKA, plasticizer) was used in the same manner as in Example 1, A crosslinkable nitrile rubber composition was prepared and evaluated in the same manner. The results are shown in Table 1.
  • polyether ester trade name “ADEKA SIZER RS-700”, manufactured by ADEKA, plasticizer
  • Example 3 A crosslinkable nitrile rubber composition was prepared and evaluated in the same manner as in Example 1 except that 15 parts of zinc acrylate was used instead of 15 parts of zinc methacrylate. The results are shown in Table 1.
  • Example 4 A crosslinkable nitrile rubber composition was prepared and evaluated in the same manner as in Example 1 except that the blend amount of the short fiber master batch (M1) was changed from 7 parts to 11 parts. The results are shown in Table 1.
  • Comparative Example 4 In place of 7 parts of the short fiber masterbatch (M1), a pulp-like short fiber (trade name “Twaron Pulp 1091”, manufactured by Teijin Ltd., polyparaphenylene terephthalamide pulp with an average fiber length of 1.4 mm is used instead of a masterbatch.
  • a crosslinkable nitrile rubber composition was prepared and evaluated in the same manner as in Example 1 except that 3.5 parts of the short fiber were used as they were. The results are shown in Table 1.
  • Comparative Example 5 Instead of 7 parts of short fiber masterbatch (M1), chopped fiber (cut fiber) -like short fibers (trade name “Twaron 1589 chopped fiber 1 mm”, Teijin Ltd., polypara A crosslinkable nitrile rubber composition was prepared and evaluated in the same manner as in Example 1 except that 3.5 parts of phenylene terephthalamide chipped fiber short fibers were used as they were. The results are shown in Table 1.
  • Comparative Example 6 A crosslinkable nitrile rubber composition was prepared and evaluated in the same manner as in Comparative Example 3 except that the blend amount of the short fiber masterbatch (M4) was changed from 8.75 parts to 13.75 parts. . The results are shown in Table 1.
  • Comparative Example 7 A crosslinkable nitrile rubber composition was prepared and evaluated in the same manner as in Example 1 except that the short fiber master batch (M1) was not blended. The results are shown in Table 1.
  • the resulting rubber cross-linked product has low tensile stress and inferior tear strength.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

 α,β-エチレン性不飽和ニトリル単量体単位を10~60重量%の割合で含有し、ヨウ素価が120以下である高飽和ニトリルゴム(A)と、21.18Nの荷重下190℃で測定されるメルトフローレートが0.5~1000g/10minであり、酢酸ビニル単量体単位を5~50重量%の割合で含有するエチレン-酢酸ビニル共重合体(b1)と、平均繊維長が0.1~12mmである有機短繊維(b2)とを含有するマスターバッチ(B)と、架橋剤(C)とを含有し、前記マスターバッチ(B)中における、前記エチレン-酢酸ビニル共重合体(b1)と、前記有機短繊維(b2)との比率が、「エチレン-酢酸ビニル共重合体(b1):有機短繊維(b2)」の重量比で、30:70~80:20である架橋性ニトリルゴム組成物を提供する。

