WO2016024406A1 - 電力供給機器、電力供給システム、および電力供給方法 - Google Patents

電力供給機器、電力供給システム、および電力供給方法 Download PDF

Info

Publication number
WO2016024406A1
WO2016024406A1 PCT/JP2015/004030 JP2015004030W WO2016024406A1 WO 2016024406 A1 WO2016024406 A1 WO 2016024406A1 JP 2015004030 W JP2015004030 W JP 2015004030W WO 2016024406 A1 WO2016024406 A1 WO 2016024406A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
power
supply device
input voltage
controlling
Prior art date
Application number
PCT/JP2015/004030
Other languages
English (en)
French (fr)
Inventor
亮 後藤
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to EP15832080.4A priority Critical patent/EP3182548B1/en
Priority to JP2016542507A priority patent/JP6294494B2/ja
Priority to US15/503,195 priority patent/US10541537B2/en
Publication of WO2016024406A1 publication Critical patent/WO2016024406A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00002Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by monitoring
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/001Methods to deal with contingencies, e.g. abnormalities, faults or failures
    • H02J3/0012Contingency detection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/30The power source being a fuel cell
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/70Smart grids as climate change mitigation technology in the energy generation sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/12Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/30State monitoring, e.g. fault, temperature monitoring, insulator monitoring, corona discharge

