WO2017086358A1 - ゴム架橋物 - Google Patents

ゴム架橋物 Download PDF

Info

Publication number
WO2017086358A1
WO2017086358A1 PCT/JP2016/083999 JP2016083999W WO2017086358A1 WO 2017086358 A1 WO2017086358 A1 WO 2017086358A1 JP 2016083999 W JP2016083999 W JP 2016083999W WO 2017086358 A1 WO2017086358 A1 WO 2017086358A1
Authority
WO
WIPO (PCT)
Prior art keywords
nitrile rubber
parts
group
weight
rubber
Prior art date
Application number
PCT/JP2016/083999
Other languages
English (en)
French (fr)
Inventor
紫穂 茂▲崎▼
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to US15/775,781 priority Critical patent/US10787525B2/en
Priority to EP16866359.9A priority patent/EP3378891B1/en
Priority to CN201680066017.4A priority patent/CN108350229B/zh
Priority to JP2017551911A priority patent/JP6763397B2/ja
Priority to KR1020187015275A priority patent/KR20180084831A/ko
Publication of WO2017086358A1 publication Critical patent/WO2017086358A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08L9/02Copolymers with acrylonitrile
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/30Addition of a reagent which reacts with a hetero atom or a group containing hetero atoms of the macromolecule
    • C08C19/34Addition of a reagent which reacts with a hetero atom or a group containing hetero atoms of the macromolecule reacting with oxygen or oxygen-containing groups
    • C08C19/36Addition of a reagent which reacts with a hetero atom or a group containing hetero atoms of the macromolecule reacting with oxygen or oxygen-containing groups with carboxy radicals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/17Amines; Quaternary ammonium compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L13/00Compositions of rubbers containing carboxyl groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/10Materials in mouldable or extrudable form for sealing or packing joints or covers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0025Crosslinking or vulcanising agents; including accelerators

