WO2016017820A1 - 過マンガン酸イオンを含む水およびその製造方法 - Google Patents

過マンガン酸イオンを含む水およびその製造方法 Download PDF

Info

Publication number
WO2016017820A1
WO2016017820A1 PCT/JP2015/071895 JP2015071895W WO2016017820A1 WO 2016017820 A1 WO2016017820 A1 WO 2016017820A1 JP 2015071895 W JP2015071895 W JP 2015071895W WO 2016017820 A1 WO2016017820 A1 WO 2016017820A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
water containing
permanganate ions
iron
permanganate
Prior art date
Application number
PCT/JP2015/071895
Other languages
English (en)
French (fr)
Inventor
正好 高橋
Original Assignee
国立研究開発法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人産業技術総合研究所 filed Critical 国立研究開発法人産業技術総合研究所
Priority to US15/500,276 priority Critical patent/US20170210649A1/en
Priority to EP15827309.4A priority patent/EP3192774A4/en
Priority to JP2016538473A priority patent/JP6422976B2/ja
Priority to CA2956891A priority patent/CA2956891C/en
Priority to CN201580040696.3A priority patent/CN106660823B/zh
Priority to NZ728865A priority patent/NZ728865A/en
Priority to AU2015297372A priority patent/AU2015297372B2/en
Publication of WO2016017820A1 publication Critical patent/WO2016017820A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/78Treatment of water, waste water, or sewage by oxidation with ozone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/01Deodorant compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F21/00Dissolving
    • B01F21/02Methods
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/231Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids by bubbling
    • B01F23/23105Arrangement or manipulation of the gas bubbling devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/237Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids characterised by the physical or chemical properties of gases or vapours introduced in the liquid media
    • B01F23/2373Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids characterised by the physical or chemical properties of gases or vapours introduced in the liquid media for obtaining fine bubbles, i.e. bubbles with a size below 100 µm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/10Mixing by creating a vortex flow, e.g. by tangential introduction of flow components
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/12Manganates manganites or permanganates
    • C01G45/1207Permanganates ([MnO]4-) or manganates ([MnO4]2-)
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/50Treatment of water, waste water, or sewage by addition or application of a germicide or by oligodynamic treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/68Treatment of water, waste water, or sewage by addition of specified substances, e.g. trace elements, for ameliorating potable water
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F2101/00Mixing characterised by the nature of the mixed materials or by the application field
    • B01F2101/48Mixing water in water-taps with other ingredients, e.g. air, detergents or disinfectants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/237Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids characterised by the physical or chemical properties of gases or vapours introduced in the liquid media
    • B01F23/2376Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids characterised by the physical or chemical properties of gases or vapours introduced in the liquid media characterised by the gas being introduced
    • B01F23/23761Aerating, i.e. introducing oxygen containing gas in liquids
    • B01F23/237613Ozone
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/78Details relating to ozone treatment devices
    • C02F2201/784Diffusers or nozzles for ozonation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/02Odour removal or prevention of malodour
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/04Disinfection
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/26Reducing the size of particles, liquid droplets or bubbles, e.g. by crushing, grinding, spraying, creation of microbubbles or nanobubbles