Definitions

  • the present invention relates to a power supply device, a power supply system, and a power supply method. More specifically, the present invention relates to a power supply device that supplies power generated by a distributed power source such as a fuel cell, a power supply system that connects a plurality of such power supply devices, and a system such as this The present invention relates to a power supply method.
  • a system in which a plurality of distributed power sources such as solar cells and fuel cells are connected as a power generation device and power generated by these power generation devices is supplied has been studied.
  • the power generation apparatus used as such a distributed power source include fuel cells such as a polymer electrolyte fuel cell (PEFC) and a solid oxide fuel cell (SOFC). It has been proposed to employ a plurality of such distributed power sources and to control the power consumption of the devices constituting the load according to the power that can be output by these distributed power sources.
  • PEFC polymer electrolyte fuel cell
  • SOFC solid oxide fuel cell
  • Patent Document 1 proposes to always communicate by connecting a plurality of power supply devices (power conditioners) and share detection information of reverse power flow monitored by at least one of these power conditioners. Yes.
  • An object of the present invention is to provide a power supply device, a power supply system, and a power supply device that can appropriately control the power supplied by each of the powers output from a plurality of distributed power sources so as not to flow backward to the grid. It is to provide a power supply method.
  • the power supply device includes a control unit that controls an input voltage of the DC power according to a current flowing between the power supply device and the system.
  • the control unit further sets a reference for controlling the input voltage based on communication performed with another power supply device connected to the power supply device.
  • the power supply system includes: A distributed power source connected to each of a plurality of power supply devices; A plurality of power supply devices that are connected to a system and convert DC power from the distributed power source into AC power; A power supply system that includes a current sensor that detects a current flowing between the plurality of power supply devices and the system, At least one power supply device among the plurality of power supply devices controls an input voltage of the DC power according to a current detected by the current sensor, and is further connected to the at least one power supply device.
  • a reference for controlling the input voltage is set on the basis of communication performed with another power supply device.
  • the power supply method includes: A distributed power source connected to each of a plurality of power supply devices; A plurality of power supply devices that are connected to a system and convert DC power from the distributed power source into AC power; A power supply method in a power supply system including: The step performed by at least one of the plurality of power supply devices is as follows: A communication step of communicating with another power supply device connected to the at least one power supply device; A detection step of detecting a current flowing between the plurality of power supply devices and the system; A control step of controlling the input voltage of the DC power according to the current detected in the detection step; And a setting step for setting a reference for controlling the input voltage based on communication performed in the communication step.
  • a power supply device that appropriately control the power supplied by each of the powers output from a plurality of distributed power sources so as not to flow backward to the grid.
  • a power supply method that appropriately control the power supplied by each of the powers output from a plurality of distributed power sources so as not to flow backward to the grid.
  • FIG. 1 is a functional block diagram schematically showing a power supply system according to an embodiment of the present invention. It is a functional block diagram which shows the electric power supply apparatus which concerns on embodiment of this invention in detail. It is a graph which shows the correlation etc. of the voltage and electric current in the electric power supply apparatus which concern on embodiment of this invention. It is a conceptual diagram explaining control of the electric power supply apparatus which concerns on embodiment of this invention. It is a flowchart explaining the control reference
  • FIG. 1 is a functional block diagram schematically showing a power supply system including a plurality of power supply devices according to an embodiment of the present invention.
  • a solid line indicates a power path
  • a broken line indicates a signal path for communicating a control signal or various types of information.
  • a power supply system 1 includes a power supply device 10A, a distributed power source 20A, a power supply device 10B, a distributed power source 20B, a power supply device 10C, and a distributed power source 20C. It is comprised including.
  • the power supply system 1 shows an example including three power supply devices 10A to 10C each connected to a distributed power source.
  • the power supply system 1 according to the embodiment of the present invention includes an arbitrary plurality of power supply devices configured as the power supply devices 10A to 10C and distributed power sources configured as the distributed power sources 20A to 20C. Can be configured.
  • the power supply device 10A is connected to a distributed power source 20A.
  • the power supply device 10A controls the power output from the distributed power source 20A and supplies it to the load 200.
  • the power supply device 10 ⁇ / b> A converts the power supplied to the load 200 connected to the system 100 from direct current to alternating current.
  • the structure for 10 A of electric power supply apparatuses to convert electric power can employ
  • the distributed power source 20A is connected to the power supply device 10A, and outputs power to be connected to the system 100 and supplied to the load 200.
  • the system 100 can be a general commercial power system (grid).
  • the distributed power source 20A can be configured to include various fuel cells such as a polymer electrolyte fuel cell (PEFC) or a solid oxide fuel cell (SOFC).
  • PEFC polymer electrolyte fuel cell
  • SOFC solid oxide fuel cell
  • the distributed power source 20A is different from the power generation unit that can sell the generated power to the system, such as a power generation unit including a solar cell that performs solar power generation. Is preferable.
  • the distributed power source 20A is an SOFC that generates DC power
  • the power generation unit according to the present invention is not limited to the SOFC that generates direct-current power.
  • the power generation unit is a variety of power generation units including a fuel cell, or is distributed like a storage battery that can charge and discharge power.
  • a mold power source may be used.
  • the distributed power source 20A composed of SOFC can generate electric power by a fuel cell power generation device that causes an electrochemical reaction of gas such as hydrogen and oxygen supplied from the outside, and can output the generated electric power.
  • the distributed power source 20A starts operation by receiving power from the system 100 at the time of startup, but operates after receiving power from the system 100, that is, autonomous operation is performed. It may be possible.
  • the distributed power source 20 ⁇ / b> A appropriately includes other functional units such as a reforming unit as necessary so that it can operate independently.
  • the distributed power source 20A can be configured by a generally well-known fuel cell, and thus a more detailed description of the fuel cell is omitted.
  • the power generated by the distributed power source 20A can be supplied to various loads 200 that consume power through the power supply device 10A.
  • power supplied from the power supply device 10A is supplied to the load 200 after passing through a distribution board or the like in an actual house or the like, but such members are omitted in FIG.
  • the load 200 can be various devices such as home appliances used by the user, to which power is supplied from the power supply system 1.
  • the load 200 is shown as one member, but is not limited to one member and can be any number of various devices.
  • the power supply device 10B is connected to a distributed power source 20B.
  • the distributed power source 20B outputs power to the power supply device 10B, and the power supply device 10B controls the power output from the distributed power source 20B and supplies it to the load 200.
  • the power supply device 10C is connected to the distributed power source 20C.
  • the distributed power source 20C outputs power to the power supply device 10C, and the power supply device 10C controls the power output from the distributed power source 20C and supplies it to the load 200.
  • the plurality of power supply devices 10A, 10B, and 10C and the distributed power sources 20A, 20B, and 20C shown in FIG. 1 can have substantially the same configuration. However, these elements are not limited to such a configuration, and various configurations can be employed.
  • the distributed power sources 20 ⁇ / b> A, 20 ⁇ / b> B, and 20 ⁇ / b> C are only required to be able to output the power supplied to the load 200 connected to the system 100.
  • the power supply devices 10 ⁇ / b> A, 10 ⁇ / b> B, and 10 ⁇ / b> C need only be able to control the input power and supply the load 200.
  • the power supplied from the power supply device 10A is connected to the power supplied from the other power supply devices 10B and 10C.
  • the power supply devices 10A, 10B, and 10C are configured to receive power from the corresponding distributed power sources 20A, 20B, and 20C, and to connect the power supplied by each. Is done.
  • the DC power output from the distributed power sources 20A to 20C is connected after being converted to AC, but the power supply system 1 according to the embodiment of the present invention is not limited to such a mode.
  • the direct current power may be connected.
  • a current sensor 30 is connected to the power supply devices 10A to 10C.
  • the current sensor 30 can be, for example, a CT (Current Transformer). However, any element can be adopted as long as it can detect current.
  • FIG. 1 shows a configuration in which the output signal of one current sensor 30 is supplied to the power supply devices 10A to 10C. However, the power supply devices 10A to 10C may each have a current sensor. Good.
  • the current sensor 30 detects a current flowing between the power supply devices 10A to 10C and the system 100. Thereby, the power supply devices 10A to 10C can determine whether or not the power supplied from the power supply system 1 is flowing backward to the grid 100. For this reason, as shown in FIG. 1, the current sensor 30 is arranged at a position for detecting the power flowing through the system 100 after being supplied to the load 200 out of the power supplied from the power supply devices 10A to 10C. . That is, in the embodiment of the present invention, the current sensor 30 detects a current flowing between the power supply device 10A and another power supply device (10B and / or 10C) connected to the power supply device 10A and the system 100. To do.
  • the current detected by the current sensor 30 is notified directly or indirectly to the power supply devices 10A to 10C by wireless or wired communication. Then, the power supply devices 10A to 10C can calculate the reverse power flow power from the current detected by the current sensor 30 and the AC voltage supplied by each.
  • the power supply device 10 ⁇ / b> A and the power supply device 10 ⁇ / b> B are connected by the communication line 42. Furthermore, the power supply device 10B and the power supply device 10C are connected by a communication line 44. Such a connection can be made by wire or wireless. With these communication lines 22 and 24, in the power supply system 1, the power supply devices 10A to 10C can communicate with other power supply devices, respectively.
  • the power supply system 1 is connected to the plurality of power supply devices 10A to 10C that convert the power supplied to the load 200 connected to the system 100 from direct current to alternating current, and the plurality of power supply devices 10A to 10C, respectively. And connected distributed power supplies 20A to 20C.
  • the power supply system 1 may also include a current sensor 30 that detects a current flowing between the plurality of power supply devices 10A to 10C and the system 100.
  • the power supply apparatus 10A includes a DC / DC converter 12A, an inverter 14A, and a control unit 16A. Since the power supply devices 10B and 10C can adopt the same configuration as that of the power supply device 10A, the power supply device 10A will be mainly described below, and the description of the power supply devices 10B and 10C will be omitted as appropriate. In addition, as illustrated in FIG. 2, the power supply device 10B includes a control unit 16B, and similarly, the power supply device 10C includes a control unit 16C.
  • the DC / DC converter 12A performs adjustment such as stepping up or stepping down the direct current power output from the distributed power source 20A.
  • the inverter 14A converts the DC power whose voltage is adjusted by the DC / DC converter 12A into AC. Since the DC / DC converter 12A and the inverter 14A can have a generally well-known configuration, a more detailed description is omitted.
  • the control unit 16A controls and manages the entire power supply device 10A including each functional unit of the power supply device 10A.
  • the control unit 16A can be configured by, for example, a microcomputer or a processor (CPU). Further, the control unit 16A will be described below as including a memory for storing various programs and various information. This memory also stores algorithms for performing data analysis and various arithmetic processing performed by the control unit 16A, and various reference tables such as a lookup table (LUT).
  • LUT lookup table
  • control unit 16A can control the current of the AC power supplied from the power supply device 10A by controlling the voltage of the DC power input from the distributed power source 20A.
  • control unit 16A is connected to the DC / DC converter 12A and the inverter 14A by a control line as shown in FIG.
  • the operation of the control unit 16A and the like related to the control unique to the embodiment of the present invention will be mainly described.
  • the control unit 16A when the current sensor 30 is connected to the power supply device 10A, it is preferable to connect it to the control unit 16A.
  • the control units 16A to 16C allow the distributed power sources 20A to 20C connected to the power supply devices 10A to 10C, respectively, according to the current flowing between the power supply devices 10A to 10C and the system 100, respectively.
  • the DC power output from 20C can be controlled.
  • the communication line 42 that connects the power supply device 10A and the power supply device 10B connects the control unit 16A and the control unit 16B.
  • the communication line 44 that connects the power supply device 10B and the power supply device 10C is also preferably connected to each other. With such a connection, the power supply devices 10A to 10C can communicate with each other.
  • each of the power supply devices 10A to 10C controls the input voltage from the distributed power sources 20A to 20C according to the calculated reverse power flow or forward power flow, respectively. Adjust.
  • FIG. 3 is a diagram for explaining voltage / current characteristics and voltage / power characteristics of the power supply devices 10A to 10C.
  • the power supply apparatus 10A will be described as an example.
  • the characteristic (IV characteristic) between the voltage and current of the input electric power has a constant internal resistance (denoted as R). ), A straight line as shown in FIG. As shown by the IV characteristic line in FIG. 3, the current I decreases as the input voltage V increases.
  • I (open voltage) / R ⁇ V / R Formula (1)
  • the open circuit voltage is a voltage when the load is zero.
  • the characteristic (PV characteristic) between the input voltage V and the output power P becomes a quadratic curve as shown in FIG. 3 according to the relationship of the following equation (2).
  • the power supply device 10A is operated only in a range where the input voltage V is greater than the open circuit voltage / 2. In this range, as shown in FIG. The output power P decreases.
  • the control unit 16A is output from the distributed power source 20A when it is expected to change from the forward flow to the reverse flow according to the current detected by the current sensor 30.
  • the input voltage of the power to be increased is increased and the power to be supplied is decreased.
  • the control unit 16A decreases the input voltage of the power output from the distributed power source 20A when the forward power is expected to increase in accordance with the current detected by the current sensor 30. Increase the power supplied.
  • the control unit 16A according to the embodiment of the present invention outputs the direct current output from the distributed power source 20A connected to the power supply device 10A according to the current flowing between the power supply device 10A and the system 100. Controls the power input voltage.
  • the power supply devices 10A to 10C When the power supply devices 10A to 10C according to the embodiment of the present invention are operated so that the power output from the distributed power sources 20A to 20C does not flow backward to the system 100, the power supply devices 10A to 10C appropriately control the power supplied by each.
  • a standard for controlling the power supply is set in advance.
  • the power supply devices 10A to 10C suppress power supply all at once when it is determined that a reverse power flow is expected, the power supplied by each of the power supply devices 10A to 10C cannot be properly controlled. The power supplied as a whole may become unstable.
  • control units 16A to 16C of the power supply devices 10A to 10C communicate with each other via the communication lines 42 and 44, respectively, so that the reference for controlling the supplied power is used.
  • the control units 16A to 16C of the power supply devices 10A to 10C communicate with each other via the communication lines 42 and 44, respectively, so that the reference for controlling the supplied power is used.
