WO2016024513A1 - 冶金用コークスおよびその製造方法 - Google Patents

冶金用コークスおよびその製造方法 Download PDF

Info

Publication number
WO2016024513A1
WO2016024513A1 PCT/JP2015/072308 JP2015072308W WO2016024513A1 WO 2016024513 A1 WO2016024513 A1 WO 2016024513A1 JP 2015072308 W JP2015072308 W JP 2015072308W WO 2016024513 A1 WO2016024513 A1 WO 2016024513A1
Authority
WO
WIPO (PCT)
Prior art keywords
log
coal
coke
vol
range
Prior art date
Application number
PCT/JP2015/072308
Other languages
English (en)
French (fr)
Inventor
幹也 永山
深田 喜代志
松井 貴
勇介 土肥
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to JP2016542548A priority Critical patent/JP6590155B2/ja
Priority to CN201580042610.0A priority patent/CN106574189A/zh
Priority to KR1020177002817A priority patent/KR101879553B1/ko
Publication of WO2016024513A1 publication Critical patent/WO2016024513A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B57/00Other carbonising or coking processes; Features of destructive distillation processes in general
    • C10B57/04Other carbonising or coking processes; Features of destructive distillation processes in general using charges of special composition

Definitions

  • the present invention relates to a metallurgical coke from which high strength metallurgical coke can be obtained by adjusting the type and amount of coal contained in the coal blend, and a method for producing the same.
  • Coke used as a reducing material and heat source in a steelmaking process using a blast furnace, etc. pulverizes multiple brands of raw coal and blends them at a predetermined ratio, and the resulting blended coal is charged into a coke oven and dry-distilled. It is manufactured by By the way, the blast furnace can realize a stable operation by maintaining the air permeability in the furnace in a good state. For that purpose, it is effective to use a high-strength metallurgical coke that is not easily pulverized in the furnace.
  • Non-patent Document 1 The model proposed by “Castle” is known for the basic idea of blending coal to produce high-strength metallurgical coke (Non-patent Document 1).
  • this model the constituent components of coal are divided into a fibrous part and a caking component.
  • Castle reveals that the optimization of the strength of the fibrous portion and the amount of the caking component is important in producing high-strength coke.
  • the recent coal blending technology in recent years has developed such a concept, and uses, for example, a coalification degree parameter and a caking property parameter.
  • a coalification parameter JIS M 8816 vitrinite average maximum reflectance (hereinafter abbreviated as “Ro”), volatile matter of coal, and the like are known.
  • a caking property parameter a maximum fluidity measured by a fluidity test using a JIS M 8801 Gisela plastometer (hereinafter referred to as “MF”) or a JIS M 8801 dilatometer was used. The total expansion coefficient measured by the expansibility test is often used.
  • Non-Patent Document 2 CBI (Composition Balance Index) proposed by Shapiro et al.
  • This method applies the concept of concrete to raw coal blending. It is divided into an active component that softens and melts by heating coal macerals and an inactive component that does not soften and melt, and the active component is cemented.
  • This is a method for estimating the coke strength by regarding the component (hereinafter referred to as “inert”) as an aggregate.
  • the component hereinafter referred to as “inert” as an aggregate.
  • the optimum amount of caking component is added according to the content of all inert components contained in the blended coal (hereinafter abbreviated as “total inert amount”, “TI”). It is considered that the coke strength can be increased by bringing the ratio of these two components (total inert amount and caking component) close to the optimum value.
  • the optimum ratio of the inert component (inert) and the caking component for producing high-strength coke varies depending not only on the amount of the inert but also on the “ability to adhere the inert”. For example, if the adhesive strength of the caking component in the blended coal is weak, the required amount of the caking component increases accordingly. Therefore, it is considered that the ratio of the inert component and the caking component in this case is relatively larger than the ratio of the caking component required.
  • Patent Document 1 the mutual relationship between the average reflectance Ro and the maximum fluidity MF and the total inert amount TI is examined, and when Ro and MF are set to predetermined values, the obtained coke strength is the value of TI. Accordingly, it is reported that the amount of inert when a parabola convex upward is drawn and the intensity becomes maximum varies depending on the size of MF.
  • Patent Document 2 reports a method for estimating coke strength based on the properties of raw coal including MF and TI.
  • the content of the inert component in the coal can be measured by the method for measuring the fine structure component of coal defined in JIS M8816.
  • coal pulverized to 850 ⁇ m or less is mixed with a thermoplastic or thermosetting binder to form a briquette, and the surface to be tested is polished, and then discriminated by optical properties and morphological properties under a microscope.
  • the content rate of each fine structure component in the sample is a method in which the percentage of the number measured for each component is taken as a volume percentage.
  • the total inert amount (TI) is obtained by the following equation (1).
  • Total inert amount (%) Fuji knit (%) + micri unit (%) + (2/3) x semi-fuji knit (%) + mineral (%)-(1) Here, all contents are vol. %.
  • the mineral content can be calculated from the anhydrous base ash content and the anhydrous base total sulfur content using the Parr formula described in JIS M 8816.
  • Coke is a porous body having a porosity of about 50%, and the structure of the pores was expected to affect the coke strength, but a method for controlling the pore structure was not known.
  • Non-Patent Document 3 the influence of Ro on the ratio between the optimum caking component and the amount of inert is examined, but the influence of MF is not examined.
  • the common logarithmic value log MF (log ddpm) of the maximum fluidity obtained by the Gieseler plastometer method of blended coal hereinafter referred to as “Gieseller maximum fluidity (logMF)” is 2.50 to 2.55 log ddpm, TI 25-35 vol. Coke is manufactured under the condition of MF in a narrow range of MF.
  • the log MF and TI of the coal blend are log MF: 2.58 log ddpm, TI: 24.0 vol. % Or logMF: 2.69 log ddpm, TI: 24.7 vol. It is reported that high-strength coke can be produced only under the two types of conditions.
  • Patent Document 3 2.83 log ddpm ⁇ log MF ⁇ 2.35 log ddpm, 35.6 vol. % ⁇ TI ⁇ 32.1 vol. % High-strength coke has been successfully produced.
  • Fig. 2 shows the range of logMF and TI that have been studied in the conventional research.
  • the influence on the coke strength of MF and TI under the conditions other than the range of FIG. 2 (2.90 log ddpm ⁇ log MF ⁇ 2.35 log ddpm, 36.0 vol.% ⁇ TI ⁇ 24.0 vol.%) Not reported.
  • the relationship between the quality of such blended coal and the pore structure of the coke produced is not clear.
  • the object of the present invention is to adjust the relationship between the maximum fluidity (MF) and the total inert amount (TI) of the blended coal to obtain a high-strength coke having a pore structure that has not been known so far. It is to propose a metallurgical coke and a method for producing the same.
  • the present invention proposes the following coke. That is, in the present invention, as a blended coal composed of a plurality of brands of coal, the total inert amount (TI) is 3.5 vol. % To 25.0 vol.
  • Coke obtained by dry distillation of coal blends exhibiting properties in the range of%, maximum flow rate (log MF) in the range of 1.8 to 2.3 log ddpm according to the Gisela plastometer method The ratio of the total value of the cross-sectional areas of the pores having a circularity of 0.8 or more to the total value of the cross-sectional areas of the rough atmospheric holes in the coarse air holes having a diameter of 100 ⁇ m or more and 3 mm or less in the coke is 10% or more.
  • the coke for metallurgy is characterized in that an average circularity of coarse air holes having a diameter of 100 ⁇ m or more and 3 mm or less in the coke is 0.35 or more.
  • the present invention is a blended coal composed of a plurality of brands of coal with a total inert amount (TI) of 3.5 vol. % To 25.0 vol. Coke obtained by dry distillation of coal blends exhibiting properties in the range of%, maximum flow rate (log MF) in the range of 1.8 to 2.3 log ddpm according to the Gisela plastometer method,
  • the ratio of the total value of the cross-sectional areas of the pores having a circularity of 0.8 or more to the total value of the cross-sectional areas of the rough atmospheric holes in the coarse air holes having a diameter of 50 ⁇ m or more and 200 ⁇ m or less in the coke is 10% or more.
  • the maximum fluidity (log MF) of the blended coal by the Gisela plastometer method is the maximum fluidity (log MF) of each brand coal constituting the blended coal and the brand coal in the blended coal.
  • the present invention is a blended coal composed of a plurality of brands of coal, and the total inert amount (TI) is 3.5 vol. % To 25.0 vol. %,
  • the coal blend showing properties within the range of 1.8 to 2.3 log ddpm with the highest flow rate (log MF) by the Gieseler plastometer method is dry-cooked, and the coke has a diameter of 100 ⁇ m or more and 3 mm or less.
  • a coke having a ratio of a total sectional area of pores having a circularity of 0.8 or more to a total sectional area of the rough atmospheric pores of 10% or more is manufactured.
  • a method for producing coke Alternatively, a coke having a diameter of 100 ⁇ m or more and 3 mm or less in the coke having an average circularity of 0.35 or more is produced.
  • the present invention is a blended coal composed of multiple brands of coal, and the total inert amount (TI) is 3.5 vol. % To 25.0 vol. %, And coal blend showing properties within the range of 1.8 to 2.3 log ddpm maximum flow rate (log MF) by the Gisela plastometer method is coarse, with a diameter of 50 to 200 ⁇ m in coke.
  • a coke having a ratio of a total sectional area of pores having a circularity of 0.8 or more to a total sectional area of the rough atmospheric pores of 10% or more is manufactured.
  • a method for producing coke is a manufacturing method of the coke for metallurgy characterized by manufacturing the coke whose average circularity of the rough atmospheric hole of diameter 50 micrometers or more and 200 micrometers or less in the said coke is 0.55 or more.
  • the maximum fluidity (log MF) of the blended coal by the Gisela plastometer method is the maximum fluidity (log MF) of each brand coal constituting the blended coal and the brand coal in the blended coal.
  • the present invention configured as described above, it is possible to produce coke having a pore structure with a high degree of circularity, which has not been obtained conventionally, under a simple concept of coal blending.
  • high strength metallurgical coke can be produced using blended coal obtained by blending a large amount of coal other than raw coal that has been conventionally used. Therefore, according to the present invention, the range of selection of usable coal is widened, resource constraints are eased, and it becomes possible to manufacture and supply metallurgical coke with stable quality, and thus stably perform blast furnace operations and the like. Will be able to.
  • FIG. 6 is a graph showing a relationship between a TI of a coal blend prepared to have a log MF (log ddpm) of 2.2 to 2.3 and a drum strength DI (150/15) of a coke obtained by dry distillation of the coal blend.
  • . 6 is a graph showing the relationship between the TI of blended coal prepared to have a log MF of 1.8 to 2.0 log ddpm and the drum strength DI (150/15) of coke obtained by dry distillation of the blended coal.
  • FIG. 2 shows the relationship between the log MF (log ddpm) and the total inert amount TI (vol.%) Of the conventional blended coal, which has been used in manufacturing metallurgical coke.
  • the structure of coke produced using blended coal that has been blended and adjusted under the prior art is a structure in which a solid material called inert is bonded with a paste-like material that is a caking component, as is also the case with concrete. It has become. That is, it is similar to the role of cement and aggregate in concrete and needs to contain some amount of inert components.
  • the role of the caking component for adhering the inert component is also important. Therefore, conventionally, a high strength metallurgical coke has been produced by increasing the blending amount of the coal having a high maximum fluidity MF that greatly affects the coke strength, thereby increasing the MF of the blended coal.
  • the total inert amount TI is 20 to 30 vol. It has been reported that the coke strength tends to be maximum when the content is%, and the coke strength tends to decrease even if the total inert amount TI is larger or smaller than the range.
  • a similar tendency is also disclosed in Non-Patent Document 4, where the total inert amount TI is 20-30 vol. %, It is recognized that the drum strength of coke is maximized.
  • the same tendency is also disclosed in Patent Document 1, and in the disclosed example, the total inert amount TI is 31 vol. % Shows the tendency of coke strength to become maximum.
  • log MF logarithm log MF
  • the relationship was investigated. As a result, when carbonized coal obtained by blending multiple brands of coal is subjected to dry distillation to produce coke, the total amount of inert metals TI is 3.5 to 25.0 vol. %, The maximum fluidity (log MF) according to the Gisela plastometer method was found to be effective so as to exhibit a property surrounded by the range of 1.8 to 2.3 log ddpm. A more preferable range of the total inert amount TI in the above range is 3.5 to 21.5 vol.