Description

架橋性ニトリルゴム組成物およびゴム架橋物
  本発明は、引張応力および引裂強度に優れたゴム架橋物を与えることができる架橋性ニトリルゴム組成物および該架橋性ニトリルゴム組成物を用いて得られるゴム架橋物に関する。
  従来から、ニトリルゴム(アクリロニトリル-ブタジエン共重合ゴム)は、耐油性、機械的特性、耐薬品性等を活かして、ホースやベルト、チューブなどの自動車用ゴム部品の材料として使用されており、また、ニトリルゴムのポリマー主鎖中の炭素-炭素二重結合を水素化などにより飽和化して得られる高飽和ニトリルゴムはさらに耐熱性に優れるため、シール、ベルト、ホース、ダイアフラム等のゴム部品に使用されている。
  一方で、このような高飽和ニトリルゴムなどのゴムに短繊維を配合することにより、得られるゴム架橋物の機械的特性を向上させる技術が知られている。しかしながら、短繊維をゴム中に均一に分散させることは困難であり、単にゴム中に短繊維を添加しただけでは、短繊維同士が絡み合って塊となってしまい、所望の特性を得ることができないという課題があった。
  これに対し、特許文献1では、α,β-エチレン性不飽和ニトリル単量体単位含有共重合ゴムに、短繊維および可塑剤を配合することでマスターバッチを得て、短繊維をマスターバッチの状態にて、高飽和ニトリルゴムに配合する手法が提案されている。この特許文献1の技術によれば、高飽和ニトリルゴム中に短繊維を良好に分散させることができるものの、マスターバッチを得る際に可塑剤を用いるものであるため、結果として、得られるゴム架橋物中における可塑剤が比較的多くなってしまうため、可塑剤の滲み出し(ブリードアウト)が発生する場合があり、得られるゴム架橋物の適用される用途によっては、可塑剤の滲み出しが問題となる場合があった。また、特許文献1で得られるゴム架橋物は、引裂強度も十分でなく、引裂強度のさらなる改善も求められていた。
国際公開第2005/092971号
  本発明は、引張応力および引裂強度に優れたゴム架橋物を与えることができる架橋性ニトリルゴム組成物および該架橋性ニトリルゴム組成物を用いて得られるゴム架橋物を提供することを目的とする。
  本発明者等は、上記課題を解決すべく鋭意研究した結果、α,β-エチレン性不飽和ニトリル単量体単位を10~60重量%の割合で含有し、ヨウ素価が120以下である高飽和ニトリルゴムに、特定のエチレン-酢酸ビニル共重合体と、平均繊維長が0.1~12mmである有機短繊維とを特定の割合で含有するマスターバッチ、および、架橋剤を配合することにより得られるゴム組成物により、上記目的を達成できることを見出し、本発明を完成させるに至った。
  すなわち、本発明によれば、α,β-エチレン性不飽和ニトリル単量体単位を10~60重量%の割合で含有し、ヨウ素価が120以下である高飽和ニトリルゴム(A)と、21.18Nの荷重下190℃で測定されるメルトフローレートが0.5~1000g/10minであり、酢酸ビニル単量体単位を5~50重量%の割合で含有するエチレン-酢酸ビニル共重合体(b1)と、平均繊維長が0.1~12mmである有機短繊維(b2)とを含有するマスターバッチ(B)と、架橋剤(C)とを含有し、前記マスターバッチ(B)中における、前記エチレン-酢酸ビニル共重合体(b1)と、前記有機短繊維(b2)との比率が、「エチレン-酢酸ビニル共重合体(b1):有機短繊維(b2)」の重量比で、30:70~80:20である架橋性ニトリルゴム組成物が提供される。
  本発明の架橋性ニトリルゴム組成物において、前記高飽和ニトリルゴム(A)100重量部に対する、前記マスターバッチ(B)の含有割合が、0.1~30重量部であることが好ましい。
  本発明の架橋性ニトリルゴム組成物において、前記架橋剤(C)が、有機過酸化物架橋剤であることが好ましい。
  本発明の架橋性ニトリルゴム組成物において、前記有機短繊維(b1)が、フィブリルを有するパルプ状の短繊維であることが好ましい。
  本発明の架橋性ニトリルゴム組成物において、前記有機短繊維(b1)が、アラミド短繊維であることが好ましく、ポリパラフェニレンテレフタラミド短繊維またはコポリパラフェニレン・3,4’オキシジフェニレン・テレフタラミド短繊維であることがより好ましい。
  また、本発明の架橋性ニトリルゴム組成物は、α,β-エチレン性不飽和カルボン酸金属塩(D)をさらに含有することが好ましい。
 本発明の架橋性ニトリルゴム組成物において、前記α,β-エチレン性不飽和カルボン酸金属塩(D)が、アクリル酸またはメタクリル酸と、亜鉛、マグネシウム、カルシウム、およびアルミニウムから選択される少なくとも1種の金属との塩であることが好ましい。
  さらに、本発明によれば、上記いずれかの架橋性ニトリルゴム組成物を架橋してなるゴム架橋物が提供される。
  本発明によれば、引張応力および引裂強度に優れたゴム架橋物を与えることができる架橋性ニトリルゴム組成物および該架橋性ニトリルゴム組成物を用いて得られるゴム架橋物を提供することができる。
  架橋性ニトリルゴム組成物
  本発明の架橋性ニトリルゴム組成物は、
  α,β-エチレン性不飽和ニトリル単量体単位を10~60重量%の割合で含有し、ヨウ素価が120以下である高飽和ニトリルゴム(A)と、
  21.18Nの荷重下190℃で測定されるメルトフローレートが0.5~1000g/10minであり、酢酸ビニル単量体単位を5~50重量%の割合で含有するエチレン-酢酸ビニル共重合体(b1)と、平均繊維長が0.1~12mmである有機短繊維(b2)とを含有するマスターバッチ(B)と、
  架橋剤(C)とを含有し、
  前記マスターバッチ(B)中における、前記エチレン-酢酸ビニル共重合体(b1)と、前記有機短繊維(b2)との比率が、「エチレン-酢酸ビニル共重合体(b1):有機短繊維(b2)」の重量比で、30:70~80:20であることを特徴とする。
  高飽和ニトリルゴム(A)
  本発明で用いる高飽和ニトリルゴム(A)は、α,β-エチレン性不飽和ニトリル単量体単位を10~60重量%の割合で含有し、ヨウ素価が120以下であるゴムである。
  本発明で用いる高飽和ニトリルゴム(A)中に含有される、α,β-エチレン性不飽和ニトリル単量体単位を形成するα,β-エチレン性不飽和ニトリル単量体は、特に限定されないが、炭素数3~18のものが好ましく、炭素数3~9のものが特に好ましい。その具体例としてはアクリロニトリル、メタクリロニトリル、α-クロロアクリロニトリル等が挙げられ、なかでもアクリロニトリルが好ましい。これらのα,β-エチレン性不飽和ニトリル単量体は一種を単独で用いてもよく、二種以上を併用してもよい。
  高飽和ニトリルゴム(A)中における、α,β-エチレン性不飽和ニトリル単量体単位の含有量は、10~60重量%であり、好ましくは15~55重量%、より好ましくは20~50重量%である。α,β-エチレン性不飽和ニトリル単量体単位の含有量が少なすぎると、得られる架橋物が耐油性に劣るものとなるおそれがあり、逆に多すぎると耐寒性が低下する可能性がある。
  また、本発明で用いる高飽和ニトリルゴム(A)は、ゴム弾性による機械的特性の向上の観点から、ジエン単量体単位および/またはα-オレフィン単量体単位をさらに含有していることが好ましい。
  ジエン単量体単位を形成するジエン単量体としては、1,3-ブタジエン、イソプレン、2,3-ジメチル-1,3-ブタジエン、1,3-ペンタジエン等の炭素数が4以上の共役ジエン;1,4-ペンタジエン、1,4-ヘキサジエン等の炭素数が5~12の非共役ジエンが挙げられる。これらの中では共役ジエンが好ましく、1,3-ブタジエンがより好ましい。α-オレフィン単量体単位を形成するα-オレフィン単量体としては、好ましくは炭素数が2~12のものであり、エチレン、プロピレン、1-ブテン、4-メチル-1-ペンテン、1-ヘキセン、1-オクテン等が例示される。これらのジエン単量体、α-オレフィン単量体は一種を単独で用いてもよく、二種以上を併用してもよい。
  高飽和ニトリルゴム(A)中における、ジエン単量体単位および/またはα-オレフィン単量体単位の含有量は、好ましくは40~90重量%、より好ましくは45~85重量%、さらに好ましくは50~80重量%である。ジエン単量体単位および/またはα-オレフィン単量体単位の含有量を上記範囲とすることにより、得られるゴム架橋物を、耐熱性や耐化学的安定性を良好に保ちながら、ゴム弾性に優れたものとすることができる。
  また、本発明で用いる高飽和ニトリルゴム(A)は、α,β-エチレン性不飽和ニトリル単量体単位、ならびに、ジエン単量体単位および/またはα-オレフィン単量体単位に加えて、これらの単量体と共重合可能なその他の単量体の単位を含有するものであってもよい。このようなその他の単量体としては、非共役ジエン単量体、芳香族ビニル単量体、α,β-エチレン性不飽和モノカルボン酸およびそのエステル、α,β-エチレン性不飽和多価カルボン酸ならびにそのモノエステル、多価エステルおよび無水物、架橋性単量体、共重合性老化防止剤などが挙げられる。
  非共役ジエン単量体としては、炭素数が5~12のものが好ましく、たとえば、1,4-ペンタジエン、1,4-ヘキサジエン、ビニルノルボルネン、ジシクロペンタジエンなどが挙げられる。
  芳香族ビニル単量体としては、たとえば、スチレン、α-メチルスチレン、ビニルピリジンなどが挙げられる。
  α,β-エチレン性不飽和モノカルボン酸としては、たとえば、アクリル酸、メタクリル酸、クロトン酸、ケイ皮酸などが好ましく挙げられる。
  α,β-エチレン性不飽和モノカルボン酸エステルとしては、たとえば、(メタ)アクリル酸エチル(アクリル酸エチルおよびメタクリル酸エチルの意。以下同様。)、(メタ)アクリル酸ブチル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸2-メトキシエチルなどが挙げられる。
  α,β-エチレン性不飽和多価カルボン酸としては、たとえば、マレイン酸、フマル酸、イタコン酸などが挙げられる。