Definitions

  • the present invention relates to a crosslinked rubber product having good tensile strength and elongation at break and excellent sealing properties at low temperatures.
  • Nitrile rubber (acrylonitrile-butadiene copolymer rubber) has been used as a material for automotive rubber parts such as hoses and tubes, taking advantage of its oil resistance, mechanical properties, chemical resistance, etc.
  • Hydrogenated nitrile rubber (hydrogenated acrylonitrile-butadiene copolymer rubber) in which carbon-carbon double bonds in the polymer main chain of rubber are hydrogenated is further excellent in heat resistance, so it is used for rubber parts such as belts, hoses, and diaphragms.
  • Hydrogenated nitrile rubber hydrogenated acrylonitrile-butadiene copolymer rubber in which carbon-carbon double bonds in the polymer main chain of rubber are hydrogenated is further excellent in heat resistance, so it is used for rubber parts such as belts, hoses, and diaphragms. Has been.
  • Patent Document 1 has an ⁇ , ⁇ -ethylenically unsaturated nitrile monomer unit and an ⁇ , ⁇ -ethylenically unsaturated dicarboxylic acid monoester monomer unit.
  • Crosslinkability comprising a highly saturated nitrile rubber (a) having an iodine value of 120 or less, a silicate (b) of an element of Group 2 or 13 of the periodic table, and a polyamine-based crosslinking agent (c) Nitrile rubber compositions are disclosed.
  • this patent document 1 aims at providing the crosslinkable nitrile rubber composition which gives the rubber crosslinked material with a very large tensile stress, the crosslinkable nitrile rubber composition disclosed in patent document 1 is used.
  • the rubber cross-linked product obtained in this way does not have sufficient sealing properties at low temperatures, and therefore may not be suitable for use in sealing materials used in low-temperature environments.
  • the present invention has been made in view of such a situation, and an object of the present invention is to provide a rubber cross-linked product having good tensile strength and breaking elongation and excellent sealing properties at low temperatures.
  • a nitrile rubber composition comprising a carboxyl group-containing highly saturated nitrile rubber containing an ester monomer unit and having an iodine value of 120 or less and a surface-treated silicate and a predetermined amount of a polyamine-based cross-linking agent are cross-linked.
  • the compressive stress is 30 minutes after the start of the compressive stress relaxation test (hereinafter referred to as “ It is found that the above-mentioned object can be achieved by a rubber cross-linked product having a time until reaching 50% of 300 hours or more with respect to the initial compressive stress at the start of the compressive stress relaxation test. It led to the cell.
  • the present invention contains 5 to 60% by weight of an ⁇ , ⁇ -ethylenically unsaturated nitrile monomer unit and an ⁇ , ⁇ -ethylenically unsaturated monocarboxylic acid ester monomer unit, It contains a carboxyl group-containing highly saturated nitrile rubber (a) having an iodine value of 120 or less, a surface-treated silicate (b), and a polyamine crosslinking agent (c), and the polyamine crosslinking agent (c) A crosslinked rubber product obtained by crosslinking a nitrile rubber composition having a content of 0.1 to 20 parts by weight with respect to 100 parts by weight of the carboxyl group-containing highly saturated nitrile rubber (a), The initial stress at the start of the compressive stress relaxation test, in which the compressive stress is a compressive stress 30 minutes after the start of the compressive stress relaxation test when a compressive stress relaxation test is performed that is held at 150 ° C. and 25% compressed A rubber cross-linked
  • the surface-treated silicate (b) is preferably obtained by surface-treating a silicate with an amino group-containing silane coupling agent or an epoxy group-containing silane coupling agent. It is particularly preferable that the salt is surface-treated with an amino group-containing silane coupling agent.
  • the nitrile rubber composition further contains a basic cross-linking accelerator (d).
  • the carboxyl group-containing highly saturated nitrile rubber (a) is 5 to 60% by weight of ⁇ , ⁇ -ethylenically unsaturated nitrile monomer unit and 10 to 55% by weight of ⁇ , It is preferable to contain a ⁇ -ethylenically unsaturated monocarboxylic acid ester monomer unit and 0.1 to 20% by weight of a carboxyl group-containing monomer unit. Is more preferably an ⁇ , ⁇ -ethylenically unsaturated dicarboxylic acid monoester monomer unit.
  • the surface-treated silicate (b) is obtained by surface-treating a silicate which is a silicate of a group 2 or group 13 element with a surface treatment agent. It is more preferable that the compound represented by the following general formula (1) is surface-treated with a surface treatment agent.
  • MO ⁇ xSiO 2 ⁇ mH 2 O (1) (In the above general formula (1), M represents an element of Group 2 of the periodic table or an element of Group 13 of the periodic table, x is a positive real number of 8 or less, and m is a positive real number of 0 or 12 or less. .)
  • a sealing material comprising any one of the above rubber cross-linked products.
  • a rubber cross-linked product having good tensile strength and elongation at break and excellent sealing properties at low temperatures is provided.
  • the rubber cross-linked product of the present invention contains 5 to 60% by weight of an ⁇ , ⁇ -ethylenically unsaturated nitrile monomer unit and an ⁇ , ⁇ -ethylenically unsaturated monocarboxylic acid ester monomer unit, It contains a carboxyl group-containing highly saturated nitrile rubber (a) having an iodine value of 120 or less, a surface-treated silicate (b), and a polyamine crosslinking agent (c), and the polyamine crosslinking agent (c)
  • a nitrile rubber composition having a content of 0.1 to 20 parts by weight with respect to 100 parts by weight of the carboxyl group-containing highly saturated nitrile rubber (a),
  • the initial stress at the start of the compressive stress relaxation test in which the compressive stress is a compressive stress 30 minutes after the start of the compressive stress relaxation test when a compressive stress relaxation test is performed that is held in a state compressed at 150 ° C. and 25%.
  • Nitrile rubber composition First, the nitrile rubber composition used for obtaining the crosslinked rubber of the present invention will be described.
  • the nitrile rubber composition used in the present invention contains 5 to 60% by weight of an ⁇ , ⁇ -ethylenically unsaturated nitrile monomer unit and an ⁇ , ⁇ -ethylenically unsaturated monocarboxylic acid ester monomer unit. And a carboxyl group-containing highly saturated nitrile rubber (a) having an iodine value of 120 or less, a surface-treated silicate (b), and a polyamine-based crosslinking agent (c).
  • Carboxyl group-containing highly saturated nitrile rubber (a)
  • the carboxyl group-containing highly saturated nitrile rubber (a) used in the present invention comprises 5 to 60% by weight of an ⁇ , ⁇ -ethylenically unsaturated nitrile monomer unit and an ⁇ , ⁇ -ethylenically unsaturated monocarboxylic acid ester unit. It is a rubber containing a monomer unit and having an iodine value of 120 or less.
  • the carboxyl group-containing highly saturated nitrile rubber (a) used in the present invention comprises an ⁇ , ⁇ -ethylenically unsaturated nitrile monomer, an ⁇ , ⁇ -ethylenically unsaturated monocarboxylic acid ester monomer, a carboxyl group-containing single monomer And other copolymerizable monomers added as necessary.
  • the ⁇ , ⁇ -ethylenically unsaturated nitrile monomer is not limited as long as it is an ⁇ , ⁇ -ethylenically unsaturated compound having a nitrile group, and ⁇ - ⁇ such as acrylonitrile; ⁇ -chloroacrylonitrile, ⁇ -bromoacrylonitrile, etc. Halogenoacrylonitrile; ⁇ -alkylacrylonitriles such as methacrylonitrile and ethacrylonitrile; Among these, acrylonitrile and methacrylonitrile are preferable, and acrylonitrile is particularly preferable.
  • These ⁇ , ⁇ -ethylenically unsaturated nitrile monomers may be used in combination.
  • the content ratio of the ⁇ , ⁇ -ethylenically unsaturated nitrile monomer unit in the carboxyl group-containing highly saturated nitrile rubber (a) used in the present invention is 5 to 60% by weight based on the total monomer units, The amount is preferably 10 to 50% by weight, more preferably 15 to 50% by weight. If the content of the ⁇ , ⁇ -ethylenically unsaturated nitrile monomer unit is too small, the resulting rubber cross-linked product will be inferior in oil resistance, while if it is too much, cold resistance will be reduced.
  • the ⁇ , ⁇ -ethylenically unsaturated monocarboxylic acid ester monomer is not particularly limited.
  • ⁇ , ⁇ -ethylenically unsaturated monocarboxylic acid alkyl ester monomer, ⁇ , ⁇ -ethylenically unsaturated monomer Monocarboxylic acid alkoxyalkyl ester monomer, ⁇ , ⁇ -ethylenically unsaturated monocarboxylic acid aminoalkyl ester monomer, ⁇ , ⁇ -ethylenically unsaturated monocarboxylic acid hydroxyalkyl ester monomer, ⁇ , ⁇ - Examples thereof include ethylenically unsaturated monocarboxylic acid fluoroalkyl ester monomers.
  • ⁇ , ⁇ -ethylenically unsaturated monocarboxylic acid alkyl ester monomers or ⁇ , ⁇ -ethylenically unsaturated monocarboxylic acid alkoxyalkyl ester monomers are preferable.
  • an ⁇ , ⁇ -ethylenically unsaturated monocarboxylic acid ester monomer unit it is possible to improve the cold resistance of the resulting rubber cross-linked product, which can improve the sealing performance at low temperatures. Become.
  • the alkyl ester monomer of ⁇ , ⁇ -ethylenically unsaturated monocarboxylic acid is preferably an alkyl group having 3 to 10 carbon atoms and an alkyl group, and an alkyl group having 3 to 8 carbon atoms. Those having an alkyl group having 4 to 6 carbon atoms are more preferable.
  • ⁇ , ⁇ -ethylenically unsaturated monocarboxylic acid alkyl ester monomers include acrylic acid alkyl ester monomers such as propyl acrylate, n-butyl acrylate, n-pentyl acrylate and 2-ethylhexyl acrylate.
  • Acrylic acid cycloalkyl ester monomers such as cyclopentyl acrylate and cyclohexyl acrylate; Alkyl cycloalkyl ester monomers such as methyl cyclopentyl acrylate, ethyl cyclopentyl acrylate and methyl cyclohexyl acrylate; Propyl methacrylate Methacrylic acid alkyl ester monomers such as n-butyl methacrylate, n-pentyl methacrylate and n-octyl methacrylate; cyclopentyl methacrylate, cyclohexyl methacrylate, methacrylic acid Methacrylic acid cycloalkyl ester monomers such as lopentyl; Methacrylic acid alkyl cycloalkyl ester monomers such as methyl cyclopentyl methacrylate, ethyl cyclopentyl methacrylate, and methyl cyclohe
  • the ⁇ , ⁇ -ethylenically unsaturated monocarboxylic acid alkoxyalkyl ester monomer preferably has an alkoxyalkyl group having 2 to 8 carbon atoms as the alkoxyalkyl group, and has 2 to 6 carbon atoms. Those having an alkoxyalkyl group are more preferred, and those having an alkoxyalkyl group having 2 to 4 carbon atoms are more preferred.
  • ⁇ , ⁇ -ethylenically unsaturated monocarboxylic acid alkoxyalkyl ester monomer examples include methoxymethyl acrylate, methoxyethyl acrylate, ethoxymethyl acrylate, ethoxyethyl acrylate, n-propoxyethyl acrylate, Acrylic acid alkoxyalkyl ester monomers such as i-propoxyethyl acrylate, n-butoxyethyl acrylate, i-butoxyethyl acrylate, t-butoxyethyl acrylate, methoxypropyl acrylate and methoxybutyl acrylate; methacrylic acid Methoxymethyl, methoxyethyl methacrylate, ethoxymethyl methacrylate, ethoxyethyl methacrylate, n-propoxyethyl methacrylate, i-propoxyethyl methacrylate, n-butoxyeth
  • ⁇ -ethylenically unsaturated monocarboxylic acid ester monomers an acrylic acid alkyl ester monomer, an acrylic acid alkoxy salt, and the like, from the point that the effect of the present invention can be made more remarkable.
  • Alkyl ester monomers are preferred, with n-butyl acrylate and methoxyethyl acrylate being more preferred.
  • the content of the ⁇ , ⁇ -ethylenically unsaturated monocarboxylic acid ester monomer unit in the carboxyl group-containing highly saturated nitrile rubber (a) used in the present invention is preferably 5 to 60% by weight, more preferably Is 10 to 55% by weight, more preferably 15 to 50% by weight.
  • the carboxyl group-containing monomer is copolymerizable with an ⁇ , ⁇ -ethylenically unsaturated nitrile monomer and an ⁇ , ⁇ -ethylenically unsaturated monocarboxylic acid ester monomer, and is esterified.
  • the monomer is not particularly limited as long as it is a monomer having one or more unsubstituted (free) carboxyl groups.
  • Examples of the carboxy group-containing monomer used in the present invention include ⁇ , ⁇ -ethylenically unsaturated monocarboxylic acid monomers, ⁇ , ⁇ -ethylenically unsaturated polycarboxylic acid monomers, and ⁇ , ⁇ -Ethylenically unsaturated dicarboxylic acid monoester monomers and the like.
  • the carboxyl group-containing monomer also includes monomers in which the carboxyl group of these monomers forms a carboxylate.
  • an anhydride of an ⁇ , ⁇ -ethylenically unsaturated polyvalent carboxylic acid can also be used as a carboxyl group-containing monomer because it forms a carboxyl group by cleaving the acid anhydride group after copolymerization.
  • Examples of the ⁇ , ⁇ -ethylenically unsaturated monocarboxylic acid monomer include acrylic acid, methacrylic acid, ethyl acrylic acid, crotonic acid, and cinnamic acid.
  • Examples of the ⁇ , ⁇ -ethylenically unsaturated polyvalent carboxylic acid monomer include butenedionic acid such as fumaric acid and maleic acid, itaconic acid, citraconic acid, mesaconic acid, glutaconic acid, allylmalonic acid, and teraconic acid.
  • Examples of the anhydride of ⁇ , ⁇ -unsaturated polyvalent carboxylic acid include maleic anhydride, itaconic anhydride, citraconic anhydride, and the like.
  • maleic acid monoalkyl esters such as monomethyl maleate, monoethyl maleate, monopropyl maleate, mono n-butyl maleate; monocyclopentyl maleate, Maleic acid monocycloalkyl esters such as monocyclohexyl maleate and monocycloheptyl maleate; Monoalkyl cycloalkyl esters of maleic acid such as monomethylcyclopentyl maleate and monoethylcyclohexyl maleate; Monomethyl fumarate, monoethyl fumarate and monofumarate Monoalkyl esters of fumaric acid such as propyl and mono-n-butyl fumarate; fumaric acid such as monocyclopentyl fumarate, monocyclohexyl fumarate and monocycloheptyl fumarate Monocycloalkyl esters of fumaric acid such as monocyclopentyl fumarate, monocyclohexyl fumarate and monocycloheptyl fum
  • the carboxyl group-containing monomers may be used singly or in combination.
  • ⁇ , ⁇ -ethylenically unsaturated dicarboxylic acid monoester monomer is preferable because the effects of the present invention become more remarkable, and ⁇ , ⁇ -ethylenically unsaturated dicarboxylic acid monoalkyl ester monomer are more preferred, maleic acid monoalkyl esters are more preferred, and mono-n-butyl maleate is particularly preferred.
  • the number of carbon atoms in the alkyl group of the alkyl ester is preferably 2-8.
  • the content of the carboxyl group-containing monomer unit is preferably 0.1 to 20% by weight, more preferably 0.2 to 15% by weight, and further preferably 0.5 to 10% by weight based on the total monomer units. % By weight.
  • the carboxyl group-containing highly saturated nitrile rubber (a) used in the present invention is obtained by copolymerizing a conjugated diene monomer so that the obtained rubber cross-linked product has rubber elasticity. preferable.
  • the conjugated diene monomer is preferably a conjugated diene monomer having 4 to 6 carbon atoms such as 1,3-butadiene, isoprene, 2,3-dimethyl-1,3-butadiene, 1,3-pentadiene, chloroprene. 1,3-butadiene and isoprene are more preferred, and 1,3-butadiene is particularly preferred.
  • the conjugated diene monomer may be used alone or in combination of two or more.
  • the content ratio of conjugated diene monomer units is preferably 20 to 83 among all monomer units. 0.9 wt%, more preferably 25 to 81 wt%, and even more preferably 30 to 74.5 wt%.
  • the carboxyl group-containing highly saturated nitrile rubber (a) used in the present invention is composed of an ⁇ , ⁇ -ethylenically unsaturated nitrile monomer unit, an ⁇ , ⁇ -ethylenically unsaturated monocarboxylic acid ester monomer unit, a carboxyl
  • group-containing monomer unit and the conjugated diene monomer unit other monomer units that can be copolymerized with the monomer forming them may be contained.
  • Examples of such other monomers include ⁇ , ⁇ -ethylenically unsaturated dicarboxylic acid diester monomers, non-conjugated diene monomers, ⁇ -olefin monomers, aromatic vinyl monomers, fluorine Examples thereof include vinyl monomers and copolymerizable anti-aging agents.
  • ⁇ , ⁇ -ethylenically unsaturated dicarboxylic acid diester monomers include maleic acid dialkyl esters, such as dimethyl maleate, di-n-butyl maleate, and the like, wherein the alkyl group has 1 to 18 carbon atoms; fumaric acid Dialkyl esters of fumaric acid such as dimethyl and di-n-butyl fumarate having an alkyl group of 1 to 18 carbonic acids; dicycloalkyl maleates such as dicyclopentyl maleate and dicyclohexyl maleate and cycloalkyl A group having 4 to 16 carbon atoms; a dicycloalkyl ester of fumarate such as dicyclopentyl fumarate and dicyclohexyl fumarate having a cycloalkyl group having 4 to 16 carbon atoms; dimethyl itaconate, diitaconate Italonic acid dialkyl esters such as n-butyl And those having a kill group having
  • non-conjugated diene monomer examples include 1,4-pentadiene and 1,4-hexadiene.
  • ⁇ -olefin monomer examples include ethylene, propylene, 1-butene, 4-methyl-1-pentene, 1-hexene, 1-octene and the like.
  • aromatic vinyl monomer examples include styrene, ⁇ -methylstyrene, vinyl pyridine and the like.
  • fluorine-containing vinyl monomer examples include fluoroethyl vinyl ether, fluoropropyl vinyl ether, o-trifluoromethylstyrene, vinyl pentafluorobenzoate, difluoroethylene, and tetrafluoroethylene.
  • copolymerizable anti-aging agents examples include N- (4-anilinophenyl) acrylamide, N- (4-anilinophenyl) methacrylamide, N- (4-anilinophenyl) cinnamamide, N- (4-anilino). Phenyl) crotonamide, N-phenyl-4- (3-vinylbenzyloxy) aniline, N-phenyl-4- (4-vinylbenzyloxy) aniline and the like.
  • the content of other monomer units is preferably 50% by weight or less, more preferably 30% by weight, based on all monomer units constituting the carboxyl group-containing highly saturated nitrile rubber (a) used in the present invention. Hereinafter, it is more preferably 10% by weight or less.
  • the iodine value of the carboxyl group-containing highly saturated nitrile rubber (a) used in the present invention is 120 or less, preferably 60 or less, more preferably 40 or less, and particularly preferably 30 or less. If the iodine value of the carboxyl group-containing highly saturated nitrile rubber (a) is too high, the heat resistance and ozone resistance of the resulting rubber cross-linked product may be lowered.
  • the polymer Mooney viscosity (ML 1 + 4 , 100 ° C.) of the carboxyl group-containing highly saturated nitrile rubber (a) used in the present invention is preferably 10 to 200, more preferably 15 to 150, still more preferably 15 to 100, particularly preferably. 30-70. If the polymer Mooney viscosity of the carboxyl group-containing highly saturated nitrile rubber (a) is too low, the mechanical properties of the resulting rubber cross-linked product may be reduced. Conversely, if it is too high, the processability of the nitrile rubber composition will be reduced. there's a possibility that.
  • the method for producing the carboxyl group-containing highly saturated nitrile rubber (a) used in the present invention is not particularly limited, but the above-mentioned monomers are copolymerized and, if necessary, the carbon-carbon dicarboxylic acid in the resulting copolymer. It can be produced by hydrogenating heavy bonds.
  • the polymerization method is not particularly limited and may be a known emulsion polymerization method or solution polymerization method. From the viewpoint of industrial productivity, the emulsion polymerization method is preferable. In emulsion polymerization, in addition to an emulsifier, a polymerization initiator, and a molecular weight modifier, a commonly used polymerization auxiliary material can be used.
  • nonionic emulsifiers such as polyoxyethylene alkyl ether, polyoxyethylene alkyl phenol ether, polyoxyethylene alkyl ester, polyoxyethylene sorbitan alkyl ester; myristic acid, palmitic acid, oleic acid And salts of fatty acids such as linolenic acid, alkylbenzene sulfonates such as sodium dodecylbenzenesulfonate, anionic emulsifiers such as higher alcohol sulfates and alkylsulfosuccinates; sulfoesters of ⁇ , ⁇ -unsaturated carboxylic acids, ⁇ , ⁇ -unsaturated carboxylic acid sulfate esters, sulfoalkyl aryl ethers and other copolymerizable emulsifiers.
  • the amount of the emulsifier added is preferably 0.1 to 10 parts
  • the polymerization initiator is not particularly limited as long as it is a radical initiator, but inorganic peroxides such as potassium persulfate, sodium persulfate, ammonium persulfate, potassium perphosphate, hydrogen peroxide; t-butyl peroxide, cumene Hydroperoxide, p-menthane hydroperoxide, di-t-butyl peroxide, t-butylcumyl peroxide, acetyl peroxide, isobutyryl peroxide, octanoyl peroxide, dibenzoyl peroxide, 3, 5, 5 Organic peroxides such as trimethylhexanoyl peroxide and t-butylperoxyisobutyrate; azobisisobutyronitrile, azobis-2,4-dimethylvaleronitrile, azobiscyclohexanecarbonitrile, methyl azobisisobutyrate, etc.
  • inorganic peroxides
  • polymerization initiators can be used alone or in combination of two or more.
  • an inorganic or organic peroxide is preferable.
  • a peroxide is used as the polymerization initiator, it can be used as a redox polymerization initiator in combination with a reducing agent such as sodium bisulfite or ferrous sulfate.
  • the addition amount of the polymerization initiator is preferably 0.01 to 2 parts by weight with respect to 100 parts by weight of the monomer used for the polymerization.
  • first alkyl thiol compound having 12 to 16 carbon atoms having a thiol group directly bonded to a tertiary carbon atom
  • second alkylthiol compound An alkylthiol compound having 9 to 16 carbon atoms and having no thiol group directly bonded to a tertiary carbon atom, hereinafter referred to as “second alkylthiol compound”.
  • the amount of the first alkylthiol compound used is 0.01 to 0.6 parts by weight, preferably 0.02 to 0.4 parts by weight based on 100 parts by weight of the monomer used for emulsion polymerization.
  • the amount of the second alkyl thiol compound used is preferably 0.01 to 0.8 parts by weight, preferably 0.1 to 0.7 parts by weight.
  • Water is usually used as the emulsion polymerization medium.
  • the amount of water is preferably 80 to 500 parts by weight, more preferably 80 to 300 parts by weight with respect to 100 parts by weight of the monomer used for the polymerization.
  • polymerization auxiliary materials such as a stabilizer, a dispersant, a pH adjuster, an oxygen scavenger, and a particle size adjuster can be used as necessary. In using these, neither the kind nor the usage-amount is specifically limited.
  • the polymerization reaction may be started by using the total amount of the monomer using the emulsion polymerization, or the polymerization reaction may be performed using a part of the total amount of the monomer used for the emulsion polymerization. After that, the remainder of the monomer used for emulsion polymerization may be added to the reactor in the middle of the reaction to carry out the polymerization reaction.
  • the method for adding the remaining monomer is not particularly limited, but it may be added all at once, dividedly, or continuously. When the remaining monomer is added in divided portions, the amount of the monomer to be added in divided portions and the timing of the divided addition may be appropriately adjusted in accordance with the progress of the polymerization reaction.
  • the group-containing highly saturated nitrile rubber (a) may be obtained.
  • the obtained copolymer may be subjected to hydrogenation (hydrogenation reaction) as necessary.
  • Hydrogenation may be carried out by a known method. After coagulating a latex of a copolymer obtained by emulsion polymerization, an oil layer hydrogenation method in which hydrogenation is performed in an oil layer, or a latex of the obtained copolymer is hydrogenated as it is. And water layer hydrogenation method.
  • the copolymer latex prepared by emulsion polymerization is preferably dissolved in an organic solvent through salting out, coagulation with alcohol, filtration and drying. Subsequently, a hydrogenation reaction (oil layer hydrogenation method) is performed, and the resulting hydride is poured into a large amount of water, solidified, filtered, and dried to obtain a carboxyl group-containing highly saturated nitrile rubber (a). .
  • a known coagulant such as sodium chloride, calcium chloride, aluminum sulfate can be used. Moreover, it may replace with solidification by salting out and may perform coagulation using alcohol, such as methanol.
  • the solvent for the oil layer hydrogenation method is not particularly limited as long as it is a liquid organic compound that dissolves the copolymer obtained by emulsion polymerization, but benzene, chlorobenzene, toluene, xylene, hexane, cyclohexane, tetrahydrofuran, methyl ethyl ketone, ethyl acetate. Cyclohexanone and acetone are preferably used.
  • any known selective hydrogenation catalyst can be used without limitation.
  • Palladium-based catalysts and rhodium-based catalysts are preferable, and palladium-based catalysts (such as palladium acetate, palladium chloride and palladium hydroxide) are preferred. More preferred. Two or more of these may be used in combination. In this case, it is preferable to use a palladium-based catalyst as the main active ingredient.
  • These catalysts are usually used by being supported on a carrier.
  • the carrier include silica, silica-alumina, alumina, diatomaceous earth, activated carbon and the like.
  • the amount of catalyst used is preferably 10 to 5000 ppm by weight, more preferably 100 to 3000 ppm by weight, based on the copolymer.
  • the latex of the copolymer prepared by the emulsion polymerization is diluted with water as necessary to perform a hydrogenation reaction.
