WO2016024530A1 - 多結晶体とその製造方法 - Google Patents

多結晶体とその製造方法 Download PDF

Info

Publication number
WO2016024530A1
WO2016024530A1 PCT/JP2015/072404 JP2015072404W WO2016024530A1 WO 2016024530 A1 WO2016024530 A1 WO 2016024530A1 JP 2015072404 W JP2015072404 W JP 2015072404W WO 2016024530 A1 WO2016024530 A1 WO 2016024530A1
Authority
WO
WIPO (PCT)
Prior art keywords
polycrystal
ion secondary
secondary battery
sodium
titanium
Prior art date
Application number
PCT/JP2015/072404
Other languages
English (en)
French (fr)
Inventor
邦光 片岡
秋本 順二
Original Assignee
国立研究開発法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人産業技術総合研究所 filed Critical 国立研究開発法人産業技術総合研究所
Priority to JP2016542559A priority Critical patent/JP6323888B2/ja
Priority to US15/502,452 priority patent/US10347912B2/en
Priority to CN201580043473.2A priority patent/CN106575756A/zh
Priority to KR1020177006613A priority patent/KR101906744B1/ko
Publication of WO2016024530A1 publication Critical patent/WO2016024530A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/003Titanates
    • C01G23/005Alkali titanates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/77Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by unit-cell parameters, atom positions or structure diagrams
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a sodium titanium oxide polycrystal which can be used as an electrode active material of a sodium ion secondary battery or a lithium ion secondary battery, a method for producing the same, a sodium ion secondary battery and a lithium using the polycrystal
  • the present invention relates to an ion secondary battery.
  • lithium ion secondary batteries are used in small information devices such as mobile phones and laptop computers.
  • a lithium ion secondary battery is mainly composed of a positive electrode, a negative electrode, and an electrolyte.
  • a lithium composite oxide material is used for the positive electrode, and a lithium composite oxide material, a carbon material, metallic lithium, a lithium alloy, or the like is used for the negative electrode.
  • a liquid non-aqueous organic electrolyte electrolytic solution
  • demand for large-sized, high-power, long-life secondary batteries is expected as power supplies for automobiles, large-capacity stationary power supplies, etc., and further, high-capacity lithium ion secondary battery materials are required.
  • a positive electrode material and a negative electrode material of a sodium ion secondary battery are required to be materials that can occlude and release sodium ions, have high reversibility, and have a large sodium occlusion amount. From this point of view, oxide materials having various tunnel type structures and layered rock salt type structures have been reported as positive electrode materials for sodium ion secondary batteries.
  • the negative electrode material of the sodium ion secondary battery has not been reported as much as the positive electrode material, and is currently being tested as a negative electrode material using sodium metal, sodium / tin alloy, soft carbon, etc. (Patent Document 1).
  • the use of sodium metal, which is more active than lithium metal, as the negative electrode material is not suitable for industrial use from the viewpoint of safety, and the development of oxide-based negative electrode materials is important. Therefore, attention was focused on the crystal structure of Na 0.44 MnO 2 having a one-dimensional tunnel type structure used for the positive electrode material.
  • the tunnel portion of Na 0.44 MnO 2 is considered to have a shape that allows sodium ions to be absorbed and desorbed easily.
  • Na x Ti 4 O 9 (2 ⁇ x ⁇ 3) which is a sodium titanium oxide having a large one-dimensional tunnel type structure similar to Na 0.44 MnO 2 , was listed as a candidate negative electrode material.
  • metallic sodium in the synthesis of Na x Ti 4 O 9 (2 ⁇ x ⁇ 3).
  • the synthesis of Na x Ti 4 O 9 (2 ⁇ x ⁇ 3) polycrystal has not been studied.
  • the present invention has been made in view of such circumstances, and a polycrystalline body that can be used as an electrode active material of a secondary battery, a manufacturing method thereof, a sodium ion secondary battery using the polycrystalline body, and An object is to provide a lithium ion secondary battery.
  • the polycrystalline body is represented by the chemical formula Na x Ti 4 O 9 (2 ⁇ x ⁇ 3), has a one-dimensional tunnel type structure, and belongs to a monoclinic system. And a firing step of firing a raw material containing a sodium compound and at least one of a titanium compound and metal titanium at 800 ° C. or higher and 1600 ° C. or lower.
  • the polycrystal is represented by the chemical formula Na 2 Ti 4 O 9 , and a water washing step of washing Na y Ti 4 O 9 (2 ⁇ y ⁇ 3) obtained in the firing step with water May further be included.
  • the raw material preferably contains Na 4 Ti 5 O 12 and titanium metal.
  • the firing step is preferably performed in a non-oxidizing atmosphere.
  • the raw material in the firing step, it is preferable that the raw material is filled in a container made of one or more materials selected from molybdenum, tungsten, tantalum, iron, nickel, and titanium and fired. .
  • the polycrystal of the present invention is a single-phase polycrystal represented by the chemical formula Na x Ti 4 O 9 (2 ⁇ x ⁇ 3), having a one-dimensional tunnel type structure, and belonging to a monoclinic system.
  • Another polycrystalline body of the present invention is a single-phase polycrystalline body represented by the chemical formula Na 2 Ti 4 O 9 , having a one-dimensional tunnel type structure, and belonging to a monoclinic system.
  • the sodium ion secondary battery of the present invention has a positive electrode, a negative electrode, and an electrolyte, and the active material of the positive electrode or the negative electrode is the polycrystalline body of the present invention.
  • the lithium ion secondary battery of the present invention has a positive electrode, a negative electrode, and an electrolyte, and the active material of the positive electrode or the negative electrode is the polycrystalline body of the present invention.
  • a sodium ion secondary battery and a lithium ion secondary battery capable of reversible large-capacity charging / discharging can be obtained.