  • FIG. 4 is a diagram for explaining an example of a reference for control set in the power supply devices 10A to 10C.
  • each of the control units 16A to 16C inputs the power output from each of the distributed power sources 20A to 20C in order to control the power supplied by each of the control units 16A to 16C.
  • the “reference” set here is a threshold value of the forward power (or reverse power) power set as a reference for controlling the input voltage of the power output from each of the distributed power sources 20A to 20C. It can be.
  • FIG. 4 shows the forward flow power calculated from the current detected by the current sensor 30.
  • the vertical axis represents the increase or decrease in the forward power flow. That is, it means that the power that flows forward decreases (that is, the power that flows backward increases) as it progresses upward on the vertical axis. On the contrary, it means that the power that flows forward increases (that is, the power that flows backward decreases) as it goes downward in the vertical axis.
  • the forward or reverse power can be calculated from the current detected by the current sensor 30 and the AC voltage supplied from the power supply devices 10A to 10C in the control units 16A to 16C. Based on the forward or reverse power that is calculated in this way, the control units 16A to 16C adjust the power supplied by the power supply devices 10A to 10C, respectively, and output from the respective distributed power sources 20A to 20C. Set a reference for controlling the input voltage of the generated power. At this time, the control units 16A to 16C are set in the respective power supply devices 10A to 10C while taking into account the reference for controlling the input voltage set in the other power supply devices 10A to 10C. Make sure that all criteria are not the same.
  • the power supply devices 10A to 10C are connected to each other via the communication lines 42 and 44, they can communicate with each other. Through such communication, a power supply device (for example, 10A) serving as a parent device can be determined based on addresses assigned to the power supply devices 10A to 10C.
  • the master can set the above-described reference for controlling the input voltage in all the power supply devices (10A to 10C) including the own device.
  • the power control apparatus 10A is used as a master unit will be described.
  • the control unit 16A sets the second power to 120W so as to increase the power to be supplied by lowering the input voltage until the forward power flow decreases to 120W.
  • the control unit 16A sets 70W as the first threshold value so that when the forward power flow is 120W to 70W, the power supply device 10A maintains the power supplied with the input voltage kept constant.
  • the control unit 16A is configured to increase the input voltage and reduce the supplied power in the power supply device 10A.
  • the control unit 16 ⁇ / b> A increases 100 W in the power supply device 10 ⁇ / b> B so as to increase the power supplied by lowering the input voltage until the forward power flow decreases to 100 W.
  • the control unit 16A sets 50 W as the first threshold value so that the power supply apparatus 10B maintains the power supplied at a constant input voltage when the forward power flow is 100 W to 50 W.
  • the control unit 16A is configured to increase the input voltage and reduce the supplied power in the power supply device 10B.
  • control unit 16 ⁇ / b> A increases 80 W so that the power supplied by lowering the input voltage in the power supply device 10 ⁇ / b> C decreases to 80 W until the forward power decreases to 80 W.
  • the control unit 16A sets 30 W as the first threshold value so that when the forward power flow is 80 W to 30 W, the power supply device 10C maintains the power supplied with the input voltage kept constant.
  • the control unit 16A is configured to increase the input voltage and reduce the supplied power in the power supply device 10C when the forward power flow is 30 W or less.
  • the timing for suppressing the power supplied to each power supply device can be shifted to prevent the occurrence of reverse power flow.
  • the forward power can be maintained at 30 W to 120 W, that is, the reverse power can be maintained at ⁇ 30 W to ⁇ 120 W.
  • the power supplied to each power supply device varies, but if you want to make the power supplied uniform, make adjustments when the reverse power flow is stable. Can do.
  • the power supply devices 10A to 10C perform the above-described control reference setting, preferably before starting the power supply operation.
  • the power supplied by the power supply device 10A is first suppressed, and then the power of the power supply device 10B is suppressed. Finally, it is set so as to suppress the power of the power supply device 10C. Accordingly, when the power supply system 1 is operating, when the forward power flow is 120 W or higher (reverse power flow is ⁇ 120 W or lower), the power supply devices 10A to 10C are respectively supplied by lowering the input voltage. Increase power.
  • the power supply device 10A keeps the input voltage constant to supply power. Stop growing. At this time, each of the power supply devices 10B and 10C continues to increase the power to be supplied by decreasing the input voltage. Then, when the power consumption of the load 200 further decreases and the power of the forward power flow becomes 100 W or less (the power of the reverse power flow is -100 W or more), the power supply devices 10A and 10B are made to keep the input voltage constant. , Stop increasing the power to be supplied. At this time, the power supply device 10C continues to increase the power to be supplied by lowering the input voltage.
  • the power supply devices 10A to 10C are configured to keep the input voltage constant. , Stop increasing the power to be supplied.
  • the power supply device 10A supplies the power by increasing the input voltage. Reduce power. At this time, the power supply devices 10B and 10C maintain the supplied power by keeping the input voltage constant. Then, when the power consumption of the load 200 further decreases and the power of the forward flow becomes 50 W or less (the power of the reverse flow is -50 W or more), the power supply devices 10A and 10B increase the input voltage respectively. Reduce power supply. At this time, the power supply device 10C maintains the power to be supplied by keeping the input voltage constant.
  • the power supply devices 10A to 10C increase the input voltage respectively. Reduce power supply.
  • FIG. 5 is a flowchart for explaining the operation of setting the control reference in the power supply devices 10A to 10C as described above.
  • control units 16A to 16C of the power supply devices 10A to 10C communicate with the power supply devices 10A to 10C other than the own devices via the communication lines 42 and 44 (steps). S11).
  • the control units 16A to 16C determine the power supply devices that are the master units in the power supply devices 10A to 10C, as described above. For example, assuming that the power supply device 10A is determined as the parent device, the control unit 16A acquires various types of information necessary for each of the power supply devices 10A to 10C through communication performed in step S11.
  • the various pieces of necessary information can be, for example, information on various characteristics such as the voltage / current characteristics and the voltage / power characteristics in the power supply devices 10A to 10C described with reference to FIG. In the following description, it is assumed that the power supply device 10A is determined as the parent device.
  • the control unit 16A of the power supply device 10A serving as the parent device sets the above-described control reference in each of the power supply devices 10A to 10C. Is set (step S12).
  • the control unit 16A may set the first threshold value that serves as a reference when the input voltage is raised and the second threshold value that serves as a reference when the input voltage is lowered.
  • the control unit 16A controls the input voltage of the DC power from the distributed power source 20A according to the current flowing between the power supply device 10A and the system 100.
  • the control unit 16A further sets a reference for controlling the input voltage based on communication performed with other power supply devices (10B, 10C) connected to the power supply device 10A. The same applies to the control performed by the control units 16B and 16C in the other power supply devices 10B and 10C.
  • the control units 16A to 16C set the reference for controlling the input voltage, and then output from the respective distributed power sources 20A to 20C connected to the power supply devices 10A to 10C. You may control the input voltage of the direct-current power.
  • control unit 16A sets a reference threshold value when controlling the input voltage based on communication performed with other power supply devices (10B, 10C). Is preferred.
  • control unit 16A sets the (first) threshold value that serves as a reference for increasing the input voltage, and the input voltage based on communication performed with other power supply devices (10B, 10C). You may set at least one of the (2nd) threshold value used as the reference
  • control unit 16A has a threshold that serves as a reference for controlling the input voltage based on communication performed with the other power supply devices (10B, 10C). ) May be set to be different from a threshold value set as a reference for controlling the input voltage.
  • movement can be performed also in each control part 16B and 16C in electric power supply apparatus 10B and 10C.
  • FIG. 6 is a flowchart for explaining the operation of controlling the power supplied by the power supply devices 10A to 10C in accordance with the control criteria set as described above (FIG. 5).
  • the operation performed by the control unit 16A in the power supply device 10A will be described, the operations performed by the control units 16B and 16C in the power supply devices 10B and 10C may be the same.
  • control unit 16A calculates the reverse power flow from the current detected by the current sensor 30 and the supplied AC voltage (step S21).
  • step S21 the control unit 16A determines whether or not the calculated power is larger than the first threshold value that has already been set (step S22). If it is determined in step S22 that the power of the reverse power flow is greater than the first threshold, the control unit 16A increases the input voltage (step S23). Thereby, the electric power supplied from 10 A of electric power supply apparatuses reduces.
  • step S22 determines whether or not the power is smaller than the already set second threshold value (step S22). S24). If it is determined in step S24 that the reverse flow power is smaller than the second threshold, the control unit 16A decreases the input voltage (step S25). Thereby, the electric power supplied from 10 A of electric power supply apparatuses increases. If it is determined in step S24 that the reverse flow power is not smaller than the second threshold, the control unit 16A ends the operation shown in FIG. Thereby, the electric power supplied from 10 A of electric power supply apparatuses is maintained.
  • the processing as described above is always performed at predetermined time intervals such as once every several milliseconds, for example, more appropriate control relating to power supply can be performed.
  • the input voltage when the input voltage is increased or decreased, the input voltage can be changed by a predetermined value based on the characteristics of the output power of each distributed power source. However, when decreasing the input voltage, it is preferable not to decrease it below a predetermined minimum voltage.
  • the power supply devices 10A to 10C according to the embodiment of the present invention when operating so that the power output from the plurality of distributed power sources does not flow backward to the grid, Can be controlled. Further, according to the power supply device according to the embodiment of the present invention, when operating while preventing reverse power flow, in order to prevent a plurality of power supply devices from simultaneously suppressing power, stable fluctuations in power can be achieved. can do. Furthermore, it is possible to determine which of the plurality of power supply devices is to supply power preferentially by setting a threshold value for power control.
  • the power supply device it is possible to prevent the occurrence of reverse power flow only by performing processing for shifting the threshold set for power control. Therefore, according to the power supply device according to the embodiment of the present invention, during operation so that the generated power of the plurality of distributed power sources does not flow backward, communication control is not performed between the distributed power sources. The generated power can be adjusted appropriately. For this reason, according to the electric power supply apparatus which concerns on embodiment of this invention, the processing load of a control part hardly changes.
  • each functional unit each means, each step, etc.
  • the functions included in each functional unit, each means, each step, etc. can be rearranged so that there is no logical contradiction, and a plurality of functional units, steps, etc. are combined or divided into one. It is possible.
  • the above-described embodiments of the present invention are not limited to being implemented faithfully to the embodiments described above, and may be implemented by appropriately combining the features or omitting some of them. it can.
  • the input voltage rises or falls, and hysteresis is provided.
  • the first and / or the second The threshold value may be set so as to move up and down.
  • a further threshold value may be provided above the first threshold value shown in FIG.
  • the input voltage may be increased at a relatively fast rate when the reverse flow power exceeds a further threshold above the first threshold.
  • the same reference (threshold value) for performing power control is not set every time, but each power supply device and / or each distributed type is set. Different ones may be set each time based on the current status of the power supply. For example, when deciding which of the plurality of power supply devices is to be preferentially supplied with power, a standard set based on conditions such as the total amount of power supplied and / or the length of the total operation time ( (Threshold value) may be changed every time it is set.
  • the present invention can be implemented not only as an invention of the power supply devices 10A to 10C but also as an invention of a power supply system including a plurality of power supply devices such as the power supply devices 10A to 10C.
  • a power supply system including a plurality of power supply devices such as the power supply devices 10A to 10C.
  • at least one power supply device among the plurality of power supply devices 10A to 10C is connected to the at least one power supply device according to the current detected by the current sensor 30.
  • the input voltage of the DC power output from is controlled.
  • the at least one power supply device further sets a reference for controlling the input voltage based on communication performed with another power supply device connected to the at least one power supply device.
  • the power supply method is: A communication step of communicating with another power supply device connected to the at least one power supply device; A detection step of detecting a current flowing between the plurality of power supply devices and the system; A control step of controlling the input voltage of the DC power from the distributed power source according to the current detected in the detection step; A setting step for setting a reference for controlling the input voltage based on communication performed in the communication step.
  • the power supply device has been described as controlling the input “voltage” of the DC power output from the distributed power source, but the input “current” of the DC power output from the distributed power source. May be controlled.
  • the computer system and other hardware include, for example, a general-purpose computer, a PC (personal computer), a dedicated computer, a workstation, a PCS (Personal Communications System, a personal mobile communication system), an electronic note pad, a laptop computer, or other program Possible data processing devices are included.
  • the various operations are performed by dedicated circuitry (e.g., individual logic gates interconnected to perform specific functions) or one or more processors implemented with program instructions (software). Note that the program is executed by a logical block or a program module.
  • processors that execute logic blocks or program modules include, for example, one or more microprocessors, CPU (central processing unit), ASIC (Application Specific Integrated Circuit), DSP (Digital Signal Processor), PLD (Programmable Logic Device), FPGA (Field Programmable Gate Array), controller, microcontroller, electronic device, other devices designed to perform the functions described herein, and / or any combination thereof.
  • CPU central processing unit
  • ASIC Application Specific Integrated Circuit
  • DSP Digital Signal Processor
  • PLD Programmable Logic Device
  • FPGA Field Programmable Gate Array
  • controller microcontroller
  • electronic device other devices designed to perform the functions described herein, and / or any combination thereof.
  • the illustrated embodiments are implemented, for example, by hardware, software, firmware, middleware, microcode, or any combination thereof.
  • the machine-readable non-transitory storage medium used here can be further configured as a computer-readable tangible carrier (medium) composed of solid state memory, magnetic disk and optical disk.
  • a medium stores an appropriate set of computer instructions such as program modules for causing a processor to execute the technology disclosed herein, and a data structure.
  • Computer readable media include electrical connections with one or more wires, magnetic disk storage media, and other magnetic and optical storage devices (eg, CD (Compact Disk), DVD (registered trademark) (Digital Versatile Disk) ), Blu-ray Disc (registered trademark)), portable computer disc, RAM (Random Access Memory), ROM (Read-Only Memory), EPROM, EEPROM, flash memory, etc. Possible other tangible storage media or any combination thereof are included.
  • the memory can be provided inside and / or outside the processor / processing unit.
  • the term “memory” means any type of long-term storage, short-term storage, volatile, non-volatile, or other memory in which a particular type or number of memories or storage is stored. The type of medium is not limited.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