  • the water layer hydrogenation method is a water layer direct hydrogenation method in which hydrogen is supplied to a reaction system in the presence of a hydrogenation catalyst to perform hydrogenation, and reduction and hydrogenation are performed in the presence of an oxidizing agent, a reducing agent and an activator
  • An aqueous layer indirect hydrogenation method can be mentioned, and among these, the aqueous layer direct hydrogenation method is preferable.
  • the concentration of the copolymer in the aqueous layer is preferably 40% by weight or less in order to prevent aggregation.
  • a hydrogenation catalyst will not be specifically limited if it is a compound which is hard to decompose
  • the palladium catalyst include palladium salts of carboxylic acids such as formic acid, propionic acid, lauric acid, succinic acid, oleic acid, and phthalic acid; palladium chloride, dichloro (cyclooctadiene) palladium, dichloro (norbornadiene) palladium, Palladium chloride such as ammonium hexachloropalladium (IV); Iodide such as palladium iodide; Palladium sulfate dihydrate and the like.
  • palladium salts of carboxylic acids, dichloro (norbornadiene) palladium and ammonium hexachloropalladium (IV) are particularly preferred.
  • the amount of the hydrogenation catalyst used may be appropriately determined, but is preferably 5 to 6000 ppm by weight, more preferably 10 to 4000 ppm by weight, based on the copolymer obtained by polymerization.
  • the hydrogenation catalyst in the latex is removed after completion of the hydrogenation reaction.
  • an adsorbent such as activated carbon or ion exchange resin is added to adsorb the hydrogenation catalyst with stirring, and then the latex is filtered or centrifuged. It is also possible to leave it in the latex without removing the hydrogenation catalyst.
  • the latex after the hydrogenation reaction thus obtained is subjected to coagulation by salting out, filtration, drying, and the like, whereby a carboxyl group-containing highly saturated nitrile rubber (a ) Can be obtained.
  • a carboxyl group-containing highly saturated nitrile rubber (a ) can be obtained.
  • the filtration and drying steps subsequent to coagulation can be performed by known methods.
  • the surface-treated silicate (b) used in the present invention is a silicate that has been subjected to a surface treatment and is not particularly limited as long as the silicate is subjected to a surface treatment.
  • silicate Although it does not specifically limit as a silicate, It is preferable that it is a silicate of the element of 2nd or 13th group of a periodic table, and it is more preferable that it is a compound represented by following General formula (1).
  • MO ⁇ xSiO 2 ⁇ mH 2 O (1) (In the above general formula (1), M represents an element of Group 2 of the periodic table or an element of Group 13 of the periodic table, x is a positive real number of 8 or less, and m is a positive real number of 0 or 12 or less. .)
  • the elements of Group 2 of the periodic table constituting M include magnesium, calcium, strontium, barium, etc. Among these, magnesium is preferable. Further, in the general formula (1), examples of the element belonging to Group 13 of the periodic table constituting M include boron and aluminum. Among these, aluminum is preferable.
  • Specific examples of the compound represented by the general formula (1) include magnesium silicate, magnesium silicate hydrate, calcium silicate, calcium silicate hydrate, boron silicate, boron silicate hydrate, aluminum silicate, aluminum silicate water A hydrate is mentioned, Among these, magnesium silicate and aluminum silicate are more preferable, and aluminum silicate is particularly preferable.
  • the surface treatment agent used for treating the surface of the silicate described above is not particularly limited, but a silane coupling agent is preferably used.
  • silane coupling agent examples include ⁇ -mercaptopropyltrimethoxysilane, ⁇ -mercaptomethyltrimethoxylane, ⁇ -mercaptomethyltriethoxylane, ⁇ -mercaptohexamethyldisilazane, bis (3-triethoxysilylpropyl).
  • Sulfur-containing silane coupling agents such as tetrasulfane and bis (3-triethoxysilylpropyldisulfane); ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycidoxypropylmethyldimethoxysilane, ⁇ - ( 3,4-epoxycyclohexyl) ethyltrimethoxysilane, ⁇ -mercaptopropyltrimethoxysilane, ⁇ -glycidoxypropylmethyldiethoxysilane, and other epoxy group-containing silane coupling agents; N- ( ⁇ -aminoethyl) - ⁇ -Aminopropyltri Methoxysilane, ⁇ -aminopropyltrimethoxysilane, ⁇ -aminopropyltriethoxysilane, N-2- (aminoethyl) -3-aminopropyltrimethoxysilane, N-2- (a
  • an amino group-containing silane coupling agent or an epoxy group-containing silane coupling agent is preferable from the viewpoint that the effects of the present invention can be made more remarkable, and an amino group-containing silane coupling agent.
  • an amino group-containing silane coupling agent is particularly preferred. That is, as the surface-treated silicate (b), it is preferable that the silicate is surface-treated with an amino group-containing silane coupling agent or an epoxy group-containing silane coupling agent. A surface treatment with a coupling agent is particularly preferable.
  • the average particle diameter of the surface-treated silicate (b) is not particularly limited, but is preferably 0.01 to 100 ⁇ m, more preferably 0.05 to 50 ⁇ m.
  • the content of the surface-treated silicate (b) in the nitrile rubber composition used in the present invention is preferably 5-150 parts by weight, more preferably 100 parts by weight of the carboxyl group-containing highly saturated nitrile rubber (a). Is 10 to 120 parts by weight, more preferably 20 to 100 parts by weight.
  • the nitrile rubber composition used in the present invention contains a polyamine-based crosslinking agent (c) in addition to the carboxyl group-containing highly saturated nitrile rubber (a) and the surface-treated silicate (b).
  • a polyamine-based crosslinking agent c
  • the resulting rubber cross-linked product can be sealed at a low temperature. It can be made excellent.
  • the polyamine-based crosslinking agent (c) is not particularly limited as long as it is a compound having two or more amino groups or a compound having two or more amino groups at the time of crosslinking.
  • polyamine crosslinking agent (c) examples include fats such as hexamethylene diamine, hexamethylene diamine carbamate, N, N-dicinnamylidene-1,6-hexane diamine, tetramethylene pentamine, and hexamethylene diamine cinnamaldehyde adduct.
  • Aromatic polyamines such as diamine, 1,3,5-benzenetriamine; isophthalic acid dihydrazide, terephthalic acid dihydrazide, phthalic acid dihydrazide, 2,6-naphthalenedicarboxylic acid dihydrazide, naphthalene acid dihydrazide, ox
  • aliphatic polyvalent amines and aromatic polyvalent amines are preferable from the viewpoint that the effects of the present invention can be made more remarkable, and hexamethylenediamine carbamate and 2,2-bis [ 4- (4-Aminophenoxy) phenyl] propane is more preferred, and hexamethylenediamine carbamate is particularly preferred.
  • the content of the polyamine crosslinking agent (c) in the nitrile rubber composition used in the present invention is 0.1 to 20 parts by weight with respect to 100 parts by weight of the carboxyl group-containing highly saturated nitrile rubber (a), The amount is preferably 0.2 to 15 parts by weight. If the content of the polyamine-based crosslinking agent (c) is too small or too large, the resulting rubber crosslinked product will be inferior in mechanical properties and sealing properties at low temperatures.
  • the nitrile rubber composition used in the present invention is not limited to the above-described carboxyl group-containing highly saturated nitrile rubber (a), surface-treated silicate (b), and polyamine-based cross-linking agent (c). It is preferable that a basic crosslinking accelerator (d) is further contained from the viewpoint that can be made more prominent.
  • basic crosslinking accelerators include compounds represented by the following general formula (2), basic crosslinking accelerators having a cyclic amidine structure, guanidine basic crosslinking accelerators, and aldehyde amine basic crosslinking accelerators. Agents and the like.
  • R 1 and R 2 each independently have an alkyl group having 1 to 12 carbon atoms which may have a substituent, or may have a substituent.
  • It is a cycloalkyl group having 5 to 12 carbon atoms.
  • R 1 and R 2 are each an optionally substituted alkyl group having 1 to 12 carbon atoms or an optionally substituted cycloalkyl group having 5 to 12 carbon atoms.
  • a cycloalkyl group having 5 to 12 carbon atoms which may have a group is preferable, and a cycloalkyl group having 5 to 8 carbon atoms which may have a substituent is particularly preferable.
  • R 1 and R 2 are preferably not substituted.
  • R 1 and R 2 have a substituent include a hydroxyl group, an alkoxy group, an alkoxycarbonyl group, an amino group, and a halogen atom.
  • R 3 and R 4 are each independently a cycloalkyl group having 5 to 8 carbon atoms which may have a substituent.
  • R 3 and R 4 are cycloalkyl groups having 5 to 8 carbon atoms which may have a substituent, but may be cycloalkyl groups which may have a substituent having 5 or 6 carbon atoms. Is preferable, and a cycloalkyl group which may have a substituent having 6 carbon atoms is more preferable. R 3 and R 4 preferably have no substituent.
  • R 3 and R 4 have a substituent include a hydroxyl group, an alkoxy group, an alkoxycarbonyl group, an amino group, and a halogen atom.
  • the compound represented by the general formula (2) include dicycloalkylamines such as dicyclopentylamine, dicyclohexylamine, and dicycloheptylamine; N-methylcyclopentylamine, N-butylcyclopentylamine, N-heptyl Secondary amines in which an alkyl group and a cycloalkyl group such as cyclopentylamine, N-octylcyclopentylamine, N-ethylcyclohexylamine, N-butylcyclohexylamine, N-heptylcyclohexylamine, and N-octylcyclooctylamine are bonded to a nitrogen atom
  • a secondary amine in which an alkyl group having a hydroxy group and a cycloalkyl group are bonded to a nitrogen atom, such as N-hydroxymethylcyclopentylamine and N-hydroxybutylcyclohexylamine; N-me
  • Examples of the basic crosslinking accelerator having a cyclic amidine structure include 1,8-diazabicyclo [5,4,0] undecene-7 (hereinafter sometimes abbreviated as “DBU”) and 1,5-diazabicyclo [4, 3,0] nonene-5 (hereinafter sometimes abbreviated as “DBN”), 1-methylimidazole, 1-ethylimidazole, 1-phenylimidazole, 1-benzylimidazole, 1,2-dimethylimidazole, 1-ethyl- 2-methylimidazole, 1-methoxyethylimidazole, 1-phenyl-2-methylimidazole, 1-benzyl-2-methylimidazole, 1-methyl-2-phenylimidazole, 1-methyl-2-benzylimidazole, 1,4 -Dimethylimidazole, 1,5-dimethylimidazole, 1,2,4-trimethylimidazole, 1,4- Methyl-2-ethylimidazole,
  • 1,8-diazabicyclo [5,4,0] undecene-7 and 1,5-diazabicyclo [4,3,0] nonene-5 are preferred, , 8-diazabicyclo [5,4,0] undecene-7 is more preferred.
  • the guanidine-based basic crosslinking accelerator include tetramethylguanidine, tetraethylguanidine, diphenylguanidine, 1,3-di-ortho-tolylguanidine, orthotolyl biguanide and the like.
  • aldehyde amine basic crosslinking accelerator include n-butyraldehyde aniline and acetaldehyde ammonia.
  • the compound represented by the general formula (2) may be a mixture of an alkylene glycol or an alcohol such as an alkyl alcohol having 5 to 20 carbon atoms, and an inorganic acid and / or an organic acid. May be included.
  • the compound represented by the general formula (2) forms a salt with the compound represented by the general formula (2) and the inorganic acid and / or organic acid, and further forms a complex with the alkylene glycol. It may be.
  • the basic crosslinking accelerator having a cyclic amidine structure may form a salt with an organic carboxylic acid or an alkyl phosphoric acid.
  • the blending amount in the nitrile rubber composition used in the present invention is preferably 0.1 with respect to 100 parts by weight of the carboxyl group-containing highly saturated nitrile rubber (a). -20 parts by weight, more preferably 0.2-15 parts by weight, still more preferably 0.5-10 parts by weight.
  • the nitrile rubber composition used in the present invention includes a compounding agent usually used in the rubber field, for example, a filler other than the surface-treated silicate (b), a co-crosslinking agent, a crosslinking aid, and a crosslinking agent.
  • a compounding agent usually used in the rubber field for example, a filler other than the surface-treated silicate (b), a co-crosslinking agent, a crosslinking aid, and a crosslinking agent.
  • an acid acceptor, an antistatic agent, a pigment, a foaming agent, and the like can be blended.
  • the compounding amount of these compounding agents is not particularly limited as long as it does not impair the object and effect of the present invention, and an amount
  • the filler other than the surface-treated silicate (b) is not particularly limited.
  • ⁇ , ⁇ -ethylenically unsaturated carboxylic acid metal salts are not particularly limited.
  • the co-crosslinking agent is not particularly limited, but is preferably a low molecular or high molecular compound having a plurality of radical-reactive unsaturated groups in the molecule.
  • a polyfunctional vinyl compound such as divinylbenzene or divinylnaphthalene; Isocyanurates such as allyl isocyanurate and trimethallyl isocyanurate; cyanurates such as triallyl cyanurate; maleimides such as N, N′-m-phenylene dimaleimide; diallyl phthalate, diallyl isophthalate, diallyl maleate, diallyl Allyl esters of polyvalent acids such as fumarate, diallyl sebacate, triallyl phosphate; diethylene glycol bisallyl carbonate; ethylene glycol diallyl ether, triallyl ether of trimethylolpropane, pentaerythritol Allyl ethers such as partial trityl ethers of trit; ally
  • the plasticizer is not particularly limited, but trimellitic acid plasticizer, pyromellitic acid plasticizer, ether ester plasticizer, polyester plasticizer, phthalic acid plasticizer, adipate ester plasticizer, phosphoric acid
  • trimellitic acid plasticizer pyromellitic acid plasticizer
  • ether ester plasticizer polyester plasticizer
  • phthalic acid plasticizer adipate ester plasticizer
  • phosphoric acid An ester plasticizer, a sebacic acid ester plasticizer, an alkyl sulfonic acid ester compound plasticizer, an epoxidized vegetable oil plasticizer, or the like can be used.
  • trimellitic acid tri-2-ethylhexyl trimellitic acid isononyl ester, trimellitic acid mixed linear alkyl ester, dipentaerythritol ester, pyromellitic acid 2-ethylhexyl ester, polyether ester (molecular weight 300 to About 5,000), bis [2- (2-butoxyethoxy) ethyl adipate], dioctyl adipate, polyester based on adipic acid (molecular weight about 300 to 5000), dioctyl phthalate, diisononyl phthalate, dibutyl phthalate, phosphoric acid
  • examples include tricresyl, dibutyl sebacate, alkyl sulfonic acid phenyl ester, epoxidized soybean oil, diheptanoate, di-2-ethylhexanoate, didecanoate and the like. These can be used alone or in combination.
  • the nitrile rubber composition used in the present invention may contain a rubber other than the carboxyl group-containing highly saturated nitrile rubber (a) as long as the effects of the present invention are not impaired.
  • rubbers other than the carboxyl group-containing highly saturated nitrile rubber (a) include acrylic rubber, ethylene-acrylic acid copolymer rubber, fluorine rubber, styrene-butadiene copolymer rubber, polybutadiene rubber, ethylene-propylene copolymer rubber, Mention may be made of ethylene-propylene-diene terpolymer rubber, epichlorohydrin rubber, urethane rubber, chloroprene rubber, silicone rubber, fluorosilicone rubber, chlorosulfonated polyethylene rubber, natural rubber and polyisoprene rubber.
  • the blending amount is preferably 30 parts by weight or less, and 20 parts by weight or less with respect to 100 parts by weight of the carboxyl group-containing highly saturated nitrile rubber (a). Is more preferable, and 10 parts by weight or less is particularly preferable.
  • the nitrile rubber composition used in the present invention is prepared by mixing the above components, preferably in a non-aqueous system.
  • the method for preparing the nitrile rubber composition used in the present invention is not limited, but usually the components excluding the polyamine-based crosslinking agent (c) and heat-labile components (for example, crosslinking aids) are used as Banbury mixers. It can be prepared by first kneading in a mixer such as an intermixer or a kneader, then transferring to a roll or the like and adding a polyamine-based crosslinking agent (c) or a heat unstable component, followed by secondary kneading.
  • a mixer such as an intermixer or a kneader
  • cross-linked rubber of the present invention is a cross-linked rubber obtained by cross-linking the nitrile rubber composition described above.
  • the compressive stress was the initial compressive stress at the start of the compressive stress relaxation test (that is, the compression stress
  • the time until it reaches 50% is 30 hours or more, preferably 400 hours or more, and more preferably 500 hours or more with respect to the compressive stress 30 minutes after the start of the stress relaxation test.
  • the above-mentioned nitrile rubber composition is used, and in the compression stress relaxation test, the time until the compression stress becomes 50% of the initial compression stress is set to 300 hours or more, thereby crosslinking the rubber.
  • the product can be made excellent in sealability at low temperatures while having good tensile strength and breaking elongation.
  • TR70 which is a temperature when 70% contraction (recovery) by raising the temperature after freezing the rubber cross-linked product in a 50% stretched state (temperature showing a low temperature elastic recovery rate of 70%), is preferable.
  • the rubber cross-linked product has an O-ring shape with an inner diameter of 30 mm and a ring diameter of 3 mm, and the O-ring-shaped rubber cross-linked product has a distance between two planes sandwiching the O-ring.
  • a method of measuring the compressive stress when held in an environment of 150 ° C. in a state where it is compressed by 25% in the ring thickness direction.
  • the rubber cross-linked product of the present invention uses the above-mentioned nitrile rubber composition and is molded by a molding machine corresponding to a desired shape, for example, an extruder, an injection molding machine, a compressor, a roll, etc., and is crosslinked by heating. It can be produced by reacting and fixing the shape as a cross-linked product.
  • crosslinking may be performed after molding in advance, or crosslinking may be performed simultaneously with molding.
  • a heating method a general method used for crosslinking of rubber such as press heating, steam heating, oven heating, and hot air heating may be appropriately selected.
  • the rubber cross-linked product is particularly limited as a method in which, in the compression stress relaxation test, the time until the compression stress becomes 50% of the initial compression stress is 300 hours or more.
  • a method for adjusting the type and blending amount of the polyamine-based crosslinking agent (c) to be contained in the nitrile rubber composition to be used, and the content of carboxyl groups contained in the carboxyl group-containing highly saturated nitrile rubber (a) Method for adjusting the crosslinking conditions (crosslinking time, crosslinking temperature, etc.) when making the rubber cross-linked product, method for adjusting the type and amount of filler contained in the rubber cross-linked product, in the rubber cross-linked product The method of adjusting the kind and compounding quantity of the additive contained in are mentioned.
  • the compressive stress is initially compressed in the compression stress relaxation test, depending on the crosslinking conditions.
  • the blending amount is preferably 0 with respect to 100 parts by weight of the carboxyl group-containing highly saturated nitrile rubber (a). It is preferable to adjust in the range of 2 to 15 parts by weight, more preferably 0.3 to 12 parts by weight.
  • the carboxyl group-containing highly saturated nitrile rubber (a)
  • the content of carboxyl groups in, ie the number of moles of carboxyl groups per 100 g of carboxyl group-containing highly saturated nitrile rubber (a) is preferably 5 ⁇ 10 ⁇ 4 to 5 ⁇ 10 ⁇ 1 ephr, more preferably 1 ⁇ 10 It is preferable to adjust in the range of ⁇ 3 to 1 ⁇ 10 ⁇ 1 ephr, particularly preferably 5 ⁇ 10 ⁇ 3 to 5 ⁇ 10 ⁇ 2 ephr.
  • the crosslinking conditions for crosslinking the nitrile rubber composition described above depend on the type and blending amount of the polyamine crosslinking agent (c) used, but in the compression stress relaxation test, the compression stress is initially compressed.
  • the crosslinking temperature is preferably 100 to 200 ° C., more preferably 130 to 190 ° C., from the viewpoint that the time to reach 50% of stress is 300 hours or more, and the crosslinking time is The time is preferably 1 minute to 24 hours, more preferably 2 minutes to 1 hour.
  • the crosslinking temperature of secondary crosslinking is preferably 100 to 230 ° C., more preferably 130 to 200 ° C.
  • the crosslinking time for the subsequent crosslinking is preferably 1 minute to 24 hours, more preferably 2 minutes to 1 hour.
  • the rubber cross-linked product of the present invention thus obtained has good tensile strength and elongation at break, and is excellent in sealability at low temperatures. Therefore, the rubber cross-linked product of the present invention makes use of such characteristics, and O-rings, packings, diaphragms, oil seals, shaft seals, bearing seals, well head seals, shock absorber seals, pneumatic equipment seals, air conditioners Sealing seals for fluorocarbons or fluorohydrocarbons or carbon dioxide used in compressors for refrigerators and air conditioner refrigerators, and supercritical carbon dioxide or subcritical carbon dioxide seals used as cleaning media for precision cleaning , Seals for rolling devices (rolling bearings, automotive hub units, automotive water pumps, linear guide devices, ball screws, etc.), valves and valve seats, BOP (Blow Out Preventar), various sealing materials such as platters; Manifold and series Intake manifold gasket attached to the connecting part of the cylinder head, cylinder head gasket attached to the connecting part of the cylinder block and the cylinder head
  • the rubber cross-linked product of the present invention has excellent sealing properties at low temperatures. Specifically, after the rubber cross-linked product is frozen in a 50% stretched state, it shrinks (recovers) by a temperature rise.
  • TR70 which is the temperature at which the low temperature elastic recovery rate is 70%, is preferably ⁇ 19 ° C. or lower, more preferably ⁇ 20 ° C. or lower, and is particularly excellent in sealing properties at low temperatures. Therefore, it can be suitably used for a material used in a low temperature environment.
  • the rubber cross-linked product of the present invention is a sealing material, belt, hose or gasket used in a low temperature environment. And can be particularly preferably used as a sealing material used in a low temperature environment such as a shock absorber seal, a coolant seal, and an oil seal.
  • composition of carboxyl group-containing highly saturated nitrile rubber The content ratio of each monomer unit constituting the carboxyl group-containing highly saturated nitrile rubber was measured by the following method. That is, the content ratio of mono-n-butyl maleate units was determined by determining the number of moles of carboxyl groups relative to 100 g of carboxyl group-containing highly saturated nitrile rubber after hydrogenation by the above-mentioned “carboxyl group content” measurement method. The number was calculated by converting it to the amount of mono n-butyl maleate units.
  • the content ratio of 1,3-butadiene units was calculated by measuring the iodine value of the carboxyl group-containing nitrile rubber before the hydrogenation reaction by the following method.
  • the content ratio of the acrylonitrile unit was calculated by measuring the nitrogen content in the carboxyl-containing highly saturated nitrile rubber after hydrogenation according to Kjeldahl method according to JIS K6384.
  • the content ratio of the n-butyl acrylate unit and the methoxyethyl acrylate unit was calculated as the balance of each monomer unit.
  • the iodine value of the highly saturated nitrile rubber containing the iodine value carboxyl group was measured according to JIS K 6235.
  • the nitrile rubber composition was placed in a mold having a length of 15 cm, a width of 15 cm, and a depth of 0.2 cm, and press-molded at 170 ° C. for 20 minutes while being pressed at a press pressure of 10 MPa to obtain a sheet-like primary crosslinked product.
  • the obtained primary cross-linked product was transferred to a gear-type oven and subjected to secondary cross-linking at 170 ° C. for 4 hours, and the obtained sheet-like rubber cross-linked product was punched with a No. 3 dumbbell to prepare a test piece.
  • Compressive stress relaxation test A nitrile rubber composition was placed in a mold having an inner diameter of 30 mm and a ring diameter of 3 mm, and was crosslinked at 170 ° C. for 20 minutes while being pressed at a press pressure of 10 MPa. -A ring-shaped rubber cross-linked product was obtained. Then, the obtained O-ring-shaped rubber cross-linked product is compressed in a state where the distance between two planes sandwiching the O-ring is compressed by 25% in the ring thickness direction and held in an environment of 150 ° C. A relaxation test was performed. Then, 30 minutes after the start of the test, the compressive stress of the O-ring shaped rubber cross-linked product was measured, and this was used as the initial compressive stress.
  • TR70 under 50% elongation condition Using a sheet-like rubber cross-linked product obtained in the same manner as in the evaluation of the above normal physical properties, a TR test (low-temperature elastic recovery test) was performed in a state of being extended by 50% according to JIS K6261. Specifically, the recoverability of the stretched test piece was measured by freezing the 50% stretched rubber cross-linked product and continuously increasing the temperature. The temperature TR70 at the time of% shrinkage (recovery) was measured. It can be determined that the lower the TR70, the better the sealing performance at low temperatures.
  • Production Example 1 (Production of carboxyl group highly saturated nitrile rubber (a1))