  • a blended coal having a TI of 3.5% or more and less than 15% from the viewpoint of effectively using coal having a low inert content that has not been used so far.
  • the more preferable range of the maximum fluidity (log MF) by the Gisela plastometer method in the above range is 1.8 to 2.2 log ddpm, particularly from the viewpoint of effectively using low fluidity coal. 1.8 to 2.0 log ddpm is preferable.
  • the more preferable method of the present invention is on and inside the pentagonal line shown in FIG. That is, in the method of carbonizing coal blended by blending multiple brands of coal and producing coke, as the blended coal, the total inert amount (TI vol.%) And the maximum fluidity by the Gieseler plastometer method ( log MF log ddpm) having a property within the range surrounded by the points in FIG. 1 (a, b, c, d and e below) is used.
  • the structure of the coke produced by the method of the present invention is different from the coke structure similar to that of the conventional blended coal produced under the condition of being on and inside the square line in FIG.
  • the component is coke which is mostly in the state of softened and melted and solidified.
  • coal blends with a low content of inert components produce coke with a different pore structure, unlike conventional blends when coals with a high content of inert components are blended.
  • coal blend b suppresses the growth and coalescence of the pores compared to the coke by the conventional blending, makes it difficult to form the connected pores, and the coke containing coarse defects is difficult to generate. It is suggested that some of the defects also affect the strength of coke.
  • the inventors quantitatively evaluate the difference in the pore structure of coke between a conventional blended coal (for example, the above blended coal a) and a blended coal having a low total inert content (for example, the above blended coal b).
  • a method for quantitatively evaluating the pore shape was studied.
  • Examples of methods for observing the cross section of the pore include X-ray CT tomography and a method in which a coke sample is embedded in a resin, and then the cross section is polished and observed with a microscope. If an image of a coke cross section is obtained by such a method, the pore area and perimeter data observed using image analysis software can be obtained. In cross-sectional observation with an optical microscope, it is difficult to take a wide field of view for one image capture. Therefore, it is preferable to evaluate the circularity using observation images of three or more fields.
  • the maximum ferret diameter is used in the present invention.
  • the ferret diameter is the vertical and horizontal lengths of a rectangle circumscribing a certain figure, and the maximum ferret diameter is the length of the longest side of the rectangle circumscribing a certain pore.
  • the inventors investigated all pores having a maximum ferret diameter of 100 ⁇ m or more and 3 mm or less as rough atmospheric pores, and for coke cross-sectional images obtained by an optical microscope.
  • the observation magnification of the microscope was set to 200 times, and pores having a maximum ferret diameter of 50 ⁇ m or more and 200 ⁇ m or less were set as investigation objects as rough air holes.
  • those in which the entire pores did not fit in the cross-sectional image were excluded from the evaluation targets because the maximum ferret diameter could not be obtained correctly.
  • the average circularity of the coarse atmospheric pores and the pores having a circularity of 0.8 or more in the coarse atmospheric pores are defined as circular pores, and the total pore cross-sectional area of the coarse atmospheric pores The ratio of the cross-sectional area of the circular pores to the total was evaluated.
  • Fig. 4 shows the results of investigating the ratio of circular pores in the coal blend by changing the blending composition of the blended coal to produce coke, determining the ratio of circular pores from the X-ray CT image.
  • the coke prepared from the blended coal having a low inert blend had a large proportion of circular pores. From the above, it was found that by using a low inert blend, the growth and coalescence of pores are suppressed and circular pores can be easily formed as compared with coke produced by the conventional blend.
  • Table 1 shows the average circularity, the ratio of the circular pores in the coarse air holes determined from the optical microscope observation by the above-described method, the average, along with the ratio of the circular pores in the rough air holes obtained by the X-ray CT shown in FIG. The measurement results of the circularity, the average quality of the blended coal, and the coke strength are also shown.
  • the coke strength is as high as 82.8 or more when the ratio of circular pores in the rough atmospheric pores having a maximum ferret diameter of 100 ⁇ m or more and 3 mm or less obtained by X-ray CT is 10% or more. .
  • the amount of inert (TI) and the maximum fluidity (log MF) are lower than those of the conventional coal blend shown in FIG. 2, that is, the total amount of inert (TI). Is 3.5 vol. % To 25.0 vol. %, The coal blend showing properties within the range of 1.8 to 2.3 log ddpm with the highest flow rate (log MF) according to the Gisela plastometer method is 10%.
  • the above is preferable.
  • the average circularity of rough air holes having a maximum ferret diameter of 100 ⁇ m or more and 3 mm or less obtained by X-ray CT is used as an index, it is found that the average circularity is preferably 0.35 or more.
  • Non-Patent Document 5 shows that when the pore diameter is uniform, the strength of the coke having a low degree of circularity of the pores is reduced, but this is because the stress is concentrated on the sharp part of the pores having a low degree of circularity. ing.
  • stress is concentrated in pores with low circularity and lowers strength, and in coke produced by the method of the present invention, stress concentration is unlikely to occur due to increase in circular pores, and strength Will be higher.
  • the ratio of pores having a high degree of circularity occupying pores having a specific size or larger was used as a measure of increasing the number of pores having a high degree of circularity.
  • the size and the expression method of the circularity may be changed as appropriate.
  • the circularity of pores of 50 ⁇ m or more may be investigated, and the median, mode, range, etc. of the examined circularity of the pores may be used as an index.
  • the circularity threshold for defining the circular pores can be changed as appropriate.
  • the inventors have confirmed through experiments the suitable blending conditions for coal blends with a low content of inert components.
  • the preferred range of total inertness (TI) and maximum fluidity (MF) is different between the conventional method and the method of the present invention, and arrived at the present invention. That is, according to the present invention, the total inert amount (TI) as the blended coal is 3.5 vol. % Or more 25.0 vol. %,
  • the highest fluidity (log MF) according to the Gieseler plastometer method is 1.8 log ddpm to 2.3 log ddpm, and the one with the properties can be used to produce high strength metallurgical coke. I understood it.
  • high strength metallurgical coke can be produced preferably by setting it within a pentagonal line connecting the following points a to e in FIG. That is, point a (log MF: 2.3 log ddpm, TI: 3.5 vol.%), Point b (log MF: 1.8 log ddpm, TI: 3.5 vol.%), Point c (log MF: 1.8) log ddpm, TI: 18.0 vol.%), point d (log MF: 2.0 log ddpm, TI: 25.0 vol.%) and point e (log MF: 2.3 log ddpm, TI: 25.0 vol.%) ).
  • log MF and TI (vol.%) Of the blended coal are weighted average based on the dry mass standard blending ratio of the coal from the log MF and TI of each coal constituting the blended coal. It is preferable to obtain. If the log MF and TI of each brand coal are measured in advance, the log MF and TI of the blended coal can be easily obtained by calculation, and it is not necessary to measure the log MF and TI of the blended coal every time the blend is changed. is there. Although TI is a volume fraction, since the density of coal has a small difference between brands, the TI obtained by actually measuring blended coal and the TI obtained by the above weighted average are almost the same.
  • the coking strength is lowered because the caking components are also poorly bonded to each other. Further, in the region on the right side of the pentagon shown in FIG. 1, since TI is excessive with respect to MF, the strength decreases due to poor adhesion of inert. Furthermore, since the TI in the blended coal is extremely small in the left region of the pentagon shown in FIG. 1, the effect of improving the strength as a composite material of the caking component and the inert cannot be obtained, and the coke strength is lowered.
  • the content of the inert component contained in the raw coal varies greatly depending on the coal brand, it roughly has a certain tendency depending on the production area.
  • Australian coal and Canadian coal have an inert content of 30 vol.
  • coking coals exceeding 50%.
  • Indonesian charcoal, New Zealand charcoal, and rice charcoal have an inert component content of 20 vol. % Of coking coal, and the content of inert components is 3 vol.
  • Coking coal which is about%, also exists.
  • the production area of the raw coal is not particularly mentioned, but when carrying out the present invention, a large amount of coal having such a low amount of inert components is used.
  • the blended coal may include additives such as a binder, oils, powdered coke, petroleum coke, resins, and waste.
  • Example 1 In this example, in order to investigate the influence of the MF and TI of the blended coal on the coke strength, the blended coal (1 to 6 in 1) with a constant average reflectance Ro of 1.00%, (of 2 1 to 8), (3 to 1 to 6), (4 to 1 to 6) and (5 to 1 to 5) were subjected to dry distillation, and the properties of the resulting coke were tested.
  • the coal filling conditions were a constant of 8 mass% moisture and a charged bulk density of 750 kg / m 3 , and the pulverized particle size condition of coal was 3 mm or less of 100%.
  • the carbonization conditions were a carbonization temperature of 1050 ° C. and a carbonization time of 6 hours.
  • Table 2 shows the properties of the coal used in the dry distillation test.
  • the average maximum reflectance (Ro) is a value measured in accordance with JIS M 8816
  • the Gieseller maximum fluidity is the maximum fluidity (MF) measured in accordance with JIS M 8801.
  • Common logarithm values and volatile matter (VM, dry base) are values measured in accordance with JIS M 8812
  • TI is a value measured in accordance with JIS M 8816 and calculated by equation (1).
  • Tables 3 to 7 show the composition of each blended coal (dry coal blend ratio (mass%) of each coal) and the results of the dry distillation test.
  • FIG. 7 shows the relationship between TI and drum strength DI (150/15) when the maximum flow rate of the coal blender is adjusted to satisfy 2.3 log ddpm ⁇ log MF ⁇ 2.2 log ddpm.
  • FIG. 8 shows the relationship between TI and drum strength DI (150/15) when the coalescer maximum flow rate of coal blender is adjusted to be 2.0 log ddpm ⁇ log MF ⁇ 1.8 log dpm. It was. The target value of the drum strength DI (150/15) was 82.7.
  • FIGS. As shown in FIG. 7, in the range of 2.3 log ddpm ⁇ log MF ⁇ 2.2 log ddpm, 25.0 vol. % ⁇ TI ⁇ 3.5 vol.
  • coke having a drum strength DI (150/15) of a target value or more can be produced.
  • logMF 1.9 log ddpm, 21.5 vol. % ⁇ TI ⁇ 3.5 vol.
  • the drum strength DI (150/15) becomes a coke having a target value or more. It was confirmed that the strength of coke after CO 2 reaction (CSR) showed the same tendency as the drum strength DI (150/15).
  • CSR CO 2 reaction
  • the ratio of circular pores in the coarse atmospheric pores in the coke was 10% or more, and the average circularity of the coarse atmospheric pores was 0.35 or more. It is considered that a large number of coarse air holes having a high degree of circularity contributes to increasing the strength of coke under the condition that the inert content in the medium is low.
  • Tables 8 to 10 show the composition of each blended coal (dry standard blending ratio (mass%) of each coal) and the results of the dry distillation test.
  • Ro, log MF, and TI are weighted average values obtained from Ro, log MF, and TI of each blended brand and the blend ratio of each brand. From Table 8 to Table 10, when the average reflectance Ro is 1.20%, 1.10%, and 0.95%, the average maximum reflectance Ro shown in Example 1 is 1.00%. Similarly, 25.0 vol.
  • Tables 3 to 10 also show the ratio of circular pores in coarse atmospheric pores having a maximum ferret diameter of 50 ⁇ m or more and 200 ⁇ m or less, as determined by observation with an optical microscope, and the average circularity of coarse atmospheric pores having a maximum ferret diameter of 50 ⁇ m or more and 200 ⁇ m or less. Showed.
  • the ratio of circular pores in the rough air holes having a maximum ferret diameter of 50 ⁇ m or more and 200 ⁇ m or less was 10%.
  • the average circularity of the coarse air holes having the maximum ferret diameter of 50 ⁇ m or more and 200 ⁇ m or less is 0.55 or more, and the total inert amount (TI) is 3.5 vol. % To 25.0 vol. %, A coal blend showing properties within the range of 1.8 to 2.3 log ddpm, the maximum fluidity (log MF) by the Gisela plastometer method is 10%, and the ratio of the circular pores in the coke is 10 It can be seen that the average circularity is preferably 0.55 or more.
  • the method proposed in the present invention is basically applicable to a vertical metallurgical furnace such as a blast furnace, and can be applied to other blast furnace refining techniques.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Coke Industry (AREA)