  α,β-エチレン性不飽和多価カルボン酸モノエステルとしては、たとえば、マレイン酸モノメチル、マレイン酸モノエチル、マレイン酸モノプロピル、マレイン酸モノn-ブチルなどのマレイン酸モノアルキルエステル;フマル酸モノメチル、フマル酸モノエチル、フマル酸モノプロピル、フマル酸モノn-ブチルなどのフマル酸モノアルキルエステル;シトラコン酸モノメチル、シトラコン酸モノエチル、シトラコン酸モノプロピル、シトラコン酸モノn-ブチルなどのシトラコン酸モノアルキルエステル;イタコン酸モノメチル、イタコン酸モノエチル、イタコン酸モノプロピル、イタコン酸モノn-ブチルなどのイタコン酸モノアルキルエステル;などが挙げられる。
  α,β-エチレン性不飽和多価カルボン酸多価エステルとしては、たとえば、マレイン酸ジメチル、マレイン酸ジn-ブチル、フマル酸ジメチル、フマル酸ジn-ブチル、イタコン酸ジメチル、イタコン酸ジn-ブチルなどが挙げられる。
  α,β-エチレン性不飽和多価カルボン酸無水物としては、たとえば、無水マレイン酸、無水イタコン酸などが挙げられる。
  架橋性単量体としては、たとえば、ジビニルベンゼンなどのジビニル化合物;エチレンジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、エチレングリコールジ(メタ)アクリレートなどのジ(メタ)アクリル酸エステル類;トリメチロールプロパントリ(メタ)アクリレートなどのトリメタクリル酸エステル類;などの多官能エチレン性不飽和単量体のほか、N-メチロール(メタ)アクリルアミド、N,N’-ジメチロール(メタ)アクリルアミドなどの自己架橋性単量体などが挙げられる。
  共重合性老化防止剤としては、たとえば、N-(4-アニリノフェニル)アクリルアミド、N-(4-アニリノフェニル)メタクリルアミド、N-(4-アニリノフェニル)シンナムアミド、N-(4-アニリノフェニル)クロトンアミド、 N-フェニル-4-(3-ビニルベンジルオキシ)アニリン、N-フェニル-4-(4-ビニルベンジルオキシ)アニリンなどが挙げられる。
  これらの共重合可能なその他の単量体は、複数種類を併用してもよい。高飽和ニトリルゴム(A)中における、その他の単量体の単位の含有量は、好ましくは50重量%以下、より好ましくは30重量%以下、さらに好ましくは10重量%以下である。
  本発明で用いる高飽和ニトリルゴム(A)は、そのヨウ素価が120以下であり、好ましくは80以下、より好ましくは25以下、さらに好ましくは15以下のものである。高飽和ニトリルゴム(A)のヨウ素価が高すぎると、ゴム架橋物の耐熱性および耐オゾン性が低下するおそれがある。
  高飽和ニトリルゴム(A)のポリマームーニー粘度(ML1+4、100℃)は、好ましくは15~200、より好ましくは20~150、さらに好ましくは30~120である。高飽和ニトリルゴム(A)のポリマームーニー粘度が低すぎると、得られるゴム架橋物の機械特性が低下するおそれがあり、逆に、高すぎると架橋性ニトリルゴム組成物の加工性が低下する可能性がある。
  本発明で用いる高飽和ニトリルゴム(A)の製造方法は、特に限定されず、たとえば、α,β-エチレン性不飽和ニトリル単量体、ジエン単量体および/またはα-オレフィン単量体、および、必要に応じて加えられるこれらと共重合可能なその他の単量体を共重合する方法が便利で好ましい。重合法としては、公知の乳化重合法、懸濁重合法、塊状重合法および溶液重合法のいずれをも用いることができるが、重合反応の制御が容易であることから乳化重合法が好ましい。なお、共重合して得られた共重合体のヨウ素価が120より高い場合には、共重合体の水素化(水素添加反応)を行うとよい。この場合における、水素化の方法は特に限定されず、公知の方法を採用すればよい。
  マスターバッチ(B)
  本発明で用いるマスターバッチ(B)は、21.18Nの荷重下190℃で測定されるメルトフローレートが0.5~1000g/10minであり、酢酸ビニル単量体単位を5~50重量%の割合で含有するエチレン-酢酸ビニル共重合体(b1)と、平均繊維長が0.1~12mmである有機短繊維(b2)とを含有してなるものである。
  本発明においては、組成物を構成する主成分としてのゴムとして、α,β-エチレン性不飽和ニトリル単量体単位を10~60重量%の割合で含有し、ヨウ素価が120以下である高飽和ニトリルゴム(A)を用い、これに、有機短繊維(b2)を、エチレン-酢酸ビニル共重合体(b1)に配合することで得られたマスターバッチを配合するものであり、これにより、組成物中における、有機短繊維(b2)の分散性を特に良好なものとすることができるものである。そして、本発明によれば、有機短繊維(b2)の分散性を特に良好なものとすることにより、得られるゴム架橋物を、引張応力および引裂強度に特に優れたものとすることができるものである。
  一方、組成物を構成する主成分として、高飽和ニトリルゴム以外のゴムや、樹脂を用いた場合や、高飽和ニトリルゴムを使用した場合でも、α,β-エチレン性不飽和ニトリル単量体単位の含有量や、ヨウ素価が上記範囲から外れたものを使用した場合には、ゴム組成物の混練加工性、ゴム架橋物の耐圧縮永久歪み性や耐低温脆性が悪化してしまうこととなる。これに対し、本発明によれば、上記構成を採用することにより、このような不具合を生じさせることなく、得られるゴム架橋物を、引張応力および引裂強度に特に優れたものとすることができるものである。
  エチレン-酢酸ビニル共重合体(b1)としては、エチレンと酢酸ビニルとの共重合体であり、メルトフローレートおよび酢酸ビニル単量体単位の含有量が上記範囲にあるものであれば特に限定されず、ゴム状、樹脂状のいずれの性状のものであってもよい。
  本発明で用いるエチレン-酢酸ビニル共重合体(b1)は、メルトフローレート(MFR)が0.5~1000g/10minであり、好ましくは1~900g/10min、より好ましくは10~500g/10minである。メルトフローレートが上記範囲内にあることにより、高飽和ニトリルゴム(A)および有機短繊維(b2)に対する親和性をより良好なものとすることができる。なお、エチレン-酢酸ビニル共重合体(b1)のメルトフローレートは、ASTM  D1238に基づき、190℃/21.18N(190℃/2.16kg)の条件で測定されるものである。
  また、本発明で用いるエチレン-酢酸ビニル共重合体(b1)は、酢酸ビニル単量体単位の含有割合が、5~50重量%であり、好ましくは10~45重量%、より好ましくは20~40重量%である。酢酸ビニル単量体単位の含有割合を上記範囲とすることにより、高飽和ニトリルゴム(A)および有機短繊維(b2)に対する親和性を良好なものとするこができ、これにより、高飽和ニトリルゴム(A)中への有機短繊維(b2)の分散性をより良好なものとすることができる。
  本発明で用いる有機短繊維(b2)としては、平均繊維長が0.1~12mmの範囲にある繊維状の有機材料であればよく特に限定されない。なお、有機短繊維(b2)の平均繊維長は、たとえば、光学顕微鏡により写真撮影を行い、得られた写真において無作為に選んだ100個の短繊維の長さを測定し、これを算術平均することにより求めることができる。平均繊維長が短すぎると、得られるゴム架橋物の引張応力が低下するおそれがあり、一方、平均繊維長が長すぎると、エチレン-酢酸ビニル共重合体(b1)とともにマスターバッチ化する際に、マスターバッチ化が困難となるおそれがなる。有機短繊維(b2)の平均繊維長は、好ましくは0.5~10mmであり、より好ましくは0.5~6mmである。
  本発明で用いる有機短繊維(b2)としては、綿、木材セルロース繊維等の天然繊維;ポリアミド、ポリエステル、ポリビニルアルコール、レーヨン、ポリパラフェニレンベンゾビスオキサゾール、ポリエチレン、ポリプロピレン、ポリアリレート、ポリイミド、ポリフェニレンサルファイド、ポリエーテルエーテルケトン、ポリ乳酸、ポリカプロラクトン、ポリブチレンサクシネート、フッ素系ポリマー等の合成樹脂からなる繊維;等が例示される。これらの中でも、本発明の効果がより一層顕著になることから、合成樹脂からなる短繊維を用いることが好ましく、ポリアミドからなる短繊維を用いることがより好ましい。
  ポリアミドとしては、ポリカプラミド、ポリ-ω-アミノヘプタン酸、ポリ-ω-アミノノナン酸、ポリウンデカンアミド、ポリエチレンジアミンアジパミド、ポリテトラメチレンアジパミド、ポリヘキサメチレンアジパミド、ポリヘキサメチレンセバカミド、ポリヘキサメチレンドデカミド、ポリオクタメチレンアジパミド、ポリデカメチレンアジパミドなどの脂肪族ポリアミド;ポリパラフェニレンテレフタラミド(商品名「Kevlar」、東レ・デュポン社製)、ポリメタフェニレンイソフタラミド(商品名「コーネックス」、帝人テクノプロダクツ社製)、コポリパラフェニレン・3,4’オキシジフェニレン・テレフタラミド(商品名「テクノーラ」、帝人テクノプロダクツ社製)、ポリメタキシリレンアジパミド、ポリメタキシリレンピメラミド、ポリメタキシリレンアゼラミド、ポリパラキシリレンアゼラミド、ポリパラキシリレンデカナミドなどの芳香族ポリアミド(アラミド);などが挙げられる。これらのなかでも、得られるゴム架橋物の引張応力および引裂強さをより向上させることができるという点より、芳香族ポリアミド、すなわち、アラミドが好ましく、ポリパラフェニレンテレフタラミド、ポリメタフェニレンイソフタラミドおよびコポリパラフェニレン・3,4’オキシジフェニレン・テレフタラミドがより好ましく、コポリパラフェニレン・3,4’オキシジフェニレン・テレフタラミドが特に好ましい。
  すなわち、ポリアミドからなる短繊維としては、アラミド短繊維が好ましく、ポリパラフェニレンテレフタラミド短繊維、ポリメタフェニレンイソフタラミド短繊維およびコポリパラフェニレン・3,4’オキシジフェニレン・テレフタラミド短繊維がより好ましく、ポリパラフェニレンテレフタラミド短繊維、コポリパラフェニレン・3,4’オキシジフェニレン・テレフタラミド短繊維が特に好ましい。