  • the present inventors have used sodium titanium oxide Na 4 Ti 5 O 12 and titanium metal as raw materials and calcining them in a reducing atmosphere to obtain sodium represented by the chemical formula Na x Ti 4 O 9 (2 ⁇ x ⁇ 3). It has been found that a polycrystal of titanium oxide can be obtained. Furthermore, a sodium ion secondary battery using the obtained polycrystal as a negative electrode material performs a reversible charge / discharge reaction at a capacity of 55 mAh / g and a lithium ion secondary battery at a capacity of 120 mAh / g. It was confirmed.
  • the polycrystalline body is represented by the chemical formula Na x Ti 4 O 9 (2 ⁇ x ⁇ 3), has a one-dimensional tunnel type structure, and belongs to a monoclinic system. It has a firing step of firing a raw material that is a polycrystal of a phase and contains a sodium compound and at least one of a titanium compound and metal titanium at 800 ° C. or higher and 1600 ° C. or lower.
  • the polycrystal is represented by the chemical formula Na 2 Ti 4 O 9 and the water washing step of obtaining Na 2 Ti 4 O 9 by washing Na y Ti 4 O 9 (2 ⁇ y ⁇ 3) obtained in the firing step with water is further performed. You may have.
  • the raw material is prepared by weighing and mixing a sodium compound and titanium metal so that the ratio of each element of the chemical formula Na x Ti 4 O 9 (2 ⁇ x ⁇ 3) is approximately the same.
  • Sodium compounds, titanium compounds, and metal titanium may be weighed and mixed so that the ratio of each element is almost the same, and the ratio of sodium compound and titanium compound is almost the same as the ratio of each element. As such, they may be weighed and mixed.
  • the mixing method is not particularly limited as long as each material constituting the raw material can be uniformly mixed.
  • the mixing method may be performed by a wet or dry method using a known mixer such as a mixer.
  • the sodium compound is not particularly limited as long as it contains sodium, and examples thereof include oxides such as Na 2 O and carbonates such as Na 2 CO 3 . Two or more kinds of sodium compounds may be used. Among these, Na 2 O is preferable.
  • the titanium compound is not particularly limited as long as it contains titanium, and examples thereof include oxides such as TiO, Ti 2 O 3 and TiO 2 and chlorides such as TiCl 4 . Two or more types of titanium compounds may be used. Further, sodium titanium oxide such as Na 4 Ti 5 O 12 may be used. Among these, a raw material containing sodium titanium oxide Na 4 Ti 5 O 12 and metallic titanium is preferable, and a raw material composed of Na 4 Ti 5 O 12 and metallic titanium is more preferable.
  • firing is preferably performed in a non-oxidizing atmosphere.
  • the non-oxidizing atmosphere include an atmosphere of inert to reducing gas such as argon, nitrogen, hydrogen, and carbon monoxide.
  • the firing temperature of the raw material can be appropriately set depending on the raw material, but is usually 800 ° C. or higher and 1600 ° C. or lower, preferably 1100 ° C. or higher and 1350 ° C. or lower.
  • the firing time can be appropriately changed according to the firing temperature and the like.
  • the cooling method is not particularly limited, but is usually natural cooling (cooling in the furnace) or slow cooling. After firing, the fired product may be pulverized after polishing the surface of the fired product, if necessary.
  • the material of the container filled with the raw material is not particularly limited as long as it conforms to the non-oxidizing atmosphere, but at least one selected from molybdenum, tungsten, tantalum, iron, nickel, and titanium is used. it can. Among these, an iron container is preferable.
  • the fired product Na x Ti 4 O 9 (2 ⁇ x ⁇ 3) reacts with moisture in the air and precipitates sodium as sodium hydroxide until the chemical composition becomes Na 2 Ti 3 O 9 . For this reason, it is preferable to store the fired product in a vacuum desiccator or the like.
  • the polycrystal of the present invention is a single-phase polycrystal represented by the chemical formula Na x Ti 4 O 9 (2 ⁇ x ⁇ 3), having a one-dimensional tunnel type structure, and belonging to a monoclinic system. . That is, this polycrystal has a structure in which sodium is one-dimensionally arranged in the gaps of the three-dimensional skeleton structure formed by titanium oxide.
  • the polycrystalline body of the present invention is preferably represented by the chemical formula Na 2 Ti 4 O 9 .
  • the lattice constants of the polycrystal according to the embodiment of the present invention are 2.315 nm ⁇ a ⁇ 2.320 nm, 0.2938 nm ⁇ b ⁇ 0.2941 nm, 1.058 nm ⁇ c ⁇ 1.061 nm, 102.35 ° ⁇ ⁇ 102.44 °.
  • the polycrystal of the present invention can be used as an electrode active material for sodium ion secondary batteries and lithium ion secondary batteries. That is, the sodium ion secondary battery of the present invention has a positive electrode, a negative electrode, and an electrolyte, and the active material of the positive electrode or the negative electrode is the polycrystalline body of the present invention. Other than the electrode active material, a battery element of a known sodium ion secondary battery (coin type, button type, cylindrical type, all solid type, etc.) can be employed as it is.
  • An electrode can be produced by preparing an electrode mixture by blending the polycrystalline body of the present invention, which is an electrode active material, with a conductive material, a binder or the like, if necessary, and pressing the mixture onto a current collector.
  • a current collector stainless steel mesh, aluminum mesh, titanium mesh, nickel mesh, aluminum foil or the like can be preferably used.
  • binder tetrafluoroethylene, polyvinylidene fluoride, or the like can be preferably used.
  • the compounding ratio of the electrode active material, the conductive material, and the binder is not particularly limited, but usually the conductive material is about 1 to 30% by mass, preferably 5 to 25% by mass, and the binder is 30% by mass or less. Preferably, it is 3 to 10% by mass, and the remainder may be an electrode active material.