  • the reactor was kept at 10 ° C., and 0.1 part of cumene hydroperoxide (polymerization initiator), a reducing agent, and an appropriate amount of chelating agent were charged, and the polymerization reaction was continued while stirring, so that the polymerization conversion rate was 90%. At that time, 0.1 part of a 10% by weight hydroquinone aqueous solution (polymerization terminator) was added to terminate the polymerization reaction. Next, the residual monomer was removed at a water temperature of 60 ° C. to obtain a latex of nitrile rubber (solid content concentration: 30% by weight).
  • the nitrile rubber latex and palladium catalyst (1 wt%) were added to the autoclave so that the palladium content relative to the dry weight of the rubber contained in the nitrile rubber latex obtained above was 2,000 ppm by weight.
  • a solution in which palladium acetate / acetone solution and equal weight of ion exchange water are mixed) is added, and hydrogenation reaction is performed at a hydrogen pressure of 3 MPa and a temperature of 50 ° C. for 6 hours to obtain a carboxyl group-containing highly saturated nitrile rubber (a1) latex. Obtained.
  • aqueous solution of sodium chloride (coagulant concentration: 25%) is prepared in the tank as a coagulation liquid, and the latex is slowly poured into the tank, and then vigorously contacted and mixed to solidify and then filtered to obtain a solid (crumb) Was taken out and vacuum-dried at 60 ° C. for 12 hours to obtain a carboxyl group-containing highly saturated nitrile rubber (a1).
  • the obtained carboxyl group-containing highly saturated nitrile rubber (a1) had a carboxyl group content of 2.6 ⁇ 10 ⁇ 2 ephr and an iodine value of 9.
  • the resulting carboxyl group-containing highly saturated nitrile rubber (a1) was composed of 20.8% by weight of acrylonitrile units, 44.2% by weight of butadiene units (including hydrogenated portions), and 5% mono-n-butyl maleate units. 0.0% by weight and 30.0% by weight of n-butyl acrylate units.
  • Production Example 2 (Production of carboxyl group highly saturated nitrile rubber (a2))
  • the blending amount of acrylonitrile is 23 parts
  • the blending amount of mono n-butyl maleate is 6.5 parts
  • the blending amount of 1,3-butadiene is 40 parts
  • acrylic A carboxyl group-containing highly saturated nitrile rubber (a2) was obtained in the same manner as in Production Example 1, except that 30.5 parts of methoxyethyl acid was used.
  • the obtained carboxyl group-containing highly saturated nitrile rubber (a2) had a carboxyl group content of 3.4 ⁇ 10 ⁇ 2 ephr and an iodine value of 9.
  • the obtained carboxyl group-containing highly saturated nitrile rubber (a2) has an acrylonitrile unit of 24% by weight, a butadiene unit (including a hydrogenated part) of 46.6% by weight, and a mono n-butyl maleate unit of 6.5%. % By weight and methoxyethyl acrylate unit 22.9% by weight.
  • Production Example 3 (Production of carboxyl group highly saturated nitrile rubber (a'3)) Except that the blending amount of acrylonitrile was 37 parts, the blending amount of mono n-butyl maleate was 4 parts, the blending amount of 1,3-butadiene was 57 parts, and 35.2 parts of n-butyl acrylate was not blended.
  • a carboxyl group-containing highly saturated nitrile rubber (a′3) was obtained.
  • the obtained carboxyl group-containing highly saturated nitrile rubber (a′3) had a carboxyl group content of 3.0 ⁇ 10 ⁇ 2 ephr and an iodine value of 9.
  • the resulting carboxyl group-containing highly saturated nitrile rubber (a′3) was composed of 35.7% by weight of acrylonitrile units, 58.6% by weight of butadiene units (including hydrogenated portions), mono-n-butyl maleate The unit was 5.7% by weight.
  • Production Example 4 (Production of carboxyl group-containing highly saturated nitrile rubber (a4))
  • a reactor 220 parts of ion-exchanged water, 5 parts of a 10% aqueous sodium dodecylbenzenesulfonate solution, 17.2 parts of acrylonitrile, 3.3 parts of mono-n-butyl maleate, 35.2 parts of n-butyl acrylate, And 0.5 part of t-dodecyl mercaptan (second alkyl thiol compound) were charged in this order, and the internal gas was substituted three times with nitrogen, and then 26.2 parts of 1,3-butadiene was charged.
  • t-dodecyl mercaptan second alkyl thiol compound
  • the reactor was kept at 10 ° C., and 0.1 parts of cumene hydroperoxide (polymerization initiator), a reducing agent, and an appropriate amount of chelating agent were charged, and the polymerization reaction was continued while stirring, so that the polymerization conversion rate was 40%. At that time, 1.6 parts acrylonitrile, 0.85 parts mono-n-butyl maleate, and 6.6 parts 1,3-butadiene were added. When the polymerization reaction was further continued and the polymerization conversion reached 70%, 1.6 parts of acrylonitrile, 0.85 parts of mono-n-butyl maleate, 6.6 parts of 1,3-butadiene, t-dodecyl mercaptan 0.15 part was added.
  • a latex of carboxyl group-containing highly saturated nitrile rubber (a4) was obtained by carrying out a hydrogenation reaction on the nitrile rubber latex obtained above in the same manner as in Production Example 1, and Production Example 1 was obtained.
  • the carboxyl group-containing highly saturated nitrile rubber (a4) was obtained by coagulation, filtration and drying in the same manner as in Example 1.
  • the obtained carboxyl group-containing highly saturated nitrile rubber (a4) had a carboxyl group content of 2.5 ⁇ 10 ⁇ 2 ephr and an iodine value of 8.
  • the obtained carboxyl group-containing highly saturated nitrile rubber (a4) was composed of 20.3% by weight of acrylonitrile units, 44.5% by weight of butadiene units (including hydrogenated portions), 4 units of mono n-butyl maleate units. 8% by weight and 30.4% by weight of n-butyl acrylate units.
  • Production Example 5 (Production of carboxyl group-containing highly saturated nitrile rubber (a5))
  • the amount of monomer charged at the start of polymerization was 15.0 parts of acrylonitrile, 3.0 parts of mono-n-butyl maleate, 35.2 parts of n-butyl acrylate, and 26.0 parts of 1,3-butadiene, respectively.
  • the amount of monomer added when the polymerization conversion reached 40% was changed to 2.6 parts of acrylonitrile, 0.8 parts of mono n-butyl maleate, and 5.0 parts of 1,3-butadiene.
  • a carboxyl group-containing highly saturated nitrile rubber (a5) was obtained in the same manner as in Production Example 4 except that the content was changed to 8.4 parts.
  • the obtained carboxyl group-containing highly saturated nitrile rubber (a5) had a carboxyl group content of 2.7 ⁇ 10 ⁇ 2 ephr and an iodine value of 10.
  • the obtained carboxyl group-containing highly saturated nitrile rubber (a5) was composed of 21.0% by weight of acrylonitrile units, 44.1% by weight of butadiene units (including hydrogenated portions), and 5% mono-n-butyl maleate units. The content was 2% by weight and n-butyl acrylate unit was 29.7% by weight.
  • Production Example 6 (Production of carboxyl group-containing highly saturated nitrile rubber (a6)) The amount of n-butyl acrylate charged at the start of the polymerization was changed to 30.0 parts, and 2.6 parts of n-butyl acrylate was added as a monomer to be added when the polymerization conversion reached 40%. In addition, a carboxyl group-containing highly saturated nitrile rubber was prepared in the same manner as in Production Example 4 except that 2.6 parts of butyl acrylate was added as a monomer to be added when the polymerization conversion reached 70%. (A6) was obtained.
  • the obtained carboxyl group-containing highly saturated nitrile rubber (a6) had a carboxyl group content of 2.6 ⁇ 10 ⁇ 2 ephr and an iodine value of 9.
  • the resulting carboxyl group-containing highly saturated nitrile rubber (a6) was composed of 20.9% by weight of acrylonitrile units, 43.8% by weight of butadiene units (including hydrogenated moieties), and 5% mono n-butyl maleate units. It was 0.0% by weight and n-butyl acrylate unit was 30.3% by weight.
  • Production Example 7 (Production of carboxyl group-containing highly saturated nitrile rubber (a7))
  • a metal bottle 180 parts of ion-exchanged water, 25 parts of 10% strength by weight sodium dodecylbenzenesulfonate aqueous solution, 13 parts of acrylonitrile, 3 parts of mono-n-butyl maleate, 36 parts of n-butyl acrylate, t-dodecyl mercaptan (Second alkyl thiol compound) Charged in the order of 0.5 part, and the internal gas was substituted with nitrogen three times, and then 32 parts of 1,3-butadiene was charged.
  • the amount of palladium catalyst used was an amount that would be 1,000 ppm by weight with respect to the dry weight of the rubber contained in the nitrile rubber latex.
  • coagulation, filtration and drying are conducted in the same manner as in Production Example 1.
  • a carboxyl group-containing highly saturated nitrile rubber (a7) was obtained.
  • the obtained carboxyl group-containing highly saturated nitrile rubber (a7) had a carboxyl group content of 2.6 ⁇ 10 ⁇ 2 ephr and an iodine value of 10.
  • the resulting carboxyl group-containing highly saturated nitrile rubber (a7) was composed of 15% by weight of acrylonitrile units, 45% by weight of butadiene units (including hydrogenated parts), 5% by weight of mono n-butyl maleate units, acrylic The acid n-butyl unit was 35% by weight.
  • Production Example 8 (Production of carboxyl group-containing highly saturated nitrile rubber (a8)) The amount of monomers charged at the start of polymerization was changed to 16.0 parts of acrylonitrile, 5.0 parts of mono-n-butyl maleate, 36.0 parts of n-butyl acrylate, and 43.0 parts of 1,3-butadiene.
  • a carboxyl group-containing highly saturated nitrile rubber (a8) was obtained in the same manner as in Production Example 7 except that no additional monomer was added during the reaction.
  • the obtained carboxyl group-containing highly saturated nitrile rubber (a8) had a carboxyl group content of 2.7 ⁇ 10 ⁇ 2 ephr and an iodine value of 8.
  • the obtained carboxyl group-containing highly saturated nitrile rubber (a8) was composed of 14.7% by weight of acrylonitrile units, 45.2% by weight of butadiene units (including hydrogenated parts), and 5% mono n-butyl maleate units. And 24.9% by weight and 34.9% by weight of n-butyl acrylate units.
  • Production Example 9 (Production of carboxyl group-containing highly saturated nitrile rubber (a9))
  • the amount of monomer charged at the start of the polymerization was 10.0 parts of acrylonitrile, 2.0 parts of mono n-butyl maleate, 36.0 parts of n-butyl acrylate, and 30.0 parts of 1,3-butadiene, respectively.
  • the amount of monomer added when the polymerization conversion reached 40% was changed to 3.0 parts of acrylonitrile, 1.0 part of mono n-butyl maleate, and 7.0 parts of 1,3-butadiene.
  • the amount of the monomer added when the polymerization conversion reached 70% was changed to 3.0 parts of acrylonitrile, 2.0 parts of mono n-butyl maleate, and 1,3-butadiene.
  • a carboxyl group-containing highly saturated nitrile rubber (a9) was obtained in the same manner as in Production Example 7 except that the content was changed to 6.0 parts.
  • the obtained carboxyl group-containing highly saturated nitrile rubber (a9) had a carboxyl group content of 2.5 ⁇ 10 ⁇ 2 ephr and an iodine value of 9.
  • the resulting carboxyl group-containing highly saturated nitrile rubber (a8) was 15.3% by weight of acrylonitrile units, 44.9% by weight of butadiene units (including hydrogenated parts), 4 units of mono n-butyl maleate units. And 8% by weight and 35.0% by weight of n-butyl acrylate units.
  • Production Example 10 (Production of carboxyl group-containing highly saturated nitrile rubber (a10)) The amount of n-butyl acrylate charged at the start of the polymerization was changed to 30.0 parts, and 4.0 parts of n-butyl acrylate was added as a monomer to be added when the polymerization conversion reached 40%. In addition, a carboxyl group-containing highly saturated nitrile rubber was prepared in the same manner as in Production Example 7 except that 2.0 parts of n-butyl acrylate was added as a monomer to be added when the polymerization conversion reached 70%. (A10) was obtained.
  • the obtained carboxyl group-containing highly saturated nitrile rubber (a10) had a carboxyl group content of 2.6 ⁇ 10 ⁇ 2 ephr and an iodine value of 8.
  • the resulting carboxyl group-containing highly saturated nitrile rubber (a10) was 15.1% by weight of acrylonitrile units, 45.4% by weight of butadiene units (including hydrogenated moieties), and 5% mono n-butyl maleate units. % By weight and 34.5% by weight of n-butyl acrylate unit.
  • Example 1 Using a Banbury mixer, 100 parts of the carboxyl group-containing highly saturated nitrile rubber (a1) obtained in Production Example 1 was added to the amino group-containing silane coupling agent-treated aluminum silicate (b1) (trade name “Amlok 321”, Kentucky- 90 parts of Tennessee Clay), 5 parts of tri-2-ethylhexyl trimellitic acid (made by ADEKA, trade name “Adekasizer C-8”, plasticizer), 4,4′-di- ( ⁇ , ⁇ -dimethyl) Benzyl) diphenylamine (Ouchi Shinsei Chemical Co., Ltd., trade name “NOCRACK CD”, anti-aging agent) 1.5 parts, stearic acid 1 part, polyoxyethylene alkyl ether phosphate (manufactured by Toho Chemical Co., Ltd., trade name “ 1 part of Phosphanol RL210 ", processing aid) was blended and mixed at 50 ° C for 5 minutes.
  • b1 amino group-containing silane coupling agent-
  • DBU 1,8-diazabicyclo [5,4,0] -undecene-7
  • a rubber cross-linked product is obtained using the nitrile rubber composition prepared above, and the obtained rubber cross-linked product has normal physical properties (tensile strength, breaking elongation, hardness), compression stress relaxation.
  • Each test and measurement of low temperature sealability (TR70 under 50% elongation condition) was performed. The results are shown in Table 1.
  • Example 2 Instead of 90 parts of amino group-containing silane coupling agent-treated aluminum silicate (b1) (trade name “Amlok 321”), amino group-containing silane coupling agent-treated aluminum silicate (b2) (trade name “Nulok 390”, KaMin Corporation) (Product made) Except having used 90 parts, it carried out similarly to Example 1, and obtained the nitrile rubber composition, and evaluated it similarly. The results are shown in Table 1.
  • Example 3 Instead of 90 parts of amino group-containing silane coupling agent-treated aluminum silicate (b1) (trade name “Amlok 321”), epoxy group-containing silane coupling agent-treated aluminum silicate (b3) (trade name “Nulok 170”, KaMin Corporation) 90 parts), instead of 5 parts of trimellitic acid tri-2-ethylhexyl (ADEKA, trade name “ADEKA SIZER C-8”, plasticizer), polyether ester (ADEKA, trade name) A nitrile rubber composition was obtained and evaluated in the same manner as in Example 1 except that 5 parts of “Adekasizer RS-700”, plasticizer) were used. The results are shown in Table 1.
  • Example 4 Instead of 90 parts of amino group-containing silane coupling agent-treated aluminum silicate (b1) (trade name “Amlok 321”), mercapto group-containing silane coupling agent-treated aluminum silicate (b4) (trade name “Mercap 200”, Kentucky- A nitrile rubber composition was obtained and evaluated in the same manner as in Example 1 except that 90 parts (manufactured by Tennessee Clay) were used. The results are shown in Table 1.
  • Example 5 The compounding amount of the amino group-containing silane coupling agent-treated aluminum silicate (b2) (trade name “Nulok 390”) was changed from 90 parts to 30 parts, and the vinyl group-containing silane coupling agent-treated aluminum silicate (b5) ( A nitrile rubber composition was obtained and evaluated in the same manner as in Example 2 except that 60 parts of a trade name “Burgess KE” (manufactured by Burgess Pigment) was further blended. The results are shown in Table 1.
  • Example 6 Instead of 90 parts of amino group-containing silane coupling agent-treated aluminum silicate (b1) (trade name “Amlok 321”), vinyl group-containing silane coupling agent-treated aluminum silicate (b5) (trade name “Burgess KE”, Burgess A nitrile rubber composition was prepared in the same manner as in Example 1, except that 50 parts of CI Pigment) and 25 parts of silica (trade name “ULTRASIL (registered trademark) VN2”, Evonik) were further blended. Obtained and evaluated in the same manner. The results are shown in Table 1.
  • Example 7 A nitrile rubber composition was obtained in the same manner as in Example 6 except that 1 part of a processing aid (trade name “Stractol (registered trademark) HT740”, manufactured by S & S Japan Ltd.) was further added. went. The results are shown in Table 1.
  • a processing aid trade name “Stractol (registered trademark) HT740”, manufactured by S & S Japan Ltd.
  • Example 8 In place of 100 parts of the carboxyl group-containing highly saturated nitrile rubber (a1) obtained in Production Example 1, 100 parts of the carboxyl group-containing highly saturated nitrile rubber (a2) obtained in Production Example 2 was used, and an amino group-containing Silane coupling agent treated aluminum silicate (b1) (trade name “Amlok 321”) blending amount changed from 90 parts to 85 parts and hexamethylenediamine carbamate blending amount changed from 1.9 parts to 2.7 parts. Except for the above, a nitrile rubber composition was obtained in the same manner as in Example 1 and evaluated in the same manner. The results are shown in Table 1.
  • b1 amino group-containing Silane coupling agent treated aluminum silicate
  • Example 9 85 parts of amino group-containing silane coupling agent treated aluminum silicate (b2) (trade name “Nulok 390”) instead of 85 parts of amino group-containing silane coupling agent treated aluminum silicate (b1) (trade name “Amlok 321”) , And instead of 5 parts of trimellitic acid tri-2-ethylhexyl (ADEKA, trade name “ADEKA SIZER C-8”, plasticizer), polyether ester (ADEKA, trade name “ADEKA” A nitrile rubber composition was obtained and evaluated in the same manner as in Example 8 except that 5 parts of sizer RS-700 ", plasticizer) were used. The results are shown in Table 1.
  • Example 10 instead of 85 parts of amino group-containing silane coupling agent treated aluminum silicate (b1) (trade name “Amlok 321”), 85 parts of epoxy group-containing silane coupling agent treated aluminum silicate (b3) (trade name “Nulok 170”) A nitrile rubber composition was obtained and evaluated in the same manner as in Example 8 except that was used. The results are shown in Table 1.
  • Example 11 85 parts of mercapto group-containing silane coupling agent treated aluminum silicate (b4) (trade name “Mercap 200”) instead of 85 parts of amino group containing silane coupling agent treated aluminum silicate (b1) (trade name “Amlok 321”) A nitrile rubber composition was obtained and evaluated in the same manner as in Example 8 except that was used. The results are shown in Table 1.
  • Example 12 The compounding amount of the amino group-containing silane coupling agent-treated aluminum silicate (b2) (trade name “Nulok 390”) was changed from 85 parts to 30 parts, and the vinyl group-containing silane coupling agent-treated aluminum silicate (b5) ( A nitrile rubber composition was obtained and evaluated in the same manner as in Example 8 except that 55 parts of a product name “Burges KE”) was further blended. The results are shown in Table 1.
  • Example 13 Instead of 85 parts of amino group-containing silane coupling agent-treated aluminum silicate (b1) (trade name “Amlok 321”), vinyl group-containing silane coupling agent-treated aluminum silicate (b5) (trade name “Burgess KE”, Burgess
  • the nitrile rubber composition was prepared in the same manner as in Example 8, except that 50 parts of CI Pigment) and 25 parts of silica (trade name “ULTRASIL (registered trademark) VN2”, Evonik) were further blended. Obtained and evaluated in the same manner. The results are shown in Table 1.
  • Example 14 A nitrile rubber composition was obtained in the same manner as in Example 13 except that 1 part of a processing aid (trade name “Stractol (registered trademark) HT740”, manufactured by S & S Japan) was further added. went. The results are shown in Table 1.
  • a processing aid trade name “Stractol (registered trademark) HT740”, manufactured by S & S Japan
  • Examples 15-20 In place of 100 parts of the carboxyl group-containing highly saturated nitrile rubber (a1) obtained in Production Example 1, 100 parts of the carboxyl group-containing highly saturated nitrile rubber (a4) obtained in Production Example 4 were used. A nitrile rubber composition was obtained and evaluated in the same manner as in Example 1 except that the compounding agents shown were blended in the blending amounts shown in Table 2. The results are shown in Table 2.
  • Examples 21 and 22 In place of 100 parts of the carboxyl group-containing highly saturated nitrile rubber (a1) obtained in Production Example 1, 100 parts of the carboxyl group-containing highly saturated nitrile rubber (a5) obtained in Production Example 5 was used. A nitrile rubber composition was obtained and evaluated in the same manner as in Example 1 except that the compounding agents shown were blended in the blending amounts shown in Table 2. The results are shown in Table 2.
  • Examples 23 and 24 In place of 100 parts of the carboxyl group-containing highly saturated nitrile rubber (a1) obtained in Production Example 1, 100 parts of the carboxyl group-containing highly saturated nitrile rubber (a6) obtained in Production Example 6 was used. A nitrile rubber composition was obtained and evaluated in the same manner as in Example 1 except that the compounding agents shown were blended in the blending amounts shown in Table 2. The results are shown in Table 2.
  • Examples 32 and 33 In place of 100 parts of the carboxyl group-containing highly saturated nitrile rubber (a1) obtained in Production Example 1, 100 parts of the carboxyl group-containing highly saturated nitrile rubber (a8) obtained in Production Example 8 was used. A nitrile rubber composition was obtained and evaluated in the same manner as in Example 1 except that the compounding agents shown were blended in the blending amounts shown in Table 3. The results are shown in Table 3.
  • Examples 34 and 35 In place of 100 parts of the carboxyl group-containing highly saturated nitrile rubber (a1) obtained in Production Example 1, 100 parts of the carboxyl group-containing highly saturated nitrile rubber (a9) obtained in Production Example 9 was used. A nitrile rubber composition was obtained and evaluated in the same manner as in Example 1 except that the compounding agents shown were blended in the blending amounts shown in Table 3. The results are shown in Table 3.
  • Examples 36 and 37 In place of 100 parts of the carboxyl group-containing highly saturated nitrile rubber (a1) obtained in Production Example 1, 100 parts of the carboxyl group-containing highly saturated nitrile rubber (a10) obtained in Production Example 10 was used. A nitrile rubber composition was obtained and evaluated in the same manner as in Example 1 except that the compounding agents shown were blended in the blending amounts shown in Table 3. The results are shown in Table 3.
  • Comparative Example 1 A nitrile rubber composition was obtained and evaluated in the same manner as in Example 2 except that the amount of hexamethylenediamine carbamate was changed from 1.9 parts to 0.5 parts. The results are shown in Table 4.
  • Comparative Example 2 A nitrile rubber composition was obtained and evaluated in the same manner as in Example 2 except that the amount of hexamethylenediamine carbamate was changed from 1.9 parts to 1 part. The results are shown in Table 4.
  • Comparative Example 4 The blending amount of hexamethylenediamine carbamate was changed from 2.7 parts to 0.5 parts, and replaced with 5 parts of polyetherester (trade name “Adekasizer RS-700”, plasticizer, manufactured by ADEKA) A nitrile rubber composition was obtained in the same manner as in Example 9 except that 5 parts of trimellitic acid tri-2-ethylhexyl (manufactured by ADEKA, trade name “Adekasizer C-8”, plasticizer) was used. Evaluation was performed in the same manner. The results are shown in Table 4.
  • Comparative Example 5 A nitrile rubber composition was obtained and evaluated in the same manner as in Comparative Example 4 except that the amount of hexamethylenediamine carbamate was changed from 0.5 part to 1 part. The results are shown in Table 4.
  • Comparative Example 6 Instead of 85 parts of amino group-containing silane coupling agent-treated aluminum silicate (b1) (trade name “Amlok 321”), 85 parts of surface untreated aluminum silicate (b′6) (trade name “Satinton # 5”) is used. Except for the above, a nitrile rubber composition was obtained in the same manner as in Example 8 and evaluated in the same manner. The results are shown in Table 4.
  • Comparative Example 17 A nitrile rubber composition was obtained and evaluated in the same manner as in Comparative Example 16 except that the amount of hexamethylenediamine carbamate was changed from 0.5 part to 1 part. The results are shown in Table 5.
  • Comparative Example 18 A nitrile rubber composition was obtained and evaluated in the same manner as in Comparative Example 16 except that the amount of hexamethylenediamine carbamate was changed from 0.5 part to 2.4 parts. The results are shown in Table 5.
  • the present invention contains a predetermined carboxyl group-containing highly saturated nitrile rubber (a), a surface-treated silicate (b), and a predetermined amount of a polyamine-based crosslinking agent (c). It is obtained by cross-linking the nitrile rubber composition, and the time until the compressive stress becomes 50% of the initial compressive stress in the compressive stress relaxation test at 150 ° C. and 25% compressive condition is 300 hours or more. Some of the rubber cross-linked products have high tensile strength of 9 MPa or more and elongation at break of 100% or more, and TR70 under 50% elongation condition is -20 ° C. or less, and has excellent sealing properties at low temperatures. (Examples 1 to 37).
  • the present invention crosslinks a nitrile rubber composition
  • a nitrile rubber composition comprising a predetermined carboxyl group-containing highly saturated nitrile rubber (a), a surface-treated silicate (b), and a predetermined amount of a polyamine-based cross-linking agent (c).
  • a nitrile rubber composition comprising a predetermined carboxyl group-containing highly saturated nitrile rubber (a), a surface-treated silicate (b), and a predetermined amount of a polyamine-based cross-linking agent (c).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Sealing Material Composition (AREA)