 複数の分散型電源から出力される電力が系統に逆潮流しないように運転する際、それぞれが供給する電力を適切に制御することができる電力供給機器などを提供する。 系統100に連系し、分散型電源20Aからの直流電力を交流電力に変換する電力供給機器10Aは、電力供給機器10Aと系統100との間に流れる電流に応じて、前記直流電力の入力電圧を制御する制御部16Aを備え、制御部16Aはさらに、電力供給機器10Aに接続された他の電力供給機器10Bとの間で行う通信に基づいて、入力電圧を制御する際の基準を設定する。

Description

電力供給機器、電力供給システム、および電力供給方法 関連出願へのクロスリファレンス
 本出願は、2014年8月11日に出願された日本国特許出願第2014-163888号に基づく優先権を主張するものであり、この先の出願の開示全体を、ここに参照のために取り込む。
 本発明は、電力供給機器、電力供給システム、および電力供給方法に関する。より詳細には、本発明は、例えば燃料電池のような分散型電源が発電する電力を供給する電力供給機器、このような電力供給機器を複数接続する電力供給システム、および、このようなシステムにおける電力供給方法に関する。
 近年、例えば太陽電池および燃料電池のような複数の分散型電源を発電装置として接続し、これらの発電装置が発電する電力を供給するシステムが研究されている。このような分散型電源として用いられる発電装置には、例えば固体高分子形燃料電池(PEFC)および固体酸化物形燃料電池(SOFC)などのような燃料電池がある。このような分散型電源を複数採用し、これらの分散型電源が出力可能な電力に応じて、負荷を構成する機器の消費電力を制御することが提案されている。
 現在、上述した燃料電池のような分散型電源を用いて発電する電力は、系統に売電することができない。このため、現在の電力供給システムにおいては、燃料電池のような分散型電源が発電する電力の系統への逆潮流を検出すると、その供給を低下または停止させるように制御する。したがって、これらの分散型電源を複数接続して運転するシステムにおいては、電力の逆潮流を検出すると、複数の分散型電源の出力をそれぞれ制御して、システム全体として供給する電力が逆潮流しないように調整している(例えば、特許文献1参照)。
特開2002-247765号公報
 特許文献1は、複数の電力供給機器(パワーコンディショナ)を接続することにより常時通信を行い、これらのパワーコンディショナのうち少なくとも1つが監視する逆潮流の検出情報を共有することを提案している。
 このような手法によると、系統に逆潮流する電力が生ずる際、全てのパワーコンディショナが一斉に電力の供給を抑制するため、電力が不安定になるおそれがあった。
 本発明の目的は、複数の分散型電源から出力される電力が系統に逆潮流しないように運転する際、それぞれが供給する電力を適切に制御することができる電力供給機器、電力供給システム、および電力供給方法を提供することにある。
 本発明の実施形態に係る電力供給機器は、
 系統に連系し、分散型電源からの直流電力を交流電力に変換する電力供給機器であって、
 前記電力供給機器は、前記電力供給機器と前記系統との間に流れる電流に応じて、前記直流電力の入力電圧を制御する制御部を備え、
 前記制御部はさらに、前記電力供給機器に接続された他の電力供給機器との間で行う通信に基づいて、前記入力電圧を制御する際の基準を設定する。
 本発明の実施形態に係る電力供給システムは、
 複数の電力供給機器にそれぞれ接続された分散型電源と、
 系統に連系し、前記分散型電源からの直流電力を交流電力に変換する複数の電力供給機器と、
 前記複数の電力供給機器と前記系統との間に流れる電流を検出する電流センサと、を含む電力供給システムであって、
 前記複数の電力供給機器のうち少なくとも1つの電力供給機器は、前記電流センサが検出する電流に応じて、前記直流電力の入力電圧を制御し、さらに、前記少なくとも1つの電力供給機器に接続された他の電力供給機器との間で行う通信に基づいて、前記入力電圧を制御する際の基準を設定する。
 本発明の実施形態に係る電力供給方法は、
 複数の電力供給機器にそれぞれ接続された分散型電源と、
 系統に連系し、前記分散型電源からの直流電力を交流電力に変換する複数の電力供給機器と、
 を含む電力供給システムにおける電力供給方法であって、
 前記複数の電力供給機器のうち少なくとも1つの電力供給機器が行うステップは、
 前記少なくとも1つの電力供給機器に接続された他の電力供給機器との間で通信を行う通信ステップと、
 前記複数の電力供給機器と前記系統との間に流れる電流を検出する検出ステップと、
 前記検出ステップにおいて検出される電流に応じて、前記直流電力の入力電圧を制御する制御ステップと、
 前記通信ステップにおいて行われる通信に基づいて、前記入力電圧を制御する際の基準を設定する設定ステップと、を含む。
 本発明によれば、複数の分散型電源から出力される電力が系統に逆潮流しないように運転する際、それぞれが供給する電力を適切に制御する電力供給機器、電力供給システム、および電力供給方法を提供することができる。
本発明の実施形態に係る電力供給システムを概略的に示す機能ブロック図である。 本発明の実施形態に係る電力供給機器をより詳細に示す機能ブロック図である。 本発明の実施形態に係る電力供給機器における電圧と電流との相関等を示すグラフである。 本発明の実施形態に係る電力供給機器の制御を説明する概念図である。 本発明の実施形態に係る電力供給機器の制御基準設定動作を説明するフローチャートである。 本発明の実施形態に係る電力供給機器の逆潮流防止動作を説明するフローチャートである。
 以下、本発明の実施形態について、図面を参照して説明する。
 図1は、本発明の実施形態に係る電力供給機器を複数含む電力供給システムを概略的に示す機能ブロック図である。図1において、実線は電力の経路を示し、破線は制御信号または各種情報を通信する信号の経路を示している。以下の説明において、従来よく知られている要素および機能部については、適宜、説明を簡略化または省略する。
 図1に示すように、本発明の実施形態に係る電力供給システム1は、電力供給機器10A、分散型電源20A、電力供給機器10B、分散型電源20B、電力供給機器10C、および分散型電源20Cを含んで構成される。図1において、電力供給システム1は、それぞれ分散型電源が接続された3つの電力供給機器10A~10Cを含む例を示してある。しかしながら、本発明の実施形態に係る電力供給システム1は、電力供給機器10A~10Cのような構成の電力供給機器および分散型電源20A~20Cのような構成の分散型電源を、任意の複数個含んで構成することができる。
 図1に示すように、電力供給機器10Aは、分散型電源20Aに接続される。電力供給機器10Aは、分散型電源20Aから出力される電力を制御して、負荷200に供給する。ここで、電力供給機器10Aは、系統100に連系して負荷200に供給する電力を直流から交流に変換する。このように電力供給機器10Aが電力の変換を行うための構成は、従来のパワーコンディショナと同様の構成を採用することができる。電力供給機器10Aが行う制御および構成の詳細については、さらに後述する。
 分散型電源20Aは、電力供給機器10Aに接続されて、系統100に連系して負荷200に供給する電力を出力する。ここで、系統100は、一般的な商用電力系統(グリッド)とすることができる。分散型電源20Aは、例えば固体高分子形燃料電池(PEFC)または固体酸化物形燃料電池(SOFC)などのような各種の燃料電池などを含んで構成することができる。特に、本発明の実施形態においては、分散型電源20Aは、発電した電力を系統に売電することができない、すなわち逆潮流させることができない電力を発電するものとするのが好適である。
 ここで、「逆潮流させることができない電力」とは、例えば燃料電池の発電による電力のようにインフラストラクチャから供給されるエネルギーに基づく電力であって、例えば現在の日本国におけるように売電が認められていない電力である。したがって、本発明の実施形態において、分散型電源20Aは、例えば太陽光発電を行う太陽電池を備えた発電部のように、発電した電力を系統に売電することができるものとは異なる発電部とするのが好適である。以下、分散型電源20Aが直流の電力を発電するSOFCである場合の例について説明する。しかしながら、本発明に係る発電部は、直流の電力を発電するSOFCに限定されず、典型的には燃料電池を備えた各種の発電部としたり、または電力を充放電可能な蓄電池のような分散型電源としてもよい。
 SOFCで構成される分散型電源20Aは、外部から供給される水素および酸素などのガスを電気化学反応させる燃料電池発電装置によって発電を行い、発電した電力を出力することができる。本発明の実施形態において、分散型電源20Aは、起動時には系統100からの電力を受けて運転を開始するが、起動した後は、系統100からの電力を受けずに稼動する、すなわち自立運転が可能であってもよい。本発明の実施形態において、分散型電源20Aは、自立運転することができるように、改質部など他の機能部も必要に応じて適宜含むものとする。本発明の実施形態において、分散型電源20Aは、一般的によく知られた燃料電池で構成することができるため、燃料電池についてのより詳細な説明は省略する。
 分散型電源20Aが発電した電力は、電力供給機器10Aを経て、電力を消費する各種の負荷200に供給することができる。ここで、電力供給機器10Aから供給される電力は、実際の家屋などにおいては、分電盤などを経てから負荷200に供給されるが、そのような部材は図1において省略してある。負荷200は、電力供給システム1から電力が供給される、ユーザが使用する家電製品などの各種の機器とすることができる。図1においては、負荷200は1つの部材として示してあるが、1つの部材には限定されず任意の個数の各種機器とすることができる。
 また、図1に示すように、電力供給機器10Bは、分散型電源20Bに接続される。分散型電源20Bは、電力供給機器10Bに電力を出力し、電力供給機器10Bは、分散型電源20Bから出力される電力を制御して、負荷200に供給する。また、電力供給機器10Cは、分散型電源20Cに接続される。分散型電源20Cは、電力供給機器10Cに電力を出力し、電力供給機器10Cは、分散型電源20Cから出力される電力を制御して、負荷200に供給する。
 図1に示す、複数の電力供給機器10A、10B、および10C、ならびに分散型電源20A、20B、および20Cは、それぞれほぼ同様の構成とすることができる。しかしながら、これらの要素は、そのような構成に限定されるものではなく、それぞれ種々の構成を採用することができる。本発明の実施形態において、分散型電源20A、20B、および20Cは、系統100に連系して負荷200に供給する電力を出力可能であればよい。また、本発明の実施形態において、電力供給機器10A、10B、および10Cは、それぞれ入力される電力を制御して負荷200に供給可能であればよい。
 また、図1に示すように、電力供給システム1において、電力供給機器10Aから供給される電力は、他の電力供給機器10Bおよび10Cから供給される電力に連結接続される。このように、電力供給システム1において、電力供給機器10A、10B、および10Cは、それぞれ対応する分散型電源20A、20B、20Cから電力を入力されて、それぞれが供給する電力を連結するように構成される。図1においては、分散型電源20A~20Cが出力した直流の電力を交流に変換してから連結しているが、本発明の実施形態に係る電力供給システム1はこのような態様に限定されず、例えば直流電力のまま連結してもよい。
 さらに、図1に示すように、電力供給システム1において、電力供給機器10A~10Cには、電流センサ30が接続されている。電流センサ30は、例えば、CT(Current Transformer:変流器)とすることができる。しかしながら、電流を検出することができる要素であれば、任意のものを採用することができる。図1においては、1つの電流センサ30の出力信号が電力供給機器10A~10Cに供給される構成を示したが、電力供給機器10A~10Cがそれぞれ個別に電流センサを有するような構成にしてもよい。
 この電流センサ30は、電力供給機器10A~10Cと系統100との間に流れる電流を検出する。これにより、電力供給機器10A~10Cは、電力供給システム1の供給する電力が系統100に逆潮流しているか否かを判定することができる。このため、電流センサ30は、図1に示すように、電力供給機器10A~10Cから供給される電力のうち、負荷200に供給された後で系統100に流れる電力を検出する位置に配置される。すなわち、本発明の実施形態において、電流センサ30は、電力供給機器10Aおよび電力供給機器10Aに接続された他の電力供給機器(10Bおよび/または10C)と系統と100の間に流れる電流を検出する。電流センサ30が検出した電流は、電力供給機器10A~10Cに、無線または有線の通信により、直接的または間接的に通知されるようにする。そして、電力供給機器10A~10Cは、電流センサ30が検出する電流、および、それぞれが供給する交流の電圧から、逆潮流電力を算出することができる。
 また、本発明の実施形態に係る電力供給システム1においては、図1に示すように、電力供給機器10Aと、電力供給機器10Bとが、通信線42によって接続される。さらに、電力供給機器10Bと、電力供給機器10Cとが、通信線44によって接続される。このような接続は、有線または無線により行うことができる。これら通信線22および24により、電力供給システム1において、電力供給機器10A~10Cは、それぞれ他の電力供給機器と通信を行うことができる。
 このように、電力供給システム1は、系統100に連系して負荷200に供給する電力を直流から交流に変換する複数の電力供給機器10A~10Cと、複数の電力供給機器10A~10Cにそれぞれ接続された分散型電源20A~20Cと、を含んで構成される。また、電力供給システム1は、複数の電力供給機器10A~10Cと系統100との間に流れる電流を検出する電流センサ30も含んで構成してもよい。
 次に、本発明の実施形態に係る電力供給機器10A~10Cについて、より詳細に説明する。
 図2に示すように、電力供給機器10Aは、DC/DCコンバータ12A、インバータ14A、および制御部16Aを備えている。電力供給機器10Bおよび10Cについても、電力供給機器10Aと同様の構成を採用することができるため、以下、電力供給機器10Aを中心として説明し、電力供給機器10Bおよび10Cの説明は適宜省略する。また、図2に示すように電力供給機器10Bは制御部16Bを備え、同様に電力供給機器10Cは制御部16Cを備えるものとして説明する。
 DC/DCコンバータ12Aは、分散型電源20Aから出力される直流の電力を昇圧または降圧するなどの調整を行う。インバータ14Aは、DC/DCコンバータ12Aが電圧を調整した直流の電力を交流に変換する。これらDC/DCコンバータ12Aおよびインバータ14Aは、一般的によく知られた構成とすることができるため、より詳細な説明は省略する。
 制御部16Aは、電力供給機器10Aの各機能部をはじめとして電力供給機器10Aの全体を制御および管理する。制御部16Aは、例えばマイコンまたはプロセッサ(CPU)などで構成することができる。また、制御部16Aは、各種プログラムおよび種々の情報を記憶するメモリも備えるものとして、以下説明する。このメモリは、制御部16Aが行うデータ解析および各種の演算処理などを行う際のアルゴリズム、およびルックアップテーブル(LUT)のような各種の参照テーブルなども記憶する。
 特に、本発明の実施形態において、制御部16Aは、分散型電源20Aから入力される直流電力の電圧を制御することにより、電力供給機器10Aから供給される交流電力の電流を制御することができる。このような制御を行うため、制御部16Aは、図2に示すように、DC/DCコンバータ12Aおよびインバータ14Aと、制御線により接続される。以下、本発明の実施形態特有の制御に係る制御部16Aなどの動作について中心的に説明する。
 図2に示すように、電流センサ30が電力供給機器10Aに接続される際は、制御部16Aに接続されるようにするのが好適である。また、電流センサ30が電力供給機器10Bおよび電力供給機器10Cに接続される際も、それぞれの制御部に接続されるようにするのが好適である。このような接続により、制御部16A~16Cは、それぞれ、電力供給機器10A~10Cと系統100との間に流れる電流に応じて、電力供給機器10A~10Cにそれぞれ接続された分散型電源20A~20Cから出力される直流電力を制御することができる。
 また、図2に示すように、電力供給機器10Aと電力供給機器10Bとを接続する通信線42は、制御部16Aと制御部16Bとを接続するのが好適である。また、電力供給機器10Bと電力供給機器10Cとを接続する通信線44も、同様にそれぞれの制御部同士を接続するのが好適である。このような接続により、電力供給機器10A~10Cは、それぞれ互いに通信を行うことができる。
 次に、本発明の実施形態に係る電力供給機器10A~10Cの動作について説明する。
 本発明の実施形態においては、電力供給システム1が供給する電力の系統100への逆潮流を防ぐために、電力供給システム1と系統100との間に流れる電流を監視して、好適には逆潮流が発生する手前で、電力供給システム1が負荷200に供給する電力を抑制する。このような制御を行うため、電力供給機器10A~10Cは、それぞれ算出した逆潮流または順潮流の電力に応じて、分散型電源20A~20Cからの入力電圧を制御することにより、それぞれ供給する電力を調整する。
 図3は、電力供給機器10A~10Cにおける電圧・電流の特性、および電圧・電力の特性を説明する図である。以下、例として、電力供給機器10Aについて説明する。
 電力供給機器10Aにおいて、制御部16Aは、電力供給機器10Aに接続された分散型電源20Aから出力される直流電力の入力電圧を制御することにより、電力供給機器10Aから供給される電力を調整することができる。
 例えば分散型電源20Aを燃料電池とした場合、その入力される電力の電圧と電流との特性(I-V特性)は、内部抵抗(Rと記す)が一定であるため、以下の式(1)の関係に従って、図3に示すような直線となる。図3のI-V特性の直線が示すように、入力電圧Vを上昇させるにつれて、電流Iは低下する。
  [数1]
 I=(開放電圧)/R-V/R  式(1)
 ここで、開放電圧とは、負荷がゼロとした場合の電圧である。
 したがって、電力供給機器10Aにおいて、入力電圧Vと出力電力Pとの特性(P-V特性)は、以下の式(2)の関係に従って、図3に示すように2次曲線になる。
  [数2]
 P=VI=V×(開放電圧)/R-V2/R  式(2)
 上述の式(2)において、入力電圧V=開放電圧/2の時、電力Pは最大となる。本発明の実施形態では、入力電圧Vが開放電圧/2より大きくなる範囲でのみ電力供給機器10Aを動作させるため、この範囲においては、図3に示すように、入力電圧Vを上昇させるにつれて、出力電力Pは低下する。
 したがって、本発明の実施形態では、制御部16Aは、電流センサ30が検出する電流に応じて、順潮流から逆潮流の状態に変化することが見込まれる際には、分散型電源20Aから出力される電力の入力電圧を上昇させて、供給する電力を低下させる。一方、制御部16Aは、電流センサ30が検出する電流に応じて、順潮流の電力が増大することが見込まれる際には、分散型電源20Aから出力される電力の入力電圧を下降させて、供給する電力を増大させる。このように、本発明の実施形態に係る制御部16Aは、電力供給機器10Aと系統100との間に流れる電流に応じて、電力供給機器10Aに接続された分散型電源20Aから出力される直流電力の入力電圧を制御する。
 次に、本発明の実施形態に係る電力供給機器10A~10Cが制御の基準を設定する動作について説明する。
 本発明の実施形態に係る電力供給機器10A~10Cは、分散型電源20A~20Cから出力される電力が系統100に逆潮流しないように運転する際、それぞれが供給する電力を適切に制御するため、予め電力供給を制御する際の基準を設定する。ここで、電力供給機器10A~10Cは、それぞれが電力の逆潮流が見込まれると判定された際に一斉に電力供給を抑制すると、それぞれが供給する電力を適切に制御できなくなり、電力供給システム1全体として供給する電力が不安定になるおそれがある。このため、本発明の実施形態において、電力供給機器10A~10Cそれぞれの制御部16A~16Cは、通信線42,44を介して互いに通信することにより、供給する電力の制御を行う際の基準を設定する際に、
他の電力供給機器とは異なる基準を設定する。
 図4は、電力供給機器10A~10Cにおいて設定する制御の際の基準の例を説明する図である。
 図4に示すように、電力供給機器10A~10Cにおいて、それぞれの制御部16A~16Cは、それぞれが供給する電力を制御するために、それぞれの分散型電源20A~20Cから出力される電力の入力電圧を制御する際の基準を設定する。また、ここで設定する「基準」とは、それぞれの分散型電源20A~20Cから出力される電力の入力電圧を制御するための基準として設定される、順潮流(または逆潮流)する電力の閾値とすることができる。
 図4の右端には、電流センサ30が検出する電流から算出される順潮流の電力を示してある。図4に示す表において、縦軸は順潮流する電力の増減を表す。すなわち、縦軸の上方向に進むにつれて、順潮流する電力が減少(すなわち逆潮流する電力が増大)することを意味する。反対に、縦軸の下方向に進むにつれて、順潮流する電力が増大(すなわち逆潮流する電力が減少)することを意味する。
 ここで、順潮流または逆潮流する電力は、制御部16A~16Cにおいて、電流センサ30が検出する電流と、電力供給機器10A~10Cがそれぞれ供給する交流の電圧とから算出することができる。このようにして算出した順潮流または逆潮流する電力に基づいて、制御部16A~16Cは、それぞれ電力供給機器10A~10Cが供給する電力を調整するため、それぞれの分散型電源20A~20Cから出力される電力の入力電圧を制御するための基準を設定する。また、この時、制御部16A~16Cは、それぞれ他の電力供給機器10A~10Cにおいて設定される上述の入力電圧を制御する基準を加味しながら、それぞれの電力供給機器10A~10Cにおいて設定される基準が全て同じにはならないようにする。
 ここで、電力供給機器10A~10Cは、互いに通信線42,44で接続されているため、互いに通信を行うことができる。このような通信により、電力供給機器10A~10Cのそれぞれに割り当てられたアドレス等に基づく等して、親機となる電力供給機器(例えば10Aなど)を定めることができる。そして、この親機が、自機を含む全ての電力供給機器(10A~10C)において、上述した入力電圧を制御する基準を設定することができる。以下、電力制御装置10Aを親機とする場合について説明する。
 図4に示す例では、電力供給機器10Aにおいて、制御部16Aは、順潮流の電力が低下して120Wになるまでは入力電圧を下降させて供給する電力を増大させるように、120Wを第2の閾値として設定した。そして、制御部16Aは、順潮流の電力が120W~70Wの時は、電力供給機器10Aにおいて、入力電圧を一定にして供給する電力を維持するように、70Wを第1の閾値として設定した。また、制御部16Aは、順潮流の電力が70W以下の時は、電力供給機器10Aにおいて、入力電圧を上昇させて供給する電力を低減させるように設定してある。
 また、図4に示す例では、制御部16Aは、電力供給機器10Bにおいて、順潮流の電力が低下して100Wになるまでは入力電圧を下降させて供給する電力を増大させるように、100Wを第2の閾値として設定した。そして、制御部16Aは、順潮流の電力が100W~50Wの時は、電力供給機器10Bにおいて、入力電圧を一定にして供給する電力を維持するように、50Wを第1の閾値として設定した。また、制御部16Aは、順潮流の電力が50W以下の時は、電力供給機器10Bにおいて、入力電圧を上昇させて供給する電力を低減させるように設定してある。
 さらに、図4に示す例では、制御部16Aは、電力供給機器10Cにおいて、順潮流の電力が低下して80Wになるまでは入力電圧を下降させて供給する電力を増大させるように、80Wを第2の閾値として設定した。そして、制御部16Aは、順潮流の電力が80W~30Wの時は、電力供給機器10Cにおいて、入力電圧を一定にして供給する電力を維持するように、30Wを第1の閾値として設定した。また、制御部16Aは、順潮流の電力が30W以下の時は、電力供給機器10Cにおいて、入力電圧を上昇させて供給する電力を低減させるように設定してある。
 このように、本発明の実施形態では、電力供給機器ごとに供給する電力を抑制するタイミングをずらし、逆潮流の発生を防止することができる。このような設定により、図4に示す例では、順潮流の電力を30W~120Wに、すなわち逆潮流電力を-30W~-120Wに維持することができる。また、このように設定すると、電力供給機器ごとに供給する電力にばらつきが生じるが、供給する電力を均一化したい場合は、逆潮流する電力が安定しているときに調整を行うようにすることができる。
 本発明の実施形態に係る電力供給システム1において、電力供給機器10A~10Cは、上述のような制御の基準の設定を、好適には電力供給動作を開始する前に行う。図4に示す例では、順潮流する電力が減少(すなわち逆潮流する電力が増大)するにつれて、まず電力供給機器10Aが供給する電力を抑制し、次に電力供給機器10Bの電力を抑制し、最後に電力供給機器10Cの電力を抑制するように設定してある。したがって、電力供給システム1の動作時に、順潮流の電力が120W以上(逆潮流の電力が-120W以下)になる時、電力供給機器10A~10Cは、それぞれ入力電圧を下降させることにより、供給する電力を増大させる。
 それから負荷200の消費電力が低下する等して、順潮流の電力が120W以下(逆潮流の電力が-120W以上)になると、電力供給機器10Aは入力電圧を一定にすることにより、供給する電力の増大を停止する。この時、電力供給機器10Bおよび10Cは、それぞれ入力電圧を下降させることにより、供給する電力を増大させ続ける。それから負荷200の消費電力がさらに低下する等して、順潮流の電力が100W以下(逆潮流の電力が-100W以上)になると、電力供給機器10Aおよび10Bはそれぞれ入力電圧を一定にすることにより、供給する電力の増大を停止する。この時、電力供給機器10Cは入力電圧を下降させることにより、供給する電力を増大させ続ける。
 それから負荷200の消費電力がさらに低下する等して、順潮流の電力が80W以下(逆潮流の電力が-80W以上)になると、電力供給機器10A~10Cはそれぞれ入力電圧を一定にすることにより、供給する電力の増大を停止する。
 それから負荷200の消費電力がさらに低下する等して、順潮流の電力が70W以下(逆潮流の電力が-70W以上)になると、電力供給機器10Aは、入力電圧を上昇させることにより、供給する電力を低減させる。この時、電力供給機器10Bおよび10Cは、それぞれ入力電圧を一定にすることにより、供給する電力を維持する。それから負荷200の消費電力がさらに低下する等して、順潮流の電力が50W以下(逆潮流の電力が-50W以上)になると、電力供給機器10Aおよび10Bは、それぞれ入力電圧を上昇させることにより、供給する電力を低減させる。この時、電力供給機器10Cは、入力電圧を一定にすることにより、供給する電力を維持する。
 それから負荷200の消費電力がさらに低下する等して、順潮流の電力が30W以下(逆潮流の電力が-30W以上)になると、電力供給機器10A~10Cはそれぞれ入力電圧を上昇させることにより、供給する電力を低減させる。
 図5は、上述したように電力供給機器10A~10Cにおいて制御の基準を設定する動作を説明するフローチャートである。
 図5に示す動作が開始すると、電力供給機器10A~10Cそれぞれの制御部16A~16Cは、自機以外の他の電力供給機器10A~10Cと通信線42,44を介して通信を行う(ステップS11)。ステップS11において行われる通信により、制御部16A~16Cは、上述したように、電力供給機器10A~10Cにおいて親機となる電力供給機器を決定する。例えば電力供給機器10Aが親機に決定されたとすると、制御部16Aは、ステップS11において行われる通信により、電力供給機器10A~10Cそれぞれについて必要な各種情報を取得する。ここで、必要な各種情報とは、例えば図3において説明した電力供給機器10A~10Cにおける電圧・電流の特性、および電圧・電力の特性のような各種特性の情報とすることができる。以下においても、電力供給機器10Aが親機に決定されたものとして説明する。
 ステップS11において電力供給機器10A~10Cの間で所定の通信が行われたら、親機である電力供給機器10Aの制御部16Aは、電力供給機器10A~10Cのそれぞれにおいて、上述した制御の基準となる閾値を設定する(ステップS12)。ここで、制御部16Aは、上述したように、入力電圧を上昇させる際の基準となる第1の閾値、および入力電圧を下降させる際の基準となる第2の閾値を設定してもよい。
 このように、本発明の実施形態では、制御部16Aは、電力供給機器10Aと系統100との間に流れる電流に応じて、分散型電源20Aからの直流電力の入力電圧を制御する。また、制御部16Aはさらに、電力供給機器10Aに接続された他の電力供給機器(10B,10C)との間で行う通信に基づいて、前記入力電圧を制御する際の基準を設定する。他の電力供給機器10Bおよび10Cにおいて、制御部16Bおよび16Cが行う制御についても同様とすることができる。また、本発明の実施形態では、制御部16A~16Cは、入力電圧を制御する際の基準を設定してから、電力供給機器10A~10Cに接続されたそれぞれの分散型電源20A~20Cから出力される直流電力の入力電圧を制御してもよい。
 ここで、本発明の実施形態に係る制御部16Aは、他の電力供給機器(10B,10C)との間で行う通信に基づいて、入力電圧を制御する際の基準となる閾値を設定するのが好適である。特に、制御部16Aは、他の電力供給機器(10B,10C)との間で行う通信に基づいて、前記入力電圧を上昇させる際の基準となる(第1の)閾値、および前記入力電圧を下降させる際の基準となる(第2の)閾値の少なくとも一方を設定してもよい。
 また、制御部16Aは、他の電力供給機器(10B,10C)との間で行う通信に基づいて、前記入力電圧を制御する際の基準となる閾値が、他の電力供給機器(10B,10C)において入力電圧を制御する際の基準として設定される閾値と異なるように設定してもよい。なお、電力供給機器10Bおよび10Cにおけるそれぞれの制御部16Bおよび16Cにおいても、同様の動作を行うことができる。
 図6は、上述(図5)のようにして設定された制御の基準に従って、電力供給機器10A~10Cがそれぞれ供給する電力を制御する動作を説明するフローチャートである。以下、電力供給機器10Aにおいて制御部16Aが行う動作について説明するが、電力供給機器10Bおよび10Cにおいて制御部16Bおよび16Cがそれぞれ行う動作も同様とすることができる。
 図6に示す動作が開始すると、制御部16Aは、上述したように、電流センサ30が検出する電流、および供給する交流の電圧から、逆潮流する電力を算出する(ステップS21)。
 ステップS21において逆潮流の電力が算出されたら、制御部16Aは、前記算出された電力が、既に設定された第1の閾値よりも大きいか否かを判定する(ステップS22)。ステップS22において逆潮流の電力が第1の閾値よりも大きいと判定されたら、制御部16Aは、入力電圧を上昇させる(ステップS23)。これにより、電力供給機器10Aから供給される電力は低減する。
 一方、ステップS22において逆潮流の電力が第1の閾値よりも大きくないと判定されたら、制御部16Aは、その電力が既に設定された第2の閾値よりも小さいか否かを判定する(ステップS24)。ステップS24において逆潮流の電力が第2の閾値よりも小さいと判定されたら、制御部16Aは、入力電圧を下降させる(ステップS25)。これにより、電力供給機器10Aから供給される電力は増大する。また、ステップS24において逆潮流の電力が第2の閾値よりも小さくないと判定されたら、制御部16Aは、図
6に示す動作を終了する。これにより、電力供給機器10Aから供給される電力は維持される。
 以上のような処理は、例えば数ミリ秒に一度など、所定の時間間隔で常時行うようにすれば、より適切な電力供給に係る制御を行うことができる。また、入力電圧を上昇または下降させる際には、それぞれの分散型電源の出力電力の特性などに基づいて予め定めた規定値ぶんだけ変化させるようにすることができる。ただし、入力電圧を下降させる際は、定められた最低の電圧未満には下降させないようにするのが好適である。
 このように、本発明の実施形態に係る電力供給機器10A~10Cによれば、複数の分散型電源から出力される電力が系統に逆潮流しないように運転する際、それぞれが供給する電力を適切に制御することができる。また、本発明の実施形態に係る電力供給機器によれば、逆潮流を防止して運転する際に、複数の電力供給機器が同時に電力を抑制することを防ぐため、電力の変動を安定的にすることができる。さらに、電力制御の閾値の設定によって、複数の電力供給機器のうち優先的に電力を供給するものを決めることもできる。
 従来のパワーコンディショナにおけるように、逆潮流の発生が見込まれる時に、複数の電力供給機器が同時に電力を抑制すると、電力が不安定になる可能性がある。そこで、例えば、複数の電力供給機器の間で常時通信を行うことにより、逆潮流が発生しないように電力の供給を制御することも考えられる。しかしながら、そのような制御を行うと、常時通信を行う必要があるため、通信トラフィックが増加することが懸念される。電力供給機器(パワーコンディショナ)が大きな電力を扱う場合、電力制御の動作中に各機器間の通信を行うと、周囲の電磁ノイズの影響を受けて、通信される信号にエラーが発生するおそれが高まる。このため、各機器間で行う通信の速度を高速にはできないことも想定される。その場合、通信速度が遅い状態で常時通信を行い、通信トラフィックが多くなると、瞬時的に発生する逆潮流を防げないことも懸念される。また、このような通信によると、各種データの送受信および受信データの処理を行うため、制御部の処理負荷が増大することにもなる。
 しかしながら、本発明の実施形態に係る電力供給機器によれば、電力制御のために設定される閾値をずらす処理を行うのみで、逆潮流の発生を防ぐことができる。したがって、本発明の実施形態に係る電力供給機器によれば、複数の分散型電源の発電電力が逆潮流しないように運転する最中、分散型電源の間で通信制御を行わずに、それぞれの発電電力を適切に調整することができる。このため、本発明の実施形態に係る電力供給機器によれば、制御部の処理負荷はほとんど変化しないことになる。
 本発明を諸図面および実施例に基づき説明してきたが、当業者であれば本開示に基づき種々の変形および修正を行うことが容易であることに注意されたい。したがって、これらの変形および修正は本発明の範囲に含まれることに留意されたい。例えば、各機能部、各手段、各ステップなどに含まれる機能などは論理的に矛盾しないように再配置可能であり、複数の機能部およびステップなどを1つに組み合わせたり、或いは分割したりすることが可能である。また、上述した本発明の実施形態は、それぞれ説明した実施形態に忠実に実施することに限定されるものではなく、適宜、各特徴を組み合わせたり、一部を省略したりして実施することもできる。
 例えば、電力供給機器が行う電力制御のための閾値の設定において、入力電圧の上昇または下降にヒステリシスを持たせ、逆潮流の電力が上昇方向か下降方向かによって、第1および/または第2の閾値が上下に移動するように設定してもよい。
 また、第1の閾値を超えて逆潮流電力が検出される場合に備えて、図4に示す第1の閾値よりも上に更なる閾値を設けてもよい。この場合、逆潮流の電力が、第1の閾値よりも上の更なる閾値を超える時、比較的速い速度で入力電圧を上昇させてもよい。
 また、複数の電力供給機器が電力制御の動作を開始する際、電力制御を行うための基準(閾値)は、毎回同じものが設定されるのではなく、各電力供給機器および/または各分散型電源のその時の状況に基づいて、毎回異なるものが設定されるようにしてもよい。例えば、複数の電力供給機器のうち優先的に電力を供給するものを決める際は、供給する総電力量の大小、および/または総運転時間の長短などの条件に基づいて、設定される基準(閾値)が、設定されるごとに変更されるようにしてもよい。
 また、本発明は、電力供給機器10A~10Cの発明としてのみならず、電力供給機器10A~10Cのような複数の電力供給機器を含む電力供給システムの発明として実施することもできる。この場合、前記システムにおいて、複数の電力供給機器10A~10Cのうち少なくとも1つの電力供給機器は、電流センサ30が検出する電流に応じて、その少なくとも1つの電力供給機器に接続された分散型電源から出力される直流電力の入力電圧を制御する。その少なくとも1つの電力供給機器はさらに、その少なくとも1つの電力供給機器に接続された他の電力供給機器との間で行う通信に基づいて、その入力電圧を制御する際の基準を設定する。
 さらに、本発明は、上述したような電力供給システムにおける電力供給方法として実施することもできる。ここで、複数の電力供給機器10A~10Cのうち少なくとも1つの電力供給機器が行うステップは、以下のようなものを含むものとすることができる。
 すなわち、本発明の実施形態に係る電力供給方法は、
 前記少なくとも1つの電力供給機器に接続された他の電力供給機器との間で通信を行う通信ステップと、
 前記複数の電力供給機器と系統との間に流れる電流を検出する検出ステップと、
 前記検出ステップにおいて検出される電流に応じて、分散型電源からの直流電力の入力電圧を制御する制御ステップと、
 前記通信ステップにおいて行われる通信に基づいて、前記入力電圧を制御する際の基準を設定する設定ステップと、を含むものとすることができる。
 なお、上述した実施形態に係る電力供給機器は、分散型電源から出力される直流電力の入力「電圧」を制御するものとして説明したが、分散型電源から出力される直流電力の入力「電流」を制御してもよい。
 本開示内容の多くの側面は、プログラム命令を実行可能なコンピュータシステムその他のハードウェアによって実行される、一連の動作として示される。コンピュータシステムその他のハードウェアには、例えば、汎用コンピュータ、PC(パーソナルコンピュータ)、専用コンピュータ、ワークステーション、PCS(Personal Communications System、パーソナル移動通信システム)、電子ノートパッド、ラップトップコンピュータ、又はその他のプログラム可能なデータ処理装置が含まれる。各実施形態では、種々の動作は、プログラム命令(ソフトウェア)で実装された専用回路(例えば、特定機能を実行するために相互接続された個別の論理ゲート)又は、1つ以上のプロセッサによって実行される論理ブロック若しくはプログラムモジュール等によって実行されることに留意されたい。論理ブロック又はプログラムモジュール等を実行する1つ以上のプロセッサには、例えば、1つ以上のマイクロプロセッサ、CPU(中央演算処理ユニット)、ASIC(Application Specific Integrated Circuit)、DSP(Digital Signal Processor)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)、コントローラ、マイクロコントローラ、電子機器、ここに記載する機能を実行可能に設計されたその他の装置及び/又はこれらいずれかの組合せが含まれる。ここに示す実施形態は、例えば、ハードウェア、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード又はこれらいずれかの組合せによって実装される。
 ここで用いられる機械読取り可能な非一時的記憶媒体は、更に、ソリッドステートメモリ、磁気ディスク及び光学ディスクの範疇で構成されるコンピュータ読取り可能な有形のキャリア(媒体)として構成することができる。かかる媒体には、ここに開示する技術をプロセッサに実行させるためのプログラムモジュールなどのコンピュータ命令の適宜なセット及び、データ構造が格納される。コンピュータ読取り可能な媒体には、1つ以上の配線を備えた電気的接続、磁気ディスク記憶媒体、その他の磁気及び光学記憶装置(例えば、CD(Compact Disk)、DVD(登録商標)(Digital Versatile Disc)、及びブルーレイディスク(登録商標))、可搬型コンピュータディスク、RAM(Random Access Memory)、ROM(Read-Only Memory)、EPROM、EEPROM若しくはフラッシュメモリ等の書換え可能でプログラム可能なROM若しくは情報を格納可能な他の有形の記憶媒体又はこれらいずれかの組合せが含まれる。メモリは、プロセッサ/プロセッシングユニットの内部及び/又は外部に設けることができる。ここで用いられるように、「メモリ」という語は、あらゆる種類の長期記憶用、短期記憶用、揮発性、不揮発性その他のメモリを意味し、特定の種類若しくはメモリの数又は記憶が格納される媒体の種類は限定されない。
 1 電力供給システム
 10A,10B,10C 電力供給機器
 12A,12B DC/DCコンバータ
 14A,14B インバータ
 16A,16B 制御部
 20A,20B,20C 分散型電源
 30 電流センサ
 42,44 通信線
 100 系統
 200 負荷

Claims (15)

  1.  系統に連系し、分散型電源からの直流電力を交流電力に変換する電力供給機器であって、
     前記電力供給機器は、前記電力供給機器と前記系統との間に流れる電流に応じて、前記直流電力の入力電圧を制御する制御部を備え、
     前記制御部はさらに、前記電力供給機器に接続された他の電力供給機器との間で行う通信に基づいて、前記入力電圧を制御する際の基準を設定する、電力供給機器。
  2.  前記制御部は、前記他の電力供給機器との間で行う通信に基づいて、前記入力電圧を制御する際の基準となる閾値を設定する、請求項1に記載の電力供給機器。
  3.  前記制御部は、前記他の電力供給機器との間で行う通信に基づいて、前記入力電圧を上昇させる際の基準となる閾値、および前記入力電圧を下降させる際の基準となる閾値の少なくとも一方を設定する、請求項2に記載の電力供給機器。
  4.  前記制御部は、前記他の電力供給機器との間で行う通信に基づいて、前記入力電圧を制御する際の基準となる閾値が、前記他の電力供給機器において入力電圧を制御する際の基準として設定される閾値と異なるように設定する、請求項2または3に記載の電力供給機器。
  5.  前記制御部は、前記入力電圧を制御する際の基準を設定してから、前記電力供給機器に接続された分散型電源から出力される直流電力の入力電圧を制御する、請求項1乃至4のいずれか1項に記載の電力供給機器。
  6.  複数の電力供給機器にそれぞれ接続された分散型電源と、
     系統に連系し、前記分散型電源からの直流電力を交流電力に変換する複数の電力供給機器と、
     前記複数の電力供給機器と前記系統との間に流れる電流を検出する電流センサと、を含む電力供給システムであって、
     前記複数の電力供給機器のうち少なくとも1つの電力供給機器は、前記電流センサが検出する電流に応じて、前記直流電力の入力電圧を制御し、さらに、前記少なくとも1つの電力供給機器に接続された他の電力供給機器との間で行う通信に基づいて、前記入力電圧を制御する際の基準を設定する、電力供給システム。
  7.  前記少なくとも1つの電力供給機器は、前記他の電力供給機器との間で行う通信に基づいて、前記入力電圧を制御する際の基準となる閾値を設定する、請求項6に記載の電力供給システム。
  8.  前記少なくとも1つの電力供給機器は、前記他の電力供給機器との間で行う通信に基づいて、前記入力電圧を上昇させる際の基準となる閾値、および前記入力電圧を下降させる際の基準となる閾値の少なくとも一方を設定する、請求項7に記載の電力供給システム。
  9.  前記少なくとも1つの電力供給機器は、前記他の電力供給機器との間で行う通信に基づいて、前記入力電圧を制御する際の基準となる閾値が、前記他の電力供給機器において入力電圧を制御する際の基準として設定される閾値と異なるように設定する、請求項7または8に記載の電力供給システム。
  10.  前記少なくとも1つの電力供給機器は、前記入力電圧を制御する際の基準を設定してから、前記電力供給機器に接続された分散型電源から出力される直流電力の入力電圧を制御する、請求項6乃至9のいずれか1項に記載の電力供給システム。
  11.  複数の電力供給機器にそれぞれ接続された分散型電源と、
     系統に連系し、前記分散型電源からの直流電力を交流電力に変換する複数の電力供給機器と、
     を含む電力供給システムにおける電力供給方法であって、
     前記複数の電力供給機器のうち少なくとも1つの電力供給機器が行うステップは、
     前記少なくとも1つの電力供給機器に接続された他の電力供給機器との間で通信を行う通信ステップと、
     前記複数の電力供給機器と前記系統との間に流れる電流を検出する検出ステップと、
     前記検出ステップにおいて検出される電流に応じて、前記直流電力の入力電圧を制御する制御ステップと、
     前記通信ステップにおいて行われる通信に基づいて、前記入力電圧を制御する際の基準を設定する設定ステップと、を含む電力供給方法。
  12.  前記少なくとも1つの電力供給機器は、前記設定ステップにおいて、前記他の電力供給機器との間で行う通信に基づいて、前記入力電圧を制御する際の基準となる閾値を設定する、請求項11に記載の電力供給方法。
  13.  前記少なくとも1つの電力供給機器は、前記設定ステップにおいて、前記他の電力供給機器との間で行う通信に基づいて、前記入力電圧を上昇させる際の基準となる閾値、および前記入力電圧を下降させる際の基準となる閾値の少なくとも一方を設定する、請求項12に記載の電力供給方法。
  14.  前記少なくとも1つの電力供給機器は、前記設定ステップにおいて、前記他の電力供給機器との間で行う通信に基づいて、前記入力電圧を制御する際の基準となる閾値が、前記他の電力供給機器において入力電圧を制御する際の基準として設定される閾値と異なるように設定する、請求項12または13に記載の電力供給方法。
  15.  前記少なくとも1つの電力供給機器は、前記設定ステップにおいて、前記入力電圧を制御する際の基準を設定してから、前記制御ステップにおいて、前記電力供給機器に接続された分散型電源から出力される直流電力の入力電圧を制御する、請求項11乃至14のいずれか1項に記載の電力供給方法。
PCT/JP2015/004030 2014-08-11 2015-08-11 電力供給機器、電力供給システム、および電力供給方法 WO2016024406A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP15832080.4A EP3182548B1 (en) 2014-08-11 2015-08-11 Power supply device, power supply system and power supply method
JP2016542507A JP6294494B2 (ja) 2014-08-11 2015-08-11 電力供給機器、電力供給システム、および電力供給方法
US15/503,195 US10541537B2 (en) 2014-08-11 2015-08-11 Power supply apparatus, power supply system, and power supply method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014163888 2014-08-11
JP2014-163888 2014-08-11