  • this electrode When this electrode is used as the negative electrode of a sodium ion secondary battery, a known material capable of occluding and releasing sodium, such as sodium chromium oxide, can be used for the positive electrode as the counter electrode. If a known negative electrode containing sodium and capable of occluding and releasing sodium such as sodium metal and sodium alloy is used, the polycrystal of the present invention can be used as a positive electrode material of a sodium ion secondary battery.
  • electrolyte solution for the sodium ion secondary battery of this embodiment, known separators and battery containers can be used.
  • electrolyte solution for the sodium ion secondary battery of this embodiment, known separators and battery containers can be used.
  • electrolyte solution for the sodium ion secondary battery of this embodiment, well-known electrolyte solution, solid electrolyte, etc. are employable as electrolyte.
  • a solution obtained by dissolving an electrolyte such as sodium perchlorate in a solvent such as propylene carbonate (PC) or ethylene carbonate (EC) can be used as the electrolytic solution.
  • PC propylene carbonate
  • EC ethylene carbonate
  • the lithium ion secondary battery of the present invention has a positive electrode, a negative electrode, and an electrolyte, and the active material of the positive electrode or the negative electrode is the polycrystalline body of the present invention. Except for the electrode active material, a battery element of a known lithium ion secondary battery (coin type, button type, cylindrical type, all solid type, etc.) can be used as it is.
  • An electrode can be produced by preparing an electrode mixture by blending the polycrystalline material of the present invention, which is an electrode active material, with a conductive material, a binder, and the like, if necessary, and pressing the mixture onto a current collector.
  • the current collector stainless steel mesh, aluminum mesh, titanium mesh, nickel mesh, aluminum foil or the like can be preferably used.
  • binder tetrafluoroethylene, polyvinylidene fluoride, or the like can be preferably used.
  • the compounding ratio of the electrode active material, the conductive material, and the binder is not particularly limited.
  • the conductive material is 1 to 30% by mass, preferably 5 to 25% by mass, and the binder is 30% by mass or less.
  • the content is preferably 3 to 10% by mass, and the remainder may be an electrode active material.
  • this electrode When this electrode is used as the negative electrode of a lithium ion secondary battery, a known material capable of occluding and releasing lithium, such as lithium cobalt oxide, can be used for the positive electrode as the counter electrode. If a known negative electrode containing lithium and capable of occluding and releasing lithium, such as lithium metal or lithium alloy, is used, the polycrystal of the present invention can be used as a positive electrode material for a lithium ion secondary battery.
  • a known negative electrode containing lithium and capable of occluding and releasing lithium such as lithium metal or lithium alloy
  • a well-known electrolyte solution, a solid electrolyte, etc. are employable as electrolyte.
  • a solution obtained by dissolving an electrolyte such as lithium perchlorate in a solvent such as propylene carbonate (PC) or ethylene carbonate (EC) can be used as the electrolytic solution. Examples are given below to further clarify the present invention. The present invention is not limited to these examples.
  • the Na 2 Ti 4 O 9 polycrystal obtained above was used as a negative electrode active material, acetylene black as a conductive material, and tetrafluoroethylene as a binder so as to have a mass ratio of 45:45:10.
  • a negative electrode was produced.
  • a positive electrode made of lithium metal and an electrolytic solution made of 1M solution of lithium hexafluorophosphate (LiPF 6 ) in propylene carbonate (PC), a coin cell type lithium ion secondary A battery was produced.
  • the battery was produced according to a known cell configuration / assembly method.
  • the manufactured lithium ion secondary battery was subjected to a constant current charge / discharge test at a current density of 12 mAh / g and a cut-off potential of 3.0 V-1.0 V under a temperature condition of 25 ° C.
  • the initial discharge capacity was 86 mAh / g, Charging / discharging at the first charge capacity of 81mAh / g, discharge capacity after about 100 cycles becomes 104mAh / g, charge capacity becomes 104mAh / g, and after that, charge capacity is 104mAh / g, discharge capacity is 104mAh / g until 300 cycles It was possible to reversibly charge / discharge cycle.
  • Fig. 3 shows the charge / discharge test results from 1 cycle to 100 cycles. From this result, it was revealed that the Na 2 Ti 4 O 9 polycrystal is useful as an active material of a lithium ion secondary battery.
  • a coin cell type sodium ion secondary battery was manufactured using the negative electrode prepared above, a positive electrode made of sodium metal, and an electrolytic solution made of a 1M solution in which sodium perchlorate was dissolved in propylene carbonate (PC).
  • the battery was produced according to a known cell configuration / assembly method.
  • the manufactured sodium ion secondary battery was subjected to a constant current charge / discharge test with a current density of 12 mAh / g and a cut-off potential of 2.5 V to 0.1 V under a temperature condition of 25 ° C.
  • the initial discharge capacity was 553 mAh / g
  • the initial charge capacity was 120mAh / g, which showed a large irreversible capacity, but the second discharge capacity was 127mAh / g, and the large irreversible capacity was eliminated. This is thought to be due to the decomposition of the electrolyte during the first discharge.
  • FIG. 4 shows the charge / discharge test results from 1 cycle to 60 cycles. From this result, it was revealed that the Na 2 Ti 4 O 9 polycrystal is useful as an active material of a sodium ion secondary battery.
  • the polycrystal of sodium titanium oxide of the present invention can be used as an electrode active material for lithium ion secondary batteries and sodium ion secondary batteries.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Secondary Cells (AREA)