Abstract

5~60重量%のα,β-エチレン性不飽和ニトリル単量体単位と、α,β-エチレン性不飽和モノカルボン酸エステル単量体単位とを含有し、ヨウ素価が120以下であるカルボキシル基含有高飽和ニトリルゴム(a)と、表面処理珪酸塩(b)と、ポリアミン系架橋剤(c)とを含有してなり、前記ポリアミン系架橋剤(c)の含有量が、前記カルボキシル基含有高飽和ニトリルゴム(a)100重量部に対して、0.1~20重量部であるニトリルゴム組成物を架橋してなるゴム架橋物であって、150℃、25%圧縮させた状態で保持する圧縮応力緩和試験を行った際に、圧縮応力が、該圧縮応力緩和試験開始から30分後の圧縮応力である、圧縮応力緩和試験開始時の初期圧縮応力に対して、50%となるまでの時間が300時間以上であるゴム架橋物を提供する。

Description

ゴム架橋物
 本発明は、引張強度および破断伸びが良好であり、かつ、低温でのシール性に優れたゴム架橋物に関する。
 従来から、ニトリルゴム(アクリロニトリル-ブタジエン共重合ゴム)は、耐油性、機械的特性、耐薬品性等を活かして、ホースやチューブなどの自動車用ゴム部品の材料として使用されており、また、ニトリルゴムのポリマー主鎖中の炭素-炭素二重結合を水素化した水素化ニトリルゴム(水素化アクリロニトリル-ブタジエン共重合ゴム)はさらに耐熱性に優れるため、ベルト、ホース、ダイアフラム等のゴム部品に使用されている。
 このようなニトリルゴムの組成物として、たとえば、特許文献1では、α、β-エチレン性不飽和ニトリル単量体単位およびα,β-エチレン性不飽和ジカルボン酸モノエステル単量体単位を有し、ヨウ素価が120以下である高飽和ニトリルゴム(a)、周期表第2族または第13族の元素の珪酸塩(b)、および、ポリアミン系架橋剤(c)を含有してなる架橋性ニトリルゴム組成物が開示されている。この特許文献1は、引張応力が極めて大きなゴム架橋物を与える架橋性ニトリルゴム組成物を提供することを目的とするものであるが、特許文献1に開示された架橋性ニトリルゴム組成物を用いて得られるゴム架橋物は、低温でのシール性が十分でなく、そのため、低温環境下で用いられるシール材用途に用いるのに適さない場合があった。
特開2008-179671号公報
 本発明は、このような実状に鑑みてなされたものであり、引張強度および破断伸びが良好であり、かつ、低温でのシール性に優れたゴム架橋物を提供することを目的とする。
 本発明者らは、上記目的を達成するために鋭意研究した結果、5~60重量%のα,β-エチレン性不飽和ニトリル単量体単位と、α,β-エチレン性不飽和モノカルボン酸エステル単量体単位とを含有し、ヨウ素価が120以下であるカルボキシル基含有高飽和ニトリルゴムに、表面処理珪酸塩および所定量のポリアミン系架橋剤を配合してなるニトリルゴム組成物を架橋することにより得られ、かつ、150℃、25%圧縮させた状態で保持する圧縮応力緩和試験を行った際に、圧縮応力が、該圧縮応力緩和試験開始から30分後の圧縮応力(以下、「圧縮応力緩和試験開始時の初期圧縮応力」という。)に対して、50%となるまでの時間が300時間以上であるゴム架橋物により、上記目的を達成できることを見出し、本発明を完成させるに至った。
 すなわち、本発明によれば、5~60重量%のα,β-エチレン性不飽和ニトリル単量体単位と、α,β-エチレン性不飽和モノカルボン酸エステル単量体単位とを含有し、ヨウ素価が120以下であるカルボキシル基含有高飽和ニトリルゴム(a)と、表面処理珪酸塩(b)と、ポリアミン系架橋剤(c)とを含有してなり、前記ポリアミン系架橋剤(c)の含有量が、前記カルボキシル基含有高飽和ニトリルゴム(a)100重量部に対して、0.1~20重量部であるニトリルゴム組成物を架橋してなるゴム架橋物であって、
 150℃、25%圧縮させた状態で保持する圧縮応力緩和試験を行った際に、圧縮応力が、該圧縮応力緩和試験開始から30分後の圧縮応力である、圧縮応力緩和試験開始時の初期圧縮応力に対して、50%となるまでの時間が300時間以上であるゴム架橋物が提供される。
 本発明のゴム架橋物において、前記表面処理珪酸塩(b)が、珪酸塩をアミノ基含有シランカップリング剤またはエポキシ基含有シランカップリング剤で表面処理してなるものであることが好ましく、珪酸塩をアミノ基含有シランカップリング剤で表面処理してなるものであることが特に好ましい。
 本発明のゴム架橋物において、前記ニトリルゴム組成物が、塩基性架橋促進剤(d)をさらに含有することが好ましい。
 本発明のゴム架橋物において、前記カルボキシル基含有高飽和ニトリルゴム(a)が、5~60重量%のα,β-エチレン性不飽和ニトリル単量体単位と、10~55重量%のα,β-エチレン性不飽和モノカルボン酸エステル単量体単位と、0.1~20重量%のカルボキシル基含有単量体単位とを含有するものであることが好ましく、前記カルボキシル基含有単量体単位が、α,β-エチレン性不飽和ジカルボン酸モノエステル単量体単位であることがより好ましい。
 本発明のゴム架橋物において、前記表面処理珪酸塩(b)が、周期表第2族または第13族の元素の珪酸塩である珪酸塩を表面処理剤で表面処理してなるものであることが好ましく、下記一般式(1)で表される化合物を表面処理剤で表面処理してなるものであることがより好ましい。
  MO・xSiO・mHO  (1)
 (上記一般式(1)中、Mは周期表第2族の元素または周期表第13族の元素を表し、xは8以下の正の実数であり、mは0または12以下の正の実数である。)
 また、本発明によれば、上記いずれかに記載のゴム架橋物からなるシール材が提供される。
 本発明によれば、引張強度および破断伸びが良好であり、かつ、低温でのシール性に優れたゴム架橋物が提供される。
 本発明のゴム架橋物は、5~60重量%のα,β-エチレン性不飽和ニトリル単量体単位と、α,β-エチレン性不飽和モノカルボン酸エステル単量体単位とを含有し、ヨウ素価が120以下であるカルボキシル基含有高飽和ニトリルゴム(a)と、表面処理珪酸塩(b)と、ポリアミン系架橋剤(c)とを含有してなり、前記ポリアミン系架橋剤(c)の含有量が、前記カルボキシル基含有高飽和ニトリルゴム(a)100重量部に対して、0.1~20重量部であるニトリルゴム組成物を架橋してなり、
 150℃、25%圧縮させた状態で保持する圧縮応力緩和試験を行った際に、圧縮応力が、該圧縮応力緩和試験開始から30分後の圧縮応力である、圧縮応力緩和試験開始時の初期圧縮応力に対して、50%となるまでの時間が300時間以上であるものである。
 ニトリルゴム組成物
 まず、本発明のゴム架橋物を得るために用いられるニトリルゴム組成物について説明する。
 本発明で用いるニトリルゴム組成物は、5~60重量%のα,β-エチレン性不飽和ニトリル単量体単位と、α,β-エチレン性不飽和モノカルボン酸エステル単量体単位とを含有し、ヨウ素価が120以下であるカルボキシル基含有高飽和ニトリルゴム(a)と、表面処理珪酸塩(b)と、ポリアミン系架橋剤(c)とを含有する。
 カルボキシル基含有高飽和ニトリルゴム(a)
 本発明で用いるカルボキシル基含有高飽和ニトリルゴム(a)は、5~60重量%のα,β-エチレン性不飽和ニトリル単量体単位と、α,β-エチレン性不飽和モノカルボン酸エステル単量体単位とを含有し、ヨウ素価が120以下であるゴムである。本発明で用いるカルボキシル基含有高飽和ニトリルゴム(a)は、α,β-エチレン性不飽和ニトリル単量体、α,β-エチレン性不飽和モノカルボン酸エステル単量体、カルボキシル基含有単量体、および必要に応じて加えられる共重合可能なその他の単量体を共重合することにより得られる。
 α,β-エチレン性不飽和ニトリル単量体としては、ニトリル基を有するα,β-エチレン性不飽和化合物であれば限定されず、アクリロニトリル;α-クロロアクリロニトリル、α-ブロモアクリロニトリルなどのα-ハロゲノアクリロニトリル;メタクリロニトリル、エタクリロニトリルなどのα-アルキルアクリロニトリル;などが挙げられる。これらのなかでも、アクリロニトリルおよびメタクリロニトリルが好ましく、アクリロニトリルが特に好ましい。α,β-エチレン性不飽和ニトリル単量体として、これらの複数種を併用してもよい。
 本発明で用いるカルボキシル基含有高飽和ニトリルゴム(a)中における、α,β-エチレン性不飽和ニトリル単量体単位の含有割合は、全単量体単位に対して、5~60重量%、好ましくは10~50重量%、より好ましくは15~50重量%である。α,β-エチレン性不飽和ニトリル単量体単位の含有量が少なすぎると、得られるゴム架橋物が耐油性に劣るものなり、一方、多すぎると耐寒性が低下してしまう。
 α,β-エチレン性不飽和モノカルボン酸エステル単量体としては、特に限定されないが、たとえば、α,β-エチレン性不飽和モノカルボン酸アルキルエステル単量体、α,β-エチレン性不飽和モノカルボン酸アルコキシアルキルエステル単量体、α,β-エチレン性不飽和モノカルボン酸アミノアルキルエステル単量体、α,β-エチレン性不飽和モノカルボン酸ヒドロキシアルキルエステル単量体、α,β-エチレン性不飽和モノカルボン酸フルオロアルキルエステル単量体などが挙げられる。
 これらのなかでも、α,β-エチレン性不飽和モノカルボン酸アルキルエステル単量体、またはα,β-エチレン性不飽和モノカルボン酸アルコキシアルキルエステル単量体が好ましい。
 α,β-エチレン性不飽和モノカルボン酸エステル単量体単位を含有させることにより、得られるゴム架橋物の耐寒性を向上させることができ、これにより、低温でのシール性の向上が可能となる。
 α,β-エチレン性不飽和モノカルボン酸のアルキルエステル単量体としては、アルキル基として、炭素数が3~10でアルキル基を有するものが好ましく、炭素数が3~8であるアルキル基を有するものがより好ましく、炭素数が4~6であるアルキル基を有するものがさらに好ましい。
 α,β-エチレン性不飽和モノカルボン酸アルキルエステル単量体の具体例としては、アクリル酸プロピル、アクリル酸n-ブチル、アクリル酸n-ペンチル、アクリル酸2-エチルヘキシルなどのアクリル酸アルキルエステル単量体;アクリル酸シクロペンチル、アクリル酸シクロヘキシルなどのアクリル酸シクロアルキルエステル単量体;アクリル酸メチルシクロペンチル、アクリル酸エチルシクロペンチル、アクリル酸メチルシクロヘキシルなどのアクリル酸アルキルシクロアルキルエステル単量体;メタクリル酸プロピル、メタクリル酸n-ブチル、メタクリル酸n-ペンチル、メタクリル酸n-オクチルなどのメタクリル酸アルキルエステル単量体;メタクリル酸シクロペンチル、メタクリル酸シクロヘキシル、メタクリル酸シクロペンチルなどのメタクリル酸シクロアルキルエステル単量体;メタクリル酸メチルシクロペンチル、メタクリル酸エチルシクロペンチル、メタクリル酸メチルシクロヘキシルなどのメタクリル酸アルキルシクロアルキルエステル単量体;クロトン酸プロピル、クロトン酸n-ブチル、クロトン酸2-エチルヘキシルなどのクロトン酸アルキルエステル単量体;クロトン酸シクロペンチル、クロトン酸シクロヘキシル、クロトン酸シクロオクチルなどのクロトン酸シクロアルキルエステル単量体;クロトン酸メチルシクロペンチル、クロトン酸メチルシクロヘキシルなどのクロトン酸アルキルシクロアルキルエステル単量体;などが挙げられる。
 また、α,β-エチレン性不飽和モノカルボン酸アルコキシアルキルエステル単量体としては、アルコキシアルキル基として、炭素数が2~8であるアルコキシアルキル基を有するものが好ましく、炭素数が2~6であるアルコキシアルキル基を有するものがより好ましく、炭素数が2~4であるアルコキシアルキル基を有するものがさらに好ましい。
 α,β-エチレン性不飽和モノカルボン酸アルコキシアルキルエステル単量体の具体例としては、アクリル酸メトキシメチル、アクリル酸メトキシエチル、アクリル酸エトキシメチル、アクリル酸エトキシエチル、アクリル酸n-プロポキシエチル、アクリル酸i-プロポキシエチル、アクリル酸n-ブトキシエチル、アクリル酸i-ブトキシエチル、アクリル酸t-ブトキシエチル、アクリル酸メトキシプロピル、アクリル酸メトキシブチルなどのアクリル酸アルコキシアルキルエステル単量体;メタクリル酸メトキシメチル、メタクリル酸メトキシエチル、メタクリル酸エトキシメチル、メタクリル酸エトキシエチル、メタクリル酸n-プロポキシエチル、メタクリル酸i-プロポキシエチル、メタクリル酸n-ブトキシエチル、メタクリル酸i-ブトキシエチル、メタクリル酸t-ブトキシエチル、メタクリル酸メトキシプロピル、メタクリル酸メトキシブチルなどのメタクリル酸アルコキシアルキルエステル単量体;などが挙げられる。
 これらα,β-エチレン性不飽和モノカルボン酸エステル単量体のなかでも、本発明の効果をより一層顕著なものとすることができるという点より、アクリル酸アルキルエステル単量体、アクリル酸アルコキシアルキルエステル単量体が好ましく、アクリル酸n-ブチルおよびアクリル酸メトキシエチルがより好ましい。
 本発明で用いるカルボキシル基含有高飽和ニトリルゴム(a)中における、α,β-エチレン性不飽和モノカルボン酸エステル単量体単位の含有量は、好ましくは5~60重量%であり、より好ましくは10~55重量%、さらに好ましくは15~50重量%である。α,β-エチレン性不飽和モノカルボン酸エステル単量体単位の含有量を上記範囲とすることにより、低温でのシール性の向上効果をより高めることができる。
 カルボキシル基含有単量体としては、α,β-エチレン性不飽和ニトリル単量体およびα,β-エチレン性不飽和モノカルボン酸エステル単量体と共重合可能であり、かつ、エステル化等されていない無置換の(フリーの)カルボキシル基を1個以上有する単量体であれば特に限定されない。カルボキシル基含有単量体を共重合させることにより、ニトリルゴムに、カルボキシル基を導入することができる。
 本発明で用いるカルボキシ基含有単量体としては、たとえば、α,β-エチレン性不飽和モノカルボン酸単量体、α,β-エチレン性不飽和多価カルボン酸単量体、およびα,β-エチレン性不飽和ジカルボン酸モノエステル単量体などが挙げられる。また、カルボキシル基含有単量体には、これらの単量体のカルボキシル基がカルボン酸塩を形成している単量体も含まれる。さらに、α,β-エチレン性不飽和多価カルボン酸の無水物も、共重合後に酸無水物基を開裂させてカルボキシル基を形成するので、カルボキシル基含有単量体として用いることができる。
 α,β-エチレン性不飽和モノカルボン酸単量体としては、アクリル酸、メタクリル酸、エチルアクリル酸、クロトン酸、ケイ皮酸などが挙げられる。
 α,β-エチレン性不飽和多価カルボン酸単量体としては、フマル酸やマレイン酸などのブテンジオン酸、イタコン酸、シトラコン酸、メサコン酸、グルタコン酸、アリルマロン酸、テラコン酸などが挙げられる。また、α,β-不飽和多価カルボン酸の無水物としては、無水マレイン酸、無水イタコン酸、無水シトラコン酸などが挙げられる。
 α,β-エチレン性不飽和ジカルボン酸モノエステル単量体としては、マレイン酸モノメチル、マレイン酸モノエチル、マレイン酸モノプロピル、マレイン酸モノn-ブチルなどのマレイン酸モノアルキルエステル;マレイン酸モノシクロペンチル、マレイン酸モノシクロヘキシル、マレイン酸モノシクロヘプチルなどのマレイン酸モノシクロアルキルエステル;マレイン酸モノメチルシクロペンチル、マレイン酸モノエチルシクロヘキシルなどのマレイン酸モノアルキルシクロアルキルエステル;フマル酸モノメチル、フマル酸モノエチル、フマル酸モノプロピル、フマル酸モノn-ブチルなどのフマル酸モノアルキルエステル;フマル酸モノシクロペンチル、フマル酸モノシクロヘキシル、フマル酸モノシクロヘプチルなどのフマル酸モノシクロアルキルエステル;フマル酸モノメチルシクロペンチル、フマル酸モノエチルシクロヘキシルなどのフマル酸モノアルキルシクロアルキルエステル;シトラコン酸モノメチル、シトラコン酸モノエチル、シトラコン酸モノプロピル、シトラコン酸モノn-ブチルなどのシトラコン酸モノアルキルエステル;シトラコン酸モノシクロペンチル、シトラコン酸モノシクロヘキシル、シトラコン酸モノシクロヘプチルなどのシトラコン酸モノシクロアルキルエステル;シトラコン酸モノメチルシクロペンチル、シトラコン酸モノエチルシクロヘキシルなどのシトラコン酸モノアルキルシクロアルキルエステル;イタコン酸モノメチル、イタコン酸モノエチル、イタコン酸モノプロピル、イタコン酸モノn-ブチルなどのイタコン酸モノアルキルエステル;イタコン酸モノシクロペンチル、イタコン酸モノシクロヘキシル、イタコン酸モノシクロヘプチルなどのイタコン酸モノシクロアルキルエステル;イタコン酸モノメチルシクロペンチル、イタコン酸モノエチルシクロヘキシルなどのイタコン酸モノアルキルシクロアルキルエステル;などが挙げられる。
 カルボキシル基含有単量体は、一種単独でも、複数種を併用してもよい。これらの中でも、本発明の効果がより一層顕著になることから、α,β-エチレン性不飽和ジカルボン酸モノエステル単量体が好ましく、α,β-エチレン性不飽和ジカルボン酸モノアルキルエステル単量体がより好ましく、マレイン酸モノアルキルエステルがさらに好ましく、マレイン酸モノn-ブチルが特に好ましい。なお、上記アルキルエステルのアルキル基の炭素数は、2~8が好ましい。
 カルボキシル基含有単量体単位の含有量は、全単量体単位に対して、好ましくは0.1~20重量%、より好ましくは0.2~15重量%、さらに好ましくは0.5~10重量%である。カルボキシル基含有単量体単位の含有量を上記範囲とすることにより、得られるゴム架橋物の機械特性および低温でのシール性をより向上させることができる。
 また、本発明で用いるカルボキシル基含有高飽和ニトリルゴム(a)は、得られるゴム架橋物がゴム弾性を有するものとするために、共役ジエン単量体をも共重合させたものであることが好ましい。
 共役ジエン単量体としては、1,3-ブタジエン、イソプレン、2,3-ジメチル-1,3-ブタジエン、1,3-ペンタジエン、クロロプレンなどの炭素数4~6の共役ジエン単量体が好ましく、1,3-ブタジエンおよびイソプレンがより好ましく、1,3-ブタジエンが特に好ましい。共役ジエン単量体は一種単独でも、複数種を併用してもよい。
 本発明で用いるカルボキシル基含有高飽和ニトリルゴム(a)中における、共役ジエン単量体単位の含有割合(水素化されているものも含む)は、全単量体単位中、好ましくは20~83.9重量%であり、より好ましくは25~81重量%、さらに好ましくは30~74.5重量%である。共役ジエン単量体単位の含有量を上記範囲とすることにより、得られるゴム架橋物を、耐熱性や耐化学的安定性を良好に保ちながら、ゴム弾性に優れたものとすることができる。
 また、本発明で用いるカルボキシル基含有高飽和ニトリルゴム(a)は、α,β-エチレン性不飽和ニトリル単量体単位、α,β-エチレン性不飽和モノカルボン酸エステル単量体単位、カルボキシル基含有単量体単位、および共役ジエン単量体単位に加えて、これらを形成する単量体と共重合可能なその他の単量体の単位を含有するものであってもよい。このようなその他の単量体としては、たとえば、α,β-エチレン性不飽和ジカルボン酸ジエステル単量体、非共役ジエン単量体、α-オレフィン単量体、芳香族ビニル単量体、フッ素含有ビニル単量体、共重合性老化防止剤などが挙げられる。
 α,β-エチレン性不飽和ジカルボン酸ジエステル単量体としては、マレイン酸ジメチル、マレイン酸ジn-ブチルなどのマレイン酸ジアルキルエステルであってアルキル基の炭素数が1~18のもの;フマル酸ジメチル、フマル酸ジn-ブチルなどのフマル酸ジアルキルエステルであってアルキル基の炭素数が1~18のもの;マレイン酸ジシクロペンチル、マレイン酸ジシクロヘキシルなどのマレイン酸ジシクロアルキルエステルであってシクロアルキル基の炭素数が4~16のもの;フマル酸ジシクロペンチル、フマル酸ジシクロヘキシルなどのフマル酸ジシクロアルキルエステルであってシクロアルキル基の炭素数が4~16のもの;イタコン酸ジメチル、イタコン酸ジn-ブチルなどのイタコン酸ジアルキルエステルであってアルキル基の炭素数が1~18のもの;イタコン酸ジシクロヘキシルなどのイタコン酸ジシクロアルキルエステルであってシクロアルキル基の炭素数が4~16のもの;などが挙げられる。
 非共役ジエン単量体としては、1,4-ペンタジエン、1,4-ヘキサジエンなどが挙げられる。
 α-オレフィン単量体としては、エチレン、プロピレン、1-ブテン、4-メチル-1-ペンテン、1-ヘキセン、1-オクテンなどが挙げられる。
 芳香族ビニル単量体としては、スチレン、α-メチルスチレン、ビニルピリジンなどが挙げられる。
 フッ素含有ビニル単量体としては、フルオロエチルビニルエーテル、フルオロプロピルビニルエーテル、o-トリフルオロメチルスチレン、ペンタフルオロ安息香酸ビニル、ジフルオロエチレン、テトラフルオロエチレンなどが挙げられる。
 共重合性老化防止剤としては、N-(4-アニリノフェニル)アクリルアミド、N-(4-アニリノフェニル)メタクリルアミド、N-(4-アニリノフェニル)シンナムアミド、N-(4-アニリノフェニル)クロトンアミド、 N-フェニル-4-(3-ビニルベンジルオキシ)アニリン、N-フェニル-4-(4-ビニルベンジルオキシ)アニリンなどが挙げられる。
 これらの共重合可能なその他の単量体は、複数種類を併用してもよい。その他の単量体単位の含有量は、本発明で用いるカルボキシル基含有高飽和ニトリルゴム(a)を構成する全単量体単位に対して、好ましくは50重量%以下、より好ましくは30重量%以下、さらに好ましくは10重量%以下である。
 本発明で用いるカルボキシル基含有高飽和ニトリルゴム(a)のヨウ素価は、120以下であり、好ましくは60以下、より好ましくは40以下、特に好ましくは30以下である。カルボキシル基含有高飽和ニトリルゴム(a)のヨウ素価が高すぎると、得られるゴム架橋物の耐熱性および耐オゾン性が低下するおそれがある。
 本発明で用いるカルボキシル基含有高飽和ニトリルゴム(a)のポリマームーニー粘度(ML1+4、100℃)は、好ましくは10~200、より好ましくは15~150、さらに好ましくは15~100、特に好ましくは30~70である。カルボキシル基含有高飽和ニトリルゴム(a)のポリマームーニー粘度が低すぎると、得られるゴム架橋物の機械特性が低下するおそれがあり、逆に、高すぎると、ニトリルゴム組成物の加工性が低下する可能性がある。
 本発明で用いるカルボキシル基含有高飽和ニトリルゴム(a)の製造方法は、特に限定されないが、上述した単量体を共重合し、必要に応じて、得られる共重合体中の炭素-炭素二重結合を水素化することによって製造することができる。重合方法は、特に限定されず公知の乳化重合法や溶液重合法によればよいが、工業的生産性の観点から乳化重合法が好ましい。乳化重合に際しては、乳化剤、重合開始剤、分子量調整剤に加えて、通常用いられる重合副資材を使用することができる。
 乳化剤としては、特に限定されないが、たとえば、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェノールエーテル、ポリオキシエチレンアルキルエステル、ポリオキシエチレンソルビタンアルキルエステル等の非イオン性乳化剤;ミリスチン酸、パルミチン酸、オレイン酸およびリノレン酸等の脂肪酸の塩、ドデシルベンゼンスルホン酸ナトリウム等のアルキルベンゼンスルホン酸塩、高級アルコール硫酸エステル塩、アルキルスルホコハク酸塩等のアニオン性乳化剤;α,β-不飽和カルボン酸のスルホエステル、α,β-不飽和カルボン酸のサルフェートエステル、スルホアルキルアリールエーテル等の共重合性乳化剤;などが挙げられる。乳化剤の添加量は、重合に用いる単量体100重量部に対して、好ましくは0.1~10重量部、より好ましくは0.5~5重量部である。
 重合開始剤としては、ラジカル開始剤であれば特に限定されないが、過硫酸カリウム、過硫酸ナトリウム、過硫酸アンモニウム、過リン酸カリウム、過酸化水素等の無機過酸化物;t-ブチルパーオキサイド、クメンハイドロパーオキサイド、p-メンタンハイドロパーオキサイド、ジ-t-ブチルパーオキサイド、t-ブチルクミルパーオキサイド、アセチルパーオキサイド、イソブチリルパーオキサイド、オクタノイルパーオキサイド、ジベンゾイルパーオキサイド、3,5,5-トリメチルヘキサノイルパーオキサイド、t-ブチルパーオキシイソブチレート等の有機過酸化物;アゾビスイソブチロニトリル、アゾビス-2,4-ジメチルバレロニトリル、アゾビスシクロヘキサンカルボニトリル、アゾビスイソ酪酸メチル等のアゾ化合物;等を挙げることができる。これらの重合開始剤は、単独でまたは2種類以上を組み合わせて使用することができる。重合開始剤としては、無機または有機の過酸化物が好ましい。重合開始剤として過酸化物を用いる場合には、重亜硫酸ナトリウム、硫酸第一鉄等の還元剤と組み合わせて、レドックス系重合開始剤として使用することもできる。重合開始剤の添加量は、重合に用いる単量体100重量部に対して、好ましくは0.01~2重量部である。
 分子量調整剤としては、特に限定されないが、本発明の作用効果をより顕著なものとすることができるという点より、少なくとも3個の第3級以上の炭素原子と、その中の少なくとも1個の第3級炭素原子に直接結合したチオール基とを有する炭素数12~16のアルキルチオール化合物(以下、適宜「第1アルキルチオール化合物」とする)と、前記「第1アルキルチオール化合物」以外の炭素数9~16のアルキルチオール化合物(すなわち、第3級以上の炭素原子の数が3個未満である炭素数9~16のアルキルチオール化合物、または、第3級以上の炭素原子の数が3個以上であり、かつ、第3級炭素原子に直接結合したチオール基を有しない炭素数9~16のアルキルチオール化合物、以下、適宜「第2アルキルチオール化合物」とする)とを併用することが好ましい。そして、この際における、第1アルキルチオール化合物の使用量を、乳化重合に用いる単量体100重量部に対して、0.01~0.6重量部、好ましくは0.02~0.4重量部とし、また、第2アルキルチオール化合物の使用量を、0.01~0.8重量部、好ましくは0.1~0.7重量部とすることが好ましい。
 乳化重合の媒体には、通常、水が使用される。水の量は、重合に用いる単量体100重量部に対して、好ましくは80~500重量部、より好ましくは80~300重量部である。
 乳化重合に際しては、さらに、必要に応じて安定剤、分散剤、pH調整剤、脱酸素剤、粒子径調整剤等の重合副資材を用いることができる。これらを用いる場合においては、その種類、使用量とも特に限定されない。
 乳化重合を行う際には、乳化重合を用いる単量体の全量を用い、重合反応を開始してもよいし、あるいは、乳化重合に用いる単量体の全量のうち一部を用いて重合反応を開始し、その後、反応途中の段階で乳化重合に用いる単量体の残余を反応器に添加して重合反応をおこなってもよい。残余の単量体を添加する方法は、特に制限されないが、一括で添加しても、分割して添加しても、また、連続的に添加してもよい。残余の単量体を、分割して添加する場合、分割添加する単量体の量や分割添加する時期は、重合反応の進行に合わせて、適宜、調整すればよく、これにより、所望のカルボキシル基含有高飽和ニトリルゴム(a)が得られるようにすればよい。
 また、本発明においては、得られた共重合体について、必要に応じて、共重合体の水素化(水素添加反応)を行ってもよい。水素添加は公知の方法によればよく、乳化重合で得られた共重合体のラテックスを凝固した後、油層で水素添加する油層水素添加法や、得られた共重合体のラテックスをそのまま水素添加する水層水素添加法などが挙げられる。
 水素添加を油層水素添加法で行う場合、好適には上記乳化重合により調製した共重合体のラテックスを塩析やアルコールによる凝固、濾別および乾燥を経て、有機溶媒に溶解する。次いで水素添加反応(油層水素添加法)を行い、得られた水素化物を大量の水中に注いで凝固、濾別および乾燥を行うことによりカルボキシル基含有高飽和ニトリルゴム(a)を得ることができる。
 ラテックスの塩析による凝固には、塩化ナトリウム、塩化カルシウム、硫酸アルミニウムなど公知の凝固剤を使用することができる。また、塩析による凝固に代えて、メタノールなどのアルコールを用いて凝固を行ってもよい。油層水素添加法の溶媒としては、乳化重合により得られた共重合体を溶解する液状有機化合物であれば特に限定されないが、ベンゼン、クロロベンゼン、トルエン、キシレン、ヘキサン、シクロヘキサン、テトラヒドロフラン、メチルエチルケトン、酢酸エチル、シクロヘキサノンおよびアセトンなどが好ましく使用される。
 油層水素添加法の触媒としては、公知の選択的水素化触媒であれば限定なく使用でき、パラジウム系触媒およびロジウム系触媒が好ましく、パラジウム系触媒(酢酸パラジウム、塩化パラジウムおよび水酸化パラジウムなど)がより好ましい。これらは2種以上併用してもよいが、その場合はパラジウム系触媒を主たる活性成分とすることが好ましい。これらの触媒は、通常、担体に担持させて使用される。担体としては、シリカ、シリカ-アルミナ、アルミナ、珪藻土、活性炭などが例示される。触媒使用量は、共重合体に対して好ましくは10~5000重量ppm、より好ましくは100~3000重量ppmである。
 あるいは、水素添加を水層水素添加法で行う場合、好適には上記乳化重合により調製した共重合体のラテックスに、必要に応じて水を加えて希釈し、水素添加反応を行う。水層水素添加法は、水素化触媒存在下の反応系に水素を供給して水素化する水層直接水素添加法と、酸化剤、還元剤および活性剤の存在下で還元して水素化する水層間接水素添加法とが挙げられるが、これらの中でも、水層直接水素添加法が好ましい。
 水層直接水素添加法において、水層における共重合体の濃度(ラテックス状態での濃度)は、凝集を防止するため40重量%以下であることが好ましい。水素化触媒は、水で分解しにくい化合物であれば特に限定されない。その具体例として、パラジウム触媒では、ギ酸、プロピオン酸、ラウリン酸、コハク酸、オレイン酸、フタル酸などのカルボン酸のパラジウム塩;塩化パラジウム、ジクロロ(シクロオクタジエン)パラジウム、ジクロロ(ノルボルナジエン)パラジウム、ヘキサクロロパラジウム(IV)酸アンモニウムなどのパラジウム塩素化物;ヨウ化パラジウムなどのヨウ素化物;硫酸パラジウム・二水和物などが挙げられる。これらの中でもカルボン酸のパラジウム塩、ジクロロ(ノルボルナジエン)パラジウムおよびヘキサクロロパラジウム(IV)酸アンモニウムが特に好ましい。水素化触媒の使用量は、適宜定めればよいが、重合により得られた共重合体に対し、好ましくは5~6000重量ppm、より好ましくは10~4000重量ppmである。
 水層直接水素添加法においては、水素添加反応終了後、ラテックス中の水素化触媒を除去する。その方法として、たとえば、活性炭、イオン交換樹脂などの吸着剤を添加して攪拌下で水素化触媒を吸着させ、次いでラテックスを濾過または遠心分離する方法を採ることができる。水素化触媒を除去せずにラテックス中に残存させることも可能である。
 そして、水層直接水素添加法においては、このようにして得られた水素添加反応後のラテックスについて、塩析による凝固、濾別および乾燥などを行なうことにより、カルボキシル基含有高飽和ニトリルゴム(a)を得ることができる。この場合における、凝固に続く濾別および乾燥の工程はそれぞれ公知の方法によって行なうことができる。
 表面処理珪酸塩(b)