Definitions

  • the present invention relates to water containing permanganate ions and a method for producing the same.
  • permanganate ion MnO 4 ⁇ : VII
  • Patent Document 1 permanganate ions are also known for use as bactericides and deodorants.
  • permanganate ions are prepared by dissolving a permanganate compound such as potassium permanganate in water, there is a problem that the permanganate ions are reduced and disappear in a short period of time.
  • an object of the present invention is to provide water in which permanganate ions are present stably over a long period of time and a method for producing the same.
  • the present inventor has added a predetermined amount of a divalent manganese compound, an organic iron compound, and an inorganic salt to water in which ozone microbubbles are generated using a predetermined concentration of ozone gas. It has been found that by dissolving, permanganate ions can be stably present in water for a long period of time.
  • the water containing the permanganate ion of the present invention made based on the above knowledge, as described in claim 1, in water in which ozone microbubbles are generated using ozone gas having a concentration of 1 to 300 g / Nm 3 , It is prepared by dissolving 0.1 ⁇ M to 1 mM divalent manganese compound, 0.1 ⁇ M to 1 mM organic iron compound, and 1 to 300 mM inorganic salt.
  • the water containing permanganate ions according to claim 2 is selected from the group consisting of manganese nitrate, manganese sulfate, and manganese chloride, wherein the divalent manganese compound is water containing permanganate ions according to claim 1. Is at least one kind.
  • the water containing the permanganate ion according to claim 3 is the water containing the permanganate ion according to claim 1, wherein the organic iron compound is ammonium iron citrate, iron fulvic acid, iron acetate, heme iron, Dextran iron, sodium diethylenetriaminepentaacetate, ammonium diethylenetriaminepentaacetate, sodium ethylenediaminetetraacetate, ammonium irondiaminediaminetetraacetate, iron triethylenetetraamine, sodium dicarboxymethylglutamate, ferrous citrate, sodium citrate , Iron oxalate, ferrous succinate, sodium iron citrate succinate, ferrous pyrophosphate, ferric pyrophosphate, iron lactate, ferrous gluconate, ferrous formate, ferric formate, sulphur Potassium ferric ammonium, ferrous ascorbate, sodium edetate It is at least one selected from the group consisting of beam ferric.
  • the organic iron compound is ammoni
  • the water containing the permanganate ion according to claim 4 is selected from the group consisting of sodium chloride, potassium chloride, magnesium chloride, and magnesium sulfate in the water containing the permanganate ion according to claim 1. Is at least one kind. Further, in the water containing permanganate ions according to claim 5, in the water containing permanganate ions according to claim 1, generation of ozone microbubbles generates microbubbles having a particle size of 5 to 50 ⁇ m.
  • the water containing permanganate ions according to claim 6 is the water containing permanganate ions according to claim 5, wherein the microbubble generator generates microbubbles by a two-phase flow swirling method or a pressure dissolution method.
  • the water containing permanganate ions according to claim 7 is a divalent manganese compound and an organic iron compound into water in which ozone microbubbles are generated in the water containing permanganate ions according to claim 1.
  • the inorganic salt is dissolved after 10 minutes or more have elapsed since the oxidation-reduction potential of the water in which the ozone microbubbles were generated rose and reached at least +600 mV.
  • the water containing the permanganate ion according to claim 8 is the water containing the permanganate ion according to claim 1, wherein the half-life of the permanganate ion is filled in a sealed container under atmospheric pressure. It is more than 3 months when stored under the temperature condition of 40 ° C.
  • the water containing the permanganate ion according to claim 9 is the water containing the permanganate ion according to claim 1, wherein the water containing the permanganate ion is filled in a sealed container under atmospheric pressure ⁇ When frozen at room temperature (25 ° C.) after being frozen and stored for 6 months or longer under a temperature condition of 20 ° C., it recovers to water containing permanganate ions before freezing.
  • the water containing the permanganate ion according to claim 10 is the water containing the permanganate ion according to claim 1, wherein the water containing the permanganate ion has no irritation to the skin of a mammal and Does not show oral acute toxicity to animals and has bactericidal and deodorizing effects.
  • the method for producing water containing permanganate ions according to the present invention includes, as described in claim 11, 0.1 ⁇ M in water in which ozone microbubbles are generated using ozone gas having a concentration of 1 to 300 g / Nm 3. By dissolving ⁇ 1 mM divalent manganese compound, 0.1 ⁇ M to 1 mM organic iron compound, and 1 to 300 mM inorganic salt.
  • the method for producing water containing permanganate ions according to claim 12 is the method for producing water containing permanganate ions according to claim 11, wherein the generation of ozone microbubbles is caused by the particle size of 5 to 50 ⁇ m. This is carried out using a microbubble generator capable of generating microbubbles.
  • the method for producing water containing permanganate ions according to claim 13 is the method for producing water containing permanganate ions according to claim 11, wherein the water containing ozone microbubbles is divalent.
  • the dissolution of the manganese compound, the organic iron compound, and the inorganic salt is performed after 10 minutes or more have elapsed since the oxidation-reduction potential of the water in which the ozone microbubbles are generated rises to reach at least +600 mV.
  • the water containing permanganate ions according to the present invention is prepared by adding 0.1 ⁇ M to 1 mM divalent manganese compound, 0.1 ⁇ M to water in which ozone microbubbles are generated using ozone gas having a concentration of 1 to 300 g / Nm 3. ⁇ 1 mM organic iron compound, 1 ⁇ 300 mM inorganic salt are dissolved.
  • Production of water containing permanganate ions starts with preparing water in which ozone microbubbles are generated.
  • the method for generating ozone microbubbles in water may be a publicly known method, and can generate microbubbles having a particle size of 5 to 50 ⁇ m. Can be used.
  • ozone is included inside the microbubbles by using a rotor or the like to forcibly generate a vortex with a radius of 10 cm or less and obstacles such as walls and fluids with different relative velocities.
  • the desired ozone microbubbles can be generated by applying the gas-liquid mixture containing the gas to disperse the gas components acquired in the vortex along with the disappearance of the vortex.
  • the ozone contained in the microbubbles is dissolved in water under a high pressure of 2 atm or higher, and then released from the supersaturated condition of the dissolved gas generated by opening it to atmospheric pressure.
  • Ozone microbubbles can be generated.
  • a large number of vortices with a radius of 1 mm or less are generated at the pressure release site using water flow and obstacles, and a large amount of gas phase nuclei (bubble nuclei due to water molecular fluctuations in the central region of the vortex flow. ), And by diffusing gas components in water toward these bubble nuclei along with the supersaturation condition to grow the bubble nuclei, a large amount of desired ozone microbubbles can be generated.
  • the ozone microbubbles generated by these methods have a particle size of 50 ⁇ m or less, and a particle size peak at 10 to 15 ⁇ m when measured with a laser light blocking liquid particle counter (for example, LiQuilaz-E20 manufactured by SPM).
  • the number of microbubbles in the peak region is 1000 / mL or more (see JP 2000-51107 A, JP 2003-265938 A, etc. if necessary).
  • the ozone gas used to generate ozone microbubbles in water is prepared, for example, to a concentration of 1 to 300 g / Nm 3 using a commercially available oxygen source ozone generator.
  • ozone gas having a concentration of less than 1 g / Nm 3 When ozone gas having a concentration of less than 1 g / Nm 3 is used, a large amount of ozone microbubbles cannot be efficiently generated in water. On the other hand, it is difficult to prepare ozone gas having a concentration exceeding 300 g / Nm 3 .
  • the ozone gas may contain oxygen, nitrogen, etc. in addition to ozone.
  • a predetermined amount of a divalent manganese compound, an organic iron compound, and an inorganic salt are dissolved in water in which ozone microbubbles are generated.
  • the divalent manganese ion can be converted to a heptavalent permanganate ion. It is important that the ozone supplied in advance to the water in which the divalent manganese compound is dissolved is in the form of microbubbles.
  • divalent manganese ions are not converted to permanganate ions, and trivalent manganese oxide (Mn 2 O 3 ) or tetravalent manganese oxide. (Manganese dioxide: MnO 2 ) is generated and precipitated. It is also important to dissolve the divalent manganese compound after supplying ozone in the form of microbubbles to water.
  • divalent manganese ions are not converted into permanganate ions, and trivalent manganese oxide (Mn 2 O 3 ) or 4 Valent manganese oxide (manganese dioxide: MnO 2 ) is generated and precipitated.
  • divalent manganese compound water-soluble compounds such as manganese nitrate, manganese sulfate, and manganese chloride can be used (these may be hydrates).
  • the dissolved amount of the divalent manganese compound is 0.1 ⁇ M to 1 mM.
  • the dissolved amount is less than 0.1 ⁇ M, a sufficient amount of permanganate ions may not be generated. On the other hand, if it exceeds 1 mM, trivalent manganese oxide (Mn 2 O 3 ) or tetravalent manganese oxide (manganese dioxide: MnO 2 ) may be generated and precipitated.
  • the dissolution amount of the divalent manganese compound is desirably 1 to 100 ⁇ M.
  • permanganate ions can be stably present in water for a long period of time.
  • the organic iron compounds include ammonium iron citrate, iron fulvic acid, iron acetate, heme iron, dextran iron, sodium diethylenetriaminepentaacetate, ammonium diethylenetriaminepentaacetate, sodium iron ethylenediaminetetraacetate, ammonium ammonium ethylenediaminetetraacetate , Iron triethylenetetraamine, sodium dicarboxymethyl glutamate, ferrous citrate, sodium iron citrate, iron oxalate, ferrous succinate, sodium iron citrate succinate, ferrous pyrophosphate, pyrophosphate Water-soluble compounds such as ferric iron, ferric lactate, ferrous gluconate, ferrous formate, ferric formate, potassium ferric oxalate, ferrous ammonium ascorbate, ferric sodium edetate
  • the dissolved amount of the organic iron compound is 0.1 ⁇ M to 1 mM. If the dissolution amount is less than 0.1 ⁇ M, the effect due to dissolution may not be sufficiently obtained. On the other hand, even if it exceeds 1 mM, the improvement of the effect due to dissolution cannot be expected, and only the cost is increased. There is a risk that iron hydroxide may be generated and precipitated.
  • the dissolved amount of the organic iron compound is desirably 1 to 100 ⁇ M.
  • the microbubbles shrink and then exist stably as nanobubbles with a particle size of, for example, 10 to 500 nm, and the stability of permanganate ions in water. Can contribute to maintenance.
  • Specific examples of the inorganic acid include water-soluble compounds such as sodium chloride, potassium chloride, magnesium chloride, magnesium sulfate.
  • the dissolved amount of the inorganic salt is 1 to 300 mM. If the dissolution amount is less than 1 mM, the effect due to dissolution may not be sufficiently obtained. On the other hand, even if it exceeds 300 mM, the improvement of the effect due to dissolution cannot be expected and the cost may be increased. There is.
  • the dissolved amount of the inorganic salt is desirably 10 to 100 mM.