Abstract

 可逆的な大容量の充放電が可能なナトリウムイオン二次電池およびリチウムイオン二次電池を提供する。ナトリウムイオン二次電池およびリチウムイオン二次電池は、正極と、負極と、電解質とを備える。これらの二次電池の正極または負極の活物質は、化学式NaxTi4O9(2≦x≦3)、好ましくはNa2Ti4O9で表され、一次元トンネル型構造を有し、単斜晶系に属する単一相の多結晶体である。この多結晶体は、モリブデン等の材質からなる容器内に、ナトリウム化合物と、チタン化合物および金属チタンの少なくとも一方とを含有する原料を充填し、800℃以上1600℃以下で焼成して製造する。

Description

多結晶体とその製造方法
 本発明は、ナトリウムイオン二次電池やリチウムイオン二次電池の電極活物材料として使用できるナトリウムチタン酸化物多結晶体とその製造方法、ならびにこの多結晶体を用いたナトリウムイオン二次電池およびリチウムイオン二次電池に関する。
 エネルギー密度が高く、高電位で作動させられるため、携帯電話やノートパソコンなどの小型情報機器にリチウムイオン二次電池が用いられている。リチウムイオン二次電池は、主に正極、負極、電解質から構成される。正極にはリチウム複合酸化物系材料が、負極にはリチウム複合酸化物系材料、炭素材料、金属リチウム、リチウム合金などがそれぞれ用いられる。電解質には例えば液体状の非水系有機電解質(電解液)が広く利用されている。今後、自動車用電源や大容量化定置型電源等として、大型で高出力、長寿命の二次電池の需要増加が予測され、さらに高容量のリチウムイオン二次電池材料が必要とされている。
 一方、大型電池の普及に伴い資源量が少なくコストが高いリチウムを利用するリチウムイオン二次電池に代わり、ナトリウムを利用するナトリウムイオン二次電池に関する研究開発が行われている。ナトリウムイオン二次電池の正極材料と負極材料には、ナトリウムイオンを吸蔵、放出が可能であり、また可逆性が高く、さらにはナトリウム吸蔵量の多い材料が求められている。このような観点から、ナトリウムイオン二次電池の正極材料については、様々なトンネル型構造や層状岩塩型構造を有する酸化物材料が報告されている。
 ナトリウムイオン二次電池の負極材料は正極材料ほど報告例がなく、現在、金属ナトリウム、ナトリウム・スズ合金、ソフトカーボンなどを用いて負極材料としての試験が行われている(特許文献1)。リチウム金属より活性であるナトリウム金属を負極材料に利用するのは、安全性の観点から産業利用には向いておらず、酸化物系負極材料の開発が重要である。そこで、正極材料に用いられている一次元トンネル型構造を有するNa0.44MnO2の結晶構造に着目した。
 Na0.44MnO2のトンネル部分は、ナトリウムイオンが吸蔵、脱離しやすい形状をしていると考えられる。電位差の観点から、Na0.44MnO2と同様に大きな一次元トンネル型構造を有するナトリウムチタン酸化物のNaxTi4O9(2≦x≦3)が負極材料候補に挙がった。しかしながら、従来はNaxTi4O9(2≦x≦3)の合成に金属ナトリウムを用いるなどの難点があった。また、NaxTi4O9(2≦x≦3)の多結晶体の合成は検討されていなかった。
特開2013-171798号公報
 本発明は、このような事情に鑑みてなされたものであり、二次電池の電極活物質材料として利用できる多結晶体とその製造方法、ならびにこの多結晶体を用いたナトリウムイオン二次電池およびリチウムイオン二次電池を提供することを目的とする。
 本発明の多結晶体の製造方法は、多結晶体が化学式NaxTi4O9(2≦x≦3)で表され、一次元トンネル型構造を有し、単斜晶系に属する単一相であり、ナトリウム化合物と、チタン化合物および金属チタンの少なくとも一方とを含有する原料を、800℃以上1600℃以下で焼成する焼成工程を有する。本発明の多結晶体の製造方法において、多結晶体は化学式Na2Ti4O9で表され、焼成工程で得られたNayTi4O9(2<y≦3)を水洗する水洗工程をさらに有していてもよい。
 本発明の多結晶体の製造方法において、原料が、Na4Ti5O12と、金属チタンとを含有することが好ましい。本発明の多結晶体の製造方法において、焼成工程では、非酸化性雰囲気で焼成することが好ましい。本発明の多結晶体の製造方法において、焼成工程では、モリブデン、タングステン、タンタル、鉄、ニッケル、およびチタンから選択される一種以上の材質からなる容器内に原料を充填して焼成することが好ましい。
 本発明の多結晶体は、化学式NaxTi4O9(2≦x≦3)で表され、一次元トンネル型構造を有し、単斜晶系に属する単一相の多結晶体である。本発明の他の多結晶体は、化学式Na2Ti4O9で表され、一次元トンネル型構造を有し、単斜晶系に属する単一相の多結晶体である。本発明のナトリウムイオン二次電池は、正極と、負極と、電解質とを有し、正極または負極の活物質が本発明の多結晶体である。本発明のリチウムイオン二次電池は、正極と、負極と、電解質とを有し、正極または負極の活物質が本発明の多結晶体である。
 本発明によれば、可逆的な大容量の充放電が可能なナトリウムイオン二次電池およびリチウムイオン二次電池が得られる。
本発明のNa2Ti4O9結晶の粉末X線回折パターンである。 本発明のNa2Ti4O9結晶の一次元トンネル型構造を示す図である。 本発明のリチウムイオン二次電池の1サイクルから100サイクルまでの充放電特性を示すグラフである。 本発明のナトリウムイオン二次電池の1サイクルから60サイクルまでの充放電特性を示すグラフである。
 本発明者らは、ナトリウムチタン酸化物Na4Ti5O12と金属チタンを原料として、還元雰囲気で焼成することによって、化学式NaxTi4O9(2≦x≦3)で表されるナトリウムチタン酸化物の多結晶体が得られることを見出した。さらに、得られた多結晶体を負極電極材料として用いたナトリウムイオン二次電池は55mAh/gの容量で、リチウムイオン二次電池は120 mAh/gの容量でそれぞれ可逆的な充放電反応をすることを確認した。