 本発明で用いる表面処理珪酸塩(b)は、表面処理が施された珪酸塩であり、珪酸塩が表面処理されてなるものであればよく、特に限定されない。
 珪酸塩としては、特に限定されないが、周期表第2族または第13族の元素の珪酸塩であることが好ましく、下記一般式(1)で表される化合物であることがより好ましい。
  MO・xSiO・mHO  (1)
 (上記一般式(1)中、Mは周期表第2族の元素または周期表第13族の元素を表し、xは8以下の正の実数であり、mは0または12以下の正の実数である。)
 上記一般式(1)中、Mを構成する周期表第2族の元素としては、マグネシウム、カルシウム、ストロンチウム、バリウムなどが挙げられ、これらのなかでも、マグネシウムが好ましい。また、上記一般式(1)中、Mを構成する周期表第13族の元素としては、ホウ素、アルミニウムなどが挙げられ、これらのなかでも、アルミニウムが好ましい。
 上記一般式(1)で表される化合物の具体例としては、珪酸マグネシウム、珪酸マグネシウム水和物、珪酸カルシウム、珪酸カルシウム水和物、珪酸ホウ素、珪酸ホウ素水和物、珪酸アルミニウム、珪酸アルミニウム水和物などが挙げられ、これらのなかでも、珪酸マグネシウム、珪酸アルミニウムがより好ましく、珪酸アルミニウムが特に好ましい。
 本発明で用いる表面処理珪酸塩(b)において、上述した珪酸塩の表面を処理するために用いられる表面処理剤としては、特に限定されないが、シランカップリング剤が好適に用いられる。
 シランカップリング剤の具体例としては、γ-メルカプトプロピルトリメトキシシラン、γ-メルカプトメチルトリメトキシラン、γ-メルカプトメチルトリエトキシラン、γ-メルカプトヘキサメチルジシラザン、ビス(3-トリエトキシシリルプロピル)テトラスルファン、ビス(3-トリエトキシシリルプロピルジスルファンなどの硫黄を含有するシランカップリング剤;γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルメチルジメトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、γ-メルカプトプロピルトリメトキシシラン、γ-グリシドキシプロピルメチルジエトキシシラン等のエポキシ基含有シランカップリング剤;N-(β-アミノエチル)-γ-アミノプロピルトリメトキシシラン、γ-アミノプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリエトキシシラン、3-トリエトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン、N-フェニル-3-アミノプリピルトリメトキシシラン等のアミノ基含有シランカップリング剤;γ-メタクリロキシプロピルトリメトキシシラン、γ-メタクリロキシプロピルトリス(β-メトキシエトキシ)シラン、γ-メタクリロキシプロピルメチルジメトキシシラン、γ-メタクリロキシプロピルメチルジエトキシシラン、γ-メタクリロキシプロピルトリエトキシシラン、3-アクリロキシプロピルトリメトキシシラン等の(メタ)アクリロキシ基含有シランカップリング剤;ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリス(β-メトキシエトキシ)シラン、ビニルトリクロロシラン、ビニルトリアセトキシシラン等のビニル基含有シランカップリング剤;3-クロロプロピルトリメトキシシラン等のクロロプロピル基含有シランカプリング剤;3-イソシアネートプロピルトリエトキシシラン等のイソシアネート基含有シランカプリング剤;p-スチリルトリメトキシシラン等のスチリル基含有シランカップリング剤;3-ウレイドプロピルトリエトキシシラン等のウレイド基含有シランカップリング剤;ジアリルジメチルシラン等のアリル基含有シランカップリング剤;テトラエトキシシラン等のアルコキシ基含有シランカップリング剤;ジフェニルジメトキシシラン等のフェニル基含有シランカップリング剤;トリフルオロプロピルトリメトキシシラン等のフロロ基含有シランカップリング剤;イソブチルトリメトキシシラン、シクロヘキシルメチルジメトキシシラン等のアルキル基含有シランカップリング剤;アセトアルコキシアルミニウムジイソポロピレートなどのアルミニウム系カップリング剤;イソプロピルトリイソステアロイルチタネート、イソプロピルトリス(ジオクチルパイロホスフェート)チタネート、イソプロピルトリ(N-アミノエチル-アミノエチル)チタネート、テトラオクチルビス(ジトリデシルホスファイト)チタネート、テトラ(2,2-ジアリルオキシメチル-1-ブチル)ビス(ジトリデジル)ホスファイトチタネート、ビス(ジオクチルパイロホスフェート)オキシアセテートチタネート、ビス(ジオクチルパイロホスフェート)エチレンチタネート、テトライソプロピルビス(ジオクチルホスファイト)チタネート、イソプロピルトリイソステアロイルチタネートなどのチタネート系カップリング剤;などが挙げられる。これらは1種または複数種併せて用いることができる。
 これらのなかでも、本発明の作用効果をより一層顕著なものとすることができるという点より、アミノ基含有シランカップリング剤またはエポキシ基含有シランカップリング剤が好ましく、アミノ基含有シランカップリング剤が特に好ましい。すなわち、表面処理珪酸塩(b)としては、珪酸塩をアミノ基含有シランカップリング剤またはエポキシ基含有シランカップリング剤で表面処理してなるものであることが好ましく、珪酸塩をアミノ基含有シランカップリング剤で表面処理してなるものであることが特に好ましい。
 表面処理珪酸塩(b)の平均粒径は、特に限定されないが、好ましくは0.01~100μmであり、より好ましくは0.05~50μmである。
 本発明で用いるニトリルゴム組成物中における、表面処理珪酸塩(b)の含有量は、カルボキシル基含有高飽和ニトリルゴム(a)100重量部に対して、好ましくは5~150重量部、より好ましくは10~120重量部、さらに好ましくは20~100重量部である。表面処理珪酸塩(b)の含有量を上記範囲とすることにより、ニトリルゴム組成物の加工性を良好なものしながら、得られるゴム架橋物の低温でのシール性をより適切に向上させることができる。
 ポリアミン系架橋剤(c)
 本発明で用いるニトリルゴム組成物は、上述したカルボキシル基含有高飽和ニトリルゴム(a)、および表面処理珪酸塩(b)に加えて、ポリアミン系架橋剤(c)を含有する。上述したルボキシル基含有高飽和ニトリルゴム(a)と、表面処理珪酸塩(b)とを、ポリアミン系架橋剤(c)と組み合わせて用いることにより、得られるゴム架橋物を、低温でのシール性に優れたものとすることができる。
 ポリアミン系架橋剤(c)としては、2つ以上のアミノ基を有する化合物、または、架橋時に2つ以上のアミノ基を有する化合物の形態になるもの、であれば特に限定されないが、脂肪族炭化水素や芳香族炭化水素の複数の水素原子が、アミノ基またはヒドラジド構造(-CONHNHで表される構造、COはカルボニル基を表す。)で置換された化合物および架橋時にその化合物の形態になるものが好ましい。
 ポリアミン系架橋剤(c)の具体例としては、ヘキサメチレンジアミン、ヘキサメチレンジアミンカルバメート、N,N-ジシンナミリデン-1,6-ヘキサンジアミン、テトラメチレンペンタミン、ヘキサメチレンジアミンシンナムアルデヒド付加物などの脂肪族多価アミン類;4,4-メチレンジアニリン、m-フェニレンジアミン、4,4-ジアミノジフェニルエーテル、3,4-ジアミノジフェニルエーテル、4,4-(m-フェニレンジイソプロピリデン)ジアニリン、4,4-(p-フェニレンジイソプロピリデン)ジアニリン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、4,4-ジアミノベンズアニリド、4,4-ビス(4-アミノフェノキシ)ビフェニル、m-キシリレンジアミン、p-キシリレンジアミン、1,3,5-ベンゼントリアミンなどの芳香族多価アミン類;イソフタル酸ジヒドラジド、テレフタル酸ジヒドラジド、フタル酸ジヒドラジド、2,6-ナフタレンジカルボン酸ジヒドラジド、ナフタレン酸ジヒドラジド、シュウ酸ジヒドラジド、マロン酸ジヒドラジド、コハク酸ジヒドラジド、グルタミン酸ジヒドラジド、アジピン酸ジヒドラジド、ピメリン酸ジヒドラジド、スベリン酸ジヒドラジド、アゼライン酸ジヒドラジド、セバシン酸ジヒドラジド、ブラッシル酸ジヒドラジド、ドデカン二酸ジヒドラジド、アセトンジカルボン酸ジヒドラジド、フマル酸ジヒドラジド、マレイン酸ジヒドラジド、イタコン酸ジヒドラジド、トリメリット酸ジヒドラジド、1,3,5-ベンゼントリカルボン酸ジヒドラジド、アコニット酸ジヒドラジド、ピロメリット酸ジヒドラジドなどの多価ヒドラジド類;が挙げられる。これらの中でも、本発明の効果をより一層顕著なものとすることができるという点より、脂肪族多価アミン類および芳香族多価アミン類が好ましく、ヘキサメチレンジアミンカルバメートおよび2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパンがより好ましく、ヘキサメチレンジアミンカルバメートが特に好ましい。
 本発明で用いるニトリルゴム組成物中における、ポリアミン系架橋剤(c)の含有量は、カルボキシル基含有高飽和ニトリルゴム(a)100重量部に対して、0.1~20重量部であり、好ましくは0.2~15重量部である。ポリアミン系架橋剤(c)の含有量が少なすぎても、あるいは、多すぎても、得られるゴム架橋物は、機械特性や低温でのシール性に劣るものとなってしまう。
 塩基性架橋促進剤(d)
 また、本発明で用いるニトリルゴム組成物は、上述したカルボキシル基含有高飽和ニトリルゴム(a)、表面処理珪酸塩(b)、およびポリアミン系架橋剤(c)に加えて、本発明の作用効果をより顕著なものとすることができるという点より、塩基性架橋促進剤(d)をさらに含有していることが好ましい。
 塩基性架橋促進剤の具体例としては、下記一般式(2)で表される化合物や、環状アミジン構造を有する塩基性架橋促進剤、グアニジン系塩基性架橋促進剤、アルデヒドアミン系塩基性架橋促進剤などが挙げられる。
Figure JPOXMLDOC01-appb-C000001
 (上記一般式(2)中、RおよびRは、それぞれ独立して、置換基を有していてもよい炭素数1~12のアルキル基、または、置換基を有していてもよい炭素数5~12のシクロアルキル基である。)
 RおよびRは、置換基を有していてもよい炭素数1~12のアルキル基、または、置換基を有していてもよい炭素数5~12のシクロアルキル基であるが、置換基を有していてもよい炭素数5~12のシクロアルキル基であることが好ましく、置換基を有していてもよい炭素数5~8のシクロアルキル基であることが特に好ましい。
 また、RおよびRは、置換基を有していないことが好ましい。
 なお、RおよびRが置換基を有する場合の置換基の具体例としては、ヒドロキシル基、アルコキシ基、アルコキシカルボニル基、アミノ基、ハロゲン原子などが挙げられる。
 また、上記一般式(2)で表される化合物のなかでも、加工性およびスコーチ安定性をより高めることができるという点より、下記一般式(3)で表される化合物がより好ましい。
Figure JPOXMLDOC01-appb-C000002
 (上記一般式(3)中、RおよびRは、それぞれ独立して、置換基を有していてもよい炭素数5~8のシクロアルキル基である。)
 RおよびRは、置換基を有していてもよい炭素数5~8のシクロアルキル基であるが、炭素数5または6の置換基を有していてもよいシクロアルキル基であることが好ましく、炭素数6の置換基を有していてもよいシクロアルキル基であることがより好ましい。
 また、RおよびRは、置換基を有していないことが好ましい。
 なお、RおよびRが置換基を有する場合の置換基の具体例としては、ヒドロキシル基、アルコキシ基、アルコキシカルボニル基、アミノ基、ハロゲン原子などが挙げられる。
 上記一般式(2)で表される化合物の具体例としては、ジシクロペンチルアミン、ジシクロヘキシルアミン、ジシクロヘプチルアミンなどのジシクロアルキルアミン;N-メチルシクロペンチルアミン、N-ブチルシクロペンチルアミン、N-ヘプチルシクロペンチルアミン、N-オクチルシクロペンチルアミン、N-エチルシクロヘキシルアミン、N-ブチルシクロヘキシルアミン、N-ヘプチルシクロヘキシルアミン、N-オクチルシクロオクチルアミンなどのアルキル基とシクロアルキル基が窒素原子に結合した二級アミン;N-ヒドロキシメチルシクロペンチルアミン、N-ヒドロキシブチルシクロヘキシルアミンなどのヒドロキシ基を有するアルキル基とシクロアルキル基が窒素原子に結合した二級アミン;N-メトキシエチルシクロペンチルアミン、N-エトキシブチルシクロヘキシルアミンなどのアルコキシ基を有するアルキル基とシクロアルキル基が窒素原子に結合した二級アミン;N-メトキシカルボニルブチルシクロペンチルアミン、N-メトキシカルボニルヘプチルシクロヘキシルアミンなどのアルコキシカルボニル基を有するアルキル基とシクロアルキル基が窒素原子に結合した二級アミン;N-アミノプロピルシクロペンチルアミン、N-アミノヘプチルシクロヘキシルアミンなどのアミノ基を有するアルキル基とシクロアルキル基が窒素原子に結合した二級アミン;ジ(2-クロロシクロペンチル)アミン、ジ(3-クロロシクロペンチル)アミンなどのハロゲン原子を有するシクロアルキル基が窒素原子に結合した二級アミン;などが挙げられるが、加工性およびスコーチ安定性をより高めることができるという点より、ジシクロアルキルアミンが好ましく、ジシクロペンチルアミンおよびジシクロヘキシルアミンがより好ましく、ジシクロヘキシルアミンが特に好ましい。
 また、環状アミジン構造を有する塩基性架橋促進剤としては、1,8-ジアザビシクロ[5,4,0]ウンデセン-7(以下「DBU」と略す場合がある)および1,5-ジアザビシクロ[4,3,0]ノネン-5(以下「DBN」と略す場合がある)、1-メチルイミダゾール、1-エチルイミダゾール、1-フェニルイミダゾール、1-ベンジルイミダゾール、1,2-ジメチルイミダゾール、1-エチル-2-メチルイミダゾール、1-メトキシエチルイミダゾール、1-フェニル-2-メチルイミダゾール、1-ベンジル-2-メチルイミダゾール、1-メチル-2-フェニルイミダゾール、1-メチル-2-ベンジルイミダゾール、1,4-ジメチルイミダゾール、1,5-ジメチルイミダゾール、1,2,4-トリメチルイミダゾール、1,4-ジメチル-2-エチルイミダゾール、1-メチル-2-メトキシイミダゾール、1-メチル-2-エトキシイミダゾール、1-メチル-4-メトキシイミダゾール、1-メチル-2-メトキシイミダゾール、1-エトキシメチル-2-メチルイミダゾール、1-メチル-4-ニトロイミダゾール、1,2-ジメチル-5-ニトロイミダゾール、1,2-ジメチル-5-アミノイミダゾール、1-メチル-4-(2-アミノエチル)イミダゾール、1-メチルベンゾイミダゾール、1-メチル-2-ベンジルベンゾイミダゾール、1-メチル-5-ニトロベンゾイミダゾール、1-メチルイミダゾリン、1,2-ジメチルイミダゾリン、1,2,4-トリメチルイミダゾリン、1,4-ジメチル-2-エチルイミダゾリン、1-メチル-フェニルイミダゾリン、1-メチル-2-ベンジルイミダゾリン、1-メチル-2-エトキシイミダゾリン、1-メチル-2-ヘプチルイミダゾリン、1-メチル-2-ウンデシルイミダゾリン、1-メチル-2-ヘプタデシルイミダゾリン、1-メチル-2-エトキシメチルイミダゾリン、1-エトキシメチル-2-メチルイミダゾリンなどが挙げられる。これら環状アミジン構造を有する塩基性架橋促進剤のなかでも、1,8-ジアザビシクロ[5,4,0]ウンデセン-7および1,5-ジアザビシクロ[4,3,0]ノネン-5が好ましく、1,8-ジアザビシクロ[5,4,0]ウンデセン-7がより好ましい。
 グアニジン系塩基性架橋促進剤としては、テトラメチルグアニジン、テトラエチルグアニジン、ジフェニルグアニジン、1,3-ジ-オルト-トリルグアニジン、オルトトリルビグアニドなどが挙げられる。
 アルデヒドアミン系塩基性架橋促進剤としては、n-ブチルアルデヒドアニリン、アセトアルデヒドアンモニアなどが挙げられる。
 これら塩基性架橋促進剤のなかでも、上記一般式(2)で表される化合物、グアニジン系塩基性架橋促進剤および環状アミジン構造を有する塩基性架橋促進剤が好ましく、上記一般式(2)で表される化合物、および環状アミジン構造を有する塩基性架橋促進剤がより好ましい。
 なお、上記一般式(2)で表される化合物は、アルキレングリコールや炭素数5~20のアルキルアルコールなどのアルコール類が混合されたものであってもよく、さらに無機酸および/または有機酸を含んでいてもよい。また、一般式(2)で表される化合物としては、一般式(2)で表される化合物と前記無機酸および/または有機酸とで塩を形成し、さらにアルキレングリコールと複合体を形成していてもよい。また、上記環状アミジン構造を有する塩基性架橋促進剤は、有機カルボン酸やアルキルリン酸などと塩を形成していてもよい。
 塩基性架橋促進剤(d)を配合する場合における、本発明で用いるニトリルゴム組成物中の配合量は、カルボキシル基含有高飽和ニトリルゴム(a)100重量部に対して、好ましくは0.1~20重量部であり、より好ましくは0.2~15重量部、さらに好ましくは0.5~10重量部である。
 また、本発明で用いるニトリルゴム組成物には、上記以外に、ゴム分野において通常使用される配合剤、たとえば、表面処理珪酸塩(b)以外の充填剤、共架橋剤、架橋助剤、架橋遅延剤、老化防止剤、酸化防止剤、光安定剤、一級アミンなどのスコーチ防止剤、ジエチレングリコールなどの活性剤、可塑剤、加工助剤、滑剤、粘着剤、潤滑剤、難燃剤、防黴剤、受酸剤、帯電防止剤、顔料、発泡剤などを配合することができる。これらの配合剤の配合量は、本発明の目的や効果を阻害しない範囲であれば特に限定されず、配合目的に応じた量を配合することができる。
 表面処理珪酸塩(b)以外の充填剤としては、特に限定されないが、たとえば、カーボンブラックや、シリカ、炭酸カルシウム、酸化マグネシウム、短繊維、(メタ)アクリル酸亜鉛や(メタ)アクリル酸マグネシウムなどのα,β-エチレン系不飽和カルボン酸金属塩などが挙げられる。
 共架橋剤としては、特に限定されないが、ラジカル反応性の不飽和基を分子中に複数個有する低分子または高分子の化合物が好ましく、たとえば、ジビニルベンゼンやジビニルナフタレンなどの多官能ビニル化合物;トリアリルイソシアヌレート、トリメタリルイソシアヌレートなどのイソシアヌレート類;トリアリルシアヌレートなどのシアヌレート類;N,N'-m-フェニレンジマレイミドなどのマレイミド類;ジアリルフタレート、ジアリルイソフタレート、ジアリルマレエート、ジアリルフマレート、ジアリルセバケート、トリアリルホスフェートなどの多価酸のアリルエステル;ジエチレングリコールビスアリルカーボネート;エチレングリコールジアリルエーテル、トリメチロールプロパンのトリアリルエーテル、ペンタエリトリットの部分的アリルエーテルなどのアリルエーテル類;アリル化ノボラック、アリル化レゾール樹脂等のアリル変性樹脂;トリメチロールプロパントリメタクリレートやトリメチロールプロパントリアクリレートなどの、3~5官能のメタクリレート化合物やアクリレート化合物;などが挙げられる。これらは1種または複数種併せて用いることができる。
 可塑剤としては、特に限定されないが、トリメリット酸系可塑剤、ピロメリット酸系可塑剤、エーテルエステル系可塑剤、ポリエステル系可塑剤、フタル酸系可塑剤、アジピン酸エステル系可塑剤、リン酸エステル系可塑剤、セバシン酸エステル系可塑剤、アルキルスルホン酸エステル化合物類可塑剤、エポキシ化植物油系可塑剤などを用いることができる。具体例としては、トリメリット酸トリ-2-エチルヘキシル、トリメリット酸イソノニルエステル、トリメリット酸混合直鎖アルキルエステル、ジペンタエリスリトールエステル、ピロメリット酸2-エチルヘキシルエステル、ポリエーテルエステル(分子量300~5000程度)、アジピン酸ビス[2-(2-ブトキシエトキシ)エチル]、アジピン酸ジオクチル、アジピン酸系のポリエステル(分子量300~5000程度)、フタル酸ジオクチル、フタル酸ジイソノニル、フタル酸ジブチル、リン酸トリクレシル、セバシン酸ジブチル、アルキルスルホン酸フェニルエステル、エポキシ化大豆油、ジヘプタノエート、ジ‐2-エチルヘキサノエート、ジデカノエートなどが挙げられる。これらは1種または複数種併せて用いることができる。
 さらに、本発明で用いるニトリルゴム組成物には、本発明の効果が阻害されない範囲で上記カルボキシル基含有高飽和ニトリルゴム(a)以外のゴムを配合してもよい。カルボキシル基含有高飽和ニトリルゴム(a)以外のゴムとしては、アクリルゴム、エチレン-アクリル酸共重合体ゴム、フッ素ゴム、スチレン-ブタジエン共重合体ゴム、ポリブタジエンゴム、エチレン-プロピレン共重合体ゴム、エチレン-プロピレン-ジエン三元共重合体ゴム、エピクロロヒドリンゴム、ウレタンゴム、クロロプレンゴム、シリコーンゴム、フルオロシリコーンゴム、クロロスルフォン化ポリエチレンゴム、天然ゴムおよびポリイソプレンゴムなどを挙げることができる。カルボキシル基含有高飽和ニトリルゴム(a)以外のゴムを配合する場合における配合量は、カルボキシル基含有高飽和ニトリルゴム(a)100重量部に対して、30重量部以下が好ましく、20重量部以下がより好ましく、10重量部以下が特に好ましい。
 本発明で用いるニトリルゴム組成物は、上記各成分を好ましくは非水系で混合して調製される。本発明で用いるニトリルゴム組成物を調製する方法に限定はないが、通常、ポリアミン系架橋剤(c)や熱に不安定な成分(たとえば、架橋助剤など)を除いた成分を、バンバリーミキサ、インターミキサ、ニーダなどの混合機で一次混練した後、ロールなどに移してポリアミン系架橋剤(c)や熱に不安定な成分などを加えて二次混練することにより調製できる。
 ゴム架橋物
 本発明のゴム架橋物は、上述したニトリルゴム組成物を架橋して得られるゴム架橋物である。
 本発明のゴム架橋物は、150℃、25%圧縮させた状態で保持する圧縮応力緩和試験を行った際に、圧縮応力が、該圧縮応力緩和試験開始時の初期圧縮応力(すなわち、該圧縮応力緩和試験開始から30分後の圧縮応力)に対して、50%となるまでの時間が300時間以上であり、好ましくは400時間以上、より好ましくは500時間以上である。本発明においては、上述したニトリルゴム組成物を用いるとともに、上記圧縮応力緩和試験において、圧縮応力が初期圧縮応力に対して、50%となるまでの時間を300時間以上とすることにより、ゴム架橋物を、引張強度および破断伸びを良好なものとしながら、低温でのシール性に優れたものとすることができる。具体的には、50%伸長状態として、ゴム架橋物を凍結させた後、昇温により70%収縮(回復)する時の温度(低温弾性回復率70%を示す温度)であるTR70が、好ましくは-19℃以下、より好ましくは-20℃以下とすることできる。
 なお、上記圧縮応力緩和試験は、たとえば、ゴム架橋物を、内径30mm、リング径3mmのO-リング形状とし、O-リング形状のゴム架橋物を、O-リングを挟んだ二つの平面の距離をリング厚み方向に25%圧縮した状態とし、150℃の環境下で保持した際の圧縮応力を測定する方法が挙げられる。
 本発明のゴム架橋物は、上述したニトリルゴム組成物を用い、所望の形状に対応した成形機、たとえば、押出機、射出成形機、圧縮機、ロールなどにより成形を行い、加熱することにより架橋反応を行い、架橋物として形状を固定化することにより製造することができる。この場合においては、予め成形した後に架橋しても、成形と同時に架橋を行ってもよい。加熱方法としては、プレス加熱、スチーム加熱、オーブン加熱、熱風加熱などのゴムの架橋に用いられる一般的な方法を適宜選択すればよい。
 なお、本発明において、ゴム架橋物を、上記圧縮応力緩和試験において、圧縮応力が初期圧縮応力に対して、50%となるまでの時間が300時間以上であるものとする方法としては、特に限定されないが、たとえば、用いるニトリルゴム組成物に含有させるポリアミン系架橋剤(c)の種類や配合量を調整する方法や、カルボキシル基含有高飽和ニトリルゴム(a)中に含まれるカルボキシル基の含有量を調整する方法、ゴム架橋物とする際における架橋条件(架橋時間、架橋温度等)を調整する方法、ゴム架橋物中に含まれる充填剤の種類や配合量を調整する方法、ゴム架橋物中に含まれる添加剤の種類や配合量を調整する方法などが挙げられる。
 たとえば、ポリアミン系架橋剤(c)として、脂肪族多価アミン類および芳香族多価アミン類を用いる場合には、架橋条件などにもよるが、上記圧縮応力緩和試験において、圧縮応力が初期圧縮応力に対して、50%となるまでの時間が300時間以上であるものとするという観点より、その配合量を、カルボキシル基含有高飽和ニトリルゴム(a)100重量部に対して、好ましくは0.2~15重量部、より好ましくは0.3~12重量部の範囲において調整することが好ましい。
 また、上記圧縮応力緩和試験において、圧縮応力が初期圧縮応力に対して、50%となるまでの時間が300時間以上であるものとするという観点からは、カルボキシル基含有高飽和ニトリルゴム(a)におけるカルボキシル基の含有量、すなわち、カルボキシル基含有高飽和ニトリルゴム(a)100g当たりのカルボキシル基のモル数を、好ましくは5×10-4~5×10-1ephr、より好ましくは1×10-3~1×10-1ephr、特に好ましくは5×10-3~5×10-2ephrの範囲において調整することが好ましい。
 さらに、上述したニトリルゴム組成物を架橋する際の架橋条件としては、用いるポリアミン系架橋剤(c)の種類や配合量等などにもよるが、上記圧縮応力緩和試験において、圧縮応力が初期圧縮応力に対して、50%となるまでの時間が300時間以上であるものとするという観点より、架橋温度は、好ましくは100~200℃、より好ましくは130~190℃であり、架橋時間は、好ましくは1分~24時間、より好ましくは2分~1時間である。また、ゴム架橋物の形状、大きさなどにより、さらに二次架橋が必要な場合には、二次架橋の架橋温度は、好ましくは100~230℃、より好ましくは130~200℃であり、二次架橋の架橋時間は、好ましくは1分~24時間、より好ましくは2分~1時間である。
 このようにして得られる本発明のゴム架橋物は、引張強度および破断伸びが良好であり、低温でのシール性に優れたものである。
 そのため、本発明のゴム架橋物は、このような特性を活かし、O-リング、パッキン、ダイアフラム、オイルシール、シャフトシール、ベアリングシール、ウェルヘッドシール、ショックアブソーバシール、空気圧機器用シール、エアコンディショナの冷却装置や空調装置の冷凍機用コンプレッサに使用されるフロン若しくはフルオロ炭化水素または二酸化炭素の密封用シール、精密洗浄の洗浄媒体に使用される超臨界二酸化炭素または亜臨界二酸化炭素の密封用シール、転動装置(転がり軸受、自動車用ハブユニット、自動車用ウォーターポンプ、リニアガイド装置およびボールねじ等)用のシール、バルブおよびバルブシート、BOP(Blow Out Preventar)、プラターなどの各種シール材;インテークマニホールドとシリンダヘッドとの連接部に装着されるインテークマニホールドガスケット、シリンダブロックとシリンダヘッドとの連接部に装着されるシリンダヘッドガスケット、ロッカーカバーとシリンダヘッドとの連接部に装着されるロッカーカバーガスケット、オイルパンとシリンダブロックあるいはトランスミッションケースとの連接部に装着されるオイルパンガスケット、正極、電解質板および負極を備えた単位セルを挟み込む一対のハウジング間に装着される燃料電池セパレーター用ガスケット、ハードディスクドライブのトップカバー用ガスケットなどの各種ガスケット;印刷用ロール、製鉄用ロール、製紙用ロール、工業用ロール、事務機用ロールなどの各種ロール;平ベルト(フィルムコア平ベルト、コード平ベルト、積層式平ベルト、単体式平ベルト等)、Vベルト(ラップドVベルト、ローエッジVベルト等)、Vリブドベルト(シングルVリブドベルト、ダブルVリブドベルト、ラップドVリブドベルト、背面ゴムVリブドベルト、上コグVリブドベルト等)、CVT用ベルト、タイミングベルト、歯付ベルト、コンベアーベルト、などの各種ベルト;燃料ホース、ターボエアーホース、オイルホース、ラジェターホース、ヒーターホース、ウォーターホース、バキュームブレーキホース、コントロールホース、エアコンホース、ブレーキホース、パワーステアリングホース、エアーホース、マリンホース、ライザー、フローラインなどの各種ホース;CVJブーツ、プロペラシャフトブーツ、等速ジョイントブーツ、ラックアンドピニオンブーツなどの各種ブーツ;クッション材、ダイナミックダンパ、ゴムカップリング、空気バネ、防振材、クラッチフェーシング材などの減衰材ゴム部品;ダストカバー、自動車内装部材、摩擦材、タイヤ、被覆ケーブル、靴底、電磁波シールド、フレキシブルプリント基板用接着剤等の接着剤、燃料電池セパレーターの他、エレクトロニクス分野など幅広い用途に使用することができる。
 特に、本発明のゴム架橋物は、低温でのシール性に優れたものであり、具体的には、50%伸長状態として、ゴム架橋物を凍結させた後、昇温により70%収縮(回復)する時の温度(低温弾性回復率70%を示す温度)であるTR70が、好ましくは-19℃以下、より好ましくは-20℃以下であり、低温でのシール性に特に優れたものであることから、低温環境下において使用される材料に好適に用いることができるものであり、具体的には、本発明のゴム架橋物は、低温環境下において使用されるシール材、ベルト、ホースまたはガスケットとして好適に用いることができ、ショックアブソーバシールやクーラントシール、オイルシールなどの低温環境下において使用されるシール材用途として特に好適に用いることができる。
 以下に、実施例および比較例を挙げて、本発明についてより具体的に説明するが、本発明はこの実施例に限られるものではない。以下において、特記しない限り、「部」は重量基準である。物性および特性の試験または評価方法は以下のとおりである。
 カルボキシル基含有量
 2mm角のカルボキシル基含有高飽和ニトリルゴム0.2gに、2-ブタノン100mLを加えて16時間攪拌した後、エタノール20mLおよび水10mLを加え、攪拌しながら水酸化カリウムの0.02N含水エタノール溶液を用いて、室温でチモールフタレインを指示薬とする滴定により、ゴム100gに対するカルボキシル基のモル数として求めた(単位はephr)。
 カルボキシル基含有高飽和ニトリルゴムの組成
 カルボキシル基含有高飽和ニトリルゴムを構成する各単量体単位の含有割合は、以下の方法により測定した。
 すなわち、マレイン酸モノn-ブチル単位の含有割合は、上記「カルボキシル基含有量」の測定方法により、水素化後のカルボキシル基含有高飽和ニトリルゴム100gに対するカルボキシル基のモル数を求め、求めたモル数をマレイン酸モノn-ブチル単位の量に換算することにより算出した。
 1,3-ブタジエン単位(水素化された部分も含む)の含有割合は、水素添加反応前のカルボキシル基含有ニトリルゴムのヨウ素価を下記方法で測定することにより算出した。
 アクリロニトリル単位の含有割合は、JIS K6384に従い、ケルダール法により、水素化後のカルボキシル含有高飽和ニトリルゴム中の窒素含量を測定することにより算出した。