Abstract

【課題】配合炭の最高流動度(MF)と全イナート量(TI)との関係を調整することにより、従来知られていなかった気孔構造を有する高強度のコークスを得ることができる冶金用コークスおよびその製造方法を提供する。 【解決手段】複数銘柄の石炭よりなる配合炭として、全イナート量(TI)が3.5vol.%~25.0vol.%の範囲、ギーセラープラストメータ法による最高流動度(logMF)が1.8~2.3 log ddpmの範囲内の性質を示す配合炭を乾留して得られるコークスであって、コークス中の直径100μm以上3mm以下の粗大気孔のうち、円形度が0.8以上である気孔の断面積の合計値の、前記粗大気孔の断面積の合計値に対する割合が10%以上とする。

Description

冶金用コークスおよびその製造方法
 本発明は、配合炭に含まれる石炭の種類、配合量を調整することで高強度の冶金用コークスを得ることができる冶金用コークスおよびその製造方法に関する。
 高炉などによる製鉄プロセスにおいて、還元材や熱源として使用されるコークスは、複数銘柄の原料炭を粉砕して所定の割合で配合し、得られたその配合炭をコークス炉に装入して、乾留することによって製造されている。ところで、高炉は、炉内の通気性を良好な状態に維持することで安定操業を実現できるが、そのためには、炉内では粉化しにくい高強度の冶金用コークスの使用が有効である。
 高強度の冶金用コークスを製造するための、基本的な石炭配合の考え方については、“城”が提案しているモデルが知られている(非特許文献1)。このモデルは、石炭の構成成分を繊維質部分と粘結成分とに分けて考えるものである。即ち、城は、繊維質部分の強度と粘結成分の量の最適化こそが、高強度コークスを製造する上で重要であることを明らかにしている。
 近年の代表的な石炭配合技術は、こうした概念を発展させたものであって、例えば、石炭化度パラメータと、粘結性パラメータを用いるものである。その石炭化度パラメータは、JIS M 8816のビトリニット平均最大反射率(以下、「Ro」と略記する)や石炭の揮発分などが知られている。また、粘結性パラメータとしては、JIS M 8801のギーセラープラストメータを用いた流動性試験によって測定される最高流動度(以下、「MF」と記載する)や、JIS M 8801のジラトメータを用いた膨張性試験によって測定される全膨張率などがよく用いられる。
 また、粘結性パラメータのひとつに、Schapiroらにより提案された、CBI(Composition Balance Index:組織平衡指数)による方法がある(例えば、非特許文献2)。この方法は、原料炭配合にコンクリートの考え方を応用したものであり、石炭のマセラルを加熱することにより軟化溶融する活性成分と軟化溶融しない不活性成分とに分け、活性成分をセメントに、不活性成分(以下、「イナート」という)を骨材に見立ててコークス強度を推定する方法である。即ち、この考え方を応用すると、配合炭中に含まれる全イナート成分の含有量(以下、「全イナート量」、「TI」と略記する)に応じて粘結成分の最適量を添加することとし、これら2つの成分(全イナート量と粘結成分)の比率を最適値に近づけることによって、コークス強度を高くすることができると考えられている。
 ただし、高強度コークスを製造するための不活性成分(イナート)と粘結成分との最適比率は、イナートの量のみではなく、粘結成分自体の「イナートを接着する能力」によっても変わる。例えば、配合炭中の粘結成分の接着力が弱いと、その分だけ粘結成分の必要な量は多くなる。従って、この場合のイナート成分と粘結成分との比率は、必要とされる粘結成分の比率の方が相対的に多くなると考えられる。
 なお、この接着力の大きさは、上記した粘結性の指標である最高流動度MFと相関があると考えられる。つまり、溶けていて流動性の高い粘結成分は、流動性の低い粘結成分に対して、イナートを接着する能力が高いと考えられる。この点、特許文献1では、平均反射率Roおよび最高流動度MFと全イナート量TIとの相互関係について検討し、RoおよびMFを所定値としたとき、得られるコークス強度は、TIの値に応じて上に凸な放物線を描き、強度が極大となるときのイナートの量はMFの大きさによって変わることが報告されている。また、特許文献2ではMF、TIを含めた原料炭の性状により、コークス強度を推定する方法が報告されている。
 なお、石炭中のイナート成分の含有量(全イナート量TI)は、JIS M 8816に規定される石炭の微細組織成分測定方法で測定できる。この方法は、850μm以下に粉砕した石炭を熱可塑性または熱硬化性バインダーと混合してブリケット化し、被験表面を研磨した後、顕微鏡下における光学的性質及び形態学的性質によって識別する方法である。試料中の各微細組織成分の含有率は、成分ごとに測定された個数の百分率をもって、容量百分率とする方法である。上記方法により求められた微細組織成分の含有量を用いて、全イナート量(TI)は下記(1)式で求められる。
 全イナート量(%)=フジニット(%)+ミクリニット(%)+(2/3)×セミフジニット(%)+鉱物質(%)-(1)
ここで、含有量はすべてvol.%である。
 なお、鉱物質の含有量は、JIS M 8816解説に記載のParrの式を用いて、無水ベースの灰分と無水ベースの全硫黄分から計算で求めることができる。
 このように、配合炭の性状を調整して所望のコークス強度を有するコークスを製造することは種々試みられているが、従来考えられていた配合品位の好適な範囲においては、コークスの気孔構造はほぼ類似したものとなる。コークスは気孔率が約50%の多孔質体であり、気孔の構造がコークス強度に影響を与えることは予想されていたが、気孔構造を好適に制御する方法は知られていなかった。
特開2007-246593号公報 特開昭61-145288号公報 特開2008-69258号公報
「燃料協会誌」城著、Vol.26、1947年、p.1‐p.10 「Proc.Blast Furnace,Coke oven and Raw Materials」、Schapiroら著、Vol.20、1961年、p.89‐p.112 「J.Inst.Fuel」、Schapiroら著、Vol.37、1964年、p.234-p.242 「燃料協会誌」奥山ら著、Vol.49、1970年、p.736‐p.743 「鉄と鋼」、齋藤ら著、Vol.100、2014年、p140-147
 近年のコークスの製造技術においては、石炭粒子を強く接着させるため、石炭の流動性を確保することに重点が置かれ、MFとTIの両方を最適化することについては十分に検討されてこなかった。例えば、非特許文献3では、最適な粘結成分とイナート量との比に対する、Roの影響については検討されているが、MFの影響については検討されていない。なお、特許文献1については、配合炭のギーセラープラストメータ法によって求められる最高流動度の常用対数値logMF(log ddpm)(以下、「ギーセラー最高流動度(logMF)」という)が2.50~2.55 log ddpm、TIが25~35vol.%という、MFが狭い範囲の条件でコークスを製造している。また、特許文献2においても、配合炭のlogMFとTIがそれぞれlogMF:2.58 log ddpm、TI:24.0vol.%もしくはlogMF:2.69 log ddpm、TI:24.7vol.%という2種類の条件のみについて、高強度コークスの製造が可能であることを報告している。また、特許文献3では、2.83 log ddpm≧logMF≧2.35 log ddpm、35.6vol.%≧TI≧32.1vol.%の範囲で高強度コークスの製造に成功している。
 従来の研究において検討されてきたlogMFとTIの範囲を図2に示す。ただし、図2の範囲(2.90 log ddpm≧logMF≧2.35 log ddpm、36.0vol.%≧TI≧24.0vol.%)以外の条件でのMFおよびTIのコークス強度への影響は報告されていない。また、このような配合炭の品位と、生成するコークスの気孔構造との関係は明確でなかった。
 本発明の目的は、配合炭の最高流動度(MF)と全イナート量(TI)との関係を調整することにより、従来知られていなかった気孔構造を有する高強度のコークスを得ることができる冶金用コークスおよびその製造方法を提案することにある。
 従来技術が抱えている上述した課題を克服するために、本発明では、以下のコークスを提案する。即ち、本発明は、複数銘柄の石炭よりなる配合炭として、全イナート量(TI)が3.5vol.%~25.0vol.%の範囲、ギーセラープラストメータ法による最高流動度(logMF)が1.8~2.3 log ddpmの範囲内の性質を示す配合炭を乾留して得られるコークスであって、
 コークス中の直径100μm以上3mm以下の粗大気孔のうち、円形度が0.8以上である気孔の断面積の合計値の、前記粗大気孔の断面積の合計値に対する割合が10%以上であることを特徴とする冶金用コークスである。または、前記コークス中の直径100μm以上3mm以下の粗大気孔の平均円形度が0.35以上であることを特徴とする冶金用コークスである。