  • Dissolution of a predetermined amount of divalent manganese compound, organic iron compound, and inorganic salt in the water in which ozone microbubbles are generated is achieved by continuously generating ozone microbubbles, so that the redox potential of water becomes +300 to 500 mV of the initial value. It is desirable that it is carried out after 10 minutes or more have passed since it has risen from at least +600 mV or more in that it can efficiently convert divalent manganese ions into permanganate ions (of redox potential). The rise reaches a plateau at about +1000 mV).
  • ozone microbubbles After dissolving a predetermined amount of divalent manganese compound, organic iron compound and inorganic salt in water in which ozone microbubbles are generated, at least 5 minutes, desirably at least 30 minutes, more desirably at least 1 hour, It is desirable to continue supplying ozone in the form of microbubbles in that permanganate ions can be stably present in water for a long period of time.
  • the order of dissolution of a predetermined amount of the divalent manganese compound, the organic iron compound and the inorganic salt in the water in which the ozone microbubbles are generated is not particularly limited, and may be dissolved simultaneously or in steps. May be.
  • the pH of water in which ozone microbubbles in which a predetermined amount of divalent manganese compound, organic iron compound, and inorganic salt are dissolved is preferably 3 to 10, and more preferably 5 to 9. If the acidity is too strong or the alkalinity is too strong, destabilization of microbubbles and nanobubbles will occur, and in addition to the generation and disappearance of hydroxyl radicals, the generated iron radicals will decompose the organic iron compound. This is because the permanganate ion may not be allowed to exist stably in water for a long time.
  • the pH may be adjusted as appropriate using hydrochloric acid or sodium hydroxide.
  • the water containing permanganate ions of the present invention is common in that it contains permanganate ions and water containing permanganate ions produced by dissolving a permanganate compound in water, Has significantly different properties.
  • the water containing a permanganate ion of the present invention is present stably in water at a concentration of 0.1 ⁇ M to 1 mM, typically 1 to 100 ⁇ M.
  • the half-life is, for example, 3 months or more when a sealed container is stored under a temperature of 40 ° C. under atmospheric pressure, whereas the permanganate compound is dissolved in water.
  • the permanganate ions are reduced within a short period and disappear.
  • the water containing permanganate ions of the present invention is filled in a sealed container under atmospheric pressure, for example, and frozen and stored at a temperature of -20 ° C. for 6 months or more, and then naturally thawed at room temperature (25 ° C.).
  • the water containing permanganate ions before freezing, while the water containing permanganate ions produced by dissolving a permanganate compound in water is Therefore, even if thawed after freezing, it will not recover to water containing permanganate ions before freezing.
  • ESR electron spin resonance
  • divalent manganese ions in the water are formed by the oxidation action of ozone supplied to the water in the form of microbubbles.
  • Permanganate ions are generated by oxidation to 7 valence without staying trivalent or tetravalent, and the generated permanganate ions are generated around or around the bubbles in the process of microbubbles shrinking.
  • the permanganate ions themselves are stabilized by being attracted and captured by the electrostatic effect around the bubbles of the nanobubbles and held as one of the components that form the ion shell against the bubbles. Presumed to be stabilized.
  • the present inventor believes that the organic iron compound contributes to the strong retention of permanganate ions as one of the components that form the ion shell against the bubbles by being present around the bubbles of the nanobubbles. ing. Therefore, the water containing the permanganate ion of the present invention has the oxidation action of the ozone nanobubbles in addition to the oxidation action of the permanganate ion. It can be used for various purposes such as.
  • the water containing a permanganate ion of the present invention is not irritating to the skin of mammals, exhibits no oral acute toxicity to mammals, and exhibits a bactericidal effect, a deodorizing effect, and the like.
  • Example 1 Ozone microbubbles are generated in distilled water using a commercially available two-phase flow swirl microbubble generator that can generate microbubbles with a particle size of 5 to 50 ⁇ m (aqua air small bubble generator). I let you. Ozone gas prepared at a concentration of about 30 g / Nm 3 using a commercially available oxygen source ozone generator is supplied to the microbubble generator at about 1 L / min, so that the ozone concentration in water is about 10 mg / L. did.
  • the permanganate ion concentration of the water containing the permanganate ion of the present invention thus produced was about 10 ⁇ M (the height of the permanganate ion peak group measured with an ultraviolet-visible near-infrared spectrophotometer Concentration converted by comparing with the height of a peak group of water containing permanganate ions produced using potassium permanganate as a liquid at a concentration of 20 ⁇ M, and so on).
  • the time required to produce 5 L of water containing the permanganate ions of the present invention was about 30 minutes.
  • Example 2 Ozone microbubbles are generated in distilled water using a commercially available pressure dissolution type microbubble generator (A-02, manufactured by Resource Development Laboratories) that can generate microbubbles with a particle size of 5-50 ⁇ m. I let you. Ozone gas prepared at a concentration of about 30 g / Nm 3 using a commercially available oxygen source ozone generator is supplied to the microbubble generator at about 1 L / min, so that the ozone concentration in water is about 10 mg / L. did.
  • A-02 pressure dissolution type microbubble generator
  • the permanganate ion concentration of the water containing the permanganate ion of the present invention thus produced was about 8 ⁇ M.
  • the time required to produce 10 L of water containing the permanganate ions of the present invention was about 20 minutes.
  • Example 3 Water containing permanganate ions of the present invention was produced in the same manner as in Example 1 except that iron fulvic acid was dissolved instead of iron citrate.
  • Example 4 When the half-life of the permanganate ion of water containing the permanganate ion of the present invention produced in Example 1 is stored in a PET bottle as a sealed container under atmospheric pressure and stored under a temperature condition of 40 ° C. The amount of the permanganate ions remained after 3 months (more than half of the permanganate ions remained).
  • Example 5 The water containing the permanganate ion of the present invention produced in Example 1 was filled in a PET bottle as an airtight container under atmospheric pressure, and frozen at -20 ° C. for 6 months or more, followed by normal temperature (25 When the solution was naturally thawed at 0 ° C., it recovered to water containing permanganate ions before freezing (the concentration of permanganate ions was the same as that before freezing even after thawing after freezing for 6 months).
  • Example 6 The water containing the permanganate ion of the present invention produced in Example 1 was allowed to stand in the dark at room temperature for 1 week, and then DMPO (5,5-dimethyl-1-pyrroline N-oxide) as a spin trap agent was added, and hydrochloric acid was further added to measure the electron spin resonance (ESR) spectrum under strong acid conditions at pH 2.
  • ESR electron spin resonance
  • Example 7 When the skin primary irritation test using a rabbit in accordance with OECD Guidelines for the Testing of Chemicals 404 was carried out using the water containing the permanganate ion of the present invention produced in Example 1 as a specimen, irritation was observed. There wasn't.
  • Example 8 When water containing the permanganate ion of the present invention produced in Example 1 was orally administered to rats at a dose of 20 mg / kg for 14 days, no acute toxicity was observed.
  • Example 9 When the bactericidal effect with respect to the pathogenic bacterium Salmonella enteritidis of the water containing the permanganate ion of the present invention produced in Example 1 was examined, an excellent bactericidal effect was recognized.
  • Example 10 When an appropriate amount of water containing the permanganate ion of the present invention produced in Example 1 was sprayed on cutting waste (industrial waste) of a plastic bottle that emits an odor in the summer, an excellent deodorizing effect was exhibited.
  • Example 11 Continued to generate ozone microbubbles in distilled water, except for dissolving iron ammonium citrate, sodium chloride, and manganese chloride when 30 minutes have passed since the redox potential of water reached +600 mV.
  • water containing the permanganate ion of the present invention was produced in the same manner as in Example 1, the half-life of the permanganate ion was increased compared to the water containing the permanganate ion of the present invention produced in Example 1. Was recognized.
  • Comparative Example 1 Water containing about 10 ⁇ M permanganate ions prepared by dissolving potassium permanganate in distilled water was produced.
  • the ESR spectrum of the water containing the permanganate ion was measured under the same conditions as in Example 6, the water containing the permanganate ion was different from the water containing the permanganate ion produced in Example 1, The spectrum of spin adduct DMPO-OH could not be observed, but the spectrum of singlet oxygen was observed instead. From the above results, this water containing permanganate ions is common with the water containing permanganate ions of the present invention produced in Example 1 in that it contains permanganate ions, but it is notable. It was found to have different properties.
  • Comparative Example 2 When water containing permanganate ions produced in Comparative Example 1 was filled in a PET bottle as a sealed container under atmospheric pressure and stored under a temperature condition of 40 ° C., when one month passed from the start of the experiment. The color of light purple water disappeared completely, and no peak group of permanganate ions was observed in the measurement with an ultraviolet-visible-near infrared spectrophotometer.
  • Comparative Example 3 The water containing permanganate ions produced in Comparative Example 1 is filled in a PET bottle as a sealed container under atmospheric pressure and frozen and stored at a temperature of ⁇ 20 ° C., and then naturally thawed at room temperature (25 ° C.). Also, it did not recover to water containing permanganate ions before freezing.
  • Comparative Example 4 When water containing permanganate ions produced in Comparative Example 1 was used as a specimen, a primary skin irritation test was conducted using a rabbit compliant with OECD Guidelines for the Testing of Chemicals 404, and irritation was observed.
  • Comparative Example 5 When the bactericidal effect of the water containing permanganate ions produced in Comparative Example 1 on the pathogenic bacterium Salmonella enteritidis was examined, the bactericidal effect was hardly recognized.
  • Comparative Example 6 Water containing potassium permanganate was produced in the same manner as in Example 1 except that ozone was supplied by bubbling using a general air diffuser. When this permanganate ion-containing water was left in a dark place at room temperature, the color of light purple water disappeared completely after one day from the start of the experiment, and was measured by an ultraviolet-visible near-infrared spectrophotometer. In the measurement, no peak group of permanganate ions was observed.
  • the present invention has industrial applicability in that it can provide water in which permanganate ions exist stably over a long period of time and a method for producing the same.