  また、本発明で用いる有機短繊維(b2)としては、チョップドファイバー(カットファイバー)状でも、フィブリルを有するパルプ状のものでもよいが、フィブリルを有するパルプ状の短繊維(フィブリル化したパルプ状の短繊維)が好ましく、特に、フィブリルを有するパルプ状のアラミド短繊維(フィブリル化したパルプ状のアラミド短繊維)であることがより好ましい。フィブリルを有するパルプ状の短繊維、特に、フィブリルを有するパルプ状のアラミド短繊維を使用することにより、得られるゴム架橋物の引張応力および引裂強度をより高めることができる。
  フィブリルを有するパルプ状のアラミド短繊維としては、特に限定されないが、たとえば、熱分解温度が250℃以上、700℃以下であるアラミド短繊維をさらに微細繊維に枝分かれさせて表面を毛羽立たせた構造としたものなどを用いることができる。
  本発明で用いるマスターバッチ(B)中における、エチレン-酢酸ビニル共重合体(b1)と、有機短繊維(b2)との比率は、「エチレン-酢酸ビニル共重合体(b1):有機短繊維(b2)」の重量比で、30:70~80:20であり、好ましくは35:65~75:25、より好ましくは40:60~70:30である。エチレン-酢酸ビニル共重合体(b1)と、有機短繊維(b2)との比率を上記範囲とすることで、架橋性ニトリルゴム組成物中への有機短繊維(b2)の分散を十分なものとすることができ、これにより、得られるゴム架橋物の引張応力および引裂強度の向上効果を適切に得ることができる。エチレン-酢酸ビニル共重合体(b1)が少なすぎると、架橋性ニトリルゴム組成物中への有機短繊維(b2)の分散が不十分となってしまい、有機短繊維(b2)の配合効果、すなわち、得られるゴム架橋物の引張応力および引裂強度の向上効果が得られなくなってしまう。同様に、有機短繊維(b2)が少なすぎると、得られるゴム架橋物の引張応力および引裂強度の向上効果が得られなくなってしまう。
  なお、マスターバッチ(B)中には、本発明の効果を阻害しない範囲で、充填剤、老化防止剤、酸化防止剤、光安定剤、紫外線吸収剤、加工助剤、滑材、潤滑剤などのその他添加剤を含んでいてもよい。これらその他添加剤の含有量は、通常マスターバッチ(B)中の30重量%以下、より好ましくは15重量%以下、特に好ましくは5重量%以下である。
  また、本発明の架橋性ニトリルゴム組成物中における、マスターバッチ(B)の含有量は、高飽和ニトリルゴム(A)100重量部に対して、好ましくは0.1~30重量部であり、より好ましくは1~25重量部、さらに好ましくは3~20重量部である。本発明の架橋性ニトリルゴム組成物中における、有機短繊維(b2)の含有量を上記範囲とすることにより、得られるゴム架橋物の引張応力および引裂強度の向上効果をより高めることができる。
  本発明で用いるマスターバッチ(B)は、エチレン-酢酸ビニル共重合体(b1)と、有機短繊維(b2)とを混合することで調製することができる。エチレン-酢酸ビニル共重合体(b1)と、有機短繊維(b2)とを混合する方法としては、これらを均一に混合可能な方法であればよく特に限定されないが、エチレン-酢酸ビニル共重合体(b1)の重合中、あるいは溶融混練中に、有機短繊維(b2)を添加する方法などが挙げられる。エチレン-酢酸ビニル共重合体(b1)の溶融混練中に、有機短繊維(b2)を添加する方法としては、たとえば、二軸押出し機などの押出し機に、エチレン-酢酸ビニル共重合体(b1)および有機短繊維(b2)を添加し、押出し機中にて溶融混練する方法などが挙げられる。
  架橋剤(C)
  本発明で用いる架橋剤(C)としては特に限定されず、有機過酸化物架橋剤、ポリアミン架橋剤、硫黄系架橋剤などが挙げられるが、有機過酸化物架橋剤が好ましい。架橋剤(C)として、有機過酸化物架橋剤を用いることにより、架橋性ニトリルゴム組成物の加工性が向上し、また、得られるゴム架橋物を、引張強度に特に優れたものとすることができる。
  有機過酸化物架橋剤としては、従来公知のものを用いることができ、ジクミルペルオキシド、クメンヒドロペルオキシド、t-ブチルクミルペルオキシド、パラメンタンヒドロペルオキシド、ジ-t-ブチルペルオキシド、1,3-ビス(t-ブチルペルオキシイソプロピル)ベンゼン、1,4-ビス(t-ブチルペルオキシイソプロピル)ベンゼン、1,1-ジ-t-ブチルペルオキシ-3,3-トリメチルシクロヘキサン、4,4-ビス-(t-ブチル-ペルオキシ)-n-ブチルバレレート、2,5-ジメチル-2,5-ジ-t-ブチルペルオキシヘキサン、2,5-ジメチル-2,5-ジ-t-ブチルペルオキシヘキシン-3、1,1-ジ-t-ブチルペルオキシ-3,5,5-トリメチルシクロヘキサン、p-クロロベンゾイルペルオキシド、t-ブチルペルオキシイソプロピルカーボネート、t-ブチルペルオキシベンゾエート等が挙げられる。これらのなかでも、1,3-ビス(t-ブチルペルオキシイソプロピル)ベンゼンが好ましい。これらは一種単独でまたは複数種併せて用いることができる。
  本発明の架橋性ニトリルゴム組成物中における、架橋剤(C)の配合量は、高飽和ニトリルゴム(A)100重量部に対して、好ましくは0.5~20重量部であり、より好ましくは1~15重量部、さらに好ましくは2~10重量部である。架橋剤(C)の配合量が少なすぎると、得られるゴム架橋物の機械特性が低下するおそれがある。一方、多すぎると、得られるゴム架橋物の耐疲労性が悪化する可能性がある。
  α,β-エチレン性不飽和カルボン酸金属塩(D)
  また、本発明の架橋性ニトリルゴム組成物には、上記高飽和ニトリルゴム(A)、マスターバッチ(B)、および架橋剤(C)に加えて、α,β-エチレン性不飽和カルボン酸金属塩(D)をさらに配合してもよい。α,β-エチレン性不飽和カルボン酸金属塩(D)をさらに配合することで、得られるゴム架橋物の機械強度をより向上させることができる。α,β-エチレン性不飽和カルボン酸金属塩(D)としては、α,β-エチレン性不飽和カルボン酸と、金属との塩であればよく特に限定されない。
  α,β-エチレン性不飽和カルボン酸金属塩(D)を構成するα,β-エチレン性不飽和カルボン酸としては、少なくとも1価のフリーの(エステル化されていない)カルボキシル基を有するものであり、たとえば、α,β-エチレン性不飽和モノカルボン酸、α,β-エチレン性不飽和ジカルボン酸、α,β-エチレン性不飽和ジカルボン酸モノエステルなど挙げられる。
  α,β-エチレン性不飽和モノカルボン酸としては、アクリル酸、メタクリル酸、クロトン酸、3-ブテン酸などが挙げられる。
  α,β-エチレン性不飽和ジカルボン酸としては、マレイン酸、フマル酸、イタコン酸などが挙げられる。
  α,β-エチレン性不飽和ジカルボン酸モノエステルとしては、マレイン酸モノメチル、マレイン酸モノエチル、イタコン酸モノメチル、イタコン酸モノエチルなどが挙げられる。
  これらのなかでも、得られるゴム架橋物の機械強度をより高めることができるという点から、エステル基を持たないα,β-エチレン性不飽和カルボン酸が好ましく、α,β-エチレン性不飽和モノカルボン酸がより好ましく、アクリル酸、メタクリル酸、が特に好ましい。
  α,β-エチレン性不飽和カルボン酸金属塩(D)を構成する金属としては、たとえば、亜鉛、マグネシウム、カルシウム、バリウム、チタン、クロム、鉄、コバルト、ニッケル、アルミニウム、錫、鉛などが挙げられる。これらのなかでも、得られるゴム架橋物の機械強度をより高めることができるという点から、亜鉛、マグネシウム、カルシウム、およびアルミニウムが好ましく、亜鉛が特に好ましい。
  なお、本発明においては、α,β-エチレン性不飽和カルボン酸金属塩(D)は、高飽和ニトリルゴム(A)に、α,β-エチレン性不飽和カルボン酸金属塩(D)を形成することとなるα,β-エチレン性不飽和カルボン酸と、金属または金属化合物とを配合して、高飽和ニトリルゴム(A)中で、両者を反応させることで、生成させてもよい。このような方法により、α,β-エチレン性不飽和カルボン酸金属塩(D)を生成させることにより、得られるα,β-エチレン性不飽和カルボン酸金属塩(D)を高飽和ニトリルゴム(A)中に良好に分散させることができる。なお、この場合に用いられる金属化合物としては、上述した金属の酸化物、水酸化物、炭酸塩などが挙げられ、なかでも、酸化亜鉛、炭酸亜鉛が好ましく用いられる。
  高飽和ニトリルゴム(A)中に、α,β-エチレン性不飽和カルボン酸と金属または金属化合物とを配合して、α,β-エチレン性不飽和カルボン酸金属塩(D)を生成させる場合には、α,β-エチレン性不飽和カルボン酸1モルに対して、金属または金属化合物を、好ましくは0.5~4モル、より好ましくは0.7~3モル配合して反応させる。使用する金属または金属化合物の量が少なすぎても多すぎても、α,β-エチレン性不飽和カルボン酸と、金属または金属化合物との反応が起こり難くなる。
  また、α,β-エチレン性不飽和カルボン酸金属塩(D)は、取り扱いの問題が生じない限り、細かなものが好ましく、特に、体積平均粒子径が20μm以上の粒子の含有割合を5%以下としたものが好ましい。このようにα,β-エチレン性不飽和カルボン酸金属塩(D)を細かなものとするためには、α,β-エチレン性不飽和カルボン酸金属塩(D)を、風力分級装置またはふるい分級装置などを用いて分級する方法などを用いればよい。あるいは、α,β-エチレン性不飽和カルボン酸と、金属または金属化合物とを配合して、高飽和ニトリルゴム(A)中で、α,β-エチレン性不飽和カルボン酸金属塩(D)を生成させる場合には、金属または金属化合物を、風力分級装置またはふるい分級装置などを用いて分級する方法などを用いることで、α,β-エチレン性不飽和カルボン酸金属塩(D)を細かなものとすればよい。
  本発明の架橋性ニトリルゴム組成物中における、α,β-エチレン性不飽和カルボン酸金属塩(D)の含有量は、高飽和ニトリルゴム(A)100重量部に対して、好ましくは5~100重量部、より好ましくは10~50重量部、さらに好ましくは15~30重量部である。α,β-エチレン性不飽和カルボン酸金属塩(D)の含有量を上記範囲とすることにより、得られるゴム架橋物の機械強度の向上効果をより高めることができる。
  その他の成分