 また、本発明は、複数銘柄の石炭よりなる配合炭として、全イナート量(TI)が3.5vol.%~25.0vol.%の範囲、ギーセラープラストメータ法による最高流動度(logMF)が1.8~2.3 log ddpmの範囲内の性質を示す配合炭を乾留して得られるコークスであって、
 コークス中の直径50μm以上200μm以下の粗大気孔のうち、円形度が0.8以上である気孔の断面積の合計値の、前記粗大気孔の断面積の合計値に対する割合が10%以上であることを特徴とする冶金用コークスを提案する。または、前記コークス中の直径50μm以上200μm以下の粗大気孔の平均円形度が0.55以上であることを特徴とする冶金用コークスを提案する。
 本発明に係る冶金用コークスにおいて、
(1)前記配合炭として、全イナート量(TI(vol.%))と、ギーセラープラストメータ法による最高流動度(logMF(log ddpm))が、図1中の下記の点a(logMF:2.3、TI:3.5)、点b(logMF:1.8、TI:3.5)、点c(logMF:1.8、TI:18.0)、点d(logMF:2.0、TI:25.0)および点e(logMF:2.3、TI:25.0)に囲まれた範囲内の性質を示すものを用いること、
(2)配合炭のギーセラープラストメータ法による最高流動度(logMF)は、配合炭を構成する各銘柄炭のギーセラープラストメータ法による最高流動度(logMF)と配合炭中における前記銘柄炭の構成質量比率に基づき算出される加重平均値であること、
が、前記課題解決のためのより好ましい手段と考えられる。
 また、本発明は、複数銘柄の石炭よりなる配合炭として、全イナート量(TI)が3.5vol.%~25.0vol.%の範囲、ギーセラープラストメータ法による最高流動度(logMF)が1.8~2.3 log ddpmの範囲内の性質を示す配合炭を乾留して、コークス中の直径100μm以上3mm以下の粗大気孔のうち、円形度が0.8以上である気孔の断面積の合計値の、前記粗大気孔の断面積の合計値に対する割合が10%以上であるコークスを製造することを特徴とする冶金用コークスの製造方法である。または、前記コークス中の直径100μm以上3mm以下の粗大気孔の平均円形度が0.35以上であるコークスを製造することを特徴とする冶金用コークスの製造方法である。
 さらに、本発明は、複数銘柄の石炭よりなる配合炭として、全イナート量(TI)が3.5vol.%~25.0vol.%の範囲、ギーセラープラストメータ法による最高流動度(logMF)が1.8~2.3 log ddpmの範囲内の性質を示す配合炭を乾留して、コークス中の直径50μm以上200μm以下の粗大気孔のうち、円形度が0.8以上である気孔の断面積の合計値の、前記粗大気孔の断面積の合計値に対する割合が10%以上であるコークスを製造することを特徴とする冶金用コークスの製造方法である。または、前記コークス中の直径50μm以上200μm以下の粗大気孔の平均円形度が0.55以上であるコークスを製造することを特徴とする冶金用コークスの製造方法である。
 本発明に係る冶金用コークスの製造方法において、
(1)前記配合炭として、全イナート量(TI(vol.%))と、ギーセラープラストメータ法による最高流動度(logMF(log ddpm))が、図1中の下記の点a(logMF:2.3、TI:3.5)、点b(logMF:1.8、TI:3.5)、点c(logMF:1.8、TI:18.0)、点d(logMF:2.0、TI:25.0)および点e(logMF:2.3、TI:25.0)に囲まれた範囲内の性質を示すものを用いること、
(2)配合炭のギーセラープラストメータ法による最高流動度(logMF)は、配合炭を構成する各銘柄炭のギーセラープラストメータ法による最高流動度(logMF)と配合炭中における前記銘柄炭の構成質量比率に基づき算出される加重平均値であること、
が、前記課題解決のためのより好ましい手段と考えられる。
 前述のように構成される本発明によれば、石炭配合について簡単な考え方の下で従来にない、円形度の高い気孔構造を有するコークスの製造が可能となる。特に、従来から使用されていた原料炭以外の石炭を多量に配合してなる配合炭を用いて高強度の冶金用コークスの製造が可能になる。従って、本発明によれば、使用できる石炭の選択の幅が広がり、資源の制約が緩和されるとともに、品質の安定した冶金用コークスの製造供給が可能となり、ひいては高炉操業などを安定的に行なうことができるようになる。
本発明に適合する配合炭のlogMFとTIの範囲を示すグラフである。 従来技術における配合炭のlogMFとTIの範囲を示すグラフである。 従来の配合炭と低イナート配合炭から得られるコークスの顕微鏡写真である。 従来の配合炭と低イナート配合炭から得られるコークスに含まれる円形気孔の割合を示すグラフである。 表1に示した配合炭のうち、配合炭gと配合炭fによるコークスを一例として示す顕微鏡写真である。 表1に示した配合炭のうち、配合炭aと配合炭bから得られたコークスのX線CTによる断面画像である。 logMF(log ddpm)が2.2~2.3になるよう調製した配合炭のTIと、配合炭を乾留して得られたコークスのドラム強度DI(150/15)の関係を示すグラフである。 logMFが1.8~2.0 log ddpmになるよう調製した配合炭のTIと、配合炭を乾留して得られたコークスのドラム強度DI(150/15)の関係を示すグラフである。
 図2は、冶金用コークスを製造する際に用いられてきた、従来の配合炭のlogMF(log ddpm)と全イナート量TI(vol.%)との関係を示すものである。一般に、従来技術の下で配合調整された配合炭を用いて製造されるコークスの構造は、コンクリートにも例えられるとおり、イナートという固体材料を粘結成分である糊状の材料で接着した構造となっている。即ち、コンクリートにおけるセメントと骨材の役割と類似のものであり、ある程度のイナート成分を含むことが必要である。その一方で、そのイナート成分を接着するための粘結成分の役割もまた重要である。そこで、従来は、コークス強度に大きく影響を及ぼす前記最高流動度MFの高い石炭の配合量を多くすることによって配合炭のMFを高め、高強度の冶金用コークスを製造してきた。
 この点に関し、例えば、非特許文献2および3に記載の方法では、平均反射率Roが0.9~1.2%程度の石炭については、全イナート量TIが20~30vol.%の場合にコークス強度が極大となり、全イナート量TIがその範囲より多くても少なくてもコークス強度が低下する傾向が報告されている。また、同様の傾向は、非特許文献4にも開示されており、やはり全イナート量TIが20~30vol.%において、コークスのドラム強度が極大になることが認められている。さらに、同様の傾向は、特許文献1にも開示されており、その開示例では全イナート量TIが31vol.%でコークス強度が極大になる傾向が示されている。即ち、従来の知見では、全イナート量が少ない配合炭の場合には、高強度のコークスが得にくいという認識があった。しかし、発明者らの研究によれば、たとえ全イナート量が少ない配合炭であったとしても、流動性(ギーセラー最高流動度)が適正であれば、コークス強度は低下しないのみならず、通常の配合よりもむしろ強度が向上する場合もあることを見出した。
 上記の知見に基づいて、発明者らは、配合炭としてのギーセラー最高流動度の常用対数値logMF(以下、単に「logMF」として表示する)と全イナート量TIとの本発明に適合する好適な関係について調査した。その結果、複数銘柄の石炭を配合してなる配合炭を乾留し、コークスを製造する際、前記配合炭として、全イナート量TIが3.5~25.0vol.%、ギーセラープラストメータ法による最高流動度(logMF)が1.8~2.3 log ddpmの範囲に囲まれた性質を示すように配合したものが有効であることがわかった。前記範囲の中で全イナート量TIのより好ましい範囲は、3.5~21.5vol.%、さらに好ましくは3.5~18.0vol.%である。特に従来あまり利用されていなかったイナート含有量の低い石炭を有効に利用する観点からは、TIが3.5%以上、15%未満の配合炭を用いることが好ましい。また、前記範囲の中でギーセラープラストメータ法による最高流動度(logMF)のより好ましい範囲は、1.8~2.2 log ddpmであり、特に低流動度の石炭を有効利用する観点からは、1.8~2.0 log ddpmが好ましい。
 そして、本発明のさらに好ましい方法は、図1に示した5角形の線上およびその内側であることを突き止めた。即ち、複数銘柄の石炭を配合してなる配合炭を乾留し、コークスを製造する方法において、前記配合炭として、全イナート量(TI vol.%)と、ギーセラープラストメータ法による最高流動度(logMF log ddpm)が、図1の点(下記のa、b、c、dおよびe)に囲まれた範囲内の性質を示すものを用いる。
点a(logMF:2.3、TI:3.5)、点b(logMF:1.8、TI:3.5)、点c(logMF:1.8、TI:18.0)、点d(logMF:2.0、TI:25.0)および点e(logMF:2.3、TI:25.0)
 本発明法により製造したコークスの構造は、図2の四角形の線上および内側となる条件で製造した従来の配合炭と同様のコークス構造とは異なり、該コークス中のイナート成分は少なく、かつ粘結成分は軟化溶融して固化した状態のものが大部分を占めるコークスとなる。