Abstract

 本発明の課題は、過マンガン酸イオンが長期に亘って安定に存在する水およびその製造方法を提供することである。その解決手段としての本発明の過マンガン酸イオンを含む水は、濃度が1~300g/Nmのオゾンガスを用いてオゾンマイクロバブルを発生させた水に、0.1μM~1mMの2価のマンガン化合物、0.1μM~1mMの有機鉄化合物、1~300mMの無機塩を溶解させてなる。本発明の過マンガン酸イオンを含む水の過マンガン酸イオンの半減期は、例えば大気圧下で密閉容器に充填したものを40℃の温度条件下において保存した場合に3ヶ月間以上であり、過マンガン酸化合物を水に溶解することで製造した過マンガン酸イオンを含む水と、過マンガン酸イオンを含むという点においては共通しているが、顕著に異なった性質を持つ。

Description

過マンガン酸イオンを含む水およびその製造方法
 本発明は、過マンガン酸イオンを含む水およびその製造方法に関する。
 過マンガン酸イオン(MnO :VII)は、酸化剤として各種の酸化反応に用いられていることは周知の通りであり、また、その酸化作用を利用した土壌や地下水の浄化方法なども提案されている(特許文献1)。加えて、過マンガン酸イオンには、殺菌剤や消臭剤といった用途も知られている。しかしながら、過マンガン酸イオンを過マンガン酸カリウムなどの過マンガン酸化合物を水に溶解することで調製した場合、過マンガン酸イオンが短期間のうちに還元されて消滅してしまうという問題がある。
特開2003-104727号公報
 そこで本発明は、過マンガン酸イオンが長期に亘って安定に存在する水およびその製造方法を提供することを目的とする。
 本発明者は上記の点に鑑みて鋭意検討を行った結果、所定濃度のオゾンガスを用いてオゾンマイクロバブルを発生させた水に、所定量の2価のマンガン化合物と有機鉄化合物と無機塩を溶解することで、過マンガン酸イオンを水中で長期に亘って安定に存在させることができることを見出した。
 上記の知見に基づいてなされた本発明の過マンガン酸イオンを含む水は、請求項1記載の通り、濃度が1~300g/Nmのオゾンガスを用いてオゾンマイクロバブルを発生させた水に、0.1μM~1mMの2価のマンガン化合物、0.1μM~1mMの有機鉄化合物、1~300mMの無機塩を溶解させてなる。
 また、請求項2記載の過マンガン酸イオンを含む水は、請求項1記載の過マンガン酸イオンを含む水において、2価のマンガン化合物が、硝酸マンガン、硫酸マンガン、塩化マンガンからなる群から選択される少なくとも1種である。
 また、請求項3記載の過マンガン酸イオンを含む水は、請求項1記載の過マンガン酸イオンを含む水において、有機鉄化合物が、クエン酸鉄アンモニウム、フルボ酸鉄、酢酸鉄、ヘム鉄、デキストラン鉄、ジエチレントリアミン五酢酸鉄ナトリウム、ジエチレントリアミン五酢酸鉄アンモニウム、エチレンジアミン四酢酸鉄ナトリウム、エチレンジアミン四酢酸鉄アンモニウム、トリエチレンテトラアミン鉄、ジカルボキシメチルグルタミン酸鉄ナトリウム、クエン酸第一鉄、クエン酸鉄ナトリウム、シュウ酸鉄、コハク酸第一鉄、コハク酸クエン酸鉄ナトリウム、ピロリン酸第一鉄、ピロリン酸第二鉄、乳酸鉄、グルコン酸第一鉄、ギ酸第一鉄、ギ酸第二鉄、シュウ酸カリウム第二鉄アンモニウム、アスコルビン酸第一鉄、エデト酸ナトリウム第二鉄からなる群から選択される少なくとも1種である。
 また、請求項4記載の過マンガン酸イオンを含む水は、請求項1記載の過マンガン酸イオンを含む水において、無機塩が、塩化ナトリウム、塩化カリウム、塩化マグネシウム、硫酸マグネシウムからなる群から選択される少なくとも1種である。
 また、請求項5記載の過マンガン酸イオンを含む水は、請求項1記載の過マンガン酸イオンを含む水において、オゾンマイクロバブルの発生が、粒径が5~50μmのマイクロバブルを発生させることができる微小気泡発生装置を用いて行われる。
 また、請求項6記載の過マンガン酸イオンを含む水は、請求項5記載の過マンガン酸イオンを含む水において、微小気泡発生装置が、二相流旋回方式または加圧溶解方式の微小気泡発生装置である。
 また、請求項7記載の過マンガン酸イオンを含む水は、請求項1記載の過マンガン酸イオンを含む水において、オゾンマイクロバブルを発生させた水への、2価のマンガン化合物と有機鉄化合物と無機塩の溶解が、オゾンマイクロバブルを発生させた水の酸化還元電位が上昇して少なくとも+600mVに到達してから10分間以上が経過した後に行われる。
 また、請求項8記載の過マンガン酸イオンを含む水は、請求項1記載の過マンガン酸イオンを含む水において、過マンガン酸イオンの半減期が、大気圧下で密閉容器に充填したものを40℃の温度条件下において保存した場合に3ヶ月間以上である。
 また、請求項9記載の過マンガン酸イオンを含む水は、請求項1記載の過マンガン酸イオンを含む水において、過マンガン酸イオンを含む水が、大気圧下で密閉容器に充填して-20℃の温度条件下において6ヶ月間以上凍結保存した後に常温(25℃)で自然解凍した場合、凍結前の過マンガン酸イオンを含む水に回復する。
 また、請求項10記載の過マンガン酸イオンを含む水は、請求項1記載の過マンガン酸イオンを含む水において、過マンガン酸イオンを含む水が、哺乳動物の皮膚に対する刺激性がなく、哺乳動物に対して経口急性毒性を示さず、殺菌効果と消臭効果を有する。
 また、本発明の過マンガン酸イオンを含む水の製造方法は、請求項11記載の通り、濃度が1~300g/Nmのオゾンガスを用いてオゾンマイクロバブルを発生させた水に、0.1μM~1mMの2価のマンガン化合物、0.1μM~1mMの有機鉄化合物、1~300mMの無機塩を溶解することによる。
 また、請求項12記載の過マンガン酸イオンを含む水の製造方法は、請求項11記載の過マンガン酸イオンを含む水の製造方法において、オゾンマイクロバブルの発生を、粒径が5~50μmのマイクロバブルを発生させることができる微小気泡発生装置を用いて行う。
 また、請求項13記載の過マンガン酸イオンを含む水の製造方法は、請求項11記載の過マンガン酸イオンを含む水の製造方法において、オゾンマイクロバブルを発生させた水への、2価のマンガン化合物と有機鉄化合物と無機塩の溶解を、オゾンマイクロバブルを発生させた水の酸化還元電位が上昇して少なくとも+600mVに到達してから10分間以上が経過した後に行う。
 本発明によれば、過マンガン酸イオンが長期に亘って安定に存在する水およびその製造方法を提供することができる。
 本発明の過マンガン酸イオンを含む水は、濃度が1~300g/Nmのオゾンガスを用いてオゾンマイクロバブルを発生させた水に、0.1μM~1mMの2価のマンガン化合物、0.1μM~1mMの有機鉄化合物、1~300mMの無機塩を溶解させてなる。
 本発明の過マンガン酸イオンを含む水の製造は、まず、オゾンマイクロバブルを発生させた水を調製することから始まる。水中にオゾンマイクロバブルを発生させる方法は自体公知の方法であってよく、粒径が5~50μmのマイクロバブルを発生させることができる、二相流旋回方式や加圧溶解方式による微小気泡発生装置を用いて行うことができる。二相流旋回方式を採用する場合、回転子などを利用して半径が10cm以下の渦流を強制的に生じせしめ、壁面などの障害物や相対速度の異なる流体にマイクロバブルの内部に含ませるオゾンを含んだ気液混合物を打ち当てることにより、渦流中に獲得した気体成分を渦の消失とともに分散させることで、所望のオゾンマイクロバブルを発生させることができる。また、加圧溶解方式を採用する場合、2気圧以上の高圧下でマイクロバブルの内部に含ませるオゾンを水中に溶解した後、これを大気圧に開放することにより生じた溶解気体の過飽和条件からオゾンマイクロバブルを発生させることができる。この場合、圧力の開放部位において、水流と障害物を利用して半径が1mm以下の渦を多数発生させ、渦流の中心域における水の分子揺動を起因として多量の気相の核(気泡核)を形成させるとともに、過飽和条件に伴ってこれらの気泡核に向かって水中の気体成分を拡散させ、気泡核を成長させることにより、所望のオゾンマイクロバブルを大量に発生させることができる。なお、これらの方法によって発生したオゾンマイクロバブルは、粒径が50μm以下で、レーザー光遮断方式の液中パーティクルカウンター(例えばSPM社製LiQuilaz-E20など)による計測において10~15μmに粒径のピークを有しており、そのピークの領域における微小気泡の個数は1000個/mL以上である(必要であれば特開2000-51107号公報や特開2003-265938号公報などを参照のこと)。水中にオゾンマイクロバブルを発生させるために用いるオゾンガスは、例えば市販の酸素源オゾン発生装置を用いて1~300g/Nmの濃度に調製したものである。濃度が1g/Nm未満のオゾンガスを用いた場合、水中に多量のオゾンマイクロバブルを効率よく発生させることができない。一方、濃度が300g/Nmを超えるオゾンガスは調製が困難である。なお、オゾンガスは、オゾンの他に酸素や窒素などを含んでいてもよい。