  また、本発明の架橋性ニトリルゴム組成物には、上記以外に、ゴム分野において通常使用される配合剤、たとえば、カーボンブラックやシリカなどの補強剤、炭酸カルシウム、タルクやクレイなどの充填材、酸化亜鉛や酸化マグネシウムなどの金属酸化物、共架橋剤、架橋促進剤、架橋助剤、架橋遅延剤、老化防止剤、酸化防止剤、光安定剤、一級アミンなどのスコーチ防止剤、ジエチレングリコールなどの活性剤、シランカップリング剤、可塑剤、加工助剤、滑剤、粘着剤、潤滑剤、難燃剤、防黴剤、受酸剤、帯電防止剤、顔料、発泡剤などを配合することができる。これらの配合剤の配合量は、本発明の目的や効果を阻害しない範囲であれば特に限定されず、配合目的に応じた量を配合することができる。
  カーボンブラックとしては、たとえば、ファーネスブラック、アセチレンブラック、サーマルブラック、チャンネルブラック、グラファイトなどが挙げられる。これらは1種または複数種併せて用いることができる。
  シリカとしては、石英粉末、珪石粉末等の天然シリカ;無水珪酸(シリカゲル、アエロジル等)、含水珪酸等の合成シリカ;等が挙げられ、これらの中でも、合成シリカが好ましい。またこれらシリカはシランカップリング剤等で表面処理されたものであってもよい。
  シランカップリング剤としては特に限定されないが、その具体例としては、γ-メルカプトプロピルトリメトキシシラン、γ-メルカプトメチルトリメトキシラン、γ-メルカプトメチルトリエトキシラン、γ-メルカプトヘキサメチルジシラザン、ビス(3-トリエトキシシリルプロピル)テトラスルファン、ビス(3-トリエトキシシリルプロピルジスルファンなどの硫黄を含有するシランカップリング剤;γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルメチルジメトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、γ-メルカプトプロピルトリメトキシシラン、γ-グリシドキシプロピルメチルジエトキシシラン等のエポキシ基含有シランカップリング剤;N-(β-アミノエチル)-γ-アミノプロピルトリメトキシシラン、γ-アミノプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリエトキシシラン、3-トリエトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン、N-フェニル-3-アミノプリピルトリメトキシシラン等のアミノ基含有シランカップリング剤;γ-メタクリロキシプロピルトリメトキシシラン、γ-メタクリロキシプロピルトリス(β-メトキシエトキシ)シラン、γ-メタクリロキシプロピルメチルジメトキシシラン、γ-メタクリロキシプロピルメチルジエトキシシラン、γ-メタクリロキシプロピルトリエトキシシラン、γ-アクリロキシプロピルトリメトキシシラン等の(メタ)アクリロキシ基含有シランカップリング剤;ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリス(β-メトキシエトキシ)シラン、ビニルトリクロロシラン、ビニルトリアセトキシシラン等のビニル基含有シランカップリング剤;3-クロロプロピルトリメトキシシラン等のクロロプロピル基含有シランカプリング剤;3-イソシアネートプロピルトリエトキシシラン等のイソシアネート基含有シランカプリング剤:p-スチリルトリメトキシシラン等のスチリル基含有シランカップリング剤;3-ウレイドプロピルトリエトキシシラン等のウレイド基含有シランカップリング剤;ジアリルジメチルシラン等のアリル基含有シランカップリング剤;テトラエトキシシラン等のアルコキシ基含有シランカップリング剤;ジフェニルジメトキシシラン等のフェニル基含有シランカップリング剤;トリフルオロプロピルトリメトキシシラン等のフロロ基含有シランカップリング剤;イソブチルトリメトキシシラン、シクロヘキシルメチルジメトキシシラン等のアルキル基含有シランカップリング剤;アセトアルコキシアルミニウムジイソポロピレートなどのアルミニウム系カップリング剤;イソプロピルトリイソステアロイルチタネート、イソプロピルトリス(ジオクチルパイロホスフェート)チタネート、イソプロピルトリ(N-アミノエチル-アミノエチル)チタネート、テトラオクチルビス(ジトリデシルホスファイト)チタネート、テトラ(2,2-ジアリルオキシメチル-1-ブチル)ビス(ジトリデジル)ホスファイトチタネート、ビス(ジオクチルパイロホスフェート)オキシアセテートチタネート、ビス(ジオクチルパイロホスフェート)エチレンチタネート、テトライソプロピルビス(ジオクチルホスファイト)チタネート、イソプロピルトリイソステアロイルチタネートなどのチタネート系カップリング剤;などが挙げられる。これらは1種または複数種併せて用いることができる。
  共架橋剤としては、特に限定されないが、ラジカル反応性の不飽和基を分子中に複数個有する低分子または高分子の化合物が好ましく、たとえば、ジビニルベンゼンやジビニルナフタレンなどの多官能ビニル化合物;トリアリルイソシアヌレート、トリメタリルイソシアヌレートなどのイソシアヌレート類;トリアリルシアヌレートなどのシアヌレート類;N,N'-m-フェニレンジマレイミドなどのマレイミド類;ジアリルフタレート、ジアリルイソフタレート、ジアリルマレエート、ジアリルフマレート、ジアリルセバケート、トリアリルホスフェートなどの多価酸のアリルエステル;ジエチレングリコールビスアリルカーボネート;エチレングリコールジアリルエーテル、トリメチロールプロパンのトリアリルエーテル、ペンタエリトリットの部分的アリルエーテルなどのアリルエーテル類;アリル化ノボラック、アリル化レゾール樹脂等のアリル変性樹脂;トリメチロールプロパントリメタクリレートやトリメチロールプロパントリアクリレートなどの、3~5官能のメタクリレート化合物やアクリレート化合物;などが挙げられる。これらは1種または複数種併せて用いることができる。
  可塑剤としては、特に限定されないが、トリメリット酸系可塑剤やエーテルエステル系可塑剤などを用いることができる。具体例としては、トリメリット酸トリ-2-エチルヘキシル、トリメリット酸イソノニルエステル、アジピン酸ビス[2-(2-ブトキシエトキシ)エチル]、ジヘプタノエート、ジ‐2-エチルヘキサノエート、ジデカノエートなどが挙げられる。これらは1種または複数種併せて用いることができる。
  なお、得られるゴム架橋物における、ブリードを防止するという観点より、可塑剤の配合量は、高飽和ニトリルゴム(A)100重量部に対して、15重量部以下とすることが好ましく、12重量部以下とすることがより好ましい。
  さらに、本発明の架橋性ニトリルゴム組成物には、本発明の効果が阻害されない範囲で、上述した高飽和ニトリルゴム(A)、およびエチレン-酢酸ビニル共重合体(b1)以外のその他の重合体を配合してもよい。その他の重合体としては、アクリルゴム、エチレン-アクリル酸共重合体ゴム、フッ素ゴム、スチレン-ブタジエン共重合体ゴム、ポリブタジエンゴム、エチレン-プロピレン共重合体ゴム、エチレン-プロピレン-ジエン三元共重合体ゴム、エピクロロヒドリンゴム、ウレタンゴム、クロロプレンゴム、シリコーンゴム、フルオロシリコーンゴム、クロロスルフォン化ポリエチレンゴム、天然ゴムおよびポリイソプレンゴムなどを挙げることができる。その他の重合体を配合する場合における、架橋性ニトリルゴム組成物中の配合量は、高飽和ニトリルゴム(A)100重量部に対して、好ましくは30重量部以下であり、より好ましくは20重量部以下、さらに好ましくは10重量部以下である。
  架橋性ニトリルゴム組成物の製造
  本発明の架橋性ニトリルゴム組成物は、上記各成分を、好ましくは非水系で混合して調製される。混合方法に限定はないが、架橋剤(C)および熱に不安定な架橋助剤などを除いた成分を、バンバリーミキサ、インターミキサ、ニーダーなどの混合機で一次混練した後、ロ-ルなどに移して架橋剤(C)等を加えて二次混練することにより調製することができる。なお、一次混練は、通常、10~200℃、好ましくは30~180℃の温度で、1分間~1時間、好ましくは1分間~30分間行い、二次混練は、通常、10~100℃、好ましくは20~60℃の温度で、1分間~1時間、好ましくは1分間~30分間行う。この際において、エチレン-酢酸ビニル共重合体(b1)と、有機短繊維(b2)とは予め混合し、マスターバッチ(B)とした状態で、他の成分と混合する。
  ゴム架橋物
  本発明のゴム架橋物は、上述した本発明の架橋性ニトリルゴム組成物を架橋してなるものである。
  本発明のゴム架橋物は、本発明の架橋性ニトリルゴム組成物を用い、たとえば、所望の形状に対応した成形機、たとえば、押出し機、射出成形機、圧縮機、ロールなどにより成形を行い、加熱することにより架橋反応を行い、ゴム架橋物として形状を固定化することにより製造することができる。この場合においては、予め成形した後に架橋しても、成形と同時に架橋を行ってもよい。成形温度は、通常、10~200℃、好ましくは25~120℃である。架橋温度は、通常、100~200℃、好ましくは130~190℃であり、架橋時間は、通常、1分~24時間、好ましくは2分~12時間、特に好ましくは3分~6時間である。
  また、ゴム架橋物の形状、大きさなどによっては、表面が架橋していても内部まで十分に架橋していない場合があるので、さらに加熱して二次架橋を行ってもよい。
  架橋方法としては、プレス架橋、スチーム架橋、オーブン架橋などのゴムの架橋に用いられる一般的な方法を適宜選択することができる。
  このようにして得られる本発明のゴム架橋物は、本発明の架橋性ニトリルゴム組成物を用いて得られるものであるため、引張応力および引裂強度に優れたものである。