 このような、イナート成分の含有量(全イナート量)が少ない配合炭組成においては、従来、その配合炭を乾留して得られるコークスの強度がどのような要因に支配されるかが明らかではなかった。これに対し、発明者らは、配合炭のイナート成分の含有量が低いときのコークス生成メカニズムについて検討した。その結果、このような構造のコークスについては、粘結成分の接着性つまり粘結性を抑えてもイナート成分を十分に接着でき、従来の配合において問題となるイナート成分の接着不良によるコークス強度の低下が起こらないことがわかった。即ち、イナート含有率の低い配合炭では、コークス強度への該イナート成分の影響(融着)は少なく、むしろコークスの気孔構造の方が強く影響することを見出したのである。
 実際、発明者らは、イナート成分の含有量の少ない配合炭では、従来のイナート成分含有量の多い石炭を配合する際の一般的な配合の場合とは異なり、気孔構造の異なるコークスが生成することを見出した。例えば、従来の配合炭(配合炭a、品位:Ro=1.00%、logMF=2.5log ddpm、全イナート量=34vol.%)と、低イナート配合炭(配合炭b、品位:Ro=1.00%、logMF=2.2 log ddpm、全イナート量=18vol.%)を同じ条件で乾留して得られたコークスの顕微鏡写真(図3)を比較すると、配合炭aに比べて、配合炭bでは円形に近い気孔が独立して存在していることが確認された。このことは、配合炭bでは従来の配合によるコークスよりも気孔の成長と合一が抑制され、連結気孔ができにくく、粗大な欠陥を含むコークスが生成しにくいことを示唆しており、粗大な欠陥の多少はコークスの強度にも影響することが示唆される。
 発明者らは、従来の配合炭(例えば上記の配合炭a)と、全イナートの含有量が低い配合炭(例えば上記の配合炭b)のコークスの気孔構造の違いを定量的に評価するため、気孔の形を定量的に評価する方法を検討した。
 気孔の形を評価する方法として、気孔の断面の観察結果に基づき、気孔のある断面における面積と、その周囲長から算出される円形度で評価する方法がある。円形度は(2)式で表される。この円形度は0~1の値をとり、1に近づくほど円形に近くなる。
    円形度=4π・気孔面積/(気孔周囲長)2  ・・・(2)
 気孔の断面を観察する方法の例としては、X線CT断層撮影法や、コークス試料を樹脂に埋め込んだ後、断面を研磨して顕微鏡で観察する方法がある。このような方法でコークスの断面の画像が得られれば、画像解析ソフトを用いて観察された気孔の面積や周囲長のデータを得ることができる。なお、光学顕微鏡による断面観察においては1回の画像撮影の視野を広くとりにくいため、好ましくは3視野以上の観察画像を用いて円形度の評価を行うことが好ましい。
 この時、それぞれの断面画像の撮影範囲や解像度に応じて、円形度を求める気孔の大きさの範囲を適切に設定する必要がある。前述のとおり、コークスの強度には、連結気孔が影響すると考えられるため、ある程度以上の大きさの気孔について円形度を評価することが好ましい。気孔の大きさを定義するためには、本発明においては最大フェレ径を用いる。フェレ径とは、ある図形に外接する長方形の縦および横の長さであり、最大フェレ径とは、ある気孔に対して外接する長方形のうちで最も長い辺の長さを指す。
 発明者らは、X線CT断層撮影で得られる断面画像に対しては、最大フェレ径が100μm以上3mm以下の全ての気孔を粗大気孔として調査対象とし、光学顕微鏡によって得られるコークス断面画像に対しては、顕微鏡の観察倍率を200倍とし、最大フェレ径が50μm以上200μm以下の気孔を粗大気孔として調査対象とした。なお、この時、断面画像中に気孔の全体が収まっていないものは、最大フェレ径を正しく求めることができないため、評価対象から除外した。
 なお、コークス全体の気孔構造の評価指標としては、粗大気孔の平均円形度、および、粗大気孔中の円形度が0.8以上となる気孔を円形気孔と定義し、粗大気孔の全気孔断面積に占める円形気孔の断面積の割合を評価した。
 配合炭の配合構成を変更して、コークスを製造し、X線CT像より円形気孔の割合を求め、配合炭中のイナート含有率と円形気孔の割合を調査した結果が図4である。図4に示されたとおり、低イナート配合である配合炭から調製されたコークスは円形気孔の割合が多くなっていた。以上のことから、低イナート配合とすることで、従来の配合によるコークスよりも気孔の成長と合一が抑制され、円形の気孔ができやすいことが分かった。
 表1には、図4に示したX線CTにより求めた粗大気孔中の円形気孔の割合とともに、平均円形度、上述の方法による光学顕微鏡観察から求めた粗大気孔中の円形気孔の割合、平均円形度、配合炭の平均品位およびコークス強度の測定結果を合わせて示した。
 図4および表1より、X線CTにより求めた最大フェレ径が100μm以上3mm以下の粗大気孔中の円形気孔の割合が10%以上の場合にコークス強度が82.8以上と高くなることがわかる。高強度コークスを製造するためには、イナート量(TI)、最高流動度(logMF)を、図2に示した従来の配合炭の領域よりも低下させた配合炭すなわち、全イナート量(TI)が3.5vol.%~25.0vol.%の範囲、ギーセラープラストメータ法による最高流動度(logMF)が1.8~2.3 log ddpmの範囲内の性質を示す配合炭を乾留して、コークス中の円形気孔の割合が10%以上となるようにすることが好ましいことがわかる。また、X線CTにより求めた最大フェレ径が100μm以上3mm以下の粗大気孔の平均円形度を指標とした場合、平均円形度が0.35以上となるようにすることが好ましいことがわかる。
 また、光学顕微鏡観察により気孔構造を評価した場合も同様の傾向を示し、最大フェレ径が50μm以上200μm以下の粗大気孔中の円形気孔の割合が大きいほど強度の高いコークスが得られること、最大フェレ径が50μm以上200μm以下の粗大気孔の平均円形度が大きいほど強度の高いコークスが得られることがわかった。
 表1に示した配合炭のうち、配合炭gおよび配合炭fによるコークスの光学顕微鏡写真を一例として図5に示す。また、表1に示した配合炭のうち配合炭aと配合炭bによるコークスのX線CT観察結果を図6に示す。
Figure JPOXMLDOC01-appb-T000001
 イナートの含有量を少ない配合炭とすることにより、円形の気孔が増加し、この円形気孔増加により、気孔への集中応力が避けられることが考えられる。非特許文献5では、気孔径が均一の場合、気孔の円形度が低いコークスの強度が小さくなるが、これは円形度の低い気孔の尖った部分に応力が集中するためであることが示されている。このように、円形度の低い気孔には応力が集中し、強度を低下させることが知られており、本発明法により製造したコークスでは円形の気孔が増加することで応力集中が起こりにくく、強度が高くなると考えられる。なお、本発明においては、円形度の高い気孔が多くなることの指標として、特定の大きさ以上の気孔に占める円形度の高い気孔の割合が大きいことを用いたが、円形度を調査する気孔の大きさや、円形度の表現方法は適宜変更してもよい。例えば、50μm以上の気孔の円形度を調査してもよいし、調査した気孔の円形度の中央値、最頻値、範囲などを指標としてもよい。また、円形気孔を定義するための円形度の閾値も適宜変更することができる。
 このように、全イナート量の低い配合炭では、一般的な配合炭とはミクロ構造の異なるコークスが生成することは、従来は知られておらず、発明者らが新たに見出した知見であって、低イナート炭の利用により配合炭の全イナート量を低くする場合には、従来の配合技術の延長線上の考え方に基づいて石炭配合設計を行なうのではなく、新たな配合基準の下での設計が必要となると考えられる。本発明はその方法を提案するものである。
 このような知見に基づき、発明者らはイナート成分の含有量の低い石炭配合における好適な配合条件を実験によって確認した。その結果、従来法と本発明方法とでは、全イナート量(TI)と最高流動度(MF)との好適な範囲が異なることを見出して、本発明に想到した。即ち、本発明は、配合炭としての全イナート量(TI)は、3.5vol.%以上25.0vol.%以下、ギーセラープラストメータ法による最高流動度(logMF)が1.8 log ddpm~2.3 log ddpmの範囲内の性質を示すものを用いると、高強度冶金用コークスの製造が可能になることがわかった。
 特に、本発明では、好ましくは図1中の下記点aから点eを結ぶ5角形の線上およびその内側の範囲とすることで、高強度の冶金用コークス製造が可能になることを知見した。即ち、点a(logMF:2.3 log ddpm、TI:3.5vol.%)、点b(logMF:1.8 log ddpm、TI:3.5vol.%)、点c(logMF:1.8 log ddpm、TI:18.0vol.%)、点d(logMF:2.0 log ddpm、TI:25.0vol.%)および点e(logMF:2.3 log ddpm、TI:25.0vol.%)である。