 本発明の多結晶体の製造方法は、多結晶体が化学式NaxTi4O9(2≦x≦3)で表され、一次元トンネル型構造を有し、単斜晶系に属する単一相の多結晶体であり、ナトリウム化合物と、チタン化合物および金属チタンの少なくとも一方とを含有する原料を、800℃以上1600℃以下で焼成する焼成工程を有する。多結晶体が化学式Na2Ti4O9で表され、焼成工程で得られたNayTi4O9(2<y≦3)を水洗してNa2Ti4O9を得る水洗工程をさらに有していてもよい。
 原料は、化学式NaxTi4O9(2≦x≦3)の各元素の比とほぼ同じになるように、ナトリウム化合物と金属チタンを秤量・混合して調製する。ナトリウム化合物と、チタン化合物と、金属チタンを上記の各元素の比とほぼ同じになるように秤量・混合してもよいし、ナトリウム化合物とチタン化合物を上記の各元素の比とほぼ同じになるように秤量・混合してもよい。混合方法は、原料を構成する各物質を均一に混合できる限り特に限定されず、例えばミキサー等の公知の混合機を用いて、湿式または乾式で混合すればよい。
 ナトリウム化合物としては、ナトリウムを含有するものであれば特に制限されず、Na2O等の酸化物やNa2CO3等の炭酸塩等が挙げられる。二種類以上のナトリウム化合物を用いてもよい。これらの中でもNa2Oが好ましい。チタン化合物としては、チタンを含有するものであれば特に制限されず、例えばTiO、Ti2O3、TiO2等の酸化物やTiCl4等の塩化物等が挙げられる。二種類以上のチタン化合物を用いてもよい。また、Na4Ti5O12等のナトリウムチタン酸化物を用いてもよい。これらのうち、ナトリウムチタン酸化物Na4Ti5O12と金属チタンを含有する原料が好ましく、Na4Ti5O12と金属チタンからなる原料がさらに好ましい。
 焼成前に、例えば、直径10mm程度の錠剤型などで原料を成型しておくことが好ましい。また、焼成工程では、非酸化性雰囲気で焼成を行うことが好ましい。非酸化性雰囲気としては、アルゴン、窒素、水素、一酸化炭素などの不活性から還元性の気体の雰囲気が挙げられる。原料の焼成温度は原料によって適宜設定することができるが、通常は800℃以上1600℃以下、好ましくは1100℃以上1350℃以下である。焼成時間は、焼成温度等に応じて適宜変更することができる。冷却方法は特に限定されないが、通常は自然放冷(炉内放冷)または徐冷である。焼成後は必要に応じて、焼成物の表面を研磨した後、焼成物を粉砕してもよい。
 焼成工程において、原料を充填する容器の材質は、非酸化性の雰囲気に適合するものであれば特に限定されないが、モリブデン、タングステン、タンタル、鉄、ニッケル、およびチタンから選択される一種以上が使用できる。これらの中でも鉄製の容器が好ましい。焼成物NaxTi4O9(2≦x≦3)は空気中の水分と反応して、化学組成Na2Ti3O9になるまで水酸化ナトリウムとしてナトリウムを析出する。このため、焼成物は真空デシケータなどに保存するのが好ましい。また、焼成物としてNayTi4O9(2<y≦3)が得られた場合は、NayTi4O9(2<y≦3)を水洗することによってNa2Ti4O9に変化する。焼成物の色が黒から白に変化すれば、Na2Ti4O9が得られたと判断できる。
 本発明の多結晶体は、化学式NaxTi4O9(2≦x≦3)で表され、一次元トンネル型構造を有し、単斜晶系に属する単一相の多結晶体である。すなわち、この多結晶体は、チタン酸化物が構成する3次元の骨格構造の隙間に、ナトリウムが一次元的に配列した構造を有している。本発明の多結晶体は化学式Na2Ti4O9で表されることが好ましい。本発明の実施形態に係る多結晶体の格子定数は、2.315nm<a<2.320nm、0.2938nm<b<0.2941nm、1.058nm<c<1.061nm、102.35°<β<102.44°である。
 本発明の多結晶体は、ナトリウムイオン二次電池やリチウムイオン二次電池の電極活物質として使用できる。すなわち、本発明のナトリウムイオン二次電池は、正極と、負極と、電解質とを有し、正極または負極の活物質が本発明の多結晶体である。電極活物質以外は、公知のナトリウムイオン二次電池(コイン型、ボタン型、円筒型、全固体型等)の電池要素をそのまま採用できる。
 電極活物質である本発明の多結晶体に、必要に応じて導電材、結着材などを配合して電極合材を調製し、これを集電体に圧着することにより電極が作製できる。集電体としては、ステンレスメッシュ、アルミメッシュ、チタンメッシュ、ニッケルメッシュ、アルミ箔等を好ましく用いることができる。結着材としては、テトラフルオロエチレンやポリフッ化ビニリデン等を好ましく用いることができる。電極活物質、導電材、および結着材等の配合比は特に限定されないが、通常は導電材が1~30質量%程度、好ましくは5~25質量%で、結着材が30質量%以下、好ましくは3~10質量%で、残部が電極活物質となるようにすればよい。
 この電極をナトリウムイオン二次電池の負極として用いる場合には、対極である正極には、例えば、ナトリウムクロム酸化物などナトリウムを吸蔵・放出可能な公知の材料が利用できる。また、金属ナトリウム、ナトリウム合金などのナトリウムを含有しかつナトリウムを吸蔵・放出可能な公知の負極を用いれば、本発明の多結晶体はナトリウムイオン二次電池の正極の材料として利用できる。
 本実施形態のナトリウムイオン二次電池では、セパレータや電池容器等も公知のものが採用できる。また、本実施形態のナトリウムイオン二次電池では、電解質として公知の電解液や固体電解質等が採用できる。例えば、プロピレンカーボネート(PC)やエチレンカーボネート(EC)等の溶媒に、過塩素酸ナトリウム等の電解質を溶解させたものが電解液として使用できる。
 本発明のリチウムイオン二次電池は、正極と、負極と、電解質とを有し、正極または負極の活物質が本発明の多結晶体である。電極活物質以外は、公知のリチウムイオン二次電池(コイン型、ボタン型、円筒型、全固体型等)の電池要素をそのまま採用できる。電極活物質である本発明の多結晶体に、必要に応じて導電材、結着材などを配合して電極合材を調製し、これを集電体に圧着することにより電極が作製できる。
 集電体としては、ステンレスメッシュ、アルミメッシュ、チタンメッシュ、ニッケルメッシュ、アルミ箔等を好ましく用いることができる。結着材としては、テトラフルオロエチレンやポリフッ化ビニリデン等を好ましく用いることができる。電極活物質、導電材、および結着材等の配合比は特に限定されないが、通常は導電材が1~30質量%、好ましくは5~25質量%で、結着材が30質量%以下、好ましくは3~10質量%で、残部が電極活物質となるようにすればよい。