 アクリル酸n-ブチル単位およびアクリル酸メトキシエチル単位の含有割合は、上記各単量体単位の残部として算出した。
 ヨウ素価
 カルボキシル基含有高飽和ニトリルゴムのヨウ素価は、JIS K 6235に準じて測定した。
 常態物性(引張強度、破断伸び、硬さ)
 ニトリルゴム組成物を、縦15cm、横15cm、深さ0.2cmの金型に入れ、プレス圧10MPaで加圧しながら170℃で20分間プレス成形してシート状の一次架橋物を得た。次いで、得られた一次架橋物をギヤー式オーブンに移して170℃で4時間二次架橋し、得られたシート状のゴム架橋物を3号形ダンベルで打ち抜いて試験片を作製した。そして、得られたこの試験片を用いて、JIS K6251に従い、ゴム架橋物の引張強度および破断伸びを、また、JIS K6253に従い、デュロメータ硬さ試験機(タイプA)を用いてゴム架橋物の硬さを、それぞれ測定した。
 圧縮応力緩和試験
 ニトリルゴム組成物を、内径30mm、リング径3mmの金型に入れ、プレス圧10MPaで加圧しながら170℃で20分間架橋した後、170℃で4時間二次架橋を行ってO-リング形状のゴム架橋物を得た。そして、得られたO-リング形状のゴム架橋物を、O-リングを挟んだ二つの平面の距離をリング厚み方向に25%圧縮した状態とし、150℃の環境下で保持することにより圧縮応力緩和試験を行った。そして、試験開始から30分後に、O-リング形状のゴム架橋物の圧縮応力を測定し、これを初期圧縮応力とし、次いで、試験開始後100時間ごとに、O-リング形状のゴム架橋物の圧縮応力を測定し、圧縮応力が試験開始から30分後の初期圧縮応力に対して、50%となるまでの時間を測定した。
 なお、本試験においては、たとえば、試験開始後100時間経過後には、圧縮応力が、初期圧縮応力に対して50%を超えていたが、試験開始後200時間経過後には、圧縮応力が、初期圧縮応力に対して50%未満となった場合には、表1、表2中において、「100h<」とした。同様に、試験開始後200時間経過後には、50%を超えていたが、試験開始後300時間経過後には、50%未満となったものは、「200h<」、試験開始後300時間経過後には、50%を超えていたが、試験開始後400時間経過後には、50%未満となったものは、「300h<」等とした。
 低温シール性(50%伸長条件でのTR70)
 上記常態物性の評価と同様にして得たシート状のゴム架橋物を用いて、JIS K6261に従い、50%伸長させた状態にて、TR試験(低温弾性回復試験)を行った。具体的には、50%伸長させたゴム架橋物を凍結させ、温度を連続的に上昇させることによって伸長されていた試験片の回復性を測定し、昇温によりゴム架橋物の長さが70%収縮(回復)した時の温度TR70を測定した。TR70が低いほど、低温でのシール性に優れていると判断できる。
 製造例1(カルボキシル基高飽和含有ニトリルゴム(a1)の製造)
 反応器に、イオン交換水220部、濃度10%のドデシルベンゼンスルホン酸ナトリウム水溶液5部、アクリロニトリル20.4部、マレイン酸モノn-ブチル5部、アクリル酸n-ブチル35.2部、およびt-ドデシルメルカプタン(第2アルキルチオール化合物)0.35部、および2,2,4,6,6-ペンタメチル-4-ヘプタンチオール(第1アルキルチオール化合物)0.03部を、この順に仕込み、内部の気体を窒素で3回置換した後、1,3-ブタジエン39.4部を仕込んだ。そして、反応器を10℃に保ち、クメンハイドロパーオキサイド(重合開始剤)0.1部、還元剤、およびキレート剤適量を仕込み、攪拌しながら重合反応を継続し、重合転化率が90%になった時点で、濃度10重量%のハイドロキノン水溶液(重合停止剤)0.1部を加えて重合反応を停止した。次いで、水温60℃で残留単量体を除去し、ニトリルゴムのラテックス(固形分濃度30重量%)を得た。
 そして、上記にて得られたニトリルゴムのラテックスに含有されるゴムの乾燥重量に対するパラジウム含有量が2,000重量ppmになるように、オートクレーブ中に、ニトリルゴムのラテックスおよびパラジウム触媒(1重量%酢酸パラジウムアセトン溶液と等重量のイオン交換水を混合した溶液)を添加して、水素圧3MPa、温度50℃で6時間水素添加反応を行い、カルボキシル基含有高飽和ニトリルゴム(a1)のラテックスを得た。
 塩化ナトリウムの水溶液(凝固剤濃度:25%)を凝固液として槽内に調整し、上記ラテックスをゆっくりと槽内に注ぎ、次いで激しく接触混合させて凝固した後、濾過して固形物(クラム)を取り出し、これを60℃で12時間真空乾燥することにより、カルボキシル基含有高飽和ニトリルゴム(a1)を得た。得られたカルボキシル基含有高飽和ニトリルゴム(a1)は、カルボキシル基含有量が2.6×10-2ephr、ヨウ素価が9であった。また、得られたカルボキシル基含有高飽和ニトリルゴム(a1)は、アクリロニトリル単位20.8重量%、ブタジエン単位(水素化されている部分含む)44.2重量%、マレイン酸モノn-ブチル単位5.0重量%、アクリル酸n-ブチル単位30.0重量%であった。
 製造例2(カルボキシル基高飽和含有ニトリルゴム(a2)の製造)
 アクリロニトリルの配合量を23部、マレイン酸モノn-ブチルの配合量を6.5部、1,3-ブタジエンの配合量を40部とし、アクリル酸n-ブチル35.2部の代わりに、アクリル酸メトキシエチル30.5部を使用した以外は、製造例1と同様にして、カルボキシル基含有高飽和ニトリルゴム(a2)を得た。得られたカルボキシル基含有高飽和ニトリルゴム(a2)は、カルボキシル基含有量が3.4×10-2ephr、ヨウ素価が9であった。また、得られたカルボキシル基含有高飽和ニトリルゴム(a2)は、アクリロニトリル単位24重量%、ブタジエン単位(水素化されている部分含む)46.6重量%、マレイン酸モノn-ブチル単位6.5重量%、アクリル酸メトキシエチル単位22.9重量%であった。
 製造例3(カルボキシル基高飽和含有ニトリルゴム(a’3)の製造)
 アクリロニトリルの配合量を37部、マレイン酸モノn-ブチルの配合量を4部、1,3-ブタジエンの配合量を57部とし、アクリル酸n-ブチル35.2部を配合しなかった以外は、製造例1と同様にして、カルボキシル基含有高飽和ニトリルゴム(a’3)を得た。得られたカルボキシル基含有高飽和ニトリルゴム(a’3)は、カルボキシル基含有量が3.0×10-2ephr、ヨウ素価が9であった。また、得られたカルボキシル基含有高飽和ニトリルゴム(a’3)は、アクリロニトリル単位35.7重量%、ブタジエン単位(水素化されている部分含む)58.6重量%、マレイン酸モノn-ブチル単位5.7重量%であった。
 製造例4(カルボキシル基含有高飽和ニトリルゴム(a4)の製造)
 反応器に、イオン交換水220部、濃度10%のドデシルベンゼンスルホン酸ナトリウム水溶液5部、アクリロニトリル17.2部、マレイン酸モノn-ブチル3.3部、アクリル酸n-ブチル35.2部、およびt-ドデシルメルカプタン(第2アルキルチオール化合物)0.5部を、この順に仕込み、内部の気体を窒素で3回置換した後、1,3-ブタジエン26.2部を仕込んだ。そして、反応器を10℃に保ち、クメンハイドロパーオキサイド(重合開始剤)0.1部、還元剤、およびキレート剤適量を仕込み、攪拌しながら重合反応を継続し、重合転化率が40%になった時点で、アクリロニトリル1.6部、マレイン酸モノn-ブチル0.85部、および1,3-ブタジエン6.6部を添加した。さらに重合反応を継続し、重合転化率が70%になった時点で、アクリロニトリル1.6部、マレイン酸モノn-ブチル0.85部、1,3-ブタジエン6.6部、t-ドデシルメルカプタン0.15部を添加した。さらに重合反応を継続し、重合転化率が85%になった時点で、濃度2.5重量%の2,2,6,6-テトラメチルピペリジン1-オキシル水溶液(重合停止剤)0.1部を加えて重合反応を停止した。次いで、水温60℃で残留単量体を除去し、ニトリルゴムのラテックス(固形分濃度30重量%)を得た。
 そして、上記にて得られたニトリルゴムのラテックスに対し、製造例1と同様にして、水素添加反応を行うことで、カルボキシル基含有高飽和ニトリルゴム(a4)のラテックスを得て、製造例1と同様にて凝固、濾過および乾燥を行うことで、カルボキシル基含有高飽和ニトリルゴム(a4)を得た。得られたカルボキシル基含有高飽和ニトリルゴム(a4)は、カルボキシル基含有量が2.5×10-2ephr、ヨウ素価が8であった。また、得られたカルボキシル基含有高飽和ニトリルゴム(a4)は、アクリロニトリル単位20.3重量%、ブタジエン単位(水素化されている部分含む)44.5重量%、マレイン酸モノn-ブチル単位4.8重量%、アクリル酸n-ブチル単位30.4重量%であった。
 製造例5(カルボキシル基含有高飽和ニトリルゴム(a5)の製造)
 重合開始時に仕込む単量体の量を、アクリロニトリル15.0部、マレイン酸モノn-ブチル3.0部、アクリル酸n-ブチル35.2部、および1,3-ブタジエン26.0部にそれぞれ変更し、重合転化率が40%になった時点で添加する単量体の量を、アクリロニトリル2.6部、マレイン酸モノn-ブチル0.8部、および1,3-ブタジエン5.0部にそれぞれ変更し、かつ、重合転化率が70%になった時点で添加する単量体の量を、アクリロニトリル2.8部、マレイン酸モノn-ブチル1.2部、および1,3-ブタジエン8.4部にそれぞれ変更した以外は、製造例4と同様にしてカルボキシル基含有高飽和ニトリルゴム(a5)を得た。得られたカルボキシル基含有高飽和ニトリルゴム(a5)は、カルボキシル基含有量が2.7×10-2ephr、ヨウ素価が10であった。また、得られたカルボキシル基含有高飽和ニトリルゴム(a5)は、アクリロニトリル単位21.0重量%、ブタジエン単位(水素化されている部分含む)44.1重量%、マレイン酸モノn-ブチル単位5.2重量%、アクリル酸n-ブチル単位29.7重量%であった。
 製造例6(カルボキシル基含有高飽和ニトリルゴム(a6)の製造)
 重合開始時に仕込むアクリル酸n-ブチルの量を30.0部に変更し、重合転化率が40%になった時点で添加する単量体として、アクリル酸n-ブチル2.6部を追加し、かつ、重合転化率が70%になった時点で添加する単量体として、アクリルn-酸ブチル2.6部を追加した以外は、製造例4と同様にしてカルボキシル基含有高飽和ニトリルゴム(a6)を得た。得られたカルボキシル基含有高飽和ニトリルゴム(a6)は、カルボキシル基含有量が2.6×10-2ephr、ヨウ素価が9であった。また、得られたカルボキシル基含有高飽和ニトリルゴム(a6)は、アクリロニトリル単位20.9重量%、ブタジエン単位(水素化されている部分含む)43.8重量%、マレイン酸モノn-ブチル単位5.0重量%、アクリル酸n-ブチル単位30.3重量%であった。
 製造例7(カルボキシル基含有高飽和ニトリルゴム(a7)の製造)
 金属製ボトルに、イオン交換水180部、濃度10重量%のドデシルベンゼンスルホン酸ナトリウム水溶液25部、アクリロニトリル13部、マレイン酸モノn-ブチル3部、アクリル酸n-ブチル36部、t-ドデシルメルカプタン(第2アルキルチオール化合物)0.5部の順に仕込み、内部の気体を窒素で3回置換した後、1,3-ブタジエン32部を仕込んだ。金属製ボトルを10℃に保ち、クメンハイドロパーオキサイド(重合開始剤)0.1部を仕込み、金属製ボトルを回転させながら重合反応を継続し、反応転化率40%になった時点で、アクリロニトリル2部、マレイン酸モノn-ブチル1部、および1,3-ブタジエン6部を添加した。さらに重合反応を継続し、反応転化率が70%になった時点で、アクリロニトリル1部、マレイン酸モノn-ブチル1部、および1,3-ブタジエン5部を添加した。さらに重合反応を継続し、重合転化率が85%になった時点で、濃度2.5重量%の2,2,6,6-テトラメチルピペリジン1-オキシル水溶液(重合停止剤)0.1部を加えて重合反応を停止した後、水温60℃で残留単量体を除去し、ニトリルゴムのラテックスを(固形分濃度約30重量%)を得た。
 そして、上記にて得られたニトリルゴムのラテックスに対し、パラジウム触媒の使用量を、ニトリルゴムのラテックスに含有されるゴムの乾燥重量に対するパラジウム含有量で1,000重量ppmとなる量とした以外は、製造例1と同様にして、水素添加反応を行うことで、カルボキシル基含有高飽和ニトリルゴム(a7)のラテックスを得た後、製造例1と同様にて凝固、濾過および乾燥を行うことで、カルボキシル基含有高飽和ニトリルゴム(a7)を得た。得られたカルボキシル基含有高飽和ニトリルゴム(a7)は、カルボキシル基含有量が2.6×10-2ephr、ヨウ素価が10であった。また、得られたカルボキシル基含有高飽和ニトリルゴム(a7)は、アクリロニトリル単位15重量%、ブタジエン単位(水素化された部分も含む)45重量%、マレイン酸モノn-ブチル単位5重量%、アクリル酸n-ブチル単位35重量%であった。
 製造例8(カルボキシル基含有高飽和ニトリルゴム(a8)の製造)
 重合開始時に仕込む単量体の量を、アクリロニトリル16.0部、マレイン酸モノn-ブチル5.0部、アクリル酸n-ブチル36.0部、および1,3-ブタジエン43.0部に変更するとともに、反応の途中における単量体の追加添加を行わなかった以外は、製造例7と同様にしてカルボキシル基含有高飽和ニトリルゴム(a8)を得た。得られたカルボキシル基含有高飽和ニトリルゴム(a8)は、カルボキシル基含有量が2.7×10-2ephr、ヨウ素価が8であった。また、得られたカルボキシル基含有高飽和ニトリルゴム(a8)は、アクリロニトリル単位14.7重量%、ブタジエン単位(水素化された部分も含む)45.2重量%、マレイン酸モノn-ブチル単位5.2重量%、アクリル酸n-ブチル単位34.9重量%であった。
 製造例9(カルボキシル基含有高飽和ニトリルゴム(a9)の製造)
 重合開始時に仕込む単量体の量を、アクリロニトリル10.0部、マレイン酸モノn-ブチル2.0部、アクリル酸n-ブチル36.0部、および1,3-ブタジエン30.0部にそれぞれ変更し、重合転化率が40%になった時点で添加する単量体の量を、アクリロニトリル3.0部、マレイン酸モノn-ブチル1.0部、および1,3-ブタジエン7.0部にそれぞれ変更し、かつ、重合転化率が70%になった時点で添加する単量体の量を、アクリロニトリル3.0部、マレイン酸モノn-ブチル2.0部、および1,3-ブタジエン6.0部にそれぞれ変更した以外は、製造例7と同様にしてカルボキシル基含有高飽和ニトリルゴム(a9)を得た。得られたカルボキシル基含有高飽和ニトリルゴム(a9)は、カルボキシル基含有量が2.5×10-2ephr、ヨウ素価が9であった。また、得られたカルボキシル基含有高飽和ニトリルゴム(a8)は、アクリロニトリル単位15.3重量%、ブタジエン単位(水素化された部分も含む)44.9重量%、マレイン酸モノn-ブチル単位4.8重量%、アクリル酸n-ブチル単位35.0重量%であった。
 製造例10(カルボキシル基含有高飽和ニトリルゴム(a10)の製造)
 重合開始時に仕込むアクリル酸n-ブチルの量を30.0部に変更し、重合転化率が40%になった時点で添加する単量体として、アクリル酸n-ブチル4.0部を追加し、かつ、重合転化率が70%になった時点で添加する単量体として、アクリル酸n-ブチル2.0部を追加した以外は、製造例7と同様にしてカルボキシル基含有高飽和ニトリルゴム(a10)を得た。得られたカルボキシル基含有高飽和ニトリルゴム(a10)は、カルボキシル基含有量が2.6×10-2ephr、ヨウ素価が8であった。また、得られたカルボキシル基含有高飽和ニトリルゴム(a10)は、アクリロニトリル単位15.1重量%、ブタジエン単位(水素化されている部分含む)45.4重量%、マレイン酸モノn-ブチル単位5重量%、アクリル酸n-ブチル単位34.5重量%であった。
 実施例1
 バンバリーミキサを用いて、製造例1で得られたカルボキシル基含有高飽和ニトリルゴム(a1)100部に、アミノ基含有シランカップリング剤処理珪酸アルミニウム(b1)(商品名「Amlok 321」、Kentucky-Tennessee Clay社製)90部、トリメリット酸トリ-2-エチルヘキシル(ADEKA社製、商品名「アデカサイザーC-8」、可塑剤)5部、4,4’-ジ-(α,α-ジメチルベンジル)ジフェニルアミン(大内新興化学社製、商品名「ノクラックCD」、老化防止剤)1.5部、ステアリン酸1部、ポリオキシエチレンアルキルエーテルリン酸エステル(東邦化学工業社製、商品名「フォスファノールRL210」、加工助剤)1部を配合して、50℃で5分間混合した。次いで、得られた混合物を50℃のロールに移して、1,8-ジアザビシクロ[5,4,0]-ウンデセン-7(DBU)(RheinChemie社製、商品名「RHENOGRAN XLA-60(GE2014)」、DBU60%(ジンクジアルキルジフォスフェイト塩になっている部分も含む)、塩基性架橋促進剤)4部、ヘキサメチレンジアミンカルバメート(デュポンダウエラストマー社製、商品名「Diak#1」、脂肪族多価アミン類に属するポリアミン架橋剤(c))1.9部を配合して、混練することにより、ニトリルゴム組成物を得た。
 そして、上述した方法により、上記にて調製したニトリルゴム組成物を用いてゴム架橋物を得て、得られたゴム架橋物について、常態物性(引張強度、破断伸び、硬さ)、圧縮応力緩和試験、および低温シール性(50%伸長条件でのTR70)の各試験・測定を行った。結果を表1に示す。
 実施例2
 アミノ基含有シランカップリング剤処理珪酸アルミニウム(b1)(商品名「Amlok 321」)90部に代えて、アミノ基含有シランカップリング剤処理珪酸アルミニウム(b2)(商品名「Nulok 390」、KaMin社製)90部を使用した以外は、実施例1と同様にして、ニトリルゴム組成物を得て、同様に評価を行った。結果を表1に示す。
 実施例3
 アミノ基含有シランカップリング剤処理珪酸アルミニウム(b1)(商品名「Amlok 321」)90部に代えて、エポキシ基含有シランカップリング剤処理珪酸アルミニウム(b3)(商品名「Nulok 170」、KaMin社製)90部を使用し、トリメリット酸トリ-2-エチルヘキシル(ADEKA社製、商品名「アデカサイザーC-8」、可塑剤)5部に代えて、ポリエーテルエステル(ADEKA社製、商品名「アデカサイザーRS-700」、可塑剤)5部を使用した以外は、実施例1と同様にして、ニトリルゴム組成物を得て、同様に評価を行った。結果を表1に示す。
 実施例4
 アミノ基含有シランカップリング剤処理珪酸アルミニウム(b1)(商品名「Amlok 321」)90部に代えて、メルカプト基含有シランカップリング剤処理珪酸アルミニウム(b4)(商品名「Mercap 200」、Kentucky-Tennessee Clay社製)90部を使用した以外は、実施例1と同様にして、ニトリルゴム組成物を得て、同様に評価を行った。結果を表1に示す。
 実施例5
 アミノ基含有シランカップリング剤処理珪酸アルミニウム(b2)(商品名「Nulok 390」)の配合量を90部から30部に変更し、かつ、ビニル基含有シランカップリング剤処理珪酸アルミニウム(b5)(商品名「Burgess KE」、バーゲス・ピグメント社製)60部をさらに配合した以外は、実施例2と同様にして、ニトリルゴム組成物を得て、同様に評価を行った。結果を表1に示す。
 実施例6
 アミノ基含有シランカップリング剤処理珪酸アルミニウム(b1)(商品名「Amlok 321」)90部に代えて、ビニル基含有シランカップリング剤処理珪酸アルミニウム(b5)(商品名「Burgess KE」、バーゲス・ピグメント社製)50部を使用するとともに、シリカ(商品名「ULTRASIL(登録商標) VN2」、Evonik社製)25部をさらに配合した以外は、実施例1と同様にして、ニトリルゴム組成物を得て、同様に評価を行った。結果を表1に示す。
 実施例7
 加工助剤(商品名「ストラクトール(登録商標) HT740」、エスアンドエスジャパン社製)1部をさらに配合した以外は、実施例6と同様にして、ニトリルゴム組成物を得て、同様に評価を行った。結果を表1に示す。
 実施例8
 製造例1で得られたカルボキシル基含有高飽和ニトリルゴム(a1)100部に代えて、製造例2で得られたカルボキシル基含有高飽和ニトリルゴム(a2)100部を使用するとともに、アミノ基含有シランカップリング剤処理珪酸アルミニウム(b1)(商品名「Amlok 321」)の配合量を90部から85部に、ヘキサメチレンジアミンカルバメートの配合量を1.9部から2.7部に、それぞれ変更した以外は、実施例1と同様にして、ニトリルゴム組成物を得て、同様に評価を行った。結果を表1に示す。
 実施例9
 アミノ基含有シランカップリング剤処理珪酸アルミニウム(b1)(商品名「Amlok 321」)85部に代えて、アミノ基含有シランカップリング剤処理珪酸アルミニウム(b2)(商品名「Nulok 390」)85部を使用し、かつ、トリメリット酸トリ-2-エチルヘキシル(ADEKA社製、商品名「アデカサイザーC-8」、可塑剤)5部に代えて、ポリエーテルエステル(ADEKA社製、商品名「アデカサイザーRS-700」、可塑剤)5部を使用した以外は、実施例8と同様にして、ニトリルゴム組成物を得て、同様に評価を行った。結果を表1に示す。
 実施例10
 アミノ基含有シランカップリング剤処理珪酸アルミニウム(b1)(商品名「Amlok 321」)85部に代えて、エポキシ基含有シランカップリング剤処理珪酸アルミニウム(b3)(商品名「Nulok 170」)85部を使用した以外は、実施例8と同様にして、ニトリルゴム組成物を得て、同様に評価を行った。結果を表1に示す。
 実施例11
 アミノ基含有シランカップリング剤処理珪酸アルミニウム(b1)(商品名「Amlok 321」)85部に代えて、メルカプト基含有シランカップリング剤処理珪酸アルミニウム(b4)(商品名「Mercap 200」)85部を使用した以外は、実施例8と同様にして、ニトリルゴム組成物を得て、同様に評価を行った。結果を表1に示す。
 実施例12
 アミノ基含有シランカップリング剤処理珪酸アルミニウム(b2)(商品名「Nulok 390」)の配合量を85部から30部に変更し、かつ、ビニル基含有シランカップリング剤処理珪酸アルミニウム(b5)(商品名「Burgess KE」)55部をさらに配合した以外は、実施例8と同様にして、ニトリルゴム組成物を得て、同様に評価を行った。結果を表1に示す。
 実施例13
 アミノ基含有シランカップリング剤処理珪酸アルミニウム(b1)(商品名「Amlok 321」)85部に代えて、ビニル基含有シランカップリング剤処理珪酸アルミニウム(b5)(商品名「Burgess KE」、バーゲス・ピグメント社製)50部を使用するとともに、シリカ(商品名「ULTRASIL(登録商標) VN2」、Evonik社製)25部をさらに配合した以外は、実施例8と同様にして、ニトリルゴム組成物を得て、同様に評価を行った。結果を表1に示す。
 実施例14
 加工助剤(商品名「ストラクトール(登録商標) HT740」、エスアンドエスジャパン社製)1部をさらに配合した以外は、実施例13と同様にして、ニトリルゴム組成物を得て、同様に評価を行った。結果を表1に示す。
 実施例15~20
 製造例1で得られたカルボキシル基含有高飽和ニトリルゴム(a1)100部に代えて、製造例4で得られたカルボキシル基含有高飽和ニトリルゴム(a4)100部を使用するとともに、表2に示す各配合剤を表2に示す配合量にて配合した以外は、実施例1と同様にして、ニトリルゴム組成物を得て、同様に評価を行った。結果を表2に示す。
 実施例21,22
 製造例1で得られたカルボキシル基含有高飽和ニトリルゴム(a1)100部に代えて、製造例5で得られたカルボキシル基含有高飽和ニトリルゴム(a5)100部を使用するとともに、表2に示す各配合剤を表2に示す配合量にて配合した以外は、実施例1と同様にして、ニトリルゴム組成物を得て、同様に評価を行った。結果を表2に示す。
 実施例23,24
 製造例1で得られたカルボキシル基含有高飽和ニトリルゴム(a1)100部に代えて、製造例6で得られたカルボキシル基含有高飽和ニトリルゴム(a6)100部を使用するとともに、表2に示す各配合剤を表2に示す配合量にて配合した以外は、実施例1と同様にして、ニトリルゴム組成物を得て、同様に評価を行った。結果を表2に示す。
 実施例25~31
 製造例1で得られたカルボキシル基含有高飽和ニトリルゴム(a1)100部に代えて、製造例7で得られたカルボキシル基含有高飽和ニトリルゴム(a7)100部を使用するとともに、表3に示す各配合剤を表3に示す配合量にて配合した以外は、実施例1と同様にして、ニトリルゴム組成物を得て、同様に評価を行った。結果を表3に示す。
 実施例32,33
 製造例1で得られたカルボキシル基含有高飽和ニトリルゴム(a1)100部に代えて、製造例8で得られたカルボキシル基含有高飽和ニトリルゴム(a8)100部を使用するとともに、表3に示す各配合剤を表3に示す配合量にて配合した以外は、実施例1と同様にして、ニトリルゴム組成物を得て、同様に評価を行った。結果を表3に示す。
 実施例34,35
 製造例1で得られたカルボキシル基含有高飽和ニトリルゴム(a1)100部に代えて、製造例9で得られたカルボキシル基含有高飽和ニトリルゴム(a9)100部を使用するとともに、表3に示す各配合剤を表3に示す配合量にて配合した以外は、実施例1と同様にして、ニトリルゴム組成物を得て、同様に評価を行った。結果を表3に示す。
 実施例36,37
 製造例1で得られたカルボキシル基含有高飽和ニトリルゴム(a1)100部に代えて、製造例10で得られたカルボキシル基含有高飽和ニトリルゴム(a10)100部を使用するとともに、表3に示す各配合剤を表3に示す配合量にて配合した以外は、実施例1と同様にして、ニトリルゴム組成物を得て、同様に評価を行った。結果を表3に示す。
 比較例1
 ヘキサメチレンジアミンカルバメートの配合量を1.9部から0.5部に変更した以外は、実施例2と同様にして、ニトリルゴム組成物を得て、同様に評価を行った。結果を表4に示す。
 比較例2
 ヘキサメチレンジアミンカルバメートの配合量を1.9部から1部に変更した以外は、実施例2と同様にして、ニトリルゴム組成物を得て、同様に評価を行った。結果を表4に示す。
 比較例3
 アミノ基含有シランカップリング剤処理珪酸アルミニウム(b1)(商品名「Amlok 321」)90部に代えて、表面未処理珪酸アルミニウム(b’6)(商品名「サティントン#5」、Engelhard Minerals社製)90部を使用した以外は、実施例1と同様にして、ニトリルゴム組成物を得て、同様に評価を行った。結果を表4に示す。
 比較例4
 ヘキサメチレンジアミンカルバメートの配合量を2.7部から0.5部に変更し、かつ、ポリエーテルエステル(ADEKA社製、商品名「アデカサイザーRS-700」、可塑剤)5部に代えて、トリメリット酸トリ-2-エチルヘキシル(ADEKA社製、商品名「アデカサイザーC-8」、可塑剤)5部を使用した以外は、実施例9と同様にして、ニトリルゴム組成物を得て、同様に評価を行った。結果を表4に示す。
 比較例5
 ヘキサメチレンジアミンカルバメートの配合量を0.5部から1部に変更した以外は、比較例4と同様にして、ニトリルゴム組成物を得て、同様に評価を行った。結果を表4に示す。
 比較例6
 アミノ基含有シランカップリング剤処理珪酸アルミニウム(b1)(商品名「Amlok 321」)85部に代えて、表面未処理珪酸アルミニウム(b’6)(商品名「サティントン#5」)85部を使用した以外は、実施例8と同様にして、ニトリルゴム組成物を得て、同様に評価を行った。結果を表4に示す。
 比較例7~9
 製造例1で得られたカルボキシル基含有高飽和ニトリルゴム(a1)100部に代えて、製造例4で得られたカルボキシル基含有高飽和ニトリルゴム(a4)100部を使用するとともに、表4に示す各配合剤を表4に示す配合量にて配合した以外は、実施例1と同様にして、ニトリルゴム組成物を得て、同様に評価を行った。結果を表4に示す。
 比較例10~15
 製造例1で得られたカルボキシル基含有高飽和ニトリルゴム(a1)100部に代えて、製造例5~10で得られたカルボキシル基含有高飽和ニトリルゴム(a5)~(a10)をそれぞれ100部の配合量にて使用するとともに、表5に示す各配合剤を表5に示す配合量にて配合した以外は、実施例1と同様にして、ニトリルゴム組成物を得て、同様に評価を行った。結果を表5に示す。
 比較例16
 製造例2で得られたカルボキシル基含有高飽和ニトリルゴム(a2)100部に代えて、製造例3で得られたカルボキシル基含有高飽和ニトリルゴム(a’3)100部を使用したこと、アミノ基含有シランカップリング剤処理珪酸アルミニウム(b2)(商品名「Nulok 390」)の配合量を90部から80部に、ヘキサメチレンジアミンカルバメートの配合量を1.9部から0.5部に、それぞれ変更したこと以外は、実施例2と同様にして、ニトリルゴム組成物を得て、同様に評価を行った。結果を表5に示す。
 比較例17
 ヘキサメチレンジアミンカルバメートの配合量を0.5部から1部に変更した以外は、比較例16と同様にして、ニトリルゴム組成物を得て、同様に評価を行った。結果を表5に示す。
 比較例18
 ヘキサメチレンジアミンカルバメートの配合量を0.5部から2.4部に変更した以外は、比較例16と同様にして、ニトリルゴム組成物を得て、同様に評価を行った。結果を表5に示す。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
 表1~5に示すように、本発明所定のカルボキシル基含有高飽和ニトリルゴム(a)と、表面処理珪酸塩(b)と、所定の量のポリアミン系架橋剤(c)とを含有してなるニトリルゴム組成物を架橋することにより得られ、150℃、25%圧縮条件での圧縮応力緩和試験における、圧縮応力が、初期圧縮応力に対して50%となるまでの時間が300時間以上であるゴム架橋物は、引張強度が9MPa以上および破断伸びが100%以上といずれも高く、かつ、50%伸長条件でのTR70が、いずれも-20℃以下であり、低温でのシール性に優れるものであった(実施例1~37)。
 本発明所定のカルボキシル基含有高飽和ニトリルゴム(a)と、表面処理珪酸塩(b)と、所定の量のポリアミン系架橋剤(c)とを含有してなるニトリルゴム組成物を架橋することにより得られたものであっても、150℃、25%圧縮条件での圧縮応力緩和試験における、圧縮応力が、初期圧縮応力に対して50%となるまでの時間が300時間未満である場合には、50%伸長条件でのTR70が、いずれも-20℃を超えるものであり、低温でのシール性に劣るものであった(比較例1,2,4,5,7,8)。
 また、表面処理珪酸塩(b)の代わりに、表面未処理珪酸アルミニウムを使用した場合には、得られるゴム架橋物は、引張強度に劣るものであった(比較例3,6,9~15)。
 さらに、本発明所定のカルボキシル基含有高飽和ニトリルゴム(a)の代わりに、α,β-エチレン性不飽和モノカルボン酸エステル単量体単位を含有しないゴムを使用した場合には、得られるゴム架橋物は、50%伸長条件でのTR70が、いずれも-20℃を超えるものであり、低温でのシール性に劣るものであった(比較例16~18)。