 ここで、配合炭のlogMF(log ddpm)および、TI(vol.%)は、配合炭を構成するそれぞれの石炭のlogMFとTIから、その石炭の乾燥質量基準配合率に基づいて加重平均して求めることが好ましい。各銘柄石炭のlogMFとTIを予め測定しておけば、配合炭のlogMFとTIを計算により容易に求めることができ、配合炭のlogMFやTIを配合変更のたびに測定する必要がないからである。TIは体積分率であるが、石炭の密度は銘柄による差が小さいため、配合炭を実測して求めたTIと、上記の加重平均により求めたTIはほぼ一致する。MFについては、石炭間の相互作用があるため、厳密には石炭混合による加成性が成立しない場合があるが、logMFについては、配合炭を実測して求めたlogMFと加重平均logMFの間には相関があることが知られている。
 このような配合条件を採用したときに高強度の冶金用コークスが得られる理由は、次のように考えられる。即ち、最高流動度MFが、図1中の五角形の線上およびその内側の範囲を外れる場合、例えば、図1に示された五角形の上側の領域では、軟化溶融時に高い粘結性をもつ原料炭が大きく膨張するため粗大気孔を作りやすく、コークス強度が低下する。一方、このMFが、図1に示された五角形の線上およびその内側の条件よりも低い、つまり五角形の下側になる領域は、全イナート量に対する接着力だけでなく、粘結成分同士の接着力も不十分な状態となっている。そのため、全イナート量TIを低くしても、粘結成分同士も接着不良になるためコークス強度は低下する。また、図1に示された五角形の右側の領域では、TIがMFに対して過剰であるためイナートの接着不良により強度が低下する。さらに、図1に示された五角形の左側の領域は、配合炭中のTIが極めて少ないため、粘結成分とイナートの複合材料としての強度向上効果が得られなくなり、コークス強度は低くなる。
 なお、原料炭に含まれるイナート成分の含有量は、石炭銘柄によって大きく異なるが、大雑把には産地によって一定の傾向がある。例えば、豪州炭やカナダ炭などは、イナート含有量が30vol.%を超える原料炭が多い。また、インドネシア炭やニュージーランド炭や米炭などは、イナート成分の含有量が20vol.%以下の原料炭が多く、銘柄によってイナート成分の含有量が3vol.%程度である原料炭も存在する。本発明においては、原料炭の産地は特に言及しないが、本発明を実施する場合は、このようなイナート成分量の低い石炭を多く使用する。また、配合炭は、粘結材、油類、粉コークス、石油コークス、樹脂類、廃棄物などの添加物を含むものであってもよい。
<実施例1>
 この実施例では、コークス強度におよぼす配合炭のMFとTIとの影響を調査するために、平均反射率Roを1.00%で一定とした配合炭(1の1~6)、(2の1~8)、(3の1~6)、(4の1~6)、(5の1~5)を乾留し、得られたコークスの性状試験を行った。石炭の充填条件は、水分8mass%、装入嵩密度750kg/mの一定とし、石炭の粉砕粒度条件は3mm以下を100%とした。乾留条件は、乾留温度1050℃、乾留時間6時間とした。その乾留試験は、実炉をシミュレートすることが可能な小型電気炉を使用し、乾留後窒素雰囲気下で冷却して得られたコークスの性状評価については、JIS K 2151に定められているドラム150回転15mm指数のドラム強度DI(150/15)を用いた。なお、一部の試験ではISO18894法に準拠したコークスのCO反応後強度(CSR)も測定した。
 前記乾留試験に用いた石炭の性状を表2に示す。表1中の、平均最大反射率(Ro)は、JIS M 8816に準拠して測定した値、ギーセラー最高流動度(logMF)は、JIS M 8801に準拠して測定した最高流動度(MF)の常用対数値、揮発分(VM、ドライベース)は、JIS M 8812に準拠して測定した値、TIはJIS M 8816に準拠して測定し、(1)式により算出した値である。それぞれの配合炭の配合構成(各石炭の乾燥基準配合比率(mass%))および乾留試験の結果を表3~表7に示す。表中のRo、logMF、TIは、配合した各銘柄のRo、logMF、TIと、各銘柄の配合比率から求めた加重平均値である。図7は、配合炭のギーセラー最高流動度を2.3 log ddpm≧logMF≧2.2 log ddpmとなるよう調整した場合の、TIとドラム強度DI(150/15)との関係を示す。また、図8は、配合炭のギーセラー最高流動度を2.0 log ddpm≧logMF≧1.8 log dpmとなるよう調整した場合の、TIとドラム強度DI(150/15)との関係を示した。ドラム強度DI(150/15)の目標値は82.7とした。
 上記DI(150/15)の目標値82.7は、比較例としてRo=1.00%、MFとTIとが従来配合例である図2に示した四角形の範囲内のlogMF=2.50 log ddpm、TI=35vol.%となるよう調製した配合炭を乾留し、得られたコークスのドラム強度DI(150/15)を測定した結果であり、従来法による典型的な条件の一例である。少なくとも、本発明に適合する実施例は比較例のものよりもいずれもDIが大きく、このような強度のコークスを用いれば、大型高炉が問題なく操業できる。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
 表3~表7の結果を図7と図8に示す。図7に示すとおり、2.3 log ddpm≧logMF≧2.2 log ddpmの範囲では、25.0vol.%≧TI≧3.5vol.%の範囲に配合炭を調製することで、ドラム強度DI(150/15)が目標値以上のコークスが製造できている。また、図8に示すとおり、logMF=2.0 log ddpmとした場合は、25.0vol.%≧TI≧3.5vol.%の範囲に調整することで、ドラム強度DI(150/15)が目標値以上のコークスが製造できた。同様に、logMF=1.9 log ddpmでは、21.5vol.%≧TI≧3.5vol.%の範囲に調整することで、そして、logMF=1.8 log ddpmでは、TIを18.0vol.%≧TI≧3.5vol.%の範囲に調整することで、ドラム強度DI(150/15)が目標値以上のコークスとなる。なお、コークスのCO反応後強度(CSR)についてもドラム強度DI(150/15)と同様の傾向を示すことを確認した。このとき、目標値以上のコークス強度が得られた例において、コークス中の粗大気孔中の円形気孔の割合は10%以上、粗大気孔の平均円形度は0.35以上となっており、配合炭中のイナート含有量が低い条件において、円形度の高い粗大気孔が多いことがコークスの高強度化に寄与していると考えられる。
 以上のことから、望ましい配合炭のMFとTIの関係(範囲)は図1に示すようになることが確かめられた。即ち、図1中の点a、点b、点c、点dおよび点eで囲まれる五角形の線上およびその内側となるよう複数種の銘柄炭を配合することで、粗大気孔の円形度が高い冶金炉用の高強度コークスの製造が可能になる。この点、従来法による配合の考え方では、好適な配合条件のlogMFの下限値は2.3程度であって、それ以下のlogMFでは、強度が低下すると予想されていた。これに対し、本発明の方法では、配合炭の全イナート量(TI)を低下させた配合条件とすることにより、ギーセラー最高流動度logMFを低下させても、却ってコークス強度が上昇するという、従来にない結果が得られた。
<実施例2>
 実施例1と同様の方法により、ギーセラー最高流動度logMF=2.2 log ddpmとして平均最大反射率Roの異なる配合炭を調製してコークスを製造し、得られたコークスの強度を調査した。それぞれの配合炭の配合構成(各石炭の乾燥基準配合比率(mass%))および乾留試験の結果を表8~10に示す。表中のRo、logMF、TIは、配合した各銘柄のRo、logMF、TIと、各銘柄の配合比率から求めた加重平均値である。表8~表10より、平均反射率Roが、1.20%、1.10%、0.95%の場合とも、実施例1に示した平均最大反射率Roが1.00%の場合と同様に、25.0vol.%≧TI≧3.5vol.%の範囲の配合炭から、粗大気孔の円形度が高く、ドラム強度DI(150/15)が82.7以上のコークスが得られることが確認でき、RoはTIとlogMFの好適な範囲に対して大きな影響を及ぼさないと考えられる。
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
 表3~10には、光学顕微鏡観察により求めた最大フェレ径が50μm以上200μm以下の粗大気孔中の円形気孔の割合、および、最大フェレ径が50μm以上200μm以下の粗大気孔の平均円形度も併せて示した。ドラム強度DI(150/15)が目標値(82.7)以上のコークスが得られた例(実施例)において、最大フェレ径が50μm以上200μm以下の粗大気孔中の円形気孔の割合が10%以上、最大フェレ径が50μm以上200μm以下の粗大気孔の平均円形度が0.55以上となっており、全イナート量(TI)が3.5vol.%~25.0vol.%の範囲、ギーセラープラストメータ法による最高流動度(logMF)が1.8~2.3 log ddpmの範囲内の性質を示す配合炭を乾留して、コークス中の前記円形気孔の割合が10%以上、前記平均円形度が0.55以上となるようにすることが好ましいことがわかる。
 本発明で提案している方法は、高炉などの竪形冶金炉に用いることを基本として、他の高炉精錬技術にも適用が可能である。