 この電極をリチウムイオン二次電池の負極として用いる場合は、対極である正極には、例えば、リチウムコバルト酸化物などリチウムを吸蔵・放出可能な公知の材料が利用できる。また、金属リチウム、リチウム合金などのリチウムを含有しかつリチウムを吸蔵・放出可能な公知の負極を用いれば、本発明の多結晶体はリチウムイオン二次電池の正極の材料として利用できる。
 本実施形態のリチウムイオン二次電池では、セパレータや電池容器等も公知のものが採用できる。また、本実施形態のリチウムイオン二次電池では、電解質として公知の電解液や固体電解質等が採用できる。例えば、プロピレンカーボネート(PC)やエチレンカーボネート(EC)等の溶媒に、過塩素酸リチウム等の電解質を溶解させたものが電解液として使用できる。以下に実施例を示し、本発明をより一層明確にする。なお、本発明はこれらの実施例に限定されない。
(Na4Ti5O12粉末の作製)
 まず、炭酸ナトリウムNa2CO3(高純度化学製、純度99.99%)0.693gと、二酸化チタンTiO2(高純度化学製、純度99.99%)1.306gをメノウ乳鉢に入れてエタノールを使用した湿式法によって均一に混合した。つぎに、ふた付きのアルミナるつぼ(ニッカトー製、C2型)にこの混合物2gを充填した。そして、これを箱型電気炉(デンケン製、KDF009)に入れて、650℃で60時間焼成することで、ナトリウムチタン酸化物Na4Ti5O12粉末を作製した。
(Na2.8Ti4O9とNa2Ti4O9多結晶体の作製)
 混合すると各元素が化学式Na3Ti4O9と同じモル比となるように、上記で作製したNa4Ti5O12粉末と金属チタン多結晶体(高純度化学製、純度99.9%)をそれぞれ秤量した。これらを乳鉢中で混合し、錠剤成型器に充填した後、油圧プレス(リケン製、P-16B)を用いて50MPaで3分間維持して直径10mmのペレットに成型した。つぎに、この成型体を純鉄製の容器に充填し、電気炉(シリコニット高熱工業製、SPSH-39)を用いて、アルゴンガス雰囲気で、1000℃で25時間焼成した。その後、電気炉内で自然放冷し、Na2.8Ti4O9の黒色ペレットを得た。このNa2.8Ti4O9の黒色ペレットの表面を研磨した後、乳鉢で粉砕した。そして、容量500mLのビーカ内の水にこの粉砕体を浸漬させ、水が中性なるまで繰り返し水を交換し、白色のNa2Ti4O9多結晶体を得た。
(Na2Ti4O9多結晶体の同定)
 上記で得られたNa2Ti4O9について、粉末X線回折装置(リガク製、RINT2550V)により結晶構造を調べたところ、良質な結晶性を有する単斜晶系の単一相であることが明らかとなった。このときの粉末X線回折パターンを図1に示す。また、プログラムJana2006を用いた粉末X線構造解析により結晶構造の精密化を行った結果、化学組成はNa2.0Ti4O9であった。また格子定数は以下の値となり、既報の単結晶化合物と類似していた。精密化された結晶構造を図2に示す。
 a=2.318nm±0.010nm
 b=0.294014nm±0.0018nm
 c=1.059078nm±0.0077nm
 β=102.3636deg±0.0051deg
(リチウムイオン二次電池の作製)
 まず、上記で得られたNa2Ti4O9多結晶体を負極活物質とし、導電材としてアセチレンブラック、結着材としてテトラフルオロエチレンを、質量比45:45:10となるように配合し負極を作製した。つぎに、この負極と、リチウム金属からなる正極と、ヘキサフルオロリン酸リチウム(LiPF6)をプロピレンカーボネート(PC)に溶解させた1M溶液からなる電解液とを用いて、コインセル型リチウムイオン二次電池を作製した。電池の作製は、公知のセルの構成・組立方法に従って行った。
(リチウムイオン二次電池の充放電特性の測定)
 作製されたリチウムイオン二次電池について、25℃の温度条件下で、電流密度12mAh/g、3.0V-1.0Vのカットオフ電位で定電流充放電試験を行ったところ、初回放電容量が86mAh/g、初回充電容量が81mAh/gで充放電し、およそ100サイクル後の放電容量が104mAh/g、充電容量が104mAh/gとなり、以後300サイクルまで充電容量104mAh/g、放電容量104mAh/gで可逆的に充放電サイクルできた。図3に1サイクルから100サイクルまでの充放電試験結果を示す。この結果から、Na2Ti4O9多結晶体がリチウムイオン二次電池の活物質として有用であることが明らかとなった。
(ナトリウムイオン二次電池の作製)
 上記で作製した負極と、ナトリウム金属からなる正極と、過塩素酸ナトリウムをプロピレンカーボネート(PC)に溶解させた1M溶液からなる電解液と用いて、コインセル型ナトリウムイオン二次電池を作製した。電池の作製は、公知のセルの構成・組立方法に従って行った。
(ナトリウムイオン二次電池の充放電特性の測定)
 作製されたナトリウムイオン二次電池について、25℃の温度条件下で、電流密度12mAh/g、2.5V-0.1Vのカットオフ電位で定電流充放電試験を行ったところ、初回放電容量が553mAh/g、初回充電容量が120mAh/gで充放電し大きな不可逆容量を示したが、2回目の放電容量は127mAh/gであり、大きな不可逆容量は解消された。これは、初回放電時に電解液の分解が生じたためだと考えられる。
 その後、充放電容量は低下していき、およそ40サイクル後の放電容量が56mAh/g、充電容量が54mAh/gとなった。60サイクルまで試験をした結果、60サイクル目では充電容量52mAh/g、放電容量51mAh/gで充放電容量の減少も収束し、可逆的に充放電サイクルをすることが確認できた。図4に1サイクルから60サイクルまでの充放電試験結果を示す。この結果から、Na2Ti4O9多結晶体がナトリウムイオン二次電池の活物質として有用であることが明らかとなった。
 本発明のナトリウムチタン酸化物の多結晶体は、リチウムイオン二次電池やナトリウムイオン二次電池の電極活物質として利用できる。