Claims (9)

  1.  5~60重量%のα,β-エチレン性不飽和ニトリル単量体単位と、α,β-エチレン性不飽和モノカルボン酸エステル単量体単位とを含有し、ヨウ素価が120以下であるカルボキシル基含有高飽和ニトリルゴム(a)と、表面処理珪酸塩(b)と、ポリアミン系架橋剤(c)とを含有してなり、前記ポリアミン系架橋剤(c)の含有量が、前記カルボキシル基含有高飽和ニトリルゴム(a)100重量部に対して、0.1~20重量部であるニトリルゴム組成物を架橋してなるゴム架橋物であって、
     150℃、25%圧縮させた状態で保持する圧縮応力緩和試験を行った際に、圧縮応力が、該圧縮応力緩和試験開始から30分後の圧縮応力である、圧縮応力緩和試験開始時の初期圧縮応力に対して、50%となるまでの時間が300時間以上であるゴム架橋物。
  2.  前記表面処理珪酸塩(b)が、珪酸塩をアミノ基含有シランカップリング剤またはエポキシ基含有シランカップリング剤で表面処理してなるものである請求項1に記載のゴム架橋物。
  3.  前記表面処理珪酸塩(b)が、珪酸塩をアミノ基含有シランカップリング剤で表面処理してなるものである請求項1に記載のゴム架橋物。
  4.  前記ニトリルゴム組成物が、塩基性架橋促進剤(d)をさらに含有する請求項1~3のいずれかに記載のゴム架橋物。
  5.  前記カルボキシル基含有高飽和ニトリルゴム(a)が、5~60重量%のα,β-エチレン性不飽和ニトリル単量体単位と、10~55重量%のα,β-エチレン性不飽和モノカルボン酸エステル単量体単位と、0.1~20重量%のカルボキシル基含有単量体単位とを含有する請求項1~4のいずれかに記載のゴム架橋物。
  6.  前記カルボキシル基含有単量体単位が、α,β-エチレン性不飽和ジカルボン酸モノエステル単量体単位である請求項5に記載のゴム架橋物。
  7.  前記表面処理珪酸塩(b)が、周期表第2族または第13族の元素の珪酸塩である珪酸塩を表面処理剤で表面処理してなるものである請求項1~6のいずれかに記載のゴム架橋物。
  8.  前記表面処理珪酸塩(b)が、下記一般式(1)で表される化合物を表面処理剤で表面処理してなるものである請求項7に記載のゴム架橋物。
      MO・xSiO・mHO  (1)
     (上記一般式(1)中、Mは周期表第2族の元素または周期表第13族の元素を表し、xは8以下の正の実数であり、mは0または12以下の正の実数である。)
  9.  請求項1~8のいずれかに記載のゴム架橋物からなるシール材。
PCT/JP2016/083999 2015-11-20 2016-11-16 ゴム架橋物 WO2017086358A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US15/775,781 US10787525B2 (en) 2015-11-20 2016-11-16 Rubber crosslinked material
EP16866359.9A EP3378891B1 (en) 2015-11-20 2016-11-16 Rubber crosslinked material
CN201680066017.4A CN108350229B (zh) 2015-11-20 2016-11-16 橡胶交联物
JP2017551911A JP6763397B2 (ja) 2015-11-20 2016-11-16 ゴム架橋物
KR1020187015275A KR20180084831A (ko) 2015-11-20 2016-11-16 고무 가교물

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-227362 2015-11-20
JP2015227362 2015-11-20

Publications (1)

Publication Number Publication Date
WO2017086358A1 true WO2017086358A1 (ja) 2017-05-26

Family

ID=58718982

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/083999 WO2017086358A1 (ja) 2015-11-20 2016-11-16 ゴム架橋物

Country Status (6)

Country Link
US (1) US10787525B2 (ja)
EP (1) EP3378891B1 (ja)
JP (1) JP6763397B2 (ja)
KR (1) KR20180084831A (ja)
CN (1) CN108350229B (ja)
WO (1) WO2017086358A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019065400A1 (ja) * 2017-09-28 2019-04-04 日本ゼオン株式会社 ニトリル基含有共重合体ゴムの製造方法
WO2019078068A1 (ja) * 2017-10-17 2019-04-25 Nok株式会社 水素化nbr組成物
WO2019087788A1 (ja) * 2017-11-02 2019-05-09 Nok株式会社 エチレンアクリレートゴム組成物とその成形品
WO2019131019A1 (ja) * 2017-12-26 2019-07-04 日本ゼオン株式会社 ゴム組成物、およびゴム架橋物
JPWO2019049855A1 (ja) * 2017-09-11 2020-10-15 日本ゼオン株式会社 カルボキシル基含有ニトリルゴム、架橋性ニトリルゴム組成物およびゴム架橋物
WO2022210392A1 (ja) * 2021-03-31 2022-10-06 日本ゼオン株式会社 ゴム積層体およびホース

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109134981A (zh) * 2018-08-13 2019-01-04 中策橡胶集团有限公司 一种用于高性能轮胎的轮胎胎面的橡胶组合物及其混炼方法和轮胎

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008001692A1 (fr) * 2006-06-27 2008-01-03 Zeon Corporation Composition de caoutchouc de nitrile, composition de caoutchouc de nitrile réticulable et caoutchouc réticulé
JP2008056793A (ja) * 2006-08-31 2008-03-13 Nippon Zeon Co Ltd 架橋性ニトリルゴム組成物およびゴム架橋物
JP2008138048A (ja) * 2006-11-30 2008-06-19 Nippon Zeon Co Ltd 架橋性ニトリルゴム組成物およびゴム架橋物
JP2008163074A (ja) * 2006-12-27 2008-07-17 Nippon Zeon Co Ltd 架橋性ニトリルゴム組成物およびゴム架橋物
JP2008179671A (ja) * 2007-01-23 2008-08-07 Nippon Zeon Co Ltd 架橋性ニトリルゴム組成物およびゴム架橋物
WO2009051102A1 (ja) * 2007-10-16 2009-04-23 Zeon Corporation 架橋性ニトリルゴム組成物およびゴム架橋物
WO2009096518A1 (ja) * 2008-01-31 2009-08-06 Zeon Corporation 架橋性ニトリルゴム組成物およびゴム架橋物

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2409429A1 (en) * 2002-10-17 2004-04-17 Bayer Inc. Hydrogenated nitrile rubber composites with improved proccesability
CN101331183B (zh) * 2005-12-21 2011-11-02 日本瑞翁株式会社 交联性橡胶组合物以及橡胶交联物
WO2016148055A1 (ja) * 2015-03-13 2016-09-22 日本ゼオン株式会社 ニトリルゴム組成物およびゴム架橋物
MX2018002923A (es) 2015-09-17 2018-12-10 Zeon Corp Composicion de caucho de nitrilo, composicion de caucho de nitrilo retriculable, y caucho reticulado.
CN108473724B (zh) 2016-01-08 2021-05-11 日本瑞翁株式会社 腈橡胶组合物、交联性腈橡胶组合物和橡胶交联物
WO2017159623A1 (ja) * 2016-03-18 2017-09-21 日本ゼオン株式会社 ニトリルゴム組成物およびゴム架橋物

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008001692A1 (fr) * 2006-06-27 2008-01-03 Zeon Corporation Composition de caoutchouc de nitrile, composition de caoutchouc de nitrile réticulable et caoutchouc réticulé
JP2008056793A (ja) * 2006-08-31 2008-03-13 Nippon Zeon Co Ltd 架橋性ニトリルゴム組成物およびゴム架橋物
JP2008138048A (ja) * 2006-11-30 2008-06-19 Nippon Zeon Co Ltd 架橋性ニトリルゴム組成物およびゴム架橋物
JP2008163074A (ja) * 2006-12-27 2008-07-17 Nippon Zeon Co Ltd 架橋性ニトリルゴム組成物およびゴム架橋物
JP2008179671A (ja) * 2007-01-23 2008-08-07 Nippon Zeon Co Ltd 架橋性ニトリルゴム組成物およびゴム架橋物
WO2009051102A1 (ja) * 2007-10-16 2009-04-23 Zeon Corporation 架橋性ニトリルゴム組成物およびゴム架橋物
WO2009096518A1 (ja) * 2008-01-31 2009-08-06 Zeon Corporation 架橋性ニトリルゴム組成物およびゴム架橋物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3378891A4 *

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2019049855A1 (ja) * 2017-09-11 2020-10-15 日本ゼオン株式会社 カルボキシル基含有ニトリルゴム、架橋性ニトリルゴム組成物およびゴム架橋物
TWI761600B (zh) * 2017-09-28 2022-04-21 日商日本瑞翁股份有限公司 含腈基共聚物橡膠的製造方法、交聯性橡膠組成物的製造方法及橡膠交聯物的製造方法
KR102607191B1 (ko) * 2017-09-28 2023-11-27 니폰 제온 가부시키가이샤 니트릴기 함유 공중합체 고무의 제조 방법
JP7327162B2 (ja) 2017-09-28 2023-08-16 日本ゼオン株式会社 ニトリル基含有共重合体ゴムの製造方法
US11692051B2 (en) 2017-09-28 2023-07-04 Zeon Corporation Method for producing nitrile group-containing copolymer rubber
CN111094371A (zh) * 2017-09-28 2020-05-01 日本瑞翁株式会社 含腈基共聚物橡胶的制造方法
KR20200055741A (ko) * 2017-09-28 2020-05-21 니폰 제온 가부시키가이샤 니트릴기 함유 공중합체 고무의 제조 방법
WO2019065400A1 (ja) * 2017-09-28 2019-04-04 日本ゼオン株式会社 ニトリル基含有共重合体ゴムの製造方法
JPWO2019065400A1 (ja) * 2017-09-28 2020-10-22 日本ゼオン株式会社 ニトリル基含有共重合体ゴムの製造方法
WO2019078068A1 (ja) * 2017-10-17 2019-04-25 Nok株式会社 水素化nbr組成物
US11459442B2 (en) 2017-11-02 2022-10-04 Nok Corporation Ethylene acrylate rubber composition and molded article thereof
CN110546197B (zh) * 2017-11-02 2023-02-17 Nok株式会社 乙烯丙烯酸酯橡胶组合物及其成型品
CN110546197A (zh) * 2017-11-02 2019-12-06 Nok株式会社 乙烯丙烯酸酯橡胶组合物及其成型品
WO2019087788A1 (ja) * 2017-11-02 2019-05-09 Nok株式会社 エチレンアクリレートゴム組成物とその成形品
EP3733761A4 (en) * 2017-12-26 2021-07-21 Zeon Corporation COMPOSITION OF RUBBER AND CROSS-LINKED RUBBER PRODUCT
JPWO2019131019A1 (ja) * 2017-12-26 2020-12-17 日本ゼオン株式会社 ゴム組成物、およびゴム架橋物
CN111479869B (zh) * 2017-12-26 2022-06-14 日本瑞翁株式会社 橡胶组合物和橡胶交联物
JP7136128B2 (ja) 2017-12-26 2022-09-13 日本ゼオン株式会社 ゴム組成物、およびゴム架橋物
CN111479869A (zh) * 2017-12-26 2020-07-31 日本瑞翁株式会社 橡胶组合物和橡胶交联物
US11512187B2 (en) 2017-12-26 2022-11-29 Zeon Corporation Rubber composition and rubber crosslinked product
WO2019131019A1 (ja) * 2017-12-26 2019-07-04 日本ゼオン株式会社 ゴム組成物、およびゴム架橋物
WO2022210392A1 (ja) * 2021-03-31 2022-10-06 日本ゼオン株式会社 ゴム積層体およびホース

Also Published As

Publication number Publication date
US20180327517A1 (en) 2018-11-15
EP3378891A4 (en) 2019-06-19
EP3378891A1 (en) 2018-09-26
US10787525B2 (en) 2020-09-29
CN108350229B (zh) 2021-02-23
CN108350229A (zh) 2018-07-31
JPWO2017086358A1 (ja) 2018-09-06
EP3378891B1 (en) 2020-09-02
JP6763397B2 (ja) 2020-09-30
KR20180084831A (ko) 2018-07-25

Similar Documents

Publication Publication Date Title
JP6798492B2 (ja) ニトリルゴム組成物およびゴム架橋物
US10787525B2 (en) Rubber crosslinked material
US10287382B2 (en) Nitrile rubber composition and cross-linked rubber
CN108473724B (zh) 腈橡胶组合物、交联性腈橡胶组合物和橡胶交联物
US11286324B2 (en) Carboxyl group-containing nitrile rubber, method for production same, crosslinkable nitrile rubber composition, and crosslinked rubber
US11414499B2 (en) Crosslinkable nitrile rubber composition and crosslinked rubber material
JP6733658B2 (ja) ニトリルゴム組成物およびゴム架橋物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16866359

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017551911

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15775781

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187015275

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2016866359

Country of ref document: EP