Claims (12)

  1.  複数銘柄の石炭よりなる配合炭として、全イナート量(TI)が3.5vol.%~25.0vol.%の範囲、ギーセラープラストメータ法による最高流動度(logMF)が1.8~2.3 log ddpmの範囲内の性質を示す配合炭を乾留して得られるコークスであって、
     コークス中の直径100μm以上3mm以下の粗大気孔のうち、円形度が0.8以上である気孔の断面積の合計値の、前記粗大気孔の断面積の合計値に対する割合が10%以上であることを特徴とする冶金用コークス。
  2.  複数銘柄の石炭よりなる配合炭として、全イナート量(TI)が3.5vol.%~25.0vol.%の範囲、ギーセラープラストメータ法による最高流動度(logMF)が1.8~2.3 log ddpmの範囲内の性質を示す配合炭を乾留して得られるコークスであって、
     コークス中の直径50μm以上200μm以下の粗大気孔のうち、円形度が0.8以上である気孔の断面積の合計値の、前記粗大気孔の断面積の合計値に対する割合が10%以上であることを特徴とする冶金用コークス。
  3.  複数銘柄の石炭よりなる配合炭として、全イナート量(TI)が3.5vol.%~25.0vol.%の範囲、ギーセラープラストメータ法による最高流動度(logMF)が1.8~2.3 log ddpmの範囲内の性質を示す配合炭を乾留して得られるコークスであって、
     コークス中の直径100μm以上3mm以下の粗大気孔の平均円形度が0.35以上であることを特徴とする冶金用コークス。
  4.  複数銘柄の石炭よりなる配合炭として、全イナート量(TI)が3.5vol.%~25.0vol.%の範囲、ギーセラープラストメータ法による最高流動度(logMF)が1.8~2.3 log ddpmの範囲内の性質を示す配合炭を乾留して得られるコークスであって、
     コークス中の直径50μm以上200μm以下の粗大気孔の平均円形度が0.55以上であることを特徴とする冶金用コークス。
  5.  前記配合炭として、全イナート量(TI(vol.%))と、ギーセラープラストメータ法による最高流動度(logMF(log ddpm))が、図1中の下記の点a(logMF:2.3、TI:3.5)、点b(logMF:1.8、TI:3.5)、点c(logMF:1.8、TI:18.0)、点d(logMF:2.0、TI:25.0)および点e(logMF:2.3、TI:25.0)に囲まれた範囲内の性質を示すものを用いることを特徴とする請求項1~4のいずれか1項に記載の冶金用コークス。
  6.  配合炭のギーセラープラストメータ法による最高流動度(logMF)は、配合炭を構成する各銘柄炭のギーセラープラストメータ法による最高流動度(logMF)と配合炭中における前記銘柄炭の構成質量比率に基づき算出される加重平均値であることを特徴とする請求項1~5のいずれか1項に記載の冶金用コークス。
  7.  複数銘柄の石炭よりなる配合炭として、全イナート量(TI)が3.5vol.%~25.0vol.%の範囲、ギーセラープラストメータ法による最高流動度(logMF)が1.8~2.3 log ddpmの範囲内の性質を示す配合炭を乾留して、
     コークス中の直径100μm以上3mm以下の粗大気孔のうち、円形度が0.8以上である気孔の断面積の合計値の、前記粗大気孔の断面積の合計値に対する割合が10%以上であるコークスを製造することを特徴とする冶金用コークスの製造方法。
  8.  複数銘柄の石炭よりなる配合炭として、全イナート量(TI)が3.5vol.%~25.0vol.%の範囲、ギーセラープラストメータ法による最高流動度(logMF)が1.8~2.3 log ddpmの範囲内の性質を示す配合炭を乾留して、
     コークス中の直径50μm以上200μm以下の粗大気孔のうち、円形度が0.8以上である気孔の断面積の合計値の、前記粗大気孔の断面積の合計値に対する割合が10%以上であるコークスを製造することを特徴とする冶金用コークスの製造方法。
  9.  複数銘柄の石炭よりなる配合炭として、全イナート量(TI)が3.5vol.%~25.0vol.%の範囲、ギーセラープラストメータ法による最高流動度(logMF)が1.8~2.3 log ddpmの範囲内の性質を示す配合炭を乾留して、
     コークス中の直径100μm以上3mm以下の粗大気孔の平均円形度が0.35以上であるコークスを製造することを特徴とする冶金用コークスの製造方法。
  10.  複数銘柄の石炭よりなる配合炭として、全イナート量(TI)が3.5vol.%~25.0vol.%の範囲、ギーセラープラストメータ法による最高流動度(logMF)が1.8~2.3 log ddpmの範囲内の性質を示す配合炭を乾留して、
     コークス中の直径50μm以上200μm以下の粗大気孔の平均円形度が0.55以上であるコークスを製造することを特徴とする冶金用コークスの製造方法。
  11.  前記配合炭として、全イナート量(TI(vol.%))と、ギーセラープラストメータ法による最高流動度(logMF(log ddpm))が、図1中の下記の点a(logMF:2.3、TI:3.5)、点b(logMF:1.8、TI:3.5)、点c(logMF:1.8、TI:18.0)、点d(logMF:2.0、TI:25.0)および点e(logMF:2.3、TI:25.0)に囲まれた範囲内の性質を示すものを用いることを特徴とする請求項7~10のいずれか1項に記載の冶金用コークスの製造方法。
  12.  配合炭のギーセラープラストメータ法による最高流動度(logMF)は、配合炭を構成する各銘柄炭のギーセラープラストメータ法による最高流動度(logMF)と配合炭中における前記銘柄炭の構成質量比率に基づき算出される加重平均値であることを特徴とする請求項7~11のいずれか1項に記載の冶金用コークスの製造方法。
PCT/JP2015/072308 2014-08-15 2015-08-06 冶金用コークスおよびその製造方法 WO2016024513A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016542548A JP6590155B2 (ja) 2014-08-15 2015-08-06 冶金用コークスおよびその製造方法
CN201580042610.0A CN106574189A (zh) 2014-08-15 2015-08-06 冶金用焦炭及其制造方法
KR1020177002817A KR101879553B1 (ko) 2014-08-15 2015-08-06 야금용 코크스 및 그 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-165408 2014-08-15
JP2014165408 2014-08-15