  このため、本発明の架橋物は、このような特性を活かし、O-リング、パッキン、ダイアフラム、オイルシール、シャフトシール、ベアリングシール、ウェルヘッドシール、空気圧機器用シール、エアコンディショナの冷却装置や空調装置の冷凍機用コンプレッサに使用されるフロン若しくはフルオロ炭化水素または二酸化炭素の密封用シール、精密洗浄の洗浄媒体に使用される超臨界二酸化炭素または亜臨界二酸化炭素の密封用シール、転動装置(転がり軸受、自動車用ハブユニット、自動車用ウォーターポンプ、リニアガイド装置およびボールねじ等)用のシール、バルブおよびバルブシート、BOP(Blow  Out Preventar)、プラターなどの各種シール材;インテークマニホールドとシリンダヘッドとの連接部に装着されるインテークマニホールドガスケット、シリンダブロックとシリンダヘッドとの連接部に装着されるシリンダヘッドガスケット、ロッカーカバーとシリンダヘッドとの連接部に装着されるロッカーカバーガスケット、オイルパンとシリンダブロックあるいはトランスミッションケースとの連接部に装着されるオイルパンガスケット、正極、電解質板および負極を備えた単位セルを挟み込む一対のハウジング間に装着される燃料電池セパレーター用ガスケット、ハードディスクドライブのトップカバー用ガスケットなどの各種ガスケット;印刷用ロール、製鉄用ロール、製紙用ロール、工業用ロール、事務機用ロールなどの各種ロール;平ベルト(フィルムコア平ベルト、コード平ベルト、積層式平ベルト、単体式平ベルト等)、Vベルト(ラップドVベルト、ローエッジVベルト等)、Vリブドベルト(シングルVリブドベルト、ダブルVリブドベルト、ラップドVリブドベルト、背面ゴムVリブドベルト、上コグVリブドベルト等)、CVT用ベルト、タイミングベルト、歯付ベルト、コンベアーベルト、などの各種ベルト;燃料ホース、ターボエアーホース、オイルホース、ラジェターホース、ヒーターホース、ウォーターホース、バキュームブレーキホース、コントロールホース、エアコンホース、ブレーキホース、パワーステアリングホース、エアーホース、マリンホース、ライザー、フローラインなどの各種ホース;CVJブーツ、プロペラシャフトブーツ、等速ジョイントブーツ、ラックアンドピニオンブーツなどの各種ブーツ;クッション材、ダイナミックダンパ、ゴムカップリング、空気バネ、防振材などの減衰材ゴム部品;ダストカバー、自動車内装部材、タイヤ、被覆ケーブル、靴底、電磁波シールド、フレキシブルプリント基板用接着剤等の接着剤、燃料電池セパレーターの他、エレクトロニクス分野など幅広い用途に使用することができる。これらのなかでも、本発明のゴム架橋物は、引張応力および引裂強度に特に優れるものであるため、ベルト、ホース、ロール、シール、またはガスケットとして好適であり、とりわけ、ベルトとして特に好適である。
  以下、本発明を、さらに詳細な実施例に基づき説明するが、本発明は、これら実施例に限定されない。なお、以下において、「部」は、特に断りのない限り重量基準である。また、試験および評価は下記によった。
  常態物性(引張強さ、伸び、25%引張応力、50%引張応力、100%引張応力)
  架橋性ニトリルゴム組成物を、縦15cm、横15cm、深さ0.2cmの金型に入れ、プレス圧10MPaで加圧しながら170℃で20分間プレス成形してシート状のゴム架橋物を得た。得られたシート状のゴム架橋物を列理方向に3号形ダンベルで打ち抜いて試験片を作製した。そして、得られた試験片を用いて、JIS  K6251に従い、引張強さ、伸び、25%引張応力、50%引張応力、および100%引張応力を測定した。
  引裂強度
  上記常態物性の測定と同様にして、シート状のゴム架橋物を得て、JIS  K6252に従い、得られたシート状のゴム架橋物から、切込みなしアングル形の打ち抜き刃で打ち抜くことで試験片を得て、列理方向に引裂き試験を行い、引裂強度を測定した。
  実施例1
  バンバリーミキサを用いて、高飽和ニトリルゴム(商品名「Zetpol2010L」、日本ゼオン社製、よう素価11、アクリロニトリル単位36.2重量%、ポリマームーニー粘度58(ML1+4、100℃))100部、メタクリル酸亜鉛15部、SRFカーボンブラック(商品名「シーストS」、カーボンブラック)25部、酸化亜鉛10部、トリメリット酸トリ-2-エチルヘキシル(商品名「アデカサイザーC-8」、ADEKA社製、可塑剤)10部、4,4’-ジ-(α,α-ジメチルベンジル)ジフェニルアミン(商品名「ノクラックCD」、大内新興化学工業社製、老化防止剤)1.5部、2-メルカプトベンゾイミダゾール亜鉛塩(商品名「ノクラックMBZ」、大内新興化学工業社製、老化防止剤)1.5部、短繊維マスターバッチ(M1)(商品名「ケブラーEE  1K1034」、東レ・デュポン社製、平均繊維長1.1mmのポリパラフェニレンテレフタルアミドのフィブリル化したパルプ状の短繊維:50重量%、エチレン-酢酸ビニル共重合体(酢酸ビニル単位28重量%、ASTM  D1238による190℃/21.18N(190℃/2.16kg)におけるメルトフローレート(MFR)が400g/10min):50重量%)7部を、チャンバー設定温度50℃で5分間混練した。次いで、混合物をオープンロールに移して、1,3-ビス(t-ブチルペルオキシイソプロピル)ベンゼン40%品(商品名「Vul  Cup 40KE」、アルケマ社製、有機過酸化物架橋剤)10部を配合し、50℃で5分間混練することにより、架橋性ニトリルゴム組成物を得た。
 そして、得られた架橋性ニトリルゴム組成物を用いて、上述した方法にしたがって、常態物性、引裂強度の各評価を行った。結果を表1に示す。
  実施例2
  トリメリット酸トリ-2-エチルヘキシル10部に代えて、ポリエーテルエステル(商品名「アデカサイザーRS-700」、ADEKA社製、可塑剤)10部を使用した以外は実施例1と同様にして、架橋性ニトリルゴム組成物を調製し、同様に評価を行った。結果を表1に示す。
  実施例3
  メタクリル酸亜鉛15部に代えて、アクリル酸亜鉛15部を使用した以外は実施例1と同様にして、架橋性ニトリルゴム組成物を調製し、同様に評価を行った。結果を表1に示す。
  実施例4
  短繊維マスターバッチ(M1)の配合量を、7部から11部に変更した以外は実施例1と同様にして、架橋性ニトリルゴム組成物を調製し、同様に評価を行った。結果を表1に示す。
  比較例1
  短繊維マスターバッチ(M1)7部に代えて、短繊維マスターバッチ(M2)(商品名「ケブラーEE  1K3239」、東レ・デュポン社製、平均繊維長1.1mmのポリパラフェニレンテレフタルアミドのパルプ状の短繊維:61.5重量%、エチレン-オクテン二元共重合体(190℃/21.18N(190℃/2.16kg)におけるMFRが20g/10min):38.5重量%)5.69部を使用した以外は実施例1と同様にして、架橋性ニトリルゴム組成物を調製し、同様に評価を行った。結果を表1に示す。
  比較例2
  短繊維マスターバッチ(M1)7部に代えて、短繊維マスターバッチ(M3)(商品名「Rhenogran   P91-40 / EPDM」、Rhein Chemie社製、平均繊維長1.4mmのポリパラフェニレンテレフタルアミドのパルプ状の短繊維:40重量%、エチレン-プロピレン-ジエンゴム:60重量%)8.75部を使用した以外は実施例1と同様にして、架橋性ニトリルゴム組成物を調製し、同様に評価を行った。結果を表1に示す。
  比較例3
  短繊維マスターバッチ(M1)7部に代えて、短繊維マスターバッチ(M4)(商品名「Rhenogran   P91-40 / NBR」、Rhein Chemie社製、平均繊維長1.4mmのポリパラフェニレンテレフタルアミドのパルプ状の短繊維:40重量%、ニトリルゴム:60重量%)8.75部を使用した以外は実施例1と同様にして、架橋性ニトリルゴム組成物を調製し、同様に評価を行った。結果を表1に示す。
  比較例4
  短繊維マスターバッチ(M1)7部に代えて、マスターバッチ化していないパルプ状の短繊維(商品名「トワロンパルプ1091」、帝人社製、平均繊維長1.4mmのポリパラフェニレンテレフタルアミドのパルプ状の短繊維)3.5部をそのまま使用した以外は実施例1と同様にして、架橋性ニトリルゴム組成物を調製し、同様に評価を行った。結果を表1に示す。
  比較例5
  短繊維マスターバッチ(M1)7部に代えて、マスターバッチ化していないチョップドファイバー(カットファイバー)状の短繊維(商品名「トワロン1589チョップドファイバー1mm」、帝人社製、平均繊維長1mmのポリパラフェニレンテレフタルアミドのチップドファイバー状の短繊維)3.5部をそのまま使用した以外は実施例1と同様にして、架橋性ニトリルゴム組成物を調製し、同様に評価を行った。結果を表1に示す。
  比較例6
  短繊維マスターバッチ(M4)の配合量を、8.75部から13.75部に変更した以外は比較例3と同様にして、架橋性ニトリルゴム組成物を調製し、同様に評価を行った。結果を表1に示す。
  比較例7
  短繊維マスターバッチ(M1)を配合しなかった以外は実施例1と同様にして、架橋性ニトリルゴム組成物を調製し、同様に評価を行った。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
  表1に示すように、高飽和ニトリルゴム(A)に、エチレン-酢酸ビニル共重合体(b1)と、有機短繊維(b2)とを本発明所定の割合で含有するマスターバッチ(B)、および架橋剤(C)を含有する架橋性ニトリルゴム組成物を架橋することにより得られるゴム架橋物は、高い引張応力を示し、また引裂強度も高く優れる結果であった(実施例1~4)。
  一方、短繊維マスターバッチとして、エチレン-酢酸ビニル共重合体(b1)以外のバインダーを用いたものを使用した場合には、得られるゴム架橋物は、引張応力が低く、引裂強度も劣るものであった(比較例1~3,6)。
  また、パルプ状の有機短繊維をマスターバッチ化せずに、そのまま配合した場合には、得られるゴム架橋物は、架橋物中に短繊維の塊を無数に含むものとなり、各種評価をすることができないものであった(比較例4)。
  カットファイバー状の有機短繊維をマスターバッチ化せずに、そのまま配合した場合には、得られるゴム架橋物は、引張応力が低く、引裂強度も劣るものであった(比較例5)。
  さらに、有機短繊維を配合しなかった場合には、引張応力が極めて低く、引裂強度にも劣るものであった(比較例7)。