Claims (9)

  1.  多結晶体の製造方法であって、
     前記多結晶体が、化学式NaxTi4O9(2≦x≦3)で表され、一次元トンネル型構造を有し、単斜晶系に属する単一相であり、
     ナトリウム化合物と、チタン化合物および金属チタンの少なくとも一方とを含有する原料を、800℃以上1600℃以下で焼成する焼成工程を有する多結晶体の製造方法。
  2.  請求項1において、
     前記多結晶体が化学式Na2Ti4O9で表され
     前記焼成工程で得られたNayTi4O9(2<y≦3)を水洗する水洗工程をさらに有する多結晶体の製造方法。
  3.  請求項1または2において、
     前記原料が、Na4Ti5O12と、金属チタンとを含有する多結晶体の製造方法。
  4.  請求項1から3のいずれかにおいて、
     前記焼成工程では、非酸化性雰囲気で焼成する多結晶体の製造方法。
  5.  請求項1から4のいずれかにおいて、
     前記焼成工程では、モリブデン、タングステン、タンタル、鉄、ニッケル、およびチタンから選択される一種以上の材質からなる容器内に前記原料を充填して焼成する多結晶体の製造方法。
  6.  化学式NaxTi4O9(2≦x≦3)で表され、一次元トンネル型構造を有し、単斜晶系に属する単一相の多結晶体。
  7.  化学式Na2Ti4O9で表され、一次元トンネル型構造を有し、単斜晶系に属する単一相の多結晶体。
  8.  正極と、負極と、電解質とを有し、
     前記正極または前記負極の活物質が請求項6または7に記載の多結晶体であるナトリウムイオン二次電池。
  9.  正極と、負極と、電解質とを有し、
     前記正極または前記負極の活物質が請求項6または7に記載の多結晶体であるリチウムイオン二次電池。
PCT/JP2015/072404 2014-08-14 2015-08-06 多結晶体とその製造方法 WO2016024530A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2016542559A JP6323888B2 (ja) 2014-08-14 2015-08-06 多結晶体とその製造方法
US15/502,452 US10347912B2 (en) 2014-08-14 2015-08-06 Polycrystalline material and production method therefor
CN201580043473.2A CN106575756A (zh) 2014-08-14 2015-08-06 多晶体及其制造方法
KR1020177006613A KR101906744B1 (ko) 2014-08-14 2015-08-06 다결정체와 그 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-165253 2014-08-14
JP2014165253 2014-08-14

Publications (1)

Publication Number Publication Date
WO2016024530A1 true WO2016024530A1 (ja) 2016-02-18

Family

ID=55304159

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/072404 WO2016024530A1 (ja) 2014-08-14 2015-08-06 多結晶体とその製造方法

Country Status (5)

Country Link
US (1) US10347912B2 (ja)
JP (1) JP6323888B2 (ja)
KR (1) KR101906744B1 (ja)
CN (1) CN106575756A (ja)
WO (1) WO2016024530A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109768270B (zh) * 2018-11-21 2021-08-13 上海紫剑化工科技有限公司 碳包覆锡基负极材料、钠离子电池及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08198601A (ja) * 1994-03-29 1996-08-06 Natl Inst For Res In Inorg Mater 層状構造を有するチタン酸化物及びその誘導体を光触媒とする水の分解方法
JP2012051740A (ja) * 2010-08-31 2012-03-15 National Institute Of Advanced Industrial Science & Technology チタン酸化物及びその製造方法、並びにそれを部材として使用した電気化学デバイス
WO2013069597A1 (ja) * 2011-11-10 2013-05-16 住友電気工業株式会社 ナトリウム電池用の負極活物質、負極及びナトリウム電池