Publications (1)

Publication Number Publication Date
WO2016024513A1 true WO2016024513A1 (ja) 2016-02-18

Family

ID=55304142

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/072308 WO2016024513A1 (ja) 2014-08-15 2015-08-06 冶金用コークスおよびその製造方法

Country Status (5)

Country Link
JP (1) JP6590155B2 (ja)
KR (1) KR101879553B1 (ja)
CN (1) CN106574189A (ja)
TW (1) TW201610138A (ja)
WO (1) WO2016024513A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210121236A (ko) * 2019-03-15 2021-10-07 제이에프이 스틸 가부시키가이샤 석탄의 평가 방법 및 배합탄의 조제 방법 그리고 코크스의 제조 방법

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0220592A (ja) * 1988-07-08 1990-01-24 Nkk Corp 配合炭の最高流動度推定方法
JP2001013339A (ja) * 1999-06-28 2001-01-19 Nec Corp 光パワー監視器
JP2007023190A (ja) * 2005-07-19 2007-02-01 Kobe Steel Ltd コークスの製造方法、及び、銑鉄の製造方法
JP2011026424A (ja) * 2009-07-24 2011-02-10 Jfe Steel Corp 石炭の改質方法
JP2013181048A (ja) * 2012-02-29 2013-09-12 Jfe Steel Corp コークス用配合炭組成決定方法及びコークス製造方法
WO2014129337A1 (ja) * 2013-02-21 2014-08-28 Jfeスチール株式会社 冶金用コークスの製造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61145288A (ja) 1984-12-19 1986-07-02 Mitsubishi Chem Ind Ltd コ−クスの製造方法
JP4608752B2 (ja) * 1999-10-20 2011-01-12 Jfeスチール株式会社 高炉用高反応性高強度コークスおよびその製造方法
JP2001133379A (ja) * 1999-11-02 2001-05-18 Mitsubishi Chemicals Corp 粘結剤を添加した配合炭の最高流動度推定方法
JP4311022B2 (ja) * 2003-01-20 2009-08-12 住友金属工業株式会社 コークスの製造方法
JP2007246593A (ja) 2006-03-14 2007-09-27 Jfe Steel Kk コークスの製造方法
JP5045039B2 (ja) 2006-09-14 2012-10-10 Jfeスチール株式会社 高強度コークスの製造方法
JP5229362B2 (ja) * 2010-09-01 2013-07-03 Jfeスチール株式会社 冶金用コークスの製造方法
JP5152378B2 (ja) * 2010-09-01 2013-02-27 Jfeスチール株式会社 冶金用コークスの製造方法
JP5686052B2 (ja) * 2011-06-20 2015-03-18 新日鐵住金株式会社 コークスの製造方法
JP5811962B2 (ja) * 2011-07-27 2015-11-11 新日鐵住金株式会社 コークス強度の推定方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0220592A (ja) * 1988-07-08 1990-01-24 Nkk Corp 配合炭の最高流動度推定方法
JP2001013339A (ja) * 1999-06-28 2001-01-19 Nec Corp 光パワー監視器
JP2007023190A (ja) * 2005-07-19 2007-02-01 Kobe Steel Ltd コークスの製造方法、及び、銑鉄の製造方法
JP2011026424A (ja) * 2009-07-24 2011-02-10 Jfe Steel Corp 石炭の改質方法
JP2013181048A (ja) * 2012-02-29 2013-09-12 Jfe Steel Corp コークス用配合炭組成決定方法及びコークス製造方法
WO2014129337A1 (ja) * 2013-02-21 2014-08-28 Jfeスチール株式会社 冶金用コークスの製造方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Inert Ryudo no Coke Kiko Kozo ni Oyobosu Eikyo", CURRENT ADVANCES IN MATERIALS AND PROCESSES, vol. 26, no. 2, 2013, pages 767 *
"Numerical Analysis of Microscopic Coke Strength Factors Using a Homogenization Method", JOURNAL OF THE IRON & STEEL INSTITUTE OF JAPAN, vol. 93, no. 12, 2007, pages 728 - 735 *
"Quantitative Evaluation of Defects in Coke and Effect of Defects on Coke Strength", CURRENT ADVANCES IN MATERIALS AND PROCESSES, vol. 18, no. 1, 2005, pages 90 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210121236A (ko) * 2019-03-15 2021-10-07 제이에프이 스틸 가부시키가이샤 석탄의 평가 방법 및 배합탄의 조제 방법 그리고 코크스의 제조 방법
EP3922701A4 (en) * 2019-03-15 2022-03-23 JFE Steel Corporation COAL EVALUATION METHOD, MIXED COAL PREPARATION METHOD, AND COKE PRODUCTION METHOD
AU2020241658B2 (en) * 2019-03-15 2022-09-22 Jfe Steel Corporation Method for evaluating coal, method for preparing coal blend, and method for producing coke
KR102549069B1 (ko) 2019-03-15 2023-06-28 제이에프이 스틸 가부시키가이샤 석탄의 평가 방법 및 배합탄의 조제 방법 그리고 코크스의 제조 방법
US12061140B2 (en) 2019-03-15 2024-08-13 Jfe Steel Corporation Method for evaluating coal, method for preparing coal blend, and method for producing coke

Also Published As

Publication number Publication date
TWI561625B (ja) 2016-12-11
JP6590155B2 (ja) 2019-10-16
KR101879553B1 (ko) 2018-08-17
KR20170026571A (ko) 2017-03-08
TW201610138A (zh) 2016-03-16
JPWO2016024513A1 (ja) 2017-05-25
CN106574189A (zh) 2017-04-19

Similar Documents

Publication Publication Date Title
JP4551494B2 (ja) 高炉用コークスの製造方法
JP2008069258A (ja) 高強度コークスの製造方法
JP6694161B2 (ja) 冶金用コークスの製造方法
JP6265015B2 (ja) コークス製造方法
JP5888539B2 (ja) 冶金用コークスの製造方法
JP6590155B2 (ja) 冶金用コークスおよびその製造方法
JP5309943B2 (ja) 高炉用コークスの製造方法
CN105073953B (zh) 冶金用焦炭的制造方法
JP5590071B2 (ja) 高強度コークスの製造方法
KR101864524B1 (ko) 고로용 코크스의 제조 방법 및 고로용 코크스
JP5011833B2 (ja) コークス製造方法
JP5163247B2 (ja) コークスの製造方法
JP2016079326A (ja) コークスの製造方法
KR101887320B1 (ko) 무회탄 배합량 결정 방법 및 고로용 코크스의 제조 방법
CN114901782B (zh) 混煤的制造方法和焦炭的制造方法
JP5504730B2 (ja) 高炉用コークスの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15831312

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016542548

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20177002817

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15831312

Country of ref document: EP

Kind code of ref document: A1