Claims (9)

  1.   α,β-エチレン性不飽和ニトリル単量体単位を10~60重量%の割合で含有し、ヨウ素価が120以下である高飽和ニトリルゴム(A)と、
      21.18Nの荷重下190℃で測定されるメルトフローレートが0.5~1000g/10minであり、酢酸ビニル単量体単位を5~50重量%の割合で含有するエチレン-酢酸ビニル共重合体(b1)と、平均繊維長が0.1~12mmである有機短繊維(b2)とを含有するマスターバッチ(B)と、
      架橋剤(C)とを含有し、
      前記マスターバッチ(B)中における、前記エチレン-酢酸ビニル共重合体(b1)と、前記有機短繊維(b2)との比率が、「エチレン-酢酸ビニル共重合体(b1):有機短繊維(b2)」の重量比で、30:70~80:20である架橋性ニトリルゴム組成物。
  2.   前記高飽和ニトリルゴム(A)100重量部に対する、前記マスターバッチ(B)の含有割合が、0.1~30重量部である請求項1に記載の架橋性ニトリルゴム組成物。
  3.   前記架橋剤(C)が、有機過酸化物架橋剤である請求項1または2に記載の架橋性ニトリルゴム組成物。
  4.   前記有機短繊維(b1)が、フィブリルを有するパルプ状の短繊維である請求項1~3のいずれかに記載の架橋性ニトリルゴム組成物。
  5.   前記有機短繊維(b1)が、アラミド短繊維である請求項1~4のいずれかに記載の架橋性ニトリルゴム組成物。
  6.  前記有機短繊維(b1)が、ポリパラフェニレンテレフタラミド短繊維またはコポリパラフェニレン・3,4’オキシジフェニレン・テレフタラミド短繊維である請求項5に記載の架橋性ニトリルゴム組成物。
  7.   α,β-エチレン性不飽和カルボン酸金属塩(D)をさらに含有する請求項1~6のいずれかに記載の架橋性ニトリルゴム組成物。
  8.  前記α,β-エチレン性不飽和カルボン酸金属塩(D)が、アクリル酸またはメタクリル酸と、亜鉛、マグネシウム、カルシウム、およびアルミニウムから選択される少なくとも1種の金属との塩である請求項7に記載の架橋性ニトリルゴム組成物。
  9.   請求項1~8のいずれかに記載の架橋性ニトリルゴム組成物を架橋してなるゴム架橋物。
PCT/JP2015/073201 2014-08-20 2015-08-19 架橋性ニトリルゴム組成物およびゴム架橋物 WO2016027822A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/504,739 US10428208B2 (en) 2014-08-20 2015-08-19 Cross-linkable nitrile rubber composition and cross-linked rubber
JP2016544225A JP6702191B2 (ja) 2014-08-20 2015-08-19 架橋性ニトリルゴム組成物およびゴム架橋物
EP15834347.5A EP3184585B1 (en) 2014-08-20 2015-08-19 Crosslinkable nitrile rubber composition and crosslinked rubber product
CN201580044333.7A CN106574080B (zh) 2014-08-20 2015-08-19 交联性腈橡胶组合物和橡胶交联物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-167463 2014-08-20
JP2014167463 2014-08-20