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101176225A (zh) * 2005-03-28 2008-05-07 威伦斯技术公司 二次电化学电池
KR101635850B1 (ko) * 2009-03-27 2016-07-04 도쿄 유니버시티 오브 사이언스 에듀케이셔널 파운데이션 애드미니스트레이티브 오거니제이션 나트륨 이온 이차전지
JP2013171798A (ja) 2012-02-22 2013-09-02 National Institute Of Advanced Industrial & Technology ナトリウム二次電池用負極材料及びその製造方法、並びにナトリウム二次電池用負極、ナトリウム二次電池及びこれを用いた電気機器
JP6117630B2 (ja) * 2012-06-26 2017-04-19 京セラ株式会社 ナトリウム二次電池用負極材料およびそれを用いたナトリウム二次電池
CN103579605B (zh) * 2012-08-01 2016-05-04 中国科学院物理研究所 钠离子二次电池及其用的活性物质、正负极及活性物质的制备方法
JP6225786B2 (ja) * 2013-05-29 2017-11-08 Toto株式会社 金属酸化物粒子の製造方法
JP6460316B2 (ja) * 2013-12-09 2019-01-30 日本電気硝子株式会社 ナトリウムイオン電池用電極合材、及びその製造方法並びにナトリウム全固体電池

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08198601A (ja) * 1994-03-29 1996-08-06 Natl Inst For Res In Inorg Mater 層状構造を有するチタン酸化物及びその誘導体を光触媒とする水の分解方法
JP2012051740A (ja) * 2010-08-31 2012-03-15 National Institute Of Advanced Industrial Science & Technology チタン酸化物及びその製造方法、並びにそれを部材として使用した電気化学デバイス
WO2013069597A1 (ja) * 2011-11-10 2013-05-16 住友電気工業株式会社 ナトリウム電池用の負極活物質、負極及びナトリウム電池

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
J. AKIMOTO ET AL.: "A large tunnel structure of triclinic Na2Ti4O9", JOURNAL OF SOLID STATE CHEMISTRY, vol. 83, no. 1, November 1989 (1989-11-01), pages 132 - 139, XP024192193, DOI: doi:10.1016/0022-4596(89)90062-5 *
M. DION ET AL.: "The tetratitanates M2Ti4O9 (M = Li, Na, K, Rb, Cs, T1, Ag", JOURNAL OF INORGANIC AND NUCLEAR CHEMISTRY, vol. 40, no. 5, 1978, pages 917 - 918, XP000644581, DOI: doi:10.1016/0022-1902(78)80175-4 *
R. E. MARSH: "On the structure of Na2Ti4O9", JOURNAL OF SOLID STATE CHEMISTRY, vol. 86, no. 1, May 1990 (1990-05-01), pages 135 *

Also Published As

Publication number Publication date
US20170365847A1 (en) 2017-12-21
CN106575756A (zh) 2017-04-19
KR101906744B1 (ko) 2018-10-10
JPWO2016024530A1 (ja) 2017-06-01
KR20170041855A (ko) 2017-04-17
US10347912B2 (en) 2019-07-09
JP6323888B2 (ja) 2018-05-16

Similar Documents

Publication Publication Date Title
JP5985120B1 (ja) リチウムイオン電池用硫化物系固体電解質及び固体電解質化合物
EP3171444B1 (en) Sulfide-based solid electrolyte for lithium ion batteries and method for making the electrolyte
KR101665465B1 (ko) 리튬 이온 전지용 황화물계 고체 전해질
KR102561910B1 (ko) 정극재료, 이를 정극에 사용한 리튬 이차 전지
Chu et al. Revealing the role of W-doping in enhancing the electrochemical performance of the LiNi0. 6Co0. 2Mn0. 2O2 cathode at 4.5 V
JP5177672B2 (ja) リチウム電池用活物質及びその製造方法、並びにそれを用いたリチウム電池
KR102044735B1 (ko) 층상 구조 리튬 니켈 금속 산화물의 제조방법 및 상기 산화물을 포함하는 리튬 이차 전지
CN112042018A (zh) 氟化物离子二次电池用负极活性物质、使用了该活性物质的负极、及氟化物离子二次电池、以及该活性物质的制造方法
JP5644273B2 (ja) チタン酸化物及びその製造方法、並びにそれを部材として使用した電気化学デバイス
JP2019123668A (ja) リチウムナトリウム複合酸化物、二次電池用正極活物質および二次電池
Zhang et al. Evolution effect of Ti-based modifiers awards improved lithium ion diffusion rate of single crystal nickel-rich cathode
JP5207360B2 (ja) リチウムマンガン酸化物粉体粒子及びその製造方法、並びにそれを正極活物質として用いたリチウム二次電池
JP6460511B2 (ja) リチウム二次電池用活物質及びその製造方法並びにそれを用いたリチウム二次電池
JP6323888B2 (ja) 多結晶体とその製造方法
JP6395052B2 (ja) チタン酸化物およびその製造方法、二次電池用活物質およびその製造方法、並びにチタン酸化物を活物質として用いた二次電池
JPWO2018066633A1 (ja) チタン及び/又はゲルマニウム置換リチウムマンガン系複合酸化物及びその製造方法
JP5093669B2 (ja) マンガン酸化物、電池用電極活物質、及びそれらの製造方法、並びに電池用電極活物質を用いた二次電池
JP6399290B2 (ja) チタン酸化物及びその製造方法、二次電池用活物質及びその製造方法、並びにチタン酸化物を活物質として用いた二次電池
JP2022175507A (ja) リチウムイオン電池用正極活物質及びその製造方法並びにそれを用いたリチウムイオン電池用正極活物質層及びリチウムイオン電池
JP2013055021A (ja) コバルト酸リチウムの製造方法、コバルト酸リチウム、リチウムイオン二次電池の正極材及びリチウムイオン二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15831597

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016542559

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177006613

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15502452

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 15831597

Country of ref document: EP

Kind code of ref document: A1