 次に、オゾンマイクロバブルを発生させた水に、所定量の2価のマンガン化合物と有機鉄化合物と無機塩を溶解する。オゾンをマイクロバブルの形態で供給した水に2価のマンガン化合物を溶解することで、2価のマンガンイオンを7価の過マンガン酸イオンに変換することができる。2価のマンガン化合物を溶解する水に予め供給しておくオゾンはマイクロバブルの形態であることが肝要である。例えば一般的な散気管を用いたバブリングによってオゾンを供給しても、2価のマンガンイオンは過マンガン酸イオンに変換されず、3価の酸化マンガン(Mn)や4価の酸化マンガン(二酸化マンガン:MnO)が生成して沈殿してしまう。また、オゾンをマイクロバブルの形態で水に供給してから2価のマンガン化合物を溶解することも肝要である。2価のマンガン化合物を溶解した水にオゾンをマイクロバブルの形態で供給しても、2価のマンガンイオンは過マンガン酸イオンに変換されず、3価の酸化マンガン(Mn)や4価の酸化マンガン(二酸化マンガン:MnO)が生成して沈殿してしまう。2価のマンガン化合物としては、硝酸マンガンや硫酸マンガンや塩化マンガンなどの水溶性の化合物を用いることができる(これらは水和物であってもよい)。2価のマンガン化合物の溶解量は、0.1μM~1mMである。溶解量が0.1μM未満であると十分量の過マンガン酸イオンが生成しないおそれがある一方、1mMを超えると3価の酸化マンガン(Mn)や4価の酸化マンガン(二酸化マンガン:MnO)が生成して沈殿してしまうおそれがある。2価のマンガン化合物の溶解量は、1~100μMが望ましい。
 オゾンマイクロバブルを発生させた水に有機鉄化合物を溶解することで、過マンガン酸イオンを水中で長期に亘って安定に存在させることができる。有機鉄化合物の具体例としては、クエン酸鉄アンモニウム、フルボ酸鉄、酢酸鉄、ヘム鉄、デキストラン鉄、ジエチレントリアミン五酢酸鉄ナトリウム、ジエチレントリアミン五酢酸鉄アンモニウム、エチレンジアミン四酢酸鉄ナトリウム、エチレンジアミン四酢酸鉄アンモニウム、トリエチレンテトラアミン鉄、ジカルボキシメチルグルタミン酸鉄ナトリウム、クエン酸第一鉄、クエン酸鉄ナトリウム、シュウ酸鉄、コハク酸第一鉄、コハク酸クエン酸鉄ナトリウム、ピロリン酸第一鉄、ピロリン酸第二鉄、乳酸鉄、グルコン酸第一鉄、ギ酸第一鉄、ギ酸第二鉄、シュウ酸カリウム第二鉄アンモニウム、アスコルビン酸第一鉄、エデト酸ナトリウム第二鉄などの水溶性の化合物が挙げられる。有機鉄化合物の溶解量は、0.1μM~1mMである。溶解量が0.1μM未満であると溶解することによる効果が十分に得られないおそれがある一方、1mMより多くしても溶解することによる効果の向上は期待できずコストがかかるだけであったり、鉄水酸化物などが生成して沈殿してしまったりするおそれがある。有機鉄化合物の溶解量は、1~100μMが望ましい。
 オゾンマイクロバブルを発生させた水に無機塩を溶解することで、マイクロバブルが縮小した後、粒径が例えば10~500nmのナノバブルとして安定に存在し、過マンガン酸イオンの水中での安定性の維持に寄与することができる。無機酸の具体例としては、塩化ナトリウム、塩化カリウム、塩化マグネシウム、硫酸マグネシウムなどの水溶性の化合物が挙げられる。無機塩の溶解量は、1~300mMである。溶解量が1mM未満であると溶解することによる効果が十分に得られないおそれがある一方、300mMより多くしても溶解することによる効果の向上は期待できずコストがかかるだけであったりするおそれがある。無機塩の溶解量は、10~100mMが望ましい。
 オゾンマイクロバブルを発生させた水への所定量の2価のマンガン化合物と有機鉄化合物と無機塩の溶解は、オゾンマイクロバブルを発生させ続けることで水の酸化還元電位が、当初の+300~500mVから上昇して少なくとも+600mV以上に到達してから10分間以上が経過した後に行うことが、2価のマンガンイオンを効率的に過マンガン酸イオンに変換することができる点において望ましい(酸化還元電位の上昇は+1000mV程度でプラトーに達する)。また、オゾンマイクロバブルを発生させた水に、所定量の2価のマンガン化合物と有機鉄化合物と無機塩を溶解した後、少なくとも5分間、望ましくは少なくとも30分間、より望ましくは少なくとも1時間は、オゾンをマイクロバブルの形態で供給し続けることが、過マンガン酸イオンを水中で長期に亘って安定に存在させることができる点において望ましい。
 オゾンマイクロバブルを発生させた水への所定量の2価のマンガン化合物と有機鉄化合物と無機塩の溶解順序は特に限定されるものではなく、同時に溶解してもよいし、段階的に溶解してもよい。所定量の2価のマンガン化合物と有機鉄化合物と無機塩を溶解したオゾンマイクロバブルを発生させた水のpHは、3~10が望ましく、5~9がより望ましい。酸性が強すぎてもアルカリ性が強すぎてもマイクロバブルやナノバブルの不安定化が起こり、水酸基ラジカルを発生して消滅してしまうことに加え、発生した水酸基ラジカルによって有機鉄化合物が分解されてしまうことで、過マンガン酸イオンを水中で長期に亘って安定に存在させることができなくなるおそれがあるからである。pHの調整は、塩酸や水酸化ナトリウムを用いて適宜行えばよい。
 本発明の過マンガン酸イオンを含む水は、過マンガン酸化合物を水に溶解することで製造した過マンガン酸イオンを含む水と、過マンガン酸イオンを含むという点においては共通しているが、顕著に異なった性質を持つ。具体的には、本発明の過マンガン酸イオンを含む水は、過マンガン酸イオンが0.1μM~1mMの濃度で、典型的には1~100μMの濃度で水中で長期に亘って安定に存在しており、その半減期は例えば大気圧下で密閉容器に充填したものを40℃の温度条件下において保存した場合に3ヶ月間以上であるのに対し、過マンガン酸化合物を水に溶解することで製造した過マンガン酸イオンを含む水は、過マンガン酸イオンが短期間のうちに還元されて消滅してしまう。また、本発明の過マンガン酸イオンを含む水は、例えば大気圧下で密閉容器に充填して-20℃の温度条件下において6ヶ月間以上凍結保存した後に常温(25℃)で自然解凍した場合、凍結前の過マンガン酸イオンを含む水に回復するのに対し、過マンガン酸化合物を水に溶解することで製造した過マンガン酸イオンを含む水は、過マンガン酸イオンが短期間のうちに還元されて消滅してしまうので、凍結保存した後に解凍しても、凍結前の過マンガン酸イオンを含む水に回復しない。また、本発明の過マンガン酸イオンを含む水の電子スピン共鳴(ESR)スペクトルを例えばpH2の強酸条件下で測定すると、水酸基ラジカルが検出されるのに対し(しかもそのピークの大きさは2価のマンガン化合物を溶解せずに水中にオゾンマイクロバブルを発生させることによって製造したオゾン水について同じ条件で測定した水酸基ラジカルのピークの大きさよりもはるかに大きい)、過マンガン酸化合物を水に溶解することで製造した過マンガン酸イオンを含む水のESRスペクトルを同条件で測定すると、一重項酸素が検出される。こうした違いがどうして生じるかについては必ずしも明確ではないが、本発明の過マンガン酸イオンを含む水においては、マイクロバブルの形態で水に供給したオゾンの酸化作用により、水中の2価のマンガンイオンが3価や4価で留まらずに7価まで酸化されることで過マンガン酸イオンが生成し、生成した過マンガン酸イオンが、マイクロバブルが縮小する過程の気泡の周囲や縮小することで発生するナノバブルの気泡周囲に静電効果によって引き寄せられて捕捉され、気泡に対するイオンの殻を形成する成分の1つとして保持されることにより、過マンガン酸イオンそれ自体が安定化されているとともに、ナノバブルも安定化されていると推察される。有機鉄化合物は、ナノバブルの気泡周囲に存在することで、気泡に対するイオンの殻を形成する成分の1つのとして過マンガン酸イオンが強固に保持されることに寄与していると本発明者は考えている。従って、本発明の過マンガン酸イオンを含む水は、過マンガン酸イオンが有する酸化作用などに加え、オゾンナノバブルが有する酸化作用などを兼ね備えたものであり、それぞれの用途として知られている酸化剤をはじめとする各種の用途に利用することができる。例えば、本発明の過マンガン酸イオンを含む水は、哺乳動物の皮膚に対する刺激性がなく、哺乳動物に対して経口急性毒性を示さず、殺菌効果や消臭効果などを発揮する。
 以下、本発明を実施例によって詳細に説明するが、本発明は以下の記載に限定して解釈されるものではない。
実施例1:
 主に粒径が5~50μmのマイクロバブルを発生させることができる市販の二相流旋回方式のマイクロバブル発生装置(アクアエアー社製小型気泡発生装置)を用いて蒸留水中にオゾンマイクロバブルを発生させた。オゾンガスは、市販の酸素源オゾン発生装置を用いて約30g/Nmの濃度で調製したものをマイクロバブル発生装置に約1L/分で供給し、水中のオゾン濃度が約10mg/Lになるようした。オゾンマイクロバブルを発生させ続けることで、水の酸化還元電位が当初の約+500mVから連続的に上昇することを確認した後、+600mVに到達してから10分間が経過した時点で、有機鉄化合物として10μMのクエン酸鉄アンモニウム、無機塩として50mMの塩化ナトリウム、2価のマンガン化合物として10μMの塩化マンガンを溶解し、水酸化ナトリウムを用いてpHを8に調整した。その後、さらに1時間オゾンマイクロバブルを発生し続けると、水の色が薄紫色(ピンク色)となり、水中に過マンガン酸イオンが生成したことを予感させた。ビーカーの底に沈殿物が認められたので、450nmのメンブレンフィルターで濾過して沈殿物を除去した後、得られた濾液を紫外可視近赤外分光光度計(日本分光社製V-570、以下同じ)で測定したところ、500-600nm付近に過マンガン酸イオンのピーク群が存在した(蒸留水に塩化ナトリウムを溶解して塩分濃度を0.25%にしてから過マンガン酸カリウムを溶解することで製造した過マンガン酸イオンを含む水について同じ条件で測定を行うことで同じ場所に同じ形状のピーク群が存在することを確認、以下同じ)。こうして製造した本発明の過マンガン酸イオンを含む水の過マンガン酸イオン濃度は約10μMであった(紫外可視近赤外分光光度計で測定した過マンガン酸イオンのピーク群の高さを、標準液として過マンガン酸カリウムを用いて製造した過マンガン酸イオンを20μMの濃度で含む水のピーク群の高さと比較することで換算した濃度、以下同じ)。5Lの本発明の過マンガン酸イオンを含む水を製造するのに要した時間は約30分間であった。
実施例2:
 主に粒径が5~50μmのマイクロバブルを発生させることができる市販の加圧溶解方式のマイクロバブル発生装置(資源開発研究所社製A-02)を用いて蒸留水中にオゾンマイクロバブルを発生させた。オゾンガスは、市販の酸素源オゾン発生装置を用いて約30g/Nmの濃度で調製したものをマイクロバブル発生装置に約1L/分で供給し、水中のオゾン濃度が約10mg/Lになるようした。オゾンマイクロバブルを発生させ続けることで、水の酸化還元電位が当初の約+500mVから連続的に上昇することを確認した後、+600mVに到達してから10分間が経過した時点で、有機鉄化合物として10μMのクエン酸鉄アンモニウム、無機塩として50mMの塩化ナトリウム、2価のマンガン化合物として10μMの硝酸マンガンを溶解し、水酸化ナトリウムを用いてpHを8に調整した。その後、さらに1時間オゾンマイクロバブルを発生し続けると、水の色が薄紫色(ピンク色)となり、水中に過マンガン酸イオンが生成したことを予感させた。ビーカーの底に沈殿物が認められたので、450nmのメンブレンフィルターで濾過して沈殿物を除去した後、得られた濾液を紫外可視近赤外分光光度計で測定したところ、500-600nm付近に過マンガン酸イオンのピーク群が存在した。こうして製造した本発明の過マンガン酸イオンを含む水の過マンガン酸イオン濃度は約8μMであった。10Lの本発明の過マンガン酸イオンを含む水を製造するのに要した時間は約20分間であった。
実施例3:
 クエン酸鉄アンモニウムのかわりにフルボ酸鉄を溶解すること以外は実施例1と同様にして本発明の過マンガン酸イオンを含む水を製造した。
実施例4:
 実施例1で製造した本発明の過マンガン酸イオンを含む水の過マンガン酸イオンの半減期を、大気圧下で密閉容器としてペットボトルに充填したものを40℃の温度条件下において保存した場合において調べたところ、3ヶ月間以上であった(3ヶ月間が経過した時点で半分以上の過マンガン酸イオンが残存)。
実施例5:
 実施例1で製造した本発明の過マンガン酸イオンを含む水を、大気圧下で密閉容器としてペットボトルに充填して-20℃の温度条件下において6ヶ月間以上凍結保存した後に常温(25℃)で自然解凍したところ、凍結前の過マンガン酸イオンを含む水に回復した(6ヶ月間凍結保存した後に解凍しても過マンガン酸イオン濃度は凍結前と同じ)。
実施例6:
 実施例1で製造した本発明の過マンガン酸イオンを含む水を、室温条件で暗所に1週間放置した後、スピントラップ剤であるDMPO(5,5-ジメチル-1-ピロリン N-オキサイド)を添加し、さらに塩酸を添加してpH2の強酸条件下で電子スピン共鳴(ESR)スペクトルを測定したところ、スピンアダクトであるDMPO-OHのスペクトル(水酸基ラジカルの発生を意味するスペクトル)を観測することができた。
実施例7:
 実施例1で製造した本発明の過マンガン酸イオンを含む水を検体として、OECD Guidelines for the Testing of Chemicals 404に準拠するウサギを用いた皮膚一次刺激性試験を行ったところ、刺激性は認められなかった。
実施例8:
 実施例1で製造した本発明の過マンガン酸イオンを含む水を、ラットに20mg/kgの投与量で14日間経口投与したところ、急性毒性は認められなかった。
実施例9:
 実施例1で製造した本発明の過マンガン酸イオンを含む水の、病原性細菌サルモネラ・エンテリティディスに対する殺菌効果を調べたところ、優れた殺菌効果が認められた。
実施例10:
 夏場に異臭を発するペットボトルの裁断くず(産業廃棄物)に、適量の実施例1で製造した本発明の過マンガン酸イオンを含む水を噴霧したところ、優れた消臭効果を発揮した。
実施例11:
 蒸留水中にオゾンマイクロバブルを発生させ続けることで、水の酸化還元電位が+600mVに到達してから30分間が経過した時点で、クエン酸鉄アンモニウム、塩化ナトリウム、塩化マンガンを溶解すること以外は実施例1と同様にして本発明の過マンガン酸イオンを含む水を製造したところ、実施例1で製造した本発明の過マンガン酸イオンを含む水と比較して過マンガン酸イオンの半減期の延長が認められた。
比較例1:
 蒸留水に過マンガン酸カリウムを溶解することで調製した約10μMの過マンガン酸イオンを含む水を製造した。この過マンガン酸イオンを含む水のESRスペクトルを実施例6と同じ条件で測定したところ、この過マンガン酸イオンを含む水は、実施例1で製造した過マンガン酸イオンを含む水と異なって、スピンアダクトであるDMPO-OHのスペクトルを観測することはできず、かわりに一重項酸素のスペクトルが観察された。以上の結果から、この過マンガン酸イオンを含む水は、過マンガン酸イオンを含むという点においては実施例1で製造した本発明の過マンガン酸イオンを含む水と共通しているが、顕著に異なった性質を持つことがわかった。
比較例2:
 比較例1で製造した過マンガン酸イオンを含む水を、大気圧下で密閉容器としてペットボトルに充填し、40℃の温度条件下において保存したところ、実験開始から1ヶ月間が経過した時点で薄紫色の水の色が完全に消失し、紫外可視近赤外分光光度計による測定において過マンガン酸イオンのピーク群は認められなかった。
比較例3:
 比較例1で製造した過マンガン酸イオンを含む水は、大気圧下で密閉容器としてペットボトルに充填して-20℃の温度条件下において凍結保存すると、常温(25℃)で自然解凍しても凍結前の過マンガン酸イオンを含む水に回復しなかった。
比較例4:
 比較例1で製造した過マンガン酸イオンを含む水を検体として、OECD Guidelines for the Testing of Chemicals 404に準拠するウサギを用いた皮膚一次刺激性試験を行ったところ、刺激性が認められた。
比較例5:
 比較例1で製造した過マンガン酸イオンを含む水の、病原性細菌サルモネラ・エンテリティディスに対する殺菌効果を調べたところ、殺菌効果はほとんど認められなかった。
比較例6:
 オゾンの供給を、一般的な散気管を用いたバブリングによって行うことに以外は実施例1と同様にして過マンガン酸カリウムを含む水を製造した。この過マンガン酸イオンを含む水を、室温条件で暗所に放置したところ、実験開始から1日経過した時点で薄紫色の水の色が完全に消失し、紫外可視近赤外分光光度計による測定において過マンガン酸イオンのピーク群は認められなかった。
 本発明は、過マンガン酸イオンが長期に亘って安定に存在する水およびその製造方法を提供することができる点において産業上の利用可能性を有する。

Claims (13)

  1.  濃度が1~300g/Nmのオゾンガスを用いてオゾンマイクロバブルを発生させた水に、0.1μM~1mMの2価のマンガン化合物、0.1μM~1mMの有機鉄化合物、1~300mMの無機塩を溶解させてなる過マンガン酸イオンを含む水。
  2.  2価のマンガン化合物が、硝酸マンガン、硫酸マンガン、塩化マンガンからなる群から選択される少なくとも1種である請求項1記載の過マンガン酸イオンを含む水。
  3.  有機鉄化合物が、クエン酸鉄アンモニウム、フルボ酸鉄、酢酸鉄、ヘム鉄、デキストラン鉄、ジエチレントリアミン五酢酸鉄ナトリウム、ジエチレントリアミン五酢酸鉄アンモニウム、エチレンジアミン四酢酸鉄ナトリウム、エチレンジアミン四酢酸鉄アンモニウム、トリエチレンテトラアミン鉄、ジカルボキシメチルグルタミン酸鉄ナトリウム、クエン酸第一鉄、クエン酸鉄ナトリウム、シュウ酸鉄、コハク酸第一鉄、コハク酸クエン酸鉄ナトリウム、ピロリン酸第一鉄、ピロリン酸第二鉄、乳酸鉄、グルコン酸第一鉄、ギ酸第一鉄、ギ酸第二鉄、シュウ酸カリウム第二鉄アンモニウム、アスコルビン酸第一鉄、エデト酸ナトリウム第二鉄からなる群から選択される少なくとも1種である請求項1記載の過マンガン酸イオンを含む水。
  4.  無機塩が、塩化ナトリウム、塩化カリウム、塩化マグネシウム、硫酸マグネシウムからなる群から選択される少なくとも1種である請求項1記載の過マンガン酸イオンを含む水。
  5.  オゾンマイクロバブルの発生が、粒径が5~50μmのマイクロバブルを発生させることができる微小気泡発生装置を用いて行われる請求項1記載の過マンガン酸イオンを含む水。
  6.  微小気泡発生装置が、二相流旋回方式または加圧溶解方式の微小気泡発生装置である請求項5記載の過マンガン酸イオンを含む水。
  7.  オゾンマイクロバブルを発生させた水への、2価のマンガン化合物と有機鉄化合物と無機塩の溶解が、オゾンマイクロバブルを発生させた水の酸化還元電位が上昇して少なくとも+600mVに到達してから10分間以上が経過した後に行われる請求項1記載の過マンガン酸イオンを含む水。
  8.  過マンガン酸イオンの半減期が、大気圧下で密閉容器に充填したものを40℃の温度条件下において保存した場合に3ヶ月間以上である請求項1記載の過マンガン酸イオンを含む水。
  9.  過マンガン酸イオンを含む水が、大気圧下で密閉容器に充填して-20℃の温度条件下において6ヶ月間以上凍結保存した後に常温(25℃)で自然解凍した場合、凍結前の過マンガン酸イオンを含む水に回復する請求項1記載の過マンガン酸イオンを含む水。
  10.  過マンガン酸イオンを含む水が、哺乳動物の皮膚に対する刺激性がなく、哺乳動物に対して経口急性毒性を示さず、殺菌効果と消臭効果を有する請求項1記載の過マンガン酸イオンを含む水。
  11.  濃度が1~300g/Nmのオゾンガスを用いてオゾンマイクロバブルを発生させた水に、0.1μM~1mMの2価のマンガン化合物、0.1μM~1mMの有機鉄化合物、1~300mMの無機塩を溶解することによる過マンガン酸イオンを含む水の製造方法。
  12.  オゾンマイクロバブルの発生を、粒径が5~50μmのマイクロバブルを発生させることができる微小気泡発生装置を用いて行う請求項11記載の過マンガン酸イオンを含む水の製造方法。
  13.  オゾンマイクロバブルを発生させた水への、2価のマンガン化合物と有機鉄化合物と無機塩の溶解を、オゾンマイクロバブルを発生させた水の酸化還元電位が上昇して少なくとも+600mVに到達してから10分間以上が経過した後に行う請求項11記載の過マンガン酸イオンを含む水の製造方法。
PCT/JP2015/071895 2014-08-01 2015-08-01 過マンガン酸イオンを含む水およびその製造方法 WO2016017820A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US15/500,276 US20170210649A1 (en) 2014-08-01 2015-08-01 Water containing permanganate ions and method for producing the same
EP15827309.4A EP3192774A4 (en) 2014-08-01 2015-08-01 Water including permanganate ions, and method for producing same
JP2016538473A JP6422976B2 (ja) 2014-08-01 2015-08-01 過マンガン酸イオンを含む水の製造方法
CA2956891A CA2956891C (en) 2014-08-01 2015-08-01 Water containing permanganate ions and method for producing the same
CN201580040696.3A CN106660823B (zh) 2014-08-01 2015-08-01 含高锰酸根离子的水及其制造方法
NZ728865A NZ728865A (en) 2014-08-01 2015-08-01 Water including permanganate ions, and method for producing same
AU2015297372A AU2015297372B2 (en) 2014-08-01 2015-08-01 Water including permanganate ions, and method for producing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-158262 2014-08-01
JP2014158262 2014-08-01