Publications (1)

Publication Number Publication Date
WO2016027822A1 true WO2016027822A1 (ja) 2016-02-25

Family

ID=55350766

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/073201 WO2016027822A1 (ja) 2014-08-20 2015-08-19 架橋性ニトリルゴム組成物およびゴム架橋物

Country Status (5)

Country Link
US (1) US10428208B2 (ja)
EP (1) EP3184585B1 (ja)
JP (1) JP6702191B2 (ja)
CN (1) CN106574080B (ja)
WO (1) WO2016027822A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109689763A (zh) * 2016-09-20 2019-04-26 阪东化学株式会社 橡胶组成物及用该橡胶组成物制成的传动带
JP2020002201A (ja) * 2018-06-26 2020-01-09 株式会社日本触媒 成型体の製造方法
JP2021042388A (ja) * 2017-10-17 2021-03-18 Nok株式会社 水素化nbr組成物

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10612492B2 (en) 2017-03-16 2020-04-07 Northrop Grumman Innovation Systems, Inc. Precursor compositions for an insulation, insulated rocket motors, and related methods
CN108727817A (zh) * 2018-05-21 2018-11-02 北京化工大学常州先进材料研究院 一种聚酰亚胺短切纤维增强母粒及其制备方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4818567B1 (ja) * 1969-05-16 1973-06-07
JPH01289845A (ja) * 1988-05-17 1989-11-21 Japan Synthetic Rubber Co Ltd ゴム架橋物
JPH04277538A (ja) * 1991-02-20 1992-10-02 Polysar Rubber Corp 繊維−ゴム混合物
JPH0987434A (ja) * 1995-09-27 1997-03-31 Ube Ind Ltd 伝動ベルト用ゴム組成物
JP2003314619A (ja) * 2002-04-23 2003-11-06 Bando Chem Ind Ltd 高負荷伝動ベルト用ゴム組成物及びこのゴム組成物を用いた高負荷伝動ベルト
WO2005092971A1 (ja) * 2004-03-26 2005-10-06 Zeon Corporation マスターバッチ組成物、これを含有してなるゴム組成物及び加硫物
JP2006097787A (ja) * 2004-09-29 2006-04-13 Tsubakimoto Chain Co 歯付ベルト
JP2011256267A (ja) * 2010-06-09 2011-12-22 Du Pont-Toray Co Ltd 熱可塑性エラストマー樹脂組成物
JP2012197857A (ja) * 2011-03-22 2012-10-18 Mitsuboshi Belting Ltd ゴム製歯付ベルト
WO2013015373A1 (ja) * 2011-07-28 2013-01-31 日本ゼオン株式会社 ニトリル基含有高飽和共重合体ゴム組成物

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4490516B2 (ja) * 1999-03-04 2010-06-30 日本ゼオン株式会社 有機過酸化物架橋性繊維強化ゴム組成物及びその架橋物
JP2004525022A (ja) * 2001-03-30 2004-08-19 ピレリ・プネウマティチ・ソチエタ・ペル・アツィオーニ 補強されたビードを有する車両ホイール用タイヤ
CN1938375A (zh) * 2004-03-26 2007-03-28 日本瑞翁株式会社 母炼胶组合物、含有其的橡胶组合物及硫化物
US9926445B2 (en) * 2012-12-21 2018-03-27 Zeon Corporation Nitrile copolymer rubber composition

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4818567B1 (ja) * 1969-05-16 1973-06-07
JPH01289845A (ja) * 1988-05-17 1989-11-21 Japan Synthetic Rubber Co Ltd ゴム架橋物
JPH04277538A (ja) * 1991-02-20 1992-10-02 Polysar Rubber Corp 繊維−ゴム混合物
JPH0987434A (ja) * 1995-09-27 1997-03-31 Ube Ind Ltd 伝動ベルト用ゴム組成物
JP2003314619A (ja) * 2002-04-23 2003-11-06 Bando Chem Ind Ltd 高負荷伝動ベルト用ゴム組成物及びこのゴム組成物を用いた高負荷伝動ベルト
WO2005092971A1 (ja) * 2004-03-26 2005-10-06 Zeon Corporation マスターバッチ組成物、これを含有してなるゴム組成物及び加硫物
JP2006097787A (ja) * 2004-09-29 2006-04-13 Tsubakimoto Chain Co 歯付ベルト
JP2011256267A (ja) * 2010-06-09 2011-12-22 Du Pont-Toray Co Ltd 熱可塑性エラストマー樹脂組成物
JP2012197857A (ja) * 2011-03-22 2012-10-18 Mitsuboshi Belting Ltd ゴム製歯付ベルト
WO2013015373A1 (ja) * 2011-07-28 2013-01-31 日本ゼオン株式会社 ニトリル基含有高飽和共重合体ゴム組成物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3184585A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109689763A (zh) * 2016-09-20 2019-04-26 阪东化学株式会社 橡胶组成物及用该橡胶组成物制成的传动带
CN109689763B (zh) * 2016-09-20 2020-09-22 阪东化学株式会社 橡胶组成物及用该橡胶组成物制成的传动带
JP2021042388A (ja) * 2017-10-17 2021-03-18 Nok株式会社 水素化nbr組成物
JP7016938B2 (ja) 2017-10-17 2022-02-07 Nok株式会社 水素化nbr組成物
JP2020002201A (ja) * 2018-06-26 2020-01-09 株式会社日本触媒 成型体の製造方法
JP7089961B2 (ja) 2018-06-26 2022-06-23 株式会社日本触媒 成型体の製造方法

Also Published As

Publication number Publication date
EP3184585A1 (en) 2017-06-28
CN106574080A (zh) 2017-04-19
JP6702191B2 (ja) 2020-05-27
EP3184585B1 (en) 2020-11-25
US10428208B2 (en) 2019-10-01
US20170267844A1 (en) 2017-09-21
EP3184585A4 (en) 2018-05-02
CN106574080B (zh) 2018-10-30
JPWO2016027822A1 (ja) 2017-06-01

Similar Documents

Publication Publication Date Title
JP6750501B2 (ja) 架橋性ニトリルゴム組成物およびゴム架橋物
JP5651919B2 (ja) ニトリルゴム組成物、架橋性ニトリルゴム組成物及びゴム架橋物
KR102438023B1 (ko) 니트릴기 함유 공중합체 고무 및 니트릴기 함유 공중합체 고무 가교물
JP6702191B2 (ja) 架橋性ニトリルゴム組成物およびゴム架橋物
JP6601407B2 (ja) 架橋性ニトリルゴム組成物およびゴム架橋物
EP3239231B1 (en) Method for manufacturing a cross-linkable nitrile rubber composition and cross-linked rubber product
WO2017086358A1 (ja) ゴム架橋物
US20180030190A1 (en) Nitrile rubber composition and cross-linked rubber
JP7115317B2 (ja) カルボキシル基含有ニトリルゴムおよびその製造方法、架橋性ニトリルゴム組成物およびゴム架橋物
CN108350186B (zh) 交联性橡胶组合物的制造方法
JP5423251B2 (ja) 架橋性ニトリルゴム組成物およびその架橋物
JP7251547B2 (ja) 架橋性ニトリルゴム組成物およびゴム架橋物
JP2023006576A (ja) 架橋性ゴム組成物およびゴム架橋物
JP2023061577A (ja) 架橋性アクリルゴム組成物およびゴム架橋物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15834347

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016544225

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015834347

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015834347

Country of ref document: EP

Ref document number: 15504739

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE