WO2016021860A1 - 시드 척 및 이를 포함하는 잉곳성장장치 - Google Patents

시드 척 및 이를 포함하는 잉곳성장장치 Download PDF

Info

Publication number
WO2016021860A1
WO2016021860A1 PCT/KR2015/007856 KR2015007856W WO2016021860A1 WO 2016021860 A1 WO2016021860 A1 WO 2016021860A1 KR 2015007856 W KR2015007856 W KR 2015007856W WO 2016021860 A1 WO2016021860 A1 WO 2016021860A1
Authority
WO
WIPO (PCT)
Prior art keywords
neck cover
molten silicon
measuring
temperature
growth apparatus
Prior art date
Application number
PCT/KR2015/007856
Other languages
English (en)
French (fr)
Inventor
강종민
노태식
Original Assignee
엘지실트론 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지실트론 주식회사 filed Critical 엘지실트론 주식회사
Priority to JP2017506287A priority Critical patent/JP6367469B2/ja
Priority to DE112015003606.7T priority patent/DE112015003606B4/de
Priority to US15/502,148 priority patent/US20170226660A1/en
Priority to CN201580047651.9A priority patent/CN106661757A/zh
Publication of WO2016021860A1 publication Critical patent/WO2016021860A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/32Seed holders, e.g. chucks
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/10Crucibles or containers for supporting the melt
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/14Heating of the melt or the crystallised materials
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/20Controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon

Definitions

  • the present invention relates to a seed chuck for producing a silicon ingot and an ingot growth apparatus including the same.
  • Silicon wafers are manufactured from silicon single crystal ingots grown by Czochralski (CZ) process (hereinafter referred to as "CZ process") in accordance with the large diameter of silicon wafers for semiconductor device manufacturing.
  • CZ process Czochralski
  • the CZ process involves placing polysilicon in a quartz crucible, heating the quartz crucible with a graphite crucible to melt the polysilicon, contacting the seed crystal with molten silicon, and then rotating and pulling the seed crystal to cause crystallization at the interface.
  • the present invention provides a seed chuck for receiving seed crystals for growing an ingot in molten silicon, the seed chuck comprising: a neck cover to block heat from being discharged to an upper side of the molten silicon; And a fixing part disposed on a bottom surface of the neck cover and accommodating the seed crystals, wherein the neck cover includes a top surface to which a lifting cable is connected, a bottom surface, and a circumferential surface connecting the top surface and the bottom surface. And a circumferential surface having an inclination angle with the bottom surface, and a measuring part for measuring the molten silicon is opened in the neck cover.
  • the inclination angle may be 39 ° to 48 °.
  • the seed chuck may include an upper body including an upper surface of the neck cover, a center body including a circumferential surface of the neck cover, and a lower body including a bottom surface of the neck cover.
  • the side body may be coupled to be detachable, and the side body and the lower body may be coupled to be detachable.
  • the neck cover may have a conical or truncated cone shape.
  • the inside of the neck cover may be made of an empty space.
  • the present invention is a chamber; A hot zone structure disposed within the chamber and containing silicon; A heater for heating the hot zone structure; An outer insulator located outside the hot zone structure; An upper insulator positioned on an upper side of the hot zone structure and having a hole formed therein for passing the ingot; A seed chuck accommodating seed crystals for growing ingots in molten silicon; A temperature sensor disposed above the chamber, wherein the seed chuck comprises a neck cover to selectively shield the hole; And a fixing part for accommodating the seed crystals, wherein the neck cover has an opening for measuring the molten silicon by the temperature sensor.
  • the temperature sensor may measure the molten silicon through the measuring unit on the upper side of the neck cover.
  • the control unit may further include a control unit configured to calculate the temperature of the molten silicon according to the data measured by the temperature sensor, wherein the control unit extracts a maximum value from the data of the temperature sensor measured during the measurement period to determine the temperature of the molten silicon. Can be calculated.
  • the neck cover includes an upper body including a cable connection portion to which a lifting cable is connected; A lower body including a bottom surface facing the molten silicon; A center body having the bottom surface and an inclined circumferential surface.
  • the measurement unit may be opened in each of the center body and the lower body.
  • the center body may be detachably coupled to at least one of the upper body and the lower body.
  • the measuring unit may be a measuring hole formed in an arc shape along the outer circumference of the neck cover.
  • the measuring hole may be formed in a plurality of the neck cover, the neck cover may include a bridge located between the plurality of measuring holes.
  • the neck cover includes a circumferential surface for guiding fluid;
  • the bottom surface facing the molten silicon, the circumferential surface may have an inclination angle with the bottom surface, the inclination angle may be 39 ° to 48 °.
  • the neck cover may further include an upper surface parallel to the bottom surface.
  • the present invention has the advantage that the neck cover is located in the hole of the upper insulator during the melting process to minimize the heat loss through the hole of the upper insulator, it is possible to reduce the heater power in a simple structure.
  • the neck cover may help to measure the temperature of the molten silicon without disturbing the temperature measurement of the molten silicon, thereby increasing the reliability of the molten silicon temperature sensing.
  • the neck cover does not interfere with the temperature measurement of the molten silicon, there is an advantage in that the neck cover of the optimal size to increase the thermal insulation performance of the hot zone structure can be arranged, and the degree of freedom of designing the neck cover can be increased. There is an advantage.
  • the neck cover can raise the temperature of the upper side of the molten silicon together with the upper insulator, and seed crystals located above the molten silicon can be dipped in the molten silicon after being heated on the upper side of the molten silicon, resulting in immersion of the seed crystals.
  • the thermal shock that can be minimized, and the quality of the ingot can be improved.
  • FIG. 1 is a view showing an ingot growth apparatus according to an embodiment
  • FIG. 2 is an enlarged view of the seed chuck and the upper insulator according to the embodiment
  • FIG. 3 is a graph showing a change in power of the heater according to the inclination angle of the neck cover
  • FIG. 5 is an exploded perspective view of the seed chuck according to the first embodiment
  • FIG. 6 is a bottom view of the neck cover according to the first embodiment
  • FIG. 7 is a graph showing data of a temperature sensor measured through the neck cover according to the first embodiment
  • FIG. 8 is a view showing a process of measuring the temperature through the neck cover according to the first embodiment
  • FIG. 11 is a bottom view of the neck cover according to the third embodiment.
  • FIG. 1 is a view showing an ingot growth apparatus according to an embodiment.
  • the ingot growth apparatus 1 includes a chamber 10; A hot zone structure (30) (31) disposed in the chamber (10) and containing silicon; A heater 35 for heating the hot zone structures 30, 31; An outer insulator 60 located outside the hot zone structures 30 and 31; An upper insulator 50 positioned above the hot zone structures 30 and 31 and in which a hole h for passing the ingot is formed; Seed chuck 100 containing seed crystals for growing ingots in molten silicon.
  • the chamber 10 may provide a space for the ingot to grow.
  • the chamber 10 may include an upper chamber 11 and a lower chamber 12.
  • the upper chamber 11 may cover the upper portion of the lower chamber 12.
  • a passage part 20 through which an ingot passes may be formed.
  • the passage part 20 may be formed long in the vertical direction on the upper chamber 11.
  • the lower chamber 12 may be combined with the upper chamber 11.
  • the lower chamber 12 may have a space in which the hot zone structures 30 and 31, the heater 35, the outer insulator 60, and the upper insulator 50 are accommodated.
  • the ingot growth apparatus 1 may further include a view port 14 having a hole penetrating the chamber 10 to observe the inside of the chamber 10 and maintaining a closed state of the chamber 10. .
  • the hot zone structures 30 and 31 may include a quartz crucible 30 that may contain silicon.
  • the hot zone structures 30, 31 may further comprise a graphite crucible 31 for receiving the quartz crucible 30.
  • the quartz crucible 30 is in the form of a bowl made of quartz, and may accommodate polycrystalline silicon in the internal space.
  • the quartz crucible 30 may be located inside the graphite crucible 31 and supported by the graphite crucible 31.
  • the ingot growth apparatus 1 may further include a pedestal 33 for supporting the graphite crucible 31 and a crucible rotator 34 for supporting the pedestal 33 and capable of rotating and vertically moving the pedestal 33. have.
  • the crucible rotator 34 may rotate the graphite crucible 31 in the opposite direction of the seed chuck 100 while raising the seed chuck 100.
  • the heater 35 may be installed to apply heat to the hot zone structures 30 and 31.
  • the heater 35 may be disposed to surround the outside of the graphite crucible 31.
  • the heater 35 may heat the graphite crucible 31 to melt the polycrystalline silicon contained in the quartz crucible 30.
  • the heater 35 may heat the graphite crucible 31, and the graphite crucible 31 heated by the heater 35 may heat the quartz crucible 30.
  • the ingot growth apparatus 1 may further include a cooling tube 40 for cooling the ingot.
  • the cooling tube 40 may be disposed inside the chamber 10, and the ingot may be cooled while passing through the cooling tube 40.
  • the cooling tube 40 may be disposed such that a part of the cooling tube 40 is located in the passage part 20.
  • the cooling tube 40 may be disposed such that the lower portion thereof is positioned inside the lower chamber 12.
  • the upper insulator 50 may be located above the quartz crucible 30.
  • the upper insulator 50 may be mounted on the insulator supporter 51 provided in the chamber 10.
  • the upper insulator 50 may include a central portion 52, an edge portion 53, and a connection portion 54.
  • the upper insulator 50 may be formed in at least one bending shape.
  • the central portion 52 may be located inside the quartz crucible 30.
  • the central portion 52 may be formed at the lower portion of the connecting portion 54, and may be formed in a tubular shape that gradually decreases in size toward the lower portion.
  • the central portion 52 may face the bottom of the silicon.
  • the edge portion 53 may be located outside the quartz crucible 30.
  • the edge portion 54 may be formed on the upper portion of the connection portion 54 and may be formed in a ring shape.
  • the connecting portion 54 may be formed to connect the center portion 52 and the edge portion 53.
  • the connecting portion 54 may be formed in a tubular shape in which the size gradually decreases toward the lower portion.
  • the connection part 54 may be formed larger than the neck cover 110.
  • the hole h of the upper insulator 50 may be formed to pass through an ingot grown from molten silicon.
  • the hole h of the upper insulator 50 may be larger than the ingot to be manufactured.
  • the hole h of the upper insulator 50 may be formed in the central portion 52 of the upper insulator 50.
  • the hole h of the upper insulator 50 may have a circular shape.
  • the upper insulator 50 may surround and insulate the hot zone structures 30 and 31 and the heater 30 together with the outer insulator 60.
  • the outer insulator 60 may be a heat transfer body that insulates heat released in the lateral direction of the hot zone structures 30 and 31, and the upper insulator 50 is upper side of the hot zone structures 30 and 31. It may be a heat transfer body to insulate the heat released in the direction.
  • the upper insulator 50 may be disposed such that the lower portion is inserted into the crucible 30.
  • the upper insulator 50 may be installed such that a part of the connecting portion 54 and the central portion 52 are positioned inside the crucible 30 for stone.
  • the outer insulator 60 may be disposed outside the heater 35.
  • the outer insulator 60 may be disposed around an outer circumference of the heater 35.
  • the outer insulator 60 may be disposed to be positioned between the heater 35 and the chamber 10.
  • the outer insulator 60 may be formed in a hollow cylinder shape.
  • the ingot growth apparatus 1 may further include an inert gas supply unit 70 supplying an inert gas G into the chamber 10 from the upper portion of the chamber 10.
  • the inert gas supply unit 70 may be formed in communication with the passage unit 20, the inert gas G may be supplied to the passage unit 20 through the inert gas supply unit 70, and the passage unit 20 is provided. After passing through the upper insulator 50 may pass through.
  • the ingot growth apparatus 1 may further include a temperature sensor 90 for measuring molten silicon.
  • the temperature sensor 90 may be disposed above the chamber 10.
  • the temperature sensor 90 may be installed to measure the temperature of the molten silicon.
  • the temperature sensor 90 may be a non-contact temperature sensor capable of measuring the temperature of the molten silicon at a position spaced apart from the molten silicon.
  • the temperature sensor 90 may be configured as an infrared sensor or an ultraviolet sensor, and may measure the temperature of the molten silicon in a non-contact state with the molten silicon to be measured.
  • the seed chuck 100 may include a neck cover 110 that selectively shields the hole h and a fixing part 120 that receives seed crystals.
  • the neck cover 110 may be connected to the elevating cable 106.
  • the neck cover 110 may be elevated by the elevating cable 106.
  • the neck cover 110 may shield the hole h of the upper insulator 50, and the hole h of the upper insulator 50.
  • the hole h of the upper insulator 50 can be opened.
  • the neck cover 110 may be formed to have a smaller size than the hole h of the upper insulator 50.
  • the neck cover 110 may be smaller in size than the hole h and positioned in the hole h to shield a part of the hole h. When the neck cover 110 is positioned in the hole h, the neck cover 110 may partially shield the hole h without shielding the entire hole h.
  • the opening degree of the hole h may be different, and the opening area of the hole h may be adjusted by the position of the neck cover 110.
  • the cable driver 108 may position the neck cover 110 in the hole h of the upper insulator 50, and the heat released through the hole h may be minimized. . That is, the neck cover 110 may minimize heat dissipation through the holes h of the upper insulator 50, and the heat emitted to the upper side of the quartz crucible 30 may be the upper insulator 50 and the neck cover. May be minimized by 110.
  • the neck cover 110 blocks a part of the hole h of the upper insulator 50, so that excessive heat is generated through the hole h of the upper insulator 50. Can be prevented from being released.
  • the neck cover 110 does not block a part of the hole h
  • the seed crystals S are immersed in the molten silicon
  • the seed crystals S are formed by the temperature difference between the seed crystals S and the molten silicon.
  • the thermal shock applied can be large and dislocations can occur in the ingot.
  • the temperature of the space between the hole h and the molten silicon may be higher than when the neck cover 110 does not block a part of the hole h.
  • the seed crystal S may be immersed in the molten silicon after the temperature is raised to a temperature close to the molten silicon in the space between the neck cover 110 and the molten silicon. That is, the temperature difference between the seed crystal S and the molten silicon can be minimized, and the potential generated in the ingot can be minimized.
  • the elevating cable 106 can rotate and elevate the seed chuck 100.
  • the elevating cable 106 may rotate and elevate the neck cover 110, and the fixing part 120 disposed below the neck cover 110 may be rotated and lifted together with the neck cover 110.
  • the ingot growth apparatus may include a cable drive 108 for actuating the elevating cable 106.
  • the cable driver 108 may be disposed to be positioned above the chamber 10.
  • the cable driver 108 may wind the lifting cable 106.
  • the cable driver 108 may release the elevating cable 106 to lower the seed chuck 100 close to the silicon, in which case the seed crystals S contained in the seed chuck 100 may be immersed in the molten silicon. .
  • the cable driver 108 may pull the elevating cable 106 and raise the seed chuck 100 at the same time as the rotation to grow the ingot.
  • the cable driver 108 may operate the elevating cable 105 such that the neck cover 110 is positioned in the hole h of the upper insulator 50 during the melting process.
  • the neck cover 110 may be a moving shield that is moved for the elevating cable 106, and may be a moving regulator capable of adjusting the opening area of the hole h of the upper insulator 50.
  • the cable driver 108 may raise and lower the neck cover 110 to an optimal position considering heat insulation performance and ingot quality.
  • the fixing part 120 may be disposed under the neck cover 110.
  • the fixing part 120 may be positioned above the quartz crucible 30 and may receive seed crystals S for growing an ingot from molten silicon.
  • the fixing part 120 may be connected to the elevating cable 106 through the neck cover 110 and may also be directly connected to the elevating cable 106.
  • FIG 2 is an enlarged view of the seed chuck and the upper insulator according to the embodiment.
  • Neck cover 110 has a circumferential surface (111) for guiding fluid; It may include a bottom surface 112 facing the molten silicon.
  • the neck cover 110 may be located in the hole h, and the circumferential surface 111 may supply the gas supplied through the inert gas supply unit 70 shown in FIG. 1 to the neck cover 110 and the upper insulator ( 50).
  • the gas supplied through the inert gas supply unit 70 shown in FIG. 1 may be guided along the circumferential surface 111 and then flow between the neck cover 110 and the upper insulator 50.
  • the circumferential surface 111 of the neck cover 110 may be formed to be inclined at an angle with respect to the bottom surface 112.
  • the inert gas supplied through the inert gas supply unit 70 may be guided along the inclined circumferential surface 111 of the neck cover 110, and after passing between the neck cover 110 and the upper insulator 50. It can flow smoothly towards the molten silicon. That is, the circumferential surface 111 may have an inclination angle ⁇ with the bottom surface 112.
  • the neck cover 110 may have a shape corresponding to the shape of the hole h of the upper insulation 50.
  • the diameter of the bottom surface 112 of the neck cover 110 may be smaller than the diameter of the hole h of the upper insulator 50.
  • the outer circumference of the neck cover 110 and the upper insulator 50 may be spaced apart from each other by a distance d. have. The neck cover 110 may not collide with and interfere with the upper insulator 50.
  • the neck cover 110 may be formed in a conical shape or a truncated cone shape and the neck cover 110 may shield a part of the hole h.
  • An empty space may be formed inside the neck cover 110.
  • the neck cover 110 may be formed of graphite.
  • the bottom surface of the neck cover 110 may be coated with a pyrolytic carbon coating layer, it may improve the heat insulating ability.
  • H first height
  • the temperature distribution around the hole when raised to 40 mm and the temperature distribution around the hole when the neck cover 110 is raised to a second height higher than the first height (for example, 80 mm) may be different. .
  • the power of the heater 35 may be minimal when the neck cover 110 is located in the hole h of the upper insulator 50, and the neck cover 110 may be the hole () of the upper insulator 50. h) may be increased as it rises upwards.
  • the power of the heater 35 may be determined according to the temperature measurement of the hot zone structures 30 and 31, and the decrease in the power of the heater 35 is caused by the neck cover 110 to provide the hot zone structures 30 and 31. It means that the temperature of the high enough, the degree to which the power of the heater 35 is reduced may mean the degree of heat insulating ability is improved by the neck cover (110).
  • the ingot growth apparatus is most preferably located in the hole (h) of the upper insulation 50 during the melting process.
  • the fixing part 120 may be disposed on the bottom surface 112 of the neck cover 110.
  • the fixing part 120 may be positioned to protrude from the bottom surface 112 of the neck cover 110.
  • the fixing part 120 may be provided with an accommodation groove in which the seed crystals S are accommodated.
  • the receiving groove may be formed with a fixing groove for fixing the seed crystals (S) firmly.
  • the fixing part 120 may be formed of a graph, the pyrolytic carbon coating layer may be coated, and the heat insulating ability may be improved.
  • the heat distribution around the neck cover 110 may be different according to the inclination angle ⁇ of the neck cover 110.
  • FIG 3 is a graph showing a change in power of the heater 35 according to the inclination angle ⁇ of the neck cover 110.
  • the inclination angle ⁇ of the neck cover 110 is less than 39 °, the heat insulating ability by the neck cover 110 is low, so that the power of the heater 35 is high, and the inclination angle of the neck cover 110 is high.
  • ⁇ ) is greater than 48 °, it may be confirmed that the power of the heater 35 is rapidly increased due to the low heat insulating ability of the neck cover 110.
  • the inclination angle ⁇ of the neck cover 110 is preferably between 39 ° and 48 °.
  • FIG. 4 is a graph showing a change in the heater power according to the change in the outer diameter of the neck cover bottom surface.
  • the power of the heater 35 may be gradually reduced, and the outer diameter of the neck cover 110 is preferably 200 mm or more, but is not limited thereto. Do not.
  • the neck cover 110 when the outer diameter of the neck cover 110 is larger than the size of the hole (h), the neck cover 110 may collide with and interfere with the upper insulator 50, the neck cover 110 is the upper insulator 50 It is preferable to be smaller than the hole h of h).
  • FIG. 5 is an exploded perspective view of the seed chuck according to the first embodiment
  • FIG. 6 is a bottom view of the neck cover according to the first embodiment.
  • the neck cover 110 may further include an upper surface 113 parallel to the bottom surface 112.
  • the neck cover 110 may include a circumferential surface 111, a bottom surface 112, and an upper surface 113, and the overall shape may be a truncated cone shape.
  • the neck cover 110 may be provided with a cable connection portion 114 to which the elevating cable 106 is connected.
  • the cable connection part 114 may be provided at an upper portion of the neck cover 110.
  • the cable connection 114 may include a groove to which the elevating cable 106 may be connected.
  • Neck cover 110 may be composed of a combination of a plurality of members, each component may be formed detachably.
  • the neck cover 110 may include an upper body 115, a center body 116 including a circumferential surface 111, and a lower body 117 including a bottom surface 112.
  • Each of the upper body 115, the center body 116, and the lower body 117 may be formed to have a predetermined thickness, and the neck cover 110 may include the upper body 115, the center body 116, and the lower body. When the body 117 is coupled, an empty space may be formed therein.
  • the upper surface of the upper body 115 may be the upper surface 113 of the neck cover 110, and the upper body 115 may be provided with a cable connection 114.
  • the center body 116 may have a truncated conical shape with a diameter gradually increasing downward.
  • the center body 116 may be detachably coupled to at least one of the upper body 115 and the lower body 117.
  • One of the upper body 115 and the center body 116 may be formed with a male thread, and the other may be formed with a female thread coupled with the male thread, and the upper body 115 and the center body 116 may be screwed together. Can be.
  • One of the center body 116 and the lower body 117 may be formed with a male thread, the other may be formed with a female thread coupled with the male thread, the center body 116 and the lower body 117 is screwed Can be.
  • the lower body 117 may have a fixing part through hole 118 through which the fixing part 120 is disposed.
  • the temperature sensor 90 illustrated in FIG. 1 may irradiate light with molten silicon, and measure the temperature of the molten silicon by sensing the light returned from the molten silicon.
  • the neck cover 110 may be partially positioned between the temperature sensor 90 and the molten silicon, and the neck cover 110 may be formed to allow the temperature sensor 90 to measure the temperature of the molten silicon.
  • the neck cover 110 may have a measurement unit 130 for measuring molten silicon.
  • the neck cover 110 may have a measuring unit 130 through which the temperature sensor 90 can measure molten silicon.
  • the measuring unit 130 may be opened at a position that can face the temperature sensor 90 of the neck cover 110.
  • the measuring unit 130 may be formed in the neck cover 110 in a groove shape or a hole shape.
  • the temperature sensor 90 may be an infrared sensor or an ultraviolet sensor capable of measuring the temperature of the molten silicon through the measuring unit 130 above the neck cover 110.
  • the light irradiated from the temperature sensor 90 may be irradiated to the molten silicon through the measuring unit 130, and may measure the temperature of the molten silicon through the light reflected from the molten silicon.
  • the temperature sensor 90 may measure the temperature of the molten silicon by recognizing the brightness of the molten silicon recognized by the measuring unit 130.
  • the measuring unit 130 may be opened in each of the center body 116 and the lower body 117.
  • the measuring unit 130 may include an opening groove formed in the outer circumference of the center body 116 and an opening groove formed in the outer circumference of the lower body 117.
  • the neck cover 110 may be rotated, and when the neck cover 110 is rotated, the measuring unit 130 may be a position opposite to the temperature sensor 90 and a position not opposite.
  • the time when the temperature sensor 90 measures the temperature may be divided into a time for measuring the temperature of the molten silicon through the measuring unit 130, and a time for measuring the temperature of the neck cover 110.
  • the data measured by the temperature sensor 90 may be mixed with the temperature data of the molten silicon measured by the measuring unit 130, the temperature data of the neck cover 110, of which measured through the measuring unit 130 It is preferable that only the temperature data of the molten silicon is taken out.
  • the ingot growth apparatus may further include a control unit 91 (see FIG. 1) for controlling each component.
  • the controller 91 may calculate the temperature of the molten silicon according to the data measured by the temperature sensor 90.
  • the controller 91 may calculate the temperature of the molten silicon by extracting a maximum value from the data of the temperature sensor 90 measured during the measurement period.
  • the temperature sensor 90 may be connected to the controller 91, and the controller 91 may collect the data measured from the temperature sensor 90 in real time to calculate the temperature of the molten silicon.
  • FIG. 7 is a graph showing data of a temperature sensor measured through the neck cover according to the first embodiment.
  • the neck cover 110 of the first embodiment is a case in which two measuring units 130 are formed, and in this case, the neck cover 110 is measured through two measuring units 130 every two rotations. The temperature of the molten silicon can be measured.
  • the temperature ADC of the molten silicon measured by the temperature sensor 90 fluctuates with a peak value with time. This is because a high temperature is calculated when the temperature of the molten silicon is measured through the measuring unit 130, and a low temperature is calculated when a temperature other than the measuring unit 130 of the neck cover 110 is measured.
  • the controller 91 may calculate the peak value as the temperature of the molten silicon at the temperature measured by the temperature sensor 90.
  • the controller 91 may extract the temperature value of the molten silicon from the measured data value of the temperature sensor 90 using a high pass filter or a maximum value processor.
  • FIG 8 is a diagram illustrating a process of measuring temperature through the neck cover according to the first embodiment.
  • the ingot growth apparatus 1 may measure the temperature of the molten silicon more precisely by using the measuring unit 130 of the neck cover 110. Referring to FIG. 8, the direction (or position) measured by the temperature sensor 90 is the same, but the temperature of the molten silicon may be measured as the neck cover 110 rotates, and the temperature of the neck cover 110 is measured. Can be.
  • the period at which the temperature sensor 90 measures the actual temperature of the molten silicon can be obtained by the following equation.
  • T is a measurement period (sec)
  • r is Seed Chuck rotation (RPM)
  • n is the number of measurement parts.
  • the measuring unit 130 when the measuring unit 130 is composed of a plurality, the measuring unit 130 may be formed spaced apart from each other by a predetermined distance.
  • the controller 91 may extract data from the data of the temperature sensor 90 at every measurement cycle from the time of measurement of the temperature of the molten silicon, and measure the temperature of the molten silicon.
  • the controller 91 may calculate the maximum temperature at the time point when the temperature of the molten silicon is measured as the temperature of the molten silicon during the measurement main period.
  • the controller 91 may measure the temperature of the molten silicon and output the maximum temperature at that time as the temperature of the molten silicon during one measurement cycle.
  • the controller 910 may measure the maximum temperature again at the time point after the measurement cycle passes and output the temperature of the molten silicon between the next measuring instruments. This is defined as a high pass filter technology.
  • the controller 91 may accurately measure the temperature of the molten silicon through the high pass filter technology.
  • FIG. 9 is a graph (a) comparing the power before and after applying the first embodiment and a graph (b) comparing the amount of power.
  • the controller 91 may accurately calculate power to be added to or deducted from the heater 35, and thus control the heater 35.
  • FIG. 9 is a case before the change of the neck cover 110 and the high pass filter technology of the present invention is not applied, 'after a change' shown in Figure 9 is a neck cover 110 and the high of the present invention Pass filter technology is applied.
  • the neck cover 110 is applied to reduce heat loss, and that the control unit 91 accurately calculates the temperature of the molten silicon using the high pass filter technology, thereby reducing the power and the amount of power.
  • FIG. 10 is a bottom view of the neck cover according to the second embodiment.
  • the neck cover 110 of the second embodiment is different in shape from the neck cover 110 and the measurement unit 130 'of the first embodiment, and a detailed description of the configuration common to the first embodiment is omitted.
  • the neck cover 110 of the second embodiment may have a hole shape in the shape of the measuring unit 130 ′.
  • the measuring unit 130 ′ of the second embodiment may be formed in a hole shape in each of the center body 116 and the lower body 117, and may be formed to correspond to the position and size of the measuring point of the temperature sensor 90. Can be.
  • the measurement unit 130 ′ of the second embodiment may have a smaller open area than the measurement unit 130 of the first embodiment, and may further improve the degree of thermal insulation of the neck cover 110.
  • FIG. 11 is a bottom view of the neck cover according to the third embodiment.
  • the neck cover 110 of the third embodiment is a modification of the shape of the measurement unit 130 of the first embodiment and the measurement unit 130 'of the neck cover 110 of the second embodiment, and the first embodiment or the second embodiment. Detailed description of the configuration common to the examples will be omitted.
  • the measuring unit formed in the neck cover 110 of the third embodiment may be at least one measuring hole 130 ′′ formed in an arc shape along the outer circumference of the neck cover 110.
  • a plurality of measuring holes may be formed in the neck cover 110, and the neck cover 110 may include a bridge 160 positioned between the plurality of measuring holes 130 ′′.
  • the bridge 160 may be located between the pair of measuring holes 130 ′′ to support the outer periphery of the neck cover 110.
  • the temperature sensor 90 positioned above the chamber 10 may measure the temperature of the molten silicon through the arc-shaped measuring hole 130 ′′.
  • the third embodiment may allow the temperature sensor 90 to measure the temperature of the molten silicon, except for the bridge 160, and the time for sensing the temperature of the molten silicon may be longer than that of the second embodiment.
  • the neck cover can prevent the heat dissipation to the upper side of the molten silicon and at the same time can help to measure the temperature of the molten silicon, which can produce high quality ingots while minimizing energy and has high industrial use value. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Silicon Compounds (AREA)

Abstract

본 발명은 용융 실리콘에서 잉곳을 성장시키기 위한 종자 결정을 수용하는 시드 척에 있어서, 용융 실리콘의 상측으로 열이 방출되는 것을 차단하는 넥 커버; 및 넥 커버의 바닥면에 배치되고, 종자 결정을 수용하는 고정부를 포함하고, 넥 커버는 승강 케이블이 연결되는 상면과, 바닥면과, 상면과 바닥면을 연결하는 둘레면을 포함하고, 둘레면은 바닥면과 경사각을 가지며 형성되며, 넥 커버에는 용융 실리콘의 측정을 위한 측정부가 개구되어, 멜팅 공정시 넥 커버가 어퍼 단열체의 홀에 위치되는 것에 의해 어퍼 단열체의 홀을 통한 열손실을 최소화할 수 있고, 넥 커버가 용융 실리콘의 온도 측정을 방해하지 않는 것에 의해 용융 실리콘의 온도 측정을 도울 수 있고, 용융 실리콘 온도 감지의 신뢰성을 높일 수 있는 이점이 있다.

Description

시드 척 및 이를 포함하는 잉곳성장장치
본 발명은 실리콘 잉곳 생산을 위한 시드 척 및 이를 포함하는 잉곳성장장치에 관한 것이다.
실리콘 웨이퍼는 반도체 소자 제조용 실리콘 웨이퍼의 대구경화에 따라 초크랄스키(CZ) 공정(이하, 'CZ 공정' 이라 칭함)에 의해 성장된 실리콘 단결정 잉곳으로부터 제조되고 있다.
CZ 공정은 석영 도가니에 폴리실리콘을 넣고, 석영 도가니를 흑연 도가니로 가열하여 폴리실리콘을 용융시키고, 용융 실리콘에 종자 결정을 접촉시킨 후 종자 결정을 회전 및 인상시키는 것에 의해 계면에서 결정화가 일어나도록 할 수 있고, 원하는 직경의 실리콘 단결정 잉곳을 성장시킬 수 있다.
CZ 공정에 의한 잉곳 성장시, 석영 도가니의 상측으로 열이 방출되는데, 이렇게 방출된 열이 과다하면, 열손실 및 전력손실이 크게 되고, 흑연 도가니에 과다하게 열을 가하게 되므로, 흑연 도가니 등의 수명이 단축되고, 잉곳의 단가 상승으로 이어질 수 있다.
한편, 종자 결정을 용융 실리콘에 침지(deeping)할 때, 종자 결정 하부의 온도가 용융 실리콘의 표면온도로 급격히 상승하면서 열 충격(thermal shock)이 가해지는데, 이러한 열 충격은 종자 결정에 전단 응력(shear stress)을 유발하며, 종자 결정 중 용융 실리콘에 접촉되는 부위에 전위(dislocation)가 발생하여 잉곳의 품질이 저하될 수 있다.
본 발명은 간단한 구조로 핫 존 구조물을 효율 좋게 단열하면서 용융 실리콘의 온도를 측정할 수 있는 시드 척 및 이를 포함하는 잉곳 성장장치를 제공하는데 그 목적이 있다.
본 발명은 용융 실리콘에서 잉곳을 성장시키기 위한 종자 결정을 수용하는 시드 척에 있어서, 상기 용융 실리콘의 상측으로 열이 방출되는 것을 차단하는 넥 커버; 및 상기 넥 커버의 바닥면에 배치되고, 상기 종자 결정을 수용하는 고정부를 포함하고, 상기 넥 커버는 승강 케이블이 연결되는 상면과, 상기 바닥면과, 상기 상면과 바닥면을 연결하는 둘레면을 포함하고, 상기 둘레면은 상기 바닥면과 경사각을 가지며 형성되며, 상기 넥 커버에는 상기 용융 실리콘의 측정을 위한 측정부가 개구된다.
상기 경사각은 39°내지 48°일 수 있다.
상기 시드 척은 상기 넥 커버의 상면을 포함하는 어퍼 바디와, 상기 넥 커버의 둘레면을 포함하는 센터 바디와, 상기 넥 커버의 바닥면을 포함하는 로어 바디를 포함할 수 있고, 상기 상부 바디와 측면 바디는 탈착 가능하도록 결합되고, 상기 측면 바디와 하부 바디는 탈착 가능하도록 결합될 수 있다.
상기 넥 커버는 원뿔 또는 원뿔대 형상을 가질 수 있다.
상기 넥 커버의 내부는 빈공간으로 이루어질 수 있다.
본 발명은 챔버와; 상기 챔버 내에 배치되고 실리콘을 수용하는 핫 존 구조물과; 상기 핫 존 구조물을 가열하는 히터와; 상기 핫 존 구조물의 외부에 위치되는 아우터 단열체와; 상기 핫 존 구조물의 상측에 위치되며, 잉곳을 통과시키기 위한 홀이 형성된 어퍼 단열체와; 용융 실리콘에서 잉곳을 성장시키는 종자 결정을 수용하는 시드 척과; 상기 챔버 상부에 배치된 온도센서를 포함하고, 상기 시드 척은 상기 홀을 선택적으로 차폐하는 넥 커버와; 상기 종자 결정을 수용하는 고정부를 포함하며, 상기 넥 커버는 상기 온도센서가 용융 실리콘을 측정할 수 있는 측정부가 개구된다.
상기 온도센서는 상기 넥 커버의 상측에서 상기 측정부를 통해 상기 용융 실리콘을 측정할 수 있다.
상기 온도센서에서 측정된 데이터에 따라 상기 용융 실리콘의 온도를 산출하는 제어부를 더 포함할 수 있고, 상기 제어부는 측정주기 동안 측정된 상기 온도센서의 데이터 중 최대 값을 추출하여 상기 용융 실리콘의 온도를 산출할 수 있다.
상기 넥 커버는 승강 케이블이 연결되는 케이블 연결부를 포함하는 어퍼 바디와; 상기 용융 실리콘을 마주보는 바닥면을 포함하는 로어 바디와; 상기 바닥면과 경사진 둘레면을 갖는 센터 바디를 포함한다.
상기 센터 바디와 로어 바디의 각각에는 상기 측정부가 개구될 수 있다.
상기 센터 바디는 상기 어퍼 바디와 로어 바디 중 적어도 하나와 탈착 가능하도록 결합될 수 있다.
상기 측정부는 상기 넥 커버의 외둘레를 따라 호 형상으로 형성된 측정홀일 수 있다.
상기 측정홀은 상기 넥 커버에 복수개 형성될 수 있고, 상기 넥 커버는 복수개 측정홀 사이에 위치하는 브릿지를 포함할 수 있다.
상기 넥 커버는 유체를 안내하는 둘레면과; 상기 용융 실리콘을 마주보는 바닥면을 포함하고, 상기 둘레면은 상기 바닥면과 경사각을 갖고, 상기 경사각은 39°내지 48°일 수 있다.
상기 넥 커버는 상기 바닥면과 평행한 상면을 더 포함할 수 있다.
본 발명은 멜팅 공정시 넥 커버가 어퍼 단열체의 홀에 위치되어 어퍼 단열체의 홀을 통한 열손실을 최소화할 수 있고, 간단한 구조로 히터 파워를 감소시킬 수 있는 이점이 있다.
또한, 넥 커버가 용융 실리콘의 온도 측정을 방해하지 않고, 용융 실리콘의 온도 측정을 도울 수 있어 용융 실리콘 온도 감지의 신뢰성을 높일 수 있는 이점이 있다.
또한, 넥 커버가 용융 실리콘의 온도 측정을 방해하지 않기 때문에, 핫 존 구조물의 단열 성능을 높일 수 있는 최적의 크기의 넥 커버를 배치시킬 수 있는 이점이 있고, 넥 커버의 설계 자유도를 높일 수 있는 이점이 있다.
또한, 핫 존 구조물의 열화를 최소화할 수 있고, 전력량을 감소시켜 잉곳 생산비용을 감소시킬 수 있다.
또한, 넥 커버가 어퍼 단열체와 함께 용융 실리콘 상측의 온도를 상승시킬 수 있고, 용융 실리콘 위에 위치하는 종자 결정이 용융 실리콘 상측에서 가열된 후 용융 실리콘에 침지될 수 있어, 종자 결정의 침지시 발생될 수 있는 열충격을 최소화할 수 있고, 잉곳의 품질이 향상될 수 있다.
도 1은 실시예에 따른 잉곳성장장치를 나타내는 도면,
도 2는 실시예에 따른 시드 척과 어퍼 단열체가 확대 도시된 도,
도 3은 넥 커버의 경사각에 따른 히터의 파워 변화가 도시된 그래프,
도 4는 넥 커버의 바닥면 외경에 따른 히터 파워 변화가 도시된 그래프,
도 5는 제 1 실시예에 따른 시드 척의 분리 사시도,
도 6은 제 1 실시예에 따른 넥 커버의 저면도,
도 7은 제 1 실시예에 따른 넥 커버를 통해 측정한 온도센서의 데이터가 도시된 그래프,
도 8은 제 1 실시예에 따른 넥 커버를 통해 온도를 측정하는 과정이 도시된 도,
도 9는 제 1 실시예가 적용되기 전후의 파워 및 전력량을 비교한 그래프,
도 10은 제 2 실시예에 따른 넥 커버의 저면도,
도 11은 제 3 실시예에 따른 넥 커버의 저면도이다.
이하에서는, 본 실시예에 대하여 첨부되는 도면을 참조하여 상세하게 살펴보도록 한다. 다만, 본 실시예가 개시하는 사항으로부터 본 실시예가 갖는 발명의 사상의 범위가 정해질 수 있을 것이며, 본 실시예가 갖는 발명의 사상은 제안되는 실시예에 대하여 구성요소의 추가, 삭제, 변경 등의 실시변형을 포함한다고 할 것이다.
도 1은 실시예에 따른 잉곳성장장치를 나타내는 도면이다.
도 1을 참조하면, 잉곳성장장치(1)는 챔버(10)와; 챔버(10) 내에 배치되고 실리콘을 수용하는 핫 존 구조물(30)(31)과; 핫 존 구조물(30)(31)을 가열하는 히터(35)와; 핫 존 구조물(30)(31)의 외부에 위치되는 아우터 단열체(60)와; 핫 존 구조물(30)(31)의 상측에 위치되며 잉곳을 통과시키기 위한 홀(h)이 형성된 어퍼 단열체(50)와; 용융 실리콘에서 잉곳을 성장시키는 종자 결정을 수용하는 시드 척(100)을 포함할 수 있다.
챔버(10)는 잉곳이 성장하기 위한 공간을 제공할 수 있다.
챔버(10)는 상부 챔버(11)와, 하부 챔버(12)를 포함할 수 있다.
상부 챔버(11)는 하부 챔버(12)의 상부를 덮을 수 있다. 상부 챔버(11)에는 잉곳이 통과하는 통로부(20)가 형성될 수 있다. 통로부(20)는 상부 챔버(11)의 상부에 상하 방향으로 길게 형성될 수 있다.
하부 챔버(12)는 상부 챔버(11)와 결합될 수 있다. 하부 챔버(12)에는 핫 존 구조물(30)(31)와, 히터(35)과, 아우터 단열체(60)와, 어퍼 단열체(50)가 수용되는 공간이 형성될 수 있다.
잉곳성장장치(1)는 챔버(10)의 내부를 관찰하기 위하여 챔버(10)를 관통하는 홀이 구비됨과 동시에 챔버(10)의 밀폐상태를 유지하는 뷰 포트(14)를 더 포함할 수 있다.
핫 존 구조물(30)(31)은 실리콘을 담을 수 있는 석영 도가니(30)를 포함할 수 있다. 핫 존 구조물(30)(31)은 석영 도가니(30)를 수용하는 흑연 도가니(31)를 더 포함할 수 있다. 석영 도가니(30)는 석영으로 이루어진 보울 형태로서, 내부 공간에 다결정 실리콘을 수용할 수 있다. 석영 도가니(30)는 흑연 도가니(31) 내측에 위치되어 흑연 도가니(31)에 지지될 수 있다.
잉곳성장장치(1)는 흑연 도가니(31)를 지지하는 받침대(33)와, 받침대(33)를 지지하며 받침대(33)를 회전 및 상하 이동시킬 수 있는 도가니 회전부(34)를 더 포함할 수 있다. 도가니 회전부(34)는 시드 척(100)의 회전시 흑연 도가니(31)를 시드 척(100)의 반대 방향으로 회전시킴과 동시에 상승시킬 수 있다.
히터(35)는 핫 존 구조물(30)(31)로 열을 가하게 설치될 수 있다. 히터(35)는 흑연 도가니(31)의 외측을 둘러싸도록 배치될 수 있다. 히터(35)는 흑연 도가니(31)로 열을 가하여, 석영 도가니(30)에 수용된 다결정 실리콘을 용융시킬 수 있다. 히터(35)는 흑연 도가니(31)을 열을 가할 수 있고, 히터(35)에 의해 가열된 흑연 도가니(31)는 석영 도가니(30)를 가열할 수 있다.
잉곳성장장치(1)는 잉곳을 냉각하기 위한 냉각관(40)을 더 포함할 수 있다. 냉각관(40)은 챔버(10) 내부에 배치될 수 있고, 잉곳은 냉각관(40)을 통과하면서 냉각될 수 있다. 냉각관(40)은 일부가 통로부(20)에 위치되게 배치될 수 있다. 냉각관(40)은 하부가 하부 챔버(12) 내측에 위치되게 배치될 수 있다.
어퍼 단열체(50)는 석영 도가니(30)의 상측에 위치될 수 있다. 어퍼 단열체(50)는 챔버(10)에 구비된 단열체 서포터(51)에 올려져 설치될 수 있다. 어퍼 단열체(50)는 중앙부(52)와, 가장자리부(53)와, 연결부(54)를 포함할 수 있다. 어퍼 단열체(50)는 적어도 1회 꺽인 형상으로 형성될 수 있다.
중앙부(52)는 석영 도가니(30) 내부에 위치될 수 있다. 중앙부(52)는 연결부(54)의 하부에 형성될 수 있고, 하부로 갈수록 크기가 점차 작아지는 통 형상으로 형성될 수 있다. 중앙부(52)는 저면이 실리콘을 마주볼 수 있다.
가장자리부(53)는 석영 도가니(30) 외부에 위치될 수 있다. 가장자리부(54)은 연결부(54)의 상부에 형성될 수 있고, 링 형상으로 형성될 수 있다.
연결부(54)는 중앙부(52)와 가장자리부(53)를 잇게 형성될 수 있다. 연결부(54)는 하부로 갈수록 크기가 점차 작아지는 통 형상으로 형성될 수 있다. 연결부(54)는 넥 커버(110) 보다 크게 형성될 수 있다.
어퍼 단열체(50)의 홀(h)은 용융 실리콘으로부터 성장되는 잉곳이 통과되기 위해 형성될 수 있다. 어퍼 단열체(50)의 홀(h)은 제조하고자 하는 잉곳 보다 크게 형성될 수 있다. 어퍼 단열체(50)의 홀(h)은 어퍼 단열체(50)의 중앙부(52)에 형성될 수 있다. 어퍼 단열체(50)의 홀(h)은 원형 형상일 수 있다.
어퍼 단열체(50)는 아우터 단열체(60)와 함께 핫 존 구조물(30)(31)과, 히터(30)를 둘러싸서 단열할 수 있다. 아우터 단열체(60)가 핫 존 구조물(30)(31)의 옆 방향 으로 방출되는 열을 단열하는 열차페체일 수 있고, 어퍼 단열체(50)는 핫 존 구조물(30)(31)의 상측 방향으로 방출되는 열을 단열하는 열차페체일 수 있다.
어퍼 단열체(50)는 하부가 석용 도가니(30) 내부로 삽입되게 배치될 수 있다. 어퍼 단열체(50)는 연결부(54)의 일부와, 중앙부(52)가 석용 도가니(30)의 내부에 위치되게 설치될 수 있다.
아우터 단열체(60)는 히터(35)의 외부에 배치될 수 있다. 아우터 단열체(60)는 히터(35)의 외측 둘레에 배치될 수 있다. 아우터 단열체(60)는 히터(35)와 챔버(10)의 사이에 위치되게 배치될 수 있다. 아우터 단열체(60)는 중공 통 형상으로 형성될 수 있다.
잉곳성장장치(1)는 챔버(10)의 상부에서 챔버(10) 내부로 불활성 가스(G)를 공급하는 불활성 가스 공급부(70)를 더 포함할 수 있다. 불활성 가스 공급부(70)는 통로부(20)에 연통되게 형성될 수 있고, 불활성 가스(G)는 불활성 가스 공급부(70)를 통해 통로부(20)로 공급될 수 있고, 통로부(20)를 통과한 후 어퍼 단열체(50)를 통과할 수 있다.
잉곳성장장치(1)는 용융 실리콘을 측정하는 온도센서(90)를 더 포함할 수 있다. 온도센서(90)는 챔버(10)의 상부에 배치될 수 있다. 온도센서(90)는 용융 실리콘의 온도를 측정하기 위해 설치될 수 있다. 온도센서(90)는 용융 실리콘과 이격된 위치에서 용융 실리콘의 온도를 측정할 수 있는 비접촉식 온도센서일 수 있다. 온도센서(90)는 적외선 센서나 자외선 센서로 구성될 수 있고, 측정대상인 용융 실리콘과 비접촉된 상태에서 용융 실리콘의 온도를 측정할 수 있다.
시드 척(100)은 홀(h)을 선택적으로 차폐하는 넥 커버(110)와, 종자 결정을 수용하는 고정부(120)을 포함할 수 있다.
넥 커버(110)는 승강 케이블(106)에 연결될 수 있다. 넥 커버(110)는 승강 케이블(106)에 의해 승강될 수 있다. 넥 커버(110)는 어퍼 단열체(50)의 홀(h)에 위치될 때, 어퍼 단열체(50)의 홀(h)을 차폐할 수 있고, 어퍼 단열체(50)의 홀(h) 위로 상승되었을 때, 어퍼 단열체(50)의 홀(h)을 개방할 수 있다.
넥 커버(110)는 어퍼 단열체(50)의 홀(h) 보다 작은 크기로 형성될 수 있다. 넥 커버(110)는 홀(h) 보다 크기가 작고 홀(h)에 위치되어 홀(h)의 일부를 차폐할 수 있다. 넥 커버(110)는 홀(h)에 위치될 때, 홀(h) 전체를 차폐하지 않고 일부만 차폐할 수 있다.
넥 커버(110)의 승강 위치에 따라, 홀(h)의 개방 정도는 상이할 수 있고, 홀(h)의 개방 면적은 넥 커버(110)의 위치에 의해 조절될 수 있다.
다결정 실리콘이 멜팅될 때, 케이블 구동부(108)는 넥 커버(110)를 어퍼 단열체(50)의 홀(h)에 위치시킬 수 있고, 홀(h)을 통해 방출되는 열은 최소화될 수 있다. 즉, 넥 커버(110)는 어퍼 단열체(50)의 홀(h)을 통한 열 방출을 최소화할 수 있고, 석영 도가니(30)의 상측으로 방출되는 열은 어퍼 단열체(50) 및 넥 커버(110)에 의해 최소화될 수 있다.
어퍼 단열체(50)의 홀(h)에 넥 커버(110)를 구비하지 않을 경우, 어퍼 단열체(50)의 홀(h)을 통한 열 손실은 클 수 있다. 다결정 실리콘을 용융 실리콘으로 멜팅하는 과정에서 발생된 열은 어퍼 단열체(50)의 홀(h)을 통해 어퍼 단열체(50)의 홀(h) 상측으로 방출될 수 있는데, 이렇게 방출된 열이 과다할 경우, 전체적으로 멜팅 공정 시간이 길게 되고, 전력 손실이 크게 되며, 핫 존 구조물(30)(31)의 열화가 심할 수 있다.
반면에, 넥 커버(110)가 구비될 경우, 넥 커버(110)는 어퍼 단열체(50)의 홀(h) 일부를 막아, 어퍼 단열체(50)의 홀(h)을 통해 과다한 열이 방출되는 것을 막을 수 있다.
한편, 넥 커버(110)가 홀(h)의 일부를 막지 않을 경우, 종자 결정(S)이 용융 실리콘에 침지될 때, 종자 결정(S)과 용융 실리콘의 온도차에 의하여 종자 결정(S)에 가해지는 열 충격이 클 수 있고, 잉곳에 전위가 발생할 수 있다.
반면에, 넥 커버(110)가 홀(h)의 일부를 막을 경우, 홀(h)과 용융 실리콘 사이 공간의 온도는 넥 커버(110)가 홀(h)의 일부를 막지 않는 경우 보다 높을 수 있고, 종자 결정(S)은 넥 커버(110)와 용융 실리콘 사이의 공간에서 용융 실리콘에 근사한 온도로 승온된 후, 용융 실리콘에 침지될 수 있다. 즉, 종자 결정(S)과 용융 실리콘의 온도차는 최소화될 수 있고, 잉곳에 발생되는 전위는 최소화될 수 있다.
승강 케이블(106)은 시드 척(100)을 회전 및 승강시킬 수 있다. 승강 케이블(106)은 넥 커버(110)을 회전 및 승강시킬 수 있고, 넥 커버(110)의 하부에 배치된 고정부(120)는 넥 커버(110)와 함께 회전 및 승강될 수 있다.
잉곳 성장장치는 승강 케이블(106)에 작동시키는 케이블 구동부(108)를 포함할 수 있다.
케이블 구동부(108)는 챔버(10)의 상측에는 위치되게 배치될 수 있다. 케이블 구동부(108)는 승강 케이블(106)을 권취할 수 있다. 케이블 구동부(108)는 승강 케이블(106)을 풀어 시드 척(100)을 실리콘에 근접하게 하강시킬 수 있고, 이 경우 시드 척(100)에 수용된 종자 결정(S)은 용융 실리콘에 침지될 수 있다. 케이블 구동부(108)는 승강 케이블(106)을 당길 수 있고, 시드 척(100)을 회전과 동시에 상승시켜 잉곳을 성장시킬 수 있다.
케이블 구동부(108)는 멜팅 공정시 넥 커버(110)가 어퍼 단열체(50)의 홀(h)에 위치되게 승강 케이블(105)을 작동시킬 수 있다.
넥 커버(110)는 승강 케이블(106)에 위해 무빙되는 무빙 차폐체일 수 있고, 어퍼 단열체(50)의 홀(h) 개방 면적을 조절할 수 있는 무빙 조절기일 수 있다.
케이블 구동부(108)는 단열성능과 잉곳 품질을 고려한 최적의 위치로 넥 커버(110)를 승강시킬 수 있다.
고정부(120)는 넥 커버(110)의 하부에 배치될 수 있다. 고정부(120)은 석영 도가니(30)의 상측에 위치될 수 있고, 용융 실리콘으로부터 잉곳을 성장시키기 위한 종자 결정(S)을 수용할 수 있다. 고정부(120)은 넥 커버(110)를 통해 승강 케이블(106)에 연결되는 것이 가능하고, 승강 케이블(106)에 직접 연결되는 것도 가능함은 물론이다.
도 2는 실시예에 따른 시드 척과 어퍼 단열체가 확대 도시된 도이다.
넥 커버(110)는 유체를 안내하는 둘레면(111)과; 용융 실리콘을 마주보는 바닥면(112)을 포함할 수 있다.
넥 커버(110)는 홀(h)에 위치될 수 있고, 이때 둘레면(111)은 도 1에 도시된 불활성 가스 공급부(70)를 통해 공급된 가스를 넥 커버(110)와 어퍼 단열체(50) 사이로 안내할 수 있다.
즉, 도 1에 도시된 불활성 가스 공급부(70)를 통해 공급된 가스는 둘레면(111)을 따라 안내된 후 넥 커버(110)와 어퍼 단열체(50) 사이로 유동될 수 있다.
넥 커버(110)의 둘레면(111)은 바닥면(112)에 대해 소정 각도 경사지게 형성될 수 있다. 불활성 가스 공급부(70)를 통해 공급된 불활성 가스는 넥 커버(110)의 경사진 둘레면(111)을 따라 안내될 수 있고, 넥 커버(110)와 어퍼 단열체(50) 사이를 통과한 후 용융 실리콘을 향해 원활하게 유동될 수 있다. 즉, 둘레면(111)은 바닥면(112)과 경사각(θ)을 갖을 수 있다.
한편, 넥 커버(110)는 어퍼 단열체(50)의 홀(h) 형상에 대응되는 형상을 갖을 수 있다. 어퍼 단열체(50)의 홀(h)이 원형일 경우, 넥 커버(110)의 바닥면(112) 직경은 어퍼 단열체(50)의 홀(h) 직경보다 작을 수 있다. 넥 커버(110)가 어퍼 단열체(50)의 홀(h)에 위치되었을 때, 넥 커버(110)의 외둘레와, 어퍼 단열체(50)는 서로 이격거리(d)를 두고 이격될 수 있다. 넥 커버(110)는 어퍼 단열체(50)와 충돌 및 간섭되지 않을 수 있다.
어퍼 단열체(50)의 홀(h)이 원형일 때, 넥 커버(110)는 원뿔 형상 또는 원뿔대 형상으로 형성될 수 있고 넥 커버(110)는 홀(h)의 일부를 차폐할 수 있다. 넥 커버(110)의 내부에는 빈 공간이 형성될 수 있다.
넥 커버(110)는 그래파이트(graphite)로 형성될 수 있다. 넥 커버(110)의 바닥면은 열분해 탄소 코팅층이 코팅될 수 있으며, 단열능력을 향상시킬 수 있다.
넥 커버(110)가 어퍼 단열체(50)의 홀(h)에 위치될 때의 홀 주변 온도분포와, 넥 커버(110)가 어퍼 단열체(50)의 홀(h)에서 제1높이(예를 들면 40mm)로 상승되었을 때의 홀 주변 온도분포와, 넥 커버(110)가 제1높이 보다 높은 제2높이(예를 들면 80mm)로 상승 되었을 때의 홀 주변 온도분포는 상이할 수 있다.
히터(35)의 파워는 넥 커버(110)가 어퍼 단열체(50)의 홀(h)에 위치될 때, 가장 최소일 수 있고, 넥 커버(110)가 어퍼 단열체(50)의 홀(h) 상측으로 상승될 수록 증대될 수 있다.
히터(35)의 파워는 핫 존 구조물(30)(31)의 온도 측정에 따라 결정될 수 있고, 히터(35)의 파워가 감소한 것은 넥 커버(110)에 의해 핫 존 구조물(30)(31)의 온도가 충분히 높은 것을 의미하고, 히터(35)의 파워가 감소된 정도는 넥 커버(110)에 의해 단열능력이 향상된 정도를 의미할 수 있다.
잉곳성장장치는 멜팅 공정시 넥 커버(110)를 어퍼 단열체(50)의 홀(h)에 위치시키는 것이 가장 바람직하다.
고정부(120)는 넥 커버(110)의 바닥면(112)에 배치될 수 있다. 고정부(120)은 넥 커버(110)의 바닥면(112)에서 돌출되도록 위치될 수 있다. 고정부(120)에는 종자 결정(S)이 수용되는 수용홈이 구비될 수 있다. 그리고, 수용홈에는 종자 결정(S)을 단단하게 고정시키기 위한 고정홈이 형성될 수 있다. 그리고, 고정부(120)은 그래프이트로 형성될 수 있고, 열분해 탄소 코팅층이 코팅될 수도 있으며, 단열능력을 향상시킬 수 있다.
한편, 넥 커버(110) 주변의 열분포는 넥 커버(110)의 경사각(θ)에 따라 상이할 수 있다.
도 3은 넥 커버(110)의 경사각(θ)에 따른 히터(35)의 파워 변화를 나타내는 그래프이다.
도 3을 참조하면, 넥 커버(110)의 경사각(θ)이 39° 미만인 경우, 넥 커버(110)에 의한 단열 능력이 낮아 히터(35)의 파워가 높고, 넥 커버(110)의 경사각(θ)이 48° 초과인 경우, 넥 커버(110)의 단열능력이 낮아 히터(35)의 파워가 급격히 상승되는 것이 확인될 수 있다. 넥 커버(110)의 경사각(θ)은 39° 내지 48° 사이가 바람직하다.
도 4는 넥 커버 바닥면의 외경 변화에 따른 히터 파워 변화를 나타내는 그래프이다.
도 4를 참조하면, 넥 커버(110)의 외경이 200mm 이하일 경우 히터(35)의 파워가 점차 감소되는 것이 확인될 수 있고, 넥 커버(110)의 외경은 200mm 이상인 것이 바람직하나, 이에 한정하지는 않는다.
한편, 넥 커버(110)의 외경이 홀(h) 크기보다 클 경우, 넥 커버(110)는 어퍼 단열체(50)와 충돌 및 간섭될 수 있고, 넥 커버(110)는 어퍼 단열체(50)의 홀(h) 보다 작은 것이 바람직하다.
도 5는 제 1 실시예에 따른 시드 척의 분리 사시도이고, 도 6은 제 1 실시예에 따른 넥 커버의 저면도이다.
도 5를 참조하면, 넥 커버(110)는 바닥면(112)과 평행한 상면(113)을 더 포함할 수 있다.
넥 커버(110)는 둘레면(111), 바닥면(112) 및 상면(113)을 포함할 수 있고, 전체적인 형상이 원뿔대 형상일 수 있다.
넥 커버(110)에는 승강 케이블(106)이 연결되는 케이블 연결부(114)가 구비될 수 있다. 케이블 연결부(114)는 넥 커버(110)의 상부에 구비될 수 있다. 케이블 연결부(114)는 승강 케이블(106)이 연결될 수 있는 홈을 포함할 수 있다.
넥 커버(110)는 복수개 부재의 결합체로 구성될 수 있고, 각 구성은 탈착 가능하게 형성될 수 있다.
넥 커버(110)는 어퍼 바디(115)와, 둘레면(111)을 포함하는 센터 바디(116)와, 바닥면(112)을 포함하는 로어 바디(117)를 포함할 수 있다.
어퍼 바디(115)와, 센터 바디(116) 및 로어 바디(117) 각각은 소정의 두께를 갖게 형성될 수 있고, 넥 커버(110)는 어퍼 바디(115)와, 센터 바디(116) 및 로어 바디(117)가 결합되었을 때 내부에 빈 공간이 형성될 수 있다.
어퍼 바디(115)의 상면은 넥 커버(110)의 상면(113)이 될 수 있고, 어퍼 바디(115)에는 케이블 연결부(114)가 구비될 수 있다.
센터 바디(116)는 하부로 갈수록 직경이 점차 증가되는 원뿔대 형상일 수 있다.
센터 바디(116)는 어퍼 바디(115)와 로어 바디(117) 중 적어도 하나와 탈착 가능하도록 결합될 수 있다. 어퍼 바디(115)와 센터 바디(116) 중 어느 하나에는 수나사가 형성될 수 있고, 다른 하나에는 수나사와 결합되는 암나사가 형성될 수 있으며, 어퍼 바디(115)와 센터 바디(116)는 나사 결합될 수 있다.
센터 바디(116)와 로어 바디(117) 중 어느 하나에는 수나사가 형성될 수 있고, 다른 하나에는 수나사와 결합되는 암나사가 형성될 수 있으며, 센터 바디(116)과 로어 바디(117)는 나사 결합될 수 있다.
로어 바디(117)에는 고정부(120)가 관통되게 배치되는 고정부 관통공(118)이 형성될 수 있다.
한편, 도 1에 도시된 온도센서(90)는 광을 용융 실리콘으로 조사할 수 있고, 용융 실리콘에서 반사되어 돌아오는 광을 센싱하여 용융 실리콘의 온도를 측정할 수 있다.
넥 커버(110)는 일부가 온도센서(90)와 용융 실리콘 사이에 위치될 수 있는데, 넥 커버(110)는 온도센서(90)가 용융 실리콘의 온도를 측정할 수 있게 형성될 수 있다.
넥 커버(110)는 용융 실리콘의 측정을 위한 측정부(130)가 개구될 수 있다. 넥 커버(110)에는 온도센서(90)가 용융 실리콘을 측정할 수 있는 측정부(130)가 개구될 수 있다. 측정부(130)는 넥 커버(110) 중 온도센서(90)를 마주볼 수 있는 위치에 개구될 수 있다. 측정부(130)는 넥 커버(110)에 홈 형상 또는 홀 형상으로 형성될 수 있다.
온도센서(90)는 넥 커버(110) 상측에서 측정부(130)를 통해 용융 실리콘의 온도를 측정할 수 있는 적외선 센서 또는 자외선 센서일 수 있다. 온도센서(90)에서 조사된 광은 측정부(130)를 통과하여 용융 실리콘으로 조사될 수 있고, 용융 실리콘에서 반사된 광을 통해 용융 실리콘의 온도를 측정할 수 있다.
온도센서(90)는 측정부(130)를 통해 인식된 용융 실리콘의 밝기를 인식하여 용융 실리콘의 온도를 측정할 수 있다.
측정부(130)는 센터 바디(116)와, 로어 바디(117)의 각각에 개구될 수 있다. 측정부(130)는 센터 바디(116)의 외둘레에 형성된 개구홈과, 로어 바디(117)의 외둘레에 형성된 개구홈을 포함할 수 있다.
한편, 넥 커버(110)는 회전될 수 있고, 넥 커버(110)의 회전시, 측정부(130)는 온도센서(90)와 대향되는 위치와, 대향되지 않는 위치일 수 있다.
온도센서(90)가 온도를 측정하는 시기는 측정부(130)를 통해 용융 실리콘의 온도를 측정하는 시기와, 넥 커버(110)의 온도를 측정하는 시기로 구분될 수 있다. 온도센서(90)에서 측정된 데이터는 측정부(130)를 통해 측정한 용융 실리콘의 온도 데이터와, 넥 커버(110)의 온도 데이터가 혼재될 수 있으며, 이 중 측정부(130)를 통해 측정된 용융 실리콘의 온도 데이터만 취출되는 것이 바람직하다.
잉곳성장장치는 각 구성을 제어할 수 있는 제어부(91,도1 참조)를 더 포함할 수 있다. 제어부(91)는 온도센서(90)에서 측정된 데이터에 따라 용융 실리콘의 온도를 산출할 수 있다.
제어부(91)는 측정주기 동안 측정된 온도센서(90)의 데이터 중 최대 값을 추출하여 용융 실리콘의 온도를 산출할 수 있다.
온도센서(90)는 제어부(91)와 연결될 수 있고, 제어부(91)는 온도센서(90)로부터 측정된 데이터를 실시간으로 수집하여 용융 실리콘의 온도를 산출할 수 있다.
도 7은 제 1 실시예에 따른 넥 커버를 통해 측정한 온도센서의 데이터가 도시된 그래프이다.
제 1 실시예의 넥 커버(110)에는 측정부(130)가 2개 형성된 경우이고, 이 경우, 넥 커버(110)는 1 회전(rotation)할 때 마다 2개 구간에서 측정부(130)를 통해 용융 실리콘의 온도를 측정할 수 있다.
도 7을 참조하면, 온도센서(90)에서 측정된 용융 실리콘의 온도(ADC)는 시간에 따라서 피크(peak)값을 갖고 요동하는 것을 확인할 수 있다. 이는 측정부(130)을 통해 용융 실리콘의 온도 측정될 때 높은 온도가 산출되고, 넥 커버(110) 중 측정부(130) 이외의 온도가 측정될 때 낮은 온도가 산출되기 때문이다.
제어부(91)는 온도센서(90)로 측정되는 온도에서 피크 값을 용융 실리콘의 온도로 산출할 수 있다. 제어부(91)는 하이패스필터 또는 최대값(Max) 처리기를 이용하여 온도센서(90) 측정된 데이터 값에서 용융 실리콘의 온도 값을 추출할 수 있다.
도 8은 제 1 실시예에 따른 넥 커버를 통해 온도를 측정하는 과정이 도시된 도이다.
잉곳성장장치(1)는 넥 커버(110)의 측정부(130)를 이용하여 좀더 정밀하게 용융 실리콘의 온도를 측정할 수 있다. 도 8을 참조하면, 온도센서(90)가 측정하는 방향(또는 위치)은 동일하나 넥 커버(110)가 회전함에 따라 용융 실리콘의 온도가 측정될 수 있고, 넥 커버(110)의 온도가 측정될 수 있다.
온도센서(90)가 용융 실리콘의 실제 온도를 측정하는 주기는 다음과 같은 수식으로 구해질 수 있다.
Figure PCTKR2015007856-appb-M000001
여기서, T: 측정주기(sec)이고, r은 Seed Chuck rotation(RPM)이며, n은 측정부의 개수이다.
측정부(130)의 개수에 따라 측정주기가 산출되기 위해서, 측정부(130)가 복수개로 구성되는 경우, 측정부(130)들은 서로 일정한 거리로 이격되어 형성될 수 있다.
제어부(91)는 온도센서(90)의 데이터에서 용융 실리콘의 온도가 측정시점부터 측정주기마다 데이터를 추출하여, 용융 실리콘의 온도를 측정할 수 있다.
제어부(91)는 용융 실리콘의 온도가 측정된 시점에 최대 온도를 한 측정주기구간 동안 용융 실리콘의 온도로 산출할 수 있다. 제어부(91)는 용융 실리콘의 온도가 측정하고 그때의 최대 온도를 한 측정주기 동안의 용융 실리콘의 온도로 출력할 수 있다. 제어부(910)는 측정주기가 지난 시점에서 최대 온도를 다시 측정하여 다음 측정주기구간의 용융 실리콘의 온도로 출력할 수 있다. 이를 하이패스필터 기술이라 정의한다.
제어부(91)는 하이패스필터 기술을 통해 용융 실리콘의 온도를 정확하게 측정할 수 있다.
도 9는 제 1 실시예가 적용되기 전후의 파워를 비교한 그래프(a)와 전력량을 비교한 그래프(b)이다.
제어부(91)는 측정부(130)를 통해 용융 실리콘의 온도를 정확하게 측정하였을 때, 히터(35)에 가감할 파워를 정확하게 산출해 낼 수 있고, 그에 따라 히터(35)를 제어할 수 있다.
도 9에 도시된 '변경 전'은 본 발명의 넥 커버(110) 및 하이패스필터 기술이 적용되지 않았을 경우이고, 도 9에 도시된 '변경 후'는 본 발명의 넥 커버(110) 및 하이패스필터 기술이 적용된 경우이다.
넥 커버(110)가 적용되어 열 손실이 줄어들고, 제어부(91)가 하이패스필터 기술을 이용하는 용융 실리콘의 온도를 정확하게 산출하는 것에 의해, 파워 및 전력량이 감소되는 것이 확인될 수 있다.
도 10은 제 2 실시예에 따른 넥 커버의 저면도이다.
제 2 실시예의 넥 커버(110)는 제 1 실시예의 넥 커버(110)와 측정부(130′)의 형상이 상이하고, 제 1 실시예와 공통된 구성에 대한 상세한 설명은 생략한다.
제 2 실시예의 넥 커버(110)는 측정부(130′) 형상의 홀 형상일 수 있다. 제 2 실시예의 측정부(130′)는 센터 바디(116) 및 로어 바디(117)의 각각에 홀 형상으로 형성될 수 있고, 온도센서(90)의 측정지점의 위치 및 크기에 대응되게 형성될 수 있다.
제 2 실시예의 측정부(130′)은 제 1 실시예의 측정부(130)에 비해 개방면적이 적을 수 있고, 넥 커버(110)의 단열 정도를 좀더 향상시킬 수 있다.
도 11은 제 3 실시예에 따른 넥 커버의 저면도이다.
제 3 실시예의 넥 커버(110)는 제 1 실시예의 측정부(130) 및 제 2 실시예의 넥 커버(110)의 측정부(130′)의 형상을 변형한 것으로, 제 1 실시예나 제 2 실시예와 공통된 구성에 대한 상세한 설명은 생략한다.
제 3 실시예의 넥 커버(110)에 형성된 측정부는 넥 커버(110)의 외둘레를 따라 호 형상으로 형성된 적어도 하나의 측정홀(130″)일 수 있다.
측정홀은 넥 커버(110)에 복수개 형성될 수 있고, 넥 커버(110)는 복수개 측정홀(130″) 사이에 위치하는 브릿지(160)를 포함할 수 있다.
브릿지(160)은 넥 커버(110)의 외주연을 지지하기 위하여, 한 쌍의 측정홀(130″) 사이에 위치할 수 있다.
챔버(10)의 상부에 위치한 온도센서(90)는 호 형상의 측정홀(130″)를 통해 용융 실리콘의 온도를 측정할 수 있다.
제 3 실시예는 브릿지(160)를 제외하고, 온도센서(90)가 용융 실리콘의 온도를 측정할 수 있도록 할 수 있고, 용융 실리콘의 온도를 감지할 수 있는 시간이 제 2 실시예 보다 길 수 있으며, 용융 실리콘의 보다 정확한 온도 측정이 가능한 장점이 있다.
이상에서 실시예들에 설명된 특징, 구조, 효과 등은 적어도 하나의 실시예에 포함되며, 반드시 하나의 실시예에만 한정되는 것은 아니다. 나아가, 각 실시예에서 예시된 특징, 구조, 효과 등은 실시예들이 속하는 분야의 통상의 지식을 가지는 자에 의해 다른 실시예들에 대해서도 조합 또는 변형되어 실시 가능하다. 따라서 이러한 조합과 변형에 관계된 내용들은 실시예의 범위에 포함되는 것으로 해석되어야 할 것이다.
이상에서 실시예를 중심으로 설명하였으나 이는 단지 예시일 뿐 실시예를 한정하는 것이 아니며, 실시예가 속하는 분야의 통상의 지식을 가진 자라면 본 실시예의 본질적인 특성을 벗어나지 않는 범위에서 이상에 예시되지 않은 여러 가지의 변형과 응용이 가능함을 알 수 있을 것이다. 예를 들어, 실시예에 구체적으로 나타난 각 구성 요소는 변형하여 실시할 수 있는 것이다. 그리고 이러한 변형과 응용에 관계된 차이점들은 첨부된 청구 범위에서 설정하는 실시예의 범위에 포함되는 것으로 해석되어야 할 것이다.
본 발명에 따르면, 넥 커버가 용융 실리콘의 상측으로 열이 방출되는 것을 차단하면서 동시에 용융 실리콘의 온도 측정을 도울 수 있어, 에너지를 최소화하면서 고품질의 잉곳을 생산할 수 있고 산업적 이용가치가 높다고 할 수 있다.

Claims (15)

  1. 용융 실리콘에서 잉곳을 성장시키기 위한 종자 결정을 수용하는 시드 척에 있어서,
    상기 용융 실리콘의 상측으로 열이 방출되는 것을 차단하는 넥 커버; 및
    상기 넥 커버의 바닥면에 배치되고, 상기 종자 결정을 수용하는 고정부를 포함하고,
    상기 넥 커버는 승강 케이블이 연결되는 상면과, 상기 바닥면과, 상기 상면과 바닥면을 연결하는 둘레면을 포함하고, 상기 둘레면은 상기 바닥면과 경사각을 가지며 형성되며,
    상기 넥 커버에는 상기 용융 실리콘의 측정을 위한 측정부가 개구된 시드 척.
  2. 제 1 항에 있어서,
    상기 경사각은 39°내지 48°인 시드 척.
  3. 제 1 항에 있어서,
    상기 시드 척은
    상기 넥 커버의 상면을 포함하는 어퍼 바디와;
    상기 넥 커버의 둘레면을 포함하는 센터 바디와;
    상기 넥 커버의 바닥면을 포함하는 로어 바디를 포함하며,
    상기 상부 바디와 측면 바디는 탈착 가능하도록 결합되고, 상기 측면 바디와 하부 바디는 탈착 가능하도록 결합된 시드 척.
  4. 제 1 항에 있어서,
    상기 넥 커버는 원뿔 또는 원뿔대 형상을 가지는 시드 척.
  5. 제 1 항에 있어서,
    상기 넥 커버의 내부는 빈공간으로 이루어진 시드 척.
  6. 챔버와;
    상기 챔버 내에 배치되고 실리콘을 수용하는 핫 존 구조물과;
    상기 핫 존 구조물을 가열하는 히터와;
    상기 핫 존 구조물의 외부에 위치되는 아우터 단열체와;
    상기 핫 존 구조물의 상측에 위치되며, 잉곳을 통과시키기 위한 홀이 형성된 어퍼 단열체와;
    용융 실리콘에서 잉곳을 성장시키는 종자 결정을 수용하는 시드 척과;
    상기 챔버 상부에 배치된 온도센서를 포함하고,
    상기 시드 척은
    상기 홀을 선택적으로 차폐하는 넥 커버와;
    상기 종자 결정을 수용하는 고정부를 포함하며,
    상기 넥 커버는 상기 온도센서가 용융 실리콘을 측정할 수 있는 측정부가 개구된 잉곳성장장치.
  7. 제 6 항에 있어서,
    상기 온도센서는 상기 넥 커버의 상측에서 상기 측정부를 통해 상기 용융 실리콘을 측정하는 잉곳성장장치.
  8. 제 6 항에 있어서,
    상기 온도센서에서 측정된 데이터에 따라 상기 용융 실리콘의 온도를 산출하는 제어부를 더 포함하고,
    상기 제어부는 측정주기 동안 측정된 상기 온도센서의 데이터 중 최대 값을 추출하여 상기 용융 실리콘의 온도를 산출하는 잉곳성장장치.
  9. 제 6 항에 있어서,
    상기 넥 커버는
    승강 케이블이 연결되는 케이블 연결부를 포함하는 어퍼 바디와;
    상기 용융 실리콘을 마주보는 바닥면을 포함하는 로어 바디와;
    상기 바닥면과 경사진 둘레면을 갖는 센터 바디를 포함하는 잉곳성장장치.
  10. 제 9 항에 있어서,
    상기 센터 바디와 로어 바디의 각각에는 상기 측정부가 개구된 잉곳성장장치.
  11. 제 9 항에 있어서,
    상기 센터 바디는 상기 어퍼 바디와 로어 바디 중 적어도 하나와 탈착 가능하도록 결합된 잉곳성장장치.
  12. 제 6 항에 있어서,
    상기 측정부는 상기 넥 커버의 외둘레를 따라 호 형상으로 형성된 측정홀인 잉곳성장장치.
  13. 제 12 항에 있어서,
    상기 측정홀은 상기 넥 커버에 복수개 형성되며,
    상기 넥 커버는 복수개 측정홀 사이에 위치하는 브릿지를 포함하는 잉곳성장장치.
  14. 제 6 항에 있어서,
    상기 넥 커버는
    유체를 안내하는 둘레면과;
    상기 용융 실리콘을 마주보는 바닥면을 포함하고,
    상기 둘레면은 상기 바닥면과 경사각을 갖고,
    상기 경사각은 39°내지 48°인 잉곳성장장치.
  15. 제 14 항에 있어서,
    상기 넥 커버는 상기 바닥면과 평행한 상면을 더 포함하는 잉곳성장장치.
PCT/KR2015/007856 2014-08-04 2015-07-28 시드 척 및 이를 포함하는 잉곳성장장치 WO2016021860A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017506287A JP6367469B2 (ja) 2014-08-04 2015-07-28 シードチャックおよびこれを含むインゴット成長装置
DE112015003606.7T DE112015003606B4 (de) 2014-08-04 2015-07-28 Impfkristallspannvorrichtung und Ingotzuchtvorrichtung dieselbe beinhaltend
US15/502,148 US20170226660A1 (en) 2014-08-04 2015-07-28 Seed chuck and ingot growing apparatus including same
CN201580047651.9A CN106661757A (zh) 2014-08-04 2015-07-28 晶种卡盘和包括其的晶锭生长装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020140099896A KR101623641B1 (ko) 2014-08-04 2014-08-04 잉곳성장장치
KR10-2014-0099896 2014-08-04

Publications (1)

Publication Number Publication Date
WO2016021860A1 true WO2016021860A1 (ko) 2016-02-11

Family

ID=55264077

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/007856 WO2016021860A1 (ko) 2014-08-04 2015-07-28 시드 척 및 이를 포함하는 잉곳성장장치

Country Status (6)

Country Link
US (1) US20170226660A1 (ko)
JP (1) JP6367469B2 (ko)
KR (1) KR101623641B1 (ko)
CN (1) CN106661757A (ko)
DE (1) DE112015003606B4 (ko)
WO (1) WO2016021860A1 (ko)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109898133A (zh) * 2017-12-11 2019-06-18 有研半导体材料有限公司 一种用于高掺杂硅单晶生长的气体导引装置
CN109554754A (zh) * 2018-12-20 2019-04-02 西安奕斯伟硅片技术有限公司 一种单晶炉及单晶硅的制备方法
CN113604869A (zh) * 2021-08-11 2021-11-05 晶澳太阳能有限公司 一种单晶硅的生长方法以及引晶结构
KR20230173509A (ko) 2022-06-17 2023-12-27 이영준 자동 필터 클리닝이 가능한 잉곳성장장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05221786A (ja) * 1992-02-13 1993-08-31 Nippon Steel Corp シリコン単結晶製造装置および製造方法
KR20010032413A (ko) * 1997-11-25 2001-04-16 헨넬리 헬렌 에프 결정 인상용 장치
JP2006044962A (ja) * 2004-07-30 2006-02-16 Toshiba Ceramics Co Ltd シリコン単結晶引上装置
KR20110024866A (ko) * 2009-09-03 2011-03-09 주식회사 엘지실트론 석영 도가니의 열화 억제구조를 구비한 단결정 성장장치 및 단결정 성장장치용 시드 척 구조
KR20130078911A (ko) * 2012-01-02 2013-07-10 주식회사 엘지실트론 잉곳 제조 장치

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3998598A (en) * 1973-11-23 1976-12-21 Semimetals, Inc. Automatic diameter control for crystal growing facilities
JPH06102590B2 (ja) * 1990-02-28 1994-12-14 信越半導体株式会社 Cz法による単結晶ネック部育成自動制御方法
JPH05294783A (ja) * 1992-04-15 1993-11-09 Kawasaki Steel Corp シリコン単結晶の製造装置
JP3109950B2 (ja) * 1993-11-01 2000-11-20 コマツ電子金属株式会社 半導体単結晶の育成方法
JP3662962B2 (ja) * 1994-12-22 2005-06-22 Tdk株式会社 単結晶の製造方法及び装置
JP3702672B2 (ja) * 1998-11-02 2005-10-05 株式会社Sumco 引上げ装置内の単結晶棒の温度計測システム
JP4184725B2 (ja) * 2002-07-12 2008-11-19 Sumco Techxiv株式会社 単結晶半導体の製造方法、単結晶半導体の製造装置
US20130263772A1 (en) * 2007-12-04 2013-10-10 David L. Bender Method and apparatus for controlling melt temperature in a Czochralski grower
JP4883020B2 (ja) * 2008-01-31 2012-02-22 信越半導体株式会社 単結晶製造装置および製造方法
US8545623B2 (en) * 2009-06-18 2013-10-01 Sumco Phoenix Corporation Method and apparatus for controlling the growth process of a monocrystalline silicon ingot
CN201485536U (zh) * 2009-09-07 2010-05-26 浙江碧晶科技有限公司 一种用于拉晶炉的挡辐射装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05221786A (ja) * 1992-02-13 1993-08-31 Nippon Steel Corp シリコン単結晶製造装置および製造方法
KR20010032413A (ko) * 1997-11-25 2001-04-16 헨넬리 헬렌 에프 결정 인상용 장치
JP2006044962A (ja) * 2004-07-30 2006-02-16 Toshiba Ceramics Co Ltd シリコン単結晶引上装置
KR20110024866A (ko) * 2009-09-03 2011-03-09 주식회사 엘지실트론 석영 도가니의 열화 억제구조를 구비한 단결정 성장장치 및 단결정 성장장치용 시드 척 구조
KR20130078911A (ko) * 2012-01-02 2013-07-10 주식회사 엘지실트론 잉곳 제조 장치

Also Published As

Publication number Publication date
DE112015003606T5 (de) 2017-05-11
CN106661757A (zh) 2017-05-10
DE112015003606B4 (de) 2021-01-21
US20170226660A1 (en) 2017-08-10
KR101623641B1 (ko) 2016-05-23
KR20160016231A (ko) 2016-02-15
JP2017523951A (ja) 2017-08-24
JP6367469B2 (ja) 2018-08-01

Similar Documents

Publication Publication Date Title
WO2016021860A1 (ko) 시드 척 및 이를 포함하는 잉곳성장장치
WO2011027992A2 (ko) 사파이어 단결정 성장방법과 그 장치
WO2015030408A1 (ko) 열차폐장치, 이를 포함하는 잉곳성장장치 및 이를 이용한 잉곳성장방법
WO2015083955A1 (ko) 단결정 성장 장치
WO2015037831A1 (ko) 냉각속도 제어장치 및 이를 포함하는 잉곳성장장치
WO2014204119A1 (ko) 실리콘 단결정 성장 장치 및 그 성장 방법
WO2014115935A1 (en) Single-crystal ingot, apparatus and method for manufacturing the same
WO2011136479A2 (ko) 태양전지용 고 생산성 다결정 실리콘 잉곳 제조 장치
WO2017209376A2 (ko) 탄화규소 단결정 잉곳의 성장장치 및 그 성장방법
WO2017111227A1 (ko) 실리콘 단결정 잉곳의 성장 장치 및 성장 방법
WO2016163602A1 (ko) 실리콘 단결정 잉곳의 성장 장치 및 방법
EP2665848A2 (en) Resistance heated sapphire single crystal ingot grower, method of manufacturing resistance heated sapphire sngle crystal ingot, sapphire sngle crystal ingot, and sapphire wafer
WO2022065737A1 (ko) 연속 잉곳 성장 장치
WO2016056748A1 (ko) 기판 처리용 히터장치 및 이를 구비한 기판 액처리 장치
WO2014189194A1 (ko) 반도체용 실리콘 단결정 잉곳 및 웨이퍼
WO2013141473A1 (ko) 멀티-도가니 타입 실리콘 잉곳 성장 장치
WO2014014224A1 (ko) 실리콘 단결정 성장 장치 및 그 제조 방법
WO2016117756A1 (ko) 단결정 성장용 히터 및 이를 이용한 단결정 성장장치 및 성장방법
WO2012173438A2 (en) Apparatus for fabricating ingot
WO2018088633A1 (ko) 단결정 실리콘 잉곳 제조 방법 및 장치
WO2012108618A2 (ko) 마이크로 웨이브를 이용한 단결정 성장장치 및 그 성장방법
WO2022055183A1 (ko) 연속 잉곳 성장장치 및 그 제어방법
WO2018143581A1 (ko) 면취 장치 및 면취 방법
WO2013176396A1 (ko) 단결정 실리콘 잉곳 및 웨이퍼, 그 잉곳 성장 장치 및 방법
WO2019156323A1 (ko) 실리콘 공급부, 이를 포함하는 실리콘 단결정 잉곳의 성장 장치 및 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15829414

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017506287

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112015003606

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15829414

Country of ref document: EP

Kind code of ref document: A1