Publications (1)

Publication Number Publication Date
WO2016017820A1 true WO2016017820A1 (ja) 2016-02-04

Family

ID=55217714

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/071895 WO2016017820A1 (ja) 2014-08-01 2015-08-01 過マンガン酸イオンを含む水およびその製造方法

Country Status (8)

Country Link
US (1) US20170210649A1 (ja)
EP (1) EP3192774A4 (ja)
JP (1) JP6422976B2 (ja)
CN (1) CN106660823B (ja)
AU (1) AU2015297372B2 (ja)
CA (1) CA2956891C (ja)
NZ (1) NZ728865A (ja)
WO (1) WO2016017820A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107540022A (zh) * 2016-06-23 2018-01-05 中国科学院过程工程研究所 四氧化三锰的制备方法、使用的反应系统及所述反应系统的用途
CN107540021A (zh) * 2016-06-23 2018-01-05 中国科学院过程工程研究所 含有非锰元素的四氧化三锰复合物、制备方法、使用的反应系统及其用途
JP2020116555A (ja) * 2019-01-28 2020-08-06 久保田 徹 機能水
WO2022019327A1 (ja) * 2020-07-22 2022-01-27 国立大学法人東北大学 過マンガン酸イオンを含む水の製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11904366B2 (en) 2019-03-08 2024-02-20 En Solución, Inc. Systems and methods of controlling a concentration of microbubbles and nanobubbles of a solution for treatment of a product

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1054829A (ja) * 1996-04-25 1998-02-24 Meidensha Corp オゾン処理水の液相オゾン濃度測定装置及び過マンガン酸イオン検出装置
JP2005118664A (ja) * 2003-10-16 2005-05-12 Fuso Kensetsu Kogyo Kk 地下水の水質浄化方法及びその装置
JP2007125529A (ja) * 2005-11-07 2007-05-24 Yokogawa Electric Corp 除鉄・除マンガンの方法と除鉄・除マンガン装置
JP2013166143A (ja) * 2012-01-18 2013-08-29 Sigma Technology Kk マイクロ・ナノバブルの発生方法、発生ノズル及び発生装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101104761A (zh) * 2007-07-25 2008-01-16 浙江省丽水传人笔业有限公司 一种适用于中性墨水的纳米炭黑色浆制备方法及其制备装置
CN101514043A (zh) * 2009-04-01 2009-08-26 哈尔滨工业大学 高锰酸钾催化氧化去除水中微量有机污染物的方法
KR20180077326A (ko) * 2013-10-22 2018-07-06 오꾸노 케미칼 인더스트리즈 컴파니,리미티드 수지 재료의 에칭 처리용 조성물

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1054829A (ja) * 1996-04-25 1998-02-24 Meidensha Corp オゾン処理水の液相オゾン濃度測定装置及び過マンガン酸イオン検出装置
JP2005118664A (ja) * 2003-10-16 2005-05-12 Fuso Kensetsu Kogyo Kk 地下水の水質浄化方法及びその装置
JP2007125529A (ja) * 2005-11-07 2007-05-24 Yokogawa Electric Corp 除鉄・除マンガンの方法と除鉄・除マンガン装置
JP2013166143A (ja) * 2012-01-18 2013-08-29 Sigma Technology Kk マイクロ・ナノバブルの発生方法、発生ノズル及び発生装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3192774A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107540022A (zh) * 2016-06-23 2018-01-05 中国科学院过程工程研究所 四氧化三锰的制备方法、使用的反应系统及所述反应系统的用途
CN107540021A (zh) * 2016-06-23 2018-01-05 中国科学院过程工程研究所 含有非锰元素的四氧化三锰复合物、制备方法、使用的反应系统及其用途
JP2020116555A (ja) * 2019-01-28 2020-08-06 久保田 徹 機能水
WO2022019327A1 (ja) * 2020-07-22 2022-01-27 国立大学法人東北大学 過マンガン酸イオンを含む水の製造方法

Also Published As

Publication number Publication date
JP6422976B2 (ja) 2018-11-14
CA2956891A1 (en) 2016-02-04
EP3192774A4 (en) 2017-12-20
JPWO2016017820A1 (ja) 2017-05-25
CN106660823A (zh) 2017-05-10
NZ728865A (en) 2019-06-28
CN106660823B (zh) 2019-05-31
AU2015297372B2 (en) 2019-01-17
US20170210649A1 (en) 2017-07-27
AU2015297372A1 (en) 2017-03-02
CA2956891C (en) 2019-08-27
EP3192774A1 (en) 2017-07-19

Similar Documents

Publication Publication Date Title
JP6422976B2 (ja) 過マンガン酸イオンを含む水の製造方法
JP7082826B2 (ja) 殺菌剤及びその製造方法
JP2008093612A (ja) 反応活性種を含む水の製造方法および反応活性種を含む水
JP6341581B2 (ja) オゾン水の製造方法
Tso et al. The reactivity of well-dispersed zerovalent iron nanoparticles toward pentachlorophenol in water
CN103553247A (zh) 一种利用无机固体过氧化物诱导过硫酸盐产生单线态氧除藻的水处理方法
Shames et al. Unusual stabilization of zinc peroxide by manganese oxide: mechanistic understanding by temperature-dependent EPR studies
Duan et al. Aggregation kinetics of UV-aged soot nanoparticles in wet environments: Effects of irradiation time and background solution chemistry
JP6633098B2 (ja) 歯牙美白方法
WO2012158009A1 (es) Compuesto estabilizado eliminador e inhibidor de incrustaciones en tuberías
Ghahremani Photocatalytic degradation of antibacterial sulfanilamide from aqueous solution using TiO2 nanocatalyst
Seliverstov et al. Oxidative degradation of EDTA in aqueous solutions under UV irradiation
JP2011000497A (ja) 鉄キレート水溶液ならびに土壌及び/又は地下水の浄化方法
WO2022019327A1 (ja) 過マンガン酸イオンを含む水の製造方法
Sharma et al. Oxidation of Pharmaceuticals by Ferrate (VI)–Amino Acid Systems: Enhancement by Proline
Montazerozohori et al. Kinetics of photocatalytic decolorization of paramagenta at buffer solutions using nanotitanium dioxide under aerobic condition
Belovolova et al. Nature of long-lived nonequilibrium states of water and glycyltryptophan aqueous solutions
JP7475025B2 (ja) 酸素を含有するナノ粒子を含む水
JP7347867B2 (ja) 活性酸素水および活性酸素水の製造方法
JP2009249274A (ja) 二酸化塩素を安全かつ効率的に任意の濃度を任意の時間で生成する方法
Ataee et al. Removal of 17β-Estradiol (E2) from Aqueous Solutions Using Potassium Permanganate Combined with Ultraviolet (KMnO4/UV)
Golota et al. Ozone treatment of hydrazine-containing water solution
TW202007640A (zh) 二氧化氯氣體的產生消滅方法和二氧化氯氣體產生消滅用的套組
JP6468048B2 (ja) スライム剥離剤及びスライムの剥離方法
Xie et al. Role of surfactant additives in the ferrate (Ⅵ) oxidation of anti-inflammatory drug diclofenac in aqueous solution

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15827309

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016538473

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15500276

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2956891

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015827309

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015827309

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2015297372

Country of ref document: AU

Date of ref document: 20150801

Kind code of ref document: A