Publications (1)

Publication Number Publication Date
WO2016024406A1 true WO2016024406A1 (ja) 2016-02-18

Family

ID=55304041

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/004030 WO2016024406A1 (ja) 2014-08-11 2015-08-11 電力供給機器、電力供給システム、および電力供給方法

Country Status (4)

Country Link
US (1) US10541537B2 (ja)
EP (1) EP3182548B1 (ja)
JP (1) JP6294494B2 (ja)
WO (1) WO2016024406A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016103931A (ja) * 2014-11-28 2016-06-02 三浦工業株式会社 燃料電池系統連系システム
JP2019057996A (ja) * 2017-09-20 2019-04-11 パナソニックIpマネジメント株式会社 電力変換システム

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3052579A1 (fr) * 2016-06-10 2017-12-15 Schneider Electric Ind Sas Procede d'optimisation de la production d'energie electrique d'un reseau de production et de distribution d'energie electrique
JP7088294B2 (ja) * 2018-09-19 2022-06-21 株式会社安川電機 電力変換システム、電力変換装置のipアドレス送信方法、及びプログラム

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002247765A (ja) * 2001-02-16 2002-08-30 Yanmar Diesel Engine Co Ltd パワーコンディショナの運転制御装置とその運転制御方法
JP2004266940A (ja) * 2003-02-28 2004-09-24 Sanyo Denki Co Ltd 分散電源用発電装置の運転制御方法及び装置
WO2012090709A1 (ja) * 2010-12-28 2012-07-05 三洋電機株式会社 電力制御装置および分散電源システム
WO2013088798A1 (ja) * 2011-12-15 2013-06-20 パナソニック株式会社 電力供給システム

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4164975B2 (ja) * 2000-01-20 2008-10-15 株式会社ジーエス・ユアサコーポレーション 給電システム
WO2002065611A1 (fr) 2001-02-16 2002-08-22 Yanmar Co., Ltd. Système de production d'énergie à générateur entraîné par moteur
JP4852885B2 (ja) * 2005-05-24 2012-01-11 株式会社明電舎 複数種類の分散型電源による負荷追従運転制御方法
EP2232690B1 (en) * 2007-12-05 2016-08-31 Solaredge Technologies Ltd. Parallel connected inverters
JP5319156B2 (ja) * 2008-04-24 2013-10-16 一般財団法人電力中央研究所 電力需給制御プログラム、電力需給制御装置および電力需給制御システム
US8648495B2 (en) * 2009-11-23 2014-02-11 Ses Technologies, Llc Smart-grid combination power system
JP5377435B2 (ja) * 2010-07-28 2013-12-25 中国電力株式会社 充電制御装置、充電制御方法
EP2782204B1 (en) * 2011-11-15 2017-05-10 Kyocera Corporation Power supply apparatus, power supply system, and method for controlling power supply system
JP5940309B2 (ja) * 2012-01-20 2016-06-29 京セラ株式会社 給電システム及び電源装置
JP2014090535A (ja) 2012-10-29 2014-05-15 Sharp Corp 蓄電システム及び蓄電池システムの制御方法
JP5842860B2 (ja) * 2013-04-25 2016-01-13 株式会社安川電機 系統連系装置
WO2016006256A1 (ja) * 2014-07-10 2016-01-14 京セラ株式会社 発電システムの制御方法、発電システム、及び発電装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002247765A (ja) * 2001-02-16 2002-08-30 Yanmar Diesel Engine Co Ltd パワーコンディショナの運転制御装置とその運転制御方法
JP2004266940A (ja) * 2003-02-28 2004-09-24 Sanyo Denki Co Ltd 分散電源用発電装置の運転制御方法及び装置
WO2012090709A1 (ja) * 2010-12-28 2012-07-05 三洋電機株式会社 電力制御装置および分散電源システム
WO2013088798A1 (ja) * 2011-12-15 2013-06-20 パナソニック株式会社 電力供給システム

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016103931A (ja) * 2014-11-28 2016-06-02 三浦工業株式会社 燃料電池系統連系システム
JP2019057996A (ja) * 2017-09-20 2019-04-11 パナソニックIpマネジメント株式会社 電力変換システム

Also Published As

Publication number Publication date
EP3182548A1 (en) 2017-06-21
US10541537B2 (en) 2020-01-21
JP6294494B2 (ja) 2018-03-14
US20170237265A1 (en) 2017-08-17
EP3182548B1 (en) 2019-10-02
EP3182548A4 (en) 2018-02-21
JPWO2016024406A1 (ja) 2017-04-27

Similar Documents

Publication Publication Date Title
WO2016047146A1 (ja) 電力供給機器、電力供給システム、および電力供給方法
JP6168043B2 (ja) 調整装置、組電池装置および調整方法
JP6294494B2 (ja) 電力供給機器、電力供給システム、および電力供給方法
US10312807B2 (en) Power control apparatus, power supply system, and method for controlling power supply system
JP5781257B2 (ja) 分散電源システム、パワーコンディショナ
JP6205077B2 (ja) 電力供給機器、電力供給システム、および電力供給方法
US10523015B2 (en) Power generation apparatus, power generation system, and power generation method
JP6054829B2 (ja) 分散電源システム、パワーコンディショナ
WO2018021349A1 (ja) 発電ユニット及びその制御方法
JP6216066B2 (ja) 電力制御システムの制御方法、電力制御システム、及び電力制御装置
JP6235139B2 (ja) 燃料電池システムの制御方法、燃料電池システム、及び電力制御装置
JP2017085813A (ja) 電力管理装置
JP6659736B2 (ja) 発電システム、発電システムの制御方法、及び発電装置
JP6453581B2 (ja) 電力供給機器、電力供給システム、および電力供給方法
JP2006223042A (ja) インバータシステムの並列運転装置及びその並列運転方法
JP6452330B2 (ja) 発電装置、発電システム、および発電方法
JP6629606B2 (ja) 発電システム、発電制御方法及び発電装置
JP2016019428A (ja) 発電装置、発電システム、および発電方法
KR20200126266A (ko) 연료전지 시스템 및 그 제어 방법
JP6300568B2 (ja) 電力供給システム
WO2015146199A1 (ja) 無線機器制御装置、無線機器の制御方法及び無線機器制御システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15832080

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016542507

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015832080

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015